This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
utf8.c: Fix comment
[perl5.git] / pod / perlretut.pod
1 =head1 NAME
2
3 perlretut - Perl regular expressions tutorial
4
5 =head1 DESCRIPTION
6
7 This page provides a basic tutorial on understanding, creating and
8 using regular expressions in Perl.  It serves as a complement to the
9 reference page on regular expressions L<perlre>.  Regular expressions
10 are an integral part of the C<m//>, C<s///>, C<qr//> and C<split>
11 operators and so this tutorial also overlaps with
12 L<perlop/"Regexp Quote-Like Operators"> and L<perlfunc/split>.
13
14 Perl is widely renowned for excellence in text processing, and regular
15 expressions are one of the big factors behind this fame.  Perl regular
16 expressions display an efficiency and flexibility unknown in most
17 other computer languages.  Mastering even the basics of regular
18 expressions will allow you to manipulate text with surprising ease.
19
20 What is a regular expression?  A regular expression is simply a string
21 that describes a pattern.  Patterns are in common use these days;
22 examples are the patterns typed into a search engine to find web pages
23 and the patterns used to list files in a directory, e.g., C<ls *.txt>
24 or C<dir *.*>.  In Perl, the patterns described by regular expressions
25 are used to search strings, extract desired parts of strings, and to
26 do search and replace operations.
27
28 Regular expressions have the undeserved reputation of being abstract
29 and difficult to understand.  Regular expressions are constructed using
30 simple concepts like conditionals and loops and are no more difficult
31 to understand than the corresponding C<if> conditionals and C<while>
32 loops in the Perl language itself.  In fact, the main challenge in
33 learning regular expressions is just getting used to the terse
34 notation used to express these concepts.
35
36 This tutorial flattens the learning curve by discussing regular
37 expression concepts, along with their notation, one at a time and with
38 many examples.  The first part of the tutorial will progress from the
39 simplest word searches to the basic regular expression concepts.  If
40 you master the first part, you will have all the tools needed to solve
41 about 98% of your needs.  The second part of the tutorial is for those
42 comfortable with the basics and hungry for more power tools.  It
43 discusses the more advanced regular expression operators and
44 introduces the latest cutting-edge innovations.
45
46 A note: to save time, 'regular expression' is often abbreviated as
47 regexp or regex.  Regexp is a more natural abbreviation than regex, but
48 is harder to pronounce.  The Perl pod documentation is evenly split on
49 regexp vs regex; in Perl, there is more than one way to abbreviate it.
50 We'll use regexp in this tutorial.
51
52 New in v5.22, L<C<use re 'strict'>|re/'strict' mode> applies stricter
53 rules than otherwise when compiling regular expression patterns.  It can
54 find things that, while legal, may not be what you intended.
55
56 =head1 Part 1: The basics
57
58 =head2 Simple word matching
59
60 The simplest regexp is simply a word, or more generally, a string of
61 characters.  A regexp consisting of a word matches any string that
62 contains that word:
63
64     "Hello World" =~ /World/;  # matches
65
66 What is this Perl statement all about? C<"Hello World"> is a simple
67 double-quoted string.  C<World> is the regular expression and the
68 C<//> enclosing C</World/> tells Perl to search a string for a match.
69 The operator C<=~> associates the string with the regexp match and
70 produces a true value if the regexp matched, or false if the regexp
71 did not match.  In our case, C<World> matches the second word in
72 C<"Hello World">, so the expression is true.  Expressions like this
73 are useful in conditionals:
74
75     if ("Hello World" =~ /World/) {
76         print "It matches\n";
77     }
78     else {
79         print "It doesn't match\n";
80     }
81
82 There are useful variations on this theme.  The sense of the match can
83 be reversed by using the C<!~> operator:
84
85     if ("Hello World" !~ /World/) {
86         print "It doesn't match\n";
87     }
88     else {
89         print "It matches\n";
90     }
91
92 The literal string in the regexp can be replaced by a variable:
93
94     $greeting = "World";
95     if ("Hello World" =~ /$greeting/) {
96         print "It matches\n";
97     }
98     else {
99         print "It doesn't match\n";
100     }
101
102 If you're matching against the special default variable C<$_>, the
103 C<$_ =~> part can be omitted:
104
105     $_ = "Hello World";
106     if (/World/) {
107         print "It matches\n";
108     }
109     else {
110         print "It doesn't match\n";
111     }
112
113 And finally, the C<//> default delimiters for a match can be changed
114 to arbitrary delimiters by putting an C<'m'> out front:
115
116     "Hello World" =~ m!World!;   # matches, delimited by '!'
117     "Hello World" =~ m{World};   # matches, note the matching '{}'
118     "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
119                                  # '/' becomes an ordinary char
120
121 C</World/>, C<m!World!>, and C<m{World}> all represent the
122 same thing.  When, e.g., the quote (C<">) is used as a delimiter, the forward
123 slash C<'/'> becomes an ordinary character and can be used in this regexp
124 without trouble.
125
126 Let's consider how different regexps would match C<"Hello World">:
127
128     "Hello World" =~ /world/;  # doesn't match
129     "Hello World" =~ /o W/;    # matches
130     "Hello World" =~ /oW/;     # doesn't match
131     "Hello World" =~ /World /; # doesn't match
132
133 The first regexp C<world> doesn't match because regexps are
134 case-sensitive.  The second regexp matches because the substring
135 S<C<'o W'>> occurs in the string S<C<"Hello World">>.  The space
136 character ' ' is treated like any other character in a regexp and is
137 needed to match in this case.  The lack of a space character is the
138 reason the third regexp C<'oW'> doesn't match.  The fourth regexp
139 C<'World '> doesn't match because there is a space at the end of the
140 regexp, but not at the end of the string.  The lesson here is that
141 regexps must match a part of the string I<exactly> in order for the
142 statement to be true.
143
144 If a regexp matches in more than one place in the string, Perl will
145 always match at the earliest possible point in the string:
146
147     "Hello World" =~ /o/;       # matches 'o' in 'Hello'
148     "That hat is red" =~ /hat/; # matches 'hat' in 'That'
149
150 With respect to character matching, there are a few more points you
151 need to know about.   First of all, not all characters can be used 'as
152 is' in a match.  Some characters, called I<metacharacters>, are reserved
153 for use in regexp notation.  The metacharacters are
154
155     {}[]()^$.|*+?\
156
157 The significance of each of these will be explained
158 in the rest of the tutorial, but for now, it is important only to know
159 that a metacharacter can be matched by putting a backslash before it:
160
161     "2+2=4" =~ /2+2/;    # doesn't match, + is a metacharacter
162     "2+2=4" =~ /2\+2/;   # matches, \+ is treated like an ordinary +
163     "The interval is [0,1)." =~ /[0,1)./     # is a syntax error!
164     "The interval is [0,1)." =~ /\[0,1\)\./  # matches
165     "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/;  # matches
166
167 In the last regexp, the forward slash C<'/'> is also backslashed,
168 because it is used to delimit the regexp.  This can lead to LTS
169 (leaning toothpick syndrome), however, and it is often more readable
170 to change delimiters.
171
172     "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!;  # easier to read
173
174 The backslash character C<'\'> is a metacharacter itself and needs to
175 be backslashed:
176
177     'C:\WIN32' =~ /C:\\WIN/;   # matches
178
179 In addition to the metacharacters, there are some ASCII characters
180 which don't have printable character equivalents and are instead
181 represented by I<escape sequences>.  Common examples are C<\t> for a
182 tab, C<\n> for a newline, C<\r> for a carriage return and C<\a> for a
183 bell (or alert).  If your string is better thought of as a sequence of arbitrary
184 bytes, the octal escape sequence, e.g., C<\033>, or hexadecimal escape
185 sequence, e.g., C<\x1B> may be a more natural representation for your
186 bytes.  Here are some examples of escapes:
187
188     "1000\t2000" =~ m(0\t2)   # matches
189     "1000\n2000" =~ /0\n20/   # matches
190     "1000\t2000" =~ /\000\t2/ # doesn't match, "0" ne "\000"
191     "cat"   =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way
192                                  # to spell cat
193
194 If you've been around Perl a while, all this talk of escape sequences
195 may seem familiar.  Similar escape sequences are used in double-quoted
196 strings and in fact the regexps in Perl are mostly treated as
197 double-quoted strings.  This means that variables can be used in
198 regexps as well.  Just like double-quoted strings, the values of the
199 variables in the regexp will be substituted in before the regexp is
200 evaluated for matching purposes.  So we have:
201
202     $foo = 'house';
203     'housecat' =~ /$foo/;      # matches
204     'cathouse' =~ /cat$foo/;   # matches
205     'housecat' =~ /${foo}cat/; # matches
206
207 So far, so good.  With the knowledge above you can already perform
208 searches with just about any literal string regexp you can dream up.
209 Here is a I<very simple> emulation of the Unix grep program:
210
211     % cat > simple_grep
212     #!/usr/bin/perl
213     $regexp = shift;
214     while (<>) {
215         print if /$regexp/;
216     }
217     ^D
218
219     % chmod +x simple_grep
220
221     % simple_grep abba /usr/dict/words
222     Babbage
223     cabbage
224     cabbages
225     sabbath
226     Sabbathize
227     Sabbathizes
228     sabbatical
229     scabbard
230     scabbards
231
232 This program is easy to understand.  C<#!/usr/bin/perl> is the standard
233 way to invoke a perl program from the shell.
234 S<C<$regexp = shift;>> saves the first command line argument as the
235 regexp to be used, leaving the rest of the command line arguments to
236 be treated as files.  S<C<< while (<>) >>> loops over all the lines in
237 all the files.  For each line, S<C<print if /$regexp/;>> prints the
238 line if the regexp matches the line.  In this line, both C<print> and
239 C</$regexp/> use the default variable C<$_> implicitly.
240
241 With all of the regexps above, if the regexp matched anywhere in the
242 string, it was considered a match.  Sometimes, however, we'd like to
243 specify I<where> in the string the regexp should try to match.  To do
244 this, we would use the I<anchor> metacharacters C<^> and C<$>.  The
245 anchor C<^> means match at the beginning of the string and the anchor
246 C<$> means match at the end of the string, or before a newline at the
247 end of the string.  Here is how they are used:
248
249     "housekeeper" =~ /keeper/;    # matches
250     "housekeeper" =~ /^keeper/;   # doesn't match
251     "housekeeper" =~ /keeper$/;   # matches
252     "housekeeper\n" =~ /keeper$/; # matches
253
254 The second regexp doesn't match because C<^> constrains C<keeper> to
255 match only at the beginning of the string, but C<"housekeeper"> has
256 keeper starting in the middle.  The third regexp does match, since the
257 C<$> constrains C<keeper> to match only at the end of the string.
258
259 When both C<^> and C<$> are used at the same time, the regexp has to
260 match both the beginning and the end of the string, i.e., the regexp
261 matches the whole string.  Consider
262
263     "keeper" =~ /^keep$/;      # doesn't match
264     "keeper" =~ /^keeper$/;    # matches
265     ""       =~ /^$/;          # ^$ matches an empty string
266
267 The first regexp doesn't match because the string has more to it than
268 C<keep>.  Since the second regexp is exactly the string, it
269 matches.  Using both C<^> and C<$> in a regexp forces the complete
270 string to match, so it gives you complete control over which strings
271 match and which don't.  Suppose you are looking for a fellow named
272 bert, off in a string by himself:
273
274     "dogbert" =~ /bert/;   # matches, but not what you want
275
276     "dilbert" =~ /^bert/;  # doesn't match, but ..
277     "bertram" =~ /^bert/;  # matches, so still not good enough
278
279     "bertram" =~ /^bert$/; # doesn't match, good
280     "dilbert" =~ /^bert$/; # doesn't match, good
281     "bert"    =~ /^bert$/; # matches, perfect
282
283 Of course, in the case of a literal string, one could just as easily
284 use the string comparison S<C<$string eq 'bert'>> and it would be
285 more efficient.   The  C<^...$> regexp really becomes useful when we
286 add in the more powerful regexp tools below.
287
288 =head2 Using character classes
289
290 Although one can already do quite a lot with the literal string
291 regexps above, we've only scratched the surface of regular expression
292 technology.  In this and subsequent sections we will introduce regexp
293 concepts (and associated metacharacter notations) that will allow a
294 regexp to represent not just a single character sequence, but a I<whole
295 class> of them.
296
297 One such concept is that of a I<character class>.  A character class
298 allows a set of possible characters, rather than just a single
299 character, to match at a particular point in a regexp.  You can define
300 your own custom character classes.  These
301 are denoted by brackets C<[...]>, with the set of characters
302 to be possibly matched inside.  Here are some examples:
303
304     /cat/;       # matches 'cat'
305     /[bcr]at/;   # matches 'bat, 'cat', or 'rat'
306     /item[0123456789]/;  # matches 'item0' or ... or 'item9'
307     "abc" =~ /[cab]/;    # matches 'a'
308
309 In the last statement, even though C<'c'> is the first character in
310 the class, C<'a'> matches because the first character position in the
311 string is the earliest point at which the regexp can match.
312
313     /[yY][eE][sS]/;      # match 'yes' in a case-insensitive way
314                          # 'yes', 'Yes', 'YES', etc.
315
316 This regexp displays a common task: perform a case-insensitive
317 match.  Perl provides a way of avoiding all those brackets by simply
318 appending an C<'i'> to the end of the match.  Then C</[yY][eE][sS]/;>
319 can be rewritten as C</yes/i;>.  The C<'i'> stands for
320 case-insensitive and is an example of a I<modifier> of the matching
321 operation.  We will meet other modifiers later in the tutorial.
322
323 We saw in the section above that there were ordinary characters, which
324 represented themselves, and special characters, which needed a
325 backslash C<\> to represent themselves.  The same is true in a
326 character class, but the sets of ordinary and special characters
327 inside a character class are different than those outside a character
328 class.  The special characters for a character class are C<-]\^$> (and
329 the pattern delimiter, whatever it is).
330 C<]> is special because it denotes the end of a character class.  C<$> is
331 special because it denotes a scalar variable.  C<\> is special because
332 it is used in escape sequences, just like above.  Here is how the
333 special characters C<]$\> are handled:
334
335    /[\]c]def/; # matches ']def' or 'cdef'
336    $x = 'bcr';
337    /[$x]at/;   # matches 'bat', 'cat', or 'rat'
338    /[\$x]at/;  # matches '$at' or 'xat'
339    /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'
340
341 The last two are a little tricky.  In C<[\$x]>, the backslash protects
342 the dollar sign, so the character class has two members C<$> and C<x>.
343 In C<[\\$x]>, the backslash is protected, so C<$x> is treated as a
344 variable and substituted in double quote fashion.
345
346 The special character C<'-'> acts as a range operator within character
347 classes, so that a contiguous set of characters can be written as a
348 range.  With ranges, the unwieldy C<[0123456789]> and C<[abc...xyz]>
349 become the svelte C<[0-9]> and C<[a-z]>.  Some examples are
350
351     /item[0-9]/;  # matches 'item0' or ... or 'item9'
352     /[0-9bx-z]aa/;  # matches '0aa', ..., '9aa',
353                     # 'baa', 'xaa', 'yaa', or 'zaa'
354     /[0-9a-fA-F]/;  # matches a hexadecimal digit
355     /[0-9a-zA-Z_]/; # matches a "word" character,
356                     # like those in a Perl variable name
357
358 If C<'-'> is the first or last character in a character class, it is
359 treated as an ordinary character; C<[-ab]>, C<[ab-]> and C<[a\-b]> are
360 all equivalent.
