This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Document the SVf_PADSTALE flag
[perl5.git] / pp_sort.c
CommitLineData
84d4ea48
JH
1/* pp_sort.c
2 *
4bb101f2
JH
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, by Larry Wall and others
84d4ea48
JH
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 */
15
16#include "EXTERN.h"
17#define PERL_IN_PP_SORT_C
18#include "perl.h"
19
42165d27
VK
20#if defined(UNDER_CE)
21/* looks like 'small' is reserved word for WINCE (or somesuch)*/
22#define small xsmall
23#endif
24
84d4ea48
JH
25static I32 sortcv(pTHX_ SV *a, SV *b);
26static I32 sortcv_stacked(pTHX_ SV *a, SV *b);
27static I32 sortcv_xsub(pTHX_ SV *a, SV *b);
28static I32 sv_ncmp(pTHX_ SV *a, SV *b);
29static I32 sv_i_ncmp(pTHX_ SV *a, SV *b);
30static I32 amagic_ncmp(pTHX_ SV *a, SV *b);
31static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b);
32static I32 amagic_cmp(pTHX_ SV *a, SV *b);
33static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b);
34
35#define sv_cmp_static Perl_sv_cmp
36#define sv_cmp_locale_static Perl_sv_cmp_locale
37
045ac317
RGS
38#define SORTHINTS(hintsv) \
39 (((hintsv) = GvSV(gv_fetchpv("sort::hints", GV_ADDMULTI, SVt_IV))), \
40 (SvIOK(hintsv) ? ((I32)SvIV(hintsv)) : 0))
84d4ea48 41
c53fc8a6
JH
42#ifndef SMALLSORT
43#define SMALLSORT (200)
44#endif
45
84d4ea48
JH
46/*
47 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
48 *
49 * The original code was written in conjunction with BSD Computer Software
50 * Research Group at University of California, Berkeley.
51 *
52 * See also: "Optimistic Merge Sort" (SODA '92)
53 *
54 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
55 *
56 * The code can be distributed under the same terms as Perl itself.
57 *
58 */
59
84d4ea48
JH
60
61typedef char * aptr; /* pointer for arithmetic on sizes */
62typedef SV * gptr; /* pointers in our lists */
63
64/* Binary merge internal sort, with a few special mods
65** for the special perl environment it now finds itself in.
66**
67** Things that were once options have been hotwired
68** to values suitable for this use. In particular, we'll always
69** initialize looking for natural runs, we'll always produce stable
70** output, and we'll always do Peter McIlroy's binary merge.
71*/
72
73/* Pointer types for arithmetic and storage and convenience casts */
74
75#define APTR(P) ((aptr)(P))
76#define GPTP(P) ((gptr *)(P))
77#define GPPP(P) ((gptr **)(P))
78
79
80/* byte offset from pointer P to (larger) pointer Q */
81#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
82
83#define PSIZE sizeof(gptr)
84
85/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
86
87#ifdef PSHIFT
88#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
89#define PNBYTE(N) ((N) << (PSHIFT))
90#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
91#else
92/* Leave optimization to compiler */
93#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
94#define PNBYTE(N) ((N) * (PSIZE))
95#define PINDEX(P, N) (GPTP(P) + (N))
96#endif
97
98/* Pointer into other corresponding to pointer into this */
99#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
100
101#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
102
103
104/* Runs are identified by a pointer in the auxilliary list.
105** The pointer is at the start of the list,
106** and it points to the start of the next list.
107** NEXT is used as an lvalue, too.
108*/
109
110#define NEXT(P) (*GPPP(P))
111
112
113/* PTHRESH is the minimum number of pairs with the same sense to justify
114** checking for a run and extending it. Note that PTHRESH counts PAIRS,
115** not just elements, so PTHRESH == 8 means a run of 16.
116*/
117
118#define PTHRESH (8)
119
120/* RTHRESH is the number of elements in a run that must compare low
121** to the low element from the opposing run before we justify
122** doing a binary rampup instead of single stepping.
123** In random input, N in a row low should only happen with
124** probability 2^(1-N), so we can risk that we are dealing
125** with orderly input without paying much when we aren't.
126*/
127
128#define RTHRESH (6)
129
130
131/*
132** Overview of algorithm and variables.
133** The array of elements at list1 will be organized into runs of length 2,
134** or runs of length >= 2 * PTHRESH. We only try to form long runs when
135** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
136**
137** Unless otherwise specified, pair pointers address the first of two elements.
138**
139** b and b+1 are a pair that compare with sense ``sense''.
140** b is the ``bottom'' of adjacent pairs that might form a longer run.
141**
142** p2 parallels b in the list2 array, where runs are defined by
143** a pointer chain.
144**
145** t represents the ``top'' of the adjacent pairs that might extend
146** the run beginning at b. Usually, t addresses a pair
147** that compares with opposite sense from (b,b+1).
148** However, it may also address a singleton element at the end of list1,
149** or it may be equal to ``last'', the first element beyond list1.
150**
151** r addresses the Nth pair following b. If this would be beyond t,
152** we back it off to t. Only when r is less than t do we consider the
153** run long enough to consider checking.
154**
155** q addresses a pair such that the pairs at b through q already form a run.
156** Often, q will equal b, indicating we only are sure of the pair itself.
157** However, a search on the previous cycle may have revealed a longer run,
158** so q may be greater than b.
159**
160** p is used to work back from a candidate r, trying to reach q,
161** which would mean b through r would be a run. If we discover such a run,
162** we start q at r and try to push it further towards t.
163** If b through r is NOT a run, we detect the wrong order at (p-1,p).
164** In any event, after the check (if any), we have two main cases.
165**
166** 1) Short run. b <= q < p <= r <= t.
167** b through q is a run (perhaps trivial)
168** q through p are uninteresting pairs
169** p through r is a run
170**
171** 2) Long run. b < r <= q < t.
172** b through q is a run (of length >= 2 * PTHRESH)
173**
174** Note that degenerate cases are not only possible, but likely.
175** For example, if the pair following b compares with opposite sense,
176** then b == q < p == r == t.
177*/
178
179
957d8989 180static IV
84d4ea48
JH
181dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
182{
957d8989 183 I32 sense;
84d4ea48
JH
184 register gptr *b, *p, *q, *t, *p2;
185 register gptr c, *last, *r;
186 gptr *savep;
957d8989 187 IV runs = 0;
84d4ea48
JH
188
189 b = list1;
190 last = PINDEX(b, nmemb);
191 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
192 for (p2 = list2; b < last; ) {
193 /* We just started, or just reversed sense.
194 ** Set t at end of pairs with the prevailing sense.
195 */
196 for (p = b+2, t = p; ++p < last; t = ++p) {
197 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
198 }
199 q = b;
200 /* Having laid out the playing field, look for long runs */
201 do {
202 p = r = b + (2 * PTHRESH);
203 if (r >= t) p = r = t; /* too short to care about */
204 else {
205 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
206 ((p -= 2) > q));
207 if (p <= q) {
208 /* b through r is a (long) run.
209 ** Extend it as far as possible.
