This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
reentrant buffers
[perl5.git] / pod / perlhack.pod
1 =head1 NAME
2
3 perlhack - How to hack at the Perl internals
4
5 =head1 DESCRIPTION
6
7 This document attempts to explain how Perl development takes place,
8 and ends with some suggestions for people wanting to become bona fide
9 porters.
10
11 The perl5-porters mailing list is where the Perl standard distribution
12 is maintained and developed.  The list can get anywhere from 10 to 150
13 messages a day, depending on the heatedness of the debate.  Most days
14 there are two or three patches, extensions, features, or bugs being
15 discussed at a time.
16
17 A searchable archive of the list is at either:
18
19     http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/
20
21 or
22
23     http://archive.develooper.com/perl5-porters@perl.org/
24
25 List subscribers (the porters themselves) come in several flavours.
26 Some are quiet curious lurkers, who rarely pitch in and instead watch
27 the ongoing development to ensure they're forewarned of new changes or
28 features in Perl.  Some are representatives of vendors, who are there
29 to make sure that Perl continues to compile and work on their
30 platforms.  Some patch any reported bug that they know how to fix,
31 some are actively patching their pet area (threads, Win32, the regexp
32 engine), while others seem to do nothing but complain.  In other
33 words, it's your usual mix of technical people.
34
35 Over this group of porters presides Larry Wall.  He has the final word
36 in what does and does not change in the Perl language.  Various
37 releases of Perl are shepherded by a ``pumpking'', a porter
38 responsible for gathering patches, deciding on a patch-by-patch
39 feature-by-feature basis what will and will not go into the release.
40 For instance, Gurusamy Sarathy was the pumpking for the 5.6 release of
41 Perl, and Jarkko Hietaniemi is the pumpking for the 5.8 release, and
42 Hugo van der Sanden will be the pumpking for the 5.10 release.
43
44 In addition, various people are pumpkings for different things.  For
45 instance, Andy Dougherty and Jarkko Hietaniemi share the I<Configure>
46 pumpkin.
47
48 Larry sees Perl development along the lines of the US government:
49 there's the Legislature (the porters), the Executive branch (the
50 pumpkings), and the Supreme Court (Larry).  The legislature can
51 discuss and submit patches to the executive branch all they like, but
52 the executive branch is free to veto them.  Rarely, the Supreme Court
53 will side with the executive branch over the legislature, or the
54 legislature over the executive branch.  Mostly, however, the
55 legislature and the executive branch are supposed to get along and
56 work out their differences without impeachment or court cases.
57
58 You might sometimes see reference to Rule 1 and Rule 2.  Larry's power
59 as Supreme Court is expressed in The Rules:
60
61 =over 4
62
63 =item 1
64
65 Larry is always by definition right about how Perl should behave.
66 This means he has final veto power on the core functionality.
67
68 =item 2
69
70 Larry is allowed to change his mind about any matter at a later date,
71 regardless of whether he previously invoked Rule 1.
72
73 =back
74
75 Got that?  Larry is always right, even when he was wrong.  It's rare
76 to see either Rule exercised, but they are often alluded to.
77
78 New features and extensions to the language are contentious, because
79 the criteria used by the pumpkings, Larry, and other porters to decide
80 which features should be implemented and incorporated are not codified
81 in a few small design goals as with some other languages.  Instead,
82 the heuristics are flexible and often difficult to fathom.  Here is
83 one person's list, roughly in decreasing order of importance, of
84 heuristics that new features have to be weighed against:
85
86 =over 4
87
88 =item Does concept match the general goals of Perl?
89
90 These haven't been written anywhere in stone, but one approximation
91 is:
92
93  1. Keep it fast, simple, and useful.
94  2. Keep features/concepts as orthogonal as possible.
95  3. No arbitrary limits (platforms, data sizes, cultures).
96  4. Keep it open and exciting to use/patch/advocate Perl everywhere.
97  5. Either assimilate new technologies, or build bridges to them.
98
99 =item Where is the implementation?
100
101 All the talk in the world is useless without an implementation.  In
102 almost every case, the person or people who argue for a new feature
103 will be expected to be the ones who implement it.  Porters capable
104 of coding new features have their own agendas, and are not available
105 to implement your (possibly good) idea.
106
107 =item Backwards compatibility
108
109 It's a cardinal sin to break existing Perl programs.  New warnings are
110 contentious--some say that a program that emits warnings is not
111 broken, while others say it is.  Adding keywords has the potential to
112 break programs, changing the meaning of existing token sequences or
113 functions might break programs.
114
115 =item Could it be a module instead?
116
117 Perl 5 has extension mechanisms, modules and XS, specifically to avoid
118 the need to keep changing the Perl interpreter.  You can write modules
119 that export functions, you can give those functions prototypes so they
120 can be called like built-in functions, you can even write XS code to
121 mess with the runtime data structures of the Perl interpreter if you
122 want to implement really complicated things.  If it can be done in a
123 module instead of in the core, it's highly unlikely to be added.
124
125 =item Is the feature generic enough?
126
127 Is this something that only the submitter wants added to the language,
128 or would it be broadly useful?  Sometimes, instead of adding a feature
129 with a tight focus, the porters might decide to wait until someone
130 implements the more generalized feature.  For instance, instead of
131 implementing a ``delayed evaluation'' feature, the porters are waiting
132 for a macro system that would permit delayed evaluation and much more.
133
134 =item Does it potentially introduce new bugs?
135
136 Radical rewrites of large chunks of the Perl interpreter have the
137 potential to introduce new bugs.  The smaller and more localized the
138 change, the better.
139
140 =item Does it preclude other desirable features?
141
142 A patch is likely to be rejected if it closes off future avenues of
143 development.  For instance, a patch that placed a true and final
144 interpretation on prototypes is likely to be rejected because there
145 are still options for the future of prototypes that haven't been
146 addressed.
147
148 =item Is the implementation robust?
149
150 Good patches (tight code, complete, correct) stand more chance of
151 going in.  Sloppy or incorrect patches might be placed on the back
152 burner until the pumpking has time to fix, or might be discarded
153 altogether without further notice.
154
155 =item Is the implementation generic enough to be portable?
156
157 The worst patches make use of a system-specific features.  It's highly
158 unlikely that nonportable additions to the Perl language will be
159 accepted.
160
161 =item Is the implementation tested?
162
163 Patches which change behaviour (fixing bugs or introducing new features)
164 must include regression tests to verify that everything works as expected.
165 Without tests provided by the original author, how can anyone else changing
166 perl in the future be sure that they haven't unwittingly broken the behaviour
167 the patch implements? And without tests, how can the patch's author be
168 confident that his/her hard work put into the patch won't be accidentally
169 thrown away by someone in the future?
170
171 =item Is there enough documentation?
172
173 Patches without documentation are probably ill-thought out or
174 incomplete.  Nothing can be added without documentation, so submitting
175 a patch for the appropriate manpages as well as the source code is
176 always a good idea.
177
178 =item Is there another way to do it?
179
180 Larry said ``Although the Perl Slogan is I<There's More Than One Way
181 to Do It>, I hesitate to make 10 ways to do something''.  This is a
182 tricky heuristic to navigate, though--one man's essential addition is
183 another man's pointless cruft.
184
185 =item Does it create too much work?
186
187 Work for the pumpking, work for Perl programmers, work for module
188 authors, ...  Perl is supposed to be easy.
189
190 =item Patches speak louder than words
191
192 Working code is always preferred to pie-in-the-sky ideas.  A patch to
193 add a feature stands a much higher chance of making it to the language
194 than does a random feature request, no matter how fervently argued the
195 request might be.  This ties into ``Will it be useful?'', as the fact
196 that someone took the time to make the patch demonstrates a strong
197 desire for the feature.
198
199 =back
200
201 If you're on the list, you might hear the word ``core'' bandied
202 around.  It refers to the standard distribution.  ``Hacking on the
203 core'' means you're changing the C source code to the Perl
204 interpreter.  ``A core module'' is one that ships with Perl.
205
206 =head2 Keeping in sync
207
208 The source code to the Perl interpreter, in its different versions, is
209 kept in a repository managed by a revision control system ( which is
210 currently the Perforce program, see http://perforce.com/ ).  The
211 pumpkings and a few others have access to the repository to check in
212 changes.  Periodically the pumpking for the development version of Perl
213 will release a new version, so the rest of the porters can see what's
214 changed.  The current state of the main trunk of repository, and patches
215 that describe the individual changes that have happened since the last
216 public release are available at this location:
217
218     http://public.activestate.com/gsar/APC/
219     ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/
220
221 If you're looking for a particular change, or a change that affected
222 a particular set of files, you may find the B<Perl Repository Browser>
223 useful:
224
225     http://public.activestate.com/cgi-bin/perlbrowse
226
227 You may also want to subscribe to the perl5-changes mailing list to
228 receive a copy of each patch that gets submitted to the maintenance
229 and development "branches" of the perl repository.  See
230 http://lists.perl.org/ for subscription information.
231
232 If you are a member of the perl5-porters mailing list, it is a good
233 thing to keep in touch with the most recent changes. If not only to
234 verify if what you would have posted as a bug report isn't already
235 solved in the most recent available perl development branch, also
236 known as perl-current, bleading edge perl, bleedperl or bleadperl.
237
238 Needless to say, the source code in perl-current is usually in a perpetual
239 state of evolution.  You should expect it to be very buggy.  Do B<not> use
240 it for any purpose other than testing and development.
241
242 Keeping in sync with the most recent branch can be done in several ways,
243 but the most convenient and reliable way is using B<rsync>, available at
244 ftp://rsync.samba.org/pub/rsync/ .  (You can also get the most recent
245 branch by FTP.)
246
247 If you choose to keep in sync using rsync, there are two approaches
248 to doing so:
249
250 =over 4
251
252 =item rsync'ing the source tree
253
254 Presuming you are in the directory where your perl source resides
255 and you have rsync installed and available, you can `upgrade' to
256 the bleadperl using:
257
258  # rsync -avz rsync://ftp.linux.activestate.com/perl-current/ .
259
260 This takes care of updating every single item in the source tree to
261 the latest applied patch level, creating files that are new (to your
262 distribution) and setting date/time stamps of existing files to
263 reflect the bleadperl status.
264
265 Note that this will not delete any files that were in '.' before
266 the rsync. Once you are sure that the rsync is running correctly,
267 run it with the --delete and the --dry-run options like this:
268
269  # rsync -avz --delete --dry-run rsync://ftp.linux.activestate.com/perl-current/ .
270
271 This will I<simulate> an rsync run that also deletes files not
272 present in the bleadperl master copy. Observe the results from
273 this run closely. If you are sure that the actual run would delete
274 no files precious to you, you could remove the '--dry-run' option.
275
276 You can than check what patch was the latest that was applied by
277 looking in the file B<.patch>, which will show the number of the
278 latest patch.
279
280 If you have more than one machine to keep in sync, and not all of
281 them have access to the WAN (so you are not able to rsync all the
282 source trees to the real source), there are some ways to get around
283 this problem.
284
285 =over 4
286
287 =item Using rsync over the LAN
288
289 Set up a local rsync server which makes the rsynced source tree
290 available to the LAN and sync the other machines against this
291 directory.
292
293 From http://rsync.samba.org/README.html :
294
295    "Rsync uses rsh or ssh for communication. It does not need to be
296     setuid and requires no special privileges for installation.  It
297     does not require an inetd entry or a daemon.  You must, however,
298     have a working rsh or ssh system.  Using ssh is recommended for
299     its security features."
