Commit | Line | Data |
---|---|---|
84d4ea48 JH |
1 | /* pp_sort.c |
2 | * | |
3 | * Copyright (c) 1991-2001, Larry Wall | |
4 | * | |
5 | * You may distribute under the terms of either the GNU General Public | |
6 | * License or the Artistic License, as specified in the README file. | |
7 | * | |
8 | */ | |
9 | ||
10 | /* | |
11 | * ...they shuffled back towards the rear of the line. 'No, not at the | |
12 | * rear!' the slave-driver shouted. 'Three files up. And stay there... | |
13 | */ | |
14 | ||
15 | #include "EXTERN.h" | |
16 | #define PERL_IN_PP_SORT_C | |
17 | #include "perl.h" | |
18 | ||
19 | static I32 sortcv(pTHX_ SV *a, SV *b); | |
20 | static I32 sortcv_stacked(pTHX_ SV *a, SV *b); | |
21 | static I32 sortcv_xsub(pTHX_ SV *a, SV *b); | |
22 | static I32 sv_ncmp(pTHX_ SV *a, SV *b); | |
23 | static I32 sv_i_ncmp(pTHX_ SV *a, SV *b); | |
24 | static I32 amagic_ncmp(pTHX_ SV *a, SV *b); | |
25 | static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b); | |
26 | static I32 amagic_cmp(pTHX_ SV *a, SV *b); | |
27 | static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b); | |
28 | ||
29 | #define sv_cmp_static Perl_sv_cmp | |
30 | #define sv_cmp_locale_static Perl_sv_cmp_locale | |
31 | ||
32 | #define SORTHINTS(hintsvp) \ | |
33 | ((PL_hintgv && \ | |
34 | (hintsvp = hv_fetch(GvHV(PL_hintgv), "SORT", 4, FALSE))) ? \ | |
35 | (I32)SvIV(*hintsvp) : 0) | |
36 | ||
37 | /* | |
38 | * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>. | |
39 | * | |
40 | * The original code was written in conjunction with BSD Computer Software | |
41 | * Research Group at University of California, Berkeley. | |
42 | * | |
43 | * See also: "Optimistic Merge Sort" (SODA '92) | |
44 | * | |
45 | * The integration to Perl is by John P. Linderman <jpl@research.att.com>. | |
46 | * | |
47 | * The code can be distributed under the same terms as Perl itself. | |
48 | * | |
49 | */ | |
50 | ||
51 | #ifdef TESTHARNESS | |
52 | #include <sys/types.h> | |
53 | typedef void SV; | |
54 | #define pTHX_ | |
55 | #define STATIC | |
56 | #define New(ID,VAR,N,TYPE) VAR=(TYPE *)malloc((N)*sizeof(TYPE)) | |
57 | #define Safefree(VAR) free(VAR) | |
58 | typedef int (*SVCOMPARE_t) (pTHX_ SV*, SV*); | |
59 | #endif /* TESTHARNESS */ | |
60 | ||
61 | typedef char * aptr; /* pointer for arithmetic on sizes */ | |
62 | typedef SV * gptr; /* pointers in our lists */ | |
63 | ||
64 | /* Binary merge internal sort, with a few special mods | |
65 | ** for the special perl environment it now finds itself in. | |
66 | ** | |
67 | ** Things that were once options have been hotwired | |
68 | ** to values suitable for this use. In particular, we'll always | |
69 | ** initialize looking for natural runs, we'll always produce stable | |
70 | ** output, and we'll always do Peter McIlroy's binary merge. | |
71 | */ | |
72 | ||
73 | /* Pointer types for arithmetic and storage and convenience casts */ | |
74 | ||
75 | #define APTR(P) ((aptr)(P)) | |
76 | #define GPTP(P) ((gptr *)(P)) | |
77 | #define GPPP(P) ((gptr **)(P)) | |
78 | ||
79 | ||
80 | /* byte offset from pointer P to (larger) pointer Q */ | |
81 | #define BYTEOFF(P, Q) (APTR(Q) - APTR(P)) | |
82 | ||
83 | #define PSIZE sizeof(gptr) | |
84 | ||
85 | /* If PSIZE is power of 2, make PSHIFT that power, if that helps */ | |
86 | ||
87 | #ifdef PSHIFT | |
88 | #define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT)) | |
89 | #define PNBYTE(N) ((N) << (PSHIFT)) | |
90 | #define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N))) | |
91 | #else | |
92 | /* Leave optimization to compiler */ | |
93 | #define PNELEM(P, Q) (GPTP(Q) - GPTP(P)) | |
94 | #define PNBYTE(N) ((N) * (PSIZE)) | |
95 | #define PINDEX(P, N) (GPTP(P) + (N)) | |
96 | #endif | |
97 | ||
98 | /* Pointer into other corresponding to pointer into this */ | |
99 | #define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P)) | |
100 | ||
101 | #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim) | |
102 | ||
103 | ||
104 | /* Runs are identified by a pointer in the auxilliary list. | |
105 | ** The pointer is at the start of the list, | |
106 | ** and it points to the start of the next list. | |
107 | ** NEXT is used as an lvalue, too. | |
108 | */ | |
109 | ||
110 | #define NEXT(P) (*GPPP(P)) | |
111 | ||
112 | ||
113 | /* PTHRESH is the minimum number of pairs with the same sense to justify | |
114 | ** checking for a run and extending it. Note that PTHRESH counts PAIRS, | |
115 | ** not just elements, so PTHRESH == 8 means a run of 16. | |
116 | */ | |
117 | ||
118 | #define PTHRESH (8) | |
119 | ||
120 | /* RTHRESH is the number of elements in a run that must compare low | |
121 | ** to the low element from the opposing run before we justify | |
122 | ** doing a binary rampup instead of single stepping. | |
123 | ** In random input, N in a row low should only happen with | |
124 | ** probability 2^(1-N), so we can risk that we are dealing | |
125 | ** with orderly input without paying much when we aren't. | |
126 | */ | |
127 | ||
128 | #define RTHRESH (6) | |
129 | ||
130 | ||
131 | /* | |
132 | ** Overview of algorithm and variables. | |
133 | ** The array of elements at list1 will be organized into runs of length 2, | |
134 | ** or runs of length >= 2 * PTHRESH. We only try to form long runs when | |
135 | ** PTHRESH adjacent pairs compare in the same way, suggesting overall order. | |
136 | ** | |
137 | ** Unless otherwise specified, pair pointers address the first of two elements. | |
138 | ** | |
139 | ** b and b+1 are a pair that compare with sense ``sense''. | |
140 | ** b is the ``bottom'' of adjacent pairs that might form a longer run. | |
141 | ** | |
142 | ** p2 parallels b in the list2 array, where runs are defined by | |
143 | ** a pointer chain. | |
144 | ** | |
145 | ** t represents the ``top'' of the adjacent pairs that might extend | |
146 | ** the run beginning at b. Usually, t addresses a pair | |
147 | ** that compares with opposite sense from (b,b+1). | |
148 | ** However, it may also address a singleton element at the end of list1, | |
149 | ** or it may be equal to ``last'', the first element beyond list1. | |
150 | ** | |
151 | ** r addresses the Nth pair following b. If this would be beyond t, | |
152 | ** we back it off to t. Only when r is less than t do we consider the | |
153 | ** run long enough to consider checking. | |
154 | ** | |
155 | ** q addresses a pair such that the pairs at b through q already form a run. | |
156 | ** Often, q will equal b, indicating we only are sure of the pair itself. | |
157 | ** However, a search on the previous cycle may have revealed a longer run, | |
158 | ** so q may be greater than b. | |
159 | ** | |
160 | ** p is used to work back from a candidate r, trying to reach q, | |
161 | ** which would mean b through r would be a run. If we discover such a run, | |
162 | ** we start q at r and try to push it further towards t. | |
163 | ** If b through r is NOT a run, we detect the wrong order at (p-1,p). | |
164 | ** In any event, after the check (if any), we have two main cases. | |
165 | ** | |
166 | ** 1) Short run. b <= q < p <= r <= t. | |
167 | ** b through q is a run (perhaps trivial) | |
168 | ** q through p are uninteresting pairs | |
169 | ** p through r is a run | |
170 | ** | |
171 | ** 2) Long run. b < r <= q < t. | |
172 | ** b through q is a run (of length >= 2 * PTHRESH) | |
173 | ** | |
174 | ** Note that degenerate cases are not only possible, but likely. | |
175 | ** For example, if the pair following b compares with opposite sense, | |
176 | ** then b == q < p == r == t. | |
177 | */ | |
178 | ||
179 | ||
180 | static void | |
