This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
allow evals to see the full lexical scope
[perl5.git] / pod / perlop.pod
1 =head1 NAME
2
3 perlop - Perl operators and precedence
4
5 =head1 SYNOPSIS
6
7 Perl operators have the following associativity and precedence,
8 listed from highest precedence to lowest.  Operators borrowed from
9 C keep the same precedence relationship with each other, even where
10 C's precedence is slightly screwy.  (This makes learning Perl easier
11 for C folks.)  With very few exceptions, these all operate on scalar
12 values only, not array values.
13
14     left        terms and list operators (leftward)
15     left        ->
16     nonassoc    ++ --
17     right       **
18     right       ! ~ \ and unary + and -
19     left        =~ !~
20     left        * / % x
21     left        + - .
22     left        << >>
23     nonassoc    named unary operators
24     nonassoc    < > <= >= lt gt le ge
25     nonassoc    == != <=> eq ne cmp
26     left        &
27     left        | ^
28     left        &&
29     left        || //
30     nonassoc    ..  ...
31     right       ?:
32     right       = += -= *= etc.
33     left        , =>
34     nonassoc    list operators (rightward)
35     right       not
36     left        and
37     left        or xor err
38
39 In the following sections, these operators are covered in precedence order.
40
41 Many operators can be overloaded for objects.  See L<overload>.
42
43 =head1 DESCRIPTION
44
45 =head2 Terms and List Operators (Leftward)
46
47 A TERM has the highest precedence in Perl.  They include variables,
48 quote and quote-like operators, any expression in parentheses,
49 and any function whose arguments are parenthesized.  Actually, there
50 aren't really functions in this sense, just list operators and unary
51 operators behaving as functions because you put parentheses around
52 the arguments.  These are all documented in L<perlfunc>.
53
54 If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
55 is followed by a left parenthesis as the next token, the operator and
56 arguments within parentheses are taken to be of highest precedence,
57 just like a normal function call.
58
59 In the absence of parentheses, the precedence of list operators such as
60 C<print>, C<sort>, or C<chmod> is either very high or very low depending on
61 whether you are looking at the left side or the right side of the operator.
62 For example, in
63
64     @ary = (1, 3, sort 4, 2);
65     print @ary;         # prints 1324
66
67 the commas on the right of the sort are evaluated before the sort,
68 but the commas on the left are evaluated after.  In other words,
69 list operators tend to gobble up all arguments that follow, and
70 then act like a simple TERM with regard to the preceding expression.
71 Be careful with parentheses:
72
73     # These evaluate exit before doing the print:
74     print($foo, exit);  # Obviously not what you want.
75     print $foo, exit;   # Nor is this.
76
77     # These do the print before evaluating exit:
78     (print $foo), exit; # This is what you want.
79     print($foo), exit;  # Or this.
80     print ($foo), exit; # Or even this.
81
82 Also note that
83
84     print ($foo & 255) + 1, "\n";
85
86 probably doesn't do what you expect at first glance.  See
87 L<Named Unary Operators> for more discussion of this.
88
89 Also parsed as terms are the C<do {}> and C<eval {}> constructs, as
90 well as subroutine and method calls, and the anonymous
91 constructors C<[]> and C<{}>.
92
93 See also L<Quote and Quote-like Operators> toward the end of this section,
94 as well as L<"I/O Operators">.
95
96 =head2 The Arrow Operator
97
98 "C<< -> >>" is an infix dereference operator, just as it is in C
99 and C++.  If the right side is either a C<[...]>, C<{...}>, or a
100 C<(...)> subscript, then the left side must be either a hard or
101 symbolic reference to an array, a hash, or a subroutine respectively.
102 (Or technically speaking, a location capable of holding a hard
103 reference, if it's an array or hash reference being used for
104 assignment.)  See L<perlreftut> and L<perlref>.
105
106 Otherwise, the right side is a method name or a simple scalar
107 variable containing either the method name or a subroutine reference,
108 and the left side must be either an object (a blessed reference)
109 or a class name (that is, a package name).  See L<perlobj>.
110
111 =head2 Auto-increment and Auto-decrement
112
113 "++" and "--" work as in C.  That is, if placed before a variable, they
114 increment or decrement the variable before returning the value, and if
115 placed after, increment or decrement the variable after returning the value.
116
117 The auto-increment operator has a little extra builtin magic to it.  If
118 you increment a variable that is numeric, or that has ever been used in
119 a numeric context, you get a normal increment.  If, however, the
120 variable has been used in only string contexts since it was set, and
121 has a value that is not the empty string and matches the pattern
122 C</^[a-zA-Z]*[0-9]*\z/>, the increment is done as a string, preserving each
123 character within its range, with carry:
124
125     print ++($foo = '99');      # prints '100'
126     print ++($foo = 'a0');      # prints 'a1'
127     print ++($foo = 'Az');      # prints 'Ba'
128     print ++($foo = 'zz');      # prints 'aaa'
129
130 The auto-decrement operator is not magical.
131
132 =head2 Exponentiation
133
134 Binary "**" is the exponentiation operator.  It binds even more
135 tightly than unary minus, so -2**4 is -(2**4), not (-2)**4. (This is
136 implemented using C's pow(3) function, which actually works on doubles
137 internally.)
138
139 =head2 Symbolic Unary Operators
140
141 Unary "!" performs logical negation, i.e., "not".  See also C<not> for a lower
142 precedence version of this.
143
144 Unary "-" performs arithmetic negation if the operand is numeric.  If
145 the operand is an identifier, a string consisting of a minus sign
146 concatenated with the identifier is returned.  Otherwise, if the string
147 starts with a plus or minus, a string starting with the opposite sign
148 is returned.  One effect of these rules is that C<-bareword> is equivalent
149 to C<"-bareword">.
150
151 Unary "~" performs bitwise negation, i.e., 1's complement.  For
152 example, C<0666 & ~027> is 0640.  (See also L<Integer Arithmetic> and
153 L<Bitwise String Operators>.)  Note that the width of the result is
154 platform-dependent: ~0 is 32 bits wide on a 32-bit platform, but 64
155 bits wide on a 64-bit platform, so if you are expecting a certain bit
156 width, remember use the & operator to mask off the excess bits.
157
158 Unary "+" has no effect whatsoever, even on strings.  It is useful
159 syntactically for separating a function name from a parenthesized expression
160 that would otherwise be interpreted as the complete list of function
161 arguments.  (See examples above under L<Terms and List Operators (Leftward)>.)
162
163 Unary "\" creates a reference to whatever follows it.  See L<perlreftut>
164 and L<perlref>.  Do not confuse this behavior with the behavior of
165 backslash within a string, although both forms do convey the notion
166 of protecting the next thing from interpolation.
167
168 =head2 Binding Operators
169
170 Binary "=~" binds a scalar expression to a pattern match.  Certain operations
171 search or modify the string $_ by default.  This operator makes that kind
172 of operation work on some other string.  The right argument is a search
173 pattern, substitution, or transliteration.  The left argument is what is
174 supposed to be searched, substituted, or transliterated instead of the default
175 $_.  When used in scalar context, the return value generally indicates the
176 success of the operation.  Behavior in list context depends on the particular
177 operator.  See L</"Regexp Quote-Like Operators"> for details.
178
179 If the right argument is an expression rather than a search pattern,
180 substitution, or transliteration, it is interpreted as a search pattern at run
181 time.  This can be less efficient than an explicit search, because the
182 pattern must be compiled every time the expression is evaluated.
183
184 Binary "!~" is just like "=~" except the return value is negated in
185 the logical sense.
186
187 =head2 Multiplicative Operators
188
189 Binary "*" multiplies two numbers.
190
191 Binary "/" divides two numbers.
192
193 Binary "%" computes the modulus of two numbers.  Given integer
194 operands C<$a> and C<$b>: If C<$b> is positive, then C<$a % $b> is
195 C<$a> minus the largest multiple of C<$b> that is not greater than
196 C<$a>.  If C<$b> is negative, then C<$a % $b> is C<$a> minus the
197 smallest multiple of C<$b> that is not less than C<$a> (i.e. the
198 result will be less than or equal to zero). 
199 Note than when C<use integer> is in scope, "%" gives you direct access
200 to the modulus operator as implemented by your C compiler.  This
201 operator is not as well defined for negative operands, but it will
202 execute faster.
203
204 Binary "x" is the repetition operator.  In scalar context or if the left
205 operand is not enclosed in parentheses, it returns a string consisting
206 of the left operand repeated the number of times specified by the right
207 operand.  In list context, if the left operand is enclosed in
208 parentheses, it repeats the list.