300
301 =item Using pushing over the NFS
302
303 Having the other systems mounted over the NFS, you can take an
304 active pushing approach by checking the just updated tree against
305 the other not-yet synced trees. An example would be
306
307   #!/usr/bin/perl -w
308
309   use strict;
310   use File::Copy;
311
312   my %MF = map {
313       m/(\S+)/;
314       $1 => [ (stat $1)[2, 7, 9] ];     # mode, size, mtime
315       } `cat MANIFEST`;
316
317   my %remote = map { $_ => "/$_/pro/3gl/CPAN/perl-5.7.1" } qw(host1 host2);
318
319   foreach my $host (keys %remote) {
320       unless (-d $remote{$host}) {
321           print STDERR "Cannot Xsync for host $host\n";
322           next;
323           }
324       foreach my $file (keys %MF) {
325           my $rfile = "$remote{$host}/$file";
326           my ($mode, $size, $mtime) = (stat $rfile)[2, 7, 9];
327           defined $size or ($mode, $size, $mtime) = (0, 0, 0);
328           $size == $MF{$file}[1] && $mtime == $MF{$file}[2] and next;
329           printf "%4s %-34s %8d %9d  %8d %9d\n",
330               $host, $file, $MF{$file}[1], $MF{$file}[2], $size, $mtime;
331           unlink $rfile;
332           copy ($file, $rfile);
333           utime time, $MF{$file}[2], $rfile;
334           chmod $MF{$file}[0], $rfile;
335           }
336       }
337
338 though this is not perfect. It could be improved with checking
339 file checksums before updating. Not all NFS systems support
340 reliable utime support (when used over the NFS).
341
342 =back
343
344 =item rsync'ing the patches
345
346 The source tree is maintained by the pumpking who applies patches to
347 the files in the tree. These patches are either created by the
348 pumpking himself using C<diff -c> after updating the file manually or
349 by applying patches sent in by posters on the perl5-porters list.
350 These patches are also saved and rsync'able, so you can apply them
351 yourself to the source files.
352
353 Presuming you are in a directory where your patches reside, you can
354 get them in sync with
355
356  # rsync -avz rsync://ftp.linux.activestate.com/perl-current-diffs/ .
357
358 This makes sure the latest available patch is downloaded to your
359 patch directory.
360
361 It's then up to you to apply these patches, using something like
362
363  # last=`ls -t *.gz | sed q`
364  # rsync -avz rsync://ftp.linux.activestate.com/perl-current-diffs/ .
365  # find . -name '*.gz' -newer $last -exec gzcat {} \; >blead.patch
366  # cd ../perl-current
367  # patch -p1 -N <../perl-current-diffs/blead.patch
368
369 or, since this is only a hint towards how it works, use CPAN-patchaperl
370 from Andreas König to have better control over the patching process.
371
372 =back
373
374 =head2 Why rsync the source tree
375
376 =over 4
377
378 =item It's easier to rsync the source tree
379
380 Since you don't have to apply the patches yourself, you are sure all
381 files in the source tree are in the right state.
382
383 =item It's more reliable
384
385 While both the rsync-able source and patch areas are automatically
386 updated every few minutes, keep in mind that applying patches may
387 sometimes mean careful hand-holding, especially if your version of
388 the C<patch> program does not understand how to deal with new files,
389 files with 8-bit characters, or files without trailing newlines.
390
391 =back
392
393 =head2 Why rsync the patches
394
395 =over 4
396
397 =item It's easier to rsync the patches
398
399 If you have more than one machine that you want to keep in track with
400 bleadperl, it's easier to rsync the patches only once and then apply
401 them to all the source trees on the different machines.
402
403 In case you try to keep in pace on 5 different machines, for which
404 only one of them has access to the WAN, rsync'ing all the source
405 trees should than be done 5 times over the NFS. Having
406 rsync'ed the patches only once, I can apply them to all the source
407 trees automatically. Need you say more ;-)
408
409 =item It's a good reference
410
411 If you do not only like to have the most recent development branch,
412 but also like to B<fix> bugs, or extend features, you want to dive
413 into the sources. If you are a seasoned perl core diver, you don't
414 need no manuals, tips, roadmaps, perlguts.pod or other aids to find
415 your way around. But if you are a starter, the patches may help you
416 in finding where you should start and how to change the bits that
417 bug you.
418
419 The file B<Changes> is updated on occasions the pumpking sees as his
420 own little sync points. On those occasions, he releases a tar-ball of
421 the current source tree (i.e. perl@7582.tar.gz), which will be an
422 excellent point to start with when choosing to use the 'rsync the
423 patches' scheme. Starting with perl@7582, which means a set of source
424 files on which the latest applied patch is number 7582, you apply all
425 succeeding patches available from then on (7583, 7584, ...).
426
427 You can use the patches later as a kind of search archive.
428
429 =over 4
430
431 =item Finding a start point
432
433 If you want to fix/change the behaviour of function/feature Foo, just
434 scan the patches for patches that mention Foo either in the subject,
435 the comments, or the body of the fix. A good chance the patch shows
436 you the files that are affected by that patch which are very likely
437 to be the starting point of your journey into the guts of perl.
438
439 =item Finding how to fix a bug
440
441 If you've found I<where> the function/feature Foo misbehaves, but you
442 don't know how to fix it (but you do know the change you want to
443 make), you can, again, peruse the patches for similar changes and
444 look how others apply the fix.
445
446 =item Finding the source of misbehaviour
447
448 When you keep in sync with bleadperl, the pumpking would love to
449 I<see> that the community efforts really work. So after each of his
450 sync points, you are to 'make test' to check if everything is still
451 in working order. If it is, you do 'make ok', which will send an OK
452 report to perlbug@perl.org. (If you do not have access to a mailer
453 from the system you just finished successfully 'make test', you can
454 do 'make okfile', which creates the file C<perl.ok>, which you can
455 than take to your favourite mailer and mail yourself).
456
457 But of course, as always, things will not always lead to a success
458 path, and one or more test do not pass the 'make test'. Before
459 sending in a bug report (using 'make nok' or 'make nokfile'), check
460 the mailing list if someone else has reported the bug already and if
461 so, confirm it by replying to that message. If not, you might want to
462 trace the source of that misbehaviour B<before> sending in the bug,
463 which will help all the other porters in finding the solution.
464
465 Here the saved patches come in very handy. You can check the list of
466 patches to see which patch changed what file and what change caused
467 the misbehaviour. If you note that in the bug report, it saves the
468 one trying to solve it, looking for that point.
469
470 =back
471
472 If searching the patches is too bothersome, you might consider using
473 perl's bugtron to find more information about discussions and
474 ramblings on posted bugs.
475
476 If you want to get the best of both worlds, rsync both the source
477 tree for convenience, reliability and ease and rsync the patches
478 for reference.
479
480 =back
481
482
483 =head2 Perlbug remote interface
484
485 There are three (3) remote administrative interfaces for modifying bug
486 status, category, etc.  In all cases an admin must be first registered
487 with the Perlbug database by sending an email request to
488 richard@perl.org or bugmongers@perl.org.
489
490 The main requirement is the willingness to classify, (with the
491 emphasis on closing where possible :), outstanding bugs.  Further
492 explanation can be garnered from the web at http://bugs.perl.org/ , or
493 by asking on the admin mailing list at: bugmongers@perl.org
494
495 For more info on the web see
496
497         http://bugs.perl.org/perlbug.cgi?req=spec
498
499 =over 4
500
501 =item 1 http://bugs.perl.org
502
503 Login via the web, (remove B<admin/> if only browsing), where interested
504 Cc's, tests, patches and change-ids, etc. may be assigned.
505
506         http://bugs.perl.org/admin/index.html
507
508
509 =item 2 bugdb@perl.org
510
511 Where the subject line is used for commands:
512
513         To: bugdb@perl.org
514         Subject: -a close bugid1 bugid2 aix install
515
516         To: bugdb@perl.org
517         Subject: -h
518
519
520 =item 3 commands_and_bugdids@bugs.perl.org
521
522 Where the address itself is the source for the commands:
523
524         To: close_bugid1_bugid2_aix@bugs.perl.org
525
526         To: help@bugs.perl.org
527
528
529 =item notes, patches, tests
530
531 For patches and tests, the message body is assigned to the appropriate
532 bugs and forwarded to p5p for their attention.
533
534         To: test_<bugid1>_aix_close@bugs.perl.org
535         Subject: this is a test for the (now closed) aix bug
536
537         Test is the body of the mail
538
539 =back
540
541 =head2 Submitting patches
542
543 Always submit patches to I<perl5-porters@perl.org>.  If you're
544 patching a core module and there's an author listed, send the author a
545 copy (see L<Patching a core module>).  This lets other porters review
546 your patch, which catches a surprising number of errors in patches.
547 Either use the diff program (available in source code form from
548 ftp://ftp.gnu.org/pub/gnu/ , or use Johan Vromans' I<makepatch>
549 (available from I<CPAN/authors/id/JV/>).  Unified diffs are preferred,
550 but context diffs are accepted.  Do not send RCS-style diffs or diffs
551 without context lines.  More information is given in the
552 I<Porting/patching.pod> file in the Perl source distribution.  Please
553 patch against the latest B<development> version (e.g., if you're
554 fixing a bug in the 5.005 track, patch against the latest 5.005_5x
555 version).  Only patches that survive the heat of the development
556 branch get applied to maintenance versions.
557
558 Your patch should update the documentation and test suite.  See
559 L<Writing a test>.
560
561 To report a bug in Perl, use the program I<perlbug> which comes with
562 Perl (if you can't get Perl to work, send mail to the address
563 I<perlbug@perl.org> or I<perlbug@perl.com>).  Reporting bugs through
564 I<perlbug> feeds into the automated bug-tracking system, access to
565 which is provided through the web at http://bugs.perl.org/ .  It
566 often pays to check the archives of the perl5-porters mailing list to
567 see whether the bug you're reporting has been reported before, and if
568 so whether it was considered a bug.  See above for the location of
569 the searchable archives.
570
571 The CPAN testers ( http://testers.cpan.org/ ) are a group of
572 volunteers who test CPAN modules on a variety of platforms.  Perl
573 Smokers ( http://archives.develooper.com/daily-build@perl.org/ )
574 automatically tests Perl source releases on platforms with various
575 configurations.  Both efforts welcome volunteers.
576
577 It's a good idea to read and lurk for a while before chipping in.
578 That way you'll get to see the dynamic of the conversations, learn the
579 personalities of the players, and hopefully be better prepared to make
580 a useful contribution when do you speak up.
581
582 If after all this you still think you want to join the perl5-porters
583 mailing list, send mail to I<perl5-porters-subscribe@perl.org>.  To
584 unsubscribe, send mail to I<perl5-porters-unsubscribe@perl.org>.
585
586 To hack on the Perl guts, you'll need to read the following things:
587
588 =over 3
589
590 =item L<perlguts>
591
592 This is of paramount importance, since it's the documentation of what
593 goes where in the Perl source. Read it over a couple of times and it
594 might start to make sense - don't worry if it doesn't yet, because the
595 best way to study it is to read it in conjunction with poking at Perl
596 source, and we'll do that later on.
597
598 You might also want to look at Gisle Aas's illustrated perlguts -
599 there's no guarantee that this will be absolutely up-to-date with the
600 latest documentation in the Perl core, but the fundamentals will be
601 right. ( http://gisle.aas.no/perl/illguts/ )
602
603 =item L<perlxstut> and L<perlxs>
604
605 A working knowledge of XSUB programming is incredibly useful for core
606 hacking; XSUBs use techniques drawn from the PP code, the portion of the
607 guts that actually executes a Perl program. It's a lot gentler to learn
608 those techniques from simple examples and explanation than from the core
609 itself.