361
362 The special character C<^> in the first position of a character class
363 denotes a I<negated character class>, which matches any character but
364 those in the brackets.  Both C<[...]> and C<[^...]> must match a
365 character, or the match fails.  Then
366
367     /[^a]at/;  # doesn't match 'aat' or 'at', but matches
368                # all other 'bat', 'cat, '0at', '%at', etc.
369     /[^0-9]/;  # matches a non-numeric character
370     /[a^]at/;  # matches 'aat' or '^at'; here '^' is ordinary
371
372 Now, even C<[0-9]> can be a bother to write multiple times, so in the
373 interest of saving keystrokes and making regexps more readable, Perl
374 has several abbreviations for common character classes, as shown below.
375 Since the introduction of Unicode, unless the C<//a> modifier is in
376 effect, these character classes match more than just a few characters in
377 the ASCII range.
378
379 =over 4
380
381 =item *
382
383 \d matches a digit, not just [0-9] but also digits from non-roman scripts
384
385 =item *
386
387 \s matches a whitespace character, the set [\ \t\r\n\f] and others
388
389 =item *
390
391 \w matches a word character (alphanumeric or _), not just [0-9a-zA-Z_]
392 but also digits and characters from non-roman scripts
393
394 =item *
395
396 \D is a negated \d; it represents any other character than a digit, or [^\d]
397
398 =item *
399
400 \S is a negated \s; it represents any non-whitespace character [^\s]
401
402 =item *
403
404 \W is a negated \w; it represents any non-word character [^\w]
405
406 =item *
407
408 The period '.' matches any character but "\n" (unless the modifier C<//s> is
409 in effect, as explained below).
410
411 =item *
412
413 \N, like the period, matches any character but "\n", but it does so
414 regardless of whether the modifier C<//s> is in effect.
415
416 =back
417
418 The C<//a> modifier, available starting in Perl 5.14,  is used to
419 restrict the matches of \d, \s, and \w to just those in the ASCII range.
420 It is useful to keep your program from being needlessly exposed to full
421 Unicode (and its accompanying security considerations) when all you want
422 is to process English-like text.  (The "a" may be doubled, C<//aa>, to
423 provide even more restrictions, preventing case-insensitive matching of
424 ASCII with non-ASCII characters; otherwise a Unicode "Kelvin Sign"
425 would caselessly match a "k" or "K".)
426
427 The C<\d\s\w\D\S\W> abbreviations can be used both inside and outside
428 of bracketed character classes.  Here are some in use:
429
430     /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
431     /[\d\s]/;         # matches any digit or whitespace character
432     /\w\W\w/;         # matches a word char, followed by a
433                       # non-word char, followed by a word char
434     /..rt/;           # matches any two chars, followed by 'rt'
435     /end\./;          # matches 'end.'
436     /end[.]/;         # same thing, matches 'end.'
437
438 Because a period is a metacharacter, it needs to be escaped to match
439 as an ordinary period. Because, for example, C<\d> and C<\w> are sets
440 of characters, it is incorrect to think of C<[^\d\w]> as C<[\D\W]>; in
441 fact C<[^\d\w]> is the same as C<[^\w]>, which is the same as
442 C<[\W]>. Think DeMorgan's laws.
443
444 In actuality, the period and C<\d\s\w\D\S\W> abbreviations are
445 themselves types of character classes, so the ones surrounded by
446 brackets are just one type of character class.  When we need to make a
447 distinction, we refer to them as "bracketed character classes."
448
449 An anchor useful in basic regexps is the I<word anchor>
450 C<\b>.  This matches a boundary between a word character and a non-word
451 character C<\w\W> or C<\W\w>:
452
453     $x = "Housecat catenates house and cat";
454     $x =~ /cat/;    # matches cat in 'housecat'
455     $x =~ /\bcat/;  # matches cat in 'catenates'
456     $x =~ /cat\b/;  # matches cat in 'housecat'
457     $x =~ /\bcat\b/;  # matches 'cat' at end of string
458
459 Note in the last example, the end of the string is considered a word
460 boundary.
461
462 For natural language processing (so that, for example, apostrophes are
463 included in words), use instead C<\b{wb}>
464
465     "don't" =~ / .+? \b{wb} /x;  # matches the whole string
466
467 You might wonder why C<'.'> matches everything but C<"\n"> - why not
468 every character? The reason is that often one is matching against
469 lines and would like to ignore the newline characters.  For instance,
470 while the string C<"\n"> represents one line, we would like to think
471 of it as empty.  Then
472
473     ""   =~ /^$/;    # matches
474     "\n" =~ /^$/;    # matches, $ anchors before "\n"
475
476     ""   =~ /./;      # doesn't match; it needs a char
477     ""   =~ /^.$/;    # doesn't match; it needs a char
478     "\n" =~ /^.$/;    # doesn't match; it needs a char other than "\n"
479     "a"  =~ /^.$/;    # matches
480     "a\n"  =~ /^.$/;  # matches, $ anchors before "\n"
481
482 This behavior is convenient, because we usually want to ignore
483 newlines when we count and match characters in a line.  Sometimes,
484 however, we want to keep track of newlines.  We might even want C<^>
485 and C<$> to anchor at the beginning and end of lines within the
486 string, rather than just the beginning and end of the string.  Perl
487 allows us to choose between ignoring and paying attention to newlines
488 by using the C<//s> and C<//m> modifiers.  C<//s> and C<//m> stand for
489 single line and multi-line and they determine whether a string is to
490 be treated as one continuous string, or as a set of lines.  The two
491 modifiers affect two aspects of how the regexp is interpreted: 1) how
492 the C<'.'> character class is defined, and 2) where the anchors C<^>
493 and C<$> are able to match.  Here are the four possible combinations:
494
495 =over 4
496
497 =item *
498
499 no modifiers (//): Default behavior.  C<'.'> matches any character
500 except C<"\n">.  C<^> matches only at the beginning of the string and
501 C<$> matches only at the end or before a newline at the end.
502
503 =item *
504
505 s modifier (//s): Treat string as a single long line.  C<'.'> matches
506 any character, even C<"\n">.  C<^> matches only at the beginning of
507 the string and C<$> matches only at the end or before a newline at the
508 end.
509
510 =item *
511
512 m modifier (//m): Treat string as a set of multiple lines.  C<'.'>
513 matches any character except C<"\n">.  C<^> and C<$> are able to match
514 at the start or end of I<any> line within the string.
515
516 =item *
517
518 both s and m modifiers (//sm): Treat string as a single long line, but
519 detect multiple lines.  C<'.'> matches any character, even
520 C<"\n">.  C<^> and C<$>, however, are able to match at the start or end
521 of I<any> line within the string.
522
523 =back
524
525 Here are examples of C<//s> and C<//m> in action:
526
527     $x = "There once was a girl\nWho programmed in Perl\n";
528
529     $x =~ /^Who/;   # doesn't match, "Who" not at start of string
530     $x =~ /^Who/s;  # doesn't match, "Who" not at start of string
531     $x =~ /^Who/m;  # matches, "Who" at start of second line
532     $x =~ /^Who/sm; # matches, "Who" at start of second line
533
534     $x =~ /girl.Who/;   # doesn't match, "." doesn't match "\n"
535     $x =~ /girl.Who/s;  # matches, "." matches "\n"
536     $x =~ /girl.Who/m;  # doesn't match, "." doesn't match "\n"
537     $x =~ /girl.Who/sm; # matches, "." matches "\n"
538
539 Most of the time, the default behavior is what is wanted, but C<//s> and
540 C<//m> are occasionally very useful.  If C<//m> is being used, the start
541 of the string can still be matched with C<\A> and the end of the string
542 can still be matched with the anchors C<\Z> (matches both the end and
543 the newline before, like C<$>), and C<\z> (matches only the end):
544
545     $x =~ /^Who/m;   # matches, "Who" at start of second line
546     $x =~ /\AWho/m;  # doesn't match, "Who" is not at start of string
547
548     $x =~ /girl$/m;  # matches, "girl" at end of first line
549     $x =~ /girl\Z/m; # doesn't match, "girl" is not at end of string
550
551     $x =~ /Perl\Z/m; # matches, "Perl" is at newline before end
552     $x =~ /Perl\z/m; # doesn't match, "Perl" is not at end of string
553
554 We now know how to create choices among classes of characters in a
555 regexp.  What about choices among words or character strings? Such
556 choices are described in the next section.
557
558 =head2 Matching this or that
559
560 Sometimes we would like our regexp to be able to match different
561 possible words or character strings.  This is accomplished by using
562 the I<alternation> metacharacter C<|>.  To match C<dog> or C<cat>, we
563 form the regexp C<dog|cat>.  As before, Perl will try to match the
564 regexp at the earliest possible point in the string.  At each
565 character position, Perl will first try to match the first
566 alternative, C<dog>.  If C<dog> doesn't match, Perl will then try the
567 next alternative, C<cat>.  If C<cat> doesn't match either, then the
568 match fails and Perl moves to the next position in the string.  Some
569 examples:
570
571     "cats and dogs" =~ /cat|dog|bird/;  # matches "cat"
572     "cats and dogs" =~ /dog|cat|bird/;  # matches "cat"
573
574 Even though C<dog> is the first alternative in the second regexp,
575 C<cat> is able to match earlier in the string.
576
577     "cats"          =~ /c|ca|cat|cats/; # matches "c"
578     "cats"          =~ /cats|cat|ca|c/; # matches "cats"
579
580 Here, all the alternatives match at the first string position, so the
581 first alternative is the one that matches.  If some of the
582 alternatives are truncations of the others, put the longest ones first
583 to give them a chance to match.
584
585     "cab" =~ /a|b|c/ # matches "c"
586                      # /a|b|c/ == /[abc]/
587
588 The last example points out that character classes are like
589 alternations of characters.  At a given character position, the first
590 alternative that allows the regexp match to succeed will be the one
591 that matches.
592
593 =head2 Grouping things and hierarchical matching
594
595 Alternation allows a regexp to choose among alternatives, but by
596 itself it is unsatisfying.  The reason is that each alternative is a whole
597 regexp, but sometime we want alternatives for just part of a
598 regexp.  For instance, suppose we want to search for housecats or
599 housekeepers.  The regexp C<housecat|housekeeper> fits the bill, but is
600 inefficient because we had to type C<house> twice.  It would be nice to
601 have parts of the regexp be constant, like C<house>, and some
602 parts have alternatives, like C<cat|keeper>.
603
604 The I<grouping> metacharacters C<()> solve this problem.  Grouping
605 allows parts of a regexp to be treated as a single unit.  Parts of a
606 regexp are grouped by enclosing them in parentheses.  Thus we could solve
607 the C<housecat|housekeeper> by forming the regexp as
608 C<house(cat|keeper)>.  The regexp C<house(cat|keeper)> means match
609 C<house> followed by either C<cat> or C<keeper>.  Some more examples
610 are
611
612     /(a|b)b/;    # matches 'ab' or 'bb'
613     /(ac|b)b/;   # matches 'acb' or 'bb'
614     /(^a|b)c/;   # matches 'ac' at start of string or 'bc' anywhere
615     /(a|[bc])d/; # matches 'ad', 'bd', or 'cd'
616
617     /house(cat|)/;  # matches either 'housecat' or 'house'
618     /house(cat(s|)|)/;  # matches either 'housecats' or 'housecat' or
619                         # 'house'.  Note groups can be nested.
620
621     /(19|20|)\d\d/;  # match years 19xx, 20xx, or the Y2K problem, xx
622     "20" =~ /(19|20|)\d\d/;  # matches the null alternative '()\d\d',
623                              # because '20\d\d' can't match
624
625 Alternations behave the same way in groups as out of them: at a given
626 string position, the leftmost alternative that allows the regexp to
627 match is taken.  So in the last example at the first string position,
628 C<"20"> matches the second alternative, but there is nothing left over
629 to match the next two digits C<\d\d>.  So Perl moves on to the next
630 alternative, which is the null alternative and that works, since
631 C<"20"> is two digits.
632
633 The process of trying one alternative, seeing if it matches, and
634 moving on to the next alternative, while going back in the string
635 from where the previous alternative was tried, if it doesn't, is called
636 I<backtracking>.  The term 'backtracking' comes from the idea that
637 matching a regexp is like a walk in the woods.  Successfully matching
638 a regexp is like arriving at a destination.  There are many possible
639 trailheads, one for each string position, and each one is tried in
640 order, left to right.  From each trailhead there may be many paths,
641 some of which get you there, and some which are dead ends.  When you
642 walk along a trail and hit a dead end, you have to backtrack along the
643 trail to an earlier point to try another trail.  If you hit your
644 destination, you stop immediately and forget about trying all the
645 other trails.  You are persistent, and only if you have tried all the
646 trails from all the trailheads and not arrived at your destination, do
647 you declare failure.  To be concrete, here is a step-by-step analysis
648 of what Perl does when it tries to match the regexp
649
650     "abcde" =~ /(abd|abc)(df|d|de)/;
651
652 =over 4
653
654 =item Z<>0
655
656 Start with the first letter in the string 'a'.
657
658 =item Z<>1
659
660 Try the first alternative in the first group 'abd'.
661
662 =item Z<>2
663
664 Match 'a' followed by 'b'. So far so good.
665
666 =item Z<>3
667
668 'd' in the regexp doesn't match 'c' in the string - a dead
669 end.  So backtrack two characters and pick the second alternative in
670 the first group 'abc'.
671
672 =item Z<>4
673
674 Match 'a' followed by 'b' followed by 'c'.  We are on a roll
675 and have satisfied the first group. Set $1 to 'abc'.
676
677 =item Z<>5
678
679 Move on to the second group and pick the first alternative
680 'df'.
681
682 =item Z<>6
683
684 Match the 'd'.
685
686 =item Z<>7
687
688 'f' in the regexp doesn't match 'e' in the string, so a dead
689 end.  Backtrack one character and pick the second alternative in the
690 second group 'd'.
691
692 =item Z<>8
693
694 'd' matches. The second grouping is satisfied, so set $2 to
695 'd'.
696
697 =item Z<>9
698
699 We are at the end of the regexp, so we are done! We have
700 matched 'abcd' out of the string "abcde".
701
702 =back
703
704 There are a couple of things to note about this analysis.  First, the
705 third alternative in the second group 'de' also allows a match, but we
706 stopped before we got to it - at a given character position, leftmost
707 wins.  Second, we were able to get a match at the first character
708 position of the string 'a'.  If there were no matches at the first
709 position, Perl would move to the second character position 'b' and
710 attempt the match all over again.  Only when all possible paths at all
711 possible character positions have been exhausted does Perl give
712 up and declare S<C<$string =~ /(abd|abc)(df|d|de)/;>> to be false.
713
714 Even with all this work, regexp matching happens remarkably fast.  To
715 speed things up, Perl compiles the regexp into a compact sequence of
716 opcodes that can often fit inside a processor cache.  When the code is
717 executed, these opcodes can then run at full throttle and search very
718 quickly.
719
720 =head2 Extracting matches
721
722 The grouping metacharacters C<()> also serve another completely
723 different function: they allow the extraction of the parts of a string
724 that matched.  This is very useful to find out what matched and for
725 text processing in general.  For each grouping, the part that matched
726 inside goes into the special variables C<$1>, C<$2>, etc.  They can be
727 used just as ordinary variables:
728
729     # extract hours, minutes, seconds
730     if ($time =~ /(\d\d):(\d\d):(\d\d)/) {    # match hh:mm:ss format
731         $hours = $1;
732         $minutes = $2;
733         $seconds = $3;
734     }
735
736 Now, we know that in scalar context,
737 S<C<$time =~ /(\d\d):(\d\d):(\d\d)/>> returns a true or false
738 value.  In list context, however, it returns the list of matched values
739 C<($1,$2,$3)>.  So we could write the code more compactly as
740
741     # extract hours, minutes, seconds
742     ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);
743
744 If the groupings in a regexp are nested, C<$1> gets the group with the
745 leftmost opening parenthesis, C<$2> the next opening parenthesis,
746 etc.  Here is a regexp with nested groups:
747
748     /(ab(cd|ef)((gi)|j))/;
749      1  2      34
750
751 If this regexp matches, C<$1> contains a string starting with
752 C<'ab'>, C<$2> is either set to C<'cd'> or C<'ef'>, C<$3> equals either
753 C<'gi'> or C<'j'>, and C<$4> is either set to C<'gi'>, just like C<$3>,
754 or it remains undefined.