209
210     print '-' x 80;             # print row of dashes
211
212     print "\t" x ($tab/8), ' ' x ($tab%8);      # tab over
213
214     @ones = (1) x 80;           # a list of 80 1's
215     @ones = (5) x @ones;        # set all elements to 5
216
217
218 =head2 Additive Operators
219
220 Binary "+" returns the sum of two numbers.
221
222 Binary "-" returns the difference of two numbers.
223
224 Binary "." concatenates two strings.
225
226 =head2 Shift Operators
227
228 Binary "<<" returns the value of its left argument shifted left by the
229 number of bits specified by the right argument.  Arguments should be
230 integers.  (See also L<Integer Arithmetic>.)
231
232 Binary ">>" returns the value of its left argument shifted right by
233 the number of bits specified by the right argument.  Arguments should
234 be integers.  (See also L<Integer Arithmetic>.)
235
236 Note that both "<<" and ">>" in Perl are implemented directly using
237 "<<" and ">>" in C.  If C<use integer> (see L<Integer Arithmetic>) is
238 in force then signed C integers are used, else unsigned C integers are
239 used.  Either way, the implementation isn't going to generate results
240 larger than the size of the integer type Perl was built with (32 bits
241 or 64 bits).
242
243 The result of overflowing the range of the integers is undefined
244 because it is undefined also in C.  In other words, using 32-bit
245 integers, C<< 1 << 32 >> is undefined.  Shifting by a negative number
246 of bits is also undefined.
247
248 =head2 Named Unary Operators
249
250 The various named unary operators are treated as functions with one
251 argument, with optional parentheses.  These include the filetest
252 operators, like C<-f>, C<-M>, etc.  See L<perlfunc>.
253
254 If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
255 is followed by a left parenthesis as the next token, the operator and
256 arguments within parentheses are taken to be of highest precedence,
257 just like a normal function call.  For example,
258 because named unary operators are higher precedence than ||:
259
260     chdir $foo    || die;       # (chdir $foo) || die
261     chdir($foo)   || die;       # (chdir $foo) || die
262     chdir ($foo)  || die;       # (chdir $foo) || die
263     chdir +($foo) || die;       # (chdir $foo) || die
264
265 but, because * is higher precedence than named operators:
266
267     chdir $foo * 20;    # chdir ($foo * 20)
268     chdir($foo) * 20;   # (chdir $foo) * 20
269     chdir ($foo) * 20;  # (chdir $foo) * 20
270     chdir +($foo) * 20; # chdir ($foo * 20)
271
272     rand 10 * 20;       # rand (10 * 20)
273     rand(10) * 20;      # (rand 10) * 20
274     rand (10) * 20;     # (rand 10) * 20
275     rand +(10) * 20;    # rand (10 * 20)
276
277 See also L<"Terms and List Operators (Leftward)">.
278
279 =head2 Relational Operators
280
281 Binary "<" returns true if the left argument is numerically less than
282 the right argument.
283
284 Binary ">" returns true if the left argument is numerically greater
285 than the right argument.
286
287 Binary "<=" returns true if the left argument is numerically less than
288 or equal to the right argument.
289
290 Binary ">=" returns true if the left argument is numerically greater
291 than or equal to the right argument.
292
293 Binary "lt" returns true if the left argument is stringwise less than
294 the right argument.
295
296 Binary "gt" returns true if the left argument is stringwise greater
297 than the right argument.
298
299 Binary "le" returns true if the left argument is stringwise less than
300 or equal to the right argument.
301
302 Binary "ge" returns true if the left argument is stringwise greater
303 than or equal to the right argument.
304
305 =head2 Equality Operators
306
307 Binary "==" returns true if the left argument is numerically equal to
308 the right argument.
309
310 Binary "!=" returns true if the left argument is numerically not equal
311 to the right argument.
312
313 Binary "<=>" returns -1, 0, or 1 depending on whether the left
314 argument is numerically less than, equal to, or greater than the right
315 argument.  If your platform supports NaNs (not-a-numbers) as numeric
316 values, using them with "<=>" returns undef.  NaN is not "<", "==", ">",
317 "<=" or ">=" anything (even NaN), so those 5 return false. NaN != NaN
318 returns true, as does NaN != anything else. If your platform doesn't
319 support NaNs then NaN is just a string with numeric value 0.
320
321     perl -le '$a = NaN; print "No NaN support here" if $a == $a'
322     perl -le '$a = NaN; print "NaN support here" if $a != $a'
323
324 Binary "eq" returns true if the left argument is stringwise equal to
325 the right argument.
326
327 Binary "ne" returns true if the left argument is stringwise not equal
328 to the right argument.
329
330 Binary "cmp" returns -1, 0, or 1 depending on whether the left
331 argument is stringwise less than, equal to, or greater than the right
332 argument.
333
334 "lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified
335 by the current locale if C<use locale> is in effect.  See L<perllocale>.
336
337 =head2 Bitwise And
338
339 Binary "&" returns its operands ANDed together bit by bit.
340 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
341
342 Note that "&" has lower priority than relational operators, so for example
343 the brackets are essential in a test like
344
345         print "Even\n" if ($x & 1) == 0;
346
347 =head2 Bitwise Or and Exclusive Or
348
349 Binary "|" returns its operands ORed together bit by bit.
350 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
351
352 Binary "^" returns its operands XORed together bit by bit.
353 (See also L<Integer Arithmetic> and L<Bitwise String Operators>.)
354
355 Note that "|" and "^" have lower priority than relational operators, so
356 for example the brackets are essential in a test like
357
358         print "false\n" if (8 | 2) != 10;
359
360 =head2 C-style Logical And
361
362 Binary "&&" performs a short-circuit logical AND operation.  That is,
363 if the left operand is false, the right operand is not even evaluated.
364 Scalar or list context propagates down to the right operand if it
365 is evaluated.
366
367 =head2 C-style Logical Or
368
369 Binary "||" performs a short-circuit logical OR operation.  That is,
370 if the left operand is true, the right operand is not even evaluated.
371 Scalar or list context propagates down to the right operand if it
372 is evaluated.
373
374 =head2 C-style Logical Defined-Or
375
376 Although it has no direct equivalent in C, Perl's C<//> operator is related
377 to its C-style or.  In fact, it's exactly the same as C<||>, except that it 
378 tests the left hand side's definedness instead of its truth.  Thus, C<$a // $b>
379 is similar to C<defined($a) || $b> (except that it returns the value of C<$a> 
380 rather than the value of C<defined($a)>) and is exactly equivalent to 
381 C<defined($a) ? $a : $b>.  This is very useful for providing default values
382 for variables.  If you actually want to test if at least one of C<$a> and C<$b> is
383 defined, use C<defined($a // $b)>.
384
385 The C<||>, C<//> and C<&&> operators differ from C's in that, rather than returning
386 0 or 1, they return the last value evaluated.  Thus, a reasonably portable
387 way to find out the home directory might be:
388
389     $home = $ENV{'HOME'} // $ENV{'LOGDIR'} //
390         (getpwuid($<))[7] // die "You're homeless!\n";
391
392 In particular, this means that you shouldn't use this
393 for selecting between two aggregates for assignment:
394
395     @a = @b || @c;              # this is wrong
396     @a = scalar(@b) || @c;      # really meant this
397     @a = @b ? @b : @c;          # this works fine, though
398
399 As more readable alternatives to C<&&>, C<//> and C<||> when used for
400 control flow, Perl provides C<and>, C<err> and C<or> operators (see below).
401 The short-circuit behavior is identical.  The precedence of "and", "err" 
402 and "or" is much lower, however, so that you can safely use them after a
403 list operator without the need for parentheses:
404
405     unlink "alpha", "beta", "gamma"
406             or gripe(), next LINE;
407
408 With the C-style operators that would have been written like this:
409
410     unlink("alpha", "beta", "gamma")
411             || (gripe(), next LINE);
412
413 Using "or" for assignment is unlikely to do what you want; see below.
414
415 =head2 Range Operators
416
417 Binary ".." is the range operator, which is really two different
418 operators depending on the context.  In list context, it returns an
419 list of values counting (up by ones) from the left value to the right
420 value.  If the left value is greater than the right value then it
421 returns the empty array.  The range operator is useful for writing
422 C<foreach (1..10)> loops and for doing slice operations on arrays. In
423 the current implementation, no temporary array is created when the
424 range operator is used as the expression in C<foreach> loops, but older
425 versions of Perl might burn a lot of memory when you write something
426 like this:
427
428     for (1 .. 1_000_000) {
429         # code
430     }
431
432 The range operator also works on strings, using the magical auto-increment,
433 see below.