610
611 =item L<perlapi>
612
613 The documentation for the Perl API explains what some of the internal
614 functions do, as well as the many macros used in the source.
615
616 =item F<Porting/pumpkin.pod>
617
618 This is a collection of words of wisdom for a Perl porter; some of it is
619 only useful to the pumpkin holder, but most of it applies to anyone
620 wanting to go about Perl development.
621
622 =item The perl5-porters FAQ
623
624 This should be available from http://simon-cozens.org/writings/p5p-faq ;
625 alternatively, you can get the FAQ emailed to you by sending mail to
626 C<perl5-porters-faq@perl.org>. It contains hints on reading perl5-porters,
627 information on how perl5-porters works and how Perl development in general
628 works.
629
630 =back
631
632 =head2 Finding Your Way Around
633
634 Perl maintenance can be split into a number of areas, and certain people
635 (pumpkins) will have responsibility for each area. These areas sometimes
636 correspond to files or directories in the source kit. Among the areas are:
637
638 =over 3
639
640 =item Core modules
641
642 Modules shipped as part of the Perl core live in the F<lib/> and F<ext/>
643 subdirectories: F<lib/> is for the pure-Perl modules, and F<ext/>
644 contains the core XS modules.
645
646 =item Tests
647
648 There are tests for nearly all the modules, built-ins and major bits
649 of functionality.  Test files all have a .t suffix.  Module tests live
650 in the F<lib/> and F<ext/> directories next to the module being
651 tested.  Others live in F<t/>.  See L<Writing a test>
652
653 =item Documentation
654
655 Documentation maintenance includes looking after everything in the
656 F<pod/> directory, (as well as contributing new documentation) and
657 the documentation to the modules in core.
658
659 =item Configure
660
661 The configure process is the way we make Perl portable across the
662 myriad of operating systems it supports. Responsibility for the
663 configure, build and installation process, as well as the overall
664 portability of the core code rests with the configure pumpkin - others
665 help out with individual operating systems.
666
667 The files involved are the operating system directories, (F<win32/>,
668 F<os2/>, F<vms/> and so on) the shell scripts which generate F<config.h>
669 and F<Makefile>, as well as the metaconfig files which generate
670 F<Configure>. (metaconfig isn't included in the core distribution.)
671
672 =item Interpreter
673
674 And of course, there's the core of the Perl interpreter itself. Let's
675 have a look at that in a little more detail.
676
677 =back
678
679 Before we leave looking at the layout, though, don't forget that
680 F<MANIFEST> contains not only the file names in the Perl distribution,
681 but short descriptions of what's in them, too. For an overview of the
682 important files, try this:
683
684     perl -lne 'print if /^[^\/]+\.[ch]\s+/' MANIFEST
685
686 =head2 Elements of the interpreter
687
688 The work of the interpreter has two main stages: compiling the code
689 into the internal representation, or bytecode, and then executing it.
690 L<perlguts/Compiled code> explains exactly how the compilation stage
691 happens.
692
693 Here is a short breakdown of perl's operation:
694
695 =over 3
696
697 =item Startup
698
699 The action begins in F<perlmain.c>. (or F<miniperlmain.c> for miniperl)
700 This is very high-level code, enough to fit on a single screen, and it
701 resembles the code found in L<perlembed>; most of the real action takes
702 place in F<perl.c>
703
704 First, F<perlmain.c> allocates some memory and constructs a Perl
705 interpreter:
706
707     1 PERL_SYS_INIT3(&argc,&argv,&env);
708     2
709     3 if (!PL_do_undump) {
710     4     my_perl = perl_alloc();
711     5     if (!my_perl)
712     6         exit(1);
713     7     perl_construct(my_perl);
714     8     PL_perl_destruct_level = 0;
715     9 }
716
717 Line 1 is a macro, and its definition is dependent on your operating
718 system. Line 3 references C<PL_do_undump>, a global variable - all
719 global variables in Perl start with C<PL_>. This tells you whether the
720 current running program was created with the C<-u> flag to perl and then
721 F<undump>, which means it's going to be false in any sane context.
722
723 Line 4 calls a function in F<perl.c> to allocate memory for a Perl
724 interpreter. It's quite a simple function, and the guts of it looks like
725 this:
726
727     my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));
728
729 Here you see an example of Perl's system abstraction, which we'll see
730 later: C<PerlMem_malloc> is either your system's C<malloc>, or Perl's
731 own C<malloc> as defined in F<malloc.c> if you selected that option at
732 configure time.
733
734 Next, in line 7, we construct the interpreter; this sets up all the
735 special variables that Perl needs, the stacks, and so on.
736
737 Now we pass Perl the command line options, and tell it to go:
738
739     exitstatus = perl_parse(my_perl, xs_init, argc, argv, (char **)NULL);
740     if (!exitstatus) {
741         exitstatus = perl_run(my_perl);
742     }
743
744
745 C<perl_parse> is actually a wrapper around C<S_parse_body>, as defined
746 in F<perl.c>, which processes the command line options, sets up any
747 statically linked XS modules, opens the program and calls C<yyparse> to
748 parse it.
749
750 =item Parsing
751
752 The aim of this stage is to take the Perl source, and turn it into an op
753 tree. We'll see what one of those looks like later. Strictly speaking,
754 there's three things going on here.
755
756 C<yyparse>, the parser, lives in F<perly.c>, although you're better off
757 reading the original YACC input in F<perly.y>. (Yes, Virginia, there
758 B<is> a YACC grammar for Perl!) The job of the parser is to take your
759 code and `understand' it, splitting it into sentences, deciding which
760 operands go with which operators and so on.
761
762 The parser is nobly assisted by the lexer, which chunks up your input
763 into tokens, and decides what type of thing each token is: a variable
764 name, an operator, a bareword, a subroutine, a core function, and so on.
765 The main point of entry to the lexer is C<yylex>, and that and its
766 associated routines can be found in F<toke.c>. Perl isn't much like
767 other computer languages; it's highly context sensitive at times, it can
768 be tricky to work out what sort of token something is, or where a token
769 ends. As such, there's a lot of interplay between the tokeniser and the
770 parser, which can get pretty frightening if you're not used to it.
771
772 As the parser understands a Perl program, it builds up a tree of
773 operations for the interpreter to perform during execution. The routines
774 which construct and link together the various operations are to be found
775 in F<op.c>, and will be examined later.
776
777 =item Optimization
778
779 Now the parsing stage is complete, and the finished tree represents
780 the operations that the Perl interpreter needs to perform to execute our
781 program. Next, Perl does a dry run over the tree looking for
782 optimisations: constant expressions such as C<3 + 4> will be computed
783 now, and the optimizer will also see if any multiple operations can be
784 replaced with a single one. For instance, to fetch the variable C<$foo>,
785 instead of grabbing the glob C<*foo> and looking at the scalar
786 component, the optimizer fiddles the op tree to use a function which
787 directly looks up the scalar in question. The main optimizer is C<peep>
788 in F<op.c>, and many ops have their own optimizing functions.
789
790 =item Running
791
792 Now we're finally ready to go: we have compiled Perl byte code, and all
793 that's left to do is run it. The actual execution is done by the
794 C<runops_standard> function in F<run.c>; more specifically, it's done by
795 these three innocent looking lines:
796
797     while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {
798         PERL_ASYNC_CHECK();
799     }
800
801 You may be more comfortable with the Perl version of that:
802
803     PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};
804
805 Well, maybe not. Anyway, each op contains a function pointer, which
806 stipulates the function which will actually carry out the operation.
807 This function will return the next op in the sequence - this allows for
808 things like C<if> which choose the next op dynamically at run time.
809 The C<PERL_ASYNC_CHECK> makes sure that things like signals interrupt
810 execution if required.
811
812 The actual functions called are known as PP code, and they're spread
813 between four files: F<pp_hot.c> contains the `hot' code, which is most
814 often used and highly optimized, F<pp_sys.c> contains all the
815 system-specific functions, F<pp_ctl.c> contains the functions which
816 implement control structures (C<if>, C<while> and the like) and F<pp.c>
817 contains everything else. These are, if you like, the C code for Perl's
818 built-in functions and operators.
819
820 =back
821
822 =head2 Internal Variable Types
823
824 You should by now have had a look at L<perlguts>, which tells you about
825 Perl's internal variable types: SVs, HVs, AVs and the rest. If not, do
826 that now.
827
828 These variables are used not only to represent Perl-space variables, but
829 also any constants in the code, as well as some structures completely
830 internal to Perl. The symbol table, for instance, is an ordinary Perl
831 hash. Your code is represented by an SV as it's read into the parser;
832 any program files you call are opened via ordinary Perl filehandles, and
833 so on.
834
835 The core L<Devel::Peek|Devel::Peek> module lets us examine SVs from a
836 Perl program. Let's see, for instance, how Perl treats the constant
837 C<"hello">.
838
839       % perl -MDevel::Peek -e 'Dump("hello")'
840     1 SV = PV(0xa041450) at 0xa04ecbc
841     2   REFCNT = 1
842     3   FLAGS = (POK,READONLY,pPOK)
843     4   PV = 0xa0484e0 "hello"\0
844     5   CUR = 5
845     6   LEN = 6
846
847 Reading C<Devel::Peek> output takes a bit of practise, so let's go
848 through it line by line.
849
850 Line 1 tells us we're looking at an SV which lives at C<0xa04ecbc> in
851 memory. SVs themselves are very simple structures, but they contain a
852 pointer to a more complex structure. In this case, it's a PV, a
853 structure which holds a string value, at location C<0xa041450>.  Line 2
854 is the reference count; there are no other references to this data, so
855 it's 1.
856
857 Line 3 are the flags for this SV - it's OK to use it as a PV, it's a
858 read-only SV (because it's a constant) and the data is a PV internally.
859 Next we've got the contents of the string, starting at location
860 C<0xa0484e0>.
861
862 Line 5 gives us the current length of the string - note that this does
863 B<not> include the null terminator. Line 6 is not the length of the
864 string, but the length of the currently allocated buffer; as the string
865 grows, Perl automatically extends the available storage via a routine
866 called C<SvGROW>.
867
868 You can get at any of these quantities from C very easily; just add
869 C<Sv> to the name of the field shown in the snippet, and you've got a
870 macro which will return the value: C<SvCUR(sv)> returns the current
871 length of the string, C<SvREFCOUNT(sv)> returns the reference count,
872 C<SvPV(sv, len)> returns the string itself with its length, and so on.
873 More macros to manipulate these properties can be found in L<perlguts>.
874
875 Let's take an example of manipulating a PV, from C<sv_catpvn>, in F<sv.c>
876
877      1  void
878      2  Perl_sv_catpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
879      3  {
880      4      STRLEN tlen;
881      5      char *junk;
882
883      6      junk = SvPV_force(sv, tlen);
884      7      SvGROW(sv, tlen + len + 1);
885      8      if (ptr == junk)
886      9          ptr = SvPVX(sv);
887     10      Move(ptr,SvPVX(sv)+tlen,len,char);
888     11      SvCUR(sv) += len;
889     12      *SvEND(sv) = '\0';
890     13      (void)SvPOK_only_UTF8(sv);          /* validate pointer */
891     14      SvTAINT(sv);
892     15  }
893
894 This is a function which adds a string, C<ptr>, of length C<len> onto
895 the end of the PV stored in C<sv>. The first thing we do in line 6 is
896 make sure that the SV B<has> a valid PV, by calling the C<SvPV_force>
897 macro to force a PV. As a side effect, C<tlen> gets set to the current
898 value of the PV, and the PV itself is returned to C<junk>.
