This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
new perldelta
[perl5.git] / handy.h
1 /*    handy.h
2  *
3  *    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1999, 2000,
4  *    2001, 2002, 2004, 2005, 2006, 2007, 2008, 2012 by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10
11 /* IMPORTANT NOTE: Everything whose name begins with an underscore is for
12  * internal core Perl use only. */
13
14 #ifndef PERL_HANDY_H_ /* Guard against nested #inclusion */
15 #define PERL_HANDY_H_
16
17 #ifndef PERL_CORE
18 #  define Null(type) ((type)NULL)
19
20 /*
21 =for apidoc_section $string
22 =for apidoc AmnU||Nullch
23 Null character pointer.  (No longer available when C<PERL_CORE> is
24 defined.)
25
26 =for apidoc_section $SV
27 =for apidoc AmnU||Nullsv
28 Null SV pointer.  (No longer available when C<PERL_CORE> is defined.)
29
30 =cut
31
32 Below are signatures of functions from config.h which can't easily be gleaned
33 from it, and are very unlikely to change
34
35 =for apidoc_section $signals
36 =for apidoc Am|int|Sigsetjmp|jmp_buf env|int savesigs
37 =for apidoc Am|void|Siglongjmp|jmp_buf env|int val
38
39 =for apidoc_section $filesystem
40 =for apidoc Am|void *|FILE_ptr|FILE * f
41 =for apidoc Am|Size_t|FILE_cnt|FILE * f
42 =for apidoc Am|void *|FILE_base|FILE * f
43 =for apidoc Am|Size_t|FILE_bufsiz|FILE *f
44
45 =for apidoc_section $string
46 =for apidoc Amu|token|CAT2|token x|token y
47 =for apidoc Amu|string|STRINGIFY|token x
48
49 =for apidoc_section $numeric
50 =for apidoc Am|double|Drand01
51 =for apidoc Am|void|seedDrand01|Rand_seed_t x
52 =for apidoc Am|char *|Gconvert|double x|Size_t n|bool t|char * b
53
54 =cut
55 */
56
57 #  define Nullch Null(char*)
58 #  define Nullfp Null(PerlIO*)
59 #  define Nullsv Null(SV*)
60 #endif
61
62 #ifdef TRUE
63 #undef TRUE
64 #endif
65 #ifdef FALSE
66 #undef FALSE
67 #endif
68 #define TRUE (1)
69 #define FALSE (0)
70
71 /*
72 =for apidoc_section $SV
73 =for apidoc   Am |AV *  |MUTABLE_AV |AV * p
74 =for apidoc_item |CV *  |MUTABLE_CV |CV * p
75 =for apidoc_item |GV *  |MUTABLE_GV |GV * p
76 =for apidoc_item |HV *  |MUTABLE_HV |HV * p
77 =for apidoc_item |IO *  |MUTABLE_IO |IO * p
78 =for apidoc_item |void *|MUTABLE_PTR|void * p
79 =for apidoc_item |SV *  |MUTABLE_SV |SV * p
80
81 The C<MUTABLE_I<*>>() macros cast pointers to the types shown, in such a way
82 (compiler permitting) that casting away const-ness will give a warning;
83 e.g.:
84
85  const SV *sv = ...;
86  AV *av1 = (AV*)sv;        <== BAD:  the const has been silently
87                                      cast away
88  AV *av2 = MUTABLE_AV(sv); <== GOOD: it may warn
89
90 C<MUTABLE_PTR> is the base macro used to derive new casts.  The other
91 already-built-in ones return pointers to what their names indicate.
92
93 =cut
94
95 The brace group version will raise a diagnostic if 'p' is const; the other
96 blindly casts away const.
97  */
98 #if defined(PERL_USE_GCC_BRACE_GROUPS)
99 #  define MUTABLE_PTR(p) ({ void *p_ = (p); p_; })
100 #else
101 #  define MUTABLE_PTR(p) ((void *) (p))
102 #endif
103
104 #define MUTABLE_AV(p)   ((AV *)MUTABLE_PTR(p))
105 #define MUTABLE_CV(p)   ((CV *)MUTABLE_PTR(p))
106 #define MUTABLE_GV(p)   ((GV *)MUTABLE_PTR(p))
107 #define MUTABLE_HV(p)   ((HV *)MUTABLE_PTR(p))
108 #define MUTABLE_IO(p)   ((IO *)MUTABLE_PTR(p))
109 #define MUTABLE_SV(p)   ((SV *)MUTABLE_PTR(p))
110
111 /*
112 =for apidoc_section $SV
113 =for apidoc   Am |AV *|AV_FROM_REF|SV * ref
114 =for apidoc_item |CV *|CV_FROM_REF|SV * ref
115 =for apidoc_item |HV *|HV_FROM_REF|SV * ref
116
117 The C<I<*>V_FROM_REF> macros extract the C<SvRV()> from a given reference SV
118 and return a suitably-cast to pointer to the referenced SV. When running
119 under C<-DDEBUGGING>, assertions are also applied that check that I<ref> is
120 definitely a reference SV that refers to an SV of the right type.
121
122 =cut
123 */
124
125 #if defined(DEBUGGING) && defined(PERL_USE_GCC_BRACE_GROUPS)
126 #  define xV_FROM_REF(XV, ref)  \
127     ({ SV *_ref = ref; \
128        assert(SvROK(_ref)); \
129        assert(SvTYPE(SvRV(_ref)) == SVt_PV ## XV); \
130        (XV *)(SvRV(_ref)); })
131 #else
132 #  define xV_FROM_REF(XV, ref)  ((XV *)(SvRV(ref)))
133 #endif
134
135 #define AV_FROM_REF(ref)  xV_FROM_REF(AV, ref)
136 #define CV_FROM_REF(ref)  xV_FROM_REF(CV, ref)
137 #define HV_FROM_REF(ref)  xV_FROM_REF(HV, ref)
138
139 #ifndef __cplusplus
140 #  include <stdbool.h>
141 #endif
142
143 /*
144 =for apidoc_section $casting
145 =for apidoc Am|bool|cBOOL|bool expr
146
147 Cast-to-bool.  When Perl was able to be compiled on pre-C99 compilers, a
148 C<(bool)> cast didn't necessarily do the right thing, so this macro was
149 created (and made somewhat complicated to work around bugs in old
150 compilers).  Now, many years later, and C99 is used, this is no longer
151 required, but is kept for backwards compatibility.
152
153 =cut
154 */
155 #define cBOOL(cbool) ((bool) (cbool))
156
157 /* Try to figure out __func__ or __FUNCTION__ equivalent, if any.
158  * XXX Should really be a Configure probe, with HAS__FUNCTION__
159  *     and FUNCTION__ as results.
160  * XXX Similarly, a Configure probe for __FILE__ and __LINE__ is needed. */
161 #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__SUNPRO_C)) /* C99 or close enough. */
162 #  define FUNCTION__ __func__
163 #  define SAFE_FUNCTION__ __func__
164 #elif (defined(__DECC_VER)) /* Tru64 or VMS, and strict C89 being used, but not modern enough cc (in Tru64, -c99 not known, only -std1). */
165 #  define FUNCTION__ ("")
166 #  define SAFE_FUNCTION__ ("UNKNOWN")
167 #else
168 #  define FUNCTION__ __FUNCTION__ /* Common extension. */
169 #  define SAFE_FUNCTION__ __FUNCTION__ /* Common extension. */
170 #endif
171
172 /* XXX A note on the perl source internal type system.  The
173    original intent was that I32 be *exactly* 32 bits.
174
175    Currently, we only guarantee that I32 is *at least* 32 bits.
176    Specifically, if int is 64 bits, then so is I32.  (This is the case
177    for the Cray.)  This has the advantage of meshing nicely with
178    standard library calls (where we pass an I32 and the library is
179    expecting an int), but the disadvantage that an I32 is not 32 bits.
180    Andy Dougherty       August 1996
181
182    There is no guarantee that there is *any* integral type with
183    exactly 32 bits.  It is perfectly legal for a system to have
184    sizeof(short) == sizeof(int) == sizeof(long) == 8.
185
186    Similarly, there is no guarantee that I16 and U16 have exactly 16
187    bits.
188
189    For dealing with issues that may arise from various 32/64-bit
190    systems, we will ask Configure to check out
191
192         SHORTSIZE == sizeof(short)
193         INTSIZE == sizeof(int)
194         LONGSIZE == sizeof(long)
195         LONGLONGSIZE == sizeof(long long) (if HAS_LONG_LONG)
196         PTRSIZE == sizeof(void *)
197         DOUBLESIZE == sizeof(double)
198         LONG_DOUBLESIZE == sizeof(long double) (if HAS_LONG_DOUBLE).
199
200 */
201
202 #ifdef I_INTTYPES /* e.g. Linux has int64_t without <inttypes.h> */
203 #   include <inttypes.h>
204 #   ifdef INT32_MIN_BROKEN
205 #       undef  INT32_MIN
206 #       define INT32_MIN (-2147483647-1)
207 #   endif
208 #   ifdef INT64_MIN_BROKEN
209 #       undef  INT64_MIN
210 #       define INT64_MIN (-9223372036854775807LL-1)
211 #   endif
212 #endif
213
214 typedef I8TYPE I8;
215 typedef U8TYPE U8;
216 typedef I16TYPE I16;
217 typedef U16TYPE U16;
218 typedef I32TYPE I32;
219 typedef U32TYPE U32;
220
221 #ifdef QUADKIND
222 typedef I64TYPE I64;
223 typedef U64TYPE U64;
224 #endif
225
226 /* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type.
227    Please search CHAR_MAX in perl.h for further details. */
228 #ifdef UINT8_MAX
229 #  define U8_MAX UINT8_MAX
230 #else
231 #  define U8_MAX PERL_UCHAR_MAX
232 #endif
233 #ifdef UINT8_MIN
234 #  define U8_MIN UINT8_MIN
235 #else
236 #  define U8_MIN PERL_UCHAR_MIN
237 #endif
238
239 #ifdef INT16_MAX
240 #  define I16_MAX INT16_MAX
241 #else
242 #  define I16_MAX PERL_SHORT_MAX
243 #endif
244 #ifdef INT16_MIN
245 #  define I16_MIN INT16_MIN
246 #else
247 #  define I16_MIN PERL_SHORT_MIN
248 #endif
249 #ifdef UINT16_MAX
250 #  define U16_MAX UINT16_MAX
251 #else
252 #  define U16_MAX PERL_USHORT_MAX
253 #endif
254 #ifdef UINT16_MIN
255 #  define U16_MIN UINT16_MIN
256 #else
257 #  define U16_MIN PERL_USHORT_MIN
258 #endif
259
260 #ifdef INT32_MAX
261 #  define I32_MAX INT32_MAX
262 #elif LONGSIZE > 4
263 #  define I32_MAX PERL_INT_MAX
264 #else
265 #  define I32_MAX PERL_LONG_MAX
266 #endif
267 #ifdef INT32_MIN
268 #  define I32_MIN INT32_MIN
269 #elif LONGSIZE > 4
270 #  define I32_MIN PERL_INT_MIN
271 #else
272 #  define I32_MIN PERL_LONG_MIN
273 #endif
274 #ifdef UINT32_MAX
275 #  ifndef UINT32_MAX_BROKEN /* e.g. HP-UX with gcc messes this up */
276 #    define U32_MAX UINT_MAX
277 #  else
278 #    define U32_MAX 4294967295U
279 #  endif
280 #elif LONGSIZE > 4
281 #  define U32_MAX PERL_UINT_MAX
282 #else
283 #  define U32_MAX PERL_ULONG_MAX
284 #endif
285 #ifdef UINT32_MIN
286 #  define U32_MIN UINT32_MIN
287 #elif LONGSIZE > 4
288 #  define U32_MIN PERL_UINT_MIN
289 #else
290 #  define U32_MIN PERL_ULONG_MIN
291 #endif
292
293 /*
294 =for apidoc_section $integer
295 =for apidoc Ay|| PERL_INT_FAST8_T
296 =for apidoc_item PERL_INT_FAST16_T
297 =for apidoc_item PERL_UINT_FAST8_T
298 =for apidoc_item PERL_UINT_FAST16_T
299
300 These are equivalent to the correspondingly-named C99 typedefs on platforms
301 that have those; they evaluate to C<int> and C<unsigned int> on platforms that
302 don't, so that you can portably take advantage of this C99 feature.
303
304 =cut
305 */
306 #ifdef I_STDINT
307     typedef  int_fast8_t  PERL_INT_FAST8_T;
308     typedef uint_fast8_t  PERL_UINT_FAST8_T;
309     typedef  int_fast16_t PERL_INT_FAST16_T;
310     typedef uint_fast16_t PERL_UINT_FAST16_T;
311 #else
312     typedef int           PERL_INT_FAST8_T;
313     typedef unsigned int  PERL_UINT_FAST8_T;
314     typedef int           PERL_INT_FAST16_T;
315     typedef unsigned int  PERL_UINT_FAST16_T;
316 #endif
317
318 /* log(2) (i.e., log base 10 of 2) is pretty close to 0.30103, just in case
319  * anyone is grepping for it.  So BIT_DIGITS gives the number of decimal digits
320  * required to represent any possible unsigned number containing N bits.
321  * TYPE_DIGITS gives the number of decimal digits required to represent any
322  * possible unsigned number of type T. */
323 #define BIT_DIGITS(N)   (((N)*146)/485 + 1)  /* log10(2) =~ 146/485 */
324 #define TYPE_DIGITS(T)  BIT_DIGITS(sizeof(T) * 8)
325 #define TYPE_CHARS(T)   (TYPE_DIGITS(T) + 2) /* sign, NUL */
326
327 /* Unused by core; should be deprecated */
328 #define Ctl(ch) ((ch) & 037)
329
330 #if defined(PERL_CORE) || defined(PERL_EXT)
331 #  ifndef MIN
332 #    define MIN(a,b) ((a) < (b) ? (a) : (b))
333 #  endif
334 #  ifndef MAX
335 #    define MAX(a,b) ((a) > (b) ? (a) : (b))
336 #  endif
337 #endif
338
339 /* Returns a boolean as to whether the input unsigned number is a power of 2
340  * (2**0, 2**1, etc).  In other words if it has just a single bit set.
341  * If not, subtracting 1 would leave the uppermost bit set, so the & would
342  * yield non-zero */
343 #if defined(PERL_CORE) || defined(PERL_EXT)
344 #  define isPOWER_OF_2(n) ((n) && ((n) & ((n)-1)) == 0)
345 #endif
346
347 /* Returns a mask with the lowest n bits set */
348 #define nBIT_MASK(n) ((UINTMAX_C(1) << (n)) - 1)
349
350 /* The largest unsigned number that will fit into n bits */
351 #define nBIT_UMAX(n)  nBIT_MASK(n)
352
353 /*
354 =for apidoc_section $directives
355 =for apidoc Am||__ASSERT_|bool expr
356
357 This is a helper macro to avoid preprocessor issues, replaced by nothing
358 unless under DEBUGGING, where it expands to an assert of its argument,
359 followed by a comma (hence the comma operator).  If we just used a straight
360 assert(), we would get a comma with nothing before it when not DEBUGGING.
361
362 =cut
363
364 We also use empty definition under Coverity since the __ASSERT_
365 checks often check for things that Really Cannot Happen, and Coverity
366 detects that and gets all excited. */
367
368 #if   defined(DEBUGGING) && !defined(__COVERITY__)                        \
369  && ! defined(PERL_SMALL_MACRO_BUFFER)
370 #   define __ASSERT_(statement)  assert(statement),
371 #else
372 #   define __ASSERT_(statement)
373 #endif
374
375 /*
376 =for apidoc_section $SV
377
378 =for apidoc Ama|SV*|newSVpvs|"literal string"
379 Like C<newSVpvn>, but takes a literal string instead of a
380 string/length pair.
381
382 =for apidoc Ama|SV*|newSVpvs_flags|"literal string"|U32 flags
383 Like C<newSVpvn_flags>, but takes a literal string instead of
384 a string/length pair.
385
386 =for apidoc Ama|SV*|newSVpvs_share|"literal string"
387 Like C<newSVpvn_share>, but takes a literal string instead of
388 a string/length pair and omits the hash parameter.
389
390 =for apidoc Am|void|sv_catpvs_flags|SV* sv|"literal string"|I32 flags
391 Like C<sv_catpvn_flags>, but takes a literal string instead
392 of a string/length pair.
393
394 =for apidoc Am|void|sv_catpvs_nomg|SV* sv|"literal string"
395 Like C<sv_catpvn_nomg>, but takes a literal string instead of
396 a string/length pair.
397
398 =for apidoc Am|void|sv_catpvs|SV* sv|"literal string"
399 Like C<sv_catpvn>, but takes a literal string instead of a
400 string/length pair.
401
402 =for apidoc Am|void|sv_catpvs_mg|SV* sv|"literal string"
403 Like C<sv_catpvn_mg>, but takes a literal string instead of a
404 string/length pair.
405
406 =for apidoc Am|SV *|sv_setref_pvs|SV *const rv|const char *const classname|"literal string"
407 Like C<sv_setref_pvn>, but takes a literal string instead of
408 a string/length pair.
409
410 =for apidoc_section $string
411
412 =for apidoc Ama|char*|savepvs|"literal string"
413 Like C<savepvn>, but takes a literal string instead of a
414 string/length pair.
415
416 =for apidoc Ama|char*|savesharedpvs|"literal string"
417 A version of C<savepvs()> which allocates the duplicate string in memory
418 which is shared between threads.
419
420 =for apidoc_section $GV
421
422 =for apidoc Am|HV*|gv_stashpvs|"name"|I32 create
423 Like C<gv_stashpvn>, but takes a literal string instead of a
424 string/length pair.
425
426 =for apidoc_section $HV
427
428 =for apidoc Am|SV**|hv_fetchs|HV* tb|"key"|I32 lval
429 Like C<hv_fetch>, but takes a literal string instead of a
430 string/length pair.
431 =for apidoc_section $lexer
432
433 =for apidoc Amx|void|lex_stuff_pvs|"pv"|U32 flags
434
435 Like L</lex_stuff_pvn>, but takes a literal string instead of
436 a string/length pair.
437
438 =cut
439 */
440
441 #define ASSERT_IS_LITERAL(s) ("" s "")
442
443 /*
444 =for apidoc_section $string
445
446 =for apidoc Amu|pair|STR_WITH_LEN|"literal string"
447
448 Returns two comma separated tokens of the input literal string, and its length.
449 This is convenience macro which helps out in some API calls.
450 Note that it can't be used as an argument to macros or functions that under
451 some configurations might be macros, which means that it requires the full
452 Perl_xxx(aTHX_ ...) form for any API calls where it's used.
453
454 =cut
455 */
456
457 #define STR_WITH_LEN(s)  ASSERT_IS_LITERAL(s), (sizeof(s)-1)
458
459 /* STR_WITH_LEN() shortcuts */
460 #define newSVpvs(str) Perl_newSVpvn(aTHX_ STR_WITH_LEN(str))
461 #define newSVpvs_flags(str,flags)       \
462     Perl_newSVpvn_flags(aTHX_ STR_WITH_LEN(str), flags)
463 #define newSVpvs_share(str) Perl_newSVpvn_share(aTHX_ STR_WITH_LEN(str), 0)
464 #define sv_catpvs_flags(sv, str, flags) \
465     Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), flags)
466 #define sv_catpvs_nomg(sv, str) \
467     Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), 0)
468 #define sv_catpvs(sv, str) \
469     Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC)
470 #define sv_catpvs_mg(sv, str) \
471     Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC|SV_SMAGIC)
472 #define sv_setpvs(sv, str) Perl_sv_setpvn(aTHX_ sv, STR_WITH_LEN(str))
473 #define sv_setpvs_mg(sv, str) Perl_sv_setpvn_mg(aTHX_ sv, STR_WITH_LEN(str))
474 #define sv_setref_pvs(rv, classname, str) \
475     Perl_sv_setref_pvn(aTHX_ rv, classname, STR_WITH_LEN(str))
476 #define savepvs(str) Perl_savepvn(aTHX_ STR_WITH_LEN(str))
477 #define savesharedpvs(str) Perl_savesharedpvn(aTHX_ STR_WITH_LEN(str))
478 #define gv_stashpvs(str, create) \
479     Perl_gv_stashpvn(aTHX_ STR_WITH_LEN(str), create)
480
481 #define gv_fetchpvs(namebeg, flags, sv_type) \
482     Perl_gv_fetchpvn_flags(aTHX_ STR_WITH_LEN(namebeg), flags, sv_type)
483 #define  gv_fetchpvn  gv_fetchpvn_flags
484
485
486 #define lex_stuff_pvs(pv,flags) Perl_lex_stuff_pvn(aTHX_ STR_WITH_LEN(pv), flags)
487
488 #define get_cvs(str, flags)                                     \
489         Perl_get_cvn_flags(aTHX_ STR_WITH_LEN(str), (flags))
490
491 /* internal helpers */
492 /* Transitional */
493 #ifndef PERL_VERSION_MAJOR
494 #  define PERL_VERSION_MAJOR  PERL_REVISION
495 #else
496 #  undef  PERL_REVISION     /* We don't want code to be using these */
497 #endif
498 #ifndef PERL_VERSION_MINOR
499 #  define PERL_VERSION_MINOR  PERL_VERSION
500 #else
501 #  undef  PERL_VERSION
502 #endif
503 #ifndef PERL_VERSION_PATCH
504 #  define PERL_VERSION_PATCH  PERL_SUBVERSION
505 #else
506 #  undef  PERL_SUBVERSION
507 #endif
508
509 #define PERL_JNP_TO_DECIMAL_(maJor,miNor,Patch)                             \
510     /* '10*' leaves room for things like alpha, beta, releases */           \
511     (10 * (((maJor) * 1000000) + ((miNor) * 1000) + (Patch)))
512 #define PERL_DECIMAL_VERSION_                                               \
513         PERL_JNP_TO_DECIMAL_(PERL_VERSION_MAJOR, PERL_VERSION_MINOR,        \
514                                                         PERL_VERSION_PATCH)
515
516 /*
517 =for apidoc_section $versioning
518 =for apidoc AmR|bool|PERL_VERSION_EQ|const U8 major|const U8 minor|const U8 patch
519 =for apidoc_item PERL_VERSION_GE
520 =for apidoc_item PERL_VERSION_GT
521 =for apidoc_item PERL_VERSION_LE
522 =for apidoc_item PERL_VERSION_LT
523 =for apidoc_item PERL_VERSION_NE
524
525 Returns whether or not the perl currently being compiled has the specified
526 relationship to the perl given by the parameters.  For example,
527
528  #if PERL_VERSION_GT(5,24,2)
529    code that will only be compiled on perls after v5.24.2
530  #else
531    fallback code
532  #endif
533
534 Note that this is usable in making compile-time decisions
535
536 You may use the special value '*' for the final number to mean ALL possible
537 values for it.  Thus,
538
539  #if PERL_VERSION_EQ(5,31,'*')
540
541 means all perls in the 5.31 series.  And
542
543  #if PERL_VERSION_NE(5,24,'*')
544
545 means all perls EXCEPT 5.24 ones.  And
546
547  #if PERL_VERSION_LE(5,9,'*')
548
549 is effectively
550
551  #if PERL_VERSION_LT(5,10,0)
552
553 This means you don't have to think so much when converting from the existing
554 deprecated C<PERL_VERSION> to using this macro:
555
556  #if PERL_VERSION <= 9
557
558 becomes
559
560  #if PERL_VERSION_LE(5,9,'*')
561
562 =cut
563 */
564
565 /* N.B. These don't work if the patch version is 42 or 92, as those are what
566  * '*' is in ASCII and EBCDIC respectively */
567 # define PERL_VERSION_EQ(j,n,p)                                             \
568               (((p) == '*')                                                 \
569                ? (   (j) == PERL_VERSION_MAJOR                              \
570                   && (n) == PERL_VERSION_MINOR)                             \
571                : (PERL_DECIMAL_VERSION_ == PERL_JNP_TO_DECIMAL_(j,n,p)))
572 # define PERL_VERSION_NE(j,n,p) (! PERL_VERSION_EQ(j,n,p))
573
574 # define PERL_VERSION_LT(j,n,p) /* < '*' effectively means < 0 */           \
575     (PERL_DECIMAL_VERSION_ < PERL_JNP_TO_DECIMAL_( (j),                     \
576                                                    (n),                     \
577                                                  (((p) == '*') ? 0 : (p))))
578 # define PERL_VERSION_GE(j,n,p)  (! PERL_VERSION_LT(j,n,p))
579
580 # define PERL_VERSION_LE(j,n,p)  /* <= '*' effectively means <= 999 */      \
581     (PERL_DECIMAL_VERSION_ <= PERL_JNP_TO_DECIMAL_( (j),                    \
582                                                     (n),                    \
583                                                   (((p) == '*') ? 999 : (p))))
584 # define PERL_VERSION_GT(j,n,p) (! PERL_VERSION_LE(j,n,p))
585
586 /*
587 =for apidoc_section $string
588
589 =for apidoc Am|bool|strNE|char* s1|char* s2
590 Test two C<NUL>-terminated strings to see if they are different.  Returns true
591 or false.