434
435 In scalar context, ".." returns a boolean value.  The operator is
436 bistable, like a flip-flop, and emulates the line-range (comma) operator
437 of B<sed>, B<awk>, and various editors.  Each ".." operator maintains its
438 own boolean state.  It is false as long as its left operand is false.
439 Once the left operand is true, the range operator stays true until the
440 right operand is true, I<AFTER> which the range operator becomes false
441 again.  It doesn't become false till the next time the range operator is
442 evaluated.  It can test the right operand and become false on the same
443 evaluation it became true (as in B<awk>), but it still returns true once.
444 If you don't want it to test the right operand till the next
445 evaluation, as in B<sed>, just use three dots ("...") instead of
446 two.  In all other regards, "..." behaves just like ".." does.
447
448 The right operand is not evaluated while the operator is in the
449 "false" state, and the left operand is not evaluated while the
450 operator is in the "true" state.  The precedence is a little lower
451 than || and &&.  The value returned is either the empty string for
452 false, or a sequence number (beginning with 1) for true.  The
453 sequence number is reset for each range encountered.  The final
454 sequence number in a range has the string "E0" appended to it, which
455 doesn't affect its numeric value, but gives you something to search
456 for if you want to exclude the endpoint.  You can exclude the
457 beginning point by waiting for the sequence number to be greater
458 than 1.  If either operand of scalar ".." is a constant expression,
459 that operand is implicitly compared to the C<$.> variable, the
460 current line number.  Examples:
461
462 As a scalar operator:
463
464     if (101 .. 200) { print; }  # print 2nd hundred lines
465     next line if (1 .. /^$/);   # skip header lines
466     s/^/> / if (/^$/ .. eof()); # quote body
467
468     # parse mail messages
469     while (<>) {
470         $in_header =   1  .. /^$/;
471         $in_body   = /^$/ .. eof();
472         # do something based on those
473     } continue {
474         close ARGV if eof;              # reset $. each file
475     }
476
477 As a list operator:
478
479     for (101 .. 200) { print; } # print $_ 100 times
480     @foo = @foo[0 .. $#foo];    # an expensive no-op
481     @foo = @foo[$#foo-4 .. $#foo];      # slice last 5 items
482
483 The range operator (in list context) makes use of the magical
484 auto-increment algorithm if the operands are strings.  You
485 can say
486
487     @alphabet = ('A' .. 'Z');
488
489 to get all normal letters of the English alphabet, or
490
491     $hexdigit = (0 .. 9, 'a' .. 'f')[$num & 15];
492
493 to get a hexadecimal digit, or
494
495     @z2 = ('01' .. '31');  print $z2[$mday];
496
497 to get dates with leading zeros.  If the final value specified is not
498 in the sequence that the magical increment would produce, the sequence
499 goes until the next value would be longer than the final value
500 specified.
501
502 =head2 Conditional Operator
503
504 Ternary "?:" is the conditional operator, just as in C.  It works much
505 like an if-then-else.  If the argument before the ? is true, the
506 argument before the : is returned, otherwise the argument after the :
507 is returned.  For example:
508
509     printf "I have %d dog%s.\n", $n,
510             ($n == 1) ? '' : "s";
511
512 Scalar or list context propagates downward into the 2nd
513 or 3rd argument, whichever is selected.
514
515     $a = $ok ? $b : $c;  # get a scalar
516     @a = $ok ? @b : @c;  # get an array
517     $a = $ok ? @b : @c;  # oops, that's just a count!
518
519 The operator may be assigned to if both the 2nd and 3rd arguments are
520 legal lvalues (meaning that you can assign to them):
521
522     ($a_or_b ? $a : $b) = $c;
523
524 Because this operator produces an assignable result, using assignments
525 without parentheses will get you in trouble.  For example, this:
526
527     $a % 2 ? $a += 10 : $a += 2
528
529 Really means this:
530
531     (($a % 2) ? ($a += 10) : $a) += 2
532
533 Rather than this:
534
535     ($a % 2) ? ($a += 10) : ($a += 2)
536
537 That should probably be written more simply as:
538
539     $a += ($a % 2) ? 10 : 2;
540
541 =head2 Assignment Operators
542
543 "=" is the ordinary assignment operator.
544
545 Assignment operators work as in C.  That is,
546
547     $a += 2;
548
549 is equivalent to
550
551     $a = $a + 2;
552
553 although without duplicating any side effects that dereferencing the lvalue
554 might trigger, such as from tie().  Other assignment operators work similarly.
555 The following are recognized:
556
557     **=    +=    *=    &=    <<=    &&=
558            -=    /=    |=    >>=    ||=
559            .=    %=    ^=
560                  x=
561
562 Although these are grouped by family, they all have the precedence
563 of assignment.
564
565 Unlike in C, the scalar assignment operator produces a valid lvalue.
566 Modifying an assignment is equivalent to doing the assignment and
567 then modifying the variable that was assigned to.  This is useful
568 for modifying a copy of something, like this:
569
570     ($tmp = $global) =~ tr [A-Z] [a-z];
571
572 Likewise,
573
574     ($a += 2) *= 3;
575
576 is equivalent to
577
578     $a += 2;
579     $a *= 3;
580
581 Similarly, a list assignment in list context produces the list of
582 lvalues assigned to, and a list assignment in scalar context returns
583 the number of elements produced by the expression on the right hand
584 side of the assignment.
585
586 =head2 Comma Operator
587
588 Binary "," is the comma operator.  In scalar context it evaluates
589 its left argument, throws that value away, then evaluates its right
590 argument and returns that value.  This is just like C's comma operator.
591
592 In list context, it's just the list argument separator, and inserts
593 both its arguments into the list.
594
595 The => digraph is mostly just a synonym for the comma operator.  It's useful for
596 documenting arguments that come in pairs.  As of release 5.001, it also forces
597 any word to the left of it to be interpreted as a string.
598
599 =head2 List Operators (Rightward)
600
601 On the right side of a list operator, it has very low precedence,
602 such that it controls all comma-separated expressions found there.
603 The only operators with lower precedence are the logical operators
604 "and", "or", and "not", which may be used to evaluate calls to list
605 operators without the need for extra parentheses:
606
607     open HANDLE, "filename"
608         or die "Can't open: $!\n";
609
610 See also discussion of list operators in L<Terms and List Operators (Leftward)>.
611
612 =head2 Logical Not
613
614 Unary "not" returns the logical negation of the expression to its right.
615 It's the equivalent of "!" except for the very low precedence.
616
617 =head2 Logical And
618
619 Binary "and" returns the logical conjunction of the two surrounding
620 expressions.  It's equivalent to && except for the very low
621 precedence.  This means that it short-circuits: i.e., the right
622 expression is evaluated only if the left expression is true.
623
624 =head2 Logical or, Defined or, and Exclusive Or
625
626 Binary "or" returns the logical disjunction of the two surrounding
627 expressions.  It's equivalent to || except for the very low precedence.
628 This makes it useful for control flow
629
630     print FH $data              or die "Can't write to FH: $!";
631
632 This means that it short-circuits: i.e., the right expression is evaluated
633 only if the left expression is false.  Due to its precedence, you should
634 probably avoid using this for assignment, only for control flow.
635
636     $a = $b or $c;              # bug: this is wrong
637     ($a = $b) or $c;            # really means this
638     $a = $b || $c;              # better written this way
639
640 However, when it's a list-context assignment and you're trying to use
641 "||" for control flow, you probably need "or" so that the assignment
642 takes higher precedence.
643
644     @info = stat($file) || die;     # oops, scalar sense of stat!
645     @info = stat($file) or die;     # better, now @info gets its due
646
647 Then again, you could always use parentheses.
648
649 Binary "err" is equivalent to C<//>--it's just like binary "or", except it tests
650 its left argument's definedness instead of its truth.  There are two ways to 
651 remember "err":  either because many functions return C<undef> on an B<err>or,
652 or as a sort of correction:  C<$a=($b err 'default')>
653
654 Binary "xor" returns the exclusive-OR of the two surrounding expressions.
655 It cannot short circuit, of course.
656
657 =head2 C Operators Missing From Perl
658
659 Here is what C has that Perl doesn't:
660
661 =over 8
662
663 =item unary &
664
665 Address-of operator.  (But see the "\" operator for taking a reference.)
666
667 =item unary *
668
669 Dereference-address operator. (Perl's prefix dereferencing
670 operators are typed: $, @, %, and &.)