899
900 In line 7, we make sure that the SV will have enough room to accommodate
901 the old string, the new string and the null terminator. If C<LEN> isn't
902 big enough, C<SvGROW> will reallocate space for us.
903
904 Now, if C<junk> is the same as the string we're trying to add, we can
905 grab the string directly from the SV; C<SvPVX> is the address of the PV
906 in the SV.
907
908 Line 10 does the actual catenation: the C<Move> macro moves a chunk of
909 memory around: we move the string C<ptr> to the end of the PV - that's
910 the start of the PV plus its current length. We're moving C<len> bytes
911 of type C<char>. After doing so, we need to tell Perl we've extended the
912 string, by altering C<CUR> to reflect the new length. C<SvEND> is a
913 macro which gives us the end of the string, so that needs to be a
914 C<"\0">.
915
916 Line 13 manipulates the flags; since we've changed the PV, any IV or NV
917 values will no longer be valid: if we have C<$a=10; $a.="6";> we don't
918 want to use the old IV of 10. C<SvPOK_only_utf8> is a special UTF8-aware
919 version of C<SvPOK_only>, a macro which turns off the IOK and NOK flags
920 and turns on POK. The final C<SvTAINT> is a macro which launders tainted
921 data if taint mode is turned on.
922
923 AVs and HVs are more complicated, but SVs are by far the most common
924 variable type being thrown around. Having seen something of how we
925 manipulate these, let's go on and look at how the op tree is
926 constructed.
927
928 =head2 Op Trees
929
930 First, what is the op tree, anyway? The op tree is the parsed
931 representation of your program, as we saw in our section on parsing, and
932 it's the sequence of operations that Perl goes through to execute your
933 program, as we saw in L</Running>.
934
935 An op is a fundamental operation that Perl can perform: all the built-in
936 functions and operators are ops, and there are a series of ops which
937 deal with concepts the interpreter needs internally - entering and
938 leaving a block, ending a statement, fetching a variable, and so on.
939
940 The op tree is connected in two ways: you can imagine that there are two
941 "routes" through it, two orders in which you can traverse the tree.
942 First, parse order reflects how the parser understood the code, and
943 secondly, execution order tells perl what order to perform the
944 operations in.
945
946 The easiest way to examine the op tree is to stop Perl after it has
947 finished parsing, and get it to dump out the tree. This is exactly what
948 the compiler backends L<B::Terse|B::Terse>, L<B::Concise|B::Concise>
949 and L<B::Debug|B::Debug> do.
950
951 Let's have a look at how Perl sees C<$a = $b + $c>:
952
953      % perl -MO=Terse -e '$a=$b+$c'
954      1  LISTOP (0x8179888) leave
955      2      OP (0x81798b0) enter
956      3      COP (0x8179850) nextstate
957      4      BINOP (0x8179828) sassign
958      5          BINOP (0x8179800) add [1]
959      6              UNOP (0x81796e0) null [15]
960      7                  SVOP (0x80fafe0) gvsv  GV (0x80fa4cc) *b
961      8              UNOP (0x81797e0) null [15]
962      9                  SVOP (0x8179700) gvsv  GV (0x80efeb0) *c
963     10          UNOP (0x816b4f0) null [15]
964     11              SVOP (0x816dcf0) gvsv  GV (0x80fa460) *a
965
966 Let's start in the middle, at line 4. This is a BINOP, a binary
967 operator, which is at location C<0x8179828>. The specific operator in
968 question is C<sassign> - scalar assignment - and you can find the code
969 which implements it in the function C<pp_sassign> in F<pp_hot.c>. As a
970 binary operator, it has two children: the add operator, providing the
971 result of C<$b+$c>, is uppermost on line 5, and the left hand side is on
972 line 10.
973
974 Line 10 is the null op: this does exactly nothing. What is that doing
975 there? If you see the null op, it's a sign that something has been
976 optimized away after parsing. As we mentioned in L</Optimization>,
977 the optimization stage sometimes converts two operations into one, for
978 example when fetching a scalar variable. When this happens, instead of
979 rewriting the op tree and cleaning up the dangling pointers, it's easier
980 just to replace the redundant operation with the null op. Originally,
981 the tree would have looked like this:
982
983     10          SVOP (0x816b4f0) rv2sv [15]
984     11              SVOP (0x816dcf0) gv  GV (0x80fa460) *a
985
986 That is, fetch the C<a> entry from the main symbol table, and then look
987 at the scalar component of it: C<gvsv> (C<pp_gvsv> into F<pp_hot.c>)
988 happens to do both these things.
989
990 The right hand side, starting at line 5 is similar to what we've just
991 seen: we have the C<add> op (C<pp_add> also in F<pp_hot.c>) add together
992 two C<gvsv>s.
993
994 Now, what's this about?
995
996      1  LISTOP (0x8179888) leave
997      2      OP (0x81798b0) enter
998      3      COP (0x8179850) nextstate
999
1000 C<enter> and C<leave> are scoping ops, and their job is to perform any
1001 housekeeping every time you enter and leave a block: lexical variables
1002 are tidied up, unreferenced variables are destroyed, and so on. Every
1003 program will have those first three lines: C<leave> is a list, and its
1004 children are all the statements in the block. Statements are delimited
1005 by C<nextstate>, so a block is a collection of C<nextstate> ops, with
1006 the ops to be performed for each statement being the children of
1007 C<nextstate>. C<enter> is a single op which functions as a marker.
1008
1009 That's how Perl parsed the program, from top to bottom:
1010
1011                         Program
1012                            |
1013                        Statement
1014                            |
1015                            =
1016                           / \
1017                          /   \
1018                         $a   +
1019                             / \
1020                           $b   $c
1021
1022 However, it's impossible to B<perform> the operations in this order:
1023 you have to find the values of C<$b> and C<$c> before you add them
1024 together, for instance. So, the other thread that runs through the op
1025 tree is the execution order: each op has a field C<op_next> which points
1026 to the next op to be run, so following these pointers tells us how perl
1027 executes the code. We can traverse the tree in this order using
1028 the C<exec> option to C<B::Terse>:
1029
1030      % perl -MO=Terse,exec -e '$a=$b+$c'
1031      1  OP (0x8179928) enter
1032      2  COP (0x81798c8) nextstate
1033      3  SVOP (0x81796c8) gvsv  GV (0x80fa4d4) *b
1034      4  SVOP (0x8179798) gvsv  GV (0x80efeb0) *c
1035      5  BINOP (0x8179878) add [1]
1036      6  SVOP (0x816dd38) gvsv  GV (0x80fa468) *a
1037      7  BINOP (0x81798a0) sassign
1038      8  LISTOP (0x8179900) leave
1039
1040 This probably makes more sense for a human: enter a block, start a
1041 statement. Get the values of C<$b> and C<$c>, and add them together.
1042 Find C<$a>, and assign one to the other. Then leave.
1043
1044 The way Perl builds up these op trees in the parsing process can be
1045 unravelled by examining F<perly.y>, the YACC grammar. Let's take the
1046 piece we need to construct the tree for C<$a = $b + $c>
1047
1048     1 term    :   term ASSIGNOP term
1049     2                { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }
1050     3         |   term ADDOP term
1051     4                { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }
1052
1053 If you're not used to reading BNF grammars, this is how it works: You're
1054 fed certain things by the tokeniser, which generally end up in upper
1055 case. Here, C<ADDOP>, is provided when the tokeniser sees C<+> in your
1056 code. C<ASSIGNOP> is provided when C<=> is used for assigning. These are
1057 `terminal symbols', because you can't get any simpler than them.
1058
1059 The grammar, lines one and three of the snippet above, tells you how to
1060 build up more complex forms. These complex forms, `non-terminal symbols'
1061 are generally placed in lower case. C<term> here is a non-terminal
1062 symbol, representing a single expression.
1063
1064 The grammar gives you the following rule: you can make the thing on the
1065 left of the colon if you see all the things on the right in sequence.
1066 This is called a "reduction", and the aim of parsing is to completely
1067 reduce the input. There are several different ways you can perform a
1068 reduction, separated by vertical bars: so, C<term> followed by C<=>
1069 followed by C<term> makes a C<term>, and C<term> followed by C<+>
1070 followed by C<term> can also make a C<term>.
1071
1072 So, if you see two terms with an C<=> or C<+>, between them, you can
1073 turn them into a single expression. When you do this, you execute the
1074 code in the block on the next line: if you see C<=>, you'll do the code
1075 in line 2. If you see C<+>, you'll do the code in line 4. It's this code
1076 which contributes to the op tree.
1077
1078             |   term ADDOP term
1079             { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }
1080
1081 What this does is creates a new binary op, and feeds it a number of
1082 variables. The variables refer to the tokens: C<$1> is the first token in
1083 the input, C<$2> the second, and so on - think regular expression
1084 backreferences. C<$$> is the op returned from this reduction. So, we
1085 call C<newBINOP> to create a new binary operator. The first parameter to
1086 C<newBINOP>, a function in F<op.c>, is the op type. It's an addition
1087 operator, so we want the type to be C<ADDOP>. We could specify this
1088 directly, but it's right there as the second token in the input, so we
1089 use C<$2>. The second parameter is the op's flags: 0 means `nothing
1090 special'. Then the things to add: the left and right hand side of our
1091 expression, in scalar context.
1092
1093 =head2 Stacks
1094
1095 When perl executes something like C<addop>, how does it pass on its
1096 results to the next op? The answer is, through the use of stacks. Perl
1097 has a number of stacks to store things it's currently working on, and
1098 we'll look at the three most important ones here.
1099
1100 =over 3
1101
1102 =item Argument stack
1103
1104 Arguments are passed to PP code and returned from PP code using the
1105 argument stack, C<ST>. The typical way to handle arguments is to pop
1106 them off the stack, deal with them how you wish, and then push the result
1107 back onto the stack. This is how, for instance, the cosine operator
1108 works:
1109
1110       NV value;
1111       value = POPn;
1112       value = Perl_cos(value);
1113       XPUSHn(value);
1114
1115 We'll see a more tricky example of this when we consider Perl's macros
1116 below. C<POPn> gives you the NV (floating point value) of the top SV on
1117 the stack: the C<$x> in C<cos($x)>. Then we compute the cosine, and push
1118 the result back as an NV. The C<X> in C<XPUSHn> means that the stack
1119 should be extended if necessary - it can't be necessary here, because we
1120 know there's room for one more item on the stack, since we've just
1121 removed one! The C<XPUSH*> macros at least guarantee safety.
1122
1123 Alternatively, you can fiddle with the stack directly: C<SP> gives you
1124 the first element in your portion of the stack, and C<TOP*> gives you
1125 the top SV/IV/NV/etc. on the stack. So, for instance, to do unary
1126 negation of an integer:
1127
1128      SETi(-TOPi);
1129
1130 Just set the integer value of the top stack entry to its negation.
1131
1132 Argument stack manipulation in the core is exactly the same as it is in
1133 XSUBs - see L<perlxstut>, L<perlxs> and L<perlguts> for a longer
1134 description of the macros used in stack manipulation.