181 | dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp) | |
182 | { | |
183 | int sense; | |
184 | register gptr *b, *p, *q, *t, *p2; | |
185 | register gptr c, *last, *r; | |
186 | gptr *savep; | |
187 | ||
188 | b = list1; | |
189 | last = PINDEX(b, nmemb); | |
190 | sense = (cmp(aTHX_ *b, *(b+1)) > 0); | |
191 | for (p2 = list2; b < last; ) { | |
192 | /* We just started, or just reversed sense. | |
193 | ** Set t at end of pairs with the prevailing sense. | |
194 | */ | |
195 | for (p = b+2, t = p; ++p < last; t = ++p) { | |
196 | if ((cmp(aTHX_ *t, *p) > 0) != sense) break; | |
197 | } | |
198 | q = b; | |
199 | /* Having laid out the playing field, look for long runs */ | |
200 | do { | |
201 | p = r = b + (2 * PTHRESH); | |
202 | if (r >= t) p = r = t; /* too short to care about */ | |
203 | else { | |
204 | while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) && | |
205 | ((p -= 2) > q)); | |
206 | if (p <= q) { | |
207 | /* b through r is a (long) run. | |
208 | ** Extend it as far as possible. | |
209 | */ | |
210 | p = q = r; | |
211 | while (((p += 2) < t) && | |
212 | ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p; | |
213 | r = p = q + 2; /* no simple pairs, no after-run */ | |
214 | } | |
215 | } | |
216 | if (q > b) { /* run of greater than 2 at b */ | |
217 | savep = p; | |
218 | p = q += 2; | |
219 | /* pick up singleton, if possible */ | |
220 | if ((p == t) && | |
221 | ((t + 1) == last) && | |
222 | ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) | |
223 | savep = r = p = q = last; | |
224 | p2 = NEXT(p2) = p2 + (p - b); | |
225 | if (sense) while (b < --p) { | |
226 | c = *b; | |
227 | *b++ = *p; | |
228 | *p = c; | |
229 | } | |
230 | p = savep; | |
231 | } | |
232 | while (q < p) { /* simple pairs */ | |
233 | p2 = NEXT(p2) = p2 + 2; | |
234 | if (sense) { | |
235 | c = *q++; | |
236 | *(q-1) = *q; | |
237 | *q++ = c; | |
238 | } else q += 2; | |
239 | } | |
240 | if (((b = p) == t) && ((t+1) == last)) { | |
241 | NEXT(p2) = p2 + 1; | |
242 | b++; | |
243 | } | |
244 | q = r; | |
245 | } while (b < t); | |
246 | sense = !sense; | |
247 | } | |
248 | return; | |
249 | } | |
250 | ||
251 | ||
252 | /* Overview of bmerge variables: | |
253 | ** | |
254 | ** list1 and list2 address the main and auxiliary arrays. | |
255 | ** They swap identities after each merge pass. | |
256 | ** Base points to the original list1, so we can tell if | |
257 | ** the pointers ended up where they belonged (or must be copied). | |
258 | ** | |
259 | ** When we are merging two lists, f1 and f2 are the next elements | |
260 | ** on the respective lists. l1 and l2 mark the end of the lists. | |
261 | ** tp2 is the current location in the merged list. | |
262 | ** | |
263 | ** p1 records where f1 started. | |
264 | ** After the merge, a new descriptor is built there. | |
265 | ** | |
266 | ** p2 is a ``parallel'' pointer in (what starts as) descriptor space. | |
267 | ** It is used to identify and delimit the runs. | |
268 | ** | |
269 | ** In the heat of determining where q, the greater of the f1/f2 elements, | |
270 | ** belongs in the other list, b, t and p, represent bottom, top and probe | |
271 | ** locations, respectively, in the other list. | |
272 | ** They make convenient temporary pointers in other places. | |
273 | */ | |
274 | ||
275 | STATIC void | |
276 | S_mergesortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp) | |
277 | { | |
278 | int i, run; | |
279 | int sense; | |
280 | register gptr *f1, *f2, *t, *b, *p, *tp2, *l1, *l2, *q; | |
281 | gptr *aux, *list2, *p2, *last; | |
282 | gptr *base = list1; | |
283 | gptr *p1; | |
284 | ||
285 | if (nmemb <= 1) return; /* sorted trivially */ | |
286 | New(799,list2,nmemb,gptr); /* allocate auxilliary array */ | |
287 | aux = list2; | |
288 | dynprep(aTHX_ list1, list2, nmemb, cmp); | |
289 | last = PINDEX(list2, nmemb); | |
290 | while (NEXT(list2) != last) { | |
291 | /* More than one run remains. Do some merging to reduce runs. */ | |
292 | l2 = p1 = list1; | |
293 | for (tp2 = p2 = list2; p2 != last;) { | |
294 | /* The new first run begins where the old second list ended. | |
295 | ** Use the p2 ``parallel'' pointer to identify the end of the run. | |
296 | */ | |
297 | f1 = l2; | |
298 | t = NEXT(p2); | |
299 | f2 = l1 = POTHER(t, list2, list1); | |
300 | if (t != last) t = NEXT(t); | |
301 | l2 = POTHER(t, list2, list1); | |
302 | p2 = t; | |
303 | while (f1 < l1 && f2 < l2) { | |
304 | /* If head 1 is larger than head 2, find ALL the elements | |
305 | ** in list 2 strictly less than head1, write them all, | |
306 | ** then head 1. Then compare the new heads, and repeat, | |
307 | ** until one or both lists are exhausted. | |
308 | ** | |
309 | ** In all comparisons (after establishing | |
310 | ** which head to merge) the item to merge | |
311 | ** (at pointer q) is the first operand of | |
312 | ** the comparison. When we want to know | |
313 | ** if ``q is strictly less than the other'', | |
314 | ** we can't just do | |
315 | ** cmp(q, other) < 0 | |
316 | ** because stability demands that we treat equality | |
317 | ** as high when q comes from l2, and as low when | |
318 | ** q was from l1. So we ask the question by doing | |
319 | ** cmp(q, other) <= sense | |
320 | ** and make sense == 0 when equality should look low, | |
321 | ** and -1 when equality should look high. | |
322 | */ | |
323 | ||
324 | ||
325 | if (cmp(aTHX_ *f1, *f2) <= 0) { | |
326 | q = f2; b = f1; t = l1; | |
327 | sense = -1; | |
328 | } else { | |
329 | q = f1; b = f2; t = l2; | |
330 | sense = 0; | |
331 | } | |
332 | ||
333 | ||
334 | /* ramp up | |
335 | ** | |
336 | ** Leave t at something strictly | |
337 | ** greater than q (or at the end of the list), | |
338 | ** and b at something strictly less than q. | |
339 | */ | |
340 | for (i = 1, run = 0 ;;) { | |
341 | if ((p = PINDEX(b, i)) >= t) { | |
342 | /* off the end */ | |
343 | if (((p = PINDEX(t, -1)) > b) && | |
344 | (cmp(aTHX_ *q, *p) <= sense)) | |
345 | t = p; | |
346 | else b = p; | |
347 | break; | |
348 | } else if (cmp(aTHX_ *q, *p) <= sense) { | |
349 | t = p; | |
350 | break; | |
351 | } else b = p; | |
352 | if (++run >= RTHRESH) i += i; | |
353 | } | |
354 | ||
355 | ||
356 | /* q is known to follow b and must be inserted before t. | |
357 | ** Increment b, so the range of possibilities is [b,t). | |
358 | ** Round binary split down, to favor early appearance. | |
359 | ** Adjust b and t until q belongs just before t. | |
360 | */ | |
361 | ||
362 | b++; | |
363 | while (b < t) { | |
364 | p = PINDEX(b, (PNELEM(b, t) - 1) / 2); | |
365 | if (cmp(aTHX_ *q, *p) <= sense) { | |
366 | t = p; | |
367 | } else b = p + 1; | |
368 | } | |
369 | ||
370 | ||
371 | /* Copy all the strictly low elements */ | |
372 | ||
373 | if (q == f1) { | |
374 | FROMTOUPTO(f2, tp2, t); | |
375 | *tp2++ = *f1++; | |
376 | } else { | |
377 | FROMTOUPTO(f1, tp2, t); | |
378 | *tp2++ = *f2++; | |
379 | } | |
380 | } | |
381 | ||
382 | ||
383 | /* Run out remaining list */ | |
384 | if (f1 == l1) { | |
385 | if (f2 < l2) FROMTOUPTO(f2, tp2, l2); | |
386 | } else FROMTOUPTO(f1, tp2, l1); | |
387 | p1 = NEXT(p1) = POTHER(tp2, list2, list1); | |
388 | } | |
389 | t = list1; | |
390 | list1 = list2; | |
391 | list2 = t; | |
392 | last = PINDEX(list2, nmemb); | |
393 | } | |
394 | if (base == list2) { | |
395 | last = PINDEX(list1, nmemb); | |
396 | FROMTOUPTO(list1, list2, last); | |
397 | } | |
398 | Safefree(aux); | |
399 | return; | |
400 | } | |
401 | ||
402 | /* | |
403 | * The quicksort implementation was derived from source code contributed | |
404 | * by Tom Horsley. | |
405 | * | |