210 */
211 p = q = r;
212 while (((p += 2) < t) &&
213 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
214 r = p = q + 2; /* no simple pairs, no after-run */
215 }
216 }
217 if (q > b) { /* run of greater than 2 at b */
218 savep = p;
219 p = q += 2;
220 /* pick up singleton, if possible */
221 if ((p == t) &&
222 ((t + 1) == last) &&
223 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
224 savep = r = p = q = last;
957d8989 225 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48
JH
226 if (sense) while (b < --p) {
227 c = *b;
228 *b++ = *p;
229 *p = c;
230 }
231 p = savep;
232 }
233 while (q < p) { /* simple pairs */
957d8989 234 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48
JH
235 if (sense) {
236 c = *q++;
237 *(q-1) = *q;
238 *q++ = c;
239 } else q += 2;
240 }
241 if (((b = p) == t) && ((t+1) == last)) {
957d8989 242 NEXT(p2) = p2 + 1; ++runs;
84d4ea48
JH
243 b++;
244 }
245 q = r;
246 } while (b < t);
247 sense = !sense;
248 }
957d8989 249 return runs;
84d4ea48
JH
250}
251
252
3fe0b9a9 253/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 254 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 255 * on others. The most likely explanation was platform-specific
957d8989
JL
256 * differences in cache sizes and relative speeds.
257 *
258 * The quicksort divide-and-conquer algorithm guarantees that, as the
259 * problem is subdivided into smaller and smaller parts, the parts
260 * fit into smaller (and faster) caches. So it doesn't matter how
261 * many levels of cache exist, quicksort will "find" them, and,
262 * as long as smaller is faster, take advanatge of them.
263 *
3fe0b9a9 264 * By contrast, consider how the original mergesort algorithm worked.
957d8989
JL
265 * Suppose we have five runs (each typically of length 2 after dynprep).
266 *
267 * pass base aux
268 * 0 1 2 3 4 5
269 * 1 12 34 5
270 * 2 1234 5
271 * 3 12345
272 * 4 12345
273 *
274 * Adjacent pairs are merged in "grand sweeps" through the input.
275 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
276 * runs 3 and 4 are merged and the runs from run 5 have been copied.
277 * The only cache that matters is one large enough to hold *all* the input.
278 * On some platforms, this may be many times slower than smaller caches.
279 *
280 * The following pseudo-code uses the same basic merge algorithm,
281 * but in a divide-and-conquer way.
282 *
283 * # merge $runs runs at offset $offset of list $list1 into $list2.
284 * # all unmerged runs ($runs == 1) originate in list $base.
285 * sub mgsort2 {
286 * my ($offset, $runs, $base, $list1, $list2) = @_;
287 *
288 * if ($runs == 1) {
289 * if ($list1 is $base) copy run to $list2
290 * return offset of end of list (or copy)
291 * } else {
292 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
293 * mgsort2($off2, $runs/2, $base, $list2, $list1)
294 * merge the adjacent runs at $offset of $list1 into $list2
295 * return the offset of the end of the merged runs
296 * }
297 * }
298 * mgsort2(0, $runs, $base, $aux, $base);
299 *
300 * For our 5 runs, the tree of calls looks like
301 *
302 * 5
303 * 3 2
304 * 2 1 1 1
305 * 1 1
306 *
307 * 1 2 3 4 5
308 *
309 * and the corresponding activity looks like
310 *
311 * copy runs 1 and 2 from base to aux
312 * merge runs 1 and 2 from aux to base
313 * (run 3 is where it belongs, no copy needed)
314 * merge runs 12 and 3 from base to aux
315 * (runs 4 and 5 are where they belong, no copy needed)
316 * merge runs 4 and 5 from base to aux
317 * merge runs 123 and 45 from aux to base
318 *
319 * Note that we merge runs 1 and 2 immediately after copying them,
320 * while they are still likely to be in fast cache. Similarly,
321 * run 3 is merged with run 12 while it still may be lingering in cache.
322 * This implementation should therefore enjoy much of the cache-friendly
323 * behavior that quicksort does. In addition, it does less copying
324 * than the original mergesort implementation (only runs 1 and 2 are copied)
325 * and the "balancing" of merges is better (merged runs comprise more nearly
326 * equal numbers of original runs).
327 *
328 * The actual cache-friendly implementation will use a pseudo-stack
329 * to avoid recursion, and will unroll processing of runs of length 2,
330 * but it is otherwise similar to the recursive implementation.
957d8989
JL
331 */
332
333typedef struct {
334 IV offset; /* offset of 1st of 2 runs at this level */
335 IV runs; /* how many runs must be combined into 1 */
336} off_runs; /* pseudo-stack element */
337
338STATIC void
3fe0b9a9 339S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp)
957d8989
JL
340{
341 IV i, run, runs, offset;
342 I32 sense, level;
343 int iwhich;
344 register gptr *f1, *f2, *t, *b, *p, *tp2, *l1, *l2, *q;
345 gptr *aux, *list1, *list2;
346 gptr *p1;
347 gptr small[SMALLSORT];
348 gptr *which[3];
349 off_runs stack[60], *stackp;
350
351 if (nmemb <= 1) return; /* sorted trivially */
352 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
353 else { New(799,aux,nmemb,gptr); } /* allocate auxilliary array */
354 level = 0;
355 stackp = stack;
356 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
357 stackp->offset = offset = 0;
358 which[0] = which[2] = base;
359 which[1] = aux;
360 for (;;) {
361 /* On levels where both runs have be constructed (stackp->runs == 0),
362 * merge them, and note the offset of their end, in case the offset
363 * is needed at the next level up. Hop up a level, and,
364 * as long as stackp->runs is 0, keep merging.
365 */
366 if ((runs = stackp->runs) == 0) {
367 iwhich = level & 1;
368 list1 = which[iwhich]; /* area where runs are now */
369 list2 = which[++iwhich]; /* area for merged runs */
370 do {
371 offset = stackp->offset;
372 f1 = p1 = list1 + offset; /* start of first run */
373 p = tp2 = list2 + offset; /* where merged run will go */
374 t = NEXT(p); /* where first run ends */
375 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
376 t = NEXT(t); /* where second runs ends */
377 l2 = POTHER(t, list2, list1); /* ... on the other side */
378 offset = PNELEM(list2, t);
379 while (f1 < l1 && f2 < l2) {
380 /* If head 1 is larger than head 2, find ALL the elements
381 ** in list 2 strictly less than head1, write them all,
382 ** then head 1. Then compare the new heads, and repeat,
383 ** until one or both lists are exhausted.
384 **
385 ** In all comparisons (after establishing
386 ** which head to merge) the item to merge
387 ** (at pointer q) is the first operand of
388 ** the comparison. When we want to know
389 ** if ``q is strictly less than the other'',
390 ** we can't just do
391 ** cmp(q, other) < 0
392 ** because stability demands that we treat equality
393 ** as high when q comes from l2, and as low when
394 ** q was from l1. So we ask the question by doing
395 ** cmp(q, other) <= sense
396 ** and make sense == 0 when equality should look low,
397 ** and -1 when equality should look high.
398 */
399
400
401 if (cmp(aTHX_ *f1, *f2) <= 0) {
402 q = f2; b = f1; t = l1;
403 sense = -1;
404 } else {
405 q = f1; b = f2; t = l2;
406 sense = 0;
407 }
408
409
410 /* ramp up
411 **
412 ** Leave t at something strictly
413 ** greater than q (or at the end of the list),
414 ** and b at something strictly less than q.
415 */
416 for (i = 1, run = 0 ;;) {
417 if ((p = PINDEX(b, i)) >= t) {
418 /* off the end */
419 if (((p = PINDEX(t, -1)) > b) &&
420 (cmp(aTHX_ *q, *p) <= sense))
421 t = p;
422 else b = p;
423 break;
424 } else if (cmp(aTHX_ *q, *p) <= sense) {
425 t = p;
426 break;
427 } else b = p;
428 if (++run >= RTHRESH) i += i;
429 }
430
431
432 /* q is known to follow b and must be inserted before t.
433 ** Increment b, so the range of possibilities is [b,t).
434 ** Round binary split down, to favor early appearance.
435 ** Adjust b and t until q belongs just before t.