592
593 =for apidoc Am|bool|strEQ|char* s1|char* s2
594 Test two C<NUL>-terminated strings to see if they are equal.  Returns true or
595 false.
596
597 =for apidoc Am|bool|strLT|char* s1|char* s2
598 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than the
599 second, C<s2>.  Returns true or false.
600
601 =for apidoc Am|bool|strLE|char* s1|char* s2
602 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than or
603 equal to the second, C<s2>.  Returns true or false.
604
605 =for apidoc Am|bool|strGT|char* s1|char* s2
606 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
607 the second, C<s2>.  Returns true or false.
608
609 =for apidoc Am|bool|strGE|char* s1|char* s2
610 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
611 or equal to the second, C<s2>.  Returns true or false.
612
613 =for apidoc Am|bool|strnNE|char* s1|char* s2|STRLEN len
614 Test two C<NUL>-terminated strings to see if they are different.  The C<len>
615 parameter indicates the number of bytes to compare.  Returns true or false.  (A
616 wrapper for C<strncmp>).
617
618 =for apidoc Am|bool|strnEQ|char* s1|char* s2|STRLEN len
619 Test two C<NUL>-terminated strings to see if they are equal.  The C<len>
620 parameter indicates the number of bytes to compare.  Returns true or false.  (A
621 wrapper for C<strncmp>).
622
623 =for apidoc Am|bool|memEQ|char* s1|char* s2|STRLEN len
624 Test two buffers (which may contain embedded C<NUL> characters, to see if they
625 are equal.  The C<len> parameter indicates the number of bytes to compare.
626 Returns true or false.  It is undefined behavior if either of the buffers
627 doesn't contain at least C<len> bytes.
628
629 =for apidoc Am|bool|memEQs|char* s1|STRLEN l1|"s2"
630 Like L</memEQ>, but the second string is a literal enclosed in double quotes,
631 C<l1> gives the number of bytes in C<s1>.
632 Returns true or false.
633
634 =for apidoc Am|bool|memNE|char* s1|char* s2|STRLEN len
635 Test two buffers (which may contain embedded C<NUL> characters, to see if they
636 are not equal.  The C<len> parameter indicates the number of bytes to compare.
637 Returns true or false.  It is undefined behavior if either of the buffers
638 doesn't contain at least C<len> bytes.
639
640 =for apidoc Am|bool|memNEs|char* s1|STRLEN l1|"s2"
641 Like L</memNE>, but the second string is a literal enclosed in double quotes,
642 C<l1> gives the number of bytes in C<s1>.
643 Returns true or false.
644
645 =for apidoc Am|bool|memCHRs|"list"|char c
646 Returns the position of the first occurrence of the byte C<c> in the literal
647 string C<"list">, or NULL if C<c> doesn't appear in C<"list">.  All bytes are
648 treated as unsigned char.  Thus this macro can be used to determine if C<c> is
649 in a set of particular characters.  Unlike L<strchr(3)>, it works even if C<c>
650 is C<NUL> (and the set doesn't include C<NUL>).
651
652 =cut
653
654 New macros should use the following conventions for their names (which are
655 based on the underlying C library functions):
656
657   (mem | str n? ) (EQ | NE | LT | GT | GE | (( BEGIN | END ) P? )) l? s?
658
659   Each has two main parameters, string-like operands that are compared
660   against each other, as specified by the macro name.  Some macros may
661   additionally have one or potentially even two length parameters.  If a length
662   parameter applies to both string parameters, it will be positioned third;
663   otherwise any length parameter immediately follows the string parameter it
664   applies to.
665
666   If the prefix to the name is 'str', the string parameter is a pointer to a C
667   language string.  Such a string does not contain embedded NUL bytes; its
668   length may be unknown, but can be calculated by C<strlen()>, since it is
669   terminated by a NUL, which isn't included in its length.
670
671   The optional 'n' following 'str' means that there is a third parameter,
672   giving the maximum number of bytes to look at in each string.  Even if both
673   strings are longer than the length parameter, those extra bytes will be
674   unexamined.
675
676   The 's' suffix means that the 2nd byte string parameter is a literal C
677   double-quoted string.  Its length will automatically be calculated by the
678   macro, so no length parameter will ever be needed for it.
679
680   If the prefix is 'mem', the string parameters don't have to be C strings;
681   they may contain embedded NUL bytes, do not necessarily have a terminating
682   NUL, and their lengths can be known only through other means, which in
683   practice are additional parameter(s) passed to the function.  All 'mem'
684   functions have at least one length parameter.  Barring any 'l' or 's' suffix,
685   there is a single length parameter, in position 3, which applies to both
686   string parameters.  The 's' suffix means, as described above, that the 2nd
687   string is a literal double-quoted C string (hence its length is calculated by
688   the macro, and the length parameter to the function applies just to the first
689   string parameter, and hence is positioned just after it).  An 'l' suffix
690   means that the 2nd string parameter has its own length parameter, and the
691   signature will look like memFOOl(s1, l1, s2, l2).
692
693   BEGIN (and END) are for testing if the 2nd string is an initial (or final)
694   substring  of the 1st string.  'P' if present indicates that the substring
695   must be a "proper" one in tha mathematical sense that the first one must be
696   strictly larger than the 2nd.
697
698 */
699
700
701 #define strNE(s1,s2) (strcmp(s1,s2) != 0)
702 #define strEQ(s1,s2) (strcmp(s1,s2) == 0)
703 #define strLT(s1,s2) (strcmp(s1,s2) < 0)
704 #define strLE(s1,s2) (strcmp(s1,s2) <= 0)
705 #define strGT(s1,s2) (strcmp(s1,s2) > 0)
706 #define strGE(s1,s2) (strcmp(s1,s2) >= 0)
707
708 #define strnNE(s1,s2,l) (strncmp(s1,s2,l) != 0)
709 #define strnEQ(s1,s2,l) (strncmp(s1,s2,l) == 0)
710
711 #define memEQ(s1,s2,l) (memcmp(((const void *) (s1)), ((const void *) (s2)), l) == 0)
712 #define memNE(s1,s2,l) (! memEQ(s1,s2,l))
713
714 /* memEQ and memNE where second comparand is a string constant */
715 #define memEQs(s1, l, s2) \
716         (((sizeof(s2)-1) == (l)) && memEQ((s1), ASSERT_IS_LITERAL(s2), (sizeof(s2)-1)))
717 #define memNEs(s1, l, s2) (! memEQs(s1, l, s2))
718
719 /* Keep these private until we decide it was a good idea */
720 #if defined(PERL_CORE) || defined(PERL_EXT) || defined(PERL_EXT_POSIX)
721
722 #define strBEGINs(s1,s2) (strncmp(s1,ASSERT_IS_LITERAL(s2), sizeof(s2)-1) == 0)
723
724 #define memBEGINs(s1, l, s2)                                                \
725             (   (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1               \
726              && memEQ(s1, ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
727 #define memBEGINPs(s1, l, s2)                                               \
728             (   (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2) - 1                \
729              && memEQ(s1, ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
730 #define memENDs(s1, l, s2)                                                  \
731             (   (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1               \
732              && memEQ(s1 + (l) - (sizeof(s2) - 1), ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
733 #define memENDPs(s1, l, s2)                                                 \
734             (   (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2)                    \
735              && memEQ(s1 + (l) - (sizeof(s2) - 1), ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
736 #endif  /* End of making macros private */
737
738 #define memLT(s1,s2,l) (memcmp(s1,s2,l) < 0)
739 #define memLE(s1,s2,l) (memcmp(s1,s2,l) <= 0)
740 #define memGT(s1,s2,l) (memcmp(s1,s2,l) > 0)
741 #define memGE(s1,s2,l) (memcmp(s1,s2,l) >= 0)
742
743 #define memCHRs(s1,c) ((const char *) memchr(ASSERT_IS_LITERAL(s1) , c, sizeof(s1)-1))
744
745 /*
746  * Character classes.
747  *
748  * Unfortunately, the introduction of locales means that we
749  * can't trust isupper(), etc. to tell the truth.  And when
750  * it comes to /\w+/ with tainting enabled, we *must* be able
751  * to trust our character classes.
752  *
753  * Therefore, the default tests in the text of Perl will be independent of
754  * locale.  Any code that wants to depend on the current locale will use the
755  * macros that contain _LC in their names
756  */
757
758 #ifdef USE_LOCALE_CTYPE
759 #  ifndef CTYPE256
760 #    define CTYPE256
761 #  endif
762 #endif
763
764 /*
765
766 =head1 Character classification
767 This section is about functions (really macros) that classify characters
768 into types, such as punctuation versus alphabetic, etc.  Most of these are
769 analogous to regular expression character classes.  (See
770 L<perlrecharclass/POSIX Character Classes>.)  There are several variants for
771 each class.  (Not all macros have all variants; each item below lists the
772 ones valid for it.)  None are affected by C<use bytes>, and only the ones
773 with C<LC> in the name are affected by the current locale.
774
775 The base function, e.g., C<isALPHA()>, takes any signed or unsigned value,
776 treating it as a code point, and returns a boolean as to whether or not the
777 character represented by it is (or on non-ASCII platforms, corresponds to) an
778 ASCII character in the named class based on platform, Unicode, and Perl rules.
779 If the input is a number that doesn't fit in an octet, FALSE is returned.
780
781 Variant C<isI<FOO>_A> (e.g., C<isALPHA_A()>) is identical to the base function
782 with no suffix C<"_A">.  This variant is used to emphasize by its name that
783 only ASCII-range characters can return TRUE.
784
785 Variant C<isI<FOO>_L1> imposes the Latin-1 (or EBCDIC equivalent) character set
786 onto the platform.  That is, the code points that are ASCII are unaffected,
787 since ASCII is a subset of Latin-1.  But the non-ASCII code points are treated
788 as if they are Latin-1 characters.  For example, C<isWORDCHAR_L1()> will return
789 true when called with the code point 0xDF, which is a word character in both
790 ASCII and EBCDIC (though it represents different characters in each).
791 If the input is a number that doesn't fit in an octet, FALSE is returned.
792 (Perl's documentation uses a colloquial definition of Latin-1, to include all
793 code points below 256.)
794
795 Variant C<isI<FOO>_uvchr> is exactly like the C<isI<FOO>_L1> variant, for
796 inputs below 256, but if the code point is larger than 255, Unicode rules are
797 used to determine if it is in the character class.  For example,
798 C<isWORDCHAR_uvchr(0x100)> returns TRUE, since 0x100 is LATIN CAPITAL LETTER A
799 WITH MACRON in Unicode, and is a word character.
800
801 Variants C<isI<FOO>_utf8> and C<isI<FOO>_utf8_safe> are like C<isI<FOO>_uvchr>,
802 but are used for UTF-8 encoded strings.  The two forms are different names for
803 the same thing.  Each call to one of these classifies the first character of
804 the string starting at C<p>.  The second parameter, C<e>, points to anywhere in
805 the string beyond the first character, up to one byte past the end of the
806 entire string.  Although both variants are identical, the suffix C<_safe> in
807 one name emphasizes that it will not attempt to read beyond S<C<e - 1>>,
808 provided that the constraint S<C<s E<lt> e>> is true (this is asserted for in
809 C<-DDEBUGGING> builds).  If the UTF-8 for the input character is malformed in
810 some way, the program may croak, or the function may return FALSE, at the
811 discretion of the implementation, and subject to change in future releases.
812
813 Variant C<isI<FOO>_LC> is like the C<isI<FOO>_A> and C<isI<FOO>_L1> variants,
814 but the result is based on the current locale, which is what C<LC> in the name
815 stands for.  If Perl can determine that the current locale is a UTF-8 locale,
816 it uses the published Unicode rules; otherwise, it uses the C library function
817 that gives the named classification.  For example, C<isDIGIT_LC()> when not in
818 a UTF-8 locale returns the result of calling C<isdigit()>.  FALSE is always
819 returned if the input won't fit into an octet.  On some platforms where the C
820 library function is known to be defective, Perl changes its result to follow
821 the POSIX standard's rules.
822
823 Variant C<isI<FOO>_LC_uvchr> acts exactly like C<isI<FOO>_LC> for inputs less
824 than 256, but for larger ones it returns the Unicode classification of the code
825 point.
826
827 Variants C<isI<FOO>_LC_utf8> and C<isI<FOO>_LC_utf8_safe> are like
828 C<isI<FOO>_LC_uvchr>, but are used for UTF-8 encoded strings.  The two forms
829 are different names for the same thing.  Each call to one of these classifies
830 the first character of the string starting at C<p>.  The second parameter,
831 C<e>, points to anywhere in the string beyond the first character, up to one
832 byte past the end of the entire string.  Although both variants are identical,
833 the suffix C<_safe> in one name emphasizes that it will not attempt to read
834 beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is true (this
835 is asserted for in C<-DDEBUGGING> builds).  If the UTF-8 for the input
836 character is malformed in some way, the program may croak, or the function may
837 return FALSE, at the discretion of the implementation, and subject to change in
838 future releases.
839
840 =for apidoc Am|bool|isALPHA|UV ch
841 =for apidoc_item ||isALPHA_A|UV ch
842 =for apidoc_item ||isALPHA_LC|UV ch
843 =for apidoc_item ||isALPHA_LC_utf8_safe|U8 * s| U8 *end
844 =for apidoc_item ||isALPHA_LC_uvchr|UV ch
845 =for apidoc_item ||isALPHA_L1|UV ch
846 =for apidoc_item ||isALPHA_utf8|U8 * s|U8 * end
847 =for apidoc_item ||isALPHA_utf8_safe|U8 * s|U8 * end
848 =for apidoc_item ||isALPHA_uvchr|UV ch
849 Returns a boolean indicating whether the specified input is one of C<[A-Za-z]>,
850 analogous to C<m/[[:alpha:]]/>.
851 See the L<top of this section|/Character classification> for an explanation of
852 the variants.
853
854 =cut
855
856 Here and below, we add the prototypes of these macros for downstream programs
857 that would be interested in them, such as Devel::PPPort
858
859 =for apidoc Am|bool|isALPHANUMERIC|UV ch
860 =for apidoc_item ||isALPHANUMERIC_A|UV ch
861 =for apidoc_item ||isALPHANUMERIC_LC|UV ch
862 =for apidoc_item ||isALPHANUMERIC_LC_utf8_safe|U8 * s| U8 *end
863 =for apidoc_item ||isALPHANUMERIC_LC_uvchr|UV ch
864 =for apidoc_item ||isALPHANUMERIC_L1|UV ch
865 =for apidoc_item ||isALPHANUMERIC_utf8|U8 * s|U8 * end
866 =for apidoc_item ||isALPHANUMERIC_utf8_safe|U8 * s|U8 * end
867 =for apidoc_item ||isALPHANUMERIC_uvchr|UV ch
868 Returns a boolean indicating whether the specified character is one of
869 C<[A-Za-z0-9]>, analogous to C<m/[[:alnum:]]/>.
870 See the L<top of this section|/Character classification> for an explanation of
871 the variants.
872
873 =for apidoc Am|bool|isALNUMC|UV ch
874 =for apidoc_item  ||isALNUMC_A|UV ch
875 =for apidoc_item  ||isALNUMC_LC|UV ch
876 =for apidoc_item  ||isALNUMC_LC_uvchr|UV ch
877 =for apidoc_item  ||isALNUMC_L1|UV ch
878 These are discouraged, backward compatibility macros for L</C<isALPHANUMERIC>>.
879 That is, each returns a boolean indicating whether the specified character is
880 one of C<[A-Za-z0-9]>, analogous to C<m/[[:alnum:]]/>.
881
882 The C<C> suffix in the names was meant to indicate that they correspond to the
883 C language L<C<isalnum(3)>>.
884
885 =for apidoc Am|bool|isASCII|UV ch
886 =for apidoc_item ||isASCII_A|UV ch
887 =for apidoc_item ||isASCII_LC|UV ch
888 =for apidoc_item ||isASCII_LC_utf8_safe|U8 * s| U8 *end
889 =for apidoc_item ||isASCII_LC_uvchr|UV ch
890 =for apidoc_item ||isASCII_L1|UV ch
891 =for apidoc_item ||isASCII_utf8|U8 * s|U8 * end
892 =for apidoc_item ||isASCII_utf8_safe|U8 * s|U8 * end
893 =for apidoc_item ||isASCII_uvchr|UV ch
894 Returns a boolean indicating whether the specified character is one of the 128
895 characters in the ASCII character set, analogous to C<m/[[:ascii:]]/>.
896 On non-ASCII platforms, it returns TRUE iff this
897 character corresponds to an ASCII character.  Variants C<isASCII_A()> and
898 C<isASCII_L1()> are identical to C<isASCII()>.
899 See the L<top of this section|/Character classification> for an explanation of
900 the variants.
901 Note, however, that some platforms do not have the C library routine
902 C<isascii()>.  In these cases, the variants whose names contain C<LC> are the
903 same as the corresponding ones without.
904
905 Also note, that because all ASCII characters are UTF-8 invariant (meaning they
906 have the exact same representation (always a single byte) whether encoded in
907 UTF-8 or not), C<isASCII> will give the correct results when called with any
908 byte in any string encoded or not in UTF-8.  And similarly C<isASCII_utf8> and
909 C<isASCII_utf8_safe> will work properly on any string encoded or not in UTF-8.
910
911 =for apidoc Am|bool|isBLANK|UV ch
912 =for apidoc_item ||isBLANK_A|UV ch
913 =for apidoc_item ||isBLANK_LC|UV ch
914 =for apidoc_item ||isBLANK_LC_utf8_safe|U8 * s| U8 *end
915 =for apidoc_item ||isBLANK_LC_uvchr|UV ch
916 =for apidoc_item ||isBLANK_L1|UV ch
917 =for apidoc_item ||isBLANK_utf8|U8 * s|U8 * end
918 =for apidoc_item ||isBLANK_utf8_safe|U8 * s|U8 * end
919 =for apidoc_item ||isBLANK_uvchr|UV ch
920 Returns a boolean indicating whether the specified character is a
921 character considered to be a blank, analogous to C<m/[[:blank:]]/>.
922 See the L<top of this section|/Character classification> for an explanation of
923 the variants.
924 Note,
925 however, that some platforms do not have the C library routine
926 C<isblank()>.  In these cases, the variants whose names contain C<LC> are
927 the same as the corresponding ones without.
928
929 =for apidoc Am|bool|isCNTRL|UV ch
930 =for apidoc_item ||isCNTRL_A|UV ch
931 =for apidoc_item ||isCNTRL_LC|UV ch
932 =for apidoc_item ||isCNTRL_LC_utf8_safe|U8 * s| U8 *end
933 =for apidoc_item ||isCNTRL_LC_uvchr|UV ch
934 =for apidoc_item ||isCNTRL_L1|UV ch
935 =for apidoc_item ||isCNTRL_utf8|U8 * s|U8 * end
936 =for apidoc_item ||isCNTRL_utf8_safe|U8 * s|U8 * end
937 =for apidoc_item ||isCNTRL_uvchr|UV ch
938
939 Returns a boolean indicating whether the specified character is a
940 control character, analogous to C<m/[[:cntrl:]]/>.
941 See the L<top of this section|/Character classification> for an explanation of
942 the variants.