671
672 =item (TYPE)
673
674 Type-casting operator.
675
676 =back
677
678 =head2 Quote and Quote-like Operators
679
680 While we usually think of quotes as literal values, in Perl they
681 function as operators, providing various kinds of interpolating and
682 pattern matching capabilities.  Perl provides customary quote characters
683 for these behaviors, but also provides a way for you to choose your
684 quote character for any of them.  In the following table, a C<{}> represents
685 any pair of delimiters you choose.  
686
687     Customary  Generic        Meaning        Interpolates
688         ''       q{}          Literal             no
689         ""      qq{}          Literal             yes
690         ``      qx{}          Command             yes*
691                 qw{}         Word list            no
692         //       m{}       Pattern match          yes*
693                 qr{}          Pattern             yes*
694                  s{}{}      Substitution          yes*
695                 tr{}{}    Transliteration         no (but see below)
696         <<EOF                 here-doc            yes*
697
698         * unless the delimiter is ''.
699
700 Non-bracketing delimiters use the same character fore and aft, but the four
701 sorts of brackets (round, angle, square, curly) will all nest, which means
702 that 
703
704         q{foo{bar}baz} 
705
706 is the same as 
707
708         'foo{bar}baz'
709
710 Note, however, that this does not always work for quoting Perl code:
711
712         $s = q{ if($a eq "}") ... }; # WRONG
713
714 is a syntax error. The C<Text::Balanced> module (from CPAN, and
715 starting from Perl 5.8 part of the standard distribution) is able
716 to do this properly.
717
718 There can be whitespace between the operator and the quoting
719 characters, except when C<#> is being used as the quoting character.
720 C<q#foo#> is parsed as the string C<foo>, while C<q #foo#> is the
721 operator C<q> followed by a comment.  Its argument will be taken
722 from the next line.  This allows you to write:
723
724     s {foo}  # Replace foo
725       {bar}  # with bar.
726
727 The following escape sequences are available in constructs that interpolate
728 and in transliterations.
729
730     \t          tab             (HT, TAB)
731     \n          newline         (NL)
732     \r          return          (CR)
733     \f          form feed       (FF)
734     \b          backspace       (BS)
735     \a          alarm (bell)    (BEL)
736     \e          escape          (ESC)
737     \033        octal char      (ESC)
738     \x1b        hex char        (ESC)
739     \x{263a}    wide hex char   (SMILEY)
740     \c[         control char    (ESC)
741     \N{name}    named Unicode character
742
743 The following escape sequences are available in constructs that interpolate
744 but not in transliterations.
745
746     \l          lowercase next char
747     \u          uppercase next char
748     \L          lowercase till \E
749     \U          uppercase till \E
750     \E          end case modification
751     \Q          quote non-word characters till \E
752
753 If C<use locale> is in effect, the case map used by C<\l>, C<\L>,
754 C<\u> and C<\U> is taken from the current locale.  See L<perllocale>.
755 If Unicode (for example, C<\N{}> or wide hex characters of 0x100 or
756 beyond) is being used, the case map used by C<\l>, C<\L>, C<\u> and
757 C<\U> is as defined by Unicode.  For documentation of C<\N{name}>,
758 see L<charnames>.
759
760 All systems use the virtual C<"\n"> to represent a line terminator,
761 called a "newline".  There is no such thing as an unvarying, physical
762 newline character.  It is only an illusion that the operating system,
763 device drivers, C libraries, and Perl all conspire to preserve.  Not all
764 systems read C<"\r"> as ASCII CR and C<"\n"> as ASCII LF.  For example,
765 on a Mac, these are reversed, and on systems without line terminator,
766 printing C<"\n"> may emit no actual data.  In general, use C<"\n"> when
767 you mean a "newline" for your system, but use the literal ASCII when you
768 need an exact character.  For example, most networking protocols expect
769 and prefer a CR+LF (C<"\015\012"> or C<"\cM\cJ">) for line terminators,
770 and although they often accept just C<"\012">, they seldom tolerate just
771 C<"\015">.  If you get in the habit of using C<"\n"> for networking,
772 you may be burned some day.
773
774 For constructs that do interpolate, variables beginning with "C<$>"
775 or "C<@>" are interpolated.  Subscripted variables such as C<$a[3]> or
776 C<< $href->{key}[0] >> are also interpolated, as are array and hash slices.
777 But method calls such as C<< $obj->meth >> are not.
778
779 Interpolating an array or slice interpolates the elements in order,
780 separated by the value of C<$">, so is equivalent to interpolating
781 C<join $", @array>.    "Punctuation" arrays such as C<@+> are only
782 interpolated if the name is enclosed in braces C<@{+}>.
783
784 You cannot include a literal C<$> or C<@> within a C<\Q> sequence. 
785 An unescaped C<$> or C<@> interpolates the corresponding variable, 
786 while escaping will cause the literal string C<\$> to be inserted.
787 You'll need to write something like C<m/\Quser\E\@\Qhost/>. 
788
789 Patterns are subject to an additional level of interpretation as a
790 regular expression.  This is done as a second pass, after variables are
791 interpolated, so that regular expressions may be incorporated into the
792 pattern from the variables.  If this is not what you want, use C<\Q> to
793 interpolate a variable literally.
794
795 Apart from the behavior described above, Perl does not expand
796 multiple levels of interpolation.  In particular, contrary to the
797 expectations of shell programmers, back-quotes do I<NOT> interpolate
798 within double quotes, nor do single quotes impede evaluation of
799 variables when used within double quotes.
800
801 =head2 Regexp Quote-Like Operators
802
803 Here are the quote-like operators that apply to pattern
804 matching and related activities.
805
806 =over 8
807
808 =item ?PATTERN?
809
810 This is just like the C</pattern/> search, except that it matches only
811 once between calls to the reset() operator.  This is a useful
812 optimization when you want to see only the first occurrence of
813 something in each file of a set of files, for instance.  Only C<??>
814 patterns local to the current package are reset.
815
816     while (<>) {
817         if (?^$?) {
818                             # blank line between header and body
819         }
820     } continue {
821         reset if eof;       # clear ?? status for next file
822     }
823
824 This usage is vaguely deprecated, which means it just might possibly
825 be removed in some distant future version of Perl, perhaps somewhere
826 around the year 2168.
827
828 =item m/PATTERN/cgimosx
829
830 =item /PATTERN/cgimosx
831
832 Searches a string for a pattern match, and in scalar context returns
833 true if it succeeds, false if it fails.  If no string is specified
834 via the C<=~> or C<!~> operator, the $_ string is searched.  (The
835 string specified with C<=~> need not be an lvalue--it may be the
836 result of an expression evaluation, but remember the C<=~> binds
837 rather tightly.)  See also L<perlre>.  See L<perllocale> for
838 discussion of additional considerations that apply when C<use locale>
839 is in effect.
840
841 Options are:
842
843     c   Do not reset search position on a failed match when /g is in effect.
844     g   Match globally, i.e., find all occurrences.
845     i   Do case-insensitive pattern matching.
846     m   Treat string as multiple lines.
847     o   Compile pattern only once.
848     s   Treat string as single line.
849     x   Use extended regular expressions.
850
851 If "/" is the delimiter then the initial C<m> is optional.  With the C<m>
852 you can use any pair of non-alphanumeric, non-whitespace characters 
853 as delimiters.  This is particularly useful for matching path names
854 that contain "/", to avoid LTS (leaning toothpick syndrome).  If "?" is
855 the delimiter, then the match-only-once rule of C<?PATTERN?> applies.
856 If "'" is the delimiter, no interpolation is performed on the PATTERN.
857
858 PATTERN may contain variables, which will be interpolated (and the
859 pattern recompiled) every time the pattern search is evaluated, except
860 for when the delimiter is a single quote.  (Note that C<$(>, C<$)>, and
861 C<$|> are not interpolated because they look like end-of-string tests.)
862 If you want such a pattern to be compiled only once, add a C</o> after
863 the trailing delimiter.  This avoids expensive run-time recompilations,
864 and is useful when the value you are interpolating won't change over
865 the life of the script.  However, mentioning C</o> constitutes a promise
866 that you won't change the variables in the pattern.  If you change them,
867 Perl won't even notice.  See also L<"qr/STRING/imosx">.
868
869 If the PATTERN evaluates to the empty string, the last
870 I<successfully> matched regular expression is used instead. In this
871 case, only the C<g> and C<c> flags on the empty pattern is honoured -
872 the other flags are taken from the original pattern. If no match has
873 previously succeeded, this will (silently) act instead as a genuine
874 empty pattern (which will always match).
