This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perl5380delta: a messy commit to get things started
[perl5.git] / pp_sort.c
1 /*    pp_sort.c
2  *
3  *    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4  *    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10
11 /*
12  *   ...they shuffled back towards the rear of the line.  'No, not at the
13  *   rear!' the slave-driver shouted.  'Three files up. And stay there...
14  *
15  *     [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16  */
17
18 /* This file contains pp ("push/pop") functions that
19  * execute the opcodes that make up a perl program. A typical pp function
20  * expects to find its arguments on the stack, and usually pushes its
21  * results onto the stack, hence the 'pp' terminology. Each OP structure
22  * contains a pointer to the relevant pp_foo() function.
23  *
24  * This particular file just contains pp_sort(), which is complex
25  * enough to merit its own file! See the other pp*.c files for the rest of
26  * the pp_ functions.
27  */
28
29 #include "EXTERN.h"
30 #define PERL_IN_PP_SORT_C
31 #include "perl.h"
32
33 #ifndef SMALLSORT
34 #define SMALLSORT (200)
35 #endif
36
37 /*
38  * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
39  *
40  * The original code was written in conjunction with BSD Computer Software
41  * Research Group at University of California, Berkeley.
42  *
43  * See also: "Optimistic Sorting and Information Theoretic Complexity"
44  *           Peter McIlroy
45  *           SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
46  *           pp 467-474, Austin, Texas, 25-27 January 1993.
47  *
48  * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
49  *
50  * The code can be distributed under the same terms as Perl itself.
51  *
52  */
53
54
55 typedef char * aptr;            /* pointer for arithmetic on sizes */
56 typedef SV * gptr;              /* pointers in our lists */
57
58 /* Binary merge internal sort, with a few special mods
59 ** for the special perl environment it now finds itself in.
60 **
61 ** Things that were once options have been hotwired
62 ** to values suitable for this use.  In particular, we'll always
63 ** initialize looking for natural runs, we'll always produce stable
64 ** output, and we'll always do Peter McIlroy's binary merge.
65 */
66
67 /* Pointer types for arithmetic and storage and convenience casts */
68
69 #define APTR(P) ((aptr)(P))
70 #define GPTP(P) ((gptr *)(P))
71 #define GPPP(P) ((gptr **)(P))
72
73
74 /* byte offset from pointer P to (larger) pointer Q */
75 #define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
76
77 #define PSIZE sizeof(gptr)
78
79 /* If PSIZE is power of 2, make PSHIFT that power, if that helps */
80
81 #ifdef  PSHIFT
82 #define PNELEM(P, Q)    (BYTEOFF(P,Q) >> (PSHIFT))
83 #define PNBYTE(N)       ((N) << (PSHIFT))
84 #define PINDEX(P, N)    (GPTP(APTR(P) + PNBYTE(N)))
85 #else
86 /* Leave optimization to compiler */
87 #define PNELEM(P, Q)    (GPTP(Q) - GPTP(P))
88 #define PNBYTE(N)       ((N) * (PSIZE))
89 #define PINDEX(P, N)    (GPTP(P) + (N))
90 #endif
91
92 /* Pointer into other corresponding to pointer into this */
93 #define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
94
95 #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
96
97
98 /* Runs are identified by a pointer in the auxiliary list.
99 ** The pointer is at the start of the list,
100 ** and it points to the start of the next list.
101 ** NEXT is used as an lvalue, too.
102 */
103
104 #define NEXT(P)         (*GPPP(P))
105
106
107 /* PTHRESH is the minimum number of pairs with the same sense to justify
108 ** checking for a run and extending it.  Note that PTHRESH counts PAIRS,
109 ** not just elements, so PTHRESH == 8 means a run of 16.
110 */
111
112 #define PTHRESH (8)
113
114 /* RTHRESH is the number of elements in a run that must compare low
115 ** to the low element from the opposing run before we justify
116 ** doing a binary rampup instead of single stepping.
117 ** In random input, N in a row low should only happen with
118 ** probability 2^(1-N), so we can risk that we are dealing
119 ** with orderly input without paying much when we aren't.
120 */
121
122 #define RTHRESH (6)
123
124
125 /*
126 ** Overview of algorithm and variables.
127 ** The array of elements at list1 will be organized into runs of length 2,
128 ** or runs of length >= 2 * PTHRESH.  We only try to form long runs when
129 ** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
130 **
131 ** Unless otherwise specified, pair pointers address the first of two elements.
132 **
133 ** b and b+1 are a pair that compare with sense "sense".
134 ** b is the "bottom" of adjacent pairs that might form a longer run.
135 **
136 ** p2 parallels b in the list2 array, where runs are defined by
137 ** a pointer chain.
138 **
139 ** t represents the "top" of the adjacent pairs that might extend
140 ** the run beginning at b.  Usually, t addresses a pair
141 ** that compares with opposite sense from (b,b+1).
142 ** However, it may also address a singleton element at the end of list1,
143 ** or it may be equal to "last", the first element beyond list1.
144 **
145 ** r addresses the Nth pair following b.  If this would be beyond t,
146 ** we back it off to t.  Only when r is less than t do we consider the
147 ** run long enough to consider checking.
148 **
149 ** q addresses a pair such that the pairs at b through q already form a run.
150 ** Often, q will equal b, indicating we only are sure of the pair itself.
151 ** However, a search on the previous cycle may have revealed a longer run,
152 ** so q may be greater than b.