943 On EBCDIC platforms, you almost always want to use the C<isCNTRL_L1> variant.
944
945 =for apidoc Am|bool|isDIGIT|UV ch
946 =for apidoc_item ||isDIGIT_A|UV ch
947 =for apidoc_item ||isDIGIT_LC|UV ch
948 =for apidoc_item ||isDIGIT_LC_utf8_safe|U8 * s| U8 *end
949 =for apidoc_item ||isDIGIT_LC_uvchr|UV ch
950 =for apidoc_item ||isDIGIT_L1|UV ch
951 =for apidoc_item ||isDIGIT_utf8|U8 * s|U8 * end
952 =for apidoc_item ||isDIGIT_utf8_safe|U8 * s|U8 * end
953 =for apidoc_item ||isDIGIT_uvchr|UV ch
954
955 Returns a boolean indicating whether the specified character is a
956 digit, analogous to C<m/[[:digit:]]/>.
957 Variants C<isDIGIT_A> and C<isDIGIT_L1> are identical to C<isDIGIT>.
958 See the L<top of this section|/Character classification> for an explanation of
959 the variants.
960
961 =for apidoc Am|bool|isGRAPH|UV ch
962 =for apidoc_item ||isGRAPH_A|UV ch
963 =for apidoc_item ||isGRAPH_LC|UV ch
964 =for apidoc_item ||isGRAPH_LC_utf8_safe|U8 * s| U8 *end
965 =for apidoc_item ||isGRAPH_LC_uvchr|UV ch
966 =for apidoc_item ||isGRAPH_L1|UV ch
967 =for apidoc_item ||isGRAPH_utf8|U8 * s|U8 * end
968 =for apidoc_item ||isGRAPH_utf8_safe|U8 * s|U8 * end
969 =for apidoc_item ||isGRAPH_uvchr|UV ch
970 Returns a boolean indicating whether the specified character is a
971 graphic character, analogous to C<m/[[:graph:]]/>.
972 See the L<top of this section|/Character classification> for an explanation of
973 the variants.
974
975 =for apidoc Am|bool|isLOWER|UV ch
976 =for apidoc_item ||isLOWER_A|UV ch
977 =for apidoc_item ||isLOWER_LC|UV ch
978 =for apidoc_item ||isLOWER_LC_utf8_safe|U8 * s| U8 *end
979 =for apidoc_item ||isLOWER_LC_uvchr|UV ch
980 =for apidoc_item ||isLOWER_L1|UV ch
981 =for apidoc_item ||isLOWER_utf8|U8 * s|U8 * end
982 =for apidoc_item ||isLOWER_utf8_safe|U8 * s|U8 * end
983 =for apidoc_item ||isLOWER_uvchr|UV ch
984 Returns a boolean indicating whether the specified character is a
985 lowercase character, analogous to C<m/[[:lower:]]/>.
986 See the L<top of this section|/Character classification> for an explanation of
987 the variants
988
989 =for apidoc Am|bool|isOCTAL|UV ch
990 =for apidoc_item ||isOCTAL_A|UV ch
991 =for apidoc_item ||isOCTAL_L1|UV ch
992 Returns a boolean indicating whether the specified character is an
993 octal digit, [0-7].
994 The only two variants are C<isOCTAL_A> and C<isOCTAL_L1>; each is identical to
995 C<isOCTAL>.
996
997 =for apidoc Am|bool|isPUNCT|UV ch
998 =for apidoc_item ||isPUNCT_A|UV ch
999 =for apidoc_item ||isPUNCT_LC|UV ch
1000 =for apidoc_item ||isPUNCT_LC_utf8_safe|U8 * s| U8 *end
1001 =for apidoc_item ||isPUNCT_LC_uvchr|UV ch
1002 =for apidoc_item ||isPUNCT_L1|UV ch
1003 =for apidoc_item ||isPUNCT_utf8|U8 * s|U8 * end
1004 =for apidoc_item ||isPUNCT_utf8_safe|U8 * s|U8 * end
1005 =for apidoc_item ||isPUNCT_uvchr|UV ch
1006 Returns a boolean indicating whether the specified character is a
1007 punctuation character, analogous to C<m/[[:punct:]]/>.
1008 Note that the definition of what is punctuation isn't as
1009 straightforward as one might desire.  See L<perlrecharclass/POSIX Character
1010 Classes> for details.
1011 See the L<top of this section|/Character classification> for an explanation of
1012 the variants.
1013
1014 =for apidoc Am|bool|isSPACE|UV ch
1015 =for apidoc_item ||isSPACE_A|UV ch
1016 =for apidoc_item ||isSPACE_LC|UV ch
1017 =for apidoc_item ||isSPACE_LC_utf8_safe|U8 * s| U8 *end
1018 =for apidoc_item ||isSPACE_LC_uvchr|UV ch
1019 =for apidoc_item ||isSPACE_L1|UV ch
1020 =for apidoc_item ||isSPACE_utf8|U8 * s|U8 * end
1021 =for apidoc_item ||isSPACE_utf8_safe|U8 * s|U8 * end
1022 =for apidoc_item ||isSPACE_uvchr|UV ch
1023 Returns a boolean indicating whether the specified character is a
1024 whitespace character.  This is analogous
1025 to what C<m/\s/> matches in a regular expression.  Starting in Perl 5.18
1026 this also matches what C<m/[[:space:]]/> does.  Prior to 5.18, only the
1027 locale forms of this macro (the ones with C<LC> in their names) matched
1028 precisely what C<m/[[:space:]]/> does.  In those releases, the only difference,
1029 in the non-locale variants, was that C<isSPACE()> did not match a vertical tab.
1030 (See L</isPSXSPC> for a macro that matches a vertical tab in all releases.)
1031 See the L<top of this section|/Character classification> for an explanation of
1032 the variants.
1033
1034 =for apidoc Am|bool|isPSXSPC|UV ch
1035 =for apidoc_item ||isPSXSPC_A|UV ch
1036 =for apidoc_item ||isPSXSPC_LC|UV ch
1037 =for apidoc_item ||isPSXSPC_LC_utf8_safe|U8 * s| U8 *end
1038 =for apidoc_item ||isPSXSPC_LC_uvchr|UV ch
1039 =for apidoc_item ||isPSXSPC_L1|UV ch
1040 =for apidoc_item ||isPSXSPC_utf8|U8 * s|U8 * end
1041 =for apidoc_item ||isPSXSPC_utf8_safe|U8 * s|U8 * end
1042 =for apidoc_item ||isPSXSPC_uvchr|UV ch
1043 (short for Posix Space)
1044 Starting in 5.18, this is identical in all its forms to the
1045 corresponding C<isSPACE()> macros.
1046 The locale forms of this macro are identical to their corresponding
1047 C<isSPACE()> forms in all Perl releases.  In releases prior to 5.18, the
1048 non-locale forms differ from their C<isSPACE()> forms only in that the
1049 C<isSPACE()> forms don't match a Vertical Tab, and the C<isPSXSPC()> forms do.
1050 Otherwise they are identical.  Thus this macro is analogous to what
1051 C<m/[[:space:]]/> matches in a regular expression.
1052 See the L<top of this section|/Character classification> for an explanation of
1053 the variants.
1054
1055 =for apidoc Am|bool|isUPPER|UV ch
1056 =for apidoc_item ||isUPPER_A|UV ch
1057 =for apidoc_item ||isUPPER_LC|UV ch
1058 =for apidoc_item ||isUPPER_LC_utf8_safe|U8 * s| U8 *end
1059 =for apidoc_item ||isUPPER_LC_uvchr|UV ch
1060 =for apidoc_item ||isUPPER_L1|UV ch
1061 =for apidoc_item ||isUPPER_utf8|U8 * s|U8 * end
1062 =for apidoc_item ||isUPPER_utf8_safe|U8 * s|U8 * end
1063 =for apidoc_item ||isUPPER_uvchr|UV ch
1064 Returns a boolean indicating whether the specified character is an
1065 uppercase character, analogous to C<m/[[:upper:]]/>.
1066 See the L<top of this section|/Character classification> for an explanation of
1067 the variants.
1068
1069 =for apidoc Am|bool|isPRINT|UV ch
1070 =for apidoc_item ||isPRINT_A|UV ch
1071 =for apidoc_item ||isPRINT_LC|UV ch
1072 =for apidoc_item ||isPRINT_LC_utf8_safe|U8 * s| U8 *end
1073 =for apidoc_item ||isPRINT_LC_uvchr|UV ch
1074 =for apidoc_item ||isPRINT_L1|UV ch
1075 =for apidoc_item ||isPRINT_utf8|U8 * s|U8 * end
1076 =for apidoc_item ||isPRINT_utf8_safe|U8 * s|U8 * end
1077 =for apidoc_item ||isPRINT_uvchr|UV ch
1078 Returns a boolean indicating whether the specified character is a
1079 printable character, analogous to C<m/[[:print:]]/>.
1080 See the L<top of this section|/Character classification> for an explanation of
1081 the variants.
1082
1083 =for apidoc Am|bool|isWORDCHAR|UV ch
1084 =for apidoc_item ||isWORDCHAR_A|UV ch
1085 =for apidoc_item ||isWORDCHAR_LC|UV ch
1086 =for apidoc_item ||isWORDCHAR_LC_utf8_safe|U8 * s| U8 *end
1087 =for apidoc_item ||isWORDCHAR_LC_uvchr|UV ch
1088 =for apidoc_item ||isWORDCHAR_L1|UV ch
1089 =for apidoc_item ||isWORDCHAR_utf8|U8 * s|U8 * end
1090 =for apidoc_item ||isWORDCHAR_utf8_safe|U8 * s|U8 * end
1091 =for apidoc_item ||isWORDCHAR_uvchr|UV ch
1092 Returns a boolean indicating whether the specified character is a character
1093 that is a word character, analogous to what C<m/\w/> and C<m/[[:word:]]/> match
1094 in a regular expression.  A word character is an alphabetic character, a
1095 decimal digit, a connecting punctuation character (such as an underscore), or
1096 a "mark" character that attaches to one of those (like some sort of accent).
1097
1098 See the L<top of this section|/Character classification> for an explanation of
1099 the variants.
1100
1101 C<isWORDCHAR_A>, C<isWORDCHAR_L1>, C<isWORDCHAR_uvchr>,
1102 C<isWORDCHAR_LC>, C<isWORDCHAR_LC_uvchr>, C<isWORDCHAR_LC_utf8>, and
1103 C<isWORDCHAR_LC_utf8_safe> are also as described there, but additionally
1104 include the platform's native underscore.
1105
1106 =for apidoc Am|bool|isALNUM         |UV ch
1107 =for apidoc_item  ||isALNUM_A       |UV ch
1108 =for apidoc_item  ||isALNUM_LC      |UV ch
1109 =for apidoc_item  ||isALNUM_LC_uvchr|UV ch
1110 These are each a synonym for their respectively named L</C<isWORDCHAR>>
1111 variant.
1112
1113 They are provided for backward compatibility, even though a word character
1114 includes more than the standard C language meaning of alphanumeric.
1115 To get the C language definition, use the corresponding L</C<isALPHANUMERIC>>
1116 variant.
1117
1118 =for apidoc Am|bool|isXDIGIT|UV ch
1119 =for apidoc_item ||isXDIGIT_A|UV ch
1120 =for apidoc_item ||isXDIGIT_LC|UV ch
1121 =for apidoc_item ||isXDIGIT_LC_utf8_safe|U8 * s| U8 *end
1122 =for apidoc_item ||isXDIGIT_LC_uvchr|UV ch
1123 =for apidoc_item ||isXDIGIT_L1|UV ch
1124 =for apidoc_item ||isXDIGIT_utf8|U8 * s|U8 * end
1125 =for apidoc_item ||isXDIGIT_utf8_safe|U8 * s|U8 * end
1126 =for apidoc_item ||isXDIGIT_uvchr|UV ch
1127 Returns a boolean indicating whether the specified character is a hexadecimal
1128 digit.  In the ASCII range these are C<[0-9A-Fa-f]>.  Variants C<isXDIGIT_A()>
1129 and C<isXDIGIT_L1()> are identical to C<isXDIGIT()>.
1130 See the L<top of this section|/Character classification> for an explanation of
1131 the variants.
1132
1133 =for apidoc Am|bool|isIDFIRST|UV ch
1134 =for apidoc_item ||isIDFIRST_A|UV ch
1135 =for apidoc_item ||isIDFIRST_LC|UV ch
1136 =for apidoc_item ||isIDFIRST_LC_utf8_safe|U8 * s| U8 *end
1137 =for apidoc_item ||isIDFIRST_LC_uvchr|UV ch
1138 =for apidoc_item ||isIDFIRST_L1|UV ch
1139 =for apidoc_item ||isIDFIRST_utf8|U8 * s|U8 * end
1140 =for apidoc_item ||isIDFIRST_utf8_safe|U8 * s|U8 * end
1141 =for apidoc_item ||isIDFIRST_uvchr|UV ch
1142 Returns a boolean indicating whether the specified character can be the first
1143 character of an identifier.  This is very close to, but not quite the same as
1144 the official Unicode property C<XID_Start>.  The difference is that this
1145 returns true only if the input character also matches L</isWORDCHAR>.
1146 See the L<top of this section|/Character classification> for an explanation of
1147 the variants.
1148
1149 =for apidoc Am|bool|isIDCONT|UV ch
1150 =for apidoc_item ||isIDCONT_A|UV ch
1151 =for apidoc_item ||isIDCONT_LC|UV ch
1152 =for apidoc_item ||isIDCONT_LC_utf8_safe|U8 * s| U8 *end
1153 =for apidoc_item ||isIDCONT_LC_uvchr|UV ch
1154 =for apidoc_item ||isIDCONT_L1|UV ch
1155 =for apidoc_item ||isIDCONT_utf8|U8 * s|U8 * end
1156 =for apidoc_item ||isIDCONT_utf8_safe|U8 * s|U8 * end
1157 =for apidoc_item ||isIDCONT_uvchr|UV ch
1158 Returns a boolean indicating whether the specified character can be the
1159 second or succeeding character of an identifier.  This is very close to, but
1160 not quite the same as the official Unicode property C<XID_Continue>.  The
1161 difference is that this returns true only if the input character also matches
1162 L</isWORDCHAR>.  See the L<top of this section|/Character classification> for
1163 an explanation of the variants.
1164
1165 =for apidoc_section $numeric
1166
1167 =for apidoc Am|U8|READ_XDIGIT|char str*
1168 Returns the value of an ASCII-range hex digit and advances the string pointer.
1169 Behaviour is only well defined when isXDIGIT(*str) is true.
1170
1171 =head1 Character case changing
1172 Perl uses "full" Unicode case mappings.  This means that converting a single
1173 character to another case may result in a sequence of more than one character.
1174 For example, the uppercase of C<E<223>> (LATIN SMALL LETTER SHARP S) is the two
1175 character sequence C<SS>.  This presents some complications   The lowercase of
1176 all characters in the range 0..255 is a single character, and thus
1177 C<L</toLOWER_L1>> is furnished.  But, C<toUPPER_L1> can't exist, as it couldn't
1178 return a valid result for all legal inputs.  Instead C<L</toUPPER_uvchr>> has
1179 an API that does allow every possible legal result to be returned.)  Likewise
1180 no other function that is crippled by not being able to give the correct
1181 results for the full range of possible inputs has been implemented here.
1182
1183 =for apidoc Am|UV|toUPPER|UV cp
1184 =for apidoc_item |UV|toUPPER_A|UV cp
1185 =for apidoc_item |UV|toUPPER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1186 =for apidoc_item |UV|toUPPER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1187 =for apidoc_item |UV|toUPPER_uvchr|UV cp|U8* s|STRLEN* lenp
1188
1189 These all return the uppercase of a character.  The differences are what domain
1190 they operate on, and whether the input is specified as a code point (those
1191 forms with a C<cp> parameter) or as a UTF-8 string (the others).  In the latter
1192 case, the code point to use is the first one in the buffer of UTF-8 encoded
1193 code points, delineated by the arguments S<C<p .. e - 1>>.
1194
1195 C<toUPPER> and C<toUPPER_A> are synonyms of each other.  They return the
1196 uppercase of any lowercase ASCII-range code point.  All other inputs are
1197 returned unchanged.  Since these are macros, the input type may be any integral
1198 one, and the output will occupy the same number of bits as the input.
1199
1200 There is no C<toUPPER_L1> nor C<toUPPER_LATIN1> as the uppercase of some code
1201 points in the 0..255 range is above that range or consists of multiple
1202 characters.  Instead use C<toUPPER_uvchr>.
1203
1204 C<toUPPER_uvchr> returns the uppercase of any Unicode code point.  The return
1205 value is identical to that of C<toUPPER_A> for input code points in the ASCII
1206 range.  The uppercase of the vast majority of Unicode code points is the same
1207 as the code point itself.  For these, and for code points above the legal
1208 Unicode maximum, this returns the input code point unchanged.  It additionally
1209 stores the UTF-8 of the result into the buffer beginning at C<s>, and its
1210 length in bytes into C<*lenp>.  The caller must have made C<s> large enough to
1211 contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
1212
1213 NOTE: the uppercase of a code point may be more than one code point.  The
1214 return value of this function is only the first of these.  The entire uppercase
1215 is returned in C<s>.  To determine if the result is more than a single code
1216 point, you can do something like this:
1217
1218  uc = toUPPER_uvchr(cp, s, &len);
1219  if (len > UTF8SKIP(s)) { is multiple code points }
1220  else { is a single code point }
1221
1222 C<toUPPER_utf8> and C<toUPPER_utf8_safe> are synonyms of each other.  The only
1223 difference between these and C<toUPPER_uvchr> is that the source for these is
1224 encoded in UTF-8, instead of being a code point.  It is passed as a buffer
1225 starting at C<p>, with C<e> pointing to one byte beyond its end.  The C<p>
1226 buffer may certainly contain more than one code point; but only the first one
1227 (up through S<C<e - 1>>) is examined.  If the UTF-8 for the input character is
1228 malformed in some way, the program may croak, or the function may return the
1229 REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
1230 change in future releases.
1231
1232 =for apidoc Am|UV|toFOLD|UV cp
1233 =for apidoc_item |UV|toFOLD_A|UV cp
1234 =for apidoc_item |UV|toFOLD_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1235 =for apidoc_item |UV|toFOLD_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1236 =for apidoc_item |UV|toFOLD_uvchr|UV cp|U8* s|STRLEN* lenp
1237
1238 These all return the foldcase of a character.  "foldcase" is an internal case
1239 for C</i> pattern matching. If the foldcase of character A and the foldcase of
1240 character B are the same, they match caselessly; otherwise they don't.
1241
1242 The differences in the forms are what domain they operate on, and whether the
1243 input is specified as a code point (those forms with a C<cp> parameter) or as a
1244 UTF-8 string (the others).  In the latter case, the code point to use is the
1245 first one in the buffer of UTF-8 encoded code points, delineated by the
1246 arguments S<C<p .. e - 1>>.
1247
1248 C<toFOLD> and C<toFOLD_A> are synonyms of each other.  They return the
1249 foldcase of any ASCII-range code point.  In this range, the foldcase is
1250 identical to the lowercase.  All other inputs are returned unchanged.  Since
1251 these are macros, the input type may be any integral one, and the output will
1252 occupy the same number of bits as the input.
1253
1254 There is no C<toFOLD_L1> nor C<toFOLD_LATIN1> as the foldcase of some code
1255 points in the 0..255 range is above that range or consists of multiple
1256 characters.  Instead use C<toFOLD_uvchr>.
1257
1258 C<toFOLD_uvchr> returns the foldcase of any Unicode code point.  The return
1259 value is identical to that of C<toFOLD_A> for input code points in the ASCII
1260 range.  The foldcase of the vast majority of Unicode code points is the same
1261 as the code point itself.  For these, and for code points above the legal
1262 Unicode maximum, this returns the input code point unchanged.  It additionally
1263 stores the UTF-8 of the result into the buffer beginning at C<s>, and its
1264 length in bytes into C<*lenp>.  The caller must have made C<s> large enough to
1265 contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
1266
1267 NOTE: the foldcase of a code point may be more than one code point.  The
1268 return value of this function is only the first of these.  The entire foldcase
1269 is returned in C<s>.  To determine if the result is more than a single code
1270 point, you can do something like this:
1271
1272  uc = toFOLD_uvchr(cp, s, &len);
1273  if (len > UTF8SKIP(s)) { is multiple code points }
1274  else { is a single code point }
1275
1276 C<toFOLD_utf8> and C<toFOLD_utf8_safe> are synonyms of each other.  The only
1277 difference between these and C<toFOLD_uvchr> is that the source for these is
1278 encoded in UTF-8, instead of being a code point.  It is passed as a buffer
1279 starting at C<p>, with C<e> pointing to one byte beyond its end.  The C<p>
1280 buffer may certainly contain more than one code point; but only the first one
1281 (up through S<C<e - 1>>) is examined.  If the UTF-8 for the input character is
1282 malformed in some way, the program may croak, or the function may return the
1283 REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
1284 change in future releases.
1285
1286 =for apidoc Am|UV|toLOWER|UV cp
1287 =for apidoc_item |UV|toLOWER_A|UV cp
1288 =for apidoc_item |UV|toLOWER_LATIN1|UV cp
1289 =for apidoc_item |UV|toLOWER_LC|UV cp
1290 =for apidoc_item |UV|toLOWER_L1|UV cp
1291 =for apidoc_item |UV|toLOWER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1292 =for apidoc_item |UV|toLOWER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1293 =for apidoc_item |UV|toLOWER_uvchr|UV cp|U8* s|STRLEN* lenp
1294
1295 These all return the lowercase of a character.  The differences are what domain
1296 they operate on, and whether the input is specified as a code point (those
1297 forms with a C<cp> parameter) or as a UTF-8 string (the others).  In the latter
1298 case, the code point to use is the first one in the buffer of UTF-8 encoded
1299 code points, delineated by the arguments S<C<p .. e - 1>>.
1300
1301 C<toLOWER> and C<toLOWER_A> are synonyms of each other.  They return the
1302 lowercase of any uppercase ASCII-range code point.  All other inputs are
1303 returned unchanged.  Since these are macros, the input type may be any integral
1304 one, and the output will occupy the same number of bits as the input.
1305
1306 C<toLOWER_L1> and C<toLOWER_LATIN1> are synonyms of each other.  They behave
1307 identically as C<toLOWER> for ASCII-range input.  But additionally will return
1308 the lowercase of any uppercase code point in the entire 0..255 range, assuming
1309 a Latin-1 encoding (or the EBCDIC equivalent on such platforms).