875
876 Note that it's possible to confuse Perl into thinking C<//> (the empty 
877 regex) is really C<//> (the defined-or operator).  Perl is usually pretty 
878 good about this, but some pathological cases might trigger this, such as 
879 C<$a///> (is that C<($a) / (//)> or C<$a // />?) and C<print $fh //> 
880 (C<print $fh(//> or C<print($fh //>?).  In all of these examples, Perl 
881 will assume you meant defined-or.  If you meant the empty regex, just 
882 use parentheses or spaces to disambiguate, or even prefix the empty 
883 regex with an C<m> (so C<//> becomes C<m//>).
884
885 If the C</g> option is not used, C<m//> in list context returns a
886 list consisting of the subexpressions matched by the parentheses in the
887 pattern, i.e., (C<$1>, C<$2>, C<$3>...).  (Note that here C<$1> etc. are
888 also set, and that this differs from Perl 4's behavior.)  When there are
889 no parentheses in the pattern, the return value is the list C<(1)> for
890 success.  With or without parentheses, an empty list is returned upon
891 failure.
892
893 Examples:
894
895     open(TTY, '/dev/tty');
896     <TTY> =~ /^y/i && foo();    # do foo if desired
897
898     if (/Version: *([0-9.]*)/) { $version = $1; }
899
900     next if m#^/usr/spool/uucp#;
901
902     # poor man's grep
903     $arg = shift;
904     while (<>) {
905         print if /$arg/o;       # compile only once
906     }
907
908     if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))
909
910 This last example splits $foo into the first two words and the
911 remainder of the line, and assigns those three fields to $F1, $F2, and
912 $Etc.  The conditional is true if any variables were assigned, i.e., if
913 the pattern matched.
914
915 The C</g> modifier specifies global pattern matching--that is,
916 matching as many times as possible within the string.  How it behaves
917 depends on the context.  In list context, it returns a list of the
918 substrings matched by any capturing parentheses in the regular
919 expression.  If there are no parentheses, it returns a list of all
920 the matched strings, as if there were parentheses around the whole
921 pattern.
922
923 In scalar context, each execution of C<m//g> finds the next match,
924 returning true if it matches, and false if there is no further match.
925 The position after the last match can be read or set using the pos()
926 function; see L<perlfunc/pos>.   A failed match normally resets the
927 search position to the beginning of the string, but you can avoid that
928 by adding the C</c> modifier (e.g. C<m//gc>).  Modifying the target
929 string also resets the search position.
930
931 You can intermix C<m//g> matches with C<m/\G.../g>, where C<\G> is a
932 zero-width assertion that matches the exact position where the previous
933 C<m//g>, if any, left off.  Without the C</g> modifier, the C<\G> assertion
934 still anchors at pos(), but the match is of course only attempted once.
935 Using C<\G> without C</g> on a target string that has not previously had a
936 C</g> match applied to it is the same as using the C<\A> assertion to match
937 the beginning of the string.  Note also that, currently, C<\G> is only
938 properly supported when anchored at the very beginning of the pattern.
939
940 Examples:
941
942     # list context
943     ($one,$five,$fifteen) = (`uptime` =~ /(\d+\.\d+)/g);
944
945     # scalar context
946     $/ = "";
947     while (defined($paragraph = <>)) {
948         while ($paragraph =~ /[a-z]['")]*[.!?]+['")]*\s/g) {
949             $sentences++;
950         }
951     }
952     print "$sentences\n";
953
954     # using m//gc with \G
955     $_ = "ppooqppqq";
956     while ($i++ < 2) {
957         print "1: '";
958         print $1 while /(o)/gc; print "', pos=", pos, "\n";
959         print "2: '";
960         print $1 if /\G(q)/gc;  print "', pos=", pos, "\n";
961         print "3: '";
962         print $1 while /(p)/gc; print "', pos=", pos, "\n";
963     }
964     print "Final: '$1', pos=",pos,"\n" if /\G(.)/;
965
966 The last example should print:
967
968     1: 'oo', pos=4
969     2: 'q', pos=5
970     3: 'pp', pos=7
971     1: '', pos=7
972     2: 'q', pos=8
973     3: '', pos=8
974     Final: 'q', pos=8
975
976 Notice that the final match matched C<q> instead of C<p>, which a match
977 without the C<\G> anchor would have done. Also note that the final match
978 did not update C<pos> -- C<pos> is only updated on a C</g> match. If the
979 final match did indeed match C<p>, it's a good bet that you're running an
980 older (pre-5.6.0) Perl.
981
982 A useful idiom for C<lex>-like scanners is C</\G.../gc>.  You can
983 combine several regexps like this to process a string part-by-part,
984 doing different actions depending on which regexp matched.  Each
985 regexp tries to match where the previous one leaves off.
986
987  $_ = <<'EOL';
988       $url = new URI::URL "http://www/";   die if $url eq "xXx";
989  EOL
990  LOOP:
991     {
992       print(" digits"),         redo LOOP if /\G\d+\b[,.;]?\s*/gc;
993       print(" lowercase"),      redo LOOP if /\G[a-z]+\b[,.;]?\s*/gc;
994       print(" UPPERCASE"),      redo LOOP if /\G[A-Z]+\b[,.;]?\s*/gc;
995       print(" Capitalized"),    redo LOOP if /\G[A-Z][a-z]+\b[,.;]?\s*/gc;
996       print(" MiXeD"),          redo LOOP if /\G[A-Za-z]+\b[,.;]?\s*/gc;
997       print(" alphanumeric"),   redo LOOP if /\G[A-Za-z0-9]+\b[,.;]?\s*/gc;
998       print(" line-noise"),     redo LOOP if /\G[^A-Za-z0-9]+/gc;
999       print ". That's all!\n";
1000     }
1001
1002 Here is the output (split into several lines):
1003
1004  line-noise lowercase line-noise lowercase UPPERCASE line-noise
1005  UPPERCASE line-noise lowercase line-noise lowercase line-noise
1006  lowercase lowercase line-noise lowercase lowercase line-noise
1007  MiXeD line-noise. That's all!
1008
1009 =item q/STRING/
1010
1011 =item C<'STRING'>
1012
1013 A single-quoted, literal string.  A backslash represents a backslash
1014 unless followed by the delimiter or another backslash, in which case
1015 the delimiter or backslash is interpolated.
1016
1017     $foo = q!I said, "You said, 'She said it.'"!;
1018     $bar = q('This is it.');
1019     $baz = '\n';                # a two-character string
1020
1021 =item qq/STRING/
1022
1023 =item "STRING"
1024
1025 A double-quoted, interpolated string.
1026
1027     $_ .= qq
1028      (*** The previous line contains the naughty word "$1".\n)
1029                 if /\b(tcl|java|python)\b/i;      # :-)
1030     $baz = "\n";                # a one-character string
1031
1032 =item qr/STRING/imosx
1033
1034 This operator quotes (and possibly compiles) its I<STRING> as a regular
1035 expression.  I<STRING> is interpolated the same way as I<PATTERN>
1036 in C<m/PATTERN/>.  If "'" is used as the delimiter, no interpolation
1037 is done.  Returns a Perl value which may be used instead of the
1038 corresponding C</STRING/imosx> expression.
1039
1040 For example,
1041
1042     $rex = qr/my.STRING/is;
1043     s/$rex/foo/;
1044
1045 is equivalent to
1046
1047     s/my.STRING/foo/is;
1048
1049 The result may be used as a subpattern in a match:
1050
1051     $re = qr/$pattern/;
1052     $string =~ /foo${re}bar/;   # can be interpolated in other patterns
1053     $string =~ $re;             # or used standalone
1054     $string =~ /$re/;           # or this way
1055
1056 Since Perl may compile the pattern at the moment of execution of qr()
1057 operator, using qr() may have speed advantages in some situations,
1058 notably if the result of qr() is used standalone:
1059
1060     sub match {
1061         my $patterns = shift;
1062         my @compiled = map qr/$_/i, @$patterns;
1063         grep {
1064             my $success = 0;
1065             foreach my $pat (@compiled) {
1066                 $success = 1, last if /$pat/;
1067             }
1068             $success;
1069         } @_;
1070     }
1071
1072 Precompilation of the pattern into an internal representation at
1073 the moment of qr() avoids a need to recompile the pattern every
1074 time a match C</$pat/> is attempted.  (Perl has many other internal
1075 optimizations, but none would be triggered in the above example if
1076 we did not use qr() operator.)
1077
1078 Options are:
1079
1080     i   Do case-insensitive pattern matching.
1081     m   Treat string as multiple lines.
1082     o   Compile pattern only once.
1083     s   Treat string as single line.