153 **
154 ** p is used to work back from a candidate r, trying to reach q,
155 ** which would mean b through r would be a run.  If we discover such a run,
156 ** we start q at r and try to push it further towards t.
157 ** If b through r is NOT a run, we detect the wrong order at (p-1,p).
158 ** In any event, after the check (if any), we have two main cases.
159 **
160 ** 1) Short run.  b <= q < p <= r <= t.
161 **      b through q is a run (perhaps trivial)
162 **      q through p are uninteresting pairs
163 **      p through r is a run
164 **
165 ** 2) Long run.  b < r <= q < t.
166 **      b through q is a run (of length >= 2 * PTHRESH)
167 **
168 ** Note that degenerate cases are not only possible, but likely.
169 ** For example, if the pair following b compares with opposite sense,
170 ** then b == q < p == r == t.
171 */
172
173
174 PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
175 dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
176 {
177     I32 sense;
178     gptr *b, *p, *q, *t, *p2;
179     gptr *last, *r;
180     IV runs = 0;
181
182     b = list1;
183     last = PINDEX(b, nmemb);
184     sense = (cmp(aTHX_ *b, *(b+1)) > 0);
185     for (p2 = list2; b < last; ) {
186         /* We just started, or just reversed sense.
187         ** Set t at end of pairs with the prevailing sense.
188         */
189         for (p = b+2, t = p; ++p < last; t = ++p) {
190             if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
191         }
192         q = b;
193         /* Having laid out the playing field, look for long runs */
194         do {
195             p = r = b + (2 * PTHRESH);
196             if (r >= t) p = r = t;      /* too short to care about */
197             else {
198                 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
199                        ((p -= 2) > q)) {}
200                 if (p <= q) {
201                     /* b through r is a (long) run.
202                     ** Extend it as far as possible.
203                     */
204                     p = q = r;
205                     while (((p += 2) < t) &&
206                            ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
207                     r = p = q + 2;      /* no simple pairs, no after-run */
208                 }
209             }
210             if (q > b) {                /* run of greater than 2 at b */
211                 gptr *savep = p;
212
213                 p = q += 2;
214                 /* pick up singleton, if possible */
215                 if ((p == t) &&
216                     ((t + 1) == last) &&
217                     ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
218                     savep = r = p = q = last;
219                 p2 = NEXT(p2) = p2 + (p - b); ++runs;
220                 if (sense)
221                     while (b < --p) {
222                         const gptr c = *b;
223                         *b++ = *p;
224                         *p = c;
225                     }
226                 p = savep;
227             }
228             while (q < p) {             /* simple pairs */
229                 p2 = NEXT(p2) = p2 + 2; ++runs;
230                 if (sense) {
231                     const gptr c = *q++;
232                     *(q-1) = *q;
233                     *q++ = c;
234                 } else q += 2;
235             }
236             if (((b = p) == t) && ((t+1) == last)) {
237                 NEXT(p2) = p2 + 1; ++runs;
238                 b++;
239             }
240             q = r;
241         } while (b < t);
242         sense = !sense;
243     }
244     return runs;
245 }
246
247
248 /* The original merge sort, in use since 5.7, was as fast as, or faster than,
249  * qsort on many platforms, but slower than qsort, conspicuously so,
250  * on others.  The most likely explanation was platform-specific
251  * differences in cache sizes and relative speeds.
252  *
253  * The quicksort divide-and-conquer algorithm guarantees that, as the
254  * problem is subdivided into smaller and smaller parts, the parts
255  * fit into smaller (and faster) caches.  So it doesn't matter how
256  * many levels of cache exist, quicksort will "find" them, and,
257  * as long as smaller is faster, take advantage of them.
258  *
259  * By contrast, consider how the original mergesort algorithm worked.
260  * Suppose we have five runs (each typically of length 2 after dynprep).
261  * 
262  * pass               base                        aux
263  *  0              1 2 3 4 5
264  *  1                                           12 34 5
265  *  2                1234 5
266  *  3                                            12345
267  *  4                 12345
268  *
269  * Adjacent pairs are merged in "grand sweeps" through the input.
270  * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
271  * runs 3 and 4 are merged and the runs from run 5 have been copied.
272  * The only cache that matters is one large enough to hold *all* the input.
273  * On some platforms, this may be many times slower than smaller caches.
274  *
275  * The following pseudo-code uses the same basic merge algorithm,
276  * but in a divide-and-conquer way.
277  *
278  * # merge $runs runs at offset $offset of list $list1 into $list2.
279  * # all unmerged runs ($runs == 1) originate in list $base.
280  * sub mgsort2 {
281  *     my ($offset, $runs, $base, $list1, $list2) = @_;
282  *
283  *     if ($runs == 1) {
284  *         if ($list1 is $base) copy run to $list2
285  *         return offset of end of list (or copy)
286  *     } else {
287  *         $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
288  *         mgsort2($off2, $runs/2, $base, $list2, $list1)
289  *         merge the adjacent runs at $offset of $list1 into $list2
290  *         return the offset of the end of the merged runs
291  *     }
292  * }
293  * mgsort2(0, $runs, $base, $aux, $base);
294  *
295  * For our 5 runs, the tree of calls looks like 
296  *
297  *           5
298  *      3        2
299  *   2     1   1   1
300  * 1   1
301  *
302  * 1   2   3   4   5
303  *
304  * and the corresponding activity looks like
305  *
306  * copy runs 1 and 2 from base to aux
307  * merge runs 1 and 2 from aux to base
308  * (run 3 is where it belongs, no copy needed)
309  * merge runs 12 and 3 from base to aux
310  * (runs 4 and 5 are where they belong, no copy needed)
311  * merge runs 4 and 5 from base to aux
312  * merge runs 123 and 45 from aux to base
313  *
314  * Note that we merge runs 1 and 2 immediately after copying them,
315  * while they are still likely to be in fast cache.  Similarly,
316  * run 3 is merged with run 12 while it still may be lingering in cache.