406 | * NOTE: this code was derived from Tom Horsley's qsort replacement | |
407 | * and should not be confused with the original code. | |
408 | */ | |
409 | ||
410 | /* Copyright (C) Tom Horsley, 1997. All rights reserved. | |
411 | ||
412 | Permission granted to distribute under the same terms as perl which are | |
413 | (briefly): | |
414 | ||
415 | This program is free software; you can redistribute it and/or modify | |
416 | it under the terms of either: | |
417 | ||
418 | a) the GNU General Public License as published by the Free | |
419 | Software Foundation; either version 1, or (at your option) any | |
420 | later version, or | |
421 | ||
422 | b) the "Artistic License" which comes with this Kit. | |
423 | ||
424 | Details on the perl license can be found in the perl source code which | |
425 | may be located via the www.perl.com web page. | |
426 | ||
427 | This is the most wonderfulest possible qsort I can come up with (and | |
428 | still be mostly portable) My (limited) tests indicate it consistently | |
429 | does about 20% fewer calls to compare than does the qsort in the Visual | |
430 | C++ library, other vendors may vary. | |
431 | ||
432 | Some of the ideas in here can be found in "Algorithms" by Sedgewick, | |
433 | others I invented myself (or more likely re-invented since they seemed | |
434 | pretty obvious once I watched the algorithm operate for a while). | |
435 | ||
436 | Most of this code was written while watching the Marlins sweep the Giants | |
437 | in the 1997 National League Playoffs - no Braves fans allowed to use this | |
438 | code (just kidding :-). | |
439 | ||
440 | I realize that if I wanted to be true to the perl tradition, the only | |
441 | comment in this file would be something like: | |
442 | ||
443 | ...they shuffled back towards the rear of the line. 'No, not at the | |
444 | rear!' the slave-driver shouted. 'Three files up. And stay there... | |
445 | ||
446 | However, I really needed to violate that tradition just so I could keep | |
447 | track of what happens myself, not to mention some poor fool trying to | |
448 | understand this years from now :-). | |
449 | */ | |
450 | ||
451 | /* ********************************************************** Configuration */ | |
452 | ||
453 | #ifndef QSORT_ORDER_GUESS | |
454 | #define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */ | |
455 | #endif | |
456 | ||
457 | /* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for | |
458 | future processing - a good max upper bound is log base 2 of memory size | |
459 | (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can | |
460 | safely be smaller than that since the program is taking up some space and | |
461 | most operating systems only let you grab some subset of contiguous | |
462 | memory (not to mention that you are normally sorting data larger than | |
463 | 1 byte element size :-). | |
464 | */ | |
465 | #ifndef QSORT_MAX_STACK | |
466 | #define QSORT_MAX_STACK 32 | |
467 | #endif | |
468 | ||
469 | /* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort. | |
470 | Anything bigger and we use qsort. If you make this too small, the qsort | |
471 | will probably break (or become less efficient), because it doesn't expect | |
472 | the middle element of a partition to be the same as the right or left - | |
473 | you have been warned). | |
474 | */ | |
475 | #ifndef QSORT_BREAK_EVEN | |
476 | #define QSORT_BREAK_EVEN 6 | |
477 | #endif | |
478 | ||
479 | /* ************************************************************* Data Types */ | |
480 | ||
481 | /* hold left and right index values of a partition waiting to be sorted (the | |
482 | partition includes both left and right - right is NOT one past the end or | |
483 | anything like that). | |
484 | */ | |
485 | struct partition_stack_entry { | |
486 | int left; | |
487 | int right; | |
488 | #ifdef QSORT_ORDER_GUESS | |
489 | int qsort_break_even; | |
490 | #endif | |
491 | }; | |
492 | ||
493 | /* ******************************************************* Shorthand Macros */ | |
494 | ||
495 | /* Note that these macros will be used from inside the qsort function where | |
496 | we happen to know that the variable 'elt_size' contains the size of an | |
497 | array element and the variable 'temp' points to enough space to hold a | |
498 | temp element and the variable 'array' points to the array being sorted | |
499 | and 'compare' is the pointer to the compare routine. | |
500 | ||
501 | Also note that there are very many highly architecture specific ways | |
502 | these might be sped up, but this is simply the most generally portable | |
503 | code I could think of. | |
504 | */ | |
505 | ||
506 | /* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2 | |
507 | */ | |
508 | #define qsort_cmp(elt1, elt2) \ | |
509 | ((*compare)(aTHX_ array[elt1], array[elt2])) | |
510 | ||
511 | #ifdef QSORT_ORDER_GUESS | |
512 | #define QSORT_NOTICE_SWAP swapped++; | |
513 | #else | |
514 | #define QSORT_NOTICE_SWAP | |
515 | #endif | |
516 | ||
517 | /* swaps contents of array elements elt1, elt2. | |
518 | */ | |
519 | #define qsort_swap(elt1, elt2) \ | |
520 | STMT_START { \ | |
521 | QSORT_NOTICE_SWAP \ | |
522 | temp = array[elt1]; \ | |
523 | array[elt1] = array[elt2]; \ | |
524 | array[elt2] = temp; \ | |
525 | } STMT_END | |
526 | ||
527 | /* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets | |
528 | elt3 and elt3 gets elt1. | |
529 | */ | |
530 | #define qsort_rotate(elt1, elt2, elt3) \ | |
531 | STMT_START { \ | |
532 | QSORT_NOTICE_SWAP \ | |
533 | temp = array[elt1]; \ | |
534 | array[elt1] = array[elt2]; \ | |
535 | array[elt2] = array[elt3]; \ | |
536 | array[elt3] = temp; \ | |
537 | } STMT_END | |
538 | ||
539 | /* ************************************************************ Debug stuff */ | |
540 | ||
541 | #ifdef QSORT_DEBUG | |
542 | ||
543 | static void | |
544 | break_here() | |
545 | { | |
546 | return; /* good place to set a breakpoint */ | |
547 | } | |
548 | ||
549 | #define qsort_assert(t) (void)( (t) || (break_here(), 0) ) | |
550 | ||
551 | static void | |
552 | doqsort_all_asserts( | |
553 | void * array, | |
554 | size_t num_elts, | |
555 | size_t elt_size, | |
556 | int (*compare)(const void * elt1, const void * elt2), | |
557 | int pc_left, int pc_right, int u_left, int u_right) | |
558 | { | |
559 | int i; | |
560 | ||
561 | qsort_assert(pc_left <= pc_right); | |
562 | qsort_assert(u_right < pc_left); | |
563 | qsort_assert(pc_right < u_left); | |
564 | for (i = u_right + 1; i < pc_left; ++i) { | |
565 | qsort_assert(qsort_cmp(i, pc_left) < 0); | |
566 | } | |
567 | for (i = pc_left; i < pc_right; ++i) { | |
568 | qsort_assert(qsort_cmp(i, pc_right) == 0); | |
569 | } | |
570 | for (i = pc_right + 1; i < u_left; ++i) { | |
571 | qsort_assert(qsort_cmp(pc_right, i) < 0); | |
572 | } | |
573 | } | |
574 | ||
575 | #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \ | |
576 | doqsort_all_asserts(array, num_elts, elt_size, compare, \ | |
577 | PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) | |
578 | ||
579 | #else | |
580 | ||
581 | #define qsort_assert(t) ((void)0) | |
582 | ||
583 | #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0) | |
584 | ||
585 | #endif | |
586 | ||
587 | /* ****************************************************************** qsort */ | |
588 | ||
589 | STATIC void /* the standard unstable (u) quicksort (qsort) */ | |
590 | S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare) | |
591 | { | |
592 | register SV * temp; | |
593 | ||
594 | struct partition_stack_entry partition_stack[QSORT_MAX_STACK]; | |
595 | int next_stack_entry = 0; | |
596 | ||
