This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Promote v5.36 usage and feature bundles doc
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
1129b882
NC
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
4ac71550
TC
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
84d4ea48
JH
16 */
17
166f8a29
DM
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
84d4ea48
JH
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
c53fc8a6 33#ifndef SMALLSORT
7ea738a9 34#define SMALLSORT (200)
c53fc8a6
JH
35#endif
36
84d4ea48
JH
37/*
38 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
39 *
40 * The original code was written in conjunction with BSD Computer Software
41 * Research Group at University of California, Berkeley.
42 *
393db44d
JL
43 * See also: "Optimistic Sorting and Information Theoretic Complexity"
44 * Peter McIlroy
45 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
46 * pp 467-474, Austin, Texas, 25-27 January 1993.
84d4ea48 47 *
393db44d 48 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
84d4ea48
JH
49 *
50 * The code can be distributed under the same terms as Perl itself.
51 *
52 */
53
84d4ea48 54
7ea738a9
TK
55typedef char * aptr; /* pointer for arithmetic on sizes */
56typedef SV * gptr; /* pointers in our lists */
84d4ea48
JH
57
58/* Binary merge internal sort, with a few special mods
59** for the special perl environment it now finds itself in.
60**
61** Things that were once options have been hotwired
62** to values suitable for this use. In particular, we'll always
63** initialize looking for natural runs, we'll always produce stable
64** output, and we'll always do Peter McIlroy's binary merge.
65*/
66
67/* Pointer types for arithmetic and storage and convenience casts */
68
7ea738a9
TK
69#define APTR(P) ((aptr)(P))
70#define GPTP(P) ((gptr *)(P))
84d4ea48
JH
71#define GPPP(P) ((gptr **)(P))
72
73
74/* byte offset from pointer P to (larger) pointer Q */
7ea738a9 75#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
84d4ea48
JH
76
77#define PSIZE sizeof(gptr)
78
79/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
80
7ea738a9
TK
81#ifdef PSHIFT
82#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
83#define PNBYTE(N) ((N) << (PSHIFT))
84#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
84d4ea48
JH
85#else
86/* Leave optimization to compiler */
7ea738a9
TK
87#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
88#define PNBYTE(N) ((N) * (PSIZE))
89#define PINDEX(P, N) (GPTP(P) + (N))
84d4ea48
JH
90#endif
91
92/* Pointer into other corresponding to pointer into this */
7ea738a9 93#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
84d4ea48
JH
94
95#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
96
97
486ec47a 98/* Runs are identified by a pointer in the auxiliary list.
84d4ea48
JH
99** The pointer is at the start of the list,
100** and it points to the start of the next list.
101** NEXT is used as an lvalue, too.
102*/
103
7ea738a9 104#define NEXT(P) (*GPPP(P))
84d4ea48
JH
105
106
107/* PTHRESH is the minimum number of pairs with the same sense to justify
108** checking for a run and extending it. Note that PTHRESH counts PAIRS,
109** not just elements, so PTHRESH == 8 means a run of 16.
110*/
111
7ea738a9 112#define PTHRESH (8)
84d4ea48
JH
113
114/* RTHRESH is the number of elements in a run that must compare low
115** to the low element from the opposing run before we justify
116** doing a binary rampup instead of single stepping.
117** In random input, N in a row low should only happen with
118** probability 2^(1-N), so we can risk that we are dealing
119** with orderly input without paying much when we aren't.
120*/
121
122#define RTHRESH (6)
123
124
125/*
126** Overview of algorithm and variables.
127** The array of elements at list1 will be organized into runs of length 2,
128** or runs of length >= 2 * PTHRESH. We only try to form long runs when
129** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
130**
131** Unless otherwise specified, pair pointers address the first of two elements.
132**
a0288114
AL
133** b and b+1 are a pair that compare with sense "sense".
134** b is the "bottom" of adjacent pairs that might form a longer run.
84d4ea48
JH
135**
136** p2 parallels b in the list2 array, where runs are defined by
137** a pointer chain.
138**
a0288114 139** t represents the "top" of the adjacent pairs that might extend
84d4ea48
JH
140** the run beginning at b. Usually, t addresses a pair
141** that compares with opposite sense from (b,b+1).
142** However, it may also address a singleton element at the end of list1,
a0288114 143** or it may be equal to "last", the first element beyond list1.
84d4ea48
JH
144**
145** r addresses the Nth pair following b. If this would be beyond t,
146** we back it off to t. Only when r is less than t do we consider the
147** run long enough to consider checking.
148**
149** q addresses a pair such that the pairs at b through q already form a run.
150** Often, q will equal b, indicating we only are sure of the pair itself.
151** However, a search on the previous cycle may have revealed a longer run,
152** so q may be greater than b.
153**
154** p is used to work back from a candidate r, trying to reach q,
155** which would mean b through r would be a run. If we discover such a run,
156** we start q at r and try to push it further towards t.
157** If b through r is NOT a run, we detect the wrong order at (p-1,p).
158** In any event, after the check (if any), we have two main cases.
159**
160** 1) Short run. b <= q < p <= r <= t.
7ea738a9
TK
161** b through q is a run (perhaps trivial)
162** q through p are uninteresting pairs
163** p through r is a run
84d4ea48
JH
164**
165** 2) Long run. b < r <= q < t.
7ea738a9 166** b through q is a run (of length >= 2 * PTHRESH)
84d4ea48
JH
167**
168** Note that degenerate cases are not only possible, but likely.
169** For example, if the pair following b compares with opposite sense,
170** then b == q < p == r == t.