317  * This implementation should therefore enjoy much of the cache-friendly
318  * behavior that quicksort does.  In addition, it does less copying
319  * than the original mergesort implementation (only runs 1 and 2 are copied)
320  * and the "balancing" of merges is better (merged runs comprise more nearly
321  * equal numbers of original runs).
322  *
323  * The actual cache-friendly implementation will use a pseudo-stack
324  * to avoid recursion, and will unroll processing of runs of length 2,
325  * but it is otherwise similar to the recursive implementation.
326  */
327
328 typedef struct {
329     IV  offset;         /* offset of 1st of 2 runs at this level */
330     IV  runs;           /* how many runs must be combined into 1 */
331 } off_runs;             /* pseudo-stack element */
332
333 PERL_STATIC_FORCE_INLINE void
334 S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
335 {
336     IV i, run, offset;
337     I32 sense, level;
338     gptr *f1, *f2, *t, *b, *p;
339     int iwhich;
340     gptr *aux;
341     gptr *p1;
342     gptr small[SMALLSORT];
343     gptr *which[3];
344     off_runs stack[60], *stackp;
345
346     PERL_UNUSED_ARG(flags);
347     PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
348     if (nmemb <= 1) return;                     /* sorted trivially */
349
350     if (nmemb <= SMALLSORT) aux = small;        /* use stack for aux array */
351     else { Newx(aux,nmemb,gptr); }              /* allocate auxiliary array */
352     level = 0;
353     stackp = stack;
354     stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
355     stackp->offset = offset = 0;
356     which[0] = which[2] = base;
357     which[1] = aux;
358     for (;;) {
359         /* On levels where both runs have be constructed (stackp->runs == 0),
360          * merge them, and note the offset of their end, in case the offset
361          * is needed at the next level up.  Hop up a level, and,
362          * as long as stackp->runs is 0, keep merging.
363          */
364         IV runs = stackp->runs;
365         if (runs == 0) {
366             gptr *list1, *list2;
367             iwhich = level & 1;
368             list1 = which[iwhich];              /* area where runs are now */
369             list2 = which[++iwhich];            /* area for merged runs */
370             do {
371                 gptr *l1, *l2, *tp2;
372                 offset = stackp->offset;
373                 f1 = p1 = list1 + offset;               /* start of first run */
374                 p = tp2 = list2 + offset;       /* where merged run will go */
375                 t = NEXT(p);                    /* where first run ends */
376                 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
377                 t = NEXT(t);                    /* where second runs ends */
378                 l2 = POTHER(t, list2, list1);   /* ... on the other side */
379                 offset = PNELEM(list2, t);
380                 while (f1 < l1 && f2 < l2) {
381                     /* If head 1 is larger than head 2, find ALL the elements
382                     ** in list 2 strictly less than head1, write them all,
383                     ** then head 1.  Then compare the new heads, and repeat,
384                     ** until one or both lists are exhausted.
385                     **
386                     ** In all comparisons (after establishing
387                     ** which head to merge) the item to merge
388                     ** (at pointer q) is the first operand of
389                     ** the comparison.  When we want to know
390                     ** if "q is strictly less than the other",
391                     ** we can't just do
392                     **    cmp(q, other) < 0
393                     ** because stability demands that we treat equality
394                     ** as high when q comes from l2, and as low when
395                     ** q was from l1.  So we ask the question by doing
396                     **    cmp(q, other) <= sense
397                     ** and make sense == 0 when equality should look low,
398                     ** and -1 when equality should look high.
399                     */
400
401                     gptr *q;
402                     if (cmp(aTHX_ *f1, *f2) <= 0) {
403                         q = f2; b = f1; t = l1;
404                         sense = -1;
405                     } else {
406                         q = f1; b = f2; t = l2;
407                         sense = 0;
408                     }
409
410
411                     /* ramp up
412                     **
413                     ** Leave t at something strictly
414                     ** greater than q (or at the end of the list),
415                     ** and b at something strictly less than q.
416                     */
417                     for (i = 1, run = 0 ;;) {
418                         if ((p = PINDEX(b, i)) >= t) {
419                             /* off the end */
420                             if (((p = PINDEX(t, -1)) > b) &&
421                                 (cmp(aTHX_ *q, *p) <= sense))
422                                  t = p;
423                             else b = p;
424                             break;
425                         } else if (cmp(aTHX_ *q, *p) <= sense) {
426                             t = p;
427                             break;
428                         } else b = p;
429                         if (++run >= RTHRESH) i += i;
430                     }
431
432
433                     /* q is known to follow b and must be inserted before t.
434                     ** Increment b, so the range of possibilities is [b,t).
435                     ** Round binary split down, to favor early appearance.
436                     ** Adjust b and t until q belongs just before t.