436 */
437
438 b++;
439 while (b < t) {
440 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
441 if (cmp(aTHX_ *q, *p) <= sense) {
442 t = p;
443 } else b = p + 1;
444 }
445
446
447 /* Copy all the strictly low elements */
448
449 if (q == f1) {
450 FROMTOUPTO(f2, tp2, t);
451 *tp2++ = *f1++;
452 } else {
453 FROMTOUPTO(f1, tp2, t);
454 *tp2++ = *f2++;
455 }
456 }
457
458
459 /* Run out remaining list */
460 if (f1 == l1) {
461 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
462 } else FROMTOUPTO(f1, tp2, l1);
463 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
464
465 if (--level == 0) goto done;
466 --stackp;
467 t = list1; list1 = list2; list2 = t; /* swap lists */
468 } while ((runs = stackp->runs) == 0);
469 }
470
471
472 stackp->runs = 0; /* current run will finish level */
473 /* While there are more than 2 runs remaining,
474 * turn them into exactly 2 runs (at the "other" level),
475 * each made up of approximately half the runs.
476 * Stack the second half for later processing,
477 * and set about producing the first half now.
478 */
479 while (runs > 2) {
480 ++level;
481 ++stackp;
482 stackp->offset = offset;
483 runs -= stackp->runs = runs / 2;
484 }
485 /* We must construct a single run from 1 or 2 runs.
486 * All the original runs are in which[0] == base.
487 * The run we construct must end up in which[level&1].
488 */
489 iwhich = level & 1;
490 if (runs == 1) {
491 /* Constructing a single run from a single run.
492 * If it's where it belongs already, there's nothing to do.
493 * Otherwise, copy it to where it belongs.
494 * A run of 1 is either a singleton at level 0,
495 * or the second half of a split 3. In neither event
496 * is it necessary to set offset. It will be set by the merge
497 * that immediately follows.
498 */
499 if (iwhich) { /* Belongs in aux, currently in base */
500 f1 = b = PINDEX(base, offset); /* where list starts */
501 f2 = PINDEX(aux, offset); /* where list goes */
502 t = NEXT(f2); /* where list will end */
503 offset = PNELEM(aux, t); /* offset thereof */
504 t = PINDEX(base, offset); /* where it currently ends */
505 FROMTOUPTO(f1, f2, t); /* copy */
506 NEXT(b) = t; /* set up parallel pointer */
507 } else if (level == 0) goto done; /* single run at level 0 */
508 } else {
509 /* Constructing a single run from two runs.
510 * The merge code at the top will do that.
511 * We need only make sure the two runs are in the "other" array,
512 * so they'll end up in the correct array after the merge.
513 */
514 ++level;
515 ++stackp;
516 stackp->offset = offset;
517 stackp->runs = 0; /* take care of both runs, trigger merge */
518 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
519 f1 = b = PINDEX(base, offset); /* where first run starts */
520 f2 = PINDEX(aux, offset); /* where it will be copied */
521 t = NEXT(f2); /* where first run will end */
522 offset = PNELEM(aux, t); /* offset thereof */
523 p = PINDEX(base, offset); /* end of first run */
524 t = NEXT(t); /* where second run will end */
525 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
526 FROMTOUPTO(f1, f2, t); /* copy both runs */
527 NEXT(b) = p; /* paralled pointer for 1st */
528 NEXT(p) = t; /* ... and for second */
529 }
530 }
531 }
532done:
533 if (aux != small) Safefree(aux); /* free iff allocated */
534 return;
535}
536
84d4ea48
JH
537/*
538 * The quicksort implementation was derived from source code contributed
539 * by Tom Horsley.
540 *
541 * NOTE: this code was derived from Tom Horsley's qsort replacement
542 * and should not be confused with the original code.
543 */
544
545/* Copyright (C) Tom Horsley, 1997. All rights reserved.
546
547 Permission granted to distribute under the same terms as perl which are
548 (briefly):
549
550 This program is free software; you can redistribute it and/or modify
551 it under the terms of either:
552
553 a) the GNU General Public License as published by the Free
554 Software Foundation; either version 1, or (at your option) any
555 later version, or
556
557 b) the "Artistic License" which comes with this Kit.
558
559 Details on the perl license can be found in the perl source code which
560 may be located via the www.perl.com web page.
561
562 This is the most wonderfulest possible qsort I can come up with (and
563 still be mostly portable) My (limited) tests indicate it consistently
564 does about 20% fewer calls to compare than does the qsort in the Visual
565 C++ library, other vendors may vary.
566
567 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
568 others I invented myself (or more likely re-invented since they seemed
569 pretty obvious once I watched the algorithm operate for a while).
570
571 Most of this code was written while watching the Marlins sweep the Giants
572 in the 1997 National League Playoffs - no Braves fans allowed to use this
573 code (just kidding :-).
574
575 I realize that if I wanted to be true to the perl tradition, the only
576 comment in this file would be something like:
577
578 ...they shuffled back towards the rear of the line. 'No, not at the
579 rear!' the slave-driver shouted. 'Three files up. And stay there...
580
581 However, I really needed to violate that tradition just so I could keep
582 track of what happens myself, not to mention some poor fool trying to
583 understand this years from now :-).
584*/
585
586/* ********************************************************** Configuration */
587
588#ifndef QSORT_ORDER_GUESS
589#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
590#endif
591
592/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
593 future processing - a good max upper bound is log base 2 of memory size
594 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
595 safely be smaller than that since the program is taking up some space and
596 most operating systems only let you grab some subset of contiguous
597 memory (not to mention that you are normally sorting data larger than
598 1 byte element size :-).
599*/
600#ifndef QSORT_MAX_STACK
601#define QSORT_MAX_STACK 32
602#endif
603
604/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
605 Anything bigger and we use qsort. If you make this too small, the qsort
606 will probably break (or become less efficient), because it doesn't expect
607 the middle element of a partition to be the same as the right or left -
608 you have been warned).
609*/
610#ifndef QSORT_BREAK_EVEN
611#define QSORT_BREAK_EVEN 6
612#endif
613
4eb872f6
JL
614/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
615 to go quadratic on. We innoculate larger partitions against
616 quadratic behavior by shuffling them before sorting. This is not
617 an absolute guarantee of non-quadratic behavior, but it would take
618 staggeringly bad luck to pick extreme elements as the pivot
619 from randomized data.
620*/
621#ifndef QSORT_PLAY_SAFE
622#define QSORT_PLAY_SAFE 255
623#endif
624
84d4ea48
JH
625/* ************************************************************* Data Types */
626
627/* hold left and right index values of a partition waiting to be sorted (the
628 partition includes both left and right - right is NOT one past the end or
629 anything like that).
630*/
631struct partition_stack_entry {
632 int left;
633 int right;
634#ifdef QSORT_ORDER_GUESS
635 int qsort_break_even;
636#endif
637};
638
639/* ******************************************************* Shorthand Macros */
640
641/* Note that these macros will be used from inside the qsort function where
642 we happen to know that the variable 'elt_size' contains the size of an
643 array element and the variable 'temp' points to enough space to hold a
644 temp element and the variable 'array' points to the array being sorted
645 and 'compare' is the pointer to the compare routine.
646
647 Also note that there are very many highly architecture specific ways
648 these might be sped up, but this is simply the most generally portable
649 code I could think of.
650*/
651
652/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
653*/
654#define qsort_cmp(elt1, elt2) \
655 ((*compare)(aTHX_ array[elt1], array[elt2]))
656
657#ifdef QSORT_ORDER_GUESS
658#define QSORT_NOTICE_SWAP swapped++;
659#else
660#define QSORT_NOTICE_SWAP
661#endif
662
663/* swaps contents of array elements elt1, elt2.