1310
1311 C<toLOWER_LC> returns the lowercase of the input code point according to the
1312 rules of the current POSIX locale.  Input code points outside the range 0..255
1313 are returned unchanged.
1314
1315 C<toLOWER_uvchr> returns the lowercase of any Unicode code point.  The return
1316 value is identical to that of C<toLOWER_L1> for input code points in the 0..255
1317 range.  The lowercase of the vast majority of Unicode code points is the same
1318 as the code point itself.  For these, and for code points above the legal
1319 Unicode maximum, this returns the input code point unchanged.  It additionally
1320 stores the UTF-8 of the result into the buffer beginning at C<s>, and its
1321 length in bytes into C<*lenp>.  The caller must have made C<s> large enough to
1322 contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
1323
1324 NOTE: the lowercase of a code point may be more than one code point.  The
1325 return value of this function is only the first of these.  The entire lowercase
1326 is returned in C<s>.  To determine if the result is more than a single code
1327 point, you can do something like this:
1328
1329  uc = toLOWER_uvchr(cp, s, &len);
1330  if (len > UTF8SKIP(s)) { is multiple code points }
1331  else { is a single code point }
1332
1333 C<toLOWER_utf8> and C<toLOWER_utf8_safe> are synonyms of each other.  The only
1334 difference between these and C<toLOWER_uvchr> is that the source for these is
1335 encoded in UTF-8, instead of being a code point.  It is passed as a buffer
1336 starting at C<p>, with C<e> pointing to one byte beyond its end.  The C<p>
1337 buffer may certainly contain more than one code point; but only the first one
1338 (up through S<C<e - 1>>) is examined.  If the UTF-8 for the input character is
1339 malformed in some way, the program may croak, or the function may return the
1340 REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
1341 change in future releases.
1342
1343 =for apidoc Am|UV|toTITLE|UV cp
1344 =for apidoc_item |UV|toTITLE_A|UV cp
1345 =for apidoc_item |UV|toTITLE_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1346 =for apidoc_item |UV|toTITLE_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1347 =for apidoc_item |UV|toTITLE_uvchr|UV cp|U8* s|STRLEN* lenp
1348
1349 These all return the titlecase of a character.  The differences are what domain
1350 they operate on, and whether the input is specified as a code point (those
1351 forms with a C<cp> parameter) or as a UTF-8 string (the others).  In the latter
1352 case, the code point to use is the first one in the buffer of UTF-8 encoded
1353 code points, delineated by the arguments S<C<p .. e - 1>>.
1354
1355 C<toTITLE> and C<toTITLE_A> are synonyms of each other.  They return the
1356 titlecase of any lowercase ASCII-range code point.  In this range, the
1357 titlecase is identical to the uppercase.  All other inputs are returned
1358 unchanged.  Since these are macros, the input type may be any integral one, and
1359 the output will occupy the same number of bits as the input.
1360
1361 There is no C<toTITLE_L1> nor C<toTITLE_LATIN1> as the titlecase of some code
1362 points in the 0..255 range is above that range or consists of multiple
1363 characters.  Instead use C<toTITLE_uvchr>.
1364
1365 C<toTITLE_uvchr> returns the titlecase of any Unicode code point.  The return
1366 value is identical to that of C<toTITLE_A> for input code points in the ASCII
1367 range.  The titlecase of the vast majority of Unicode code points is the same
1368 as the code point itself.  For these, and for code points above the legal
1369 Unicode maximum, this returns the input code point unchanged.  It additionally
1370 stores the UTF-8 of the result into the buffer beginning at C<s>, and its
1371 length in bytes into C<*lenp>.  The caller must have made C<s> large enough to
1372 contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
1373
1374 NOTE: the titlecase of a code point may be more than one code point.  The
1375 return value of this function is only the first of these.  The entire titlecase
1376 is returned in C<s>.  To determine if the result is more than a single code
1377 point, you can do something like this:
1378
1379  uc = toTITLE_uvchr(cp, s, &len);
1380  if (len > UTF8SKIP(s)) { is multiple code points }
1381  else { is a single code point }
1382
1383 C<toTITLE_utf8> and C<toTITLE_utf8_safe> are synonyms of each other.  The only
1384 difference between these and C<toTITLE_uvchr> is that the source for these is
1385 encoded in UTF-8, instead of being a code point.  It is passed as a buffer
1386 starting at C<p>, with C<e> pointing to one byte beyond its end.  The C<p>
1387 buffer may certainly contain more than one code point; but only the first one
1388 (up through S<C<e - 1>>) is examined.  If the UTF-8 for the input character is
1389 malformed in some way, the program may croak, or the function may return the
1390 REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
1391 change in future releases.
1392
1393 =cut
1394
1395 XXX Still undocumented isVERTWS_uvchr and _utf8; it's unclear what their names
1396 really should be.  Also toUPPER_LC and toFOLD_LC, which are subject to change,
1397 and aren't general purpose as they don't work on U+DF, and assert against that.
1398 and isCASED_LC, as it really is more of an internal thing.
1399
1400 Note that these macros are repeated in Devel::PPPort, so should also be
1401 patched there.  The file as of this writing is cpan/Devel-PPPort/parts/inc/misc
1402
1403 */
1404
1405 /*
1406    void below because that's the best fit, and works for Devel::PPPort
1407 =for apidoc_section $integer
1408 =for apidoc AyT||WIDEST_UTYPE
1409
1410 Yields the widest unsigned integer type on the platform, currently either
1411 C<U32> or C<U64>.  This can be used in declarations such as
1412
1413  WIDEST_UTYPE my_uv;
1414
1415 or casts
1416
1417  my_uv = (WIDEST_UTYPE) val;
1418
1419 =cut
1420
1421 */
1422 #define WIDEST_UTYPE PERL_UINTMAX_T
1423
1424 /* Where there could be some confusion, use this as a static assert in macros
1425  * to make sure that a parameter isn't a pointer.  But some compilers can't
1426  * handle this.  The only one known so far that doesn't is gcc 3.3.6; the check
1427  * below isn't thorough for such an old compiler, so may have to be revised if
1428  * experience so dictates. */
1429 #if  ! PERL_IS_GCC || PERL_GCC_VERSION_GT(3,3,6)
1430 #  define ASSERT_NOT_PTR(x) ((x) | 0)
1431 #else
1432 #  define ASSERT_NOT_PTR(x) (x)
1433 #endif
1434
1435 /* Likewise, this is effectively a static assert to be used to guarantee the
1436  * parameter is a pointer
1437  *
1438  * NOT suitable for void* 
1439  */
1440 #define ASSERT_IS_PTR(x) (__ASSERT_(sizeof(*(x))) (x))
1441
1442 /* FITS_IN_8_BITS(c) returns true if c doesn't have  a bit set other than in
1443  * the lower 8.  It is designed to be hopefully bomb-proof, making sure that no
1444  * bits of information are lost even on a 64-bit machine, but to get the
1445  * compiler to optimize it out if possible.  This is because Configure makes
1446  * sure that the machine has an 8-bit byte, so if c is stored in a byte, the
1447  * sizeof() guarantees that this evaluates to a constant true at compile time.
1448  *
1449  * For Coverity, be always true, because otherwise Coverity thinks
1450  * it finds several expressions that are always true, independent
1451  * of operands.  Well, they are, but that is kind of the point.
1452  */
1453 #ifndef __COVERITY__
1454   /* The '| 0' part in ASSERT_NOT_PTR ensures a compiler error if c is not
1455    * integer (like e.g., a pointer) */
1456 #  define FITS_IN_8_BITS(c) (   (sizeof(c) == 1)                            \
1457                              || (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) >> 8) == 0)
1458 #else
1459 #  define FITS_IN_8_BITS(c) (1)
1460 #endif
1461
1462 /* Returns true if l <= c <= (l + n), where 'l' and 'n' are non-negative
1463  * Written this way so that after optimization, only one conditional test is
1464  * needed.  (The NV casts stop any warnings about comparison always being true
1465  * if called with an unsigned.  The cast preserves the sign, which is all we
1466  * care about.) */
1467 #define withinCOUNT(c, l, n)  (__ASSERT_((NV) (l) >= 0)                 \
1468                                __ASSERT_((NV) (n) >= 0)                 \
1469                                withinCOUNT_KNOWN_VALID_((c), (l), (n)))
1470
1471 /* For internal use only, this can be used in places where it is known that the
1472  * parameters to withinCOUNT() are valid, to avoid the asserts.  For example,
1473  * inRANGE() below, calls this several times, but does all the necessary
1474  * asserts itself, once.  The reason that this is necessary is that the
1475  * duplicate asserts were exceeding the internal limits of some compilers */
1476 #define withinCOUNT_KNOWN_VALID_(c, l, n)                                   \
1477     ((((WIDEST_UTYPE) (c)) - ASSERT_NOT_PTR(l))                             \
1478                                    <= ((WIDEST_UTYPE) ASSERT_NOT_PTR(n)))
1479
1480 /* Returns true if c is in the range l..u, where 'l' is non-negative
1481  * Written this way so that after optimization, only one conditional test is
1482  * needed. */
1483 #define inRANGE(c, l, u) (__ASSERT_((NV) (l) >= 0) __ASSERT_((u) >= (l))    \
1484    (  (sizeof(c) == sizeof(U8))  ? inRANGE_helper_(U8, (c), (l), ((u)))     \
1485     : (sizeof(c) == sizeof(U16)) ? inRANGE_helper_(U16,(c), (l), ((u)))     \
1486     : (sizeof(c) == sizeof(U32)) ? inRANGE_helper_(U32,(c), (l), ((u)))     \
1487              : (__ASSERT_(sizeof(c) == sizeof(WIDEST_UTYPE))                \
1488                           inRANGE_helper_(WIDEST_UTYPE,(c), (l), ((u))))))
1489
1490 /* For internal use, this is used by machine-generated code which generates
1491  * known valid calls, with a known sizeof().  This avoids the extra code and
1492  * asserts that were exceeding internal limits of some compilers. */
1493 #define inRANGE_helper_(cast, c, l, u)                                      \
1494                     withinCOUNT_KNOWN_VALID_(((cast) (c)), (l), ((u) - (l)))
1495
1496 #ifdef EBCDIC
1497 #   ifndef _ALL_SOURCE
1498         /* The native libc isascii() et.al. functions return the wrong results
1499          * on at least z/OS unless this is defined. */
1500 #       error   _ALL_SOURCE should probably be defined
1501 #   endif
1502 #else
1503     /* There is a simple definition of ASCII for ASCII platforms.  But the
1504      * EBCDIC one isn't so simple, so is defined using table look-up like the
1505      * other macros below.
1506      *
1507      * The cast here is used instead of '(c) >= 0', because some compilers emit
1508      * a warning that that test is always true when the parameter is an
1509      * unsigned type.  khw supposes that it could be written as
1510      *      && ((c) == '\0' || (c) > 0)
1511      * to avoid the message, but the cast will likely avoid extra branches even
1512      * with stupid compilers. */
1513 #   define isASCII(c)    (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) < 128)
1514 #endif
1515
1516 /* Take the eight possible bit patterns of the lower 3 bits and you get the
1517  * lower 3 bits of the 8 octal digits, in both ASCII and EBCDIC, so those bits
1518  * can be ignored.  If the rest match '0', we have an octal */
1519 #define isOCTAL_A(c)  ((((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) & ~7) == '0')
1520
1521 #ifdef H_PERL       /* If have access to perl.h, lookup in its table */
1522
1523 /* Character class numbers.  For internal core Perl use only.  The ones less
1524  * than 32 are used in PL_charclass[] and the ones up through the one that
1525  * corresponds to <HIGHEST_REGCOMP_DOT_H_SYNC_> are used by regcomp.h and
1526  * related files.  PL_charclass ones use names used in l1_char_class_tab.h but
1527  * their actual definitions are here.  If that file has a name not used here,
1528  * it won't compile.
1529  *
1530  * The first group of these is ordered in what I (khw) estimate to be the
1531  * frequency of their use.  This gives a slight edge to exiting a loop earlier
1532  * (in reginclass() in regexec.c).  Except \v should be last, as it isn't a
1533  * real Posix character class, and some (small) inefficiencies in regular
1534  * expression handling would be introduced by putting it in the middle of those
1535  * that are.  Also, cntrl and ascii come after the others as it may be useful
1536  * to group these which have no members that match above Latin1, (or above
1537  * ASCII in the latter case) */
1538
1539 #  define CC_WORDCHAR_           0      /* \w and [:word:] */
1540 #  define CC_DIGIT_              1      /* \d and [:digit:] */
1541 #  define CC_ALPHA_              2      /* [:alpha:] */
1542 #  define CC_LOWER_              3      /* [:lower:] */
1543 #  define CC_UPPER_              4      /* [:upper:] */
1544 #  define CC_PUNCT_              5      /* [:punct:] */
1545 #  define CC_PRINT_              6      /* [:print:] */
1546 #  define CC_ALPHANUMERIC_       7      /* [:alnum:] */
1547 #  define CC_GRAPH_              8      /* [:graph:] */
1548 #  define CC_CASED_              9      /* [:lower:] or [:upper:] under /i */
1549 #  define CC_SPACE_             10      /* \s, [:space:] */
1550 #  define CC_BLANK_             11      /* [:blank:] */
1551 #  define CC_XDIGIT_            12      /* [:xdigit:] */
1552 #  define CC_CNTRL_             13      /* [:cntrl:] */
1553 #  define CC_ASCII_             14      /* [:ascii:] */
1554 #  define CC_VERTSPACE_         15      /* \v */
1555
1556 #  define HIGHEST_REGCOMP_DOT_H_SYNC_ CC_VERTSPACE_
1557
1558 /* The members of the third group below do not need to be coordinated with data
1559  * structures in regcomp.[ch] and regexec.c. */
1560 #  define CC_IDFIRST_                  16
1561 #  define CC_CHARNAME_CONT_            17
1562 #  define CC_NONLATIN1_FOLD_           18
1563 #  define CC_NONLATIN1_SIMPLE_FOLD_    19
1564 #  define CC_QUOTEMETA_                20
1565 #  define CC_NON_FINAL_FOLD_           21
1566 #  define CC_IS_IN_SOME_FOLD_          22
1567 #  define CC_BINDIGIT_                 23
1568 #  define CC_OCTDIGIT_                 24
1569 #  define CC_MNEMONIC_CNTRL_           25
1570
1571 /* Unused: 26-31
1572  * If more bits are needed, one could add a second word for non-64bit
1573  * QUAD_IS_INT systems, using some #ifdefs to distinguish between having a 2nd
1574  * word or not.  The IS_IN_SOME_FOLD bit is the most easily expendable, as it
1575  * is used only for optimization (as of this writing), and differs in the
1576  * Latin1 range from the ALPHA bit only in two relatively unimportant
1577  * characters: the masculine and feminine ordinal indicators, so removing it
1578  * would just cause /i regexes which match them to run less efficiently.
1579  * Similarly the EBCDIC-only bits are used just for speed, and could be
1580  * replaced by other means */
1581
1582 #if defined(PERL_CORE) || defined(PERL_EXT)
1583 /* An enum version of the character class numbers, to help compilers
1584  * optimize */
1585 typedef enum {
1586     CC_ENUM_ALPHA_          = CC_ALPHA_,
1587     CC_ENUM_ALPHANUMERIC_   = CC_ALPHANUMERIC_,
1588     CC_ENUM_ASCII_          = CC_ASCII_,
1589     CC_ENUM_BLANK_          = CC_BLANK_,
1590     CC_ENUM_CASED_          = CC_CASED_,
1591     CC_ENUM_CNTRL_          = CC_CNTRL_,
1592     CC_ENUM_DIGIT_          = CC_DIGIT_,
1593     CC_ENUM_GRAPH_          = CC_GRAPH_,
1594     CC_ENUM_LOWER_          = CC_LOWER_,
1595     CC_ENUM_PRINT_          = CC_PRINT_,
1596     CC_ENUM_PUNCT_          = CC_PUNCT_,
1597     CC_ENUM_SPACE_          = CC_SPACE_,
1598     CC_ENUM_UPPER_          = CC_UPPER_,
1599     CC_ENUM_VERTSPACE_      = CC_VERTSPACE_,
1600     CC_ENUM_WORDCHAR_       = CC_WORDCHAR_,
1601     CC_ENUM_XDIGIT_         = CC_XDIGIT_
1602 } char_class_number_;
1603 #endif
1604
1605 #define POSIX_CC_COUNT    (HIGHEST_REGCOMP_DOT_H_SYNC_ + 1)
1606
1607 START_EXTERN_C
1608 #  ifdef DOINIT
1609 EXTCONST  U32 PL_charclass[] = {
1610 #    include "l1_char_class_tab.h"
1611 };
1612
1613 #  else /* ! DOINIT */
1614 EXTCONST U32 PL_charclass[];
1615 #  endif
1616 END_EXTERN_C
1617
1618     /* The 1U keeps Solaris from griping when shifting sets the uppermost bit */
1619 #   define CC_mask_(classnum) (1U << (classnum))
1620
1621     /* For internal core Perl use only: the base macro for defining macros like
1622      * isALPHA */
1623 #   define generic_isCC_(c, classnum) cBOOL(FITS_IN_8_BITS(c)    \
1624                 && (PL_charclass[(U8) (c)] & CC_mask_(classnum)))
1625
1626     /* The mask for the _A versions of the macros; it just adds in the bit for
1627      * ASCII. */
1628 #   define CC_mask_A_(classnum) (CC_mask_(classnum) | CC_mask_(CC_ASCII_))
1629
1630     /* For internal core Perl use only: the base macro for defining macros like
1631      * isALPHA_A.  The foo_A version makes sure that both the desired bit and
1632      * the ASCII bit are present */
1633 #   define generic_isCC_A_(c, classnum) (FITS_IN_8_BITS(c)      \
1634         && ((PL_charclass[(U8) (c)] & CC_mask_A_(classnum))     \
1635                                    == CC_mask_A_(classnum)))
1636
1637 /* On ASCII platforms certain classes form a single range.  It's faster to
1638  * special case these.  isDIGIT is a single range on all platforms */
1639 #   ifdef EBCDIC
1640 #     define isALPHA_A(c)  generic_isCC_A_(c, CC_ALPHA_)
1641 #     define isGRAPH_A(c)  generic_isCC_A_(c, CC_GRAPH_)
1642 #     define isLOWER_A(c)  generic_isCC_A_(c, CC_LOWER_)
1643 #     define isPRINT_A(c)  generic_isCC_A_(c, CC_PRINT_)
1644 #     define isUPPER_A(c)  generic_isCC_A_(c, CC_UPPER_)
1645 #   else
1646       /* By folding the upper and lowercase, we can use a single range */
1647 #     define isALPHA_A(c)  inRANGE((~('A' ^ 'a') & (c)), 'A', 'Z')
1648 #     define isGRAPH_A(c)  inRANGE(c, ' ' + 1, 0x7e)
1649 #     define isLOWER_A(c)  inRANGE(c, 'a', 'z')
1650 #     define isPRINT_A(c)  inRANGE(c, ' ', 0x7e)
1651 #     define isUPPER_A(c)  inRANGE(c, 'A', 'Z')
1652 #   endif
1653 #   define isALPHANUMERIC_A(c) generic_isCC_A_(c, CC_ALPHANUMERIC_)
1654 #   define isBLANK_A(c)  generic_isCC_A_(c, CC_BLANK_)
1655 #   define isCNTRL_A(c)  generic_isCC_A_(c, CC_CNTRL_)
1656 #   define isDIGIT_A(c)  inRANGE(c, '0', '9')
1657 #   define isPUNCT_A(c)  generic_isCC_A_(c, CC_PUNCT_)
1658 #   define isSPACE_A(c)  generic_isCC_A_(c, CC_SPACE_)
1659 #   define isWORDCHAR_A(c) generic_isCC_A_(c, CC_WORDCHAR_)
1660 #   define isXDIGIT_A(c)  generic_isCC_(c, CC_XDIGIT_) /* No non-ASCII xdigits */
1661 #   define isIDFIRST_A(c) generic_isCC_A_(c, CC_IDFIRST_)
1662 #   define isALPHA_L1(c)  generic_isCC_(c, CC_ALPHA_)
1663 #   define isALPHANUMERIC_L1(c) generic_isCC_(c, CC_ALPHANUMERIC_)
1664 #   define isBLANK_L1(c)  generic_isCC_(c, CC_BLANK_)
1665
1666     /* continuation character for legal NAME in \N{NAME} */
1667 #   define isCHARNAME_CONT(c) generic_isCC_(c, CC_CHARNAME_CONT_)
1668
1669 #   define isCNTRL_L1(c)  generic_isCC_(c, CC_CNTRL_)
1670 #   define isGRAPH_L1(c)  generic_isCC_(c, CC_GRAPH_)
1671 #   define isLOWER_L1(c)  generic_isCC_(c, CC_LOWER_)
1672 #   define isPRINT_L1(c)  generic_isCC_(c, CC_PRINT_)
1673 #   define isPSXSPC_L1(c)  isSPACE_L1(c)
1674 #   define isPUNCT_L1(c)  generic_isCC_(c, CC_PUNCT_)
1675 #   define isSPACE_L1(c)  generic_isCC_(c, CC_SPACE_)
1676 #   define isUPPER_L1(c)  generic_isCC_(c, CC_UPPER_)
1677 #   define isWORDCHAR_L1(c) generic_isCC_(c, CC_WORDCHAR_)
1678 #   define isIDFIRST_L1(c) generic_isCC_(c, CC_IDFIRST_)
1679
1680 #   ifdef EBCDIC
1681 #       define isASCII(c) generic_isCC_(c, CC_ASCII_)
1682 #   endif
1683
1684     /* Participates in a single-character fold with a character above 255 */
1685 #   if defined(PERL_IN_REGCOMP_ANY) || defined(PERL_IN_REGEXEC_C)
1686 #     define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(c)                           \
1687         ((   ! cBOOL(FITS_IN_8_BITS(c)))                                    \
1688           || (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_SIMPLE_FOLD_)))
1689
1690 #   define IS_NON_FINAL_FOLD(c)   generic_isCC_(c, CC_NON_FINAL_FOLD_)
1691 #   define IS_IN_SOME_FOLD_L1(c)  generic_isCC_(c, CC_IS_IN_SOME_FOLD_)
1692 #  endif
1693
1694     /* Like the above, but also can be part of a multi-char fold */
1695 #   define HAS_NONLATIN1_FOLD_CLOSURE(c)                                    \
1696       (   (! cBOOL(FITS_IN_8_BITS(c)))                                      \
1697        || (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_FOLD_)))