437                     */
438
439                     b++;
440                     while (b < t) {
441                         p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
442                         if (cmp(aTHX_ *q, *p) <= sense) {
443                             t = p;
444                         } else b = p + 1;
445                     }
446
447
448                     /* Copy all the strictly low elements */
449
450                     if (q == f1) {
451                         FROMTOUPTO(f2, tp2, t);
452                         *tp2++ = *f1++;
453                     } else {
454                         FROMTOUPTO(f1, tp2, t);
455                         *tp2++ = *f2++;
456                     }
457                 }
458
459
460                 /* Run out remaining list */
461                 if (f1 == l1) {
462                        if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
463                 } else              FROMTOUPTO(f1, tp2, l1);
464                 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
465
466                 if (--level == 0) goto done;
467                 --stackp;
468                 t = list1; list1 = list2; list2 = t;    /* swap lists */
469             } while ((runs = stackp->runs) == 0);
470         }
471
472
473         stackp->runs = 0;               /* current run will finish level */
474         /* While there are more than 2 runs remaining,
475          * turn them into exactly 2 runs (at the "other" level),
476          * each made up of approximately half the runs.
477          * Stack the second half for later processing,
478          * and set about producing the first half now.
479          */
480         while (runs > 2) {
481             ++level;
482             ++stackp;
483             stackp->offset = offset;
484             runs -= stackp->runs = runs / 2;
485         }
486         /* We must construct a single run from 1 or 2 runs.
487          * All the original runs are in which[0] == base.
488          * The run we construct must end up in which[level&1].
489          */
490         iwhich = level & 1;
491         if (runs == 1) {
492             /* Constructing a single run from a single run.
493              * If it's where it belongs already, there's nothing to do.
494              * Otherwise, copy it to where it belongs.
495              * A run of 1 is either a singleton at level 0,
496              * or the second half of a split 3.  In neither event
497              * is it necessary to set offset.  It will be set by the merge
498              * that immediately follows.
499              */
500             if (iwhich) {       /* Belongs in aux, currently in base */
501                 f1 = b = PINDEX(base, offset);  /* where list starts */
502                 f2 = PINDEX(aux, offset);       /* where list goes */
503                 t = NEXT(f2);                   /* where list will end */
504                 offset = PNELEM(aux, t);        /* offset thereof */
505                 t = PINDEX(base, offset);       /* where it currently ends */
506                 FROMTOUPTO(f1, f2, t);          /* copy */
507                 NEXT(b) = t;                    /* set up parallel pointer */
508             } else if (level == 0) goto done;   /* single run at level 0 */
509         } else {
510             /* Constructing a single run from two runs.
511              * The merge code at the top will do that.
512              * We need only make sure the two runs are in the "other" array,
513              * so they'll end up in the correct array after the merge.
514              */
515             ++level;
516             ++stackp;
517             stackp->offset = offset;
518             stackp->runs = 0;   /* take care of both runs, trigger merge */
519             if (!iwhich) {      /* Merged runs belong in aux, copy 1st */
520                 f1 = b = PINDEX(base, offset);  /* where first run starts */
521                 f2 = PINDEX(aux, offset);       /* where it will be copied */
522                 t = NEXT(f2);                   /* where first run will end */
523                 offset = PNELEM(aux, t);        /* offset thereof */
524                 p = PINDEX(base, offset);       /* end of first run */
525                 t = NEXT(t);                    /* where second run will end */
526                 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
527                 FROMTOUPTO(f1, f2, t);          /* copy both runs */
528                 NEXT(b) = p;                    /* paralleled pointer for 1st */
529                 NEXT(p) = t;                    /* ... and for second */
530             }
531         }
532     }
533   done:
534     if (aux != small) Safefree(aux);    /* free iff allocated */
535
536     return;
537 }
538
539 /*
540 =for apidoc sortsv_flags
541
542 In-place sort an array of SV pointers with the given comparison routine,
543 with various SORTf_* flag options.
544
545 =cut
546 */
547 void
548 Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
549 {
550     PERL_ARGS_ASSERT_SORTSV_FLAGS;
551
552     sortsv_flags_impl(base, nmemb, cmp, flags);
553 }
554
555 /*
556  * Each of sortsv_* functions contains an inlined copy of
557  * sortsv_flags_impl() with an inlined comparator. Basically, we are
558  * emulating C++ templates by using __attribute__((always_inline)).
559  *
560  * The purpose of that is to avoid the function call overhead inside
561  * the sorting routine, which calls the comparison function multiple
562  * times per sorted item.
563  */
564
565 static void
566 sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
567 {
568     sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
569 }
570
571 static void
572 sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
573 {
574     sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
575 }
576
577 static void
578 sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
579 {
580     sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
581 }
582
583 static void
584 sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
585 {
586     sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
587 }
588
589 static void
590 sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
591 {
592     sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
593 }
594
595 static void
596 sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
597 {
598     sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
599 }
600
601 static void
602 sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
603 {
604     sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
605 }
606
607 static void
608 sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
609 {
610     sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
611 }
612
613 static void
614 sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
615 {
616     sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
617 }
618
619 static void
620 sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
621 {
622     sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
623 }
624
625 static void
626 sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
627 {
628     sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
629 }
630
631 static void
632 sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
633 {
634     sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
635 }
636
637 #ifdef USE_LOCALE_COLLATE
638
639 static void
640 sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
641 {
642     sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
643 }
644
645 static void
646 sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
647 {
648     sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
649 }
650
651 static void
652 sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
653 {
654     sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
655 }
656
657 static void
658 sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
659 {
660     sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
661 }
662
663 #endif
664
665 /*
666
667 =for apidoc sortsv
668
669 In-place sort an array of SV pointers with the given comparison routine.
670
671 Currently this always uses mergesort.  See C<L</sortsv_flags>> for a more
672 flexible routine.