171*/
172
173
044d25c7 174PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
d4c19fe8 175dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
84d4ea48 176{
957d8989 177 I32 sense;
eb578fdb
KW
178 gptr *b, *p, *q, *t, *p2;
179 gptr *last, *r;
957d8989 180 IV runs = 0;
84d4ea48
JH
181
182 b = list1;
183 last = PINDEX(b, nmemb);
184 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
185 for (p2 = list2; b < last; ) {
7ea738a9
TK
186 /* We just started, or just reversed sense.
187 ** Set t at end of pairs with the prevailing sense.
188 */
189 for (p = b+2, t = p; ++p < last; t = ++p) {
190 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
191 }
192 q = b;
193 /* Having laid out the playing field, look for long runs */
194 do {
195 p = r = b + (2 * PTHRESH);
196 if (r >= t) p = r = t; /* too short to care about */
197 else {
198 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
199 ((p -= 2) > q)) {}
200 if (p <= q) {
201 /* b through r is a (long) run.
202 ** Extend it as far as possible.
203 */
204 p = q = r;
205 while (((p += 2) < t) &&
206 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
207 r = p = q + 2; /* no simple pairs, no after-run */
208 }
209 }
210 if (q > b) { /* run of greater than 2 at b */
211 gptr *savep = p;
212
213 p = q += 2;
214 /* pick up singleton, if possible */
215 if ((p == t) &&
216 ((t + 1) == last) &&
217 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
218 savep = r = p = q = last;
219 p2 = NEXT(p2) = p2 + (p - b); ++runs;
220 if (sense)
221 while (b < --p) {
222 const gptr c = *b;
223 *b++ = *p;
224 *p = c;
225 }
226 p = savep;
227 }
228 while (q < p) { /* simple pairs */
229 p2 = NEXT(p2) = p2 + 2; ++runs;
230 if (sense) {
231 const gptr c = *q++;
232 *(q-1) = *q;
233 *q++ = c;
234 } else q += 2;
235 }
236 if (((b = p) == t) && ((t+1) == last)) {
237 NEXT(p2) = p2 + 1; ++runs;
238 b++;
239 }
240 q = r;
241 } while (b < t);
242 sense = !sense;
84d4ea48 243 }
957d8989 244 return runs;
84d4ea48
JH
245}
246
247
3fe0b9a9 248/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 249 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 250 * on others. The most likely explanation was platform-specific
957d8989
JL
251 * differences in cache sizes and relative speeds.
252 *
253 * The quicksort divide-and-conquer algorithm guarantees that, as the
254 * problem is subdivided into smaller and smaller parts, the parts
255 * fit into smaller (and faster) caches. So it doesn't matter how
256 * many levels of cache exist, quicksort will "find" them, and,
e62b3022 257 * as long as smaller is faster, take advantage of them.
957d8989 258 *
3fe0b9a9 259 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
260 * Suppose we have five runs (each typically of length 2 after dynprep).
261 *
262 * pass base aux
263 * 0 1 2 3 4 5
264 * 1 12 34 5
265 * 2 1234 5
266 * 3 12345
267 * 4 12345
268 *
269 * Adjacent pairs are merged in "grand sweeps" through the input.
270 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
271 * runs 3 and 4 are merged and the runs from run 5 have been copied.
272 * The only cache that matters is one large enough to hold *all* the input.
273 * On some platforms, this may be many times slower than smaller caches.
274 *
275 * The following pseudo-code uses the same basic merge algorithm,
276 * but in a divide-and-conquer way.
277 *
278 * # merge $runs runs at offset $offset of list $list1 into $list2.
279 * # all unmerged runs ($runs == 1) originate in list $base.
280 * sub mgsort2 {
281 * my ($offset, $runs, $base, $list1, $list2) = @_;
282 *
283 * if ($runs == 1) {
284 * if ($list1 is $base) copy run to $list2
285 * return offset of end of list (or copy)
286 * } else {
287 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
288 * mgsort2($off2, $runs/2, $base, $list2, $list1)
289 * merge the adjacent runs at $offset of $list1 into $list2
290 * return the offset of the end of the merged runs
291 * }
292 * }
293 * mgsort2(0, $runs, $base, $aux, $base);
294 *
295 * For our 5 runs, the tree of calls looks like
296 *
297 * 5
298 * 3 2
299 * 2 1 1 1
300 * 1 1
301 *
302 * 1 2 3 4 5
303 *
304 * and the corresponding activity looks like
305 *
306 * copy runs 1 and 2 from base to aux
307 * merge runs 1 and 2 from aux to base
308 * (run 3 is where it belongs, no copy needed)
309 * merge runs 12 and 3 from base to aux
310 * (runs 4 and 5 are where they belong, no copy needed)
311 * merge runs 4 and 5 from base to aux
312 * merge runs 123 and 45 from aux to base
313 *
314 * Note that we merge runs 1 and 2 immediately after copying them,
315 * while they are still likely to be in fast cache. Similarly,
316 * run 3 is merged with run 12 while it still may be lingering in cache.
317 * This implementation should therefore enjoy much of the cache-friendly
318 * behavior that quicksort does. In addition, it does less copying
319 * than the original mergesort implementation (only runs 1 and 2 are copied)
320 * and the "balancing" of merges is better (merged runs comprise more nearly
321 * equal numbers of original runs).
322 *
323 * The actual cache-friendly implementation will use a pseudo-stack
324 * to avoid recursion, and will unroll processing of runs of length 2,
325 * but it is otherwise similar to the recursive implementation.