1698
1699 #   define _isQUOTEMETA(c) generic_isCC_(c, CC_QUOTEMETA_)
1700
1701 /* is c a control character for which we have a mnemonic? */
1702 #  if defined(PERL_CORE) || defined(PERL_EXT)
1703 #     define isMNEMONIC_CNTRL(c) generic_isCC_(c, CC_MNEMONIC_CNTRL_)
1704 #  endif
1705 #else   /* else we don't have perl.h H_PERL */
1706
1707     /* If we don't have perl.h, we are compiling a utility program.  Below we
1708      * hard-code various macro definitions that wouldn't otherwise be available
1709      * to it. Most are coded based on first principles.  These are written to
1710      * avoid EBCDIC vs. ASCII #ifdef's as much as possible. */
1711 #   define isDIGIT_A(c)  inRANGE(c, '0', '9')
1712 #   define isBLANK_A(c)  ((c) == ' ' || (c) == '\t')
1713 #   define isSPACE_A(c)  (isBLANK_A(c)                                   \
1714                           || (c) == '\n'                                 \
1715                           || (c) == '\r'                                 \
1716                           || (c) == '\v'                                 \
1717                           || (c) == '\f')
1718     /* On EBCDIC, there are gaps between 'i' and 'j'; 'r' and 's'.  Same for
1719      * uppercase.  The tests for those aren't necessary on ASCII, but hurt only
1720      * performance (if optimization isn't on), and allow the same code to be
1721      * used for both platform types */
1722 #   define isLOWER_A(c)  inRANGE((c), 'a', 'i')                         \
1723                       || inRANGE((c), 'j', 'r')                         \
1724                       || inRANGE((c), 's', 'z')
1725 #   define isUPPER_A(c)  inRANGE((c), 'A', 'I')                         \
1726                       || inRANGE((c), 'J', 'R')                         \
1727                       || inRANGE((c), 'S', 'Z')
1728 #   define isALPHA_A(c)  (isUPPER_A(c) || isLOWER_A(c))
1729 #   define isALPHANUMERIC_A(c) (isALPHA_A(c) || isDIGIT_A(c))
1730 #   define isWORDCHAR_A(c)   (isALPHANUMERIC_A(c) || (c) == '_')
1731 #   define isIDFIRST_A(c)    (isALPHA_A(c) || (c) == '_')
1732 #   define isXDIGIT_A(c) (   isDIGIT_A(c)                               \
1733                           || inRANGE((c), 'a', 'f')                     \
1734                           || inRANGE((c), 'A', 'F')
1735 #   define isPUNCT_A(c)  ((c) == '-' || (c) == '!' || (c) == '"'        \
1736                        || (c) == '#' || (c) == '$' || (c) == '%'        \
1737                        || (c) == '&' || (c) == '\'' || (c) == '('       \
1738                        || (c) == ')' || (c) == '*' || (c) == '+'        \
1739                        || (c) == ',' || (c) == '.' || (c) == '/'        \
1740                        || (c) == ':' || (c) == ';' || (c) == '<'        \
1741                        || (c) == '=' || (c) == '>' || (c) == '?'        \
1742                        || (c) == '@' || (c) == '[' || (c) == '\\'       \
1743                        || (c) == ']' || (c) == '^' || (c) == '_'        \
1744                        || (c) == '`' || (c) == '{' || (c) == '|'        \
1745                        || (c) == '}' || (c) == '~')
1746 #   define isGRAPH_A(c)  (isALPHANUMERIC_A(c) || isPUNCT_A(c))
1747 #   define isPRINT_A(c)  (isGRAPH_A(c) || (c) == ' ')
1748
1749 #   ifdef EBCDIC
1750         /* The below is accurate for the 3 EBCDIC code pages traditionally
1751          * supported by perl.  The only difference between them in the controls
1752          * is the position of \n, and that is represented symbolically below */
1753 #       define isCNTRL_A(c)  ((c) == '\0' || (c) == '\a' || (c) == '\b'     \
1754                           ||  (c) == '\f' || (c) == '\n' || (c) == '\r'     \
1755                           ||  (c) == '\t' || (c) == '\v'                    \
1756                           || inRANGE((c), 1, 3)     /* SOH, STX, ETX */     \
1757                           ||  (c) == 7F   /* U+7F DEL */                    \
1758                           || inRANGE((c), 0x0E, 0x13) /* SO SI DLE          \
1759                                                          DC[1-3] */         \
1760                           ||  (c) == 0x18 /* U+18 CAN */                    \
1761                           ||  (c) == 0x19 /* U+19 EOM */                    \
1762                           || inRANGE((c), 0x1C, 0x1F) /* [FGRU]S */         \
1763                           ||  (c) == 0x26 /* U+17 ETB */                    \
1764                           ||  (c) == 0x27 /* U+1B ESC */                    \
1765                           ||  (c) == 0x2D /* U+05 ENQ */                    \
1766                           ||  (c) == 0x2E /* U+06 ACK */                    \
1767                           ||  (c) == 0x32 /* U+16 SYN */                    \
1768                           ||  (c) == 0x37 /* U+04 EOT */                    \
1769                           ||  (c) == 0x3C /* U+14 DC4 */                    \
1770                           ||  (c) == 0x3D /* U+15 NAK */                    \
1771                           ||  (c) == 0x3F)/* U+1A SUB */
1772 #       define isASCII(c)    (isCNTRL_A(c) || isPRINT_A(c))
1773 #   else /* isASCII is already defined for ASCII platforms, so can use that to
1774             define isCNTRL */
1775 #       define isCNTRL_A(c)  (isASCII(c) && ! isPRINT_A(c))
1776 #   endif
1777
1778     /* The _L1 macros may be unnecessary for the utilities; I (khw) added them
1779      * during debugging, and it seems best to keep them.  We may be called
1780      * without NATIVE_TO_LATIN1 being defined.  On ASCII platforms, it doesn't
1781      * do anything anyway, so make it not a problem */
1782 #   if ! defined(EBCDIC) && ! defined(NATIVE_TO_LATIN1)
1783 #       define NATIVE_TO_LATIN1(ch) (ch)
1784 #   endif
1785 #   define isALPHA_L1(c)     (isUPPER_L1(c) || isLOWER_L1(c))
1786 #   define isALPHANUMERIC_L1(c) (isALPHA_L1(c) || isDIGIT_A(c))
1787 #   define isBLANK_L1(c)     (isBLANK_A(c)                                   \
1788                               || (FITS_IN_8_BITS(c)                          \
1789                                   && NATIVE_TO_LATIN1((U8) c) == 0xA0))
1790 #   define isCNTRL_L1(c)     (FITS_IN_8_BITS(c) && (! isPRINT_L1(c)))
1791 #   define isGRAPH_L1(c)     (isPRINT_L1(c) && (! isBLANK_L1(c)))
1792 #   define isLOWER_L1(c)     (isLOWER_A(c)                                   \
1793                               || (FITS_IN_8_BITS(c)                          \
1794                                   && ((   NATIVE_TO_LATIN1((U8) c) >= 0xDF   \
1795                                        && NATIVE_TO_LATIN1((U8) c) != 0xF7)  \
1796                                        || NATIVE_TO_LATIN1((U8) c) == 0xAA   \
1797                                        || NATIVE_TO_LATIN1((U8) c) == 0xBA   \
1798                                        || NATIVE_TO_LATIN1((U8) c) == 0xB5)))
1799 #   define isPRINT_L1(c)     (isPRINT_A(c)                                   \
1800                               || (FITS_IN_8_BITS(c)                          \
1801                                   && NATIVE_TO_LATIN1((U8) c) >= 0xA0))
1802 #   define isPUNCT_L1(c)     (isPUNCT_A(c)                                   \
1803                               || (FITS_IN_8_BITS(c)                          \
1804                                   && (   NATIVE_TO_LATIN1((U8) c) == 0xA1    \
1805                                       || NATIVE_TO_LATIN1((U8) c) == 0xA7    \
1806                                       || NATIVE_TO_LATIN1((U8) c) == 0xAB    \
1807                                       || NATIVE_TO_LATIN1((U8) c) == 0xB6    \
1808                                       || NATIVE_TO_LATIN1((U8) c) == 0xB7    \
1809                                       || NATIVE_TO_LATIN1((U8) c) == 0xBB    \
1810                                       || NATIVE_TO_LATIN1((U8) c) == 0xBF)))
1811 #   define isSPACE_L1(c)     (isSPACE_A(c)                                   \
1812                               || (FITS_IN_8_BITS(c)                          \
1813                                   && (   NATIVE_TO_LATIN1((U8) c) == 0x85    \
1814                                       || NATIVE_TO_LATIN1((U8) c) == 0xA0)))
1815 #   define isUPPER_L1(c)     (isUPPER_A(c)                                   \
1816                               || (FITS_IN_8_BITS(c)                          \
1817                                   && (   IN_RANGE(NATIVE_TO_LATIN1((U8) c),  \
1818                                                   0xC0, 0xDE)                \
1819                                       && NATIVE_TO_LATIN1((U8) c) != 0xD7)))
1820 #   define isWORDCHAR_L1(c)  (isIDFIRST_L1(c) || isDIGIT_A(c))
1821 #   define isIDFIRST_L1(c)   (isALPHA_L1(c) || NATIVE_TO_LATIN1(c) == '_')
1822 #   define isCHARNAME_CONT(c) (isWORDCHAR_L1(c)                              \
1823                                || isBLANK_L1(c)                              \
1824                                || (c) == '-'                                 \
1825                                || (c) == '('                                 \
1826                                || (c) == ')')
1827     /* The following are not fully accurate in the above-ASCII range.  I (khw)
1828      * don't think it's necessary to be so for the purposes where this gets
1829      * compiled */
1830 #   define isQUOTEMETA_(c)      (FITS_IN_8_BITS(c) && ! isWORDCHAR_L1(c))
1831
1832     /* Many of the macros later in this file are defined in terms of these.  By
1833      * implementing them with a function, which converts the class number into
1834      * a call to the desired macro, all of the later ones work.  However, that
1835      * function won't be actually defined when building a utility program (no
1836      * perl.h), and so a compiler error will be generated if one is attempted
1837      * to be used.  And the above-Latin1 code points require Unicode tables to
1838      * be present, something unlikely to be the case when bootstrapping */
1839 #   define generic_isCC_(c, classnum)                                        \
1840          (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), TRUE))
1841 #   define generic_isCC_A_(c, classnum)                                      \
1842          (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), FALSE))
1843 #endif  /* End of no perl.h H_PERL */
1844
1845 #define isALPHANUMERIC(c)  isALPHANUMERIC_A(c)
1846 #define isALPHA(c)   isALPHA_A(c)
1847 #define isASCII_A(c)  isASCII(c)
1848 #define isASCII_L1(c)  isASCII(c)
1849 #define isBLANK(c)   isBLANK_A(c)
1850 #define isCNTRL(c)   isCNTRL_A(c)
1851 #define isDIGIT(c)   isDIGIT_A(c)
1852 #define isGRAPH(c)   isGRAPH_A(c)
1853 #define isIDFIRST(c) isIDFIRST_A(c)
1854 #define isLOWER(c)   isLOWER_A(c)
1855 #define isPRINT(c)   isPRINT_A(c)
1856 #define isPSXSPC_A(c) isSPACE_A(c)
1857 #define isPSXSPC(c)  isPSXSPC_A(c)
1858 #define isPSXSPC_L1(c) isSPACE_L1(c)
1859 #define isPUNCT(c)   isPUNCT_A(c)
1860 #define isSPACE(c)   isSPACE_A(c)
1861 #define isUPPER(c)   isUPPER_A(c)
1862 #define isWORDCHAR(c) isWORDCHAR_A(c)
1863 #define isXDIGIT(c)  isXDIGIT_A(c)
1864
1865 /* ASCII casing.  These could also be written as
1866     #define toLOWER(c) (isASCII(c) ? toLOWER_LATIN1(c) : (c))
1867     #define toUPPER(c) (isASCII(c) ? toUPPER_LATIN1_MOD(c) : (c))
1868    which uses table lookup and mask instead of subtraction.  (This would
1869    work because the _MOD does not apply in the ASCII range).
1870
1871    These actually are UTF-8 invariant casing, not just ASCII, as any non-ASCII
1872    UTF-8 invariants are neither upper nor lower.  (Only on EBCDIC platforms are
1873    there non-ASCII invariants, and all of them are controls.) */
1874 #define toLOWER(c)  (isUPPER(c) ? (U8)((c) + ('a' - 'A')) : (c))
1875 #define toUPPER(c)  (isLOWER(c) ? (U8)((c) - ('a' - 'A')) : (c))
1876
1877 /* In the ASCII range, these are equivalent to what they're here defined to be.
1878  * But by creating these definitions, other code doesn't have to be aware of
1879  * this detail.  Actually this works for all UTF-8 invariants, not just the
1880  * ASCII range. (EBCDIC platforms can have non-ASCII invariants.) */
1881 #define toFOLD(c)    toLOWER(c)
1882 #define toTITLE(c)   toUPPER(c)
1883
1884 #define toLOWER_A(c) toLOWER(c)
1885 #define toUPPER_A(c) toUPPER(c)
1886 #define toFOLD_A(c)  toFOLD(c)
1887 #define toTITLE_A(c) toTITLE(c)
1888
1889 /* Use table lookup for speed; returns the input itself if is out-of-range */
1890 #define toLOWER_LATIN1(c)    ((! FITS_IN_8_BITS(c))                        \
1891                              ? (c)                                         \
1892                              : PL_latin1_lc[ (U8) (c) ])
1893 #define toLOWER_L1(c)    toLOWER_LATIN1(c)  /* Synonym for consistency */
1894
1895 /* Modified uc.  Is correct uc except for three non-ascii chars which are
1896  * all mapped to one of them, and these need special handling; returns the
1897  * input itself if is out-of-range */
1898 #define toUPPER_LATIN1_MOD(c) ((! FITS_IN_8_BITS(c))                       \
1899                                ? (c)                                       \
1900                                : PL_mod_latin1_uc[ (U8) (c) ])
1901 #ifdef USE_LOCALE_CTYPE
1902 #  define IN_UTF8_CTYPE_LOCALE   PL_in_utf8_CTYPE_locale
1903 #  define IN_UTF8_TURKIC_LOCALE  PL_in_utf8_turkic_locale
1904 #else
1905 #  define IN_UTF8_CTYPE_LOCALE   false
1906 #  define IN_UTF8_TURKIC_LOCALE  false
1907 #endif
1908
1909 /* Use foo_LC_uvchr() instead  of these for beyond the Latin1 range */
1910
1911 /* For internal core Perl use only: the base macro for defining macros like
1912  * isALPHA_LC, which uses the current LC_CTYPE locale.  'c' is the code point
1913  * (0-255) to check.  In a UTF-8 locale, the result is the same as calling
1914  * isFOO_L1(); 'classnum' is something like CC_UPPER_, which gives the class
1915  * number for doing this.  For non-UTF-8 locales, the code to actually do the
1916  * test this is passed in 'non_utf8'.  If 'c' is above 255, 0 is returned.  For
1917  * accessing the full range of possible code points under locale rules, use the
1918  * macros based on generic_LC_uvchr_ instead of this. */
1919 #define generic_LC_base_(c, classnum, non_utf8_func)                        \
1920        (! FITS_IN_8_BITS(c)                                                 \
1921        ? 0                                                                  \
1922        : IN_UTF8_CTYPE_LOCALE                                               \
1923          ? cBOOL(PL_charclass[(U8) (c)] & CC_mask_(classnum))               \
1924          : cBOOL(non_utf8_func(c)))
1925
1926 /* A helper macro for defining macros like isALPHA_LC.  On systems without
1927  * proper locales, these reduce to, e.g., isALPHA_A */
1928 #ifdef CTYPE256
1929 #  define generic_LC_(c, classnum, non_utf8_func)   \
1930      generic_LC_base_(c, classnum, non_utf8_func)
1931 #else
1932 # define generic_LC_(c, classnum, non_utf8_func)    \
1933      generic_isCC_A_(c, classnum)
1934 #endif
1935
1936 /* Below are the definitions for the locale-sensitive character classification
1937  * macros whose input domain is a byte, and the locale isn't UTF-8.  These are
1938  * as close as possible to the bare versions on the platform and still yield
1939  * POSIX Standard-compliant results.
1940  *
1941  * There is currently only one place these definitions should be used, in
1942  * certain function calls like Perl_iswordchar_() in inline.h.
1943  *
1944  * Most likely you want to use the macros a ways below with names like
1945  * isALPHA_LC().  Rarely, you may want isU8_ALPHA_LC(), somewhat below.
1946  *
1947  * The first two aren't in C89, so the fallback is to use the non-locale
1948  * sensitive versions; these are the same for all platforms */
1949 #if defined(HAS_ISASCII)
1950 #   define is_posix_ASCII(c) isascii((U8) (c))
1951 #else
1952 #   define is_posix_ASCII(c) isASCII(c)
1953 #endif
1954
1955 #if defined(HAS_ISBLANK)
1956 #   define is_posix_BLANK(c) isblank((U8) (c))
1957 #else
1958 #   define is_posix_BLANK(c) isBLANK(c)
1959 #endif
1960
1961 /* The next few are the same in all platforms. */
1962 #define is_posix_CNTRL(c)     iscntrl((U8) (c))
1963 #define is_posix_IDFIRST(c)  (UNLIKELY((c) == '_') || is_posix_ALPHA(c))
1964 #define is_posix_SPACE(c)     isspace((U8) (c))
1965 #define is_posix_WORDCHAR(c) (UNLIKELY((c) == '_') || is_posix_ALPHANUMERIC(c))
1966
1967 /* The base-level case changing macros are also the same in all platforms */
1968 #define to_posix_LOWER(c)     tolower((U8) (c))
1969 #define to_posix_UPPER(c)     toupper((U8) (c))
1970 #define to_posix_FOLD(c)      to_posix_LOWER(c)
1971
1972 #ifdef WIN32
1973
1974 /* The Windows functions don't bother to follow the POSIX standard, which for
1975  * example says that something can't both be a printable and a control.  But
1976  * Windows treats \t as both a control and a printable, and does such things as
1977  * making superscripts into both digits and punctuation.  These #defines tame
1978  * these flaws by assuming that the definitions of controls (and the other few
1979  * ones defined above) are correct, and then making sure that other definitions
1980  * don't have weirdnesses, by adding a check that \w and its subsets aren't
1981  * ispunct(), and things that are \W, like ispunct(), arent't controls.  Not
1982  * all possible weirdnesses are checked for, just ones that were detected on
1983  * actual Microsoft code pages */
1984 #  define is_posix_ALPHA(c)                                          \
1985                           (isalpha((U8) (c)) && ! is_posix_PUNCT(c))
1986 #  define is_posix_ALPHANUMERIC(c)                                   \
1987                           (isalnum((U8) (c)) && ! is_posix_PUNCT(c))
1988 #  define is_posix_CASED(c)                                          \
1989    ((isupper((U8) (c)) || islower((U8) (c))) && ! is_posix_PUNCT(c))
1990 #  define is_posix_DIGIT(c)                                          \
1991                           (isdigit((U8) (c)) && ! is_posix_PUNCT(c))
1992 #  define is_posix_GRAPH(c)                                          \
1993                           (isgraph((U8) (c)) && ! is_posix_CNTRL(c))
1994 #  define is_posix_LOWER(c)                                          \
1995                           (islower((U8) (c)) && ! is_posix_PUNCT(c))
1996 #  define is_posix_PRINT(c)                                          \
1997                           (isprint((U8) (c)) && ! is_posix_CNTRL(c))
1998 #  define is_posix_PUNCT(c)                                          \
1999                           (ispunct((U8) (c)) && ! is_posix_CNTRL(c))
2000 #  define is_posix_UPPER(c)                                          \
2001                           (isupper((U8) (c)) && ! is_posix_PUNCT(c))
2002 #  define is_posix_XDIGIT(c)                                         \
2003                          (isxdigit((U8) (c)) && ! is_posix_PUNCT(c))
2004 #else
2005
2006 /* For all other platforms, as far as we know, isdigit(), etc. work sanely
2007  * enough */
2008 #  define is_posix_ALPHA(c)         isalpha((U8) (c))
2009 #  define is_posix_ALPHANUMERIC(c)  isalnum((U8) (c))
2010 #  define is_posix_CASED(c)        (islower((U8) (c)) || isupper((U8) (c)))
2011 #  define is_posix_DIGIT(c)         isdigit((U8) (c))
2012
2013      /* ... But it seems that IBM products treat NBSP as both a space and a
2014       * graphic; these are the two platforms that we have active test beds for.
2015       */
2016 #  if defined(OS390) || defined(_AIX)
2017 #    define is_posix_GRAPH(c)      (isgraph((U8) (c)) && ! isspace((U8) (c)))
2018 #  else
2019 #    define is_posix_GRAPH(c)       isgraph((U8) (c))
2020 #  endif
2021 #  define is_posix_LOWER(c)         islower((U8) (c))
2022 #  define is_posix_PRINT(c)         isprint((U8) (c))
2023 #  define is_posix_PUNCT(c)         ispunct((U8) (c))
2024 #  define is_posix_UPPER(c)         isupper((U8) (c))
2025 #  define is_posix_XDIGIT(c)        isxdigit((U8) (c))
2026 #endif
2027
2028 /* Below is the next level up, which currently expands to nothing more
2029  * than the previous layer.  These are the macros to use if you really need
2030  * something whose input domain is a byte, and the locale isn't UTF-8; that is,
2031  * where you normally would have to use things like bare isalnum().
2032  *
2033  * But most likely you should instead use the layer defined further below which
2034  * has names like isALPHA_LC.  They deal with larger-than-byte inputs, and
2035  * UTF-8 locales.