673
674 =cut
675 */
676
677 void
678 Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
679 {
680     PERL_ARGS_ASSERT_SORTSV;
681
682     sortsv_flags(array, nmemb, cmp, 0);
683 }
684
685 #define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
686 #define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
687 #define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
688
689 PP(pp_sort)
690 {
691     dSP; dMARK; dORIGMARK;
692     SV **p1 = ORIGMARK+1, **p2;
693     SSize_t max, i;
694     AV* av = NULL;
695     GV *gv;
696     CV *cv = NULL;
697     U8 gimme = GIMME_V;
698     OP* const nextop = PL_op->op_next;
699     I32 overloading = 0;
700     bool hasargs = FALSE;
701     bool copytmps;
702     I32 is_xsub = 0;
703     const U8 priv = PL_op->op_private;
704     const U8 flags = PL_op->op_flags;
705     U32 sort_flags = 0;
706     I32 all_SIVs = 1, descending = 0;
707
708     if ((priv & OPpSORT_DESCEND) != 0)
709         descending = 1;
710
711     if (gimme != G_LIST) {
712         SP = MARK;
713         EXTEND(SP,1);
714         RETPUSHUNDEF;
715     }
716
717     ENTER;
718     SAVEVPTR(PL_sortcop);
719
720     /* Important flag meanings:
721      *
722      *  OPf_STACKED        sort <function_name> args
723      *
724      * (OPf_STACKED
725      * |OPf_SPECIAL)       sort { <block> } args
726      *
727      *  ----               standard block; e.g. sort { $a <=> $b } args
728      *
729      *
730      *  OPpSORT_NUMERIC    { $a <=> $b } (as opposed to $a cmp $b)
731      *  OPpSORT_INTEGER    ditto in scope of 'use integer'
732      *  OPpSORT_DESCEND    { $b <=> $a }
733      *  OPpSORT_REVERSE    @a= reverse sort ....;
734      *  OPpSORT_INPLACE    @a = sort @a;
735      */
736
737     if (flags & OPf_STACKED) {
738         if (flags & OPf_SPECIAL) {
739             OP *nullop = OpSIBLING(cLISTOP->op_first);  /* pass pushmark */
740             assert(nullop->op_type == OP_NULL);
741             PL_sortcop = nullop->op_next;
742         }
743         else {
744             GV *autogv = NULL;
745             HV *stash;
746             cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
747           check_cv:
748             if (cv && SvPOK(cv)) {
749                 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
750                 if (proto && strEQ(proto, "$$")) {
751                     hasargs = TRUE;
752                 }
753             }
754             if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
755                 is_xsub = 1;
756             }
757             else if (!(cv && CvROOT(cv))) {
758                 if (gv) {
759                     goto autoload;
760                 }
761                 else if (!CvANON(cv) && (gv = CvGV(cv))) {
762                     if (cv != GvCV(gv)) cv = GvCV(gv);
763                   autoload:
764                     if (!autogv && (
765                         autogv = gv_autoload_pvn(
766                             GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
767                             GvNAMEUTF8(gv) ? SVf_UTF8 : 0
768                         )
769                     )) {
770                         cv = GvCVu(autogv);
771                         goto check_cv;
772                     }
773                     else {
774                         SV *tmpstr = sv_newmortal();
775                         gv_efullname3(tmpstr, gv, NULL);
776                         DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
777                             SVfARG(tmpstr));
778                     }
779                 }
780                 else {
781                     DIE(aTHX_ "Undefined subroutine in sort");
782                 }
783             }
784
785             if (is_xsub)
786                 PL_sortcop = (OP*)cv;
787             else
788                 PL_sortcop = CvSTART(cv);
789         }
790     }
791     else {
792         PL_sortcop = NULL;
793     }
794
795     /* optimiser converts "@a = sort @a" to "sort \@a".  In this case,
796      * push (@a) onto stack, then assign result back to @a at the end of
797      * this function */
798     if (priv & OPpSORT_INPLACE) {
799         assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
800         (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
801         av = MUTABLE_AV((*SP));
802         if (SvREADONLY(av))
803             Perl_croak_no_modify();
804         max = AvFILL(av) + 1;
805         MEXTEND(SP, max);
806         if (SvMAGICAL(av)) {
807             for (i=0; i < max; i++) {
808                 SV **svp = av_fetch(av, i, FALSE);
809                 *SP++ = (svp) ? *svp : NULL;
810             }
811         }
812         else {
813             SV **svp = AvARRAY(av);
814             assert(svp || max == 0);
815             for (i = 0; i < max; i++)
816                 *SP++ = *svp++;
817         }
818         SP--;
819         p1 = p2 = SP - (max-1);
820     }
821     else {
822         p2 = MARK+1;
823         max = SP - MARK;
824     }
825
826     /* shuffle stack down, removing optional initial cv (p1!=p2), plus
827      * any nulls; also stringify or converting to integer or number as
828      * required any args */
829     copytmps = cBOOL(PL_sortcop);
830     for (i=max; i > 0 ; i--) {
831         if ((*p1 = *p2++)) {                    /* Weed out nulls. */
832             if (copytmps && SvPADTMP(*p1)) {
833                 *p1 = sv_mortalcopy(*p1);
834             }
835             SvTEMP_off(*p1);
836             if (!PL_sortcop) {
837                 if (priv & OPpSORT_NUMERIC) {
838                     if (priv & OPpSORT_INTEGER) {
839                         if (!SvIOK(*p1))
840                             (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
841                     }
842                     else {
843                         if (!SvNSIOK(*p1))
844                             (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
845                         if (all_SIVs && !SvSIOK(*p1))
846                             all_SIVs = 0;
847                     }
848                 }
849                 else {
850                     if (!SvPOK(*p1))
851                         (void)sv_2pv_flags(*p1, 0,
852                             SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
853                 }
854                 if (SvAMAGIC(*p1))
855                     overloading = 1;
856             }
857             p1++;
858         }
859         else
860             max--;
861     }
862     if (max > 1) {
863         SV **start;
864         if (PL_sortcop) {
865             PERL_CONTEXT *cx;
866             const bool oldcatch = CATCH_GET;
867             I32 old_savestack_ix = PL_savestack_ix;
868
869             SAVEOP();
870
871             CATCH_SET(TRUE);
872             PUSHSTACKi(PERLSI_SORT);
873             if (!hasargs && !is_xsub) {
874                 SAVEGENERICSV(PL_firstgv);