755
756 For convenience, Perl sets C<$+> to the string held by the highest numbered
757 C<$1>, C<$2>,... that got assigned (and, somewhat related, C<$^N> to the
758 value of the C<$1>, C<$2>,... most-recently assigned; i.e. the C<$1>,
759 C<$2>,... associated with the rightmost closing parenthesis used in the
760 match).
761
762
763 =head2 Backreferences
764
765 Closely associated with the matching variables C<$1>, C<$2>, ... are
766 the I<backreferences> C<\g1>, C<\g2>,...  Backreferences are simply
767 matching variables that can be used I<inside> a regexp.  This is a
768 really nice feature; what matches later in a regexp is made to depend on
769 what matched earlier in the regexp.  Suppose we wanted to look
770 for doubled words in a text, like 'the the'.  The following regexp finds
771 all 3-letter doubles with a space in between:
772
773     /\b(\w\w\w)\s\g1\b/;
774
775 The grouping assigns a value to \g1, so that the same 3-letter sequence
776 is used for both parts.
777
778 A similar task is to find words consisting of two identical parts:
779
780     % simple_grep '^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$' /usr/dict/words
781     beriberi
782     booboo
783     coco
784     mama
785     murmur
786     papa
787
788 The regexp has a single grouping which considers 4-letter
789 combinations, then 3-letter combinations, etc., and uses C<\g1> to look for
790 a repeat.  Although C<$1> and C<\g1> represent the same thing, care should be
791 taken to use matched variables C<$1>, C<$2>,... only I<outside> a regexp
792 and backreferences C<\g1>, C<\g2>,... only I<inside> a regexp; not doing
793 so may lead to surprising and unsatisfactory results.
794
795
796 =head2 Relative backreferences
797
798 Counting the opening parentheses to get the correct number for a
799 backreference is error-prone as soon as there is more than one
800 capturing group.  A more convenient technique became available
801 with Perl 5.10: relative backreferences. To refer to the immediately
802 preceding capture group one now may write C<\g{-1}>, the next but
803 last is available via C<\g{-2}>, and so on.
804
805 Another good reason in addition to readability and maintainability
806 for using relative backreferences is illustrated by the following example,
807 where a simple pattern for matching peculiar strings is used:
808
809     $a99a = '([a-z])(\d)\g2\g1';   # matches a11a, g22g, x33x, etc.
810
811 Now that we have this pattern stored as a handy string, we might feel
812 tempted to use it as a part of some other pattern:
813
814     $line = "code=e99e";
815     if ($line =~ /^(\w+)=$a99a$/){   # unexpected behavior!
816         print "$1 is valid\n";
817     } else {
818         print "bad line: '$line'\n";
819     }
820
821 But this doesn't match, at least not the way one might expect. Only
822 after inserting the interpolated C<$a99a> and looking at the resulting
823 full text of the regexp is it obvious that the backreferences have
824 backfired. The subexpression C<(\w+)> has snatched number 1 and
825 demoted the groups in C<$a99a> by one rank. This can be avoided by
826 using relative backreferences:
827
828     $a99a = '([a-z])(\d)\g{-1}\g{-2}';  # safe for being interpolated
829
830
831 =head2 Named backreferences
832
833 Perl 5.10 also introduced named capture groups and named backreferences.
834 To attach a name to a capturing group, you write either
835 C<< (?<name>...) >> or C<< (?'name'...) >>.  The backreference may
836 then be written as C<\g{name}>.  It is permissible to attach the
837 same name to more than one group, but then only the leftmost one of the
838 eponymous set can be referenced.  Outside of the pattern a named
839 capture group is accessible through the C<%+> hash.
840
841 Assuming that we have to match calendar dates which may be given in one
842 of the three formats yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write
843 three suitable patterns where we use 'd', 'm' and 'y' respectively as the
844 names of the groups capturing the pertaining components of a date. The
845 matching operation combines the three patterns as alternatives:
846
847     $fmt1 = '(?<y>\d\d\d\d)-(?<m>\d\d)-(?<d>\d\d)';
848     $fmt2 = '(?<m>\d\d)/(?<d>\d\d)/(?<y>\d\d\d\d)';
849     $fmt3 = '(?<d>\d\d)\.(?<m>\d\d)\.(?<y>\d\d\d\d)';
850     for my $d qw( 2006-10-21 15.01.2007 10/31/2005 ){
851         if ( $d =~ m{$fmt1|$fmt2|$fmt3} ){
852             print "day=$+{d} month=$+{m} year=$+{y}\n";
853         }
854     }
855
856 If any of the alternatives matches, the hash C<%+> is bound to contain the
857 three key-value pairs.
858
859
860 =head2 Alternative capture group numbering
861
862 Yet another capturing group numbering technique (also as from Perl 5.10)
863 deals with the problem of referring to groups within a set of alternatives.
864 Consider a pattern for matching a time of the day, civil or military style:
865
866     if ( $time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/ ){
867         # process hour and minute
868     }
869
870 Processing the results requires an additional if statement to determine
871 whether C<$1> and C<$2> or C<$3> and C<$4> contain the goodies. It would
872 be easier if we could use group numbers 1 and 2 in second alternative as
873 well, and this is exactly what the parenthesized construct C<(?|...)>,
874 set around an alternative achieves. Here is an extended version of the
875 previous pattern:
876
877   if($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/){
878       print "hour=$1 minute=$2 zone=$3\n";
879   }
880
881 Within the alternative numbering group, group numbers start at the same
882 position for each alternative. After the group, numbering continues
883 with one higher than the maximum reached across all the alternatives.
884
885 =head2 Position information
886
887 In addition to what was matched, Perl also provides the
888 positions of what was matched as contents of the C<@-> and C<@+>
889 arrays. C<$-[0]> is the position of the start of the entire match and
890 C<$+[0]> is the position of the end. Similarly, C<$-[n]> is the
891 position of the start of the C<$n> match and C<$+[n]> is the position
892 of the end. If C<$n> is undefined, so are C<$-[n]> and C<$+[n]>. Then
893 this code
894
895     $x = "Mmm...donut, thought Homer";
896     $x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches
897     foreach $exp (1..$#-) {
898         print "Match $exp: '${$exp}' at position ($-[$exp],$+[$exp])\n";
899     }
900
901 prints
902
903     Match 1: 'Mmm' at position (0,3)
904     Match 2: 'donut' at position (6,11)
905
906 Even if there are no groupings in a regexp, it is still possible to
907 find out what exactly matched in a string.  If you use them, Perl
908 will set C<$`> to the part of the string before the match, will set C<$&>
909 to the part of the string that matched, and will set C<$'> to the part
910 of the string after the match.  An example:
911
912     $x = "the cat caught the mouse";
913     $x =~ /cat/;  # $` = 'the ', $& = 'cat', $' = ' caught the mouse'
914     $x =~ /the/;  # $` = '', $& = 'the', $' = ' cat caught the mouse'
915
916 In the second match, C<$`> equals C<''> because the regexp matched at the
917 first character position in the string and stopped; it never saw the
918 second 'the'.
919
920 If your code is to run on Perl versions earlier than
921 5.20, it is worthwhile to note that using C<$`> and C<$'>
922 slows down regexp matching quite a bit, while C<$&> slows it down to a
923 lesser extent, because if they are used in one regexp in a program,
924 they are generated for I<all> regexps in the program.  So if raw
925 performance is a goal of your application, they should be avoided.
926 If you need to extract the corresponding substrings, use C<@-> and
927 C<@+> instead:
928
929     $` is the same as substr( $x, 0, $-[0] )
930     $& is the same as substr( $x, $-[0], $+[0]-$-[0] )
931     $' is the same as substr( $x, $+[0] )
932
933 As of Perl 5.10, the C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}>
934 variables may be used.  These are only set if the C</p> modifier is
935 present.  Consequently they do not penalize the rest of the program.  In
936 Perl 5.20, C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}> are available
937 whether the C</p> has been used or not (the modifier is ignored), and
938 C<$`>, C<$'> and C<$&> do not cause any speed difference.
939
940 =head2 Non-capturing groupings
941
942 A group that is required to bundle a set of alternatives may or may not be
943 useful as a capturing group.  If it isn't, it just creates a superfluous
944 addition to the set of available capture group values, inside as well as
945 outside the regexp.  Non-capturing groupings, denoted by C<(?:regexp)>,
946 still allow the regexp to be treated as a single unit, but don't establish
947 a capturing group at the same time.  Both capturing and non-capturing
948 groupings are allowed to co-exist in the same regexp.  Because there is
949 no extraction, non-capturing groupings are faster than capturing
950 groupings.  Non-capturing groupings are also handy for choosing exactly
951 which parts of a regexp are to be extracted to matching variables:
952
953     # match a number, $1-$4 are set, but we only want $1
954     /([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;
955
956     # match a number faster , only $1 is set
957     /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/;
958
959     # match a number, get $1 = whole number, $2 = exponent
960     /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;
961
962 Non-capturing groupings are also useful for removing nuisance
963 elements gathered from a split operation where parentheses are
964 required for some reason:
965
966     $x = '12aba34ba5';
967     @num = split /(a|b)+/, $x;    # @num = ('12','a','34','a','5')
968     @num = split /(?:a|b)+/, $x;  # @num = ('12','34','5')
969
970 In Perl 5.22 and later, all groups within a regexp can be set to
971 non-capturing by using the new C</n> flag:
972
973     "hello" =~ /(hi|hello)/n; # $1 is not set!
974
975 See L<perlre/"n"> for more information.
976
977 =head2 Matching repetitions
978
979 The examples in the previous section display an annoying weakness.  We
980 were only matching 3-letter words, or chunks of words of 4 letters or
981 less.  We'd like to be able to match words or, more generally, strings
982 of any length, without writing out tedious alternatives like
983 C<\w\w\w\w|\w\w\w|\w\w|\w>.
984
985 This is exactly the problem the I<quantifier> metacharacters C<?>,
986 C<*>, C<+>, and C<{}> were created for.  They allow us to delimit the
987 number of repeats for a portion of a regexp we consider to be a
988 match.  Quantifiers are put immediately after the character, character
989 class, or grouping that we want to specify.  They have the following
990 meanings:
991
992 =over 4
993
994 =item *
995
996 C<a?> means: match 'a' 1 or 0 times
997
998 =item *
999
1000 C<a*> means: match 'a' 0 or more times, i.e., any number of times
1001
1002 =item *
1003
1004 C<a+> means: match 'a' 1 or more times, i.e., at least once
1005
1006 =item *
1007
1008 C<a{n,m}> means: match at least C<n> times, but not more than C<m>
1009 times.
1010
1011 =item *
1012
1013 C<a{n,}> means: match at least C<n> or more times
1014
1015 =item *
1016
1017 C<a{n}> means: match exactly C<n> times
1018
1019 =back
1020
1021 Here are some examples:
1022
1023     /[a-z]+\s+\d*/;  # match a lowercase word, at least one space, and
1024                      # any number of digits
1025     /(\w+)\s+\g1/;    # match doubled words of arbitrary length
1026     /y(es)?/i;       # matches 'y', 'Y', or a case-insensitive 'yes'
1027     $year =~ /^\d{2,4}$/;  # make sure year is at least 2 but not more
1028                            # than 4 digits
1029     $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates
1030     $year =~ /^\d{2}(\d{2})?$/; # same thing written differently.
1031                                 # However, this captures the last two
1032                                 # digits in $1 and the other does not.
1033
1034     % simple_grep '^(\w+)\g1$' /usr/dict/words   # isn't this easier?
1035     beriberi
1036     booboo
1037     coco
1038     mama
1039     murmur
1040     papa
1041
1042 For all of these quantifiers, Perl will try to match as much of the
1043 string as possible, while still allowing the regexp to succeed.  Thus
1044 with C</a?.../>, Perl will first try to match the regexp with the C<a>
1045 present; if that fails, Perl will try to match the regexp without the
1046 C<a> present.  For the quantifier C<*>, we get the following:
1047
1048     $x = "the cat in the hat";
1049     $x =~ /^(.*)(cat)(.*)$/; # matches,
1050                              # $1 = 'the '
1051                              # $2 = 'cat'
1052                              # $3 = ' in the hat'
1053
1054 Which is what we might expect, the match finds the only C<cat> in the
1055 string and locks onto it.  Consider, however, this regexp:
1056
1057     $x =~ /^(.*)(at)(.*)$/; # matches,
1058                             # $1 = 'the cat in the h'
1059                             # $2 = 'at'
1060                             # $3 = ''   (0 characters match)
1061
1062 One might initially guess that Perl would find the C<at> in C<cat> and
1063 stop there, but that wouldn't give the longest possible string to the
1064 first quantifier C<.*>.  Instead, the first quantifier C<.*> grabs as
1065 much of the string as possible while still having the regexp match.  In
1066 this example, that means having the C<at> sequence with the final C<at>
1067 in the string.  The other important principle illustrated here is that,
1068 when there are two or more elements in a regexp, the I<leftmost>
1069 quantifier, if there is one, gets to grab as much of the string as
1070 possible, leaving the rest of the regexp to fight over scraps.  Thus in
1071 our example, the first quantifier C<.*> grabs most of the string, while
1072 the second quantifier C<.*> gets the empty string.   Quantifiers that
1073 grab as much of the string as possible are called I<maximal match> or
1074 I<greedy> quantifiers.
1075
1076 When a regexp can match a string in several different ways, we can use
1077 the principles above to predict which way the regexp will match:
1078
1079 =over 4
1080
1081 =item *
1082
1083 Principle 0: Taken as a whole, any regexp will be matched at the
1084 earliest possible position in the string.
1085
1086 =item *
1087
1088 Principle 1: In an alternation C<a|b|c...>, the leftmost alternative
1089 that allows a match for the whole regexp will be the one used.
1090
1091 =item *
1092
1093 Principle 2: The maximal matching quantifiers C<?>, C<*>, C<+> and
1094 C<{n,m}> will in general match as much of the string as possible while
1095 still allowing the whole regexp to match.
1096
1097 =item *
1098
1099 Principle 3: If there are two or more elements in a regexp, the
1100 leftmost greedy quantifier, if any, will match as much of the string
1101 as possible while still allowing the whole regexp to match.  The next
1102 leftmost greedy quantifier, if any, will try to match as much of the
1103 string remaining available to it as possible, while still allowing the
1104 whole regexp to match.  And so on, until all the regexp elements are
1105 satisfied.
1106
1107 =back
1108
1109 As we have seen above, Principle 0 overrides the others. The regexp
1110 will be matched as early as possible, with the other principles
1111 determining how the regexp matches at that earliest character
1112 position.
1113
1114 Here is an example of these principles in action:
1115
1116     $x = "The programming republic of Perl";
1117     $x =~ /^(.+)(e|r)(.*)$/;  # matches,
1118                               # $1 = 'The programming republic of Pe'
1119                               # $2 = 'r'
1120                               # $3 = 'l'
1121
1122 This regexp matches at the earliest string position, C<'T'>.  One
1123 might think that C<e>, being leftmost in the alternation, would be
1124 matched, but C<r> produces the longest string in the first quantifier.