957d8989
JL
326 */
327
328typedef struct {
7ea738a9
TK
329 IV offset; /* offset of 1st of 2 runs at this level */
330 IV runs; /* how many runs must be combined into 1 */
331} off_runs; /* pseudo-stack element */
957d8989 332
044d25c7
TK
333PERL_STATIC_FORCE_INLINE void
334S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989 335{
551405c4 336 IV i, run, offset;
957d8989 337 I32 sense, level;
eb578fdb 338 gptr *f1, *f2, *t, *b, *p;
957d8989 339 int iwhich;
551405c4 340 gptr *aux;
957d8989
JL
341 gptr *p1;
342 gptr small[SMALLSORT];
343 gptr *which[3];
344 off_runs stack[60], *stackp;
345
aa4119bb 346 PERL_UNUSED_ARG(flags);
044d25c7 347 PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
7ea738a9 348 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703 349
7ea738a9
TK
350 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
351 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
957d8989
JL
352 level = 0;
353 stackp = stack;
354 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
355 stackp->offset = offset = 0;
356 which[0] = which[2] = base;
357 which[1] = aux;
358 for (;;) {
7ea738a9
TK
359 /* On levels where both runs have be constructed (stackp->runs == 0),
360 * merge them, and note the offset of their end, in case the offset
361 * is needed at the next level up. Hop up a level, and,
362 * as long as stackp->runs is 0, keep merging.
363 */
364 IV runs = stackp->runs;
365 if (runs == 0) {
366 gptr *list1, *list2;
367 iwhich = level & 1;
368 list1 = which[iwhich]; /* area where runs are now */
369 list2 = which[++iwhich]; /* area for merged runs */
370 do {
371 gptr *l1, *l2, *tp2;
372 offset = stackp->offset;
373 f1 = p1 = list1 + offset; /* start of first run */
374 p = tp2 = list2 + offset; /* where merged run will go */
375 t = NEXT(p); /* where first run ends */
376 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
377 t = NEXT(t); /* where second runs ends */
378 l2 = POTHER(t, list2, list1); /* ... on the other side */
379 offset = PNELEM(list2, t);
380 while (f1 < l1 && f2 < l2) {
381 /* If head 1 is larger than head 2, find ALL the elements
382 ** in list 2 strictly less than head1, write them all,
383 ** then head 1. Then compare the new heads, and repeat,
384 ** until one or both lists are exhausted.
385 **
386 ** In all comparisons (after establishing
387 ** which head to merge) the item to merge
388 ** (at pointer q) is the first operand of
389 ** the comparison. When we want to know
390 ** if "q is strictly less than the other",
391 ** we can't just do
392 ** cmp(q, other) < 0
393 ** because stability demands that we treat equality
394 ** as high when q comes from l2, and as low when
395 ** q was from l1. So we ask the question by doing
396 ** cmp(q, other) <= sense
397 ** and make sense == 0 when equality should look low,
398 ** and -1 when equality should look high.
399 */
400
401 gptr *q;
402 if (cmp(aTHX_ *f1, *f2) <= 0) {
403 q = f2; b = f1; t = l1;
404 sense = -1;
405 } else {
406 q = f1; b = f2; t = l2;
407 sense = 0;
408 }
409
410
411 /* ramp up
412 **
413 ** Leave t at something strictly
414 ** greater than q (or at the end of the list),
415 ** and b at something strictly less than q.
416 */
417 for (i = 1, run = 0 ;;) {
418 if ((p = PINDEX(b, i)) >= t) {
419 /* off the end */
420 if (((p = PINDEX(t, -1)) > b) &&
421 (cmp(aTHX_ *q, *p) <= sense))
422 t = p;
423 else b = p;
424 break;
425 } else if (cmp(aTHX_ *q, *p) <= sense) {
426 t = p;
427 break;
428 } else b = p;
429 if (++run >= RTHRESH) i += i;
430 }
431
432
433 /* q is known to follow b and must be inserted before t.
434 ** Increment b, so the range of possibilities is [b,t).
435 ** Round binary split down, to favor early appearance.
436 ** Adjust b and t until q belongs just before t.
437 */
438
439 b++;
440 while (b < t) {
441 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
442 if (cmp(aTHX_ *q, *p) <= sense) {
443 t = p;
444 } else b = p + 1;
445 }
446
447
448 /* Copy all the strictly low elements */
449
450 if (q == f1) {
451 FROMTOUPTO(f2, tp2, t);
452 *tp2++ = *f1++;
453 } else {
454 FROMTOUPTO(f1, tp2, t);
455 *tp2++ = *f2++;
456 }
457 }
458
459
460 /* Run out remaining list */
461 if (f1 == l1) {
462 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
463 } else FROMTOUPTO(f1, tp2, l1);
464 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
465
466 if (--level == 0) goto done;
467 --stackp;
468 t = list1; list1 = list2; list2 = t; /* swap lists */
469 } while ((runs = stackp->runs) == 0);
470 }
471
472
473 stackp->runs = 0; /* current run will finish level */
474 /* While there are more than 2 runs remaining,
475 * turn them into exactly 2 runs (at the "other" level),
476 * each made up of approximately half the runs.
477 * Stack the second half for later processing,
478 * and set about producing the first half now.
479 */
480 while (runs > 2) {
481 ++level;
482 ++stackp;
483 stackp->offset = offset;
484 runs -= stackp->runs = runs / 2;
485 }
486 /* We must construct a single run from 1 or 2 runs.
487 * All the original runs are in which[0] == base.
488 * The run we construct must end up in which[level&1].
489 */
490 iwhich = level & 1;
491 if (runs == 1) {
492 /* Constructing a single run from a single run.
493 * If it's where it belongs already, there's nothing to do.
494 * Otherwise, copy it to where it belongs.