597 | int part_left; | |
598 | int part_right; | |
599 | #ifdef QSORT_ORDER_GUESS | |
600 | int qsort_break_even; | |
601 | int swapped; | |
602 | #endif | |
603 | ||
604 | /* Make sure we actually have work to do. | |
605 | */ | |
606 | if (num_elts <= 1) { | |
607 | return; | |
608 | } | |
609 | ||
610 | /* Setup the initial partition definition and fall into the sorting loop | |
611 | */ | |
612 | part_left = 0; | |
613 | part_right = (int)(num_elts - 1); | |
614 | #ifdef QSORT_ORDER_GUESS | |
615 | qsort_break_even = QSORT_BREAK_EVEN; | |
616 | #else | |
617 | #define qsort_break_even QSORT_BREAK_EVEN | |
618 | #endif | |
619 | for ( ; ; ) { | |
620 | if ((part_right - part_left) >= qsort_break_even) { | |
621 | /* OK, this is gonna get hairy, so lets try to document all the | |
622 | concepts and abbreviations and variables and what they keep | |
623 | track of: | |
624 | ||
625 | pc: pivot chunk - the set of array elements we accumulate in the | |
626 | middle of the partition, all equal in value to the original | |
627 | pivot element selected. The pc is defined by: | |
628 | ||
629 | pc_left - the leftmost array index of the pc | |
630 | pc_right - the rightmost array index of the pc | |
631 | ||
632 | we start with pc_left == pc_right and only one element | |
633 | in the pivot chunk (but it can grow during the scan). | |
634 | ||
635 | u: uncompared elements - the set of elements in the partition | |
636 | we have not yet compared to the pivot value. There are two | |
637 | uncompared sets during the scan - one to the left of the pc | |
638 | and one to the right. | |
639 | ||
640 | u_right - the rightmost index of the left side's uncompared set | |
641 | u_left - the leftmost index of the right side's uncompared set | |
642 | ||
643 | The leftmost index of the left sides's uncompared set | |
644 | doesn't need its own variable because it is always defined | |
645 | by the leftmost edge of the whole partition (part_left). The | |
646 | same goes for the rightmost edge of the right partition | |
647 | (part_right). | |
648 | ||
649 | We know there are no uncompared elements on the left once we | |
650 | get u_right < part_left and no uncompared elements on the | |
651 | right once u_left > part_right. When both these conditions | |
652 | are met, we have completed the scan of the partition. | |
653 | ||
654 | Any elements which are between the pivot chunk and the | |
655 | uncompared elements should be less than the pivot value on | |
656 | the left side and greater than the pivot value on the right | |
657 | side (in fact, the goal of the whole algorithm is to arrange | |
658 | for that to be true and make the groups of less-than and | |
659 | greater-then elements into new partitions to sort again). | |
660 | ||
661 | As you marvel at the complexity of the code and wonder why it | |
662 | has to be so confusing. Consider some of the things this level | |
663 | of confusion brings: | |
664 | ||
665 | Once I do a compare, I squeeze every ounce of juice out of it. I | |
666 | never do compare calls I don't have to do, and I certainly never | |
667 | do redundant calls. | |
668 | ||
669 | I also never swap any elements unless I can prove there is a | |
670 | good reason. Many sort algorithms will swap a known value with | |
671 | an uncompared value just to get things in the right place (or | |
672 | avoid complexity :-), but that uncompared value, once it gets | |
673 | compared, may then have to be swapped again. A lot of the | |
674 | complexity of this code is due to the fact that it never swaps | |
675 | anything except compared values, and it only swaps them when the | |
676 | compare shows they are out of position. | |
677 | */ | |
678 | int pc_left, pc_right; | |
679 | int u_right, u_left; | |
680 | ||
681 | int s; | |
682 | ||
683 | pc_left = ((part_left + part_right) / 2); | |
684 | pc_right = pc_left; | |
685 | u_right = pc_left - 1; | |
686 | u_left = pc_right + 1; | |
687 | ||
688 | /* Qsort works best when the pivot value is also the median value | |
689 | in the partition (unfortunately you can't find the median value | |
690 | without first sorting :-), so to give the algorithm a helping | |
691 | hand, we pick 3 elements and sort them and use the median value | |
692 | of that tiny set as the pivot value. | |
693 | ||
694 | Some versions of qsort like to use the left middle and right as | |
695 | the 3 elements to sort so they can insure the ends of the | |
696 | partition will contain values which will stop the scan in the | |
697 | compare loop, but when you have to call an arbitrarily complex | |
698 | routine to do a compare, its really better to just keep track of | |
699 | array index values to know when you hit the edge of the | |
700 | partition and avoid the extra compare. An even better reason to | |
701 | avoid using a compare call is the fact that you can drop off the | |
702 | edge of the array if someone foolishly provides you with an | |
703 | unstable compare function that doesn't always provide consistent | |
704 | results. | |
705 | ||
706 | So, since it is simpler for us to compare the three adjacent | |
707 | elements in the middle of the partition, those are the ones we | |
708 | pick here (conveniently pointed at by u_right, pc_left, and | |
709 | u_left). The values of the left, center, and right elements | |
710 | are refered to as l c and r in the following comments. | |
711 | */ | |
712 | ||
713 | #ifdef QSORT_ORDER_GUESS | |
714 | swapped = 0; | |
715 | #endif | |
716 | s = qsort_cmp(u_right, pc_left); | |
717 | if (s < 0) { | |
718 | /* l < c */ | |
719 | s = qsort_cmp(pc_left, u_left); | |
720 | /* if l < c, c < r - already in order - nothing to do */ | |
721 | if (s == 0) { | |
722 | /* l < c, c == r - already in order, pc grows */ | |
723 | ++pc_right; | |
724 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
725 | } else if (s > 0) { | |
726 | /* l < c, c > r - need to know more */ | |
727 | s = qsort_cmp(u_right, u_left); | |
728 | if (s < 0) { | |
729 | /* l < c, c > r, l < r - swap c & r to get ordered */ | |
730 | qsort_swap(pc_left, u_left); | |
731 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
732 | } else if (s == 0) { | |
733 | /* l < c, c > r, l == r - swap c&r, grow pc */ | |
734 | qsort_swap(pc_left, u_left); | |
735 | --pc_left; | |
736 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
737 | } else { | |
738 | /* l < c, c > r, l > r - make lcr into rlc to get ordered */ | |
739 | qsort_rotate(pc_left, u_right, u_left); | |
740 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
741 | } | |
742 | } | |
743 | } else if (s == 0) { | |
744 | /* l == c */ | |
745 | s = qsort_cmp(pc_left, u_left); | |
746 | if (s < 0) { | |
747 | /* l == c, c < r - already in order, grow pc */ | |
748 | --pc_left; | |
749 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
750 | } else if (s == 0) { | |
751 | /* l == c, c == r - already in order, grow pc both ways */ | |
752 | --pc_left; | |
753 | ++pc_right; | |
754 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
755 | } else { | |
756 | /* l == c, c > r - swap l & r, grow pc */ | |
757 | qsort_swap(u_right, u_left); | |
758 | ++pc_right; | |
759 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
760 | } | |
761 | } else { | |
762 | /* l > c */ | |
763 | s = qsort_cmp(pc_left, u_left); | |
764 | if (s < 0) { | |
765 | /* l > c, c < r - need to know more */ | |
766 | s = qsort_cmp(u_right, u_left); | |
767 | if (s < 0) { | |
768 | /* l > c, c < r, l < r - swap l & c to get ordered */ | |
769 | qsort_swap(u_right, pc_left); | |
770 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