875                 SAVEGENERICSV(PL_secondgv);
876                 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
877                     gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
878                 ));
879                 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
880                     gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
881                 ));
882                 /* make sure the GP isn't removed out from under us for
883                  * the SAVESPTR() */
884                 save_gp(PL_firstgv, 0);
885                 save_gp(PL_secondgv, 0);
886                 /* we don't want modifications localized */
887                 GvINTRO_off(PL_firstgv);
888                 GvINTRO_off(PL_secondgv);
889                 SAVEGENERICSV(GvSV(PL_firstgv));
890                 SvREFCNT_inc(GvSV(PL_firstgv));
891                 SAVEGENERICSV(GvSV(PL_secondgv));
892                 SvREFCNT_inc(GvSV(PL_secondgv));
893             }
894
895             gimme = G_SCALAR;
896             cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
897             if (!(flags & OPf_SPECIAL)) {
898                 cx->cx_type = CXt_SUB|CXp_MULTICALL;
899                 cx_pushsub(cx, cv, NULL, hasargs);
900                 if (!is_xsub) {
901                     PADLIST * const padlist = CvPADLIST(cv);
902
903                     if (++CvDEPTH(cv) >= 2)
904                         pad_push(padlist, CvDEPTH(cv));
905                     PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
906
907                     if (hasargs) {
908                         /* This is mostly copied from pp_entersub */
909                         AV * const av0 = MUTABLE_AV(PAD_SVl(0));
910
911                         cx->blk_sub.savearray = GvAV(PL_defgv);
912                         GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av0));
913                     }
914
915                 }
916             }
917
918             start = p1 - max;
919             Perl_sortsv_flags(aTHX_ start, max,
920                     (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
921                     sort_flags);
922
923             /* Reset cx, in case the context stack has been reallocated. */
924             cx = CX_CUR();
925
926             PL_stack_sp = PL_stack_base + cx->blk_oldsp;
927
928             CX_LEAVE_SCOPE(cx);
929             if (!(flags & OPf_SPECIAL)) {
930                 assert(CxTYPE(cx) == CXt_SUB);
931                 cx_popsub(cx);
932             }
933             else
934                 assert(CxTYPE(cx) == CXt_NULL);
935                 /* there isn't a POPNULL ! */
936
937             cx_popblock(cx);
938             CX_POP(cx);
939             POPSTACK;
940             CATCH_SET(oldcatch);
941         }
942         else {
943             MEXTEND(SP, 20);    /* Can't afford stack realloc on signal. */
944             start = ORIGMARK+1;
945             if (priv & OPpSORT_NUMERIC) {
946                 if ((priv & OPpSORT_INTEGER) || all_SIVs) {
947                     if (overloading)
948                         if (descending)
949                             sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
950                         else
951                             sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
952                     else
953                         if (descending)
954                             sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
955                         else
956                             sortsv_i_ncmp(aTHX_ start, max, sort_flags);
957                 }
958                 else {
959                     if (overloading)
960                         if (descending)
961                             sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
962                         else
963                             sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
964                     else
965                         if (descending)
966                             sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
967                         else
968                             sortsv_ncmp(aTHX_ start, max, sort_flags);
969                 }
970             }
971 #ifdef USE_LOCALE_COLLATE
972             else if(IN_LC_RUNTIME(LC_COLLATE)) {
973                 if (overloading)
974                     if (descending)
975                         sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
976                     else
977                         sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
978                 else
979                     if (descending)
980                         sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
981                     else
982                         sortsv_cmp_locale(aTHX_ start, max, sort_flags);
983             }
984 #endif
985             else {
986                 if (overloading)
987                     if (descending)
988                         sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
989                     else
990                         sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
991                 else
992                     if (descending)
993                         sortsv_cmp_desc(aTHX_ start, max, sort_flags);
994                     else
995                         sortsv_cmp(aTHX_ start, max, sort_flags);
996             }
997         }
998         if ((priv & OPpSORT_REVERSE) != 0) {
999             SV **q = start+max-1;
1000             while (start < q) {
1001                 SV * const tmp = *start;
1002                 *start++ = *q;
1003                 *q-- = tmp;
1004             }
1005         }
1006     }
1007
1008     if (av) {
1009         /* copy back result to the array */
1010         SV** const base = MARK+1;
1011         SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
1012         if (SvMAGICAL(av)) {
1013             for (i = 0; i <= max_minus_one; i++)
1014                 base[i] = newSVsv(base[i]);
1015             av_clear(av);
1016             if (max_minus_one >= 0)
1017                 av_extend(av, max_minus_one);
1018             for (i=0; i <= max_minus_one; i++) {
1019                 SV * const sv = base[i];
1020                 SV ** const didstore = av_store(av, i, sv);
1021                 if (SvSMAGICAL(sv))
1022                     mg_set(sv);
1023                 if (!didstore)
1024                     sv_2mortal(sv);
1025             }
1026         }
1027         else {
1028             /* the elements of av are likely to be the same as the
1029              * (non-refcounted) elements on the stack, just in a different
1030              * order. However, its possible that someone's messed with av
1031              * in the meantime. So bump and unbump the relevant refcounts
1032              * first.