1084     x   Use extended regular expressions.
1085
1086 See L<perlre> for additional information on valid syntax for STRING, and
1087 for a detailed look at the semantics of regular expressions.
1088
1089 =item qx/STRING/
1090
1091 =item `STRING`
1092
1093 A string which is (possibly) interpolated and then executed as a
1094 system command with C</bin/sh> or its equivalent.  Shell wildcards,
1095 pipes, and redirections will be honored.  The collected standard
1096 output of the command is returned; standard error is unaffected.  In
1097 scalar context, it comes back as a single (potentially multi-line)
1098 string, or undef if the command failed.  In list context, returns a
1099 list of lines (however you've defined lines with $/ or
1100 $INPUT_RECORD_SEPARATOR), or an empty list if the command failed.
1101
1102 Because backticks do not affect standard error, use shell file descriptor
1103 syntax (assuming the shell supports this) if you care to address this.
1104 To capture a command's STDERR and STDOUT together:
1105
1106     $output = `cmd 2>&1`;
1107
1108 To capture a command's STDOUT but discard its STDERR:
1109
1110     $output = `cmd 2>/dev/null`;
1111
1112 To capture a command's STDERR but discard its STDOUT (ordering is
1113 important here):
1114
1115     $output = `cmd 2>&1 1>/dev/null`;
1116
1117 To exchange a command's STDOUT and STDERR in order to capture the STDERR
1118 but leave its STDOUT to come out the old STDERR:
1119
1120     $output = `cmd 3>&1 1>&2 2>&3 3>&-`;
1121
1122 To read both a command's STDOUT and its STDERR separately, it's easiest
1123 and safest to redirect them separately to files, and then read from those
1124 files when the program is done:
1125
1126     system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");
1127
1128 Using single-quote as a delimiter protects the command from Perl's
1129 double-quote interpolation, passing it on to the shell instead:
1130
1131     $perl_info  = qx(ps $$);            # that's Perl's $$
1132     $shell_info = qx'ps $$';            # that's the new shell's $$
1133
1134 How that string gets evaluated is entirely subject to the command
1135 interpreter on your system.  On most platforms, you will have to protect
1136 shell metacharacters if you want them treated literally.  This is in
1137 practice difficult to do, as it's unclear how to escape which characters.
1138 See L<perlsec> for a clean and safe example of a manual fork() and exec()
1139 to emulate backticks safely.
1140
1141 On some platforms (notably DOS-like ones), the shell may not be
1142 capable of dealing with multiline commands, so putting newlines in
1143 the string may not get you what you want.  You may be able to evaluate
1144 multiple commands in a single line by separating them with the command
1145 separator character, if your shell supports that (e.g. C<;> on many Unix
1146 shells; C<&> on the Windows NT C<cmd> shell).
1147
1148 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1149 output before starting the child process, but this may not be supported
1150 on some platforms (see L<perlport>).  To be safe, you may need to set
1151 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1152 C<IO::Handle> on any open handles.
1153
1154 Beware that some command shells may place restrictions on the length
1155 of the command line.  You must ensure your strings don't exceed this
1156 limit after any necessary interpolations.  See the platform-specific
1157 release notes for more details about your particular environment.
1158
1159 Using this operator can lead to programs that are difficult to port,
1160 because the shell commands called vary between systems, and may in
1161 fact not be present at all.  As one example, the C<type> command under
1162 the POSIX shell is very different from the C<type> command under DOS.
1163 That doesn't mean you should go out of your way to avoid backticks
1164 when they're the right way to get something done.  Perl was made to be
1165 a glue language, and one of the things it glues together is commands.
1166 Just understand what you're getting yourself into.
1167
1168 See L<"I/O Operators"> for more discussion.
1169
1170 =item qw/STRING/
1171
1172 Evaluates to a list of the words extracted out of STRING, using embedded
1173 whitespace as the word delimiters.  It can be understood as being roughly
1174 equivalent to:
1175
1176     split(' ', q/STRING/);
1177
1178 the difference being that it generates a real list at compile time.  So
1179 this expression:
1180
1181     qw(foo bar baz)
1182
1183 is semantically equivalent to the list:
1184
1185     'foo', 'bar', 'baz'
1186
1187 Some frequently seen examples:
1188
1189     use POSIX qw( setlocale localeconv )
1190     @EXPORT = qw( foo bar baz );
1191
1192 A common mistake is to try to separate the words with comma or to
1193 put comments into a multi-line C<qw>-string.  For this reason, the
1194 C<use warnings> pragma and the B<-w> switch (that is, the C<$^W> variable) 
1195 produces warnings if the STRING contains the "," or the "#" character.
1196
1197 =item s/PATTERN/REPLACEMENT/egimosx
1198
1199 Searches a string for a pattern, and if found, replaces that pattern
1200 with the replacement text and returns the number of substitutions
1201 made.  Otherwise it returns false (specifically, the empty string).
1202
1203 If no string is specified via the C<=~> or C<!~> operator, the C<$_>
1204 variable is searched and modified.  (The string specified with C<=~> must
1205 be scalar variable, an array element, a hash element, or an assignment
1206 to one of those, i.e., an lvalue.)
1207
1208 If the delimiter chosen is a single quote, no interpolation is
1209 done on either the PATTERN or the REPLACEMENT.  Otherwise, if the
1210 PATTERN contains a $ that looks like a variable rather than an
1211 end-of-string test, the variable will be interpolated into the pattern
1212 at run-time.  If you want the pattern compiled only once the first time
1213 the variable is interpolated, use the C</o> option.  If the pattern
1214 evaluates to the empty string, the last successfully executed regular
1215 expression is used instead.  See L<perlre> for further explanation on these.
1216 See L<perllocale> for discussion of additional considerations that apply
1217 when C<use locale> is in effect.
1218
1219 Options are:
1220
1221     e   Evaluate the right side as an expression.
1222     g   Replace globally, i.e., all occurrences.
1223     i   Do case-insensitive pattern matching.
1224     m   Treat string as multiple lines.
1225     o   Compile pattern only once.
1226     s   Treat string as single line.
1227     x   Use extended regular expressions.
1228
1229 Any non-alphanumeric, non-whitespace delimiter may replace the
1230 slashes.  If single quotes are used, no interpretation is done on the
1231 replacement string (the C</e> modifier overrides this, however).  Unlike
1232 Perl 4, Perl 5 treats backticks as normal delimiters; the replacement
1233 text is not evaluated as a command.  If the
1234 PATTERN is delimited by bracketing quotes, the REPLACEMENT has its own
1235 pair of quotes, which may or may not be bracketing quotes, e.g.,
1236 C<s(foo)(bar)> or C<< s<foo>/bar/ >>.  A C</e> will cause the
1237 replacement portion to be treated as a full-fledged Perl expression
1238 and evaluated right then and there.  It is, however, syntax checked at
1239 compile-time. A second C<e> modifier will cause the replacement portion
1240 to be C<eval>ed before being run as a Perl expression.
1241
1242 Examples:
1243
1244     s/\bgreen\b/mauve/g;                # don't change wintergreen
1245
1246     $path =~ s|/usr/bin|/usr/local/bin|;
1247
1248     s/Login: $foo/Login: $bar/; # run-time pattern
1249
1250     ($foo = $bar) =~ s/this/that/;      # copy first, then change
1251
1252     $count = ($paragraph =~ s/Mister\b/Mr./g);  # get change-count
1253
1254     $_ = 'abc123xyz';
1255     s/\d+/$&*2/e;               # yields 'abc246xyz'
1256     s/\d+/sprintf("%5d",$&)/e;  # yields 'abc  246xyz'
1257     s/\w/$& x 2/eg;             # yields 'aabbcc  224466xxyyzz'
1258
1259     s/%(.)/$percent{$1}/g;      # change percent escapes; no /e
1260     s/%(.)/$percent{$1} || $&/ge;       # expr now, so /e
1261     s/^=(\w+)/&pod($1)/ge;      # use function call
1262
1263     # expand variables in $_, but dynamics only, using
1264     # symbolic dereferencing
1265     s/\$(\w+)/${$1}/g;
1266
1267     # Add one to the value of any numbers in the string
1268     s/(\d+)/1 + $1/eg;
1269
1270     # This will expand any embedded scalar variable
1271     # (including lexicals) in $_ : First $1 is interpolated
1272     # to the variable name, and then evaluated
1273     s/(\$\w+)/$1/eeg;
1274
1275     # Delete (most) C comments.
1276     $program =~ s {
1277         /\*     # Match the opening delimiter.
1278         .*?     # Match a minimal number of characters.