1135
1136 =item Mark stack
1137
1138 I say `your portion of the stack' above because PP code doesn't
1139 necessarily get the whole stack to itself: if your function calls
1140 another function, you'll only want to expose the arguments aimed for the
1141 called function, and not (necessarily) let it get at your own data. The
1142 way we do this is to have a `virtual' bottom-of-stack, exposed to each
1143 function. The mark stack keeps bookmarks to locations in the argument
1144 stack usable by each function. For instance, when dealing with a tied
1145 variable, (internally, something with `P' magic) Perl has to call
1146 methods for accesses to the tied variables. However, we need to separate
1147 the arguments exposed to the method to the argument exposed to the
1148 original function - the store or fetch or whatever it may be. Here's how
1149 the tied C<push> is implemented; see C<av_push> in F<av.c>:
1150
1151      1  PUSHMARK(SP);
1152      2  EXTEND(SP,2);
1153      3  PUSHs(SvTIED_obj((SV*)av, mg));
1154      4  PUSHs(val);
1155      5  PUTBACK;
1156      6  ENTER;
1157      7  call_method("PUSH", G_SCALAR|G_DISCARD);
1158      8  LEAVE;
1159      9  POPSTACK;
1160
1161 The lines which concern the mark stack are the first, fifth and last
1162 lines: they save away, restore and remove the current position of the
1163 argument stack. 
1164
1165 Let's examine the whole implementation, for practice:
1166
1167      1  PUSHMARK(SP);
1168
1169 Push the current state of the stack pointer onto the mark stack. This is
1170 so that when we've finished adding items to the argument stack, Perl
1171 knows how many things we've added recently.
1172
1173      2  EXTEND(SP,2);
1174      3  PUSHs(SvTIED_obj((SV*)av, mg));
1175      4  PUSHs(val);
1176
1177 We're going to add two more items onto the argument stack: when you have
1178 a tied array, the C<PUSH> subroutine receives the object and the value
1179 to be pushed, and that's exactly what we have here - the tied object,
1180 retrieved with C<SvTIED_obj>, and the value, the SV C<val>.
1181
1182      5  PUTBACK;
1183
1184 Next we tell Perl to make the change to the global stack pointer: C<dSP>
1185 only gave us a local copy, not a reference to the global.
1186
1187      6  ENTER;
1188      7  call_method("PUSH", G_SCALAR|G_DISCARD);
1189      8  LEAVE;
1190
1191 C<ENTER> and C<LEAVE> localise a block of code - they make sure that all
1192 variables are tidied up, everything that has been localised gets
1193 its previous value returned, and so on. Think of them as the C<{> and
1194 C<}> of a Perl block.
1195
1196 To actually do the magic method call, we have to call a subroutine in
1197 Perl space: C<call_method> takes care of that, and it's described in
1198 L<perlcall>. We call the C<PUSH> method in scalar context, and we're
1199 going to discard its return value.
1200
1201      9  POPSTACK;
1202
1203 Finally, we remove the value we placed on the mark stack, since we
1204 don't need it any more.
1205
1206 =item Save stack
1207
1208 C doesn't have a concept of local scope, so perl provides one. We've
1209 seen that C<ENTER> and C<LEAVE> are used as scoping braces; the save
1210 stack implements the C equivalent of, for example:
1211
1212     {
1213         local $foo = 42;
1214         ...
1215     }
1216
1217 See L<perlguts/Localising Changes> for how to use the save stack.
1218
1219 =back
1220
1221 =head2 Millions of Macros
1222
1223 One thing you'll notice about the Perl source is that it's full of
1224 macros. Some have called the pervasive use of macros the hardest thing
1225 to understand, others find it adds to clarity. Let's take an example,
1226 the code which implements the addition operator:
1227
1228    1  PP(pp_add)
1229    2  {
1230    3      dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
1231    4      {
1232    5        dPOPTOPnnrl_ul;
1233    6        SETn( left + right );
1234    7        RETURN;
1235    8      }
1236    9  }
1237
1238 Every line here (apart from the braces, of course) contains a macro. The
1239 first line sets up the function declaration as Perl expects for PP code;
1240 line 3 sets up variable declarations for the argument stack and the
1241 target, the return value of the operation. Finally, it tries to see if
1242 the addition operation is overloaded; if so, the appropriate subroutine
1243 is called.
1244
1245 Line 5 is another variable declaration - all variable declarations start
1246 with C<d> - which pops from the top of the argument stack two NVs (hence
1247 C<nn>) and puts them into the variables C<right> and C<left>, hence the
1248 C<rl>. These are the two operands to the addition operator. Next, we
1249 call C<SETn> to set the NV of the return value to the result of adding
1250 the two values. This done, we return - the C<RETURN> macro makes sure
1251 that our return value is properly handled, and we pass the next operator
1252 to run back to the main run loop.
1253
1254 Most of these macros are explained in L<perlapi>, and some of the more
1255 important ones are explained in L<perlxs> as well. Pay special attention
1256 to L<perlguts/Background and PERL_IMPLICIT_CONTEXT> for information on
1257 the C<[pad]THX_?> macros.
1258
1259 =head2 Poking at Perl
1260
1261 To really poke around with Perl, you'll probably want to build Perl for
1262 debugging, like this:
1263
1264     ./Configure -d -D optimize=-g
1265     make
1266
1267 C<-g> is a flag to the C compiler to have it produce debugging
1268 information which will allow us to step through a running program.
1269 F<Configure> will also turn on the C<DEBUGGING> compilation symbol which
1270 enables all the internal debugging code in Perl. There are a whole bunch
1271 of things you can debug with this: L<perlrun> lists them all, and the
1272 best way to find out about them is to play about with them. The most
1273 useful options are probably
1274
1275     l  Context (loop) stack processing
1276     t  Trace execution
1277     o  Method and overloading resolution
1278     c  String/numeric conversions
1279
1280 Some of the functionality of the debugging code can be achieved using XS
1281 modules.
1282
1283     -Dr => use re 'debug'
1284     -Dx => use O 'Debug'
1285
1286 =head2 Using a source-level debugger
1287
1288 If the debugging output of C<-D> doesn't help you, it's time to step
1289 through perl's execution with a source-level debugger.
1290
1291 =over 3
1292
1293 =item *
1294
1295 We'll use C<gdb> for our examples here; the principles will apply to any
1296 debugger, but check the manual of the one you're using.
1297
1298 =back
1299
1300 To fire up the debugger, type
1301
1302     gdb ./perl
1303
1304 You'll want to do that in your Perl source tree so the debugger can read
1305 the source code. You should see the copyright message, followed by the
1306 prompt.
1307
1308     (gdb)
1309
1310 C<help> will get you into the documentation, but here are the most
1311 useful commands:
1312
1313 =over 3
1314
1315 =item run [args]
1316
1317 Run the program with the given arguments.
1318
1319 =item break function_name
1320
1321 =item break source.c:xxx
1322
1323 Tells the debugger that we'll want to pause execution when we reach
1324 either the named function (but see L<perlguts/Internal Functions>!) or the given
1325 line in the named source file.
1326
1327 =item step
1328
1329 Steps through the program a line at a time.
1330
1331 =item next
1332
1333 Steps through the program a line at a time, without descending into
1334 functions.
1335
1336 =item continue
1337
1338 Run until the next breakpoint.
1339
1340 =item finish
1341
1342 Run until the end of the current function, then stop again.
1343
1344 =item 'enter'
1345
1346 Just pressing Enter will do the most recent operation again - it's a
1347 blessing when stepping through miles of source code.
1348
1349 =item print
1350
1351 Execute the given C code and print its results. B<WARNING>: Perl makes
1352 heavy use of macros, and F<gdb> is not aware of macros. You'll have to
1353 substitute them yourself. So, for instance, you can't say
1354
1355     print SvPV_nolen(sv)
1356
1357 but you have to say
1358
1359     print Perl_sv_2pv_nolen(sv)
1360
1361 You may find it helpful to have a "macro dictionary", which you can
1362 produce by saying C<cpp -dM perl.c | sort>. Even then, F<cpp> won't
1363 recursively apply the macros for you. 
1364
1365 =back
1366
1367 =head2 Dumping Perl Data Structures
1368
1369 One way to get around this macro hell is to use the dumping functions in
1370 F<dump.c>; these work a little like an internal
1371 L<Devel::Peek|Devel::Peek>, but they also cover OPs and other structures
1372 that you can't get at from Perl. Let's take an example. We'll use the
1373 C<$a = $b + $c> we used before, but give it a bit of context: 
1374 C<$b = "6XXXX"; $c = 2.3;>. Where's a good place to stop and poke around?
1375
1376 What about C<pp_add>, the function we examined earlier to implement the
1377 C<+> operator:
1378
1379     (gdb) break Perl_pp_add
1380     Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.
1381
1382 Notice we use C<Perl_pp_add> and not C<pp_add> - see L<perlguts/Internal Functions>.
1383 With the breakpoint in place, we can run our program:
1384
1385     (gdb) run -e '$b = "6XXXX"; $c = 2.3; $a = $b + $c'
1386
1387 Lots of junk will go past as gdb reads in the relevant source files and
1388 libraries, and then:
1389
1390     Breakpoint 1, Perl_pp_add () at pp_hot.c:309
1391     309         dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
1392     (gdb) step
1393     311           dPOPTOPnnrl_ul;
1394     (gdb)
1395
1396 We looked at this bit of code before, and we said that C<dPOPTOPnnrl_ul>
1397 arranges for two C<NV>s to be placed into C<left> and C<right> - let's
1398 slightly expand it:
1399
1400     #define dPOPTOPnnrl_ul  NV right = POPn; \
1401                             SV *leftsv = TOPs; \
1402                             NV left = USE_LEFT(leftsv) ? SvNV(leftsv) : 0.0
1403
1404 C<POPn> takes the SV from the top of the stack and obtains its NV either
1405 directly (if C<SvNOK> is set) or by calling the C<sv_2nv> function.
1406 C<TOPs> takes the next SV from the top of the stack - yes, C<POPn> uses
1407 C<TOPs> - but doesn't remove it. We then use C<SvNV> to get the NV from
1408 C<leftsv> in the same way as before - yes, C<POPn> uses C<SvNV>. 
1409
1410 Since we don't have an NV for C<$b>, we'll have to use C<sv_2nv> to
1411 convert it. If we step again, we'll find ourselves there:
1412
1413     Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669
1414     1669        if (!sv)
1415     (gdb)
1416
1417 We can now use C<Perl_sv_dump> to investigate the SV:
1418
1419     SV = PV(0xa057cc0) at 0xa0675d0
1420     REFCNT = 1
1421     FLAGS = (POK,pPOK)
1422     PV = 0xa06a510 "6XXXX"\0
1423     CUR = 5
1424     LEN = 6
1425     $1 = void
1426
1427 We know we're going to get C<6> from this, so let's finish the
1428 subroutine:
1429
1430     (gdb) finish
1431     Run till exit from #0  Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671
1432     0x462669 in Perl_pp_add () at pp_hot.c:311
1433     311           dPOPTOPnnrl_ul;
1434
1435 We can also dump out this op: the current op is always stored in
1436 C<PL_op>, and we can dump it with C<Perl_op_dump>. This'll give us
1437 similar output to L<B::Debug|B::Debug>.