495 * A run of 1 is either a singleton at level 0,
496 * or the second half of a split 3. In neither event
497 * is it necessary to set offset. It will be set by the merge
498 * that immediately follows.
499 */
500 if (iwhich) { /* Belongs in aux, currently in base */
501 f1 = b = PINDEX(base, offset); /* where list starts */
502 f2 = PINDEX(aux, offset); /* where list goes */
503 t = NEXT(f2); /* where list will end */
504 offset = PNELEM(aux, t); /* offset thereof */
505 t = PINDEX(base, offset); /* where it currently ends */
506 FROMTOUPTO(f1, f2, t); /* copy */
507 NEXT(b) = t; /* set up parallel pointer */
508 } else if (level == 0) goto done; /* single run at level 0 */
509 } else {
510 /* Constructing a single run from two runs.
511 * The merge code at the top will do that.
512 * We need only make sure the two runs are in the "other" array,
513 * so they'll end up in the correct array after the merge.
514 */
515 ++level;
516 ++stackp;
517 stackp->offset = offset;
518 stackp->runs = 0; /* take care of both runs, trigger merge */
519 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
520 f1 = b = PINDEX(base, offset); /* where first run starts */
521 f2 = PINDEX(aux, offset); /* where it will be copied */
522 t = NEXT(f2); /* where first run will end */
523 offset = PNELEM(aux, t); /* offset thereof */
524 p = PINDEX(base, offset); /* end of first run */
525 t = NEXT(t); /* where second run will end */
526 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
527 FROMTOUPTO(f1, f2, t); /* copy both runs */
528 NEXT(b) = p; /* paralleled pointer for 1st */
529 NEXT(p) = t; /* ... and for second */
530 }
531 }
957d8989 532 }
7b52d656 533 done:
7ea738a9 534 if (aux != small) Safefree(aux); /* free iff allocated */
044d25c7 535
957d8989
JL
536 return;
537}
538
84d4ea48 539/*
044d25c7
TK
540=for apidoc sortsv_flags
541
542In-place sort an array of SV pointers with the given comparison routine,
543with various SORTf_* flag options.
544
545=cut
546*/
547void
548Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
549{
550 PERL_ARGS_ASSERT_SORTSV_FLAGS;
551
552 sortsv_flags_impl(base, nmemb, cmp, flags);
553}
554
555/*
556 * Each of sortsv_* functions contains an inlined copy of
557 * sortsv_flags_impl() with an inlined comparator. Basically, we are
558 * emulating C++ templates by using __attribute__((always_inline)).
559 *
560 * The purpose of that is to avoid the function call overhead inside
561 * the sorting routine, which calls the comparison function multiple
562 * times per sorted item.
563 */
564
565static void
566sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
567{
568 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
569}
570
571static void
572sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
573{
574 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
575}
576
577static void
578sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
579{
580 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
581}
582
583static void
584sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
585{
586 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
587}
588
589static void
590sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
591{
592 sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
593}
594
595static void
596sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
597{
598 sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
599}
600
601static void
602sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
603{
604 sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
605}
606
607static void
608sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
609{
610 sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
611}
612
613static void
614sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
615{
616 sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
617}
618
619static void
620sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
621{
622 sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
623}
624
625static void
626sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
627{
628 sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
629}
630
631static void
632sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
633{
634 sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
635}
636
637#ifdef USE_LOCALE_COLLATE
638
639static void
640sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
641{
642 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
643}
644
645static void
646sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
647{
648 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
649}
650
651static void
652sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
653{
654 sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
655}
656
657static void
658sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
659{
660 sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
661}
662
663#endif
664
665/*
ccfc67b7 666
84d4ea48
JH
667=for apidoc sortsv
668
8f5d5a51 669In-place sort an array of SV pointers with the given comparison routine.