1279         \*/     # Match the closing delimiter.
1280     } []gsx;
1281
1282     s/^\s*(.*?)\s*$/$1/;        # trim white space in $_, expensively
1283
1284     for ($variable) {           # trim white space in $variable, cheap
1285         s/^\s+//;
1286         s/\s+$//;
1287     }
1288
1289     s/([^ ]*) *([^ ]*)/$2 $1/;  # reverse 1st two fields
1290
1291 Note the use of $ instead of \ in the last example.  Unlike
1292 B<sed>, we use the \<I<digit>> form in only the left hand side.
1293 Anywhere else it's $<I<digit>>.
1294
1295 Occasionally, you can't use just a C</g> to get all the changes
1296 to occur that you might want.  Here are two common cases:
1297
1298     # put commas in the right places in an integer
1299     1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;  
1300
1301     # expand tabs to 8-column spacing
1302     1 while s/\t+/' ' x (length($&)*8 - length($`)%8)/e;
1303
1304 =item tr/SEARCHLIST/REPLACEMENTLIST/cds
1305
1306 =item y/SEARCHLIST/REPLACEMENTLIST/cds
1307
1308 Transliterates all occurrences of the characters found in the search list
1309 with the corresponding character in the replacement list.  It returns
1310 the number of characters replaced or deleted.  If no string is
1311 specified via the =~ or !~ operator, the $_ string is transliterated.  (The
1312 string specified with =~ must be a scalar variable, an array element, a
1313 hash element, or an assignment to one of those, i.e., an lvalue.)
1314
1315 A character range may be specified with a hyphen, so C<tr/A-J/0-9/> 
1316 does the same replacement as C<tr/ACEGIBDFHJ/0246813579/>.
1317 For B<sed> devotees, C<y> is provided as a synonym for C<tr>.  If the
1318 SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST has
1319 its own pair of quotes, which may or may not be bracketing quotes,
1320 e.g., C<tr[A-Z][a-z]> or C<tr(+\-*/)/ABCD/>.
1321
1322 Note that C<tr> does B<not> do regular expression character classes
1323 such as C<\d> or C<[:lower:]>.  The <tr> operator is not equivalent to
1324 the tr(1) utility.  If you want to map strings between lower/upper
1325 cases, see L<perlfunc/lc> and L<perlfunc/uc>, and in general consider
1326 using the C<s> operator if you need regular expressions.
1327
1328 Note also that the whole range idea is rather unportable between
1329 character sets--and even within character sets they may cause results
1330 you probably didn't expect.  A sound principle is to use only ranges
1331 that begin from and end at either alphabets of equal case (a-e, A-E),
1332 or digits (0-4).  Anything else is unsafe.  If in doubt, spell out the
1333 character sets in full.
1334
1335 Options:
1336
1337     c   Complement the SEARCHLIST.
1338     d   Delete found but unreplaced characters.
1339     s   Squash duplicate replaced characters.
1340
1341 If the C</c> modifier is specified, the SEARCHLIST character set
1342 is complemented.  If the C</d> modifier is specified, any characters
1343 specified by SEARCHLIST not found in REPLACEMENTLIST are deleted.
1344 (Note that this is slightly more flexible than the behavior of some
1345 B<tr> programs, which delete anything they find in the SEARCHLIST,
1346 period.) If the C</s> modifier is specified, sequences of characters
1347 that were transliterated to the same character are squashed down
1348 to a single instance of the character.
1349
1350 If the C</d> modifier is used, the REPLACEMENTLIST is always interpreted
1351 exactly as specified.  Otherwise, if the REPLACEMENTLIST is shorter
1352 than the SEARCHLIST, the final character is replicated till it is long
1353 enough.  If the REPLACEMENTLIST is empty, the SEARCHLIST is replicated.
1354 This latter is useful for counting characters in a class or for
1355 squashing character sequences in a class.
1356
1357 Examples:
1358
1359     $ARGV[1] =~ tr/A-Z/a-z/;    # canonicalize to lower case
1360
1361     $cnt = tr/*/*/;             # count the stars in $_
1362
1363     $cnt = $sky =~ tr/*/*/;     # count the stars in $sky
1364
1365     $cnt = tr/0-9//;            # count the digits in $_
1366
1367     tr/a-zA-Z//s;               # bookkeeper -> bokeper
1368
1369     ($HOST = $host) =~ tr/a-z/A-Z/;
1370
1371     tr/a-zA-Z/ /cs;             # change non-alphas to single space
1372
1373     tr [\200-\377]
1374        [\000-\177];             # delete 8th bit
1375
1376 If multiple transliterations are given for a character, only the
1377 first one is used:
1378
1379     tr/AAA/XYZ/
1380
1381 will transliterate any A to X.
1382
1383 Because the transliteration table is built at compile time, neither
1384 the SEARCHLIST nor the REPLACEMENTLIST are subjected to double quote
1385 interpolation.  That means that if you want to use variables, you
1386 must use an eval():
1387
1388     eval "tr/$oldlist/$newlist/";
1389     die $@ if $@;
1390
1391     eval "tr/$oldlist/$newlist/, 1" or die $@;
1392
1393 =item <<EOF
1394
1395 A line-oriented form of quoting is based on the shell "here-document"
1396 syntax.  Following a C<< << >> you specify a string to terminate
1397 the quoted material, and all lines following the current line down to
1398 the terminating string are the value of the item.  The terminating
1399 string may be either an identifier (a word), or some quoted text.  If
1400 quoted, the type of quotes you use determines the treatment of the
1401 text, just as in regular quoting.  An unquoted identifier works like
1402 double quotes.  There must be no space between the C<< << >> and
1403 the identifier, unless the identifier is quoted.  (If you put a space it
1404 will be treated as a null identifier, which is valid, and matches the first
1405 empty line.)  The terminating string must appear by itself (unquoted and
1406 with no surrounding whitespace) on the terminating line.
1407
1408        print <<EOF;
1409     The price is $Price.
1410     EOF
1411
1412        print << "EOF"; # same as above
1413     The price is $Price.
1414     EOF
1415
1416        print << `EOC`; # execute commands
1417     echo hi there
1418     echo lo there
1419     EOC
1420
1421        print <<"foo", <<"bar"; # you can stack them
1422     I said foo.
1423     foo
1424     I said bar.
1425     bar
1426
1427        myfunc(<< "THIS", 23, <<'THAT');
1428     Here's a line
1429     or two.
1430     THIS
1431     and here's another.
1432     THAT
1433
1434 Just don't forget that you have to put a semicolon on the end
1435 to finish the statement, as Perl doesn't know you're not going to
1436 try to do this:
1437
1438        print <<ABC
1439     179231
1440     ABC
1441        + 20;
1442
1443 If you want your here-docs to be indented with the 
1444 rest of the code, you'll need to remove leading whitespace
1445 from each line manually:
1446
1447     ($quote = <<'FINIS') =~ s/^\s+//gm;
1448        The Road goes ever on and on, 
1449        down from the door where it began.
1450     FINIS
1451
1452 If you use a here-doc within a delimited construct, such as in C<s///eg>,
1453 the quoted material must come on the lines following the final delimiter.
1454 So instead of
1455
1456     s/this/<<E . 'that'
1457     the other
1458     E
1459      . 'more '/eg;
1460
1461 you have to write
1462
1463     s/this/<<E . 'that' 
1464      . 'more '/eg; 
1465     the other 
1466     E 
1467
1468 If the terminating identifier is on the last line of the program, you
1469 must be sure there is a newline after it; otherwise, Perl will give the
1470 warning B<Can't find string terminator "END" anywhere before EOF...>.
1471
1472 Additionally, the quoting rules for the identifier are not related to
1473 Perl's quoting rules -- C<q()>, C<qq()>, and the like are not supported
1474 in place of C<''> and C<"">, and the only interpolation is for backslashing
1475 the quoting character:
1476
1477     print << "abc\"def";
1478     testing...
1479     abc"def
1480
1481 Finally, quoted strings cannot span multiple lines.  The general rule is
1482 that the identifier must be a string literal.  Stick with that, and you
1483 should be safe.
1484
1485 =back
1486
1487 =head2 Gory details of parsing quoted constructs
1488
1489 When presented with something that might have several different
1490 interpretations, Perl uses the B<DWIM> (that's "Do What I Mean")
1491 principle to pick the most probable interpretation.  This strategy
1492 is so successful that Perl programmers often do not suspect the
1493 ambivalence of what they write.  But from time to time, Perl's
1494 notions differ substantially from what the author honestly meant.