2036  *
2037  * (Note, proper general operation of the bare libc functions requires you to
2038  * cast to U8.  These do that for you automatically.) */
2039
2040 #  define WRAP_U8_LC_(c, classnum, posix)  posix(c)
2041
2042 #define isU8_ALPHANUMERIC_LC(c)                                                \
2043               WRAP_U8_LC_((c), CC_ALPHANUMERIC_, is_posix_ALPHANUMERIC)
2044 #define isU8_ALPHA_LC(c)    WRAP_U8_LC_((c), CC_ALPHA_, is_posix_ALPHA)
2045 #define isU8_ASCII_LC(c)    WRAP_U8_LC_((c), CC_ASCII_, is_posix_ASCII)
2046 #define isU8_BLANK_LC(c)    WRAP_U8_LC_((c), CC_BLANK_, is_posix_BLANK)
2047 #define isU8_CASED_LC(c)    WRAP_U8_LC_((c), CC_CASED_, is_posix_CASED)
2048 #define isU8_CNTRL_LC(c)    WRAP_U8_LC_((c), CC_CNTRL_, is_posix_CNTRL)
2049 #define isU8_DIGIT_LC(c)    WRAP_U8_LC_((c), CC_DIGIT_, is_posix_DIGIT)
2050 #define isU8_GRAPH_LC(c)    WRAP_U8_LC_((c), CC_GRAPH_, is_posix_GRAPH)
2051 #define isU8_IDFIRST_LC(c)  WRAP_U8_LC_((c), CC_IDFIRST_, is_posix_IDFIRST)
2052 #define isU8_LOWER_LC(c)    WRAP_U8_LC_((c), CC_LOWER_, is_posix_LOWER)
2053 #define isU8_PRINT_LC(c)    WRAP_U8_LC_((c), CC_PRINT_, is_posix_PRINT)
2054 #define isU8_PUNCT_LC(c)    WRAP_U8_LC_((c), CC_PUNCT_, is_posix_PUNCT)
2055 #define isU8_SPACE_LC(c)    WRAP_U8_LC_((c), CC_SPACE_, is_posix_SPACE)
2056 #define isU8_UPPER_LC(c)    WRAP_U8_LC_((c), CC_UPPER_, is_posix_UPPER)
2057 #define isU8_WORDCHAR_LC(c) WRAP_U8_LC_((c), CC_WORDCHAR_, is_posix_WORDCHAR)
2058 #define isU8_XDIGIT_LC(c)   WRAP_U8_LC_((c), CC_XDIGIT_, is_posix_XDIGIT)
2059
2060 #define toU8_LOWER_LC(c)    WRAP_U8_LC_((c), CC_TOLOWER_, to_posix_LOWER)
2061 #define toU8_UPPER_LC(c)    WRAP_U8_LC_((c), CC_TOUPPER_, to_posix_UPPER)
2062 #define toU8_FOLD_LC(c)     toU8_LOWER_LC(c)
2063
2064 /* The definitions below use the ones above to create versions in which the
2065  * input domain isn't restricted to bytes (though always returning false if the
2066  * input doesn't fit in a byte), and to behave properly should the locale be
2067  * UTF-8.  These are the documented ones, suitable for general use (though
2068  * toUPPER_LC and toFOLD_LC aren't documented because they need special
2069  * handling to deal with SHARP S expanding to two characters). */
2070
2071 #define isASCII_LC(c)               (FITS_IN_8_BITS(c) && isU8_ASCII_LC(c))
2072 #define isALPHA_LC(c)               generic_LC_(c, CC_ALPHA_, isU8_ALPHA_LC)
2073 #define isALPHANUMERIC_LC(c)                                                \
2074                       generic_LC_(c, CC_ALPHANUMERIC_, isU8_ALPHANUMERIC_LC)
2075 #define isBLANK_LC(c)               generic_LC_(c, CC_BLANK_, isU8_BLANK_LC)
2076 #define isCASED_LC(c)               generic_LC_(c, CC_CASED_, isU8_CASED_LC)
2077 #define isCNTRL_LC(c)               generic_LC_(c, CC_CNTRL_, isU8_CNTRL_LC)
2078 #define isDIGIT_LC(c)               generic_LC_(c, CC_DIGIT_, isU8_DIGIT_LC)
2079 #define isGRAPH_LC(c)               generic_LC_(c, CC_GRAPH_, isU8_GRAPH_LC)
2080 #define isIDFIRST_LC(c)         generic_LC_(c, CC_IDFIRST_, isU8_IDFIRST_LC)
2081 #define isLOWER_LC(c)               generic_LC_(c, CC_LOWER_, isU8_LOWER_LC)
2082 #define isPRINT_LC(c)               generic_LC_(c, CC_PRINT_, isU8_PRINT_LC)
2083 #define isPUNCT_LC(c)               generic_LC_(c, CC_PUNCT_, isU8_PUNCT_LC)
2084 #define isSPACE_LC(c)               generic_LC_(c, CC_SPACE_, isU8_SPACE_LC)
2085 #define isUPPER_LC(c)               generic_LC_(c, CC_UPPER_, isU8_UPPER_LC)
2086 #define isWORDCHAR_LC(c)      generic_LC_(c, CC_WORDCHAR_, isU8_WORDCHAR_LC)
2087 #define isXDIGIT_LC(c)            generic_LC_(c, CC_XDIGIT_, isU8_XDIGIT_LC)
2088
2089 #ifndef CTYPE256
2090 #  define toLOWER_LC(c)             toLOWER_A(c)
2091 #  define toUPPER_LC(c)             toUPPER_A(c)
2092 #  define toFOLD_LC(c)              toFOLD_A(c)
2093 #else
2094
2095 /* In the next three macros, the reason for using the PL_latin arrays is in
2096  * case the system function is defective; it ensures uniform results that
2097  * conform to the Unicode standard. */
2098
2099 /* This does not handle the anomalies in UTF-8 Turkic locales. */
2100 #  define toLOWER_LC(c)  ((! FITS_IN_8_BITS(c))                             \
2101                           ? (c)                                             \
2102                           : ((IN_UTF8_CTYPE_LOCALE)                         \
2103                              ? PL_latin1_lc[ (U8) (c) ]                     \
2104                              : ((U8) toU8_LOWER_LC(c))))
2105
2106 /* In this macro, note that the result can be larger than a byte in a UTF-8
2107  * locale.  It returns a single value, so can't adequately return the upper
2108  * case of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a
2109  * string of two values "SS");  instead it asserts against that under
2110  * DEBUGGING, and otherwise returns its input.  It does not handle the
2111  * anomalies in UTF-8 Turkic locales. */
2112 #  define toUPPER_LC(c)                                                     \
2113     ((! FITS_IN_8_BITS(c))                                                  \
2114      ? (c)                                                                  \
2115      : ((! IN_UTF8_CTYPE_LOCALE)                                            \
2116         ? ((U8) toU8_UPPER_LC(c))                                           \
2117         : (UNLIKELY(((U8)(c)) == MICRO_SIGN)                                \
2118            ? GREEK_CAPITAL_LETTER_MU                                        \
2119            : ((UNLIKELY(((U8) (c)) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)  \
2120               ? LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS                       \
2121               : (UNLIKELY(((U8)(c)) == LATIN_SMALL_LETTER_SHARP_S)          \
2122                 ? (__ASSERT_(0) (c)) /* Fail on Sharp S in DEBUGGING */     \
2123                 : PL_mod_latin1_uc[ (U8) (c) ]))))))
2124
2125 /* In this macro, note that the result can be larger than a byte in a UTF-8
2126  * locale.  It returns a single value, so can't adequately return the fold case
2127  * of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of
2128  * two values "ss"); instead it asserts against that under DEBUGGING, and
2129  * otherwise returns its input.  It does not handle the anomalies in UTF-8
2130  * Turkic locales */
2131 #  define toFOLD_LC(c)                                                      \
2132                 ((UNLIKELY((c) == MICRO_SIGN) && IN_UTF8_CTYPE_LOCALE)      \
2133                  ? GREEK_SMALL_LETTER_MU                                    \
2134                  : (__ASSERT_(   ! IN_UTF8_CTYPE_LOCALE                     \
2135                               || LIKELY((c) != LATIN_SMALL_LETTER_SHARP_S)) \
2136                     toLOWER_LC(c)))
2137 #endif
2138
2139 #define isIDCONT(c)             isWORDCHAR(c)
2140 #define isIDCONT_A(c)           isWORDCHAR_A(c)
2141 #define isIDCONT_L1(c)          isWORDCHAR_L1(c)
2142 #define isIDCONT_LC(c)          isWORDCHAR_LC(c)
2143 #define isPSXSPC_LC(c)          isSPACE_LC(c)
2144
2145 /* For internal core Perl use only: the base macros for defining macros like
2146  * isALPHA_uvchr.  'c' is the code point to check.  'classnum' is the POSIX class
2147  * number defined earlier in this file.  generic_uvchr_() is used for POSIX
2148  * classes where there is a macro or function 'above_latin1' that takes the
2149  * single argument 'c' and returns the desired value.  These exist for those
2150  * classes which have simple definitions, avoiding the overhead of an inversion
2151  * list binary search.  generic_invlist_uvchr_() can be used
2152  * for classes where that overhead is faster than a direct lookup.
2153  * generic_uvchr_() won't compile if 'c' isn't unsigned, as it won't match the
2154  * 'above_latin1' prototype. generic_isCC_() macro does bounds checking, so
2155  * have duplicate checks here, so could create versions of the macros that
2156  * don't, but experiments show that gcc optimizes them out anyway. */
2157
2158 /* Note that all ignore 'use bytes' */
2159 #define generic_uvchr_(classnum, above_latin1, c) ((c) < 256                \
2160                                              ? generic_isCC_(c, classnum)   \
2161                                              : above_latin1(c))
2162 #define generic_invlist_uvchr_(classnum, c) ((c) < 256                      \
2163                                              ? generic_isCC_(c, classnum)   \
2164                                              : _is_uni_FOO(classnum, c))
2165 #define isALPHA_uvchr(c)      generic_invlist_uvchr_(CC_ALPHA_, c)
2166 #define isALPHANUMERIC_uvchr(c) generic_invlist_uvchr_(CC_ALPHANUMERIC_, c)
2167 #define isASCII_uvchr(c)      isASCII(c)
2168 #define isBLANK_uvchr(c)      generic_uvchr_(CC_BLANK_, is_HORIZWS_cp_high, c)
2169 #define isCNTRL_uvchr(c)      isCNTRL_L1(c) /* All controls are in Latin1 */
2170 #define isDIGIT_uvchr(c)      generic_invlist_uvchr_(CC_DIGIT_, c)
2171 #define isGRAPH_uvchr(c)      generic_invlist_uvchr_(CC_GRAPH_, c)
2172 #define isIDCONT_uvchr(c)                                                   \
2173                     generic_uvchr_(CC_WORDCHAR_, _is_uni_perl_idcont, c)
2174 #define isIDFIRST_uvchr(c)                                                  \
2175                     generic_uvchr_(CC_IDFIRST_, _is_uni_perl_idstart, c)
2176 #define isLOWER_uvchr(c)      generic_invlist_uvchr_(CC_LOWER_, c)
2177 #define isPRINT_uvchr(c)      generic_invlist_uvchr_(CC_PRINT_, c)
2178
2179 #define isPUNCT_uvchr(c)      generic_invlist_uvchr_(CC_PUNCT_, c)
2180 #define isSPACE_uvchr(c)      generic_uvchr_(CC_SPACE_, is_XPERLSPACE_cp_high, c)
2181 #define isPSXSPC_uvchr(c)     isSPACE_uvchr(c)
2182
2183 #define isUPPER_uvchr(c)      generic_invlist_uvchr_(CC_UPPER_, c)
2184 #define isVERTWS_uvchr(c)     generic_uvchr_(CC_VERTSPACE_, is_VERTWS_cp_high, c)
2185 #define isWORDCHAR_uvchr(c)   generic_invlist_uvchr_(CC_WORDCHAR_, c)
2186 #define isXDIGIT_uvchr(c)     generic_uvchr_(CC_XDIGIT_, is_XDIGIT_cp_high, c)
2187
2188 #define toFOLD_uvchr(c,s,l)     to_uni_fold(c,s,l)
2189 #define toLOWER_uvchr(c,s,l)    to_uni_lower(c,s,l)
2190 #define toTITLE_uvchr(c,s,l)    to_uni_title(c,s,l)
2191 #define toUPPER_uvchr(c,s,l)    to_uni_upper(c,s,l)
2192
2193 /* For backwards compatibility, even though '_uni' should mean official Unicode
2194  * code points, in Perl it means native for those below 256 */
2195 #define isALPHA_uni(c)          isALPHA_uvchr(c)
2196 #define isALPHANUMERIC_uni(c)   isALPHANUMERIC_uvchr(c)
2197 #define isASCII_uni(c)          isASCII_uvchr(c)
2198 #define isBLANK_uni(c)          isBLANK_uvchr(c)
2199 #define isCNTRL_uni(c)          isCNTRL_uvchr(c)
2200 #define isDIGIT_uni(c)          isDIGIT_uvchr(c)
2201 #define isGRAPH_uni(c)          isGRAPH_uvchr(c)
2202 #define isIDCONT_uni(c)         isIDCONT_uvchr(c)
2203 #define isIDFIRST_uni(c)        isIDFIRST_uvchr(c)
2204 #define isLOWER_uni(c)          isLOWER_uvchr(c)
2205 #define isPRINT_uni(c)          isPRINT_uvchr(c)
2206 #define isPUNCT_uni(c)          isPUNCT_uvchr(c)
2207 #define isSPACE_uni(c)          isSPACE_uvchr(c)
2208 #define isPSXSPC_uni(c)         isPSXSPC_uvchr(c)
2209 #define isUPPER_uni(c)          isUPPER_uvchr(c)
2210 #define isVERTWS_uni(c)         isVERTWS_uvchr(c)
2211 #define isWORDCHAR_uni(c)       isWORDCHAR_uvchr(c)
2212 #define isXDIGIT_uni(c)         isXDIGIT_uvchr(c)
2213 #define toFOLD_uni(c,s,l)       toFOLD_uvchr(c,s,l)
2214 #define toLOWER_uni(c,s,l)      toLOWER_uvchr(c,s,l)
2215 #define toTITLE_uni(c,s,l)      toTITLE_uvchr(c,s,l)
2216 #define toUPPER_uni(c,s,l)      toUPPER_uvchr(c,s,l)
2217
2218 /* For internal core Perl use only: the base macros for defining macros like
2219  * isALPHA_LC_uvchr.  These are like isALPHA_LC, but the input can be any code
2220  * point, not just 0-255.  Like generic_uvchr_, there are two versions, one for
2221  * simple class definitions; the other for more complex.  These are like
2222  * generic_uvchr_, so see it for more info. */
2223 #define generic_LC_uvchr_(latin1, above_latin1, c)                            \
2224                                     (c < 256 ? latin1(c) : above_latin1(c))
2225 #define generic_LC_invlist_uvchr_(latin1, classnum, c)                        \
2226                             (c < 256 ? latin1(c) : _is_uni_FOO(classnum, c))
2227
2228 #define isALPHA_LC_uvchr(c)  generic_LC_invlist_uvchr_(isALPHA_LC, CC_ALPHA_, c)
2229 #define isALPHANUMERIC_LC_uvchr(c)  generic_LC_invlist_uvchr_(isALPHANUMERIC_LC, \
2230                                                          CC_ALPHANUMERIC_, c)
2231 #define isASCII_LC_uvchr(c)   isASCII_LC(c)
2232 #define isBLANK_LC_uvchr(c)  generic_LC_uvchr_(isBLANK_LC,                    \
2233                                                         is_HORIZWS_cp_high, c)
2234 #define isCNTRL_LC_uvchr(c)  (c < 256 ? isCNTRL_LC(c) : 0)
2235 #define isDIGIT_LC_uvchr(c)  generic_LC_invlist_uvchr_(isDIGIT_LC, CC_DIGIT_, c)
2236 #define isGRAPH_LC_uvchr(c)  generic_LC_invlist_uvchr_(isGRAPH_LC, CC_GRAPH_, c)
2237 #define isIDCONT_LC_uvchr(c) generic_LC_uvchr_(isIDCONT_LC,                   \
2238                                                   _is_uni_perl_idcont, c)
2239 #define isIDFIRST_LC_uvchr(c) generic_LC_uvchr_(isIDFIRST_LC,                 \
2240                                                   _is_uni_perl_idstart, c)
2241 #define isLOWER_LC_uvchr(c)  generic_LC_invlist_uvchr_(isLOWER_LC, CC_LOWER_, c)
2242 #define isPRINT_LC_uvchr(c)  generic_LC_invlist_uvchr_(isPRINT_LC, CC_PRINT_, c)
2243 #define isPSXSPC_LC_uvchr(c)  isSPACE_LC_uvchr(c)
2244 #define isPUNCT_LC_uvchr(c)  generic_LC_invlist_uvchr_(isPUNCT_LC, CC_PUNCT_, c)
2245 #define isSPACE_LC_uvchr(c)  generic_LC_uvchr_(isSPACE_LC,                    \
2246                                                     is_XPERLSPACE_cp_high, c)
2247 #define isUPPER_LC_uvchr(c)  generic_LC_invlist_uvchr_(isUPPER_LC, CC_UPPER_, c)
2248 #define isWORDCHAR_LC_uvchr(c) generic_LC_invlist_uvchr_(isWORDCHAR_LC,       \
2249                                                            CC_WORDCHAR_, c)
2250 #define isXDIGIT_LC_uvchr(c) generic_LC_uvchr_(isXDIGIT_LC,                   \
2251                                                        is_XDIGIT_cp_high, c)
2252
2253 #define isBLANK_LC_uni(c)    isBLANK_LC_uvchr(UNI_TO_NATIVE(c))
2254
2255 /* The "_safe" macros make sure that we don't attempt to read beyond 'e', but
2256  * they don't otherwise go out of their way to look for malformed UTF-8.  If
2257  * they can return accurate results without knowing if the input is otherwise
2258  * malformed, they do so.  For example isASCII is accurate in spite of any
2259  * non-length malformations because it looks only at a single byte. Likewise
2260  * isDIGIT looks just at the first byte for code points 0-255, as all UTF-8
2261  * variant ones return FALSE.  But, if the input has to be well-formed in order
2262  * for the results to be accurate, the macros will test and if malformed will
2263  * call a routine to die
2264  *
2265  * Except for toke.c, the macros do assume that e > p, asserting that on
2266  * DEBUGGING builds.  Much code that calls these depends on this being true,
2267  * for other reasons.  toke.c is treated specially as using the regular
2268  * assertion breaks it in many ways.  All strings that these operate on there
2269  * are supposed to have an extra NUL character at the end,  so that *e = \0. A
2270  * bunch of code in toke.c assumes that this is true, so the assertion allows
2271  * for that */
2272 #ifdef PERL_IN_TOKE_C
2273 #  define _utf8_safe_assert(p,e) ((e) > (p) || ((e) == (p) && *(p) == '\0'))
2274 #else
2275 #  define _utf8_safe_assert(p,e) ((e) > (p))
2276 #endif
2277
2278 #define generic_utf8_safe_(classnum, p, e, above_latin1)                    \
2279     ((! _utf8_safe_assert(p, e))                                            \
2280       ? (_force_out_malformed_utf8_message((U8 *) (p), (U8 *) (e), 0, 1), 0)\
2281       : (UTF8_IS_INVARIANT(*(p)))                                           \
2282           ? generic_isCC_(*(p), classnum)                                   \
2283           : (UTF8_IS_DOWNGRADEABLE_START(*(p))                              \
2284              ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1))))   \
2285                 ? generic_isCC_(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1 )),  \
2286                                 classnum)                                   \
2287                 : (_force_out_malformed_utf8_message(                       \
2288                                         (U8 *) (p), (U8 *) (e), 0, 1), 0))  \
2289              : above_latin1))
2290 /* Like the above, but calls 'above_latin1(p)' to get the utf8 value.
2291  * 'above_latin1' can be a macro */
2292 #define generic_func_utf8_safe_(classnum, above_latin1, p, e)               \
2293                     generic_utf8_safe_(classnum, p, e, above_latin1(p, e))
2294 #define generic_non_invlist_utf8_safe_(classnum, above_latin1, p, e)        \
2295           generic_utf8_safe_(classnum, p, e,                                \
2296                              (UNLIKELY((e) - (p) < UTF8SKIP(p))             \
2297                               ? (_force_out_malformed_utf8_message(         \
2298                                       (U8 *) (p), (U8 *) (e), 0, 1), 0)     \
2299                               : above_latin1(p)))
2300 /* Like the above, but passes classnum to _isFOO_utf8(), instead of having an
2301  * 'above_latin1' parameter */
2302 #define generic_invlist_utf8_safe_(classnum, p, e)                          \
2303             generic_utf8_safe_(classnum, p, e, _is_utf8_FOO(classnum, p, e))
2304
2305 /* Like the above, but should be used only when it is known that there are no
2306  * characters in the upper-Latin1 range (128-255 on ASCII platforms) which the
2307  * class is TRUE for.  Hence it can skip the tests for this range.