84d4ea48 670
796b6530 671Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
7b9ef140 672flexible routine.
78210658 673
84d4ea48
JH
674=cut
675*/
4eb872f6 676
84d4ea48
JH
677void
678Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
679{
7918f24d
NC
680 PERL_ARGS_ASSERT_SORTSV;
681
7b9ef140 682 sortsv_flags(array, nmemb, cmp, 0);
6c3fb703
NC
683}
684
4d562308
SF
685#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
686#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
687#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
688
84d4ea48
JH
689PP(pp_sort)
690{
20b7effb 691 dSP; dMARK; dORIGMARK;
eb578fdb 692 SV **p1 = ORIGMARK+1, **p2;
c70927a6 693 SSize_t max, i;
7d49f689 694 AV* av = NULL;
84d4ea48 695 GV *gv;
cbbf8932 696 CV *cv = NULL;
1c23e2bd 697 U8 gimme = GIMME_V;
0bcc34c2 698 OP* const nextop = PL_op->op_next;
84d4ea48
JH
699 I32 overloading = 0;
700 bool hasargs = FALSE;
2b66f6d3 701 bool copytmps;
84d4ea48 702 I32 is_xsub = 0;
901017d6
AL
703 const U8 priv = PL_op->op_private;
704 const U8 flags = PL_op->op_flags;
7b9ef140 705 U32 sort_flags = 0;
044d25c7 706 I32 all_SIVs = 1, descending = 0;
84d4ea48 707
7b9ef140 708 if ((priv & OPpSORT_DESCEND) != 0)
044d25c7 709 descending = 1;
7b9ef140 710
eb7e169e 711 if (gimme != G_LIST) {
7ea738a9
TK
712 SP = MARK;
713 EXTEND(SP,1);
714 RETPUSHUNDEF;
84d4ea48
JH
715 }
716
717 ENTER;
718 SAVEVPTR(PL_sortcop);
471178c0 719 if (flags & OPf_STACKED) {
7ea738a9 720 if (flags & OPf_SPECIAL) {
e6dae479 721 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
932bca29 722 assert(nullop->op_type == OP_NULL);
7ea738a9
TK
723 PL_sortcop = nullop->op_next;
724 }
725 else {
726 GV *autogv = NULL;
727 HV *stash;
728 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
729 check_cv:
730 if (cv && SvPOK(cv)) {
731 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
732 if (proto && strEQ(proto, "$$")) {
733 hasargs = TRUE;
734 }
735 }
736 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
737 is_xsub = 1;
738 }
739 else if (!(cv && CvROOT(cv))) {
740 if (gv) {
741 goto autoload;
742 }
743 else if (!CvANON(cv) && (gv = CvGV(cv))) {
744 if (cv != GvCV(gv)) cv = GvCV(gv);
745 autoload:
746 if (!autogv && (
747 autogv = gv_autoload_pvn(
748 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
749 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
750 )
751 )) {
752 cv = GvCVu(autogv);
753 goto check_cv;
754 }
755 else {
756 SV *tmpstr = sv_newmortal();
757 gv_efullname3(tmpstr, gv, NULL);
758 DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
759 SVfARG(tmpstr));
760 }
761 }
762 else {
763 DIE(aTHX_ "Undefined subroutine in sort");
764 }
765 }
766
767 if (is_xsub)
768 PL_sortcop = (OP*)cv;
769 else
770 PL_sortcop = CvSTART(cv);
771 }
84d4ea48
JH
772 }
773 else {
7ea738a9 774 PL_sortcop = NULL;
84d4ea48
JH
775 }
776
84721d61
DM
777 /* optimiser converts "@a = sort @a" to "sort \@a". In this case,
778 * push (@a) onto stack, then assign result back to @a at the end of
779 * this function */
0723351e 780 if (priv & OPpSORT_INPLACE) {
7ea738a9
TK
781 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
782 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
783 av = MUTABLE_AV((*SP));
84721d61
DM
784 if (SvREADONLY(av))
785 Perl_croak_no_modify();
7ea738a9 786 max = AvFILL(av) + 1;
84721d61 787 MEXTEND(SP, max);
7ea738a9
TK
788 if (SvMAGICAL(av)) {
789 for (i=0; i < max; i++) {
790 SV **svp = av_fetch(av, i, FALSE);
791 *SP++ = (svp) ? *svp : NULL;
792 }
793 }
84721d61
DM
794 else {
795 SV **svp = AvARRAY(av);
796 assert(svp || max == 0);
7ea738a9 797 for (i = 0; i < max; i++)
84721d61 798 *SP++ = *svp++;
7ea738a9 799 }
84721d61
DM
800 SP--;
801 p1 = p2 = SP - (max-1);
fe1bc4cf
DM
802 }
803 else {
7ea738a9
TK
804 p2 = MARK+1;
805 max = SP - MARK;
806 }
fe1bc4cf 807
83a44efe
SF
808 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
809 * any nulls; also stringify or converting to integer or number as
810 * required any args */
ff859a7f 811 copytmps = cBOOL(PL_sortcop);
fe1bc4cf 812 for (i=max; i > 0 ; i--) {
7ea738a9
TK
813 if ((*p1 = *p2++)) { /* Weed out nulls. */
814 if (copytmps && SvPADTMP(*p1)) {
815 *p1 = sv_mortalcopy(*p1);
816 }
817 SvTEMP_off(*p1);
818 if (!PL_sortcop) {
819 if (priv & OPpSORT_NUMERIC) {
820 if (priv & OPpSORT_INTEGER) {
821 if (!SvIOK(*p1))
822 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
823 }
824 else {
825 if (!SvNSIOK(*p1))
826 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
827 if (all_SIVs && !SvSIOK(*p1))
828 all_SIVs = 0;
829 }
830 }
831 else {
832 if (!SvPOK(*p1))
833 (void)sv_2pv_flags(*p1, 0,
834 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
835 }
836 if (SvAMAGIC(*p1))
837 overloading = 1;
60779a30 838 }
7ea738a9
TK
839 p1++;
840 }
841 else
842 max--;
84d4ea48 843 }
fe1bc4cf 844 if (max > 1) {
7ea738a9
TK
845 SV **start;
846 if (PL_sortcop) {
847 PERL_CONTEXT *cx;
848 const bool oldcatch = CATCH_GET;
8ae997c5 849 I32 old_savestack_ix = PL_savestack_ix;
84d4ea48 850
7ea738a9
TK
851 SAVEOP();
852
853 CATCH_SET(TRUE);
854 PUSHSTACKi(PERLSI_SORT);
855 if (!hasargs && !is_xsub) {