664*/
665#define qsort_swap(elt1, elt2) \
666 STMT_START { \
667 QSORT_NOTICE_SWAP \
668 temp = array[elt1]; \
669 array[elt1] = array[elt2]; \
670 array[elt2] = temp; \
671 } STMT_END
672
673/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
674 elt3 and elt3 gets elt1.
675*/
676#define qsort_rotate(elt1, elt2, elt3) \
677 STMT_START { \
678 QSORT_NOTICE_SWAP \
679 temp = array[elt1]; \
680 array[elt1] = array[elt2]; \
681 array[elt2] = array[elt3]; \
682 array[elt3] = temp; \
683 } STMT_END
684
685/* ************************************************************ Debug stuff */
686
687#ifdef QSORT_DEBUG
688
689static void
690break_here()
691{
692 return; /* good place to set a breakpoint */
693}
694
695#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
696
697static void
698doqsort_all_asserts(
699 void * array,
700 size_t num_elts,
701 size_t elt_size,
702 int (*compare)(const void * elt1, const void * elt2),
703 int pc_left, int pc_right, int u_left, int u_right)
704{
705 int i;
706
707 qsort_assert(pc_left <= pc_right);
708 qsort_assert(u_right < pc_left);
709 qsort_assert(pc_right < u_left);
710 for (i = u_right + 1; i < pc_left; ++i) {
711 qsort_assert(qsort_cmp(i, pc_left) < 0);
712 }
713 for (i = pc_left; i < pc_right; ++i) {
714 qsort_assert(qsort_cmp(i, pc_right) == 0);
715 }
716 for (i = pc_right + 1; i < u_left; ++i) {
717 qsort_assert(qsort_cmp(pc_right, i) < 0);
718 }
719}
720
721#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
722 doqsort_all_asserts(array, num_elts, elt_size, compare, \
723 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
724
725#else
726
727#define qsort_assert(t) ((void)0)
728
729#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
730
731#endif
732
733/* ****************************************************************** qsort */
734
735STATIC void /* the standard unstable (u) quicksort (qsort) */
736S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
737{
738 register SV * temp;
739
740 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
741 int next_stack_entry = 0;
742
743 int part_left;
744 int part_right;
745#ifdef QSORT_ORDER_GUESS
746 int qsort_break_even;
747 int swapped;
748#endif
749
750 /* Make sure we actually have work to do.
751 */
752 if (num_elts <= 1) {
753 return;
754 }
755
4eb872f6
JL
756 /* Innoculate large partitions against quadratic behavior */
757 if (num_elts > QSORT_PLAY_SAFE) {
758 register size_t n, j;
759 register SV **q;
760 for (n = num_elts, q = array; n > 1; ) {
eb160463 761 j = (size_t)(n-- * Drand01());
4eb872f6
JL
762 temp = q[j];
763 q[j] = q[n];
764 q[n] = temp;
765 }
766 }
767
84d4ea48
JH
768 /* Setup the initial partition definition and fall into the sorting loop
769 */
770 part_left = 0;
771 part_right = (int)(num_elts - 1);
772#ifdef QSORT_ORDER_GUESS
773 qsort_break_even = QSORT_BREAK_EVEN;
774#else
775#define qsort_break_even QSORT_BREAK_EVEN
776#endif
777 for ( ; ; ) {
778 if ((part_right - part_left) >= qsort_break_even) {
779 /* OK, this is gonna get hairy, so lets try to document all the
780 concepts and abbreviations and variables and what they keep
781 track of:
782
783 pc: pivot chunk - the set of array elements we accumulate in the
784 middle of the partition, all equal in value to the original
785 pivot element selected. The pc is defined by:
786
787 pc_left - the leftmost array index of the pc
788 pc_right - the rightmost array index of the pc
789
790 we start with pc_left == pc_right and only one element
791 in the pivot chunk (but it can grow during the scan).
792
793 u: uncompared elements - the set of elements in the partition
794 we have not yet compared to the pivot value. There are two
795 uncompared sets during the scan - one to the left of the pc
796 and one to the right.
797
798 u_right - the rightmost index of the left side's uncompared set
799 u_left - the leftmost index of the right side's uncompared set
800
801 The leftmost index of the left sides's uncompared set
802 doesn't need its own variable because it is always defined
803 by the leftmost edge of the whole partition (part_left). The
804 same goes for the rightmost edge of the right partition
805 (part_right).
806
807 We know there are no uncompared elements on the left once we
808 get u_right < part_left and no uncompared elements on the
809 right once u_left > part_right. When both these conditions
810 are met, we have completed the scan of the partition.
811
812 Any elements which are between the pivot chunk and the
813 uncompared elements should be less than the pivot value on
814 the left side and greater than the pivot value on the right
815 side (in fact, the goal of the whole algorithm is to arrange
816 for that to be true and make the groups of less-than and
817 greater-then elements into new partitions to sort again).
818
819 As you marvel at the complexity of the code and wonder why it
820 has to be so confusing. Consider some of the things this level
821 of confusion brings:
822
823 Once I do a compare, I squeeze every ounce of juice out of it. I
824 never do compare calls I don't have to do, and I certainly never
825 do redundant calls.
826
827 I also never swap any elements unless I can prove there is a
828 good reason. Many sort algorithms will swap a known value with
829 an uncompared value just to get things in the right place (or
830 avoid complexity :-), but that uncompared value, once it gets
831 compared, may then have to be swapped again. A lot of the
832 complexity of this code is due to the fact that it never swaps
833 anything except compared values, and it only swaps them when the
834 compare shows they are out of position.
835 */
836 int pc_left, pc_right;
837 int u_right, u_left;
838
839 int s;
840
841 pc_left = ((part_left + part_right) / 2);
842 pc_right = pc_left;
843 u_right = pc_left - 1;
844 u_left = pc_right + 1;
845
846 /* Qsort works best when the pivot value is also the median value
847 in the partition (unfortunately you can't find the median value
848 without first sorting :-), so to give the algorithm a helping
849 hand, we pick 3 elements and sort them and use the median value
850 of that tiny set as the pivot value.
851
852 Some versions of qsort like to use the left middle and right as
853 the 3 elements to sort so they can insure the ends of the
854 partition will contain values which will stop the scan in the
855 compare loop, but when you have to call an arbitrarily complex
856 routine to do a compare, its really better to just keep track of
857 array index values to know when you hit the edge of the
858 partition and avoid the extra compare. An even better reason to
859 avoid using a compare call is the fact that you can drop off the
860 edge of the array if someone foolishly provides you with an
861 unstable compare function that doesn't always provide consistent
862 results.
863
864 So, since it is simpler for us to compare the three adjacent
865 elements in the middle of the partition, those are the ones we
866 pick here (conveniently pointed at by u_right, pc_left, and
867 u_left). The values of the left, center, and right elements
868 are refered to as l c and r in the following comments.