1125
1126     $x =~ /(m{1,2})(.*)$/;  # matches,
1127                             # $1 = 'mm'
1128                             # $2 = 'ing republic of Perl'
1129
1130 Here, The earliest possible match is at the first C<'m'> in
1131 C<programming>. C<m{1,2}> is the first quantifier, so it gets to match
1132 a maximal C<mm>.
1133
1134     $x =~ /.*(m{1,2})(.*)$/;  # matches,
1135                               # $1 = 'm'
1136                               # $2 = 'ing republic of Perl'
1137
1138 Here, the regexp matches at the start of the string. The first
1139 quantifier C<.*> grabs as much as possible, leaving just a single
1140 C<'m'> for the second quantifier C<m{1,2}>.
1141
1142     $x =~ /(.?)(m{1,2})(.*)$/;  # matches,
1143                                 # $1 = 'a'
1144                                 # $2 = 'mm'
1145                                 # $3 = 'ing republic of Perl'
1146
1147 Here, C<.?> eats its maximal one character at the earliest possible
1148 position in the string, C<'a'> in C<programming>, leaving C<m{1,2}>
1149 the opportunity to match both C<m>'s. Finally,
1150
1151     "aXXXb" =~ /(X*)/; # matches with $1 = ''
1152
1153 because it can match zero copies of C<'X'> at the beginning of the
1154 string.  If you definitely want to match at least one C<'X'>, use
1155 C<X+>, not C<X*>.
1156
1157 Sometimes greed is not good.  At times, we would like quantifiers to
1158 match a I<minimal> piece of string, rather than a maximal piece.  For
1159 this purpose, Larry Wall created the I<minimal match> or
1160 I<non-greedy> quantifiers C<??>, C<*?>, C<+?>, and C<{}?>.  These are
1161 the usual quantifiers with a C<?> appended to them.  They have the
1162 following meanings:
1163
1164 =over 4
1165
1166 =item *
1167
1168 C<a??> means: match 'a' 0 or 1 times. Try 0 first, then 1.
1169
1170 =item *
1171
1172 C<a*?> means: match 'a' 0 or more times, i.e., any number of times,
1173 but as few times as possible
1174
1175 =item *
1176
1177 C<a+?> means: match 'a' 1 or more times, i.e., at least once, but
1178 as few times as possible
1179
1180 =item *
1181
1182 C<a{n,m}?> means: match at least C<n> times, not more than C<m>
1183 times, as few times as possible
1184
1185 =item *
1186
1187 C<a{n,}?> means: match at least C<n> times, but as few times as
1188 possible
1189
1190 =item *
1191
1192 C<a{n}?> means: match exactly C<n> times.  Because we match exactly
1193 C<n> times, C<a{n}?> is equivalent to C<a{n}> and is just there for
1194 notational consistency.
1195
1196 =back
1197
1198 Let's look at the example above, but with minimal quantifiers:
1199
1200     $x = "The programming republic of Perl";
1201     $x =~ /^(.+?)(e|r)(.*)$/; # matches,
1202                               # $1 = 'Th'
1203                               # $2 = 'e'
1204                               # $3 = ' programming republic of Perl'
1205
1206 The minimal string that will allow both the start of the string C<^>
1207 and the alternation to match is C<Th>, with the alternation C<e|r>
1208 matching C<e>.  The second quantifier C<.*> is free to gobble up the
1209 rest of the string.
1210
1211     $x =~ /(m{1,2}?)(.*?)$/;  # matches,
1212                               # $1 = 'm'
1213                               # $2 = 'ming republic of Perl'
1214
1215 The first string position that this regexp can match is at the first
1216 C<'m'> in C<programming>. At this position, the minimal C<m{1,2}?>
1217 matches just one C<'m'>.  Although the second quantifier C<.*?> would
1218 prefer to match no characters, it is constrained by the end-of-string
1219 anchor C<$> to match the rest of the string.
1220
1221     $x =~ /(.*?)(m{1,2}?)(.*)$/;  # matches,
1222                                   # $1 = 'The progra'
1223                                   # $2 = 'm'
1224                                   # $3 = 'ming republic of Perl'
1225
1226 In this regexp, you might expect the first minimal quantifier C<.*?>
1227 to match the empty string, because it is not constrained by a C<^>
1228 anchor to match the beginning of the word.  Principle 0 applies here,
1229 however.  Because it is possible for the whole regexp to match at the
1230 start of the string, it I<will> match at the start of the string.  Thus
1231 the first quantifier has to match everything up to the first C<m>.  The
1232 second minimal quantifier matches just one C<m> and the third
1233 quantifier matches the rest of the string.
1234
1235     $x =~ /(.??)(m{1,2})(.*)$/;  # matches,
1236                                  # $1 = 'a'
1237                                  # $2 = 'mm'
1238                                  # $3 = 'ing republic of Perl'
1239
1240 Just as in the previous regexp, the first quantifier C<.??> can match
1241 earliest at position C<'a'>, so it does.  The second quantifier is
1242 greedy, so it matches C<mm>, and the third matches the rest of the
1243 string.
1244
1245 We can modify principle 3 above to take into account non-greedy
1246 quantifiers:
1247
1248 =over 4
1249
1250 =item *
1251
1252 Principle 3: If there are two or more elements in a regexp, the
1253 leftmost greedy (non-greedy) quantifier, if any, will match as much
1254 (little) of the string as possible while still allowing the whole
1255 regexp to match.  The next leftmost greedy (non-greedy) quantifier, if
1256 any, will try to match as much (little) of the string remaining
1257 available to it as possible, while still allowing the whole regexp to
1258 match.  And so on, until all the regexp elements are satisfied.
1259
1260 =back
1261
1262 Just like alternation, quantifiers are also susceptible to
1263 backtracking.  Here is a step-by-step analysis of the example
1264
1265     $x = "the cat in the hat";
1266     $x =~ /^(.*)(at)(.*)$/; # matches,
1267                             # $1 = 'the cat in the h'
1268                             # $2 = 'at'
1269                             # $3 = ''   (0 matches)
1270
1271 =over 4
1272
1273 =item Z<>0
1274
1275 Start with the first letter in the string 't'.
1276
1277 =item Z<>1
1278
1279 The first quantifier '.*' starts out by matching the whole
1280 string 'the cat in the hat'.
1281
1282 =item Z<>2
1283
1284 'a' in the regexp element 'at' doesn't match the end of the
1285 string.  Backtrack one character.
1286
1287 =item Z<>3
1288
1289 'a' in the regexp element 'at' still doesn't match the last
1290 letter of the string 't', so backtrack one more character.
1291
1292 =item Z<>4
1293
1294 Now we can match the 'a' and the 't'.
1295
1296 =item Z<>5
1297
1298 Move on to the third element '.*'.  Since we are at the end of
1299 the string and '.*' can match 0 times, assign it the empty string.
1300
1301 =item Z<>6
1302
1303 We are done!
1304
1305 =back
1306
1307 Most of the time, all this moving forward and backtracking happens
1308 quickly and searching is fast. There are some pathological regexps,
1309 however, whose execution time exponentially grows with the size of the
1310 string.  A typical structure that blows up in your face is of the form
1311
1312     /(a|b+)*/;
1313
1314 The problem is the nested indeterminate quantifiers.  There are many
1315 different ways of partitioning a string of length n between the C<+>
1316 and C<*>: one repetition with C<b+> of length n, two repetitions with
1317 the first C<b+> length k and the second with length n-k, m repetitions
1318 whose bits add up to length n, etc.  In fact there are an exponential
1319 number of ways to partition a string as a function of its length.  A
1320 regexp may get lucky and match early in the process, but if there is
1321 no match, Perl will try I<every> possibility before giving up.  So be
1322 careful with nested C<*>'s, C<{n,m}>'s, and C<+>'s.  The book
1323 I<Mastering Regular Expressions> by Jeffrey Friedl gives a wonderful
1324 discussion of this and other efficiency issues.
1325
1326
1327 =head2 Possessive quantifiers
1328
1329 Backtracking during the relentless search for a match may be a waste
1330 of time, particularly when the match is bound to fail.  Consider
1331 the simple pattern
1332
1333     /^\w+\s+\w+$/; # a word, spaces, a word
1334
1335 Whenever this is applied to a string which doesn't quite meet the
1336 pattern's expectations such as S<C<"abc  ">> or S<C<"abc  def ">>,
1337 the regex engine will backtrack, approximately once for each character
1338 in the string.  But we know that there is no way around taking I<all>
1339 of the initial word characters to match the first repetition, that I<all>
1340 spaces must be eaten by the middle part, and the same goes for the second
1341 word.
1342
1343 With the introduction of the I<possessive quantifiers> in Perl 5.10, we
1344 have a way of instructing the regex engine not to backtrack, with the
1345 usual quantifiers with a C<+> appended to them.  This makes them greedy as
1346 well as stingy; once they succeed they won't give anything back to permit
1347 another solution. They have the following meanings:
1348
1349 =over 4
1350
1351 =item *
1352
1353 C<a{n,m}+> means: match at least C<n> times, not more than C<m> times,
1354 as many times as possible, and don't give anything up. C<a?+> is short
1355 for C<a{0,1}+>
1356
1357 =item *
1358
1359 C<a{n,}+> means: match at least C<n> times, but as many times as possible,
1360 and don't give anything up. C<a*+> is short for C<a{0,}+> and C<a++> is
1361 short for C<a{1,}+>.
1362
1363 =item *
1364
1365 C<a{n}+> means: match exactly C<n> times.  It is just there for
1366 notational consistency.
1367
1368 =back
1369
1370 These possessive quantifiers represent a special case of a more general
1371 concept, the I<independent subexpression>, see below.
1372
1373 As an example where a possessive quantifier is suitable we consider
1374 matching a quoted string, as it appears in several programming languages.
1375 The backslash is used as an escape character that indicates that the
1376 next character is to be taken literally, as another character for the
1377 string.  Therefore, after the opening quote, we expect a (possibly
1378 empty) sequence of alternatives: either some character except an
1379 unescaped quote or backslash or an escaped character.
1380
1381     /"(?:[^"\\]++|\\.)*+"/;
1382
1383
1384 =head2 Building a regexp
1385
1386 At this point, we have all the basic regexp concepts covered, so let's
1387 give a more involved example of a regular expression.  We will build a
1388 regexp that matches numbers.
1389
1390 The first task in building a regexp is to decide what we want to match
1391 and what we want to exclude.  In our case, we want to match both
1392 integers and floating point numbers and we want to reject any string
1393 that isn't a number.
1394
1395 The next task is to break the problem down into smaller problems that
1396 are easily converted into a regexp.
1397
1398 The simplest case is integers.  These consist of a sequence of digits,
1399 with an optional sign in front.  The digits we can represent with
1400 C<\d+> and the sign can be matched with C<[+-]>.  Thus the integer
1401 regexp is
1402
1403     /[+-]?\d+/;  # matches integers
1404
1405 A floating point number potentially has a sign, an integral part, a
1406 decimal point, a fractional part, and an exponent.  One or more of these
1407 parts is optional, so we need to check out the different
1408 possibilities.  Floating point numbers which are in proper form include
1409 123., 0.345, .34, -1e6, and 25.4E-72.  As with integers, the sign out
1410 front is completely optional and can be matched by C<[+-]?>.  We can
1411 see that if there is no exponent, floating point numbers must have a
1412 decimal point, otherwise they are integers.  We might be tempted to
1413 model these with C<\d*\.\d*>, but this would also match just a single
1414 decimal point, which is not a number.  So the three cases of floating
1415 point number without exponent are
1416
1417    /[+-]?\d+\./;  # 1., 321., etc.
1418    /[+-]?\.\d+/;  # .1, .234, etc.
1419    /[+-]?\d+\.\d+/;  # 1.0, 30.56, etc.
1420
1421 These can be combined into a single regexp with a three-way alternation:
1422
1423    /[+-]?(\d+\.\d+|\d+\.|\.\d+)/;  # floating point, no exponent
1424
1425 In this alternation, it is important to put C<'\d+\.\d+'> before
1426 C<'\d+\.'>.  If C<'\d+\.'> were first, the regexp would happily match that
1427 and ignore the fractional part of the number.
1428
1429 Now consider floating point numbers with exponents.  The key
1430 observation here is that I<both> integers and numbers with decimal
1431 points are allowed in front of an exponent.  Then exponents, like the
1432 overall sign, are independent of whether we are matching numbers with
1433 or without decimal points, and can be 'decoupled' from the
1434 mantissa.  The overall form of the regexp now becomes clear:
1435
1436     /^(optional sign)(integer | f.p. mantissa)(optional exponent)$/;
1437
1438 The exponent is an C<e> or C<E>, followed by an integer.  So the
1439 exponent regexp is
1440
1441    /[eE][+-]?\d+/;  # exponent
1442
1443 Putting all the parts together, we get a regexp that matches numbers:
1444
1445    /^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/;  # Ta da!
1446
1447 Long regexps like this may impress your friends, but can be hard to
1448 decipher.  In complex situations like this, the C<//x> modifier for a
1449 match is invaluable.  It allows one to put nearly arbitrary whitespace
1450 and comments into a regexp without affecting their meaning.  Using it,
1451 we can rewrite our 'extended' regexp in the more pleasing form
1452
1453    /^
1454       [+-]?         # first, match an optional sign
1455       (             # then match integers or f.p. mantissas:
1456           \d+\.\d+  # mantissa of the form a.b
1457          |\d+\.     # mantissa of the form a.
1458          |\.\d+     # mantissa of the form .b
1459          |\d+       # integer of the form a
1460       )
1461       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1462    $/x;
1463
1464 If whitespace is mostly irrelevant, how does one include space
1465 characters in an extended regexp? The answer is to backslash it
1466 S<C<'\ '>> or put it in a character class S<C<[ ]>>.  The same thing
1467 goes for pound signs: use C<\#> or C<[#]>.  For instance, Perl allows
1468 a space between the sign and the mantissa or integer, and we could add
1469 this to our regexp as follows:
1470
1471    /^
1472       [+-]?\ *      # first, match an optional sign *and space*
1473       (             # then match integers or f.p. mantissas:
1474           \d+\.\d+  # mantissa of the form a.b
1475          |\d+\.     # mantissa of the form a.
1476          |\.\d+     # mantissa of the form .b
1477          |\d+       # integer of the form a
1478       )
1479       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1480    $/x;
1481
1482 In this form, it is easier to see a way to simplify the
1483 alternation.  Alternatives 1, 2, and 4 all start with C<\d+>, so it
1484 could be factored out:
1485
1486    /^
1487       [+-]?\ *      # first, match an optional sign
1488       (             # then match integers or f.p. mantissas:
1489           \d+       # start out with a ...
1490           (
1491               \.\d* # mantissa of the form a.b or a.
1492           )?        # ? takes care of integers of the form a
1493          |\.\d+     # mantissa of the form .b
1494       )
1495       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1496    $/x;
1497
1498 or written in the compact form,
1499
1500     /^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/;
1501
1502 This is our final regexp.  To recap, we built a regexp by
1503
1504 =over 4
1505
1506 =item *
1507
1508 specifying the task in detail,
1509
1510 =item *
1511
1512 breaking down the problem into smaller parts,
1513
1514 =item *
1515
1516 translating the small parts into regexps,
1517
1518 =item *
1519
1520 combining the regexps,
1521
1522 =item *
1523
1524 and optimizing the final combined regexp.
1525
1526 =back
1527
1528 These are also the typical steps involved in writing a computer
1529 program.  This makes perfect sense, because regular expressions are
1530 essentially programs written in a little computer language that specifies
1531 patterns.
1532
1533 =head2 Using regular expressions in Perl
1534
1535 The last topic of Part 1 briefly covers how regexps are used in Perl
1536 programs.  Where do they fit into Perl syntax?