856 SAVEGENERICSV(PL_firstgv);
857 SAVEGENERICSV(PL_secondgv);
858 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
859 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
860 ));
861 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
862 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
863 ));
dc9ef998
TC
864 /* make sure the GP isn't removed out from under us for
865 * the SAVESPTR() */
866 save_gp(PL_firstgv, 0);
867 save_gp(PL_secondgv, 0);
868 /* we don't want modifications localized */
869 GvINTRO_off(PL_firstgv);
870 GvINTRO_off(PL_secondgv);
7ea738a9
TK
871 SAVEGENERICSV(GvSV(PL_firstgv));
872 SvREFCNT_inc(GvSV(PL_firstgv));
873 SAVEGENERICSV(GvSV(PL_secondgv));
874 SvREFCNT_inc(GvSV(PL_secondgv));
875 }
84d4ea48 876
33411212 877 gimme = G_SCALAR;
7ea738a9
TK
878 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
879 if (!(flags & OPf_SPECIAL)) {
880 cx->cx_type = CXt_SUB|CXp_MULTICALL;
881 cx_pushsub(cx, cv, NULL, hasargs);
882 if (!is_xsub) {
883 PADLIST * const padlist = CvPADLIST(cv);
884
885 if (++CvDEPTH(cv) >= 2)
886 pad_push(padlist, CvDEPTH(cv));
887 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
888
889 if (hasargs) {
890 /* This is mostly copied from pp_entersub */
891 AV * const av = MUTABLE_AV(PAD_SVl(0));
892
893 cx->blk_sub.savearray = GvAV(PL_defgv);
894 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
895 }
896
897 }
898 }
486430a5 899
7ea738a9 900 start = p1 - max;
3edfb5c3 901 Perl_sortsv_flags(aTHX_ start, max,
7ea738a9
TK
902 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
903 sort_flags);
84d4ea48 904
4df352a8 905 /* Reset cx, in case the context stack has been reallocated. */
4ebe6e95 906 cx = CX_CUR();
4df352a8 907
7ea738a9 908 PL_stack_sp = PL_stack_base + cx->blk_oldsp;
4df352a8 909
2f450c1b 910 CX_LEAVE_SCOPE(cx);
7ea738a9 911 if (!(flags & OPf_SPECIAL)) {
4df352a8 912 assert(CxTYPE(cx) == CXt_SUB);
a73d8813 913 cx_popsub(cx);
7ea738a9 914 }
2f450c1b 915 else
4df352a8 916 assert(CxTYPE(cx) == CXt_NULL);
2f450c1b 917 /* there isn't a POPNULL ! */
1dfbe6b4 918
7ea738a9 919 cx_popblock(cx);
5da525e9 920 CX_POP(cx);
7ea738a9
TK
921 POPSTACK;
922 CATCH_SET(oldcatch);
923 }
924 else {
925 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
926 start = ORIGMARK+1;
433b3e2b
TK
927 if (priv & OPpSORT_NUMERIC) {
928 if ((priv & OPpSORT_INTEGER) || all_SIVs) {
929 if (overloading)
044d25c7
TK
930 if (descending)
931 sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
932 else
933 sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
433b3e2b 934 else
044d25c7
TK
935 if (descending)
936 sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
937 else
938 sortsv_i_ncmp(aTHX_ start, max, sort_flags);
433b3e2b
TK
939 }
940 else {
941 if (overloading)
044d25c7
TK
942 if (descending)
943 sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
944 else
945 sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
433b3e2b 946 else
044d25c7
TK
947 if (descending)
948 sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
949 else
950 sortsv_ncmp(aTHX_ start, max, sort_flags);
433b3e2b
TK
951 }
952 }
130c5df3 953#ifdef USE_LOCALE_COLLATE
433b3e2b
TK
954 else if(IN_LC_RUNTIME(LC_COLLATE)) {
955 if (overloading)
044d25c7
TK
956 if (descending)
957 sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
958 else
959 sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
433b3e2b 960 else
044d25c7
TK
961 if (descending)
962 sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
963 else
964 sortsv_cmp_locale(aTHX_ start, max, sort_flags);
433b3e2b 965 }
130c5df3 966#endif
433b3e2b
TK
967 else {
968 if (overloading)
044d25c7
TK
969 if (descending)
970 sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
971 else
972 sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
433b3e2b 973 else
044d25c7
TK
974 if (descending)
975 sortsv_cmp_desc(aTHX_ start, max, sort_flags);
976 else
977 sortsv_cmp(aTHX_ start, max, sort_flags);
433b3e2b 978 }
7ea738a9
TK
979 }
980 if ((priv & OPpSORT_REVERSE) != 0) {
981 SV **q = start+max-1;
982 while (start < q) {
983 SV * const tmp = *start;
984 *start++ = *q;
985 *q-- = tmp;
986 }
987 }
84d4ea48 988 }
84721d61
DM
989
990 if (av) {
991 /* copy back result to the array */
992 SV** const base = MARK+1;
99c9ca9e 993 SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
84721d61 994 if (SvMAGICAL(av)) {
99c9ca9e 995 for (i = 0; i <= max_minus_one; i++)
84721d61
DM
996 base[i] = newSVsv(base[i]);
997 av_clear(av);
99c9ca9e
YO
998 if (max_minus_one >= 0)
999 av_extend(av, max_minus_one);
1000 for (i=0; i <= max_minus_one; i++) {
84721d61
DM
1001 SV * const sv = base[i];
1002 SV ** const didstore = av_store(av, i, sv);
1003 if (SvSMAGICAL(sv))
1004 mg_set(sv);
1005 if (!didstore)
1006 sv_2mortal(sv);
1007 }
1008 }
1009 else {
1010 /* the elements of av are likely to be the same as the
1011 * (non-refcounted) elements on the stack, just in a different
1012 * order. However, its possible that someone's messed with av
1013 * in the meantime. So bump and unbump the relevant refcounts
1014 * first.