869 */
870
871#ifdef QSORT_ORDER_GUESS
872 swapped = 0;
873#endif
874 s = qsort_cmp(u_right, pc_left);
875 if (s < 0) {
876 /* l < c */
877 s = qsort_cmp(pc_left, u_left);
878 /* if l < c, c < r - already in order - nothing to do */
879 if (s == 0) {
880 /* l < c, c == r - already in order, pc grows */
881 ++pc_right;
882 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
883 } else if (s > 0) {
884 /* l < c, c > r - need to know more */
885 s = qsort_cmp(u_right, u_left);
886 if (s < 0) {
887 /* l < c, c > r, l < r - swap c & r to get ordered */
888 qsort_swap(pc_left, u_left);
889 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
890 } else if (s == 0) {
891 /* l < c, c > r, l == r - swap c&r, grow pc */
892 qsort_swap(pc_left, u_left);
893 --pc_left;
894 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
895 } else {
896 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
897 qsort_rotate(pc_left, u_right, u_left);
898 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
899 }
900 }
901 } else if (s == 0) {
902 /* l == c */
903 s = qsort_cmp(pc_left, u_left);
904 if (s < 0) {
905 /* l == c, c < r - already in order, grow pc */
906 --pc_left;
907 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
908 } else if (s == 0) {
909 /* l == c, c == r - already in order, grow pc both ways */
910 --pc_left;
911 ++pc_right;
912 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
913 } else {
914 /* l == c, c > r - swap l & r, grow pc */
915 qsort_swap(u_right, u_left);
916 ++pc_right;
917 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
918 }
919 } else {
920 /* l > c */
921 s = qsort_cmp(pc_left, u_left);
922 if (s < 0) {
923 /* l > c, c < r - need to know more */
924 s = qsort_cmp(u_right, u_left);
925 if (s < 0) {
926 /* l > c, c < r, l < r - swap l & c to get ordered */
927 qsort_swap(u_right, pc_left);
928 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
929 } else if (s == 0) {
930 /* l > c, c < r, l == r - swap l & c, grow pc */
931 qsort_swap(u_right, pc_left);
932 ++pc_right;
933 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
934 } else {
935 /* l > c, c < r, l > r - rotate lcr into crl to order */
936 qsort_rotate(u_right, pc_left, u_left);
937 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
938 }
939 } else if (s == 0) {
940 /* l > c, c == r - swap ends, grow pc */
941 qsort_swap(u_right, u_left);
942 --pc_left;
943 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
944 } else {
945 /* l > c, c > r - swap ends to get in order */
946 qsort_swap(u_right, u_left);
947 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
948 }
949 }
950 /* We now know the 3 middle elements have been compared and
951 arranged in the desired order, so we can shrink the uncompared
952 sets on both sides
953 */
954 --u_right;
955 ++u_left;
956 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
957
958 /* The above massive nested if was the simple part :-). We now have
959 the middle 3 elements ordered and we need to scan through the
960 uncompared sets on either side, swapping elements that are on
961 the wrong side or simply shuffling equal elements around to get
962 all equal elements into the pivot chunk.
963 */
964
965 for ( ; ; ) {
966 int still_work_on_left;
967 int still_work_on_right;
968
969 /* Scan the uncompared values on the left. If I find a value
970 equal to the pivot value, move it over so it is adjacent to
971 the pivot chunk and expand the pivot chunk. If I find a value
972 less than the pivot value, then just leave it - its already
973 on the correct side of the partition. If I find a greater
974 value, then stop the scan.
975 */
976 while ((still_work_on_left = (u_right >= part_left))) {
977 s = qsort_cmp(u_right, pc_left);
978 if (s < 0) {
979 --u_right;
980 } else if (s == 0) {
981 --pc_left;
982 if (pc_left != u_right) {
983 qsort_swap(u_right, pc_left);
984 }
985 --u_right;
986 } else {
987 break;
988 }
989 qsort_assert(u_right < pc_left);
990 qsort_assert(pc_left <= pc_right);
991 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
992 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
993 }
994
995 /* Do a mirror image scan of uncompared values on the right
996 */
997 while ((still_work_on_right = (u_left <= part_right))) {
998 s = qsort_cmp(pc_right, u_left);
999 if (s < 0) {
1000 ++u_left;
1001 } else if (s == 0) {
1002 ++pc_right;
1003 if (pc_right != u_left) {
1004 qsort_swap(pc_right, u_left);
1005 }
1006 ++u_left;
1007 } else {
1008 break;
1009 }
1010 qsort_assert(u_left > pc_right);
1011 qsort_assert(pc_left <= pc_right);
1012 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1013 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1014 }
1015
1016 if (still_work_on_left) {
1017 /* I know I have a value on the left side which needs to be
1018 on the right side, but I need to know more to decide
1019 exactly the best thing to do with it.
1020 */
1021 if (still_work_on_right) {
1022 /* I know I have values on both side which are out of
1023 position. This is a big win because I kill two birds
1024 with one swap (so to speak). I can advance the
1025 uncompared pointers on both sides after swapping both
1026 of them into the right place.
1027 */
1028 qsort_swap(u_right, u_left);
1029 --u_right;
1030 ++u_left;
1031 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1032 } else {
1033 /* I have an out of position value on the left, but the
1034 right is fully scanned, so I "slide" the pivot chunk
1035 and any less-than values left one to make room for the
1036 greater value over on the right. If the out of position
1037 value is immediately adjacent to the pivot chunk (there
1038 are no less-than values), I can do that with a swap,
1039 otherwise, I have to rotate one of the less than values
1040 into the former position of the out of position value
1041 and the right end of the pivot chunk into the left end
1042 (got all that?).
1043 */
1044 --pc_left;
1045 if (pc_left == u_right) {
1046 qsort_swap(u_right, pc_right);
1047 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1048 } else {
1049 qsort_rotate(u_right, pc_left, pc_right);
1050 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1051 }
1052 --pc_right;
1053 --u_right;
1054 }
1055 } else if (still_work_on_right) {
1056 /* Mirror image of complex case above: I have an out of
1057 position value on the right, but the left is fully
1058 scanned, so I need to shuffle things around to make room
1059 for the right value on the left.
1060 */
1061 ++pc_right;
1062 if (pc_right == u_left) {
1063 qsort_swap(u_left, pc_left);
1064 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1065 } else {
1066 qsort_rotate(pc_right, pc_left, u_left);
1067 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1068 }
1069 ++pc_left;
1070 ++u_left;
1071 } else {
1072 /* No more scanning required on either side of partition,
1073 break out of loop and figure out next set of partitions
1074 */
1075 break;
1076 }
1077 }
1078
1079 /* The elements in the pivot chunk are now in the right place. They
1080 will never move or be compared again. All I have to do is decide
1081 what to do with the stuff to the left and right of the pivot
1082 chunk.
1083
1084 Notes on the QSORT_ORDER_GUESS ifdef code:
1085
1086 1. If I just built these partitions without swapping any (or
1087 very many) elements, there is a chance that the elements are
1088 already ordered properly (being properly ordered will
1089 certainly result in no swapping, but the converse can't be
1090 proved :-).
1091
1092 2. A (properly written) insertion sort will run faster on
1093 already ordered data than qsort will.
1094
1095 3. Perhaps there is some way to make a good guess about
1096 switching to an insertion sort earlier than partition size 6
1097 (for instance - we could save the partition size on the stack
1098 and increase the size each time we find we didn't swap, thus
1099 switching to insertion sort earlier for partitions with a
1100 history of not swapping).
1101
1102 4. Naturally, if I just switch right away, it will make
1103 artificial benchmarks with pure ascending (or descending)
1104 data look really good, but is that a good reason in general?
1105 Hard to say...
1106 */
1107
1108#ifdef QSORT_ORDER_GUESS
1109 if (swapped < 3) {
1110#if QSORT_ORDER_GUESS == 1
1111 qsort_break_even = (part_right - part_left) + 1;
1112#endif
1113#if QSORT_ORDER_GUESS == 2
1114 qsort_break_even *= 2;
1115#endif
1116#if QSORT_ORDER_GUESS == 3
1117 int prev_break = qsort_break_even;
1118 qsort_break_even *= qsort_break_even;
1119 if (qsort_break_even < prev_break) {
1120 qsort_break_even = (part_right - part_left) + 1;
1121 }
1122#endif
1123 } else {
1124 qsort_break_even = QSORT_BREAK_EVEN;
1125 }
1126#endif
1127
1128 if (part_left < pc_left) {
1129 /* There are elements on the left which need more processing.