1537
1538 We have already introduced the matching operator in its default
1539 C</regexp/> and arbitrary delimiter C<m!regexp!> forms.  We have used
1540 the binding operator C<=~> and its negation C<!~> to test for string
1541 matches.  Associated with the matching operator, we have discussed the
1542 single line C<//s>, multi-line C<//m>, case-insensitive C<//i> and
1543 extended C<//x> modifiers.  There are a few more things you might
1544 want to know about matching operators.
1545
1546 =head3 Prohibiting substitution
1547
1548 If you change C<$pattern> after the first substitution happens, Perl
1549 will ignore it.  If you don't want any substitutions at all, use the
1550 special delimiter C<m''>:
1551
1552     @pattern = ('Seuss');
1553     while (<>) {
1554         print if m'@pattern';  # matches literal '@pattern', not 'Seuss'
1555     }
1556
1557 Similar to strings, C<m''> acts like apostrophes on a regexp; all other
1558 C<m> delimiters act like quotes.  If the regexp evaluates to the empty string,
1559 the regexp in the I<last successful match> is used instead.  So we have
1560
1561     "dog" =~ /d/;  # 'd' matches
1562     "dogbert =~ //;  # this matches the 'd' regexp used before
1563
1564
1565 =head3 Global matching
1566
1567 The final two modifiers we will discuss here,
1568 C<//g> and C<//c>, concern multiple matches.
1569 The modifier C<//g> stands for global matching and allows the
1570 matching operator to match within a string as many times as possible.
1571 In scalar context, successive invocations against a string will have
1572 C<//g> jump from match to match, keeping track of position in the
1573 string as it goes along.  You can get or set the position with the
1574 C<pos()> function.
1575
1576 The use of C<//g> is shown in the following example.  Suppose we have
1577 a string that consists of words separated by spaces.  If we know how
1578 many words there are in advance, we could extract the words using
1579 groupings:
1580
1581     $x = "cat dog house"; # 3 words
1582     $x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches,
1583                                            # $1 = 'cat'
1584                                            # $2 = 'dog'
1585                                            # $3 = 'house'
1586
1587 But what if we had an indeterminate number of words? This is the sort
1588 of task C<//g> was made for.  To extract all words, form the simple
1589 regexp C<(\w+)> and loop over all matches with C</(\w+)/g>:
1590
1591     while ($x =~ /(\w+)/g) {
1592         print "Word is $1, ends at position ", pos $x, "\n";
1593     }
1594
1595 prints
1596
1597     Word is cat, ends at position 3
1598     Word is dog, ends at position 7
1599     Word is house, ends at position 13
1600
1601 A failed match or changing the target string resets the position.  If
1602 you don't want the position reset after failure to match, add the
1603 C<//c>, as in C</regexp/gc>.  The current position in the string is
1604 associated with the string, not the regexp.  This means that different
1605 strings have different positions and their respective positions can be
1606 set or read independently.
1607
1608 In list context, C<//g> returns a list of matched groupings, or if
1609 there are no groupings, a list of matches to the whole regexp.  So if
1610 we wanted just the words, we could use
1611
1612     @words = ($x =~ /(\w+)/g);  # matches,
1613                                 # $words[0] = 'cat'
1614                                 # $words[1] = 'dog'
1615                                 # $words[2] = 'house'
1616
1617 Closely associated with the C<//g> modifier is the C<\G> anchor.  The
1618 C<\G> anchor matches at the point where the previous C<//g> match left
1619 off.  C<\G> allows us to easily do context-sensitive matching:
1620
1621     $metric = 1;  # use metric units
1622     ...
1623     $x = <FILE>;  # read in measurement
1624     $x =~ /^([+-]?\d+)\s*/g;  # get magnitude
1625     $weight = $1;
1626     if ($metric) { # error checking
1627         print "Units error!" unless $x =~ /\Gkg\./g;
1628     }
1629     else {
1630         print "Units error!" unless $x =~ /\Glbs\./g;
1631     }
1632     $x =~ /\G\s+(widget|sprocket)/g;  # continue processing
1633
1634 The combination of C<//g> and C<\G> allows us to process the string a
1635 bit at a time and use arbitrary Perl logic to decide what to do next.
1636 Currently, the C<\G> anchor is only fully supported when used to anchor
1637 to the start of the pattern.
1638
1639 C<\G> is also invaluable in processing fixed-length records with
1640 regexps.  Suppose we have a snippet of coding region DNA, encoded as
1641 base pair letters C<ATCGTTGAAT...> and we want to find all the stop
1642 codons C<TGA>.  In a coding region, codons are 3-letter sequences, so
1643 we can think of the DNA snippet as a sequence of 3-letter records.  The
1644 naive regexp
1645
1646     # expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC"
1647     $dna = "ATCGTTGAATGCAAATGACATGAC";
1648     $dna =~ /TGA/;
1649
1650 doesn't work; it may match a C<TGA>, but there is no guarantee that
1651 the match is aligned with codon boundaries, e.g., the substring
1652 S<C<GTT GAA>> gives a match.  A better solution is
1653
1654     while ($dna =~ /(\w\w\w)*?TGA/g) {  # note the minimal *?
1655         print "Got a TGA stop codon at position ", pos $dna, "\n";
1656     }
1657
1658 which prints
1659
1660     Got a TGA stop codon at position 18
1661     Got a TGA stop codon at position 23
1662
1663 Position 18 is good, but position 23 is bogus.  What happened?
1664
1665 The answer is that our regexp works well until we get past the last
1666 real match.  Then the regexp will fail to match a synchronized C<TGA>
1667 and start stepping ahead one character position at a time, not what we
1668 want.  The solution is to use C<\G> to anchor the match to the codon
1669 alignment:
1670
1671     while ($dna =~ /\G(\w\w\w)*?TGA/g) {
1672         print "Got a TGA stop codon at position ", pos $dna, "\n";
1673     }
1674
1675 This prints
1676
1677     Got a TGA stop codon at position 18
1678
1679 which is the correct answer.  This example illustrates that it is
1680 important not only to match what is desired, but to reject what is not
1681 desired.
1682
1683 (There are other regexp modifiers that are available, such as
1684 C<//o>, but their specialized uses are beyond the
1685 scope of this introduction.  )
1686
1687 =head3 Search and replace
1688
1689 Regular expressions also play a big role in I<search and replace>
1690 operations in Perl.  Search and replace is accomplished with the
1691 C<s///> operator.  The general form is
1692 C<s/regexp/replacement/modifiers>, with everything we know about
1693 regexps and modifiers applying in this case as well.  The
1694 C<replacement> is a Perl double-quoted string that replaces in the
1695 string whatever is matched with the C<regexp>.  The operator C<=~> is
1696 also used here to associate a string with C<s///>.  If matching
1697 against C<$_>, the S<C<$_ =~>> can be dropped.  If there is a match,
1698 C<s///> returns the number of substitutions made; otherwise it returns
1699 false.  Here are a few examples:
1700
1701     $x = "Time to feed the cat!";
1702     $x =~ s/cat/hacker/;   # $x contains "Time to feed the hacker!"
1703     if ($x =~ s/^(Time.*hacker)!$/$1 now!/) {
1704         $more_insistent = 1;
1705     }
1706     $y = "'quoted words'";
1707     $y =~ s/^'(.*)'$/$1/;  # strip single quotes,
1708                            # $y contains "quoted words"
1709
1710 In the last example, the whole string was matched, but only the part
1711 inside the single quotes was grouped.  With the C<s///> operator, the
1712 matched variables C<$1>, C<$2>, etc. are immediately available for use
1713 in the replacement expression, so we use C<$1> to replace the quoted
1714 string with just what was quoted.  With the global modifier, C<s///g>
1715 will search and replace all occurrences of the regexp in the string:
1716
1717     $x = "I batted 4 for 4";
1718     $x =~ s/4/four/;   # doesn't do it all:
1719                        # $x contains "I batted four for 4"
1720     $x = "I batted 4 for 4";
1721     $x =~ s/4/four/g;  # does it all:
1722                        # $x contains "I batted four for four"
1723
1724 If you prefer 'regex' over 'regexp' in this tutorial, you could use
1725 the following program to replace it:
1726
1727     % cat > simple_replace
1728     #!/usr/bin/perl
1729     $regexp = shift;
1730     $replacement = shift;
1731     while (<>) {
1732         s/$regexp/$replacement/g;
1733         print;
1734     }
1735     ^D
1736
1737     % simple_replace regexp regex perlretut.pod
1738
1739 In C<simple_replace> we used the C<s///g> modifier to replace all
1740 occurrences of the regexp on each line.  (Even though the regular
1741 expression appears in a loop, Perl is smart enough to compile it
1742 only once.)  As with C<simple_grep>, both the
1743 C<print> and the C<s/$regexp/$replacement/g> use C<$_> implicitly.
1744
1745 If you don't want C<s///> to change your original variable you can use
1746 the non-destructive substitute modifier, C<s///r>.  This changes the
1747 behavior so that C<s///r> returns the final substituted string
1748 (instead of the number of substitutions):
1749
1750     $x = "I like dogs.";
1751     $y = $x =~ s/dogs/cats/r;
1752     print "$x $y\n";
1753
1754 That example will print "I like dogs. I like cats". Notice the original
1755 C<$x> variable has not been affected. The overall
1756 result of the substitution is instead stored in C<$y>. If the
1757 substitution doesn't affect anything then the original string is
1758 returned:
1759
1760     $x = "I like dogs.";
1761     $y = $x =~ s/elephants/cougars/r;
1762     print "$x $y\n"; # prints "I like dogs. I like dogs."
1763
1764 One other interesting thing that the C<s///r> flag allows is chaining
1765 substitutions:
1766
1767     $x = "Cats are great.";
1768     print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~
1769         s/Frogs/Hedgehogs/r, "\n";
1770     # prints "Hedgehogs are great."
1771
1772 A modifier available specifically to search and replace is the
1773 C<s///e> evaluation modifier.  C<s///e> treats the
1774 replacement text as Perl code, rather than a double-quoted
1775 string.  The value that the code returns is substituted for the
1776 matched substring.  C<s///e> is useful if you need to do a bit of
1777 computation in the process of replacing text.  This example counts
1778 character frequencies in a line:
1779
1780     $x = "Bill the cat";
1781     $x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself
1782     print "frequency of '$_' is $chars{$_}\n"
1783         foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars);
1784
1785 This prints
1786
1787     frequency of ' ' is 2
1788     frequency of 't' is 2
1789     frequency of 'l' is 2
1790     frequency of 'B' is 1
1791     frequency of 'c' is 1
1792     frequency of 'e' is 1
1793     frequency of 'h' is 1
1794     frequency of 'i' is 1
1795     frequency of 'a' is 1
1796
1797 As with the match C<m//> operator, C<s///> can use other delimiters,
1798 such as C<s!!!> and C<s{}{}>, and even C<s{}//>.  If single quotes are
1799 used C<s'''>, then the regexp and replacement are
1800 treated as single-quoted strings and there are no
1801 variable substitutions.  C<s///> in list context
1802 returns the same thing as in scalar context, i.e., the number of
1803 matches.
1804
1805 =head3 The split function
1806
1807 The C<split()> function is another place where a regexp is used.
1808 C<split /regexp/, string, limit> separates the C<string> operand into
1809 a list of substrings and returns that list.  The regexp must be designed
1810 to match whatever constitutes the separators for the desired substrings.
1811 The C<limit>, if present, constrains splitting into no more than C<limit>
1812 number of strings.  For example, to split a string into words, use
1813
1814     $x = "Calvin and Hobbes";
1815     @words = split /\s+/, $x;  # $word[0] = 'Calvin'
1816                                # $word[1] = 'and'
1817                                # $word[2] = 'Hobbes'
1818
1819 If the empty regexp C<//> is used, the regexp always matches and
1820 the string is split into individual characters.  If the regexp has
1821 groupings, then the resulting list contains the matched substrings from the
1822 groupings as well.  For instance,
1823
1824     $x = "/usr/bin/perl";
1825     @dirs = split m!/!, $x;  # $dirs[0] = ''
1826                              # $dirs[1] = 'usr'
1827                              # $dirs[2] = 'bin'
1828                              # $dirs[3] = 'perl'
1829     @parts = split m!(/)!, $x;  # $parts[0] = ''
1830                                 # $parts[1] = '/'
1831                                 # $parts[2] = 'usr'
1832                                 # $parts[3] = '/'
1833                                 # $parts[4] = 'bin'
1834                                 # $parts[5] = '/'
1835                                 # $parts[6] = 'perl'
1836
1837 Since the first character of $x matched the regexp, C<split> prepended
1838 an empty initial element to the list.
1839
1840 If you have read this far, congratulations! You now have all the basic
1841 tools needed to use regular expressions to solve a wide range of text
1842 processing problems.  If this is your first time through the tutorial,
1843 why not stop here and play around with regexps a while....  S<Part 2>
1844 concerns the more esoteric aspects of regular expressions and those
1845 concepts certainly aren't needed right at the start.
1846
1847 =head1 Part 2: Power tools
1848
1849 OK, you know the basics of regexps and you want to know more.  If
1850 matching regular expressions is analogous to a walk in the woods, then
1851 the tools discussed in Part 1 are analogous to topo maps and a
1852 compass, basic tools we use all the time.  Most of the tools in part 2
1853 are analogous to flare guns and satellite phones.  They aren't used
1854 too often on a hike, but when we are stuck, they can be invaluable.
1855
1856 What follows are the more advanced, less used, or sometimes esoteric
1857 capabilities of Perl regexps.  In Part 2, we will assume you are
1858 comfortable with the basics and concentrate on the advanced features.
1859
1860 =head2 More on characters, strings, and character classes
1861
1862 There are a number of escape sequences and character classes that we
1863 haven't covered yet.
1864
1865 There are several escape sequences that convert characters or strings
1866 between upper and lower case, and they are also available within
1867 patterns.  C<\l> and C<\u> convert the next character to lower or
1868 upper case, respectively:
1869
1870     $x = "perl";
1871     $string =~ /\u$x/;  # matches 'Perl' in $string
1872     $x = "M(rs?|s)\\."; # note the double backslash
1873     $string =~ /\l$x/;  # matches 'mr.', 'mrs.', and 'ms.',
1874
1875 A C<\L> or C<\U> indicates a lasting conversion of case, until
1876 terminated by C<\E> or thrown over by another C<\U> or C<\L>:
1877
1878     $x = "This word is in lower case:\L SHOUT\E";
1879     $x =~ /shout/;       # matches
1880     $x = "I STILL KEYPUNCH CARDS FOR MY 360"
1881     $x =~ /\Ukeypunch/;  # matches punch card string
1882
1883 If there is no C<\E>, case is converted until the end of the
1884 string. The regexps C<\L\u$word> or C<\u\L$word> convert the first
1885 character of C<$word> to uppercase and the rest of the characters to
1886 lowercase.
1887
1888 Control characters can be escaped with C<\c>, so that a control-Z
1889 character would be matched with C<\cZ>.  The escape sequence
1890 C<\Q>...C<\E> quotes, or protects most non-alphabetic characters.   For
1891 instance,
1892
1893     $x = "\QThat !^*&%~& cat!";
1894     $x =~ /\Q!^*&%~&\E/;  # check for rough language
1895
1896 It does not protect C<$> or C<@>, so that variables can still be
1897 substituted.
1898
1899 C<\Q>, C<\L>, C<\l>, C<\U>, C<\u> and C<\E> are actually part of
1900 double-quotish syntax, and not part of regexp syntax proper.  They will
1901 work if they appear in a regular expression embedded directly in a
1902 program, but not when contained in a string that is interpolated in a
1903 pattern.