1015 */
99c9ca9e 1016 for (i = 0; i <= max_minus_one; i++) {
45c198c1
DM
1017 SV *sv = base[i];
1018 assert(sv);
1019 if (SvREFCNT(sv) > 1)
1020 base[i] = newSVsv(sv);
1021 else
1022 SvREFCNT_inc_simple_void_NN(sv);
1023 }
84721d61 1024 av_clear(av);
99c9ca9e
YO
1025 if (max_minus_one >= 0) {
1026 av_extend(av, max_minus_one);
84721d61
DM
1027 Copy(base, AvARRAY(av), max, SV*);
1028 }
99c9ca9e 1029 AvFILLp(av) = max_minus_one;
84721d61
DM
1030 AvREIFY_off(av);
1031 AvREAL_on(av);
1032 }
fe1bc4cf 1033 }
84d4ea48 1034 LEAVE;
84721d61 1035 PL_stack_sp = ORIGMARK + max;
84d4ea48
JH
1036 return nextop;
1037}
1038
1039static I32
31e9e0a3 1040S_sortcv(pTHX_ SV *const a, SV *const b)
84d4ea48 1041{
901017d6 1042 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1043 I32 result;
ad021bfb 1044 PMOP * const pm = PL_curpm;
a9ea019a 1045 COP * const cop = PL_curcop;
16ada235 1046 SV *olda, *oldb;
7918f24d
NC
1047
1048 PERL_ARGS_ASSERT_SORTCV;
1049
16ada235
Z
1050 olda = GvSV(PL_firstgv);
1051 GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1052 SvREFCNT_dec(olda);
1053 oldb = GvSV(PL_secondgv);
1054 GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1055 SvREFCNT_dec(oldb);
84d4ea48
JH
1056 PL_stack_sp = PL_stack_base;
1057 PL_op = PL_sortcop;
1058 CALLRUNOPS(aTHX);
a9ea019a 1059 PL_curcop = cop;
33411212
DM
1060 /* entry zero of a stack is always PL_sv_undef, which
1061 * simplifies converting a '()' return into undef in scalar context */
1062 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1063 result = SvIV(*PL_stack_sp);
626ed49c 1064
53d3542d 1065 LEAVE_SCOPE(oldsaveix);
ad021bfb 1066 PL_curpm = pm;
84d4ea48
JH
1067 return result;
1068}
1069
1070static I32
31e9e0a3 1071S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
84d4ea48 1072{
901017d6 1073 const I32 oldsaveix = PL_savestack_ix;
84d4ea48 1074 I32 result;
901017d6 1075 AV * const av = GvAV(PL_defgv);
ad021bfb 1076 PMOP * const pm = PL_curpm;
a9ea019a 1077 COP * const cop = PL_curcop;
84d4ea48 1078
7918f24d
NC
1079 PERL_ARGS_ASSERT_SORTCV_STACKED;
1080
8f443ca6 1081 if (AvREAL(av)) {
7ea738a9
TK
1082 av_clear(av);
1083 AvREAL_off(av);
1084 AvREIFY_on(av);
8f443ca6 1085 }
84d4ea48 1086 if (AvMAX(av) < 1) {
7ea738a9
TK
1087 SV **ary = AvALLOC(av);
1088 if (AvARRAY(av) != ary) {
1089 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1090 AvARRAY(av) = ary;
1091 }
1092 if (AvMAX(av) < 1) {
1093 Renew(ary,2,SV*);
1094 AvMAX(av) = 1;
1095 AvARRAY(av) = ary;
1096 AvALLOC(av) = ary;
1097 }
84d4ea48
JH
1098 }
1099 AvFILLp(av) = 1;
1100
1101 AvARRAY(av)[0] = a;
1102 AvARRAY(av)[1] = b;
1103 PL_stack_sp = PL_stack_base;
1104 PL_op = PL_sortcop;
1105 CALLRUNOPS(aTHX);
a9ea019a 1106 PL_curcop = cop;
33411212
DM
1107 /* entry zero of a stack is always PL_sv_undef, which
1108 * simplifies converting a '()' return into undef in scalar context */
1109 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1110 result = SvIV(*PL_stack_sp);
626ed49c 1111
53d3542d 1112 LEAVE_SCOPE(oldsaveix);
ad021bfb 1113 PL_curpm = pm;
84d4ea48
JH
1114 return result;
1115}
1116
1117static I32
31e9e0a3 1118S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
84d4ea48 1119{
20b7effb 1120 dSP;
901017d6 1121 const I32 oldsaveix = PL_savestack_ix;
ea726b52 1122 CV * const cv=MUTABLE_CV(PL_sortcop);
84d4ea48 1123 I32 result;
ad021bfb 1124 PMOP * const pm = PL_curpm;
84d4ea48 1125
7918f24d
NC
1126 PERL_ARGS_ASSERT_SORTCV_XSUB;
1127
84d4ea48
JH
1128 SP = PL_stack_base;
1129 PUSHMARK(SP);
1130 EXTEND(SP, 2);
1131 *++SP = a;
1132 *++SP = b;
1133 PUTBACK;
1134 (void)(*CvXSUB(cv))(aTHX_ cv);
33411212
DM
1135 /* entry zero of a stack is always PL_sv_undef, which
1136 * simplifies converting a '()' return into undef in scalar context */
1137 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
84d4ea48 1138 result = SvIV(*PL_stack_sp);
33411212 1139
53d3542d 1140 LEAVE_SCOPE(oldsaveix);
ad021bfb 1141 PL_curpm = pm;
84d4ea48
JH
1142 return result;
1143}
1144
1145
044d25c7 1146PERL_STATIC_FORCE_INLINE I32
31e9e0a3 1147S_sv_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1148{
427fbfe8 1149 I32 cmp = do_ncmp(a, b);
7918f24d
NC
1150
1151 PERL_ARGS_ASSERT_SV_NCMP;
1152
427fbfe8 1153 if (cmp == 2) {
7ea738a9
TK
1154 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1155 return 0;
f3dab52a 1156 }
427fbfe8
TC
1157
1158 return cmp;
84d4ea48
JH
1159}
1160
044d25c7
TK
1161PERL_STATIC_FORCE_INLINE I32
1162S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
1163{
1164 PERL_ARGS_ASSERT_SV_NCMP_DESC;
1165
1166 return -S_sv_ncmp(aTHX_ a, b);
1167}
1168
1169PERL_STATIC_FORCE_INLINE I32
31e9e0a3 1170S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1171{