1033              */
1034             for (i = 0; i <= max_minus_one; i++) {
1035                 SV *sv = base[i];
1036                 assert(sv);
1037                 if (SvREFCNT(sv) > 1)
1038                     base[i] = newSVsv(sv);
1039                 else
1040                     SvREFCNT_inc_simple_void_NN(sv);
1041             }
1042             av_clear(av);
1043             if (max_minus_one >= 0) {
1044                 av_extend(av, max_minus_one);
1045                 Copy(base, AvARRAY(av), max, SV*);
1046             }
1047             AvFILLp(av) = max_minus_one;
1048             AvREIFY_off(av);
1049             AvREAL_on(av);
1050         }
1051     }
1052     LEAVE;
1053     PL_stack_sp = ORIGMARK +  max;
1054     return nextop;
1055 }
1056
1057 static I32
1058 S_sortcv(pTHX_ SV *const a, SV *const b)
1059 {
1060     const I32 oldsaveix = PL_savestack_ix;
1061     I32 result;
1062     PMOP * const pm = PL_curpm;
1063     COP * const cop = PL_curcop;
1064     SV *olda, *oldb;
1065  
1066     PERL_ARGS_ASSERT_SORTCV;
1067
1068     olda = GvSV(PL_firstgv);
1069     GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1070     SvREFCNT_dec(olda);
1071     oldb = GvSV(PL_secondgv);
1072     GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1073     SvREFCNT_dec(oldb);
1074     PL_stack_sp = PL_stack_base;
1075     PL_op = PL_sortcop;
1076     CALLRUNOPS(aTHX);
1077     PL_curcop = cop;
1078     /* entry zero of a stack is always PL_sv_undef, which
1079      * simplifies converting a '()' return into undef in scalar context */
1080     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1081     result = SvIV(*PL_stack_sp);
1082
1083     LEAVE_SCOPE(oldsaveix);
1084     PL_curpm = pm;
1085     return result;
1086 }
1087
1088 static I32
1089 S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1090 {
1091     const I32 oldsaveix = PL_savestack_ix;
1092     I32 result;
1093     AV * const av = GvAV(PL_defgv);
1094     PMOP * const pm = PL_curpm;
1095     COP * const cop = PL_curcop;
1096
1097     PERL_ARGS_ASSERT_SORTCV_STACKED;
1098
1099     if (AvREAL(av)) {
1100         av_clear(av);
1101         AvREAL_off(av);
1102         AvREIFY_on(av);
1103     }
1104     if (AvMAX(av) < 1) {
1105         SV **ary = AvALLOC(av);
1106         if (AvARRAY(av) != ary) {
1107             AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1108             AvARRAY(av) = ary;
1109         }
1110         if (AvMAX(av) < 1) {
1111             Renew(ary,2,SV*);
1112             AvMAX(av) = 1;
1113             AvARRAY(av) = ary;
1114             AvALLOC(av) = ary;
1115         }
1116     }
1117     AvFILLp(av) = 1;
1118
1119     AvARRAY(av)[0] = a;
1120     AvARRAY(av)[1] = b;
1121     PL_stack_sp = PL_stack_base;
1122     PL_op = PL_sortcop;
1123     CALLRUNOPS(aTHX);
1124     PL_curcop = cop;
1125     /* entry zero of a stack is always PL_sv_undef, which
1126      * simplifies converting a '()' return into undef in scalar context */
1127     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1128     result = SvIV(*PL_stack_sp);
1129
1130     LEAVE_SCOPE(oldsaveix);
1131     PL_curpm = pm;
1132     return result;
1133 }
1134
1135 static I32
1136 S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1137 {
1138     dSP;
1139     const I32 oldsaveix = PL_savestack_ix;
1140     CV * const cv=MUTABLE_CV(PL_sortcop);
1141     I32 result;
1142     PMOP * const pm = PL_curpm;
1143
1144     PERL_ARGS_ASSERT_SORTCV_XSUB;
1145
1146     SP = PL_stack_base;
1147     PUSHMARK(SP);
1148     EXTEND(SP, 2);
1149     *++SP = a;
1150     *++SP = b;
1151     PUTBACK;
1152     (void)(*CvXSUB(cv))(aTHX_ cv);
1153     /* entry zero of a stack is always PL_sv_undef, which
1154      * simplifies converting a '()' return into undef in scalar context */
1155     assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1156     result = SvIV(*PL_stack_sp);
1157
1158     LEAVE_SCOPE(oldsaveix);
1159     PL_curpm = pm;
1160     return result;
1161 }
1162
1163
1164 PERL_STATIC_FORCE_INLINE I32
1165 S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1166 {
1167     I32 cmp = do_ncmp(a, b);
1168
1169     PERL_ARGS_ASSERT_SV_NCMP;
1170
1171     if (cmp == 2) {
1172         if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1173         return 0;
1174     }
1175
1176     return cmp;
1177 }
1178
1179 PERL_STATIC_FORCE_INLINE I32
1180 S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
1181 {
1182     PERL_ARGS_ASSERT_SV_NCMP_DESC;
1183
1184     return -S_sv_ncmp(aTHX_ a, b);
1185 }
1186