1904
1905 Perl regexps can handle more than just the
1906 standard ASCII character set.  Perl supports I<Unicode>, a standard
1907 for representing the alphabets from virtually all of the world's written
1908 languages, and a host of symbols.  Perl's text strings are Unicode strings, so
1909 they can contain characters with a value (codepoint or character number) higher
1910 than 255.
1911
1912 What does this mean for regexps? Well, regexp users don't need to know
1913 much about Perl's internal representation of strings.  But they do need
1914 to know 1) how to represent Unicode characters in a regexp and 2) that
1915 a matching operation will treat the string to be searched as a sequence
1916 of characters, not bytes.  The answer to 1) is that Unicode characters
1917 greater than C<chr(255)> are represented using the C<\x{hex}> notation, because
1918 \x hex (without curly braces) doesn't go further than 255.  (Starting in Perl
1919 5.14, if you're an octal fan, you can also use C<\o{oct}>.)
1920
1921     /\x{263a}/;  # match a Unicode smiley face :)
1922
1923 B<NOTE>: In Perl 5.6.0 it used to be that one needed to say C<use
1924 utf8> to use any Unicode features.  This is no more the case: for
1925 almost all Unicode processing, the explicit C<utf8> pragma is not
1926 needed.  (The only case where it matters is if your Perl script is in
1927 Unicode and encoded in UTF-8, then an explicit C<use utf8> is needed.)
1928
1929 Figuring out the hexadecimal sequence of a Unicode character you want
1930 or deciphering someone else's hexadecimal Unicode regexp is about as
1931 much fun as programming in machine code.  So another way to specify
1932 Unicode characters is to use the I<named character> escape
1933 sequence C<\N{I<name>}>.  I<name> is a name for the Unicode character, as
1934 specified in the Unicode standard.  For instance, if we wanted to
1935 represent or match the astrological sign for the planet Mercury, we
1936 could use
1937
1938     $x = "abc\N{MERCURY}def";
1939     $x =~ /\N{MERCURY}/;   # matches
1940
1941 One can also use "short" names:
1942
1943     print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";
1944     print "\N{greek:Sigma} is an upper-case sigma.\n";
1945
1946 You can also restrict names to a certain alphabet by specifying the
1947 L<charnames> pragma:
1948
1949     use charnames qw(greek);
1950     print "\N{sigma} is Greek sigma\n";
1951
1952 An index of character names is available on-line from the Unicode
1953 Consortium, L<http://www.unicode.org/charts/charindex.html>; explanatory
1954 material with links to other resources at
1955 L<http://www.unicode.org/standard/where>.
1956
1957 The answer to requirement 2) is that a regexp (mostly)
1958 uses Unicode characters.  The "mostly" is for messy backward
1959 compatibility reasons, but starting in Perl 5.14, any regex compiled in
1960 the scope of a C<use feature 'unicode_strings'> (which is automatically
1961 turned on within the scope of a C<use 5.012> or higher) will turn that
1962 "mostly" into "always".  If you want to handle Unicode properly, you
1963 should ensure that C<'unicode_strings'> is turned on.
1964 Internally, this is encoded to bytes using either UTF-8 or a native 8
1965 bit encoding, depending on the history of the string, but conceptually
1966 it is a sequence of characters, not bytes. See L<perlunitut> for a
1967 tutorial about that.
1968
1969 Let us now discuss Unicode character classes, most usually called
1970 "character properties".  These are represented by the
1971 C<\p{name}> escape sequence.  Closely associated is the C<\P{name}>
1972 property, which is the negation of the C<\p{name}> one.  For
1973 example, to match lower and uppercase characters,
1974
1975     $x = "BOB";
1976     $x =~ /^\p{IsUpper}/;   # matches, uppercase char class
1977     $x =~ /^\P{IsUpper}/;   # doesn't match, char class sans uppercase
1978     $x =~ /^\p{IsLower}/;   # doesn't match, lowercase char class
1979     $x =~ /^\P{IsLower}/;   # matches, char class sans lowercase
1980
1981 (The "Is" is optional.)
1982
1983 There are many, many Unicode character properties.  For the full list
1984 see L<perluniprops>.  Most of them have synonyms with shorter names,
1985 also listed there.  Some synonyms are a single character.  For these,
1986 you can drop the braces.  For instance, C<\pM> is the same thing as
1987 C<\p{Mark}>, meaning things like accent marks.
1988
1989 The Unicode C<\p{Script}> property is used to categorize every Unicode
1990 character into the language script it is written in.  For example,
1991 English, French, and a bunch of other European languages are written in
1992 the Latin script.  But there is also the Greek script, the Thai script,
1993 the Katakana script, etc.  You can test whether a character is in a
1994 particular script with, for example C<\p{Latin}>, C<\p{Greek}>,
1995 or C<\p{Katakana}>.  To test if it isn't in the Balinese script, you
1996 would use C<\P{Balinese}>.
1997
1998 What we have described so far is the single form of the C<\p{...}> character
1999 classes.  There is also a compound form which you may run into.  These
2000 look like C<\p{name=value}> or C<\p{name:value}> (the equals sign and colon
2001 can be used interchangeably).  These are more general than the single form,
2002 and in fact most of the single forms are just Perl-defined shortcuts for common
2003 compound forms.  For example, the script examples in the previous paragraph
2004 could be written equivalently as C<\p{Script=Latin}>, C<\p{Script:Greek}>,
2005 C<\p{script=katakana}>, and C<\P{script=balinese}> (case is irrelevant
2006 between the C<{}> braces).  You may
2007 never have to use the compound forms, but sometimes it is necessary, and their
2008 use can make your code easier to understand.
2009
2010 C<\X> is an abbreviation for a character class that comprises
2011 a Unicode I<extended grapheme cluster>.  This represents a "logical character":
2012 what appears to be a single character, but may be represented internally by more
2013 than one.  As an example, using the Unicode full names, e.g., S<C<A + COMBINING
2014 RING>> is a grapheme cluster with base character C<A> and combining character
2015 S<C<COMBINING RING>>, which translates in Danish to A with the circle atop it,
2016 as in the word E<Aring>ngstrom.
2017
2018 For the full and latest information about Unicode see the latest
2019 Unicode standard, or the Unicode Consortium's website L<http://www.unicode.org>
2020
2021 As if all those classes weren't enough, Perl also defines POSIX-style
2022 character classes.  These have the form C<[:name:]>, with C<name> the
2023 name of the POSIX class.  The POSIX classes are C<alpha>, C<alnum>,
2024 C<ascii>, C<cntrl>, C<digit>, C<graph>, C<lower>, C<print>, C<punct>,
2025 C<space>, C<upper>, and C<xdigit>, and two extensions, C<word> (a Perl
2026 extension to match C<\w>), and C<blank> (a GNU extension).  The C<//a>
2027 modifier restricts these to matching just in the ASCII range; otherwise
2028 they can match the same as their corresponding Perl Unicode classes:
2029 C<[:upper:]> is the same as C<\p{IsUpper}>, etc.  (There are some
2030 exceptions and gotchas with this; see L<perlrecharclass> for a full
2031 discussion.) The C<[:digit:]>, C<[:word:]>, and
2032 C<[:space:]> correspond to the familiar C<\d>, C<\w>, and C<\s>
2033 character classes.  To negate a POSIX class, put a C<^> in front of
2034 the name, so that, e.g., C<[:^digit:]> corresponds to C<\D> and, under
2035 Unicode, C<\P{IsDigit}>.  The Unicode and POSIX character classes can
2036 be used just like C<\d>, with the exception that POSIX character
2037 classes can only be used inside of a character class:
2038
2039     /\s+[abc[:digit:]xyz]\s*/;  # match a,b,c,x,y,z, or a digit
2040     /^=item\s[[:digit:]]/;      # match '=item',
2041                                 # followed by a space and a digit
2042     /\s+[abc\p{IsDigit}xyz]\s+/;  # match a,b,c,x,y,z, or a digit
2043     /^=item\s\p{IsDigit}/;        # match '=item',
2044                                   # followed by a space and a digit
2045
2046 Whew! That is all the rest of the characters and character classes.
2047
2048 =head2 Compiling and saving regular expressions
2049
2050 In Part 1 we mentioned that Perl compiles a regexp into a compact
2051 sequence of opcodes.  Thus, a compiled regexp is a data structure
2052 that can be stored once and used again and again.  The regexp quote
2053 C<qr//> does exactly that: C<qr/string/> compiles the C<string> as a
2054 regexp and transforms the result into a form that can be assigned to a
2055 variable:
2056
2057     $reg = qr/foo+bar?/;  # reg contains a compiled regexp
2058
2059 Then C<$reg> can be used as a regexp:
2060
2061     $x = "fooooba";
2062     $x =~ $reg;     # matches, just like /foo+bar?/
2063     $x =~ /$reg/;   # same thing, alternate form
2064
2065 C<$reg> can also be interpolated into a larger regexp:
2066
2067     $x =~ /(abc)?$reg/;  # still matches
2068
2069 As with the matching operator, the regexp quote can use different
2070 delimiters, e.g., C<qr!!>, C<qr{}> or C<qr~~>.  Apostrophes
2071 as delimiters (C<qr''>) inhibit any interpolation.
2072
2073 Pre-compiled regexps are useful for creating dynamic matches that
2074 don't need to be recompiled each time they are encountered.  Using
2075 pre-compiled regexps, we write a C<grep_step> program which greps
2076 for a sequence of patterns, advancing to the next pattern as soon
2077 as one has been satisfied.
2078
2079     % cat > grep_step
2080     #!/usr/bin/perl
2081     # grep_step - match <number> regexps, one after the other
2082     # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...
2083
2084     $number = shift;
2085     $regexp[$_] = shift foreach (0..$number-1);
2086     @compiled = map qr/$_/, @regexp;
2087     while ($line = <>) {
2088         if ($line =~ /$compiled[0]/) {
2089             print $line;
2090             shift @compiled;
2091             last unless @compiled;
2092         }
2093     }
2094     ^D
2095
2096     % grep_step 3 shift print last grep_step
2097     $number = shift;
2098             print $line;
2099             last unless @compiled;
2100
2101 Storing pre-compiled regexps in an array C<@compiled> allows us to
2102 simply loop through the regexps without any recompilation, thus gaining
2103 flexibility without sacrificing speed.
2104
2105
2106 =head2 Composing regular expressions at runtime
2107
2108 Backtracking is more efficient than repeated tries with different regular
2109 expressions.  If there are several regular expressions and a match with
2110 any of them is acceptable, then it is possible to combine them into a set
2111 of alternatives.  If the individual expressions are input data, this
2112 can be done by programming a join operation.  We'll exploit this idea in
2113 an improved version of the C<simple_grep> program: a program that matches
2114 multiple patterns:
2115
2116     % cat > multi_grep
2117     #!/usr/bin/perl
2118     # multi_grep - match any of <number> regexps
2119     # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...
2120
2121     $number = shift;
2122     $regexp[$_] = shift foreach (0..$number-1);
2123     $pattern = join '|', @regexp;
2124
2125     while ($line = <>) {
2126         print $line if $line =~ /$pattern/;
2127     }
2128     ^D
2129
2130     % multi_grep 2 shift for multi_grep
2131     $number = shift;
2132     $regexp[$_] = shift foreach (0..$number-1);
2133
2134 Sometimes it is advantageous to construct a pattern from the I<input>
2135 that is to be analyzed and use the permissible values on the left
2136 hand side of the matching operations.  As an example for this somewhat
2137 paradoxical situation, let's assume that our input contains a command
2138 verb which should match one out of a set of available command verbs,
2139 with the additional twist that commands may be abbreviated as long as
2140 the given string is unique. The program below demonstrates the basic
2141 algorithm.
2142
2143     % cat > keymatch
2144     #!/usr/bin/perl
2145     $kwds = 'copy compare list print';
2146     while( $cmd = <> ){
2147         $cmd =~ s/^\s+|\s+$//g;  # trim leading and trailing spaces
2148         if( ( @matches = $kwds =~ /\b$cmd\w*/g ) == 1 ){
2149             print "command: '@matches'\n";
2150         } elsif( @matches == 0 ){
2151             print "no such command: '$cmd'\n";
2152         } else {
2153             print "not unique: '$cmd' (could be one of: @matches)\n";
2154         }
2155     }
2156     ^D
2157
2158     % keymatch
2159     li
2160     command: 'list'
2161     co
2162     not unique: 'co' (could be one of: copy compare)
2163     printer
2164     no such command: 'printer'
2165
2166 Rather than trying to match the input against the keywords, we match the
2167 combined set of keywords against the input.  The pattern matching
2168 operation S<C<$kwds =~ /\b($cmd\w*)/g>> does several things at the
2169 same time. It makes sure that the given command begins where a keyword
2170 begins (C<\b>). It tolerates abbreviations due to the added C<\w*>. It
2171 tells us the number of matches (C<scalar @matches>) and all the keywords
2172 that were actually matched.  You could hardly ask for more.
2173
2174 =head2 Embedding comments and modifiers in a regular expression
2175
2176 Starting with this section, we will be discussing Perl's set of
2177 I<extended patterns>.  These are extensions to the traditional regular
2178 expression syntax that provide powerful new tools for pattern
2179 matching.  We have already seen extensions in the form of the minimal
2180 matching constructs C<??>, C<*?>, C<+?>, C<{n,m}?>, and C<{n,}?>.  Most
2181 of the extensions below have the form C<(?char...)>, where the
2182 C<char> is a character that determines the type of extension.
2183
2184 The first extension is an embedded comment C<(?#text)>.  This embeds a
2185 comment into the regular expression without affecting its meaning.  The
2186 comment should not have any closing parentheses in the text.  An
2187 example is
2188
2189     /(?# Match an integer:)[+-]?\d+/;
2190
2191 This style of commenting has been largely superseded by the raw,
2192 freeform commenting that is allowed with the C<//x> modifier.
2193
2194 Most modifiers, such as C<//i>, C<//m>, C<//s> and C<//x> (or any
2195 combination thereof) can also be embedded in
2196 a regexp using C<(?i)>, C<(?m)>, C<(?s)>, and C<(?x)>.  For instance,
2197
2198     /(?i)yes/;  # match 'yes' case insensitively
2199     /yes/i;     # same thing
2200     /(?x)(          # freeform version of an integer regexp
2201              [+-]?  # match an optional sign
2202              \d+    # match a sequence of digits
2203          )
2204     /x;
2205
2206 Embedded modifiers can have two important advantages over the usual
2207 modifiers.  Embedded modifiers allow a custom set of modifiers to
2208 I<each> regexp pattern.  This is great for matching an array of regexps
2209 that must have different modifiers:
2210
2211     $pattern[0] = '(?i)doctor';
2212     $pattern[1] = 'Johnson';
2213     ...
2214     while (<>) {
2215         foreach $patt (@pattern) {
2216             print if /$patt/;
2217         }
2218     }
2219
2220 The second advantage is that embedded modifiers (except C<//p>, which
2221 modifies the entire regexp) only affect the regexp
2222 inside the group the embedded modifier is contained in.  So grouping
2223 can be used to localize the modifier's effects:
2224
2225     /Answer: ((?i)yes)/;  # matches 'Answer: yes', 'Answer: YES', etc.
2226
2227 Embedded modifiers can also turn off any modifiers already present
2228 by using, e.g., C<(?-i)>.  Modifiers can also be combined into
2229 a single expression, e.g., C<(?s-i)> turns on single line mode and
2230 turns off case insensitivity.
2231
2232 Embedded modifiers may also be added to a non-capturing grouping.
2233 C<(?i-m:regexp)> is a non-capturing grouping that matches C<regexp>
2234 case insensitively and turns off multi-line mode.
2235
2236
2237 =head2 Looking ahead and looking behind
2238
2239 This section concerns the lookahead and lookbehind assertions.  First,
2240 a little background.