1438
1439     {
1440     13  TYPE = add  ===> 14
1441         TARG = 1
1442         FLAGS = (SCALAR,KIDS)
1443         {
1444             TYPE = null  ===> (12)
1445               (was rv2sv)
1446             FLAGS = (SCALAR,KIDS)
1447             {
1448     11          TYPE = gvsv  ===> 12
1449                 FLAGS = (SCALAR)
1450                 GV = main::b
1451             }
1452         }
1453
1454 # finish this later #
1455
1456 =head2 Patching
1457
1458 All right, we've now had a look at how to navigate the Perl sources and
1459 some things you'll need to know when fiddling with them. Let's now get
1460 on and create a simple patch. Here's something Larry suggested: if a
1461 C<U> is the first active format during a C<pack>, (for example, 
1462 C<pack "U3C8", @stuff>) then the resulting string should be treated as
1463 UTF8 encoded.
1464
1465 How do we prepare to fix this up? First we locate the code in question -
1466 the C<pack> happens at runtime, so it's going to be in one of the F<pp>
1467 files. Sure enough, C<pp_pack> is in F<pp.c>. Since we're going to be
1468 altering this file, let's copy it to F<pp.c~>.
1469
1470 [Well, it was in F<pp.c> when this tutorial was written. It has now been
1471 split off with C<pp_unpack> to its own file, F<pp_pack.c>]
1472
1473 Now let's look over C<pp_pack>: we take a pattern into C<pat>, and then
1474 loop over the pattern, taking each format character in turn into
1475 C<datum_type>. Then for each possible format character, we swallow up
1476 the other arguments in the pattern (a field width, an asterisk, and so
1477 on) and convert the next chunk input into the specified format, adding
1478 it onto the output SV C<cat>.
1479
1480 How do we know if the C<U> is the first format in the C<pat>? Well, if
1481 we have a pointer to the start of C<pat> then, if we see a C<U> we can
1482 test whether we're still at the start of the string. So, here's where
1483 C<pat> is set up:
1484
1485     STRLEN fromlen;
1486     register char *pat = SvPVx(*++MARK, fromlen);
1487     register char *patend = pat + fromlen;
1488     register I32 len;
1489     I32 datumtype;
1490     SV *fromstr;
1491
1492 We'll have another string pointer in there:
1493
1494     STRLEN fromlen;
1495     register char *pat = SvPVx(*++MARK, fromlen);
1496     register char *patend = pat + fromlen;
1497  +  char *patcopy;
1498     register I32 len;
1499     I32 datumtype;
1500     SV *fromstr;
1501
1502 And just before we start the loop, we'll set C<patcopy> to be the start
1503 of C<pat>:
1504
1505     items = SP - MARK;
1506     MARK++;
1507     sv_setpvn(cat, "", 0);
1508  +  patcopy = pat;
1509     while (pat < patend) {
1510
1511 Now if we see a C<U> which was at the start of the string, we turn on
1512 the UTF8 flag for the output SV, C<cat>:
1513
1514  +  if (datumtype == 'U' && pat==patcopy+1)
1515  +      SvUTF8_on(cat);
1516     if (datumtype == '#') {
1517         while (pat < patend && *pat != '\n')
1518             pat++;
1519
1520 Remember that it has to be C<patcopy+1> because the first character of
1521 the string is the C<U> which has been swallowed into C<datumtype!>
1522
1523 Oops, we forgot one thing: what if there are spaces at the start of the
1524 pattern? C<pack("  U*", @stuff)> will have C<U> as the first active
1525 character, even though it's not the first thing in the pattern. In this
1526 case, we have to advance C<patcopy> along with C<pat> when we see spaces:
1527
1528     if (isSPACE(datumtype))
1529         continue;
1530
1531 needs to become
1532
1533     if (isSPACE(datumtype)) {
1534         patcopy++;
1535         continue;
1536     }
1537
1538 OK. That's the C part done. Now we must do two additional things before
1539 this patch is ready to go: we've changed the behaviour of Perl, and so
1540 we must document that change. We must also provide some more regression
1541 tests to make sure our patch works and doesn't create a bug somewhere
1542 else along the line.
1543
1544 The regression tests for each operator live in F<t/op/>, and so we
1545 make a copy of F<t/op/pack.t> to F<t/op/pack.t~>. Now we can add our
1546 tests to the end. First, we'll test that the C<U> does indeed create
1547 Unicode strings.  
1548
1549 t/op/pack.t has a sensible ok() function, but if it didn't we could
1550 use the one from t/test.pl.
1551
1552  require './test.pl';
1553  plan( tests => 159 );
1554
1555 so instead of this:
1556
1557  print 'not ' unless "1.20.300.4000" eq sprintf "%vd", pack("U*",1,20,300,4000);
1558  print "ok $test\n"; $test++;
1559
1560 we can write the more sensible (see L<Test::More> for a full
1561 explanation of is() and other testing functions).
1562
1563  is( "1.20.300.4000", sprintf "%vd", pack("U*",1,20,300,4000), 
1564                                        "U* produces unicode" );
1565
1566 Now we'll test that we got that space-at-the-beginning business right:
1567
1568  is( "1.20.300.4000", sprintf "%vd", pack("  U*",1,20,300,4000),
1569                                        "  with spaces at the beginning" );
1570
1571 And finally we'll test that we don't make Unicode strings if C<U> is B<not>
1572 the first active format:
1573
1574  isnt( v1.20.300.4000, sprintf "%vd", pack("C0U*",1,20,300,4000),
1575                                        "U* not first isn't unicode" );
1576
1577 Mustn't forget to change the number of tests which appears at the top,
1578 or else the automated tester will get confused.  This will either look
1579 like this:
1580
1581  print "1..156\n";
1582
1583 or this:
1584
1585  plan( tests => 156 );
1586
1587 We now compile up Perl, and run it through the test suite. Our new
1588 tests pass, hooray!
1589
1590 Finally, the documentation. The job is never done until the paperwork is
1591 over, so let's describe the change we've just made. The relevant place
1592 is F<pod/perlfunc.pod>; again, we make a copy, and then we'll insert
1593 this text in the description of C<pack>:
1594
1595  =item *
1596
1597  If the pattern begins with a C<U>, the resulting string will be treated
1598  as Unicode-encoded. You can force UTF8 encoding on in a string with an
1599  initial C<U0>, and the bytes that follow will be interpreted as Unicode
1600  characters. If you don't want this to happen, you can begin your pattern
1601  with C<C0> (or anything else) to force Perl not to UTF8 encode your
1602  string, and then follow this with a C<U*> somewhere in your pattern.
1603
1604 All done. Now let's create the patch. F<Porting/patching.pod> tells us
1605 that if we're making major changes, we should copy the entire directory
1606 to somewhere safe before we begin fiddling, and then do
1607
1608     diff -ruN old new > patch
1609
1610 However, we know which files we've changed, and we can simply do this:
1611
1612     diff -u pp.c~             pp.c             >  patch
1613     diff -u t/op/pack.t~      t/op/pack.t      >> patch
1614     diff -u pod/perlfunc.pod~ pod/perlfunc.pod >> patch
1615
1616 We end up with a patch looking a little like this:
1617
1618     --- pp.c~       Fri Jun 02 04:34:10 2000
1619     +++ pp.c        Fri Jun 16 11:37:25 2000
1620     @@ -4375,6 +4375,7 @@
1621          register I32 items;
1622          STRLEN fromlen;
1623          register char *pat = SvPVx(*++MARK, fromlen);
1624     +    char *patcopy;
1625          register char *patend = pat + fromlen;
1626          register I32 len;
1627          I32 datumtype;
1628     @@ -4405,6 +4406,7 @@
1629     ...
1630
1631 And finally, we submit it, with our rationale, to perl5-porters. Job
1632 done!
1633
1634 =head2 Patching a core module
1635
1636 This works just like patching anything else, with an extra
1637 consideration.  Many core modules also live on CPAN.  If this is so,
1638 patch the CPAN version instead of the core and send the patch off to
1639 the module maintainer (with a copy to p5p).  This will help the module
1640 maintainer keep the CPAN version in sync with the core version without
1641 constantly scanning p5p.
1642
1643 =head2 Adding a new function to the core
1644
1645 If, as part of a patch to fix a bug, or just because you have an
1646 especially good idea, you decide to add a new function to the core,
1647 discuss your ideas on p5p well before you start work.  It may be that
1648 someone else has already attempted to do what you are considering and
1649 can give lots of good advice or even provide you with bits of code
1650 that they already started (but never finished).
1651
1652 You have to follow all of the advice given above for patching.  It is
1653 extremely important to test any addition thoroughly and add new tests
1654 to explore all boundary conditions that your new function is expected
1655 to handle.  If your new function is used only by one module (e.g. toke),
1656 then it should probably be named S_your_function (for static); on the
1657 other hand, if you expect it to accessible from other functions in
1658 Perl, you should name it Perl_your_function.  See L<perlguts/Internal Functions>
1659 for more details.
1660
1661 The location of any new code is also an important consideration.  Don't
1662 just create a new top level .c file and put your code there; you would
1663 have to make changes to Configure (so the Makefile is created properly),
1664 as well as possibly lots of include files.  This is strictly pumpking
1665 business.
1666
1667 It is better to add your function to one of the existing top level
1668 source code files, but your choice is complicated by the nature of
1669 the Perl distribution.  Only the files that are marked as compiled
1670 static are located in the perl executable.  Everything else is located
1671 in the shared library (or DLL if you are running under WIN32).  So,
1672 for example, if a function was only used by functions located in
1673 toke.c, then your code can go in toke.c.  If, however, you want to call
1674 the function from universal.c, then you should put your code in another
1675 location, for example util.c.
1676
1677 In addition to writing your c-code, you will need to create an
1678 appropriate entry in embed.pl describing your function, then run
1679 'make regen_headers' to create the entries in the numerous header
1680 files that perl needs to compile correctly.  See L<perlguts/Internal Functions>
1681 for information on the various options that you can set in embed.pl.
1682 You will forget to do this a few (or many) times and you will get
1683 warnings during the compilation phase.  Make sure that you mention
1684 this when you post your patch to P5P; the pumpking needs to know this.
1685
1686 When you write your new code, please be conscious of existing code
1687 conventions used in the perl source files.  See L<perlstyle> for
1688 details.  Although most of the guidelines discussed seem to focus on
1689 Perl code, rather than c, they all apply (except when they don't ;).
1690 See also I<Porting/patching.pod> file in the Perl source distribution
1691 for lots of details about both formatting and submitting patches of
1692 your changes.
1693
1694 Lastly, TEST TEST TEST TEST TEST any code before posting to p5p.
1695 Test on as many platforms as you can find.  Test as many perl
1696 Configure options as you can (e.g. MULTIPLICITY).  If you have
1697 profiling or memory tools, see L<EXTERNAL TOOLS FOR DEBUGGING PERL>
1698 below for how to use them to further test your code.  Remember that
1699 most of the people on P5P are doing this on their own time and
1700 don't have the time to debug your code.
1701
1702 =head2 Writing a test
1703
1704 Every module and built-in function has an associated test file (or
1705 should...).  If you add or change functionality, you have to write a
1706 test.  If you fix a bug, you have to write a test so that bug never
1707 comes back.  If you alter the docs, it would be nice to test what the
1708 new documentation says.
1709
1710 In short, if you submit a patch you probably also have to patch the
1711 tests.
1712
1713 For modules, the test file is right next to the module itself.
1714 F<lib/strict.t> tests F<lib/strict.pm>.  This is a recent innovation,
1715 so there are some snags (and it would be wonderful for you to brush
1716 them out), but it basically works that way.  Everything else lives in
1717 F<t/>.
1718
1719 =over 3
1720
1721 =item F<t/base/>
1722
1723 Testing of the absolute basic functionality of Perl.  Things like
1724 C<if>, basic file reads and writes, simple regexes, etc.  These are
1725 run first in the test suite and if any of them fail, something is
1726 I<really> broken.
1727
1728 =item F<t/cmd/>
1729
1730 These test the basic control structures, C<if/else>, C<while>,
1731 subroutines, etc.