771 | } else if (s == 0) { | |
772 | /* l > c, c < r, l == r - swap l & c, grow pc */ | |
773 | qsort_swap(u_right, pc_left); | |
774 | ++pc_right; | |
775 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
776 | } else { | |
777 | /* l > c, c < r, l > r - rotate lcr into crl to order */ | |
778 | qsort_rotate(u_right, pc_left, u_left); | |
779 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
780 | } | |
781 | } else if (s == 0) { | |
782 | /* l > c, c == r - swap ends, grow pc */ | |
783 | qsort_swap(u_right, u_left); | |
784 | --pc_left; | |
785 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
786 | } else { | |
787 | /* l > c, c > r - swap ends to get in order */ | |
788 | qsort_swap(u_right, u_left); | |
789 | qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); | |
790 | } | |
791 | } | |
792 | /* We now know the 3 middle elements have been compared and | |
793 | arranged in the desired order, so we can shrink the uncompared | |
794 | sets on both sides | |
795 | */ | |
796 | --u_right; | |
797 | ++u_left; | |
798 | qsort_all_asserts(pc_left, pc_right, u_left, u_right); | |
799 | ||
800 | /* The above massive nested if was the simple part :-). We now have | |
801 | the middle 3 elements ordered and we need to scan through the | |
802 | uncompared sets on either side, swapping elements that are on | |
803 | the wrong side or simply shuffling equal elements around to get | |
804 | all equal elements into the pivot chunk. | |
805 | */ | |
806 | ||
807 | for ( ; ; ) { | |
808 | int still_work_on_left; | |
809 | int still_work_on_right; | |
810 | ||
811 | /* Scan the uncompared values on the left. If I find a value | |
812 | equal to the pivot value, move it over so it is adjacent to | |
813 | the pivot chunk and expand the pivot chunk. If I find a value | |
814 | less than the pivot value, then just leave it - its already | |
815 | on the correct side of the partition. If I find a greater | |
816 | value, then stop the scan. | |
817 | */ | |
818 | while ((still_work_on_left = (u_right >= part_left))) { | |
819 | s = qsort_cmp(u_right, pc_left); | |
820 | if (s < 0) { | |
821 | --u_right; | |
822 | } else if (s == 0) { | |
823 | --pc_left; | |
824 | if (pc_left != u_right) { | |
825 | qsort_swap(u_right, pc_left); | |
826 | } | |
827 | --u_right; | |
828 | } else { | |
829 | break; | |
830 | } | |
831 | qsort_assert(u_right < pc_left); | |
832 | qsort_assert(pc_left <= pc_right); | |
833 | qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0); | |
834 | qsort_assert(qsort_cmp(pc_left, pc_right) == 0); | |
835 | } | |
836 | ||
837 | /* Do a mirror image scan of uncompared values on the right | |
838 | */ | |
839 | while ((still_work_on_right = (u_left <= part_right))) { | |
840 | s = qsort_cmp(pc_right, u_left); | |
841 | if (s < 0) { | |
842 | ++u_left; | |
843 | } else if (s == 0) { | |
844 | ++pc_right; | |
845 | if (pc_right != u_left) { | |
846 | qsort_swap(pc_right, u_left); | |
847 | } | |
848 | ++u_left; | |
849 | } else { | |
850 | break; | |
851 | } | |
852 | qsort_assert(u_left > pc_right); | |
853 | qsort_assert(pc_left <= pc_right); | |
854 | qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0); | |
855 | qsort_assert(qsort_cmp(pc_left, pc_right) == 0); | |
856 | } | |
857 | ||
858 | if (still_work_on_left) { | |
859 | /* I know I have a value on the left side which needs to be | |
860 | on the right side, but I need to know more to decide | |
861 | exactly the best thing to do with it. | |
862 | */ | |
863 | if (still_work_on_right) { | |
864 | /* I know I have values on both side which are out of | |
865 | position. This is a big win because I kill two birds | |
866 | with one swap (so to speak). I can advance the | |
867 | uncompared pointers on both sides after swapping both | |
868 | of them into the right place. | |
869 | */ | |
870 | qsort_swap(u_right, u_left); | |
871 | --u_right; | |
872 | ++u_left; | |
873 | qsort_all_asserts(pc_left, pc_right, u_left, u_right); | |
874 | } else { | |
875 | /* I have an out of position value on the left, but the | |
876 | right is fully scanned, so I "slide" the pivot chunk | |
877 | and any less-than values left one to make room for the | |
878 | greater value over on the right. If the out of position | |
879 | value is immediately adjacent to the pivot chunk (there | |
880 | are no less-than values), I can do that with a swap, | |
881 | otherwise, I have to rotate one of the less than values | |
882 | into the former position of the out of position value | |
883 | and the right end of the pivot chunk into the left end | |
884 | (got all that?). | |
885 | */ | |
886 | --pc_left; | |
887 | if (pc_left == u_right) { | |
888 | qsort_swap(u_right, pc_right); | |
889 | qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1); | |
890 | } else { | |
891 | qsort_rotate(u_right, pc_left, pc_right); | |
892 | qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1); | |
893 | } | |
894 | --pc_right; | |
895 | --u_right; | |
896 | } | |
897 | } else if (still_work_on_right) { | |
898 | /* Mirror image of complex case above: I have an out of | |
899 | position value on the right, but the left is fully | |
900 | scanned, so I need to shuffle things around to make room | |
901 | for the right value on the left. | |
902 | */ | |
903 | ++pc_right; | |
904 | if (pc_right == u_left) { | |
905 | qsort_swap(u_left, pc_left); | |
906 | qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right); | |
907 | } else { | |
908 | qsort_rotate(pc_right, pc_left, u_left); | |
909 | qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right); | |
910 | } | |
911 | ++pc_left; | |
912 | ++u_left; | |
913 | } else { | |
914 | /* No more scanning required on either side of partition, | |
915 | break out of loop and figure out next set of partitions | |
916 | */ | |
917 | break; | |
918 | } | |
919 | } | |
920 | ||
921 | /* The elements in the pivot chunk are now in the right place. They | |
922 | will never move or be compared again. All I have to do is decide | |
923 | what to do with the stuff to the left and right of the pivot | |
924 | chunk. | |
925 | ||
926 | Notes on the QSORT_ORDER_GUESS ifdef code: | |
927 | ||
928 | 1. If I just built these partitions without swapping any (or | |
929 | very many) elements, there is a chance that the elements are | |
930 | already ordered properly (being properly ordered will | |
931 | certainly result in no swapping, but the converse can't be | |
932 | proved :-). | |
933 | ||
934 | 2. A (properly written) insertion sort will run faster on | |
935 | already ordered data than qsort will. | |
936 | ||
937 | 3. Perhaps there is some way to make a good guess about | |
938 | switching to an insertion sort earlier than partition size 6 | |
939 | (for instance - we could save the partition size on the stack | |
940 | and increase the size each time we find we didn't swap, thus | |
941 | switching to insertion sort earlier for partitions with a | |
942 | history of not swapping). | |
943 | ||
944 | 4. Naturally, if I just switch right away, it will make | |
945 | artificial benchmarks with pure ascending (or descending) | |
946 | data look really good, but is that a good reason in general? | |
947 | Hard to say... | |
948 | */ | |
949 | ||
950 | #ifdef QSORT_ORDER_GUESS | |
951 | if (swapped < 3) { | |
952 | #if QSORT_ORDER_GUESS == 1 | |
953 | qsort_break_even = (part_right - part_left) + 1; | |
954 | #endif | |
955 | #if QSORT_ORDER_GUESS == 2 | |
956 | qsort_break_even *= 2; | |
957 | #endif | |
958 | #if QSORT_ORDER_GUESS == 3 | |
959 | int prev_break = qsort_break_even; | |
960 | qsort_break_even *= qsort_break_even; | |