901017d6
AL
1172 const IV iv1 = SvIV(a);
1173 const IV iv2 = SvIV(b);
7918f24d
NC
1174
1175 PERL_ARGS_ASSERT_SV_I_NCMP;
1176
84d4ea48
JH
1177 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1178}
901017d6 1179
044d25c7
TK
1180PERL_STATIC_FORCE_INLINE I32
1181S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1182{
1183 PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
1184
1185 return -S_sv_i_ncmp(aTHX_ a, b);
1186}
1187
901017d6 1188#define tryCALL_AMAGICbin(left,right,meth) \
79a8d529 1189 (SvAMAGIC(left)||SvAMAGIC(right)) \
7ea738a9
TK
1190 ? amagic_call(left, right, meth, 0) \
1191 : NULL;
84d4ea48 1192
659c4b96 1193#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
eeb9de02 1194
044d25c7 1195PERL_STATIC_FORCE_INLINE I32
5aaab254 1196S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1197{
31d632c3 1198 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1199
1200 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1201
84d4ea48 1202 if (tmpsv) {
84d4ea48 1203 if (SvIOK(tmpsv)) {
901017d6 1204 const I32 i = SvIVX(tmpsv);
eeb9de02 1205 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1206 }
7ea738a9
TK
1207 else {
1208 const NV d = SvNV(tmpsv);
1209 return SORT_NORMAL_RETURN_VALUE(d);
1210 }
84d4ea48 1211 }
f0f5dc9d 1212 return S_sv_ncmp(aTHX_ a, b);
84d4ea48
JH
1213}
1214
044d25c7
TK
1215PERL_STATIC_FORCE_INLINE I32
1216S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
1217{
1218 PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
1219
1220 return -S_amagic_ncmp(aTHX_ a, b);
1221}
1222
1223PERL_STATIC_FORCE_INLINE I32
5aaab254 1224S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
84d4ea48 1225{
31d632c3 1226 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
7918f24d
NC
1227
1228 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1229
84d4ea48 1230 if (tmpsv) {
84d4ea48 1231 if (SvIOK(tmpsv)) {
901017d6 1232 const I32 i = SvIVX(tmpsv);
eeb9de02 1233 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1234 }
7ea738a9
TK
1235 else {
1236 const NV d = SvNV(tmpsv);
1237 return SORT_NORMAL_RETURN_VALUE(d);
1238 }
84d4ea48 1239 }
f0f5dc9d 1240 return S_sv_i_ncmp(aTHX_ a, b);
84d4ea48
JH
1241}
1242
044d25c7
TK
1243PERL_STATIC_FORCE_INLINE I32
1244S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1245{
1246 PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
1247
1248 return -S_amagic_i_ncmp(aTHX_ a, b);
1249}
1250
1251PERL_STATIC_FORCE_INLINE I32
5aaab254 1252S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1253{
31d632c3 1254 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1255
1256 PERL_ARGS_ASSERT_AMAGIC_CMP;
1257
84d4ea48 1258 if (tmpsv) {
84d4ea48 1259 if (SvIOK(tmpsv)) {
901017d6 1260 const I32 i = SvIVX(tmpsv);
eeb9de02 1261 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1262 }
7ea738a9
TK
1263 else {
1264 const NV d = SvNV(tmpsv);
1265 return SORT_NORMAL_RETURN_VALUE(d);
1266 }
84d4ea48
JH
1267 }
1268 return sv_cmp(str1, str2);
1269}
1270
044d25c7
TK
1271PERL_STATIC_FORCE_INLINE I32
1272S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1273{
1274 PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
1275
1276 return -S_amagic_cmp(aTHX_ str1, str2);
1277}
1278
1279PERL_STATIC_FORCE_INLINE I32
1280S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1281{
1282 PERL_ARGS_ASSERT_CMP_DESC;
1283
1284 return -sv_cmp(str1, str2);
1285}
1286
91191cf7
KW
1287#ifdef USE_LOCALE_COLLATE
1288
044d25c7 1289PERL_STATIC_FORCE_INLINE I32
5aaab254 1290S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
84d4ea48 1291{
31d632c3 1292 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
7918f24d
NC
1293
1294 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1295
84d4ea48 1296 if (tmpsv) {
84d4ea48 1297 if (SvIOK(tmpsv)) {
901017d6 1298 const I32 i = SvIVX(tmpsv);
eeb9de02 1299 return SORT_NORMAL_RETURN_VALUE(i);
84d4ea48 1300 }
7ea738a9
TK
1301 else {
1302 const NV d = SvNV(tmpsv);
1303 return SORT_NORMAL_RETURN_VALUE(d);
1304 }
84d4ea48
JH
1305 }
1306 return sv_cmp_locale(str1, str2);
1307}
241d1a3b 1308
044d25c7
TK
1309PERL_STATIC_FORCE_INLINE I32
1310S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1311{
1312 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
1313
1314 return -S_amagic_cmp_locale(aTHX_ str1, str2);
1315}
1316
1317PERL_STATIC_FORCE_INLINE I32
1318S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1319{
1320 PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
1321
1322 return -sv_cmp_locale(str1, str2);
1323}
1324
91191cf7
KW
1325#endif
1326
241d1a3b 1327/*
14d04a33 1328 * ex: set ts=8 sts=4 sw=4 et:
37442d52 1329 */