2308  * 'above_latin1' should include its arguments */
2309 #define generic_utf8_safe_no_upper_latin1_(classnum, p, e, above_latin1)    \
2310          (__ASSERT_(_utf8_safe_assert(p, e))                                \
2311          (isASCII(*(p)))                                                    \
2312           ? generic_isCC_(*(p), classnum)                                   \
2313           : (UTF8_IS_DOWNGRADEABLE_START(*(p)))                             \
2314              ? 0 /* Note that doesn't check validity for latin1 */          \
2315              : above_latin1)
2316
2317
2318 #define isALPHA_utf8(p, e)         isALPHA_utf8_safe(p, e)
2319 #define isALPHANUMERIC_utf8(p, e)  isALPHANUMERIC_utf8_safe(p, e)
2320 #define isASCII_utf8(p, e)         isASCII_utf8_safe(p, e)
2321 #define isBLANK_utf8(p, e)         isBLANK_utf8_safe(p, e)
2322 #define isCNTRL_utf8(p, e)         isCNTRL_utf8_safe(p, e)
2323 #define isDIGIT_utf8(p, e)         isDIGIT_utf8_safe(p, e)
2324 #define isGRAPH_utf8(p, e)         isGRAPH_utf8_safe(p, e)
2325 #define isIDCONT_utf8(p, e)        isIDCONT_utf8_safe(p, e)
2326 #define isIDFIRST_utf8(p, e)       isIDFIRST_utf8_safe(p, e)
2327 #define isLOWER_utf8(p, e)         isLOWER_utf8_safe(p, e)
2328 #define isPRINT_utf8(p, e)         isPRINT_utf8_safe(p, e)
2329 #define isPSXSPC_utf8(p, e)        isPSXSPC_utf8_safe(p, e)
2330 #define isPUNCT_utf8(p, e)         isPUNCT_utf8_safe(p, e)
2331 #define isSPACE_utf8(p, e)         isSPACE_utf8_safe(p, e)
2332 #define isUPPER_utf8(p, e)         isUPPER_utf8_safe(p, e)
2333 #define isVERTWS_utf8(p, e)        isVERTWS_utf8_safe(p, e)
2334 #define isWORDCHAR_utf8(p, e)      isWORDCHAR_utf8_safe(p, e)
2335 #define isXDIGIT_utf8(p, e)        isXDIGIT_utf8_safe(p, e)
2336
2337 #define isALPHA_utf8_safe(p, e)  generic_invlist_utf8_safe_(CC_ALPHA_, p, e)
2338 #define isALPHANUMERIC_utf8_safe(p, e)                                      \
2339                         generic_invlist_utf8_safe_(CC_ALPHANUMERIC_, p, e)
2340 #define isASCII_utf8_safe(p, e)                                             \
2341     /* Because ASCII is invariant under utf8, the non-utf8 macro            \
2342     * works */                                                              \
2343     (__ASSERT_(_utf8_safe_assert(p, e)) isASCII(*(p)))
2344 #define isBLANK_utf8_safe(p, e)                                             \
2345         generic_non_invlist_utf8_safe_(CC_BLANK_, is_HORIZWS_high, p, e)
2346
2347 #ifdef EBCDIC
2348     /* Because all controls are UTF-8 invariants in EBCDIC, we can use this
2349      * more efficient macro instead of the more general one */
2350 #   define isCNTRL_utf8_safe(p, e)                                          \
2351                     (__ASSERT_(_utf8_safe_assert(p, e)) isCNTRL_L1(*(p)))
2352 #else
2353 #   define isCNTRL_utf8_safe(p, e)  generic_utf8_safe_(CC_CNTRL_, p, e, 0)
2354 #endif
2355
2356 #define isDIGIT_utf8_safe(p, e)                                             \
2357             generic_utf8_safe_no_upper_latin1_(CC_DIGIT_, p, e,             \
2358                                             _is_utf8_FOO(CC_DIGIT_, p, e))
2359 #define isGRAPH_utf8_safe(p, e)    generic_invlist_utf8_safe_(CC_GRAPH_, p, e)
2360 #define isIDCONT_utf8_safe(p, e)   generic_func_utf8_safe_(CC_WORDCHAR_,    \
2361                                                  _is_utf8_perl_idcont, p, e)
2362
2363 /* To prevent S_scan_word in toke.c from hanging, we have to make sure that
2364  * IDFIRST is an alnum.  See
2365  * https://github.com/Perl/perl5/issues/10275 for more detail than you
2366  * ever wanted to know about.  (In the ASCII range, there isn't a difference.)
2367  * This used to be not the XID version, but we decided to go with the more
2368  * modern Unicode definition */
2369 #define isIDFIRST_utf8_safe(p, e)                                           \
2370     generic_func_utf8_safe_(CC_IDFIRST_,                                    \
2371                             _is_utf8_perl_idstart, (U8 *) (p), (U8 *) (e))
2372
2373 #define isLOWER_utf8_safe(p, e)     generic_invlist_utf8_safe_(CC_LOWER_, p, e)
2374 #define isPRINT_utf8_safe(p, e)     generic_invlist_utf8_safe_(CC_PRINT_, p, e)
2375 #define isPSXSPC_utf8_safe(p, e)     isSPACE_utf8_safe(p, e)
2376 #define isPUNCT_utf8_safe(p, e)     generic_invlist_utf8_safe_(CC_PUNCT_, p, e)
2377 #define isSPACE_utf8_safe(p, e)                                             \
2378     generic_non_invlist_utf8_safe_(CC_SPACE_, is_XPERLSPACE_high, p, e)
2379 #define isUPPER_utf8_safe(p, e)  generic_invlist_utf8_safe_(CC_UPPER_, p, e)
2380 #define isVERTWS_utf8_safe(p, e)                                            \
2381         generic_non_invlist_utf8_safe_(CC_VERTSPACE_, is_VERTWS_high, p, e)
2382 #define isWORDCHAR_utf8_safe(p, e)                                          \
2383                              generic_invlist_utf8_safe_(CC_WORDCHAR_, p, e)
2384 #define isXDIGIT_utf8_safe(p, e)                                            \
2385                    generic_utf8_safe_no_upper_latin1_(CC_XDIGIT_, p, e,     \
2386                              (UNLIKELY((e) - (p) < UTF8SKIP(p))             \
2387                               ? (_force_out_malformed_utf8_message(         \
2388                                       (U8 *) (p), (U8 *) (e), 0, 1), 0)     \
2389                               : is_XDIGIT_high(p)))
2390
2391 #define toFOLD_utf8(p,e,s,l)    toFOLD_utf8_safe(p,e,s,l)
2392 #define toLOWER_utf8(p,e,s,l)   toLOWER_utf8_safe(p,e,s,l)
2393 #define toTITLE_utf8(p,e,s,l)   toTITLE_utf8_safe(p,e,s,l)
2394 #define toUPPER_utf8(p,e,s,l)   toUPPER_utf8_safe(p,e,s,l)
2395
2396 /* For internal core use only, subject to change */
2397 #define _toFOLD_utf8_flags(p,e,s,l,f)  _to_utf8_fold_flags (p,e,s,l,f)
2398 #define _toLOWER_utf8_flags(p,e,s,l,f) _to_utf8_lower_flags(p,e,s,l,f)
2399 #define _toTITLE_utf8_flags(p,e,s,l,f) _to_utf8_title_flags(p,e,s,l,f)
2400 #define _toUPPER_utf8_flags(p,e,s,l,f) _to_utf8_upper_flags(p,e,s,l,f)
2401
2402 #define toFOLD_utf8_safe(p,e,s,l)   _toFOLD_utf8_flags(p,e,s,l, FOLD_FLAGS_FULL)
2403 #define toLOWER_utf8_safe(p,e,s,l)  _toLOWER_utf8_flags(p,e,s,l, 0)
2404 #define toTITLE_utf8_safe(p,e,s,l)  _toTITLE_utf8_flags(p,e,s,l, 0)
2405 #define toUPPER_utf8_safe(p,e,s,l)  _toUPPER_utf8_flags(p,e,s,l, 0)
2406
2407 #define isALPHA_LC_utf8(p, e)         isALPHA_LC_utf8_safe(p, e)
2408 #define isALPHANUMERIC_LC_utf8(p, e)  isALPHANUMERIC_LC_utf8_safe(p, e)
2409 #define isASCII_LC_utf8(p, e)         isASCII_LC_utf8_safe(p, e)
2410 #define isBLANK_LC_utf8(p, e)         isBLANK_LC_utf8_safe(p, e)
2411 #define isCNTRL_LC_utf8(p, e)         isCNTRL_LC_utf8_safe(p, e)
2412 #define isDIGIT_LC_utf8(p, e)         isDIGIT_LC_utf8_safe(p, e)
2413 #define isGRAPH_LC_utf8(p, e)         isGRAPH_LC_utf8_safe(p, e)
2414 #define isIDCONT_LC_utf8(p, e)        isIDCONT_LC_utf8_safe(p, e)
2415 #define isIDFIRST_LC_utf8(p, e)       isIDFIRST_LC_utf8_safe(p, e)
2416 #define isLOWER_LC_utf8(p, e)         isLOWER_LC_utf8_safe(p, e)
2417 #define isPRINT_LC_utf8(p, e)         isPRINT_LC_utf8_safe(p, e)
2418 #define isPSXSPC_LC_utf8(p, e)        isPSXSPC_LC_utf8_safe(p, e)
2419 #define isPUNCT_LC_utf8(p, e)         isPUNCT_LC_utf8_safe(p, e)
2420 #define isSPACE_LC_utf8(p, e)         isSPACE_LC_utf8_safe(p, e)
2421 #define isUPPER_LC_utf8(p, e)         isUPPER_LC_utf8_safe(p, e)
2422 #define isWORDCHAR_LC_utf8(p, e)      isWORDCHAR_LC_utf8_safe(p, e)
2423 #define isXDIGIT_LC_utf8(p, e)        isXDIGIT_LC_utf8_safe(p, e)
2424
2425 /* For internal core Perl use only: the base macros for defining macros like
2426  * isALPHA_LC_utf8_safe.  These are like generic_utf8_, but if the first code
2427  * point in 'p' is within the 0-255 range, it uses locale rules from the
2428  * passed-in 'macro' parameter */
2429 #define generic_LC_utf8_safe_(macro, p, e, above_latin1)                    \
2430          (__ASSERT_(_utf8_safe_assert(p, e))                                \
2431          (UTF8_IS_INVARIANT(*(p)))                                          \
2432           ? macro(*(p))                                                     \
2433           : (UTF8_IS_DOWNGRADEABLE_START(*(p))                              \
2434              ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1))))   \
2435                 ? macro(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1)))           \
2436                 : (_force_out_malformed_utf8_message(                       \
2437                                         (U8 *) (p), (U8 *) (e), 0, 1), 0))  \
2438               : above_latin1))
2439
2440 #define generic_LC_invlist_utf8_safe_(macro, classnum, p, e)                  \
2441             generic_LC_utf8_safe_(macro, p, e,                              \
2442                                             _is_utf8_FOO(classnum, p, e))
2443
2444 #define generic_LC_func_utf8_safe_(macro, above_latin1, p, e)               \
2445             generic_LC_utf8_safe_(macro, p, e, above_latin1(p, e))
2446
2447 #define generic_LC_non_invlist_utf8_safe_(classnum, above_latin1, p, e)       \
2448           generic_LC_utf8_safe_(classnum, p, e,                             \
2449                              (UNLIKELY((e) - (p) < UTF8SKIP(p))             \
2450                               ? (_force_out_malformed_utf8_message(         \
2451                                       (U8 *) (p), (U8 *) (e), 0, 1), 0)     \
2452                               : above_latin1(p)))
2453
2454 #define isALPHANUMERIC_LC_utf8_safe(p, e)                                   \
2455             generic_LC_invlist_utf8_safe_(isALPHANUMERIC_LC,                \
2456                                         CC_ALPHANUMERIC_, p, e)
2457 #define isALPHA_LC_utf8_safe(p, e)                                          \
2458             generic_LC_invlist_utf8_safe_(isALPHA_LC, CC_ALPHA_, p, e)
2459 #define isASCII_LC_utf8_safe(p, e)                                          \
2460                     (__ASSERT_(_utf8_safe_assert(p, e)) isASCII_LC(*(p)))
2461 #define isBLANK_LC_utf8_safe(p, e)                                          \
2462         generic_LC_non_invlist_utf8_safe_(isBLANK_LC, is_HORIZWS_high, p, e)
2463 #define isCNTRL_LC_utf8_safe(p, e)                                          \
2464             generic_LC_utf8_safe_(isCNTRL_LC, p, e, 0)
2465 #define isDIGIT_LC_utf8_safe(p, e)                                          \
2466             generic_LC_invlist_utf8_safe_(isDIGIT_LC, CC_DIGIT_, p, e)
2467 #define isGRAPH_LC_utf8_safe(p, e)                                          \
2468             generic_LC_invlist_utf8_safe_(isGRAPH_LC, CC_GRAPH_, p, e)
2469 #define isIDCONT_LC_utf8_safe(p, e)                                         \
2470             generic_LC_func_utf8_safe_(isIDCONT_LC,                         \
2471                                                 _is_utf8_perl_idcont, p, e)
2472 #define isIDFIRST_LC_utf8_safe(p, e)                                        \
2473             generic_LC_func_utf8_safe_(isIDFIRST_LC,                        \
2474                                                _is_utf8_perl_idstart, p, e)
2475 #define isLOWER_LC_utf8_safe(p, e)                                          \
2476             generic_LC_invlist_utf8_safe_(isLOWER_LC, CC_LOWER_, p, e)
2477 #define isPRINT_LC_utf8_safe(p, e)                                          \
2478             generic_LC_invlist_utf8_safe_(isPRINT_LC, CC_PRINT_, p, e)
2479 #define isPSXSPC_LC_utf8_safe(p, e)    isSPACE_LC_utf8_safe(p, e)
2480 #define isPUNCT_LC_utf8_safe(p, e)                                          \
2481             generic_LC_invlist_utf8_safe_(isPUNCT_LC, CC_PUNCT_, p, e)
2482 #define isSPACE_LC_utf8_safe(p, e)                                          \
2483     generic_LC_non_invlist_utf8_safe_(isSPACE_LC, is_XPERLSPACE_high, p, e)
2484 #define isUPPER_LC_utf8_safe(p, e)                                          \
2485             generic_LC_invlist_utf8_safe_(isUPPER_LC, CC_UPPER_, p, e)
2486 #define isWORDCHAR_LC_utf8_safe(p, e)                                       \
2487             generic_LC_invlist_utf8_safe_(isWORDCHAR_LC, CC_WORDCHAR_, p, e)
2488 #define isXDIGIT_LC_utf8_safe(p, e)                                         \
2489         generic_LC_non_invlist_utf8_safe_(isXDIGIT_LC, is_XDIGIT_high, p, e)
2490
2491 /* Macros for backwards compatibility and for completeness when the ASCII and
2492  * Latin1 values are identical */
2493 #define isALPHAU(c)         isALPHA_L1(c)
2494 #define isDIGIT_L1(c)       isDIGIT_A(c)
2495 #define isOCTAL(c)          isOCTAL_A(c)
2496 #define isOCTAL_L1(c)       isOCTAL_A(c)
2497 #define isXDIGIT_L1(c)      isXDIGIT_A(c)
2498 #define isALNUM(c)          isWORDCHAR(c)
2499 #define isALNUM_A(c)        isALNUM(c)
2500 #define isALNUMU(c)         isWORDCHAR_L1(c)
2501 #define isALNUM_LC(c)       isWORDCHAR_LC(c)
2502 #define isALNUM_uni(c)      isWORDCHAR_uni(c)
2503 #define isALNUM_LC_uvchr(c) isWORDCHAR_LC_uvchr(c)
2504 #define isALNUM_utf8(p,e)   isWORDCHAR_utf8(p,e)
2505 #define isALNUM_utf8_safe(p,e) isWORDCHAR_utf8_safe(p,e)
2506 #define isALNUM_LC_utf8(p,e)isWORDCHAR_LC_utf8(p,e)
2507 #define isALNUM_LC_utf8_safe(p,e)isWORDCHAR_LC_utf8_safe(p,e)
2508 #define isALNUMC_A(c)       isALPHANUMERIC_A(c)      /* Mnemonic: "C's alnum" */
2509 #define isALNUMC_L1(c)      isALPHANUMERIC_L1(c)
2510 #define isALNUMC(c)         isALPHANUMERIC(c)
2511 #define isALNUMC_LC(c)      isALPHANUMERIC_LC(c)
2512 #define isALNUMC_uni(c)     isALPHANUMERIC_uni(c)
2513 #define isALNUMC_LC_uvchr(c) isALPHANUMERIC_LC_uvchr(c)
2514 #define isALNUMC_utf8(p,e)  isALPHANUMERIC_utf8(p,e)
2515 #define isALNUMC_utf8_safe(p,e)  isALPHANUMERIC_utf8_safe(p,e)
2516 #define isALNUMC_LC_utf8_safe(p,e) isALPHANUMERIC_LC_utf8_safe(p,e)
2517
2518 /* On EBCDIC platforms, CTRL-@ is 0, CTRL-A is 1, etc, just like on ASCII,
2519  * except that they don't necessarily mean the same characters, e.g. CTRL-D is
2520  * 4 on both systems, but that is EOT on ASCII;  ST on EBCDIC.
2521  * '?' is special-cased on EBCDIC to APC, which is the control there that is
2522  * the outlier from the block that contains the other controls, just like
2523  * toCTRL('?') on ASCII yields DEL, the control that is the outlier from the C0
2524  * block.  If it weren't special cased, it would yield a non-control.
2525  * The conversion works both ways, so toCTRL('D') is 4, and toCTRL(4) is D,
2526  * etc. */
2527 #ifndef EBCDIC
2528 #  define toCTRL(c)    (__ASSERT_(FITS_IN_8_BITS(c)) toUPPER(((U8)(c))) ^ 64)
2529 #else
2530 #  define toCTRL(c)   (__ASSERT_(FITS_IN_8_BITS(c))                     \
2531                       ((isPRINT_A(c))                                   \
2532                        ? (UNLIKELY((c) == '?')                          \
2533                          ? QUESTION_MARK_CTRL                           \
2534                          : (NATIVE_TO_LATIN1(toUPPER((U8) (c))) ^ 64))  \
2535                        : (UNLIKELY((c) == QUESTION_MARK_CTRL)           \
2536                          ? '?'                                          \
2537                          : (LATIN1_TO_NATIVE(((U8) (c)) ^ 64)))))
2538 #endif
2539
2540 /*
2541 =for apidoc Ay||line_t
2542 The typedef to use to declare variables that are to hold line numbers.
2543
2544 =cut
2545
2546   Line numbers are unsigned, 32 bits.
2547 */
2548 typedef U32 line_t;
2549 #define LINE_Tf  U32uf
2550 #define NOLINE ((line_t) 4294967295UL)  /* = FFFFFFFF */
2551
2552 /* Helpful alias for version prescan */
2553 #define is_LAX_VERSION(a,b) \
2554         (a != Perl_prescan_version(aTHX_ a, FALSE, b, NULL, NULL, NULL, NULL))
2555
2556 #define is_STRICT_VERSION(a,b) \
2557         (a != Perl_prescan_version(aTHX_ a, TRUE, b, NULL, NULL, NULL, NULL))
2558
2559 #define BADVERSION(a,b,c) \
2560         if (b) { \
2561             *b = c; \
2562         } \
2563         return a;
2564
2565 /* Converts a character KNOWN to represent a hexadecimal digit (0-9, A-F, or
2566  * a-f) to its numeric value without using any branches.  The input is
2567  * validated only by an assert() in DEBUGGING builds.
2568  *
2569  * It works by right shifting and isolating the bit that is 0 for the digits,
2570  * and 1 for at least the alphas A-F, a-f.  The bit is shifted to the ones
2571  * position, and then to the eights position.  Both are added together to form
2572  * 0 if the input is '0'-'9' and to form 9 if alpha.  This is added to the
2573  * final four bits of the input to form the correct value. */
2574 #define XDIGIT_VALUE(c) (__ASSERT_(isXDIGIT(c))                             \
2575            ((NATIVE_TO_LATIN1(c) >> 6) & 1)  /* 1 if alpha; 0 if not */     \
2576          + ((NATIVE_TO_LATIN1(c) >> 3) & 8)  /* 8 if alpha; 0 if not */     \
2577          + ((c) & 0xF))   /* 0-9 if input valid hex digit */
2578
2579 /* The argument is a string pointer, which is advanced. */
2580 #define READ_XDIGIT(s)  ((s)++, XDIGIT_VALUE(*((s) - 1)))
2581
2582 /* Converts a character known to represent an octal digit (0-7) to its numeric
2583  * value.  The input is validated only by an assert() in DEBUGGING builds.  In
2584  * both ASCII and EBCDIC the last 3 bits of the octal digits range from 0-7. */
2585 #define OCTAL_VALUE(c) (__ASSERT_(isOCTAL(c)) (7 & (c)))
2586
2587 /* Efficiently returns a boolean as to if two native characters are equivalent
2588  * case-insensitively.  At least one of the characters must be one of [A-Za-z];
2589  * the ALPHA in the name is to remind you of that.  This is asserted() in
2590  * DEBUGGING builds.  Because [A-Za-z] are invariant under UTF-8, this macro
2591  * works (on valid input) for both non- and UTF-8-encoded bytes.
2592  *
2593  * When one of the inputs is a compile-time constant and gets folded by the
2594  * compiler, this reduces to an AND and a TEST.  On both EBCDIC and ASCII
2595  * machines, 'A' and 'a' differ by a single bit; the same with the upper and
2596  * lower case of all other ASCII-range alphabetics.  On ASCII platforms, they
2597  * are 32 apart; on EBCDIC, they are 64.  At compile time, this uses an
2598  * exclusive 'or' to find that bit and then inverts it to form a mask, with
2599  * just a single 0, in the bit position where the upper- and lowercase differ.
2600  * */
2601 #define isALPHA_FOLD_EQ(c1, c2)                                         \
2602                       (__ASSERT_(isALPHA_A(c1) || isALPHA_A(c2))        \
2603                       ((c1) & ~('A' ^ 'a')) ==  ((c2) & ~('A' ^ 'a')))
2604 #define isALPHA_FOLD_NE(c1, c2) (! isALPHA_FOLD_EQ((c1), (c2)))
2605
2606 /*
2607 =for apidoc_section $memory
2608
2609 =for apidoc Am|void|Newx|void* ptr|int nitems|type
2610 =for apidoc_item |void*|safemalloc|size_t size
2611
2612 The XSUB-writer's interface to the C C<malloc> function.
2613
2614 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2615
2616 In 5.9.3, Newx() and friends replace the older New() API, and drops
2617 the first parameter, I<x>, a debug aid which allowed callers to identify
2618 themselves.  This aid has been superseded by a new build option,
2619 PERL_MEM_LOG (see L<perlhacktips/PERL_MEM_LOG>).  The older API is still
2620 there for use in XS modules supporting older perls.
2621
2622 =for apidoc Am|void|Newxc|void* ptr|int nitems|type|cast
2623 The XSUB-writer's interface to the C C<malloc> function, with
2624 cast.  See also C<L</Newx>>.
2625
2626 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2627
2628 =for apidoc Am|void|Newxz|void* ptr|int nitems|type
2629 =for apidoc_item |void*|safecalloc|size_t nitems|size_t item_size
2630
2631 The XSUB-writer's interface to the C C<malloc> function.  The allocated
2632 memory is zeroed with C<memzero>.  See also C<L</Newx>>.