961 | if (qsort_break_even < prev_break) { | |
962 | qsort_break_even = (part_right - part_left) + 1; | |
963 | } | |
964 | #endif | |
965 | } else { | |
966 | qsort_break_even = QSORT_BREAK_EVEN; | |
967 | } | |
968 | #endif | |
969 | ||
970 | if (part_left < pc_left) { | |
971 | /* There are elements on the left which need more processing. | |
972 | Check the right as well before deciding what to do. | |
973 | */ | |
974 | if (pc_right < part_right) { | |
975 | /* We have two partitions to be sorted. Stack the biggest one | |
976 | and process the smallest one on the next iteration. This | |
977 | minimizes the stack height by insuring that any additional | |
978 | stack entries must come from the smallest partition which | |
979 | (because it is smallest) will have the fewest | |
980 | opportunities to generate additional stack entries. | |
981 | */ | |
982 | if ((part_right - pc_right) > (pc_left - part_left)) { | |
983 | /* stack the right partition, process the left */ | |
984 | partition_stack[next_stack_entry].left = pc_right + 1; | |
985 | partition_stack[next_stack_entry].right = part_right; | |
986 | #ifdef QSORT_ORDER_GUESS | |
987 | partition_stack[next_stack_entry].qsort_break_even = qsort_break_even; | |
988 | #endif | |
989 | part_right = pc_left - 1; | |
990 | } else { | |
991 | /* stack the left partition, process the right */ | |
992 | partition_stack[next_stack_entry].left = part_left; | |
993 | partition_stack[next_stack_entry].right = pc_left - 1; | |
994 | #ifdef QSORT_ORDER_GUESS | |
995 | partition_stack[next_stack_entry].qsort_break_even = qsort_break_even; | |
996 | #endif | |
997 | part_left = pc_right + 1; | |
998 | } | |
999 | qsort_assert(next_stack_entry < QSORT_MAX_STACK); | |
1000 | ++next_stack_entry; | |
1001 | } else { | |
1002 | /* The elements on the left are the only remaining elements | |
1003 | that need sorting, arrange for them to be processed as the | |
1004 | next partition. | |
1005 | */ | |
1006 | part_right = pc_left - 1; | |
1007 | } | |
1008 | } else if (pc_right < part_right) { | |
1009 | /* There is only one chunk on the right to be sorted, make it | |
1010 | the new partition and loop back around. | |
1011 | */ | |
1012 | part_left = pc_right + 1; | |
1013 | } else { | |
1014 | /* This whole partition wound up in the pivot chunk, so | |
1015 | we need to get a new partition off the stack. | |
1016 | */ | |
1017 | if (next_stack_entry == 0) { | |
1018 | /* the stack is empty - we are done */ | |
1019 | break; | |
1020 | } | |
1021 | --next_stack_entry; | |
1022 | part_left = partition_stack[next_stack_entry].left; | |
1023 | part_right = partition_stack[next_stack_entry].right; | |
1024 | #ifdef QSORT_ORDER_GUESS | |
1025 | qsort_break_even = partition_stack[next_stack_entry].qsort_break_even; | |
1026 | #endif | |
1027 | } | |
1028 | } else { | |
1029 | /* This partition is too small to fool with qsort complexity, just | |
1030 | do an ordinary insertion sort to minimize overhead. | |
1031 | */ | |
1032 | int i; | |
1033 | /* Assume 1st element is in right place already, and start checking | |
1034 | at 2nd element to see where it should be inserted. | |
1035 | */ | |
1036 | for (i = part_left + 1; i <= part_right; ++i) { | |
1037 | int j; | |
1038 | /* Scan (backwards - just in case 'i' is already in right place) | |
1039 | through the elements already sorted to see if the ith element | |
1040 | belongs ahead of one of them. | |
1041 | */ | |
1042 | for (j = i - 1; j >= part_left; --j) { | |
1043 | if (qsort_cmp(i, j) >= 0) { | |
1044 | /* i belongs right after j | |
1045 | */ | |
1046 | break; | |
1047 | } | |
1048 | } | |
1049 | ++j; | |
1050 | if (j != i) { | |
1051 | /* Looks like we really need to move some things | |
1052 | */ | |
1053 | int k; | |
1054 | temp = array[i]; | |
1055 | for (k = i - 1; k >= j; --k) | |
1056 | array[k + 1] = array[k]; | |
1057 | array[j] = temp; | |
1058 | } | |
1059 | } | |
1060 | ||
1061 | /* That partition is now sorted, grab the next one, or get out | |
1062 | of the loop if there aren't any more. | |
1063 | */ | |
1064 | ||
1065 | if (next_stack_entry == 0) { | |
1066 | /* the stack is empty - we are done */ | |
1067 | break; | |
1068 | } | |
1069 | --next_stack_entry; | |
1070 | part_left = partition_stack[next_stack_entry].left; | |
1071 | part_right = partition_stack[next_stack_entry].right; | |
1072 | #ifdef QSORT_ORDER_GUESS | |
1073 | qsort_break_even = partition_stack[next_stack_entry].qsort_break_even; | |
1074 | #endif | |
1075 | } | |
1076 | } | |
1077 | ||
1078 | /* Believe it or not, the array is sorted at this point! */ | |
1079 | } | |
1080 | ||
1081 | #ifndef SMALLSORT | |
1082 | #define SMALLSORT (200) | |
1083 | #endif | |
1084 | ||
1085 | /* Stabilize what is, presumably, an otherwise unstable sort method. | |
1086 | * We do that by allocating (or having on hand) an array of pointers | |
1087 | * that is the same size as the original array of elements to be sorted. | |
1088 | * We initialize this parallel array with the addresses of the original | |
1089 | * array elements. This indirection can make you crazy. | |
1090 | * Some pictures can help. After initializing, we have | |
1091 | * | |
1092 | * indir list1 | |
1093 | * +----+ +----+ | |
1094 | * | | --------------> | | ------> first element to be sorted | |
1095 | * +----+ +----+ | |
1096 | * | | --------------> | | ------> second element to be sorted | |
1097 | * +----+ +----+ | |
1098 | * | | --------------> | | ------> third element to be sorted | |
1099 | * +----+ +----+ | |
1100 | * ... | |
1101 | * +----+ +----+ | |
1102 | * | | --------------> | | ------> n-1st element to be sorted | |
1103 | * +----+ +----+ | |
1104 | * | | --------------> | | ------> n-th element to be sorted | |
1105 | * +----+ +----+ | |
1106 | * | |
1107 | * During the sort phase, we leave the elements of list1 where they are, | |
1108 | * and sort the pointers in the indirect array in the same order determined | |
1109 | * by the original comparison routine on the elements pointed to. | |
1110 | * Because we don't move the elements of list1 around through | |
1111 | * this phase, we can break ties on elements that compare equal | |
1112 | * using their address in the list1 array, ensuring stabilty. | |
1113 | * This leaves us with something looking like | |
1114 | * | |
1115 | * indir list1 | |
1116 | * +----+ +----+ | |
1117 | * | | --+ +---> | | ------> first element to be sorted | |
1118 | * +----+ | | +----+ | |
1119 | * | | --|-------|---> | | ------> second element to be sorted | |
1120 | * +----+ | | +----+ | |
1121 | * | | --|-------+ +-> | | ------> third element to be sorted | |
1122 | * +----+ | | +----+ | |
1123 | * ... | |
1124 | * +----+ | | | | +----+ | |
1125 | * | | ---|-+ | +--> | | ------> n-1st element to be sorted | |
1126 | * +----+ | | +----+ | |
1127 | * | | ---+ +----> | | ------> n-th element to be sorted | |
1128 | * +----+ +----+ | |
1129 | * | |
1130 | * where the i-th element of the indirect array points to the element | |
1131 | * that should be i-th in the sorted array. After the sort phase, | |
1132 | * we have to put the elements of list1 into the places | |
1133 | * dictated by the indirect array. | |
1134 | */ | |
1135 | ||
1136 | static SVCOMPARE_t RealCmp; | |
1137 | ||
1138 | static I32 | |
1139 | cmpindir(pTHX_ gptr a, gptr b) | |
1140 | { | |
1141 | I32 sense; | |
1142 | gptr *ap = (gptr *)a; | |
1143 | gptr *bp = (gptr *)b; | |
1144 | ||
1145 | if ((sense = RealCmp(aTHX_ *ap, *bp)) == 0) | |
1146 | sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0); | |
1147 | return sense; | |
1148 | } | |
1149 | ||
1150 | STATIC void | |