1732
1733 =item F<t/comp/>
1734
1735 Tests basic issues of how Perl parses and compiles itself.
1736
1737 =item F<t/io/>
1738
1739 Tests for built-in IO functions, including command line arguments.
1740
1741 =item F<t/lib/>
1742
1743 The old home for the module tests, you shouldn't put anything new in
1744 here.  There are still some bits and pieces hanging around in here
1745 that need to be moved.  Perhaps you could move them?  Thanks!
1746
1747 =item F<t/op/>
1748
1749 Tests for perl's built in functions that don't fit into any of the
1750 other directories.
1751
1752 =item F<t/pod/>
1753
1754 Tests for POD directives.  There are still some tests for the Pod
1755 modules hanging around in here that need to be moved out into F<lib/>.
1756
1757 =item F<t/run/>
1758
1759 Testing features of how perl actually runs, including exit codes and
1760 handling of PERL* environment variables.
1761
1762 =back
1763
1764 The core uses the same testing style as the rest of Perl, a simple
1765 "ok/not ok" run through Test::Harness, but there are a few special
1766 considerations.
1767
1768 There are three ways to write a test in the core.  Test::More,
1769 t/test.pl and ad hoc C<print $test ? "ok 42\n" : "not ok 42\n">.  The
1770 decision of which to use depends on what part of the test suite you're
1771 working on.  This is a measure to prevent a high-level failure (such
1772 as Config.pm breaking) from causing basic functionality tests to fail.
1773
1774 =over 4 
1775
1776 =item t/base t/comp
1777
1778 Since we don't know if require works, or even subroutines, use ad hoc
1779 tests for these two.  Step carefully to avoid using the feature being
1780 tested.
1781
1782 =item t/cmd t/run t/io t/op
1783
1784 Now that basic require() and subroutines are tested, you can use the
1785 t/test.pl library which emulates the important features of Test::More
1786 while using a minimum of core features.
1787
1788 You can also conditionally use certain libraries like Config, but be
1789 sure to skip the test gracefully if it's not there.
1790
1791 =item t/lib ext lib
1792
1793 Now that the core of Perl is tested, Test::More can be used.  You can
1794 also use the full suite of core modules in the tests.
1795
1796 =back
1797
1798 When you say "make test" Perl uses the F<t/TEST> program to run the
1799 test suite.  All tests are run from the F<t/> directory, B<not> the
1800 directory which contains the test.  This causes some problems with the
1801 tests in F<lib/>, so here's some opportunity for some patching.
1802
1803 You must be triply conscious of cross-platform concerns.  This usually
1804 boils down to using File::Spec and avoiding things like C<fork()> and
1805 C<system()> unless absolutely necessary.
1806
1807 =head2 Special Make Test Targets
1808
1809 There are various special make targets that can be used to test Perl
1810 slightly differently than the standard "test" target.  Not all them
1811 are expected to give a 100% success rate.  Many of them have several
1812 aliases.
1813
1814 =over 4
1815
1816 =item coretest
1817
1818 Run F<perl> on all core tests (F<t/*> and F<lib/[a-z]*> pragma tests).
1819
1820 =item test.deparse
1821
1822 Run all the tests through the B::Deparse.  Not all tests will succeed.
1823
1824 =item minitest
1825
1826 Run F<miniperl> on F<t/base>, F<t/comp>, F<t/cmd>, F<t/run>, F<t/io>,
1827 F<t/op>, and F<t/uni> tests.
1828
1829 =item test.third check.third utest.third ucheck.third
1830
1831 (Only in Tru64)  Run all the tests using the memory leak + naughty
1832 memory access tool "Third Degree".  The log files will be named
1833 F<perl3.log.testname>.
1834
1835 =item test.torture torturetest
1836
1837 Run all the usual tests and some extra tests.  As of Perl 5.8.0 the
1838 only extra tests are Abigail's JAPHs, t/japh/abigail.t.
1839
1840 You can also run the torture test with F<t/harness> by giving
1841 C<-torture> argument to F<t/harness>.
1842
1843 =item utest ucheck test.utf8 check.utf8
1844
1845 Run all the tests with -Mutf8.  Not all tests will succeed.
1846
1847 =back
1848
1849 =head1 EXTERNAL TOOLS FOR DEBUGGING PERL
1850
1851 Sometimes it helps to use external tools while debugging and
1852 testing Perl.  This section tries to guide you through using
1853 some common testing and debugging tools with Perl.  This is
1854 meant as a guide to interfacing these tools with Perl, not
1855 as any kind of guide to the use of the tools themselves.
1856
1857 =head2 Rational Software's Purify
1858
1859 Purify is a commercial tool that is helpful in identifying
1860 memory overruns, wild pointers, memory leaks and other such
1861 badness.  Perl must be compiled in a specific way for
1862 optimal testing with Purify.  Purify is available under
1863 Windows NT, Solaris, HP-UX, SGI, and Siemens Unix.
1864
1865 The only currently known leaks happen when there are
1866 compile-time errors within eval or require.  (Fixing these
1867 is non-trivial, unfortunately, but they must be fixed
1868 eventually.)
1869
1870 =head2 Purify on Unix
1871
1872 On Unix, Purify creates a new Perl binary.  To get the most
1873 benefit out of Purify, you should create the perl to Purify
1874 using:
1875
1876     sh Configure -Accflags=-DPURIFY -Doptimize='-g' \
1877      -Uusemymalloc -Dusemultiplicity
1878
1879 where these arguments mean:
1880
1881 =over 4
1882
1883 =item -Accflags=-DPURIFY
1884
1885 Disables Perl's arena memory allocation functions, as well as
1886 forcing use of memory allocation functions derived from the
1887 system malloc.
1888
1889 =item -Doptimize='-g'
1890
1891 Adds debugging information so that you see the exact source
1892 statements where the problem occurs.  Without this flag, all
1893 you will see is the source filename of where the error occurred.
1894
1895 =item -Uusemymalloc
1896
1897 Disable Perl's malloc so that Purify can more closely monitor
1898 allocations and leaks.  Using Perl's malloc will make Purify
1899 report most leaks in the "potential" leaks category.
1900
1901 =item -Dusemultiplicity
1902
1903 Enabling the multiplicity option allows perl to clean up
1904 thoroughly when the interpreter shuts down, which reduces the
1905 number of bogus leak reports from Purify.
1906
1907 =back
1908
1909 Once you've compiled a perl suitable for Purify'ing, then you
1910 can just:
1911
1912     make pureperl   
1913
1914 which creates a binary named 'pureperl' that has been Purify'ed.
1915 This binary is used in place of the standard 'perl' binary
1916 when you want to debug Perl memory problems.
1917
1918 To minimize the number of memory leak false alarms
1919 (see L</PERL_DESTRUCT_LEVEL>), set environment variable
1920 PERL_DESTRUCT_LEVEL to 2.
1921
1922     setenv PERL_DESTRUCT_LEVEL 2
1923
1924 In Bourne-type shells:
1925
1926     PERL_DESTRUCT_LEVEL=2
1927     export PERL_DESTRUCT_LEVEL
1928
1929 As an example, to show any memory leaks produced during the
1930 standard Perl testset you would create and run the Purify'ed
1931 perl as:
1932
1933     make pureperl
1934     cd t
1935     ../pureperl -I../lib harness 
1936
1937 which would run Perl on test.pl and report any memory problems.
1938
1939 Purify outputs messages in "Viewer" windows by default.  If
1940 you don't have a windowing environment or if you simply
1941 want the Purify output to unobtrusively go to a log file
1942 instead of to the interactive window, use these following
1943 options to output to the log file "perl.log":
1944
1945     setenv PURIFYOPTIONS "-chain-length=25 -windows=no \
1946      -log-file=perl.log -append-logfile=yes"
1947
1948 If you plan to use the "Viewer" windows, then you only need this option:
1949
1950     setenv PURIFYOPTIONS "-chain-length=25"
1951
1952 In Bourne-type shells:
1953
1954     PURIFYOPTIONS="..."
1955     export PURIFYOPTIONS
1956
1957 or if you have the "env" utility:
1958
1959     env PURIFYOPTIONS="..." ../pureperl ...
1960
1961 =head2 Purify on NT
1962
1963 Purify on Windows NT instruments the Perl binary 'perl.exe'
1964 on the fly.  There are several options in the makefile you
1965 should change to get the most use out of Purify:
1966
1967 =over 4
1968
1969 =item DEFINES
1970
1971 You should add -DPURIFY to the DEFINES line so the DEFINES
1972 line looks something like:
1973
1974     DEFINES = -DWIN32 -D_CONSOLE -DNO_STRICT $(CRYPT_FLAG) -DPURIFY=1 
1975
1976 to disable Perl's arena memory allocation functions, as
1977 well as to force use of memory allocation functions derived
1978 from the system malloc.
1979
1980 =item USE_MULTI = define
1981
1982 Enabling the multiplicity option allows perl to clean up
1983 thoroughly when the interpreter shuts down, which reduces the
1984 number of bogus leak reports from Purify.
1985
1986 =item #PERL_MALLOC = define
1987
1988 Disable Perl's malloc so that Purify can more closely monitor
1989 allocations and leaks.  Using Perl's malloc will make Purify
1990 report most leaks in the "potential" leaks category.
1991
1992 =item CFG = Debug
1993
1994 Adds debugging information so that you see the exact source
1995 statements where the problem occurs.  Without this flag, all
1996 you will see is the source filename of where the error occurred.
1997
1998 =back
1999
2000 As an example, to show any memory leaks produced during the
2001 standard Perl testset you would create and run Purify as:
2002
2003     cd win32
2004     make
2005     cd ../t
2006     purify ../perl -I../lib harness 
2007
2008 which would instrument Perl in memory, run Perl on test.pl,
2009 then finally report any memory problems.
2010
2011 B<NOTE>: as of Perl 5.8.0, the ext/Encode/t/Unicode.t takes
2012 extraordinarily long (hours?) to complete under Purify.  It has been
2013 theorized that it would eventually finish, but nobody has so far been
2014 patient enough :-) (This same extreme slowdown has been seen also with
2015 the Third Degree tool, so the said test must be doing something that
2016 is quite unfriendly for memory debuggers.)  It is suggested that you
2017 simply kill away that testing process.
2018
2019 =head2 Compaq's/Digital's/HP's Third Degree
2020
2021 Third Degree is a tool for memory leak detection and memory access checks.
2022 It is one of the many tools in the ATOM toolkit.  The toolkit is only
2023 available on Tru64 (formerly known as Digital UNIX formerly known as
2024 DEC OSF/1).
2025
2026 When building Perl, you must first run Configure with -Doptimize=-g
2027 and -Uusemymalloc flags, after that you can use the make targets
2028 "perl.third" and "test.third".  (What is required is that Perl must be
2029 compiled using the C<-g> flag, you may need to re-Configure.)
2030
2031 The short story is that with "atom" you can instrument the Perl
2032 executable to create a new executable called F<perl.third>.  When the
2033 instrumented executable is run, it creates a log of dubious memory
2034 traffic in file called F<perl.3log>.  See the manual pages of atom and
2035 third for more information.  The most extensive Third Degree
2036 documentation is available in the Compaq "Tru64 UNIX Programmer's
2037 Guide", chapter "Debugging Programs with Third Degree".
2038
2039 The "test.third" leaves a lot of files named F<foo_bar.3log> in the t/
2040 subdirectory.  There is a problem with these files: Third Degree is so
2041 effective that it finds problems also in the system libraries.