1130 Check the right as well before deciding what to do.
1131 */
1132 if (pc_right < part_right) {
1133 /* We have two partitions to be sorted. Stack the biggest one
1134 and process the smallest one on the next iteration. This
1135 minimizes the stack height by insuring that any additional
1136 stack entries must come from the smallest partition which
1137 (because it is smallest) will have the fewest
1138 opportunities to generate additional stack entries.
1139 */
1140 if ((part_right - pc_right) > (pc_left - part_left)) {
1141 /* stack the right partition, process the left */
1142 partition_stack[next_stack_entry].left = pc_right + 1;
1143 partition_stack[next_stack_entry].right = part_right;
1144#ifdef QSORT_ORDER_GUESS
1145 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1146#endif
1147 part_right = pc_left - 1;
1148 } else {
1149 /* stack the left partition, process the right */
1150 partition_stack[next_stack_entry].left = part_left;
1151 partition_stack[next_stack_entry].right = pc_left - 1;
1152#ifdef QSORT_ORDER_GUESS
1153 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1154#endif
1155 part_left = pc_right + 1;
1156 }
1157 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1158 ++next_stack_entry;
1159 } else {
1160 /* The elements on the left are the only remaining elements
1161 that need sorting, arrange for them to be processed as the
1162 next partition.
1163 */
1164 part_right = pc_left - 1;
1165 }
1166 } else if (pc_right < part_right) {
1167 /* There is only one chunk on the right to be sorted, make it
1168 the new partition and loop back around.
1169 */
1170 part_left = pc_right + 1;
1171 } else {
1172 /* This whole partition wound up in the pivot chunk, so
1173 we need to get a new partition off the stack.
1174 */
1175 if (next_stack_entry == 0) {
1176 /* the stack is empty - we are done */
1177 break;
1178 }
1179 --next_stack_entry;
1180 part_left = partition_stack[next_stack_entry].left;
1181 part_right = partition_stack[next_stack_entry].right;
1182#ifdef QSORT_ORDER_GUESS
1183 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1184#endif
1185 }
1186 } else {
1187 /* This partition is too small to fool with qsort complexity, just
1188 do an ordinary insertion sort to minimize overhead.
1189 */
1190 int i;
1191 /* Assume 1st element is in right place already, and start checking
1192 at 2nd element to see where it should be inserted.
1193 */
1194 for (i = part_left + 1; i <= part_right; ++i) {
1195 int j;
1196 /* Scan (backwards - just in case 'i' is already in right place)
1197 through the elements already sorted to see if the ith element
1198 belongs ahead of one of them.
1199 */
1200 for (j = i - 1; j >= part_left; --j) {
1201 if (qsort_cmp(i, j) >= 0) {
1202 /* i belongs right after j
1203 */
1204 break;
1205 }
1206 }
1207 ++j;
1208 if (j != i) {
1209 /* Looks like we really need to move some things
1210 */
1211 int k;
1212 temp = array[i];
1213 for (k = i - 1; k >= j; --k)
1214 array[k + 1] = array[k];
1215 array[j] = temp;
1216 }
1217 }
1218
1219 /* That partition is now sorted, grab the next one, or get out
1220 of the loop if there aren't any more.
1221 */
1222
1223 if (next_stack_entry == 0) {
1224 /* the stack is empty - we are done */
1225 break;
1226 }
1227 --next_stack_entry;
1228 part_left = partition_stack[next_stack_entry].left;
1229 part_right = partition_stack[next_stack_entry].right;
1230#ifdef QSORT_ORDER_GUESS
1231 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1232#endif
1233 }
1234 }
1235
1236 /* Believe it or not, the array is sorted at this point! */
1237}
1238
84d4ea48
JH
1239/* Stabilize what is, presumably, an otherwise unstable sort method.
1240 * We do that by allocating (or having on hand) an array of pointers
1241 * that is the same size as the original array of elements to be sorted.
1242 * We initialize this parallel array with the addresses of the original
1243 * array elements. This indirection can make you crazy.
1244 * Some pictures can help. After initializing, we have
1245 *
1246 * indir list1
1247 * +----+ +----+
1248 * | | --------------> | | ------> first element to be sorted
1249 * +----+ +----+
1250 * | | --------------> | | ------> second element to be sorted
1251 * +----+ +----+
1252 * | | --------------> | | ------> third element to be sorted
1253 * +----+ +----+
1254 * ...
1255 * +----+ +----+
1256 * | | --------------> | | ------> n-1st element to be sorted
1257 * +----+ +----+
1258 * | | --------------> | | ------> n-th element to be sorted
1259 * +----+ +----+
1260 *
1261 * During the sort phase, we leave the elements of list1 where they are,
1262 * and sort the pointers in the indirect array in the same order determined
1263 * by the original comparison routine on the elements pointed to.
1264 * Because we don't move the elements of list1 around through
1265 * this phase, we can break ties on elements that compare equal
1266 * using their address in the list1 array, ensuring stabilty.
1267 * This leaves us with something looking like
1268 *
1269 * indir list1
1270 * +----+ +----+
1271 * | | --+ +---> | | ------> first element to be sorted
1272 * +----+ | | +----+
1273 * | | --|-------|---> | | ------> second element to be sorted
1274 * +----+ | | +----+
1275 * | | --|-------+ +-> | | ------> third element to be sorted
1276 * +----+ | | +----+
1277 * ...
1278 * +----+ | | | | +----+
1279 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1280 * +----+ | | +----+
1281 * | | ---+ +----> | | ------> n-th element to be sorted
1282 * +----+ +----+
1283 *
1284 * where the i-th element of the indirect array points to the element
1285 * that should be i-th in the sorted array. After the sort phase,
1286 * we have to put the elements of list1 into the places
1287 * dictated by the indirect array.
1288 */
1289
84d4ea48
JH
1290
1291static I32
1292cmpindir(pTHX_ gptr a, gptr b)
1293{
1294 I32 sense;
1295 gptr *ap = (gptr *)a;
1296 gptr *bp = (gptr *)b;
1297
147f47de 1298 if ((sense = PL_sort_RealCmp(aTHX_ *ap, *bp)) == 0)
84d4ea48
JH
1299 sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1300 return sense;
1301}
1302
1303STATIC void
1304S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp)
1305{
045ac317 1306 SV *hintsv;
84d4ea48 1307
045ac317 1308 if (SORTHINTS(hintsv) & HINT_SORT_STABLE) {
84d4ea48
JH
1309 register gptr **pp, *q;
1310 register size_t n, j, i;
1311 gptr *small[SMALLSORT], **indir, tmp;
1312 SVCOMPARE_t savecmp;
1313 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1314
84d4ea48
JH
1315 /* Small arrays can use the stack, big ones must be allocated */
1316 if (nmemb <= SMALLSORT) indir = small;
1317 else { New(1799, indir, nmemb, gptr *); }
4eb872f6 1318
84d4ea48
JH
1319 /* Copy pointers to original array elements into indirect array */
1320 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1321
147f47de
AB
1322 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1323 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1324
84d4ea48
JH
1325 /* sort, with indirection */
1326 S_qsortsvu(aTHX_ (gptr *)indir, nmemb, cmpindir);
4eb872f6 1327
84d4ea48
JH
1328 pp = indir;
1329 q = list1;
1330 for (n = nmemb; n--; ) {
1331 /* Assert A: all elements of q with index > n are already
1332 * in place. This is vacuosly true at the start, and we
1333 * put element n where it belongs below (if it wasn't
1334 * already where it belonged). Assert B: we only move
1335 * elements that aren't where they belong,
1336 * so, by A, we never tamper with elements above n.