1151 | S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp) | |
1152 | { | |
1153 | SV **hintsvp; | |
1154 | ||
1155 | if (SORTHINTS(hintsvp) & HINT_SORT_FAST) | |
1156 | S_qsortsvu(aTHX_ list1, nmemb, cmp); | |
1157 | else { | |
1158 | register gptr **pp, *q; | |
1159 | register size_t n, j, i; | |
1160 | gptr *small[SMALLSORT], **indir, tmp; | |
1161 | SVCOMPARE_t savecmp; | |
1162 | if (nmemb <= 1) return; /* sorted trivially */ | |
1163 | ||
1164 | /* Small arrays can use the stack, big ones must be allocated */ | |
1165 | if (nmemb <= SMALLSORT) indir = small; | |
1166 | else { New(1799, indir, nmemb, gptr *); } | |
1167 | ||
1168 | /* Copy pointers to original array elements into indirect array */ | |
1169 | for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++; | |
1170 | ||
1171 | savecmp = RealCmp; /* Save current comparison routine, if any */ | |
1172 | RealCmp = cmp; /* Put comparison routine where cmpindir can find it */ | |
1173 | ||
1174 | /* sort, with indirection */ | |
1175 | S_qsortsvu(aTHX_ (gptr *)indir, nmemb, cmpindir); | |
1176 | ||
1177 | pp = indir; | |
1178 | q = list1; | |
1179 | for (n = nmemb; n--; ) { | |
1180 | /* Assert A: all elements of q with index > n are already | |
1181 | * in place. This is vacuosly true at the start, and we | |
1182 | * put element n where it belongs below (if it wasn't | |
1183 | * already where it belonged). Assert B: we only move | |
1184 | * elements that aren't where they belong, | |
1185 | * so, by A, we never tamper with elements above n. | |
1186 | */ | |
1187 | j = pp[n] - q; /* This sets j so that q[j] is | |
1188 | * at pp[n]. *pp[j] belongs in | |
1189 | * q[j], by construction. | |
1190 | */ | |
1191 | if (n != j) { /* all's well if n == j */ | |
1192 | tmp = q[j]; /* save what's in q[j] */ | |
1193 | do { | |
1194 | q[j] = *pp[j]; /* put *pp[j] where it belongs */ | |
1195 | i = pp[j] - q; /* the index in q of the element | |
1196 | * just moved */ | |
1197 | pp[j] = q + j; /* this is ok now */ | |
1198 | } while ((j = i) != n); | |
1199 | /* There are only finitely many (nmemb) addresses | |
1200 | * in the pp array. | |
1201 | * So we must eventually revisit an index we saw before. | |
1202 | * Suppose the first revisited index is k != n. | |
1203 | * An index is visited because something else belongs there. | |
1204 | * If we visit k twice, then two different elements must | |
1205 | * belong in the same place, which cannot be. | |
1206 | * So j must get back to n, the loop terminates, | |
1207 | * and we put the saved element where it belongs. | |
1208 | */ | |
1209 | q[n] = tmp; /* put what belongs into | |
1210 | * the n-th element */ | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | /* free iff allocated */ | |
1215 | if (indir != small) { Safefree(indir); } | |
1216 | /* restore prevailing comparison routine */ | |
1217 | RealCmp = savecmp; | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | /* | |
1222 | =for apidoc sortsv | |
1223 | ||
1224 | Sort an array. Here is an example: | |
1225 | ||
1226 | sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale); | |
1227 | ||
1228 | =cut | |
1229 | */ | |
1230 | ||
1231 | void | |
1232 | Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) | |
1233 | { | |
1234 | void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) = | |
1235 | S_mergesortsv; | |
1236 | SV **hintsvp; | |
1237 | I32 hints; | |
1238 | ||
1239 | if ((hints = SORTHINTS(hintsvp))) { | |
1240 | if (hints & HINT_SORT_QUICKSORT) | |
1241 | sortsvp = S_qsortsv; | |
1242 | else { | |
1243 | if (hints & HINT_SORT_MERGESORT) | |
1244 | sortsvp = S_mergesortsv; | |
1245 | else | |
1246 | sortsvp = S_mergesortsv; | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | sortsvp(aTHX_ array, nmemb, cmp); | |
1251 | } | |
1252 | ||
1253 | PP(pp_sort) | |
1254 | { | |
1255 | dSP; dMARK; dORIGMARK; | |
1256 | register SV **up; | |
1257 | SV **myorigmark = ORIGMARK; | |
1258 | register I32 max; | |
1259 | HV *stash; | |
1260 | GV *gv; | |
1261 | CV *cv = 0; | |
1262 | I32 gimme = GIMME; | |
1263 | OP* nextop = PL_op->op_next; | |
1264 | I32 overloading = 0; | |
1265 | bool hasargs = FALSE; | |
1266 | I32 is_xsub = 0; | |
1267 | ||
1268 | if (gimme != G_ARRAY) { | |
1269 | SP = MARK; | |
1270 | RETPUSHUNDEF; | |
1271 | } | |
1272 | ||
1273 | ENTER; | |
1274 | SAVEVPTR(PL_sortcop); | |
1275 | if (PL_op->op_flags & OPf_STACKED) { | |
1276 | if (PL_op->op_flags & OPf_SPECIAL) { | |
1277 | OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */ | |
1278 | kid = kUNOP->op_first; /* pass rv2gv */ | |
1279 | kid = kUNOP->op_first; /* pass leave */ | |
1280 | PL_sortcop = kid->op_next; | |
1281 | stash = CopSTASH(PL_curcop); | |
1282 | } | |
1283 | else { | |
1284 | cv = sv_2cv(*++MARK, &stash, &gv, 0); | |
1285 | if (cv && SvPOK(cv)) { | |
1286 | STRLEN n_a; | |
1287 | char *proto = SvPV((SV*)cv, n_a); | |
1288 | if (proto && strEQ(proto, "$$")) { | |
1289 | hasargs = TRUE; | |
1290 | } | |
1291 | } | |
1292 | if (!(cv && CvROOT(cv))) { | |
1293 | if (cv && CvXSUB(cv)) { | |
1294 | is_xsub = 1; | |
1295 | } | |
1296 | else if (gv) { | |
1297 | SV *tmpstr = sv_newmortal(); | |
1298 | gv_efullname3(tmpstr, gv, Nullch); | |
1299 | DIE(aTHX_ "Undefined sort subroutine \"%s\" called", | |
1300 | SvPVX(tmpstr)); | |
1301 | } | |
1302 | else { | |
1303 | DIE(aTHX_ "Undefined subroutine in sort"); | |
1304 | } | |
1305 | } | |
1306 | ||
1307 | if (is_xsub) | |
1308 | PL_sortcop = (OP*)cv; | |
1309 | else { | |
1310 | PL_sortcop = CvSTART(cv); | |
1311 | SAVEVPTR(CvROOT(cv)->op_ppaddr); | |
1312 | CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL]; | |
1313 | ||
1314 | SAVEVPTR(PL_curpad); | |
1315 | PL_curpad = AvARRAY((AV*)AvARRAY(CvPADLIST(cv))[1]); | |
1316 | } | |
1317 | } | |
1318 | } | |
1319 | else { | |
1320 | PL_sortcop = Nullop; | |
1321 | stash = CopSTASH(PL_curcop); | |
1322 | } | |
1323 | ||
1324 | up = myorigmark + 1; | |
1325 | while (MARK < SP) { /* This may or may not shift down one here. */ | |
1326 | /*SUPPRESS 560*/ | |
1327 | if ((*up = *++MARK)) { /* Weed out nulls. */ | |
1328 | SvTEMP_off(*up); | |
1329 | if (!PL_sortcop && !SvPOK(*up)) { | |
1330 | STRLEN n_a; | |
1331 | if (SvAMAGIC(*up)) | |
1332 | overloading = 1; | |
1333 | else | |
1334 | (void)sv_2pv(*up, &n_a); | |
1335 | } | |
1336 | up++; | |
1337 | } | |
1338 | } | |
1339 | max = --up - myorigmark; | |
1340 | if (PL_sortcop) { | |
1341 | if (max > 1) { | |
1342 | PERL_CONTEXT *cx; | |
1343 | SV** newsp; | |
1344 | bool oldcatch = CATCH_GET; | |
1345 | ||
1346 | SAVETMPS; | |
1347 | SAVEOP(); | |
1348 | ||
1349 | CATCH_SET(TRUE); | |
1350 | PUSHSTACKi(PERLSI_SORT); | |
1351 | if (!hasargs && !is_xsub) { | |
1352 | if (PL_sortstash != stash || !PL_firstgv || !PL_secondgv) { | |
1353 | SAVESPTR(PL_firstgv); | |
1354 | SAVESPTR(PL_secondgv); | |
1355 | PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV); | |
1356 | PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV); | |
1357 | PL_sortstash = stash; | |
1358 | } | |
1359 | #ifdef USE_5005THREADS | |
1360 | sv_lock((SV *)PL_firstgv); | |
1361 | sv_lock((SV *)PL_secondgv); | |
1362 | #endif | |
1363 | SAVESPTR(GvSV(PL_firstgv)); | |
1364 | SAVESPTR(GvSV(PL_secondgv)); | |
1365 | } | |
1366 | ||
1367 | PUSHBLOCK(cx, CXt_NULL, PL_stack_base); | |
1368 | if (!(PL_op->op_flags & OPf_SPECIAL)) { | |
1369 | cx->cx_type = CXt_SUB; | |
1370 | cx->blk_gimme = G_SCALAR; | |
1371 | PUSHSUB(cx); | |
1372 | if (!CvDEPTH(cv)) | |
1373 | (void)SvREFCNT_inc(cv); /* in preparation for POPSUB */ | |
1374 | } | |
1375 | PL_sortcxix = cxstack_ix; | |
1376 | ||
1377 | if (hasargs && !is_xsub) { | |