2042 Therefore you should used the Porting/thirdclean script to cleanup
2043 the F<*.3log> files.
2044
2045 There are also leaks that for given certain definition of a leak,
2046 aren't.  See L</PERL_DESTRUCT_LEVEL> for more information.
2047
2048 =head2 PERL_DESTRUCT_LEVEL
2049
2050 If you want to run any of the tests yourself manually using the
2051 pureperl or perl.third executables, please note that by default
2052 perl B<does not> explicitly cleanup all the memory it has allocated
2053 (such as global memory arenas) but instead lets the exit() of
2054 the whole program "take care" of such allocations, also known
2055 as "global destruction of objects".
2056
2057 There is a way to tell perl to do complete cleanup: set the
2058 environment variable PERL_DESTRUCT_LEVEL to a non-zero value.
2059 The t/TEST wrapper does set this to 2, and this is what you
2060 need to do too, if you don't want to see the "global leaks":
2061 For example, for "third-degreed" Perl:
2062
2063         env PERL_DESTRUCT_LEVEL=2 ./perl.third -Ilib t/foo/bar.t
2064
2065 (Note: the mod_perl apache module uses also this environment variable
2066 for its own purposes and extended its semantics. Refer to the mod_perl
2067 documentation for more information.)
2068
2069 =head2 Profiling
2070
2071 Depending on your platform there are various of profiling Perl.
2072
2073 There are two commonly used techniques of profiling executables:
2074 I<statistical time-sampling> and I<basic-block counting>.
2075
2076 The first method takes periodically samples of the CPU program
2077 counter, and since the program counter can be correlated with the code
2078 generated for functions, we get a statistical view of in which
2079 functions the program is spending its time.  The caveats are that very
2080 small/fast functions have lower probability of showing up in the
2081 profile, and that periodically interrupting the program (this is
2082 usually done rather frequently, in the scale of milliseconds) imposes
2083 an additional overhead that may skew the results.  The first problem
2084 can be alleviated by running the code for longer (in general this is a
2085 good idea for profiling), the second problem is usually kept in guard
2086 by the profiling tools themselves.
2087
2088 The second method divides up the generated code into I<basic blocks>.
2089 Basic blocks are sections of code that are entered only in the
2090 beginning and exited only at the end.  For example, a conditional jump
2091 starts a basic block.  Basic block profiling usually works by
2092 I<instrumenting> the code by adding I<enter basic block #nnnn>
2093 book-keeping code to the generated code.  During the execution of the
2094 code the basic block counters are then updated appropriately.  The
2095 caveat is that the added extra code can skew the results: again, the
2096 profiling tools usually try to factor their own effects out of the
2097 results.
2098
2099 =head2 Gprof Profiling
2100
2101 gprof is a profiling tool available in many UNIX platforms,
2102 it uses F<statistical time-sampling>.
2103
2104 You can build a profiled version of perl called "perl.gprof" by
2105 invoking the make target "perl.gprof"  (What is required is that Perl
2106 must be compiled using the C<-pg> flag, you may need to re-Configure).
2107 Running the profiled version of Perl will create an output file called
2108 F<gmon.out> is created which contains the profiling data collected
2109 during the execution.
2110
2111 The gprof tool can then display the collected data in various ways.
2112 Usually gprof understands the following options:
2113
2114 =over 4
2115
2116 =item -a
2117
2118 Suppress statically defined functions from the profile.
2119
2120 =item -b
2121
2122 Suppress the verbose descriptions in the profile.
2123
2124 =item -e routine
2125
2126 Exclude the given routine and its descendants from the profile.
2127
2128 =item -f routine
2129
2130 Display only the given routine and its descendants in the profile.
2131
2132 =item -s
2133
2134 Generate a summary file called F<gmon.sum> which then may be given
2135 to subsequent gprof runs to accumulate data over several runs.
2136
2137 =item -z
2138
2139 Display routines that have zero usage.
2140
2141 =back
2142
2143 For more detailed explanation of the available commands and output
2144 formats, see your own local documentation of gprof.
2145
2146 =head2 GCC gcov Profiling
2147
2148 Starting from GCC 3.0 I<basic block profiling> is officially available
2149 for the GNU CC.
2150
2151 You can build a profiled version of perl called F<perl.gcov> by
2152 invoking the make target "perl.gcov" (what is required that Perl must
2153 be compiled using gcc with the flags C<-fprofile-arcs
2154 -ftest-coverage>, you may need to re-Configure).
2155
2156 Running the profiled version of Perl will cause profile output to be
2157 generated.  For each source file an accompanying ".da" file will be
2158 created.
2159
2160 To display the results you use the "gcov" utility (which should
2161 be installed if you have gcc 3.0 or newer installed).  F<gcov> is
2162 run on source code files, like this
2163
2164     gcov sv.c
2165
2166 which will cause F<sv.c.gcov> to be created.  The F<.gcov> files
2167 contain the source code annotated with relative frequencies of
2168 execution indicated by "#" markers.
2169
2170 Useful options of F<gcov> include C<-b> which will summarise the
2171 basic block, branch, and function call coverage, and C<-c> which
2172 instead of relative frequencies will use the actual counts.  For
2173 more information on the use of F<gcov> and basic block profiling
2174 with gcc, see the latest GNU CC manual, as of GCC 3.0 see
2175
2176     http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc.html
2177
2178 and its section titled "8. gcov: a Test Coverage Program"
2179
2180     http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html#SEC132
2181
2182 =head2 Pixie Profiling
2183
2184 Pixie is a profiling tool available on IRIX and Tru64 (aka Digital
2185 UNIX aka DEC OSF/1) platforms.  Pixie does its profiling using
2186 I<basic-block counting>.
2187
2188 You can build a profiled version of perl called F<perl.pixie> by
2189 invoking the make target "perl.pixie" (what is required is that Perl
2190 must be compiled using the C<-g> flag, you may need to re-Configure).
2191
2192 In Tru64 a file called F<perl.Addrs> will also be silently created,
2193 this file contains the addresses of the basic blocks.  Running the
2194 profiled version of Perl will create a new file called "perl.Counts"
2195 which contains the counts for the basic block for that particular
2196 program execution.
2197
2198 To display the results you use the F<prof> utility.  The exact
2199 incantation depends on your operating system, "prof perl.Counts" in
2200 IRIX, and "prof -pixie -all -L. perl" in Tru64.
2201
2202 In IRIX the following prof options are available:
2203
2204 =over 4
2205
2206 =item -h
2207
2208 Reports the most heavily used lines in descending order of use.
2209 Useful for finding the hotspot lines.
2210
2211 =item -l
2212
2213 Groups lines by procedure, with procedures sorted in descending order of use.
2214 Within a procedure, lines are listed in source order.
2215 Useful for finding the hotspots of procedures.
2216
2217 =back
2218
2219 In Tru64 the following options are available:
2220
2221 =over 4
2222
2223 =item -p[rocedures]
2224
2225 Procedures sorted in descending order by the number of cycles executed
2226 in each procedure.  Useful for finding the hotspot procedures.
2227 (This is the default option.)
2228
2229 =item -h[eavy]
2230
2231 Lines sorted in descending order by the number of cycles executed in
2232 each line.  Useful for finding the hotspot lines.
2233
2234 =item -i[nvocations]
2235
2236 The called procedures are sorted in descending order by number of calls
2237 made to the procedures.  Useful for finding the most used procedures.
2238
2239 =item -l[ines]
2240
2241 Grouped by procedure, sorted by cycles executed per procedure.
2242 Useful for finding the hotspots of procedures.
2243
2244 =item -testcoverage
2245
2246 The compiler emitted code for these lines, but the code was unexecuted.
2247
2248 =item -z[ero]
2249
2250 Unexecuted procedures.
2251
2252 =back
2253
2254 For further information, see your system's manual pages for pixie and prof.
2255
2256 =head2 Miscellaneous tricks
2257
2258 =over 4
2259
2260 =item *
2261
2262 Those debugging perl with the DDD frontend over gdb may find the
2263 following useful:
2264
2265 You can extend the data conversion shortcuts menu, so for example you
2266 can display an SV's IV value with one click, without doing any typing.
2267 To do that simply edit ~/.ddd/init file and add after:
2268
2269   ! Display shortcuts.
2270   Ddd*gdbDisplayShortcuts: \
2271   /t ()   // Convert to Bin\n\
2272   /d ()   // Convert to Dec\n\
2273   /x ()   // Convert to Hex\n\
2274   /o ()   // Convert to Oct(\n\
2275
2276 the following two lines:
2277
2278   ((XPV*) (())->sv_any )->xpv_pv  // 2pvx\n\
2279   ((XPVIV*) (())->sv_any )->xiv_iv // 2ivx
2280
2281 so now you can do ivx and pvx lookups or you can plug there the
2282 sv_peek "conversion":
2283
2284   Perl_sv_peek(my_perl, (SV*)()) // sv_peek
2285
2286 (The my_perl is for threaded builds.)
2287 Just remember that every line, but the last one, should end with \n\
2288
2289 Alternatively edit the init file interactively via:
2290 3rd mouse button -> New Display -> Edit Menu
2291
2292 Note: you can define up to 20 conversion shortcuts in the gdb
2293 section.
2294
2295 =item *
2296
2297 If you see in a debugger a memory area mysteriously full of 0xabababab,
2298 you may be seeing the effect of the Poison() macro, see L<perlclib>.
2299
2300 =back
2301
2302 =head2 CONCLUSION
2303
2304 We've had a brief look around the Perl source, an overview of the stages
2305 F<perl> goes through when it's running your code, and how to use a
2306 debugger to poke at the Perl guts. We took a very simple problem and
2307 demonstrated how to solve it fully - with documentation, regression
2308 tests, and finally a patch for submission to p5p.  Finally, we talked
2309 about how to use external tools to debug and test Perl.
2310
2311 I'd now suggest you read over those references again, and then, as soon
2312 as possible, get your hands dirty. The best way to learn is by doing,
2313 so: 
2314
2315 =over 3
2316
2317 =item *
2318
2319 Subscribe to perl5-porters, follow the patches and try and understand
2320 them; don't be afraid to ask if there's a portion you're not clear on -
2321 who knows, you may unearth a bug in the patch...
2322
2323 =item *
2324
2325 Keep up to date with the bleeding edge Perl distributions and get
2326 familiar with the changes. Try and get an idea of what areas people are
2327 working on and the changes they're making.
2328
2329 =item *
2330
2331 Do read the README associated with your operating system, e.g. README.aix
2332 on the IBM AIX OS. Don't hesitate to supply patches to that README if
2333 you find anything missing or changed over a new OS release.
2334
2335 =item *
2336
2337 Find an area of Perl that seems interesting to you, and see if you can
2338 work out how it works. Scan through the source, and step over it in the
2339 debugger. Play, poke, investigate, fiddle! You'll probably get to
2340 understand not just your chosen area but a much wider range of F<perl>'s
2341 activity as well, and probably sooner than you'd think.
2342
2343 =back
2344
2345 =over 3
2346
2347 =item I<The Road goes ever on and on, down from the door where it began.>
2348
2349 =back
2350
2351 If you can do these things, you've started on the long road to Perl porting. 
2352 Thanks for wanting to help make Perl better - and happy hacking!
2353
2354 =head1 AUTHOR
2355
2356 This document was written by Nathan Torkington, and is maintained by
2357 the perl5-porters mailing list.
2358