1337 */
1338 j = pp[n] - q; /* This sets j so that q[j] is
1339 * at pp[n]. *pp[j] belongs in
1340 * q[j], by construction.
1341 */
1342 if (n != j) { /* all's well if n == j */
1343 tmp = q[j]; /* save what's in q[j] */
1344 do {
1345 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1346 i = pp[j] - q; /* the index in q of the element
1347 * just moved */
1348 pp[j] = q + j; /* this is ok now */
1349 } while ((j = i) != n);
1350 /* There are only finitely many (nmemb) addresses
1351 * in the pp array.
1352 * So we must eventually revisit an index we saw before.
1353 * Suppose the first revisited index is k != n.
1354 * An index is visited because something else belongs there.
1355 * If we visit k twice, then two different elements must
1356 * belong in the same place, which cannot be.
1357 * So j must get back to n, the loop terminates,
1358 * and we put the saved element where it belongs.
1359 */
1360 q[n] = tmp; /* put what belongs into
1361 * the n-th element */
1362 }
1363 }
1364
1365 /* free iff allocated */
1366 if (indir != small) { Safefree(indir); }
1367 /* restore prevailing comparison routine */
147f47de 1368 PL_sort_RealCmp = savecmp;
c53fc8a6
JH
1369 } else {
1370 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48
JH
1371 }
1372}
4eb872f6
JL
1373
1374/*
ccfc67b7
JH
1375=head1 Array Manipulation Functions
1376
84d4ea48
JH
1377=for apidoc sortsv
1378
1379Sort an array. Here is an example:
1380
4eb872f6 1381 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1382
78210658
AD
1383See lib/sort.pm for details about controlling the sorting algorithm.
1384
84d4ea48
JH
1385=cut
1386*/
4eb872f6 1387
84d4ea48
JH
1388void
1389Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1390{
1391 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) =
1392 S_mergesortsv;
045ac317 1393 SV *hintsv;
84d4ea48 1394 I32 hints;
4eb872f6 1395
78210658
AD
1396 /* Sun's Compiler (cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2) used
1397 to miscompile this function under optimization -O. If you get test
1398 errors related to picking the correct sort() function, try recompiling
1399 this file without optimiziation. -- A.D. 4/2002.
1400 */
045ac317 1401 hints = SORTHINTS(hintsv);
78210658
AD
1402 if (hints & HINT_SORT_QUICKSORT) {
1403 sortsvp = S_qsortsv;
1404 }
1405 else {
1406 /* The default as of 5.8.0 is mergesort */
1407 sortsvp = S_mergesortsv;
84d4ea48 1408 }
4eb872f6 1409
84d4ea48
JH
1410 sortsvp(aTHX_ array, nmemb, cmp);
1411}
1412
1413PP(pp_sort)
1414{
1415 dSP; dMARK; dORIGMARK;
1416 register SV **up;
1417 SV **myorigmark = ORIGMARK;
1418 register I32 max;
1419 HV *stash;
1420 GV *gv;
1421 CV *cv = 0;
1422 I32 gimme = GIMME;
1423 OP* nextop = PL_op->op_next;
1424 I32 overloading = 0;
1425 bool hasargs = FALSE;
1426 I32 is_xsub = 0;
1427
1428 if (gimme != G_ARRAY) {
1429 SP = MARK;
1430 RETPUSHUNDEF;
1431 }
1432
1433 ENTER;
1434 SAVEVPTR(PL_sortcop);
1435 if (PL_op->op_flags & OPf_STACKED) {
1436 if (PL_op->op_flags & OPf_SPECIAL) {
1437 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1438 kid = kUNOP->op_first; /* pass rv2gv */
1439 kid = kUNOP->op_first; /* pass leave */
1440 PL_sortcop = kid->op_next;
1441 stash = CopSTASH(PL_curcop);
1442 }
1443 else {
1444 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1445 if (cv && SvPOK(cv)) {
1446 STRLEN n_a;
1447 char *proto = SvPV((SV*)cv, n_a);
1448 if (proto && strEQ(proto, "$$")) {
1449 hasargs = TRUE;
1450 }
1451 }
1452 if (!(cv && CvROOT(cv))) {
1453 if (cv && CvXSUB(cv)) {
1454 is_xsub = 1;
1455 }
1456 else if (gv) {
1457 SV *tmpstr = sv_newmortal();
1458 gv_efullname3(tmpstr, gv, Nullch);
35c1215d
NC
1459 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1460 tmpstr);
84d4ea48
JH
1461 }
1462 else {
1463 DIE(aTHX_ "Undefined subroutine in sort");
1464 }
1465 }
1466
1467 if (is_xsub)
1468 PL_sortcop = (OP*)cv;
1469 else {
1470 PL_sortcop = CvSTART(cv);
1471 SAVEVPTR(CvROOT(cv)->op_ppaddr);
1472 CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL];
1473
dd2155a4 1474 PAD_SET_CUR(CvPADLIST(cv), 1);
84d4ea48
JH
1475 }
1476 }
1477 }
1478 else {
1479 PL_sortcop = Nullop;
1480 stash = CopSTASH(PL_curcop);
1481 }
1482
1483 up = myorigmark + 1;
1484 while (MARK < SP) { /* This may or may not shift down one here. */
1485 /*SUPPRESS 560*/
1486 if ((*up = *++MARK)) { /* Weed out nulls. */
1487 SvTEMP_off(*up);
1488 if (!PL_sortcop && !SvPOK(*up)) {
1489 STRLEN n_a;
1490 if (SvAMAGIC(*up))
1491 overloading = 1;
1492 else
1493 (void)sv_2pv(*up, &n_a);
1494 }
1495 up++;
1496 }
1497 }
1498 max = --up - myorigmark;
1499 if (PL_sortcop) {
1500 if (max > 1) {
1501 PERL_CONTEXT *cx;
1502 SV** newsp;
1503 bool oldcatch = CATCH_GET;
1504
1505 SAVETMPS;
1506 SAVEOP();
1507
1508 CATCH_SET(TRUE);
1509 PUSHSTACKi(PERLSI_SORT);
1510 if (!hasargs && !is_xsub) {
1511 if (PL_sortstash != stash || !PL_firstgv || !PL_secondgv) {
1512 SAVESPTR(PL_firstgv);
1513 SAVESPTR(PL_secondgv);
1514 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1515 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1516 PL_sortstash = stash;
1517 }
84d4ea48
JH
1518 SAVESPTR(GvSV(PL_firstgv));
1519 SAVESPTR(GvSV(PL_secondgv));
1520 }
1521
1522 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1523 if (!(PL_op->op_flags & OPf_SPECIAL)) {
1524 cx->cx_type = CXt_SUB;
1525 cx->blk_gimme = G_SCALAR;
1526 PUSHSUB(cx);
84d4ea48
JH
1527 }
1528 PL_sortcxix = cxstack_ix;
1529
1530 if (hasargs && !is_xsub) {
1531 /* This is mostly copied from pp_entersub */
dd2155a4 1532 AV *av = (AV*)PAD_SVl(0);
84d4ea48 1533
84d4ea48
JH
1534 cx->blk_sub.savearray = GvAV(PL_defgv);
1535 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
dd2155a4 1536 CX_CURPAD_SAVE(cx->blk_sub);
84d4ea48
JH
1537 cx->blk_sub.argarray = av;