2633
2634 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2635
2636 =for apidoc Am|void|Renew|void* ptr|int nitems|type
2637 =for apidoc_item |void*|saferealloc|void *ptr|size_t size
2638
2639 The XSUB-writer's interface to the C C<realloc> function.
2640
2641 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2642
2643 =for apidoc Am|void|Renewc|void* ptr|int nitems|type|cast
2644 The XSUB-writer's interface to the C C<realloc> function, with
2645 cast.
2646
2647 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2648
2649 =for apidoc Am|void|Safefree|void* ptr
2650 The XSUB-writer's interface to the C C<free> function.
2651
2652 This should B<ONLY> be used on memory obtained using L</"Newx"> and friends.
2653
2654 =for apidoc_section $string
2655 =for apidoc    Am|void  |Move |void* src|void* dest|int nitems|type
2656 =for apidoc_item |void *|MoveD|void* src|void* dest|int nitems|type
2657 The XSUB-writer's interface to the C C<memmove> function.  The C<src> is the
2658 source, C<dest> is the destination, C<nitems> is the number of items, and
2659 C<type> is the type.  Can do overlapping moves.  See also C<L</Copy>>.
2660
2661 C<MoveD> is like C<Move> but returns C<dest>.  Useful
2662 for encouraging compilers to tail-call
2663 optimise.
2664
2665 =for apidoc    Am|void  |Copy |void* src|void* dest|int nitems|type
2666 =for apidoc_item |void *|CopyD|void* src|void* dest|int nitems|type
2667 The XSUB-writer's interface to the C C<memcpy> function.  The C<src> is the
2668 source, C<dest> is the destination, C<nitems> is the number of items, and
2669 C<type> is the type.  May fail on overlapping copies.  See also C<L</Move>>.
2670
2671 C<CopyD> is like C<Copy> but returns C<dest>.  Useful
2672 for encouraging compilers to tail-call
2673 optimise.
2674
2675 =for apidoc    Am|void  |NewCopy |void* src|void* dest|int nitems|type
2676 Combines Newx() and Copy() into a single macro. Dest will be allocated
2677 using Newx() and then src will be copied into it.
2678
2679 =for apidoc    Am|void  |Zero |void* dest|int nitems|type
2680 =for apidoc_item |void *|ZeroD|void* dest|int nitems|type
2681
2682 The XSUB-writer's interface to the C C<memzero> function.  The C<dest> is the
2683 destination, C<nitems> is the number of items, and C<type> is the type.
2684
2685 C<ZeroD> is like C<Zero> but returns C<dest>.  Useful
2686 for encouraging compilers to tail-call
2687 optimise.
2688
2689 =for apidoc_section $utility
2690 =for apidoc Amu|void|StructCopy|type *src|type *dest|type
2691 This is an architecture-independent macro that does a shallow copy of one
2692 structure to another.
2693
2694 =for apidoc Am|void|PoisonWith|void* dest|int nitems|type|U8 byte
2695
2696 Fill up memory with a byte pattern (a byte repeated over and over
2697 again) that hopefully catches attempts to access uninitialized memory.
2698
2699 =for apidoc Am|void|PoisonNew|void* dest|int nitems|type
2700
2701 PoisonWith(0xAB) for catching access to allocated but uninitialized memory.
2702
2703 =for apidoc Am|void|PoisonFree|void* dest|int nitems|type
2704
2705 PoisonWith(0xEF) for catching access to freed memory.
2706
2707 =for apidoc Am|void|Poison|void* dest|int nitems|type
2708
2709 PoisonWith(0xEF) for catching access to freed memory.
2710
2711 =cut */
2712
2713 /* Maintained for backwards-compatibility only. Use newSV() instead. */
2714 #ifndef PERL_CORE
2715 #define NEWSV(x,len)    newSV(len)
2716 #endif
2717
2718 #define MEM_SIZE_MAX ((MEM_SIZE)-1)
2719
2720 #define _PERL_STRLEN_ROUNDUP_UNCHECKED(n) (((n) - 1 + PERL_STRLEN_ROUNDUP_QUANTUM) & ~((MEM_SIZE)PERL_STRLEN_ROUNDUP_QUANTUM - 1))
2721
2722 #ifdef PERL_MALLOC_WRAP
2723
2724 /* This expression will be constant-folded at compile time.  It checks
2725  * whether or not the type of the count n is so small (e.g. U8 or U16, or
2726  * U32 on 64-bit systems) that there's no way a wrap-around could occur.
2727  * As well as avoiding the need for a run-time check in some cases, it's
2728  * designed to avoid compiler warnings like:
2729  *     comparison is always false due to limited range of data type
2730  * It's mathematically equivalent to
2731  *    max(n) * sizeof(t) > MEM_SIZE_MAX
2732  */
2733
2734
2735 #  define _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) \
2736     (  sizeof(MEM_SIZE) < sizeof(n) \
2737     || sizeof(t) > ((MEM_SIZE)1 << 8*(sizeof(MEM_SIZE) - sizeof(n))))
2738
2739 /* This is written in a slightly odd way to avoid various spurious
2740  * compiler warnings. We *want* to write the expression as
2741  *    _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) && (n > C)
2742  * (for some compile-time constant C), but even when the LHS
2743  * constant-folds to false at compile-time, g++ insists on emitting
2744  * warnings about the RHS (e.g. "comparison is always false"), so instead
2745  * we write it as
2746  *
2747  *    (cond ? n : X) > C
2748  *
2749  * where X is a constant with X > C always false. Choosing a value for X
2750  * is tricky. If 0, some compilers will complain about 0 > C always being
2751  * false; if 1, Coverity complains when n happens to be the constant value
2752  * '1', that cond ? 1 : 1 has the same value on both branches; so use C
2753  * for X and hope that nothing else whines.
2754  */
2755
2756 #  define _MEM_WRAP_WILL_WRAP(n,t) \
2757       ((_MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) ? (MEM_SIZE)(n) : \
2758             MEM_SIZE_MAX/sizeof(t)) > MEM_SIZE_MAX/sizeof(t))
2759
2760 #  define MEM_WRAP_CHECK(n,t) \
2761         (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
2762         && (croak_memory_wrap(),0))
2763
2764 #  define MEM_WRAP_CHECK_1(n,t,a) \
2765         (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
2766         && (Perl_croak_nocontext("%s",(a)),0))
2767
2768 /* "a" arg must be a string literal */
2769 #  define MEM_WRAP_CHECK_s(n,t,a) \
2770         (   (void) (UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t))          \
2771          && (Perl_croak_nocontext(ASSERT_IS_LITERAL(a)), 0)))
2772
2773 #  define MEM_WRAP_CHECK_(n,t) MEM_WRAP_CHECK(n,t),
2774
2775 #  define PERL_STRLEN_ROUNDUP(n) ((void)(((n) > MEM_SIZE_MAX - 2 * PERL_STRLEN_ROUNDUP_QUANTUM) ? (croak_memory_wrap(),0) : 0), _PERL_STRLEN_ROUNDUP_UNCHECKED(n))
2776 #else
2777
2778 #  define MEM_WRAP_CHECK(n,t)
2779 #  define MEM_WRAP_CHECK_1(n,t,a)
2780 #  define MEM_WRAP_CHECK_s(n,t,a)
2781 #  define MEM_WRAP_CHECK_(n,t)
2782
2783 #  define PERL_STRLEN_ROUNDUP(n) _PERL_STRLEN_ROUNDUP_UNCHECKED(n)
2784
2785 #endif
2786
2787 #ifdef PERL_MEM_LOG
2788 /*
2789  * If PERL_MEM_LOG is defined, all Newx()s, Renew()s, and Safefree()s
2790  * go through functions, which are handy for debugging breakpoints, but
2791  * which more importantly get the immediate calling environment (file and
2792  * line number, and C function name if available) passed in.  This info can
2793  * then be used for logging the calls, for which one gets a sample
2794  * implementation unless -DPERL_MEM_LOG_NOIMPL is also defined.
2795  *
2796  * Known problems:
2797  * - not all memory allocs get logged, only those
2798  *   that go through Newx() and derivatives (while all
2799  *   Safefrees do get logged)
2800  * - __FILE__ and __LINE__ do not work everywhere
2801  * - __func__ or __FUNCTION__ even less so
2802  * - I think more goes on after the perlio frees but
2803  *   the thing is that STDERR gets closed (as do all
2804  *   the file descriptors)
2805  * - no deeper calling stack than the caller of the Newx()
2806  *   or the kind, but do I look like a C reflection/introspection
2807  *   utility to you?
2808  * - the function prototypes for the logging functions
2809  *   probably should maybe be somewhere else than handy.h
2810  * - one could consider inlining (macrofying) the logging
2811  *   for speed, but I am too lazy
2812  * - one could imagine recording the allocations in a hash,
2813  *   (keyed by the allocation address?), and maintain that
2814  *   through reallocs and frees, but how to do that without
2815  *   any News() happening...?
2816  * - lots of -Ddefines to get useful/controllable output
2817  * - lots of ENV reads
2818  */
2819
2820 # ifdef PERL_CORE
2821 #  ifndef PERL_MEM_LOG_NOIMPL
2822 enum mem_log_type {
2823   MLT_ALLOC,
2824   MLT_REALLOC,
2825   MLT_FREE,
2826   MLT_NEW_SV,
2827   MLT_DEL_SV
2828 };
2829 #  endif
2830 # endif
2831
2832 #endif
2833
2834 #ifdef PERL_MEM_LOG
2835 #define MEM_LOG_ALLOC(n,t,a)     Perl_mem_log_alloc(n,sizeof(t),STRINGIFY(t),a,__FILE__,__LINE__,FUNCTION__)
2836 #define MEM_LOG_REALLOC(n,t,v,a) Perl_mem_log_realloc(n,sizeof(t),STRINGIFY(t),v,a,__FILE__,__LINE__,FUNCTION__)
2837 #define MEM_LOG_FREE(a)          Perl_mem_log_free(a,__FILE__,__LINE__,FUNCTION__)
2838 #endif
2839
2840 #ifndef MEM_LOG_ALLOC
2841 #define MEM_LOG_ALLOC(n,t,a)     (a)
2842 #endif
2843 #ifndef MEM_LOG_REALLOC
2844 #define MEM_LOG_REALLOC(n,t,v,a) (a)
2845 #endif
2846 #ifndef MEM_LOG_FREE
2847 #define MEM_LOG_FREE(a)          (a)
2848 #endif
2849
2850 #define Newx(v,n,t)     (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
2851 #define Newxc(v,n,t,c)  (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
2852 #define Newxz(v,n,t)    (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safecalloc((n),sizeof(t)))))
2853
2854 #ifndef PERL_CORE
2855 /* pre 5.9.x compatibility */
2856 #define New(x,v,n,t)    Newx(v,n,t)
2857 #define Newc(x,v,n,t,c) Newxc(v,n,t,c)
2858 #define Newz(x,v,n,t)   Newxz(v,n,t)
2859 #endif
2860
2861 #define Renew(v,n,t) \
2862           (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
2863 #define Renewc(v,n,t,c) \
2864           (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
2865
2866 #ifdef PERL_POISON
2867 #define Safefree(d) \
2868   ((d) ? (void)(safefree(MEM_LOG_FREE((Malloc_t)(d))), Poison(&(d), 1, Malloc_t)) : (void) 0)
2869 #else
2870 #define Safefree(d)     safefree(MEM_LOG_FREE((Malloc_t)(d)))
2871 #endif
2872
2873 /* assert that a valid ptr has been supplied - use this instead of assert(ptr)  *
2874  * as it handles cases like constant string arguments without throwing warnings *
2875  * the cast is required, as is the inequality check, to avoid warnings          */
2876 #define perl_assert_ptr(p) assert( ((void*)(p)) != 0 )
2877
2878
2879 #define Move(s,d,n,t)   (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
2880 #define Copy(s,d,n,t)   (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
2881 #define Zero(d,n,t)     (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), (void)memzero((char*)(d), (n) * sizeof(t)))
2882
2883 /* Like above, but returns a pointer to 'd' */
2884 #define MoveD(s,d,n,t)  (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
2885 #define CopyD(s,d,n,t)  (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
2886 #define ZeroD(d,n,t)    (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), memzero((char*)(d), (n) * sizeof(t)))
2887
2888 #define NewCopy(s,d,n,t) STMT_START {   \
2889     Newx(d,n,t);                        \
2890     Copy(s,d,n,t);                      \
2891 } STMT_END
2892
2893 #define PoisonWith(d,n,t,b)     (MEM_WRAP_CHECK_(n,t) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t)))
2894 #define PoisonNew(d,n,t)        PoisonWith(d,n,t,0xAB)
2895 #define PoisonFree(d,n,t)       PoisonWith(d,n,t,0xEF)
2896 #define Poison(d,n,t)           PoisonFree(d,n,t)
2897
2898 #ifdef PERL_POISON
2899 #  define PERL_POISON_EXPR(x) x
2900 #else
2901 #  define PERL_POISON_EXPR(x)
2902 #endif
2903
2904 /* Shallow copy */
2905 #define StructCopy(s,d,t) (*((t*)(d)) = *((t*)(s)))
2906
2907 /*
2908 =for apidoc_section $utility
2909
2910 =for apidoc Am|STRLEN|C_ARRAY_LENGTH|void *a
2911
2912 Returns the number of elements in the input C array (so you want your
2913 zero-based indices to be less than but not equal to).
2914
2915 =for apidoc Am|void *|C_ARRAY_END|void *a
2916
2917 Returns a pointer to one element past the final element of the input C array.
2918
2919 =cut
2920
2921 C_ARRAY_END is one past the last: half-open/half-closed range, not
2922 last-inclusive range.
2923 */
2924 #define C_ARRAY_LENGTH(a)       (sizeof(a)/sizeof((a)[0]))
2925 #define C_ARRAY_END(a)          ((a) + C_ARRAY_LENGTH(a))
2926
2927 #if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)
2928 /* strlen() of a literal string constant.  Restricting this to core, in part
2929  * because it can generate compiler warnings about comparing unlike signs */
2930 #  define STRLENs(s)  (sizeof("" s "") - 1)
2931 #endif
2932
2933 #ifdef NEED_VA_COPY
2934 # ifdef va_copy
2935 #  define Perl_va_copy(s, d) va_copy(d, s)
2936 # elif defined(__va_copy)
2937 #  define Perl_va_copy(s, d) __va_copy(d, s)
2938 # else
2939 #  define Perl_va_copy(s, d) Copy(s, d, 1, va_list)
2940 # endif
2941 #endif
2942
2943 /* convenience debug macros */
2944 #ifdef USE_ITHREADS
2945 #define pTHX_FORMAT  "Perl interpreter: 0x%p"
2946 #define pTHX__FORMAT ", Perl interpreter: 0x%p"
2947 #define pTHX_VALUE_   (void *)my_perl,
2948 #define pTHX_VALUE    (void *)my_perl
2949 #define pTHX__VALUE_ ,(void *)my_perl,
2950 #define pTHX__VALUE  ,(void *)my_perl
2951 #else
2952 #define pTHX_FORMAT
2953 #define pTHX__FORMAT
2954 #define pTHX_VALUE_
2955 #define pTHX_VALUE
2956 #define pTHX__VALUE_
2957 #define pTHX__VALUE
2958 #endif /* USE_ITHREADS */
2959
2960 /*
2961  Perl_deprecate was not part of the public API, and did not have a deprecate()
2962  shortcut macro defined without -DPERL_CORE. Neither codesearch.google.com nor
2963  CPAN::Unpack show any users outside the core.
2964
2965 =for apidoc_section $warning
2966 =for apidoc Cdm||deprecate|U32 category|"message"
2967 Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
2968 given category with an appropriate message. The C<message> argument must
2969 be a C string. The string " is deprecated" will automatically be added
2970 to the end of the C<message>.
2971
2972 =for apidoc Cdm||deprecate_disappears_in|U32 category|"when"|"message"
2973 Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
2974 given category with an appropriate message that the construct referred
2975 to by the message will disappear in a specific release.  The C<when> and
2976 C<message> arguments must be a C string.  The C<when> string is expected
2977 to be of the form "5.40", with no minor element in the version.  The actual
2978 message output will be the result of the following expression C<message
2979 " is deprecated, and will disappear in Perl " when> which is why C<message>
2980 and C<when> must be literal C strings.
2981
2982 =for apidoc Cdm||deprecate_fatal_in|U32 category|"when"|"message"
2983 Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
2984 given category with an appropriate message that the construct referred
2985 to by the message will become fatal in a specific release.  The C<when>
2986 and C<message> arguments must be a C string.  The C<when> string is expected
2987 to be of the form "5.40", with no minor element in the version.  The actual
2988 message output will be the result of the following expression C<message " is
2989 deprecated, and will become fatal in Perl " when> which is why C<message>
2990 and C<when> must be literal C strings.
2991
2992 =cut
2993 */
2994
2995 #ifdef PERL_CORE
2996 #  define deprecate(category,message)                       \
2997     Perl_ck_warner_d(aTHX_ packWARN(category),              \
2998         message " is deprecated")
2999
3000 #  define deprecate_disappears_in(category,when,message)    \
3001     Perl_ck_warner_d(aTHX_ packWARN(category),              \
3002         message " is deprecated, and will disappear in Perl " when)
3003
3004 #  define deprecate_fatal_in(category,when,message)         \
3005     Perl_ck_warner_d(aTHX_ packWARN(category),              \
3006         message " is deprecated, and will become fatal in Perl " when)
3007 #endif
3008
3009 /* Internal macros to deal with gids and uids */
3010 #ifdef PERL_CORE
3011
3012 #  if Uid_t_size > IVSIZE
3013 #    define sv_setuid(sv, uid)       sv_setnv((sv), (NV)(uid))
3014 #    define SvUID(sv)                SvNV(sv)
3015 #  elif Uid_t_sign <= 0
3016 #    define sv_setuid(sv, uid)       sv_setiv((sv), (IV)(uid))
3017 #    define SvUID(sv)                SvIV(sv)
3018 #  else
3019 #    define sv_setuid(sv, uid)       sv_setuv((sv), (UV)(uid))
3020 #    define SvUID(sv)                SvUV(sv)
3021 #  endif /* Uid_t_size */
3022
3023 #  if Gid_t_size > IVSIZE
3024 #    define sv_setgid(sv, gid)       sv_setnv((sv), (NV)(gid))
3025 #    define SvGID(sv)                SvNV(sv)
3026 #  elif Gid_t_sign <= 0
3027 #    define sv_setgid(sv, gid)       sv_setiv((sv), (IV)(gid))
3028 #    define SvGID(sv)                SvIV(sv)
3029 #  else
3030 #    define sv_setgid(sv, gid)       sv_setuv((sv), (UV)(gid))
3031 #    define SvGID(sv)                SvUV(sv)
3032 #  endif /* Gid_t_size */
3033
3034 #endif
3035
3036 /* These are simple Marsaglia XOR-SHIFT RNG's for 64 and 32 bits. These
3037  * RNG's are of reasonable quality, very fast, and have the interesting
3038  * property that provided 'x' is non-zero they create a cycle of 2^32-1
3039  * or 2^64-1 "random" like numbers, with the exception of 0. Thus they
3040  * are very useful when you want an integer to "dance" in a random way,
3041  * but you also never want it to become 0 and thus false.
3042  *
3043  * Obviously they leave x unchanged if it starts out as 0.
3044  *
3045  * We have two variants just because that can be helpful in certain
3046  * places. There is no advantage to either, they are equally bad as each
3047  * other as far RNG's go. Sufficiently random for many purposes, but
3048  * insufficiently random for serious use as they fail important tests in
3049  * the Test01 BigCrush RNG test suite by L’Ecuyer and Simard. (Note
3050  * that Drand48 also fails BigCrush). The main point is they produce
3051  * different sequences and in places where we want some randomlike
3052  * behavior they are cheap and easy.
3053  *
3054  * Marsaglia was one of the early researchers into RNG testing and wrote
3055  * the Diehard RNG test suite, which after his death become the
3056  * Dieharder RNG suite, and was generally supplanted by the Test01 suite
3057  * by L'Ecruyer and associates.
3058  *
3059  * There are dozens of shift parameters that create a pseudo random ring
3060  * of integers 1..2^N-1, if you need a different sequence just read the
3061  * paper and select a set of parameters. In fact, simply reversing the
3062  * shift order from L/R/L to R/L/R should result in another valid
3063  * example, but read the paper before you do that.
3064  *
3065  * PDF of the original paper:
3066  *  https://www.jstatsoft.org/article/download/v008i14/916
3067  * Wikipedia:
3068  *  https://en.wikipedia.org/wiki/Xorshift
3069  * Criticism:
3070  *  https://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
3071  * Test01:
3072  *  http://simul.iro.umontreal.ca/testu01/tu01.html
3073  * Diehard:
3074  *  https://en.wikipedia.org/wiki/Diehard_tests
3075  * Dieharder:
3076  *  https://webhome.phy.duke.edu/~rgb/General/rand_rate/rand_rate.abs
3077  *
3078  */
3079
3080 /* 32 bit version */
3081 #define PERL_XORSHIFT32_A(x)    \
3082 STMT_START {                    \
3083     (x) ^= ((x) << 13);         \
3084     (x) ^= ((x) >> 17);         \
3085     (x) ^= ((x) << 5);          \
3086 } STMT_END
3087
3088 /* 64 bit version */
3089 #define PERL_XORSHIFT64_A(x)    \
3090 STMT_START {                    \
3091     (x) ^= ((x) << 13);         \
3092     (x) ^= ((x) >> 7);          \
3093     (x) ^= ((x) << 17);         \
3094 } STMT_END
3095
3096 /* 32 bit version */
3097 #define PERL_XORSHIFT32_B(x)    \
3098 STMT_START {                    \
3099     (x) ^= ((x) << 5);          \
3100     (x) ^= ((x) >> 27);         \
3101     (x) ^= ((x) << 8);          \
3102 } STMT_END
3103
3104 /* 64 bit version - currently this is unused,
3105  * it is provided here to complement the 32 bit _B
3106  * variant which IS used. */
3107 #define PERL_XORSHIFT64_B(x)    \
3108 STMT_START {                    \
3109     (x) ^= ((x) << 15);         \
3110     (x) ^= ((x) >> 49);         \
3111     (x) ^= ((x) << 26);         \
3112 } STMT_END
3113
3114
3115 #endif  /* PERL_HANDY_H_ */
3116
3117 /*
3118  * ex: set ts=8 sts=4 sw=4 et:
3119  */