2241
2242 In Perl regular expressions, most regexp elements 'eat up' a certain
2243 amount of string when they match.  For instance, the regexp element
2244 C<[abc}]> eats up one character of the string when it matches, in the
2245 sense that Perl moves to the next character position in the string
2246 after the match.  There are some elements, however, that don't eat up
2247 characters (advance the character position) if they match.  The examples
2248 we have seen so far are the anchors.  The anchor C<^> matches the
2249 beginning of the line, but doesn't eat any characters.  Similarly, the
2250 word boundary anchor C<\b> matches wherever a character matching C<\w>
2251 is next to a character that doesn't, but it doesn't eat up any
2252 characters itself.  Anchors are examples of I<zero-width assertions>:
2253 zero-width, because they consume
2254 no characters, and assertions, because they test some property of the
2255 string.  In the context of our walk in the woods analogy to regexp
2256 matching, most regexp elements move us along a trail, but anchors have
2257 us stop a moment and check our surroundings.  If the local environment
2258 checks out, we can proceed forward.  But if the local environment
2259 doesn't satisfy us, we must backtrack.
2260
2261 Checking the environment entails either looking ahead on the trail,
2262 looking behind, or both.  C<^> looks behind, to see that there are no
2263 characters before.  C<$> looks ahead, to see that there are no
2264 characters after.  C<\b> looks both ahead and behind, to see if the
2265 characters on either side differ in their "word-ness".
2266
2267 The lookahead and lookbehind assertions are generalizations of the
2268 anchor concept.  Lookahead and lookbehind are zero-width assertions
2269 that let us specify which characters we want to test for.  The
2270 lookahead assertion is denoted by C<(?=regexp)> and the lookbehind
2271 assertion is denoted by C<< (?<=fixed-regexp) >>.  Some examples are
2272
2273     $x = "I catch the housecat 'Tom-cat' with catnip";
2274     $x =~ /cat(?=\s)/;   # matches 'cat' in 'housecat'
2275     @catwords = ($x =~ /(?<=\s)cat\w+/g);  # matches,
2276                                            # $catwords[0] = 'catch'
2277                                            # $catwords[1] = 'catnip'
2278     $x =~ /\bcat\b/;  # matches 'cat' in 'Tom-cat'
2279     $x =~ /(?<=\s)cat(?=\s)/; # doesn't match; no isolated 'cat' in
2280                               # middle of $x
2281
2282 Note that the parentheses in C<(?=regexp)> and C<< (?<=regexp) >> are
2283 non-capturing, since these are zero-width assertions.  Thus in the
2284 second regexp, the substrings captured are those of the whole regexp
2285 itself.  Lookahead C<(?=regexp)> can match arbitrary regexps, but
2286 lookbehind C<< (?<=fixed-regexp) >> only works for regexps of fixed
2287 width, i.e., a fixed number of characters long.  Thus
2288 C<< (?<=(ab|bc)) >> is fine, but C<< (?<=(ab)*) >> is not.  The
2289 negated versions of the lookahead and lookbehind assertions are
2290 denoted by C<(?!regexp)> and C<< (?<!fixed-regexp) >> respectively.
2291 They evaluate true if the regexps do I<not> match:
2292
2293     $x = "foobar";
2294     $x =~ /foo(?!bar)/;  # doesn't match, 'bar' follows 'foo'
2295     $x =~ /foo(?!baz)/;  # matches, 'baz' doesn't follow 'foo'
2296     $x =~ /(?<!\s)foo/;  # matches, there is no \s before 'foo'
2297
2298 Here is an example where a string containing blank-separated words,
2299 numbers and single dashes is to be split into its components.
2300 Using C</\s+/> alone won't work, because spaces are not required between
2301 dashes, or a word or a dash. Additional places for a split are established
2302 by looking ahead and behind:
2303
2304     $str = "one two - --6-8";
2305     @toks = split / \s+              # a run of spaces
2306                   | (?<=\S) (?=-)    # any non-space followed by '-'
2307                   | (?<=-)  (?=\S)   # a '-' followed by any non-space
2308                   /x, $str;          # @toks = qw(one two - - - 6 - 8)
2309
2310
2311 =head2 Using independent subexpressions to prevent backtracking
2312
2313 I<Independent subexpressions> are regular expressions, in the
2314 context of a larger regular expression, that function independently of
2315 the larger regular expression.  That is, they consume as much or as
2316 little of the string as they wish without regard for the ability of
2317 the larger regexp to match.  Independent subexpressions are represented
2318 by C<< (?>regexp) >>.  We can illustrate their behavior by first
2319 considering an ordinary regexp:
2320
2321     $x = "ab";
2322     $x =~ /a*ab/;  # matches
2323
2324 This obviously matches, but in the process of matching, the
2325 subexpression C<a*> first grabbed the C<a>.  Doing so, however,
2326 wouldn't allow the whole regexp to match, so after backtracking, C<a*>
2327 eventually gave back the C<a> and matched the empty string.  Here, what
2328 C<a*> matched was I<dependent> on what the rest of the regexp matched.
2329
2330 Contrast that with an independent subexpression:
2331
2332     $x =~ /(?>a*)ab/;  # doesn't match!
2333
2334 The independent subexpression C<< (?>a*) >> doesn't care about the rest
2335 of the regexp, so it sees an C<a> and grabs it.  Then the rest of the
2336 regexp C<ab> cannot match.  Because C<< (?>a*) >> is independent, there
2337 is no backtracking and the independent subexpression does not give
2338 up its C<a>.  Thus the match of the regexp as a whole fails.  A similar
2339 behavior occurs with completely independent regexps:
2340
2341     $x = "ab";
2342     $x =~ /a*/g;   # matches, eats an 'a'
2343     $x =~ /\Gab/g; # doesn't match, no 'a' available
2344
2345 Here C<//g> and C<\G> create a 'tag team' handoff of the string from
2346 one regexp to the other.  Regexps with an independent subexpression are
2347 much like this, with a handoff of the string to the independent
2348 subexpression, and a handoff of the string back to the enclosing
2349 regexp.
2350
2351 The ability of an independent subexpression to prevent backtracking
2352 can be quite useful.  Suppose we want to match a non-empty string
2353 enclosed in parentheses up to two levels deep.  Then the following
2354 regexp matches:
2355
2356     $x = "abc(de(fg)h";  # unbalanced parentheses
2357     $x =~ /\( ( [^()]+ | \([^()]*\) )+ \)/x;
2358
2359 The regexp matches an open parenthesis, one or more copies of an
2360 alternation, and a close parenthesis.  The alternation is two-way, with
2361 the first alternative C<[^()]+> matching a substring with no
2362 parentheses and the second alternative C<\([^()]*\)>  matching a
2363 substring delimited by parentheses.  The problem with this regexp is
2364 that it is pathological: it has nested indeterminate quantifiers
2365 of the form C<(a+|b)+>.  We discussed in Part 1 how nested quantifiers
2366 like this could take an exponentially long time to execute if there
2367 was no match possible.  To prevent the exponential blowup, we need to
2368 prevent useless backtracking at some point.  This can be done by
2369 enclosing the inner quantifier as an independent subexpression:
2370
2371     $x =~ /\( ( (?>[^()]+) | \([^()]*\) )+ \)/x;
2372
2373 Here, C<< (?>[^()]+) >> breaks the degeneracy of string partitioning
2374 by gobbling up as much of the string as possible and keeping it.   Then
2375 match failures fail much more quickly.
2376
2377
2378 =head2 Conditional expressions
2379
2380 A I<conditional expression> is a form of if-then-else statement
2381 that allows one to choose which patterns are to be matched, based on
2382 some condition.  There are two types of conditional expression:
2383 C<(?(condition)yes-regexp)> and
2384 C<(?(condition)yes-regexp|no-regexp)>.  C<(?(condition)yes-regexp)> is
2385 like an S<C<'if () {}'>> statement in Perl.  If the C<condition> is true,
2386 the C<yes-regexp> will be matched.  If the C<condition> is false, the
2387 C<yes-regexp> will be skipped and Perl will move onto the next regexp
2388 element.  The second form is like an S<C<'if () {} else {}'>> statement
2389 in Perl.  If the C<condition> is true, the C<yes-regexp> will be
2390 matched, otherwise the C<no-regexp> will be matched.
2391
2392 The C<condition> can have several forms.  The first form is simply an
2393 integer in parentheses C<(integer)>.  It is true if the corresponding
2394 backreference C<\integer> matched earlier in the regexp.  The same
2395 thing can be done with a name associated with a capture group, written
2396 as C<< (<name>) >> or C<< ('name') >>.  The second form is a bare
2397 zero-width assertion C<(?...)>, either a lookahead, a lookbehind, or a
2398 code assertion (discussed in the next section).  The third set of forms
2399 provides tests that return true if the expression is executed within
2400 a recursion (C<(R)>) or is being called from some capturing group,
2401 referenced either by number (C<(R1)>, C<(R2)>,...) or by name
2402 (C<(R&name)>).
2403
2404 The integer or name form of the C<condition> allows us to choose,
2405 with more flexibility, what to match based on what matched earlier in the
2406 regexp. This searches for words of the form C<"$x$x"> or C<"$x$y$y$x">:
2407
2408     % simple_grep '^(\w+)(\w+)?(?(2)\g2\g1|\g1)$' /usr/dict/words
2409     beriberi
2410     coco
2411     couscous
2412     deed
2413     ...
2414     toot
2415     toto
2416     tutu
2417
2418 The lookbehind C<condition> allows, along with backreferences,
2419 an earlier part of the match to influence a later part of the
2420 match.  For instance,
2421
2422     /[ATGC]+(?(?<=AA)G|C)$/;
2423
2424 matches a DNA sequence such that it either ends in C<AAG>, or some
2425 other base pair combination and C<C>.  Note that the form is
2426 C<< (?(?<=AA)G|C) >> and not C<< (?((?<=AA))G|C) >>; for the
2427 lookahead, lookbehind or code assertions, the parentheses around the
2428 conditional are not needed.
2429
2430
2431 =head2 Defining named patterns
2432
2433 Some regular expressions use identical subpatterns in several places.
2434 Starting with Perl 5.10, it is possible to define named subpatterns in
2435 a section of the pattern so that they can be called up by name
2436 anywhere in the pattern.  This syntactic pattern for this definition
2437 group is C<< (?(DEFINE)(?<name>pattern)...) >>.  An insertion
2438 of a named pattern is written as C<(?&name)>.
2439
2440 The example below illustrates this feature using the pattern for
2441 floating point numbers that was presented earlier on.  The three
2442 subpatterns that are used more than once are the optional sign, the
2443 digit sequence for an integer and the decimal fraction.  The DEFINE
2444 group at the end of the pattern contains their definition.  Notice
2445 that the decimal fraction pattern is the first place where we can
2446 reuse the integer pattern.
2447
2448    /^ (?&osg)\ * ( (?&int)(?&dec)? | (?&dec) )
2449       (?: [eE](?&osg)(?&int) )?
2450     $
2451     (?(DEFINE)
2452       (?<osg>[-+]?)         # optional sign
2453       (?<int>\d++)          # integer
2454       (?<dec>\.(?&int))     # decimal fraction
2455     )/x
2456
2457
2458 =head2 Recursive patterns
2459
2460 This feature (introduced in Perl 5.10) significantly extends the
2461 power of Perl's pattern matching.  By referring to some other
2462 capture group anywhere in the pattern with the construct
2463 C<(?group-ref)>, the I<pattern> within the referenced group is used
2464 as an independent subpattern in place of the group reference itself.
2465 Because the group reference may be contained I<within> the group it
2466 refers to, it is now possible to apply pattern matching to tasks that
2467 hitherto required a recursive parser.
2468
2469 To illustrate this feature, we'll design a pattern that matches if
2470 a string contains a palindrome. (This is a word or a sentence that,
2471 while ignoring spaces, interpunctuation and case, reads the same backwards
2472 as forwards. We begin by observing that the empty string or a string
2473 containing just one word character is a palindrome. Otherwise it must
2474 have a word character up front and the same at its end, with another
2475 palindrome in between.
2476
2477     /(?: (\w) (?...Here be a palindrome...) \g{-1} | \w? )/x
2478
2479 Adding C<\W*> at either end to eliminate what is to be ignored, we already
2480 have the full pattern:
2481
2482     my $pp = qr/^(\W* (?: (\w) (?1) \g{-1} | \w? ) \W*)$/ix;
2483     for $s ( "saippuakauppias", "A man, a plan, a canal: Panama!" ){
2484         print "'$s' is a palindrome\n" if $s =~ /$pp/;
2485     }
2486
2487 In C<(?...)> both absolute and relative backreferences may be used.
2488 The entire pattern can be reinserted with C<(?R)> or C<(?0)>.
2489 If you prefer to name your groups, you can use C<(?&name)> to
2490 recurse into that group.
2491
2492
2493 =head2 A bit of magic: executing Perl code in a regular expression
2494
2495 Normally, regexps are a part of Perl expressions.
2496 I<Code evaluation> expressions turn that around by allowing
2497 arbitrary Perl code to be a part of a regexp.  A code evaluation
2498 expression is denoted C<(?{code})>, with I<code> a string of Perl
2499 statements.
2500
2501 Be warned that this feature is considered experimental, and may be
2502 changed without notice.
2503
2504 Code expressions are zero-width assertions, and the value they return
2505 depends on their environment.  There are two possibilities: either the
2506 code expression is used as a conditional in a conditional expression
2507 C<(?(condition)...)>, or it is not.  If the code expression is a
2508 conditional, the code is evaluated and the result (i.e., the result of
2509 the last statement) is used to determine truth or falsehood.  If the
2510 code expression is not used as a conditional, the assertion always
2511 evaluates true and the result is put into the special variable
2512 C<$^R>.  The variable C<$^R> can then be used in code expressions later
2513 in the regexp.  Here are some silly examples:
2514
2515     $x = "abcdef";
2516     $x =~ /abc(?{print "Hi Mom!";})def/; # matches,
2517                                          # prints 'Hi Mom!'
2518     $x =~ /aaa(?{print "Hi Mom!";})def/; # doesn't match,
2519                                          # no 'Hi Mom!'
2520
2521 Pay careful attention to the next example:
2522
2523     $x =~ /abc(?{print "Hi Mom!";})ddd/; # doesn't match,
2524                                          # no 'Hi Mom!'
2525                                          # but why not?
2526
2527 At first glance, you'd think that it shouldn't print, because obviously
2528 the C<ddd> isn't going to match the target string. But look at this
2529 example:
2530
2531     $x =~ /abc(?{print "Hi Mom!";})[dD]dd/; # doesn't match,
2532                                             # but _does_ print
2533
2534 Hmm. What happened here? If you've been following along, you know that
2535 the above pattern should be effectively (almost) the same as the last one;
2536 enclosing the C<d> in a character class isn't going to change what it
2537 matches. So why does the first not print while the second one does?
2538
2539 The answer lies in the optimizations the regex engine makes. In the first
2540 case, all the engine sees are plain old characters (aside from the
2541 C<?{}> construct). It's smart enough to realize that the string 'ddd'
2542 doesn't occur in our target string before actually running the pattern
2543 through. But in the second case, we've tricked it into thinking that our
2544 pattern is more complicated. It takes a look, sees our
2545 character class, and decides that it will have to actually run the
2546 pattern to determine whether or not it matches, and in the process of
2547 running it hits the print statement before it discovers that we don't
2548 have a match.
2549
2550 To take a closer look at how the engine does optimizations, see the
2551 section L<"Pragmas and debugging"> below.
2552
2553 More fun with C<?{}>:
2554
2555     $x =~ /(?{print "Hi Mom!";})/;       # matches,
2556                                          # prints 'Hi Mom!'