1538 }
1539 sortsv((myorigmark+1), max,
1540 is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv);
1541
1542 POPBLOCK(cx,PL_curpm);
1543 PL_stack_sp = newsp;
1544 POPSTACK;
1545 CATCH_SET(oldcatch);
1546 }
1547 }
1548 else {
1549 if (max > 1) {
1550 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1551 sortsv(ORIGMARK+1, max,
1552 (PL_op->op_private & OPpSORT_NUMERIC)
1553 ? ( (PL_op->op_private & OPpSORT_INTEGER)
1554 ? ( overloading ? amagic_i_ncmp : sv_i_ncmp)
1555 : ( overloading ? amagic_ncmp : sv_ncmp))
1556 : ( IN_LOCALE_RUNTIME
1557 ? ( overloading
1558 ? amagic_cmp_locale
1559 : sv_cmp_locale_static)
1560 : ( overloading ? amagic_cmp : sv_cmp_static)));
1561 if (PL_op->op_private & OPpSORT_REVERSE) {
1562 SV **p = ORIGMARK+1;
1563 SV **q = ORIGMARK+max;
1564 while (p < q) {
1565 SV *tmp = *p;
1566 *p++ = *q;
1567 *q-- = tmp;
1568 }
1569 }
1570 }
1571 }
1572 LEAVE;
1573 PL_stack_sp = ORIGMARK + max;
1574 return nextop;
1575}
1576
1577static I32
1578sortcv(pTHX_ SV *a, SV *b)
1579{
1580 I32 oldsaveix = PL_savestack_ix;
1581 I32 oldscopeix = PL_scopestack_ix;
1582 I32 result;
1583 GvSV(PL_firstgv) = a;
1584 GvSV(PL_secondgv) = b;
1585 PL_stack_sp = PL_stack_base;
1586 PL_op = PL_sortcop;
1587 CALLRUNOPS(aTHX);
1588 if (PL_stack_sp != PL_stack_base + 1)
1589 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1590 if (!SvNIOKp(*PL_stack_sp))
1591 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1592 result = SvIV(*PL_stack_sp);
1593 while (PL_scopestack_ix > oldscopeix) {
1594 LEAVE;
1595 }
1596 leave_scope(oldsaveix);
1597 return result;
1598}
1599
1600static I32
1601sortcv_stacked(pTHX_ SV *a, SV *b)
1602{
1603 I32 oldsaveix = PL_savestack_ix;
1604 I32 oldscopeix = PL_scopestack_ix;
1605 I32 result;
1606 AV *av;
1607
84d4ea48 1608 av = GvAV(PL_defgv);
84d4ea48
JH
1609
1610 if (AvMAX(av) < 1) {
1611 SV** ary = AvALLOC(av);
1612 if (AvARRAY(av) != ary) {
1613 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1614 SvPVX(av) = (char*)ary;
1615 }
1616 if (AvMAX(av) < 1) {
1617 AvMAX(av) = 1;
1618 Renew(ary,2,SV*);
1619 SvPVX(av) = (char*)ary;
1620 }
1621 }
1622 AvFILLp(av) = 1;
1623
1624 AvARRAY(av)[0] = a;
1625 AvARRAY(av)[1] = b;
1626 PL_stack_sp = PL_stack_base;
1627 PL_op = PL_sortcop;
1628 CALLRUNOPS(aTHX);
1629 if (PL_stack_sp != PL_stack_base + 1)
1630 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1631 if (!SvNIOKp(*PL_stack_sp))
1632 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1633 result = SvIV(*PL_stack_sp);
1634 while (PL_scopestack_ix > oldscopeix) {
1635 LEAVE;
1636 }
1637 leave_scope(oldsaveix);
1638 return result;
1639}
1640
1641static I32
1642sortcv_xsub(pTHX_ SV *a, SV *b)
1643{
1644 dSP;
1645 I32 oldsaveix = PL_savestack_ix;
1646 I32 oldscopeix = PL_scopestack_ix;
1647 I32 result;
1648 CV *cv=(CV*)PL_sortcop;
1649
1650 SP = PL_stack_base;
1651 PUSHMARK(SP);
1652 EXTEND(SP, 2);
1653 *++SP = a;
1654 *++SP = b;
1655 PUTBACK;
1656 (void)(*CvXSUB(cv))(aTHX_ cv);
1657 if (PL_stack_sp != PL_stack_base + 1)
1658 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1659 if (!SvNIOKp(*PL_stack_sp))
1660 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1661 result = SvIV(*PL_stack_sp);
1662 while (PL_scopestack_ix > oldscopeix) {
1663 LEAVE;
1664 }
1665 leave_scope(oldsaveix);
1666 return result;
1667}
1668
1669
1670static I32
1671sv_ncmp(pTHX_ SV *a, SV *b)
1672{
1673 NV nv1 = SvNV(a);
1674 NV nv2 = SvNV(b);
1675 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1676}
1677
1678static I32
1679sv_i_ncmp(pTHX_ SV *a, SV *b)
1680{
1681 IV iv1 = SvIV(a);
1682 IV iv2 = SvIV(b);
1683 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1684}
1685#define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \
1686 *svp = Nullsv; \
1687 if (PL_amagic_generation) { \
1688 if (SvAMAGIC(left)||SvAMAGIC(right))\
1689 *svp = amagic_call(left, \
1690 right, \
1691 CAT2(meth,_amg), \
1692 0); \
1693 } \
1694 } STMT_END
1695
1696static I32
1697amagic_ncmp(pTHX_ register SV *a, register SV *b)
1698{
1699 SV *tmpsv;
1700 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1701 if (tmpsv) {
1702 NV d;
4eb872f6 1703
84d4ea48
JH
1704 if (SvIOK(tmpsv)) {
1705 I32 i = SvIVX(tmpsv);
1706 if (i > 0)
1707 return 1;
1708 return i? -1 : 0;
1709 }
1710 d = SvNV(tmpsv);
1711 if (d > 0)
1712 return 1;
1713 return d? -1 : 0;
1714 }
1715 return sv_ncmp(aTHX_ a, b);
1716}
1717
1718static I32
1719amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
1720{
1721 SV *tmpsv;
1722 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1723 if (tmpsv) {
1724 NV d;
4eb872f6 1725
84d4ea48
JH
1726 if (SvIOK(tmpsv)) {
1727 I32 i = SvIVX(tmpsv);
1728 if (i > 0)
1729 return 1;
1730 return i? -1 : 0;
1731 }
1732 d = SvNV(tmpsv);
1733 if (d > 0)
1734 return 1;
1735 return d? -1 : 0;
1736 }
1737 return sv_i_ncmp(aTHX_ a, b);
1738}
1739
1740static I32
1741amagic_cmp(pTHX_ register SV *str1, register SV *str2)
1742{
1743 SV *tmpsv;
1744 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1745 if (tmpsv) {
1746 NV d;
4eb872f6 1747
84d4ea48
JH
1748 if (SvIOK(tmpsv)) {
1749 I32 i = SvIVX(tmpsv);
1750 if (i > 0)
1751 return 1;
1752 return i? -1 : 0;
1753 }
1754 d = SvNV(tmpsv);
1755 if (d > 0)
1756 return 1;
1757 return d? -1 : 0;
1758 }
1759 return sv_cmp(str1, str2);
1760}
1761
1762static I32
1763amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
1764{
1765 SV *tmpsv;
1766 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1767 if (tmpsv) {
1768 NV d;
4eb872f6 1769
84d4ea48
JH
1770 if (SvIOK(tmpsv)) {
1771 I32 i = SvIVX(tmpsv);
1772 if (i > 0)
1773 return 1;
1774 return i? -1 : 0;
1775 }
1776 d = SvNV(tmpsv);
1777 if (d > 0)
1778 return 1;
1779 return d? -1 : 0;
1780 }
1781 return sv_cmp_locale(str1, str2);
1782}