1187 PERL_STATIC_FORCE_INLINE I32
1188 S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1189 {
1190     const IV iv1 = SvIV(a);
1191     const IV iv2 = SvIV(b);
1192
1193     PERL_ARGS_ASSERT_SV_I_NCMP;
1194
1195     return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1196 }
1197
1198 PERL_STATIC_FORCE_INLINE I32
1199 S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1200 {
1201     PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
1202
1203     return -S_sv_i_ncmp(aTHX_ a, b);
1204 }
1205
1206 #define tryCALL_AMAGICbin(left,right,meth) \
1207     (SvAMAGIC(left)||SvAMAGIC(right)) \
1208         ? amagic_call(left, right, meth, 0) \
1209         : NULL;
1210
1211 #define SORT_NORMAL_RETURN_VALUE(val)  (((val) > 0) ? 1 : ((val) ? -1 : 0))
1212
1213 PERL_STATIC_FORCE_INLINE I32
1214 S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1215 {
1216     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1217
1218     PERL_ARGS_ASSERT_AMAGIC_NCMP;
1219
1220     if (tmpsv) {
1221         if (SvIOK(tmpsv)) {
1222             const I32 i = SvIVX(tmpsv);
1223             return SORT_NORMAL_RETURN_VALUE(i);
1224         }
1225         else {
1226             const NV d = SvNV(tmpsv);
1227             return SORT_NORMAL_RETURN_VALUE(d);
1228         }
1229      }
1230      return S_sv_ncmp(aTHX_ a, b);
1231 }
1232
1233 PERL_STATIC_FORCE_INLINE I32
1234 S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
1235 {
1236     PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
1237
1238     return -S_amagic_ncmp(aTHX_ a, b);
1239 }
1240
1241 PERL_STATIC_FORCE_INLINE I32
1242 S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1243 {
1244     SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1245
1246     PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1247
1248     if (tmpsv) {
1249         if (SvIOK(tmpsv)) {
1250             const I32 i = SvIVX(tmpsv);
1251             return SORT_NORMAL_RETURN_VALUE(i);
1252         }
1253         else {
1254             const NV d = SvNV(tmpsv);
1255             return SORT_NORMAL_RETURN_VALUE(d);
1256         }
1257     }
1258     return S_sv_i_ncmp(aTHX_ a, b);
1259 }
1260
1261 PERL_STATIC_FORCE_INLINE I32
1262 S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1263 {
1264     PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
1265
1266     return -S_amagic_i_ncmp(aTHX_ a, b);
1267 }
1268
1269 PERL_STATIC_FORCE_INLINE I32
1270 S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1271 {
1272     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1273
1274     PERL_ARGS_ASSERT_AMAGIC_CMP;
1275
1276     if (tmpsv) {
1277         if (SvIOK(tmpsv)) {
1278             const I32 i = SvIVX(tmpsv);
1279             return SORT_NORMAL_RETURN_VALUE(i);
1280         }
1281         else {
1282             const NV d = SvNV(tmpsv);
1283             return SORT_NORMAL_RETURN_VALUE(d);
1284         }
1285     }
1286     return sv_cmp(str1, str2);
1287 }
1288
1289 PERL_STATIC_FORCE_INLINE I32
1290 S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1291 {
1292     PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
1293
1294     return -S_amagic_cmp(aTHX_ str1, str2);
1295 }
1296
1297 PERL_STATIC_FORCE_INLINE I32
1298 S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1299 {
1300     PERL_ARGS_ASSERT_CMP_DESC;
1301
1302     return -sv_cmp(str1, str2);
1303 }
1304
1305 #ifdef USE_LOCALE_COLLATE
1306
1307 PERL_STATIC_FORCE_INLINE I32
1308 S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
1309 {
1310     SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1311
1312     PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1313
1314     if (tmpsv) {
1315         if (SvIOK(tmpsv)) {
1316             const I32 i = SvIVX(tmpsv);
1317             return SORT_NORMAL_RETURN_VALUE(i);
1318         }
1319         else {
1320             const NV d = SvNV(tmpsv);
1321             return SORT_NORMAL_RETURN_VALUE(d);
1322         }
1323     }
1324     return sv_cmp_locale(str1, str2);
1325 }
1326
1327 PERL_STATIC_FORCE_INLINE I32
1328 S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1329 {
1330     PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
1331
1332     return -S_amagic_cmp_locale(aTHX_ str1, str2);
1333 }
1334
1335 PERL_STATIC_FORCE_INLINE I32
1336 S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1337 {
1338     PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
1339
1340     return -sv_cmp_locale(str1, str2);
1341 }
1342
1343 #endif
1344
1345 /*
1346  * ex: set ts=8 sts=4 sw=4 et:
1347  */