2557     $x =~ /(?{$c = 1;})(?{print "$c";})/;  # matches,
2558                                            # prints '1'
2559     $x =~ /(?{$c = 1;})(?{print "$^R";})/; # matches,
2560                                            # prints '1'
2561
2562 The bit of magic mentioned in the section title occurs when the regexp
2563 backtracks in the process of searching for a match.  If the regexp
2564 backtracks over a code expression and if the variables used within are
2565 localized using C<local>, the changes in the variables produced by the
2566 code expression are undone! Thus, if we wanted to count how many times
2567 a character got matched inside a group, we could use, e.g.,
2568
2569     $x = "aaaa";
2570     $count = 0;  # initialize 'a' count
2571     $c = "bob";  # test if $c gets clobbered
2572     $x =~ /(?{local $c = 0;})         # initialize count
2573            ( a                        # match 'a'
2574              (?{local $c = $c + 1;})  # increment count
2575            )*                         # do this any number of times,
2576            aa                         # but match 'aa' at the end
2577            (?{$count = $c;})          # copy local $c var into $count
2578           /x;
2579     print "'a' count is $count, \$c variable is '$c'\n";
2580
2581 This prints
2582
2583     'a' count is 2, $c variable is 'bob'
2584
2585 If we replace the S<C< (?{local $c = $c + 1;})>> with
2586 S<C< (?{$c = $c + 1;})>>, the variable changes are I<not> undone
2587 during backtracking, and we get
2588
2589     'a' count is 4, $c variable is 'bob'
2590
2591 Note that only localized variable changes are undone.  Other side
2592 effects of code expression execution are permanent.  Thus
2593
2594     $x = "aaaa";
2595     $x =~ /(a(?{print "Yow\n";}))*aa/;
2596
2597 produces
2598
2599    Yow
2600    Yow
2601    Yow
2602    Yow
2603
2604 The result C<$^R> is automatically localized, so that it will behave
2605 properly in the presence of backtracking.
2606
2607 This example uses a code expression in a conditional to match a
2608 definite article, either 'the' in English or 'der|die|das' in German:
2609
2610     $lang = 'DE';  # use German
2611     ...
2612     $text = "das";
2613     print "matched\n"
2614         if $text =~ /(?(?{
2615                           $lang eq 'EN'; # is the language English?
2616                          })
2617                        the |             # if so, then match 'the'
2618                        (der|die|das)     # else, match 'der|die|das'
2619                      )
2620                     /xi;
2621
2622 Note that the syntax here is C<(?(?{...})yes-regexp|no-regexp)>, not
2623 C<(?((?{...}))yes-regexp|no-regexp)>.  In other words, in the case of a
2624 code expression, we don't need the extra parentheses around the
2625 conditional.
2626
2627 If you try to use code expressions where the code text is contained within
2628 an interpolated variable, rather than appearing literally in the pattern,
2629 Perl may surprise you:
2630
2631     $bar = 5;
2632     $pat = '(?{ 1 })';
2633     /foo(?{ $bar })bar/; # compiles ok, $bar not interpolated
2634     /foo(?{ 1 })$bar/;   # compiles ok, $bar interpolated
2635     /foo${pat}bar/;      # compile error!
2636
2637     $pat = qr/(?{ $foo = 1 })/;  # precompile code regexp
2638     /foo${pat}bar/;      # compiles ok
2639
2640 If a regexp has a variable that interpolates a code expression, Perl
2641 treats the regexp as an error. If the code expression is precompiled into
2642 a variable, however, interpolating is ok. The question is, why is this an
2643 error?
2644
2645 The reason is that variable interpolation and code expressions
2646 together pose a security risk.  The combination is dangerous because
2647 many programmers who write search engines often take user input and
2648 plug it directly into a regexp:
2649
2650     $regexp = <>;       # read user-supplied regexp
2651     $chomp $regexp;     # get rid of possible newline
2652     $text =~ /$regexp/; # search $text for the $regexp
2653
2654 If the C<$regexp> variable contains a code expression, the user could
2655 then execute arbitrary Perl code.  For instance, some joker could
2656 search for S<C<system('rm -rf *');>> to erase your files.  In this
2657 sense, the combination of interpolation and code expressions I<taints>
2658 your regexp.  So by default, using both interpolation and code
2659 expressions in the same regexp is not allowed.  If you're not
2660 concerned about malicious users, it is possible to bypass this
2661 security check by invoking S<C<use re 'eval'>>:
2662
2663     use re 'eval';       # throw caution out the door
2664     $bar = 5;
2665     $pat = '(?{ 1 })';
2666     /foo${pat}bar/;      # compiles ok
2667
2668 Another form of code expression is the I<pattern code expression>.
2669 The pattern code expression is like a regular code expression, except
2670 that the result of the code evaluation is treated as a regular
2671 expression and matched immediately.  A simple example is
2672
2673     $length = 5;
2674     $char = 'a';
2675     $x = 'aaaaabb';
2676     $x =~ /(??{$char x $length})/x; # matches, there are 5 of 'a'
2677
2678
2679 This final example contains both ordinary and pattern code
2680 expressions.  It detects whether a binary string C<1101010010001...> has a
2681 Fibonacci spacing 0,1,1,2,3,5,...  of the C<1>'s:
2682
2683     $x = "1101010010001000001";
2684     $z0 = ''; $z1 = '0';   # initial conditions
2685     print "It is a Fibonacci sequence\n"
2686         if $x =~ /^1         # match an initial '1'
2687                     (?:
2688                        ((??{ $z0 })) # match some '0'
2689                        1             # and then a '1'
2690                        (?{ $z0 = $z1; $z1 .= $^N; })
2691                     )+   # repeat as needed
2692                   $      # that is all there is
2693                  /x;
2694     printf "Largest sequence matched was %d\n", length($z1)-length($z0);
2695
2696 Remember that C<$^N> is set to whatever was matched by the last
2697 completed capture group. This prints
2698
2699     It is a Fibonacci sequence
2700     Largest sequence matched was 5
2701
2702 Ha! Try that with your garden variety regexp package...
2703
2704 Note that the variables C<$z0> and C<$z1> are not substituted when the
2705 regexp is compiled, as happens for ordinary variables outside a code
2706 expression.  Rather, the whole code block is parsed as perl code at the
2707 same time as perl is compiling the code containing the literal regexp
2708 pattern.
2709
2710 The regexp without the C<//x> modifier is
2711
2712     /^1(?:((??{ $z0 }))1(?{ $z0 = $z1; $z1 .= $^N; }))+$/
2713
2714 which shows that spaces are still possible in the code parts. Nevertheless,
2715 when working with code and conditional expressions, the extended form of
2716 regexps is almost necessary in creating and debugging regexps.
2717
2718
2719 =head2 Backtracking control verbs
2720
2721 Perl 5.10 introduced a number of control verbs intended to provide
2722 detailed control over the backtracking process, by directly influencing
2723 the regexp engine and by providing monitoring techniques.  As all
2724 the features in this group are experimental and subject to change or
2725 removal in a future version of Perl, the interested reader is
2726 referred to L<perlre/"Special Backtracking Control Verbs"> for a
2727 detailed description.
2728
2729 Below is just one example, illustrating the control verb C<(*FAIL)>,
2730 which may be abbreviated as C<(*F)>. If this is inserted in a regexp
2731 it will cause it to fail, just as it would at some
2732 mismatch between the pattern and the string. Processing
2733 of the regexp continues as it would after any "normal"
2734 failure, so that, for instance, the next position in the string or another
2735 alternative will be tried. As failing to match doesn't preserve capture
2736 groups or produce results, it may be necessary to use this in
2737 combination with embedded code.
2738
2739    %count = ();
2740    "supercalifragilisticexpialidocious" =~
2741        /([aeiou])(?{ $count{$1}++; })(*FAIL)/i;
2742    printf "%3d '%s'\n", $count{$_}, $_ for (sort keys %count);
2743
2744 The pattern begins with a class matching a subset of letters.  Whenever
2745 this matches, a statement like C<$count{'a'}++;> is executed, incrementing
2746 the letter's counter. Then C<(*FAIL)> does what it says, and
2747 the regexp engine proceeds according to the book: as long as the end of
2748 the string hasn't been reached, the position is advanced before looking
2749 for another vowel. Thus, match or no match makes no difference, and the
2750 regexp engine proceeds until the entire string has been inspected.
2751 (It's remarkable that an alternative solution using something like
2752
2753    $count{lc($_)}++ for split('', "supercalifragilisticexpialidocious");
2754    printf "%3d '%s'\n", $count2{$_}, $_ for ( qw{ a e i o u } );
2755
2756 is considerably slower.)
2757
2758
2759 =head2 Pragmas and debugging
2760
2761 Speaking of debugging, there are several pragmas available to control
2762 and debug regexps in Perl.  We have already encountered one pragma in
2763 the previous section, S<C<use re 'eval';>>, that allows variable
2764 interpolation and code expressions to coexist in a regexp.  The other
2765 pragmas are
2766
2767     use re 'taint';
2768     $tainted = <>;
2769     @parts = ($tainted =~ /(\w+)\s+(\w+)/; # @parts is now tainted
2770
2771 The C<taint> pragma causes any substrings from a match with a tainted
2772 variable to be tainted as well.  This is not normally the case, as
2773 regexps are often used to extract the safe bits from a tainted
2774 variable.  Use C<taint> when you are not extracting safe bits, but are
2775 performing some other processing.  Both C<taint> and C<eval> pragmas
2776 are lexically scoped, which means they are in effect only until
2777 the end of the block enclosing the pragmas.
2778
2779     use re '/m';  # or any other flags
2780     $multiline_string =~ /^foo/; # /m is implied
2781
2782 The C<re '/flags'> pragma (introduced in Perl
2783 5.14) turns on the given regular expression flags
2784 until the end of the lexical scope.  See
2785 L<re/"'E<sol>flags' mode"> for more
2786 detail.
2787
2788     use re 'debug';
2789     /^(.*)$/s;       # output debugging info
2790
2791     use re 'debugcolor';
2792     /^(.*)$/s;       # output debugging info in living color
2793
2794 The global C<debug> and C<debugcolor> pragmas allow one to get
2795 detailed debugging info about regexp compilation and
2796 execution.  C<debugcolor> is the same as debug, except the debugging
2797 information is displayed in color on terminals that can display
2798 termcap color sequences.  Here is example output:
2799
2800     % perl -e 'use re "debug"; "abc" =~ /a*b+c/;'
2801     Compiling REx 'a*b+c'
2802     size 9 first at 1
2803        1: STAR(4)
2804        2:   EXACT <a>(0)
2805        4: PLUS(7)
2806        5:   EXACT <b>(0)
2807        7: EXACT <c>(9)
2808        9: END(0)
2809     floating 'bc' at 0..2147483647 (checking floating) minlen 2
2810     Guessing start of match, REx 'a*b+c' against 'abc'...
2811     Found floating substr 'bc' at offset 1...
2812     Guessed: match at offset 0
2813     Matching REx 'a*b+c' against 'abc'
2814       Setting an EVAL scope, savestack=3
2815        0 <> <abc>           |  1:  STAR
2816                              EXACT <a> can match 1 times out of 32767...
2817       Setting an EVAL scope, savestack=3
2818        1 <a> <bc>           |  4:    PLUS
2819                              EXACT <b> can match 1 times out of 32767...
2820       Setting an EVAL scope, savestack=3
2821        2 <ab> <c>           |  7:      EXACT <c>
2822        3 <abc> <>           |  9:      END
2823     Match successful!
2824     Freeing REx: 'a*b+c'
2825
2826 If you have gotten this far into the tutorial, you can probably guess
2827 what the different parts of the debugging output tell you.  The first
2828 part
2829
2830     Compiling REx 'a*b+c'
2831     size 9 first at 1
2832        1: STAR(4)
2833        2:   EXACT <a>(0)
2834        4: PLUS(7)
2835        5:   EXACT <b>(0)
2836        7: EXACT <c>(9)
2837        9: END(0)
2838
2839 describes the compilation stage.  C<STAR(4)> means that there is a
2840 starred object, in this case C<'a'>, and if it matches, goto line 4,
2841 i.e., C<PLUS(7)>.  The middle lines describe some heuristics and
2842 optimizations performed before a match:
2843
2844     floating 'bc' at 0..2147483647 (checking floating) minlen 2
2845     Guessing start of match, REx 'a*b+c' against 'abc'...
2846     Found floating substr 'bc' at offset 1...
2847     Guessed: match at offset 0
2848
2849 Then the match is executed and the remaining lines describe the
2850 process:
2851
2852     Matching REx 'a*b+c' against 'abc'
2853       Setting an EVAL scope, savestack=3
2854        0 <> <abc>           |  1:  STAR
2855                              EXACT <a> can match 1 times out of 32767...
2856       Setting an EVAL scope, savestack=3
2857        1 <a> <bc>           |  4:    PLUS
2858                              EXACT <b> can match 1 times out of 32767...
2859       Setting an EVAL scope, savestack=3
2860        2 <ab> <c>           |  7:      EXACT <c>
2861        3 <abc> <>           |  9:      END
2862     Match successful!
2863     Freeing REx: 'a*b+c'
2864
2865 Each step is of the form S<C<< n <x> <y> >>>, with C<< <x> >> the
2866 part of the string matched and C<< <y> >> the part not yet
2867 matched.  The S<C<< |  1:  STAR >>> says that Perl is at line number 1
2868 in the compilation list above.  See
2869 L<perldebguts/"Debugging Regular Expressions"> for much more detail.
2870
2871 An alternative method of debugging regexps is to embed C<print>
2872 statements within the regexp.  This provides a blow-by-blow account of
2873 the backtracking in an alternation:
2874
2875     "that this" =~ m@(?{print "Start at position ", pos, "\n";})
2876                      t(?{print "t1\n";})
2877                      h(?{print "h1\n";})
2878                      i(?{print "i1\n";})
2879                      s(?{print "s1\n";})
2880                          |
2881                      t(?{print "t2\n";})
2882                      h(?{print "h2\n";})
2883                      a(?{print "a2\n";})
2884                      t(?{print "t2\n";})
2885                      (?{print "Done at position ", pos, "\n";})
2886                     @x;
2887
2888 prints
2889
2890     Start at position 0
2891     t1
2892     h1
2893     t2
2894     h2
2895     a2
2896     t2
2897     Done at position 4
2898
2899 =head1 BUGS
2900
2901 Code expressions, conditional expressions, and independent expressions
2902 are I<experimental>.  Don't use them in production code.  Yet.
2903
2904 =head1 SEE ALSO
2905
2906 This is just a tutorial.  For the full story on Perl regular
2907 expressions, see the L<perlre> regular expressions reference page.
2908
2909 For more information on the matching C<m//> and substitution C<s///>
2910 operators, see L<perlop/"Regexp Quote-Like Operators">.  For
2911 information on the C<split> operation, see L<perlfunc/split>.
2912
2913 For an excellent all-around resource on the care and feeding of
2914 regular expressions, see the book I<Mastering Regular Expressions> by
2915 Jeffrey Friedl (published by O'Reilly, ISBN 1556592-257-3).
2916
2917 =head1 AUTHOR AND COPYRIGHT
2918
2919 Copyright (c) 2000 Mark Kvale
2920 All rights reserved.
2921
2922 This document may be distributed under the same terms as Perl itself.
2923
2924 =head2 Acknowledgments
2925
2926 The inspiration for the stop codon DNA example came from the ZIP
2927 code example in chapter 7 of I<Mastering Regular Expressions>.
2928
2929 The author would like to thank Jeff Pinyan, Andrew Johnson, Peter
2930 Haworth, Ronald J Kimball, and Joe Smith for all their helpful
2931 comments.
2932
2933 =cut
2934