1378 | /* This is mostly copied from pp_entersub */ | |
1379 | AV *av = (AV*)PL_curpad[0]; | |
1380 | ||
1381 | #ifndef USE_5005THREADS | |
1382 | cx->blk_sub.savearray = GvAV(PL_defgv); | |
1383 | GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av); | |
1384 | #endif /* USE_5005THREADS */ | |
1385 | cx->blk_sub.oldcurpad = PL_curpad; | |
1386 | cx->blk_sub.argarray = av; | |
1387 | } | |
1388 | sortsv((myorigmark+1), max, | |
1389 | is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv); | |
1390 | ||
1391 | POPBLOCK(cx,PL_curpm); | |
1392 | PL_stack_sp = newsp; | |
1393 | POPSTACK; | |
1394 | CATCH_SET(oldcatch); | |
1395 | } | |
1396 | } | |
1397 | else { | |
1398 | if (max > 1) { | |
1399 | MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */ | |
1400 | sortsv(ORIGMARK+1, max, | |
1401 | (PL_op->op_private & OPpSORT_NUMERIC) | |
1402 | ? ( (PL_op->op_private & OPpSORT_INTEGER) | |
1403 | ? ( overloading ? amagic_i_ncmp : sv_i_ncmp) | |
1404 | : ( overloading ? amagic_ncmp : sv_ncmp)) | |
1405 | : ( IN_LOCALE_RUNTIME | |
1406 | ? ( overloading | |
1407 | ? amagic_cmp_locale | |
1408 | : sv_cmp_locale_static) | |
1409 | : ( overloading ? amagic_cmp : sv_cmp_static))); | |
1410 | if (PL_op->op_private & OPpSORT_REVERSE) { | |
1411 | SV **p = ORIGMARK+1; | |
1412 | SV **q = ORIGMARK+max; | |
1413 | while (p < q) { | |
1414 | SV *tmp = *p; | |
1415 | *p++ = *q; | |
1416 | *q-- = tmp; | |
1417 | } | |
1418 | } | |
1419 | } | |
1420 | } | |
1421 | LEAVE; | |
1422 | PL_stack_sp = ORIGMARK + max; | |
1423 | return nextop; | |
1424 | } | |
1425 | ||
1426 | static I32 | |
1427 | sortcv(pTHX_ SV *a, SV *b) | |
1428 | { | |
1429 | I32 oldsaveix = PL_savestack_ix; | |
1430 | I32 oldscopeix = PL_scopestack_ix; | |
1431 | I32 result; | |
1432 | GvSV(PL_firstgv) = a; | |
1433 | GvSV(PL_secondgv) = b; | |
1434 | PL_stack_sp = PL_stack_base; | |
1435 | PL_op = PL_sortcop; | |
1436 | CALLRUNOPS(aTHX); | |
1437 | if (PL_stack_sp != PL_stack_base + 1) | |
1438 | Perl_croak(aTHX_ "Sort subroutine didn't return single value"); | |
1439 | if (!SvNIOKp(*PL_stack_sp)) | |
1440 | Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value"); | |
1441 | result = SvIV(*PL_stack_sp); | |
1442 | while (PL_scopestack_ix > oldscopeix) { | |
1443 | LEAVE; | |
1444 | } | |
1445 | leave_scope(oldsaveix); | |
1446 | return result; | |
1447 | } | |
1448 | ||
1449 | static I32 | |
1450 | sortcv_stacked(pTHX_ SV *a, SV *b) | |
1451 | { | |
1452 | I32 oldsaveix = PL_savestack_ix; | |
1453 | I32 oldscopeix = PL_scopestack_ix; | |
1454 | I32 result; | |
1455 | AV *av; | |
1456 | ||
1457 | #ifdef USE_5005THREADS | |
1458 | av = (AV*)PL_curpad[0]; | |
1459 | #else | |
1460 | av = GvAV(PL_defgv); | |
1461 | #endif | |
1462 | ||
1463 | if (AvMAX(av) < 1) { | |
1464 | SV** ary = AvALLOC(av); | |
1465 | if (AvARRAY(av) != ary) { | |
1466 | AvMAX(av) += AvARRAY(av) - AvALLOC(av); | |
1467 | SvPVX(av) = (char*)ary; | |
1468 | } | |
1469 | if (AvMAX(av) < 1) { | |
1470 | AvMAX(av) = 1; | |
1471 | Renew(ary,2,SV*); | |
1472 | SvPVX(av) = (char*)ary; | |
1473 | } | |
1474 | } | |
1475 | AvFILLp(av) = 1; | |
1476 | ||
1477 | AvARRAY(av)[0] = a; | |
1478 | AvARRAY(av)[1] = b; | |
1479 | PL_stack_sp = PL_stack_base; | |
1480 | PL_op = PL_sortcop; | |
1481 | CALLRUNOPS(aTHX); | |
1482 | if (PL_stack_sp != PL_stack_base + 1) | |
1483 | Perl_croak(aTHX_ "Sort subroutine didn't return single value"); | |
1484 | if (!SvNIOKp(*PL_stack_sp)) | |
1485 | Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value"); | |
1486 | result = SvIV(*PL_stack_sp); | |
1487 | while (PL_scopestack_ix > oldscopeix) { | |
1488 | LEAVE; | |
1489 | } | |
1490 | leave_scope(oldsaveix); | |
1491 | return result; | |
1492 | } | |
1493 | ||
1494 | static I32 | |
1495 | sortcv_xsub(pTHX_ SV *a, SV *b) | |
1496 | { | |
1497 | dSP; | |
1498 | I32 oldsaveix = PL_savestack_ix; | |
1499 | I32 oldscopeix = PL_scopestack_ix; | |
1500 | I32 result; | |
1501 | CV *cv=(CV*)PL_sortcop; | |
1502 | ||
1503 | SP = PL_stack_base; | |
1504 | PUSHMARK(SP); | |
1505 | EXTEND(SP, 2); | |
1506 | *++SP = a; | |
1507 | *++SP = b; | |
1508 | PUTBACK; | |
1509 | (void)(*CvXSUB(cv))(aTHX_ cv); | |
1510 | if (PL_stack_sp != PL_stack_base + 1) | |
1511 | Perl_croak(aTHX_ "Sort subroutine didn't return single value"); | |
1512 | if (!SvNIOKp(*PL_stack_sp)) | |
1513 | Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value"); | |
1514 | result = SvIV(*PL_stack_sp); | |
1515 | while (PL_scopestack_ix > oldscopeix) { | |
1516 | LEAVE; | |
1517 | } | |
1518 | leave_scope(oldsaveix); | |
1519 | return result; | |
1520 | } | |
1521 | ||
1522 | ||
1523 | static I32 | |
1524 | sv_ncmp(pTHX_ SV *a, SV *b) | |
1525 | { | |
1526 | NV nv1 = SvNV(a); | |
1527 | NV nv2 = SvNV(b); | |
1528 | return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0; | |
1529 | } | |
1530 | ||
1531 | static I32 | |
1532 | sv_i_ncmp(pTHX_ SV *a, SV *b) | |
1533 | { | |
1534 | IV iv1 = SvIV(a); | |
1535 | IV iv2 = SvIV(b); | |
1536 | return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0; | |
1537 | } | |
1538 | #define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \ | |
1539 | *svp = Nullsv; \ | |
1540 | if (PL_amagic_generation) { \ | |
1541 | if (SvAMAGIC(left)||SvAMAGIC(right))\ | |
1542 | *svp = amagic_call(left, \ | |
1543 | right, \ | |
1544 | CAT2(meth,_amg), \ | |
1545 | 0); \ | |
1546 | } \ | |
1547 | } STMT_END | |
1548 | ||
1549 | static I32 | |
1550 | amagic_ncmp(pTHX_ register SV *a, register SV *b) | |
1551 | { | |
1552 | SV *tmpsv; | |
1553 | tryCALL_AMAGICbin(a,b,ncmp,&tmpsv); | |
1554 | if (tmpsv) { | |
1555 | NV d; | |
1556 | ||
1557 | if (SvIOK(tmpsv)) { | |
1558 | I32 i = SvIVX(tmpsv); | |
1559 | if (i > 0) | |
1560 | return 1; | |
1561 | return i? -1 : 0; | |
1562 | } | |
1563 | d = SvNV(tmpsv); | |
1564 | if (d > 0) | |
1565 | return 1; | |
1566 | return d? -1 : 0; | |
1567 | } | |
1568 | return sv_ncmp(aTHX_ a, b); | |
1569 | } | |
1570 | ||
1571 | static I32 | |
1572 | amagic_i_ncmp(pTHX_ register SV *a, register SV *b) | |
1573 | { | |
1574 | SV *tmpsv; | |
1575 | tryCALL_AMAGICbin(a,b,ncmp,&tmpsv); | |
1576 | if (tmpsv) { | |
1577 | NV d; | |
1578 | ||
1579 | if (SvIOK(tmpsv)) { | |
1580 | I32 i = SvIVX(tmpsv); | |
1581 | if (i > 0) | |
1582 | return 1; | |
1583 | return i? -1 : 0; | |
1584 | } | |
1585 | d = SvNV(tmpsv); | |
1586 | if (d > 0) | |
1587 | return 1; | |
1588 | return d? -1 : 0; | |
1589 | } | |
1590 | return sv_i_ncmp(aTHX_ a, b); | |
1591 | } | |
1592 | ||
1593 | static I32 | |
1594 | amagic_cmp(pTHX_ register SV *str1, register SV *str2) | |
1595 | { | |
1596 | SV *tmpsv; | |
1597 | tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv); | |
1598 | if (tmpsv) { | |
1599 | NV d; | |
1600 | ||
1601 | if (SvIOK(tmpsv)) { | |
1602 | I32 i = SvIVX(tmpsv); | |
1603 | if (i > 0) | |
1604 | return 1; | |
1605 | return i? -1 : 0; | |
1606 | } | |
1607 | d = SvNV(tmpsv); | |
1608 | if (d > 0) | |
1609 | return 1; | |
1610 | return d? -1 : 0; | |
1611 | } | |
1612 | return sv_cmp(str1, str2); | |
1613 | } | |
1614 | ||
1615 | static I32 | |
1616 | amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2) | |
1617 | { | |
1618 | SV *tmpsv; | |
1619 | tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv); | |
1620 | if (tmpsv) { | |
1621 | NV d; | |
1622 | ||
1623 | if (SvIOK(tmpsv)) { | |
1624 | I32 i = SvIVX(tmpsv); | |
1625 | if (i > 0) | |
1626 | return 1; | |
1627 | return i? -1 : 0; | |
1628 | } | |
1629 | d = SvNV(tmpsv); | |
1630 | if (d > 0) | |
1631 | return 1; | |
1632 | return d? -1 : 0; | |
1633 | } | |
1634 | return sv_cmp_locale(str1, str2); | |
1635 | } | |
1636 | ||
1637 |