1495
1496 This section hopes to clarify how Perl handles quoted constructs.
1497 Although the most common reason to learn this is to unravel labyrinthine
1498 regular expressions, because the initial steps of parsing are the
1499 same for all quoting operators, they are all discussed together.
1500
1501 The most important Perl parsing rule is the first one discussed
1502 below: when processing a quoted construct, Perl first finds the end
1503 of that construct, then interprets its contents.  If you understand
1504 this rule, you may skip the rest of this section on the first
1505 reading.  The other rules are likely to contradict the user's
1506 expectations much less frequently than this first one.
1507
1508 Some passes discussed below are performed concurrently, but because
1509 their results are the same, we consider them individually.  For different
1510 quoting constructs, Perl performs different numbers of passes, from
1511 one to five, but these passes are always performed in the same order.
1512
1513 =over 4
1514
1515 =item Finding the end
1516
1517 The first pass is finding the end of the quoted construct, whether
1518 it be a multicharacter delimiter C<"\nEOF\n"> in the C<<<EOF>
1519 construct, a C</> that terminates a C<qq//> construct, a C<]> which
1520 terminates C<qq[]> construct, or a C<< > >> which terminates a
1521 fileglob started with C<< < >>.
1522
1523 When searching for single-character non-pairing delimiters, such
1524 as C</>, combinations of C<\\> and C<\/> are skipped.  However,
1525 when searching for single-character pairing delimiter like C<[>,
1526 combinations of C<\\>, C<\]>, and C<\[> are all skipped, and nested
1527 C<[>, C<]> are skipped as well.  When searching for multicharacter
1528 delimiters, nothing is skipped.
1529
1530 For constructs with three-part delimiters (C<s///>, C<y///>, and
1531 C<tr///>), the search is repeated once more.
1532
1533 During this search no attention is paid to the semantics of the construct.
1534 Thus:
1535
1536     "$hash{"$foo/$bar"}"
1537
1538 or:
1539
1540     m/ 
1541       bar       # NOT a comment, this slash / terminated m//!
1542      /x
1543
1544 do not form legal quoted expressions.   The quoted part ends on the
1545 first C<"> and C</>, and the rest happens to be a syntax error.
1546 Because the slash that terminated C<m//> was followed by a C<SPACE>,
1547 the example above is not C<m//x>, but rather C<m//> with no C</x>
1548 modifier.  So the embedded C<#> is interpreted as a literal C<#>.
1549
1550 =item Removal of backslashes before delimiters
1551
1552 During the second pass, text between the starting and ending
1553 delimiters is copied to a safe location, and the C<\> is removed
1554 from combinations consisting of C<\> and delimiter--or delimiters,
1555 meaning both starting and ending delimiters will should these differ.
1556 This removal does not happen for multi-character delimiters.
1557 Note that the combination C<\\> is left intact, just as it was.
1558
1559 Starting from this step no information about the delimiters is
1560 used in parsing.
1561
1562 =item Interpolation
1563
1564 The next step is interpolation in the text obtained, which is now
1565 delimiter-independent.  There are four different cases.
1566
1567 =over 4
1568
1569 =item C<<<'EOF'>, C<m''>, C<s'''>, C<tr///>, C<y///>
1570
1571 No interpolation is performed.
1572
1573 =item C<''>, C<q//>
1574
1575 The only interpolation is removal of C<\> from pairs C<\\>.
1576
1577 =item C<"">, C<``>, C<qq//>, C<qx//>, C<< <file*glob> >>
1578
1579 C<\Q>, C<\U>, C<\u>, C<\L>, C<\l> (possibly paired with C<\E>) are
1580 converted to corresponding Perl constructs.  Thus, C<"$foo\Qbaz$bar">
1581 is converted to C<$foo . (quotemeta("baz" . $bar))> internally.
1582 The other combinations are replaced with appropriate expansions.
1583
1584 Let it be stressed that I<whatever falls between C<\Q> and C<\E>>
1585 is interpolated in the usual way.  Something like C<"\Q\\E"> has
1586 no C<\E> inside.  instead, it has C<\Q>, C<\\>, and C<E>, so the
1587 result is the same as for C<"\\\\E">.  As a general rule, backslashes
1588 between C<\Q> and C<\E> may lead to counterintuitive results.  So,
1589 C<"\Q\t\E"> is converted to C<quotemeta("\t")>, which is the same
1590 as C<"\\\t"> (since TAB is not alphanumeric).  Note also that:
1591
1592   $str = '\t';
1593   return "\Q$str";
1594
1595 may be closer to the conjectural I<intention> of the writer of C<"\Q\t\E">.
1596
1597 Interpolated scalars and arrays are converted internally to the C<join> and
1598 C<.> catenation operations.  Thus, C<"$foo XXX '@arr'"> becomes:
1599
1600   $foo . " XXX '" . (join $", @arr) . "'";
1601
1602 All operations above are performed simultaneously, left to right.
1603
1604 Because the result of C<"\Q STRING \E"> has all metacharacters
1605 quoted, there is no way to insert a literal C<$> or C<@> inside a
1606 C<\Q\E> pair.  If protected by C<\>, C<$> will be quoted to became
1607 C<"\\\$">; if not, it is interpreted as the start of an interpolated
1608 scalar.
1609
1610 Note also that the interpolation code needs to make a decision on
1611 where the interpolated scalar ends.  For instance, whether 
1612 C<< "a $b -> {c}" >> really means:
1613
1614   "a " . $b . " -> {c}";
1615
1616 or:
1617
1618   "a " . $b -> {c};
1619
1620 Most of the time, the longest possible text that does not include
1621 spaces between components and which contains matching braces or
1622 brackets.  because the outcome may be determined by voting based
1623 on heuristic estimators, the result is not strictly predictable.
1624 Fortunately, it's usually correct for ambiguous cases.
1625
1626 =item C<?RE?>, C</RE/>, C<m/RE/>, C<s/RE/foo/>, 
1627
1628 Processing of C<\Q>, C<\U>, C<\u>, C<\L>, C<\l>, and interpolation
1629 happens (almost) as with C<qq//> constructs, but the substitution
1630 of C<\> followed by RE-special chars (including C<\>) is not
1631 performed.  Moreover, inside C<(?{BLOCK})>, C<(?# comment )>, and
1632 a C<#>-comment in a C<//x>-regular expression, no processing is
1633 performed whatsoever.  This is the first step at which the presence
1634 of the C<//x> modifier is relevant.
1635
1636 Interpolation has several quirks: C<$|>, C<$(>, and C<$)> are not
1637 interpolated, and constructs C<$var[SOMETHING]> are voted (by several
1638 different estimators) to be either an array element or C<$var>
1639 followed by an RE alternative.  This is where the notation
1640 C<${arr[$bar]}> comes handy: C</${arr[0-9]}/> is interpreted as
1641 array element C<-9>, not as a regular expression from the variable
1642 C<$arr> followed by a digit, which would be the interpretation of
1643 C</$arr[0-9]/>.  Since voting among different estimators may occur,
1644 the result is not predictable.
1645
1646 It is at this step that C<\1> is begrudgingly converted to C<$1> in
1647 the replacement text of C<s///> to correct the incorrigible
1648 I<sed> hackers who haven't picked up the saner idiom yet.  A warning
1649 is emitted if the C<use warnings> pragma or the B<-w> command-line flag
1650 (that is, the C<$^W> variable) was set.
1651
1652 The lack of processing of C<\\> creates specific restrictions on
1653 the post-processed text.  If the delimiter is C</>, one cannot get
1654 the combination C<\/> into the result of this step.  C</> will
1655 finish the regular expression, C<\/> will be stripped to C</> on
1656 the previous step, and C<\\/> will be left as is.  Because C</> is
1657 equivalent to C<\/> inside a regular expression, this does not
1658 matter unless the delimiter happens to be character special to the
1659 RE engine, such as in C<s*foo*bar*>, C<m[foo]>, or C<?foo?>; or an
1660 alphanumeric char, as in:
1661
1662   m m ^ a \s* b mmx;
1663
1664 In the RE above, which is intentionally obfuscated for illustration, the
1665 delimiter is C<m>, the modifier is C<mx>, and after backslash-removal the
1666 RE is the same as for C<m/ ^ a s* b /mx>).  There's more than one 
1667 reason you're encouraged to restrict your delimiters to non-alphanumeric,
1668 non-whitespace choices.
1669
1670 =back
1671
1672 This step is the last one for all constructs except regular expressions,
1673 which are processed further.
1674
1675 =item Interpolation of regular expressions
1676
1677 Previous steps were performed during the compilation of Perl code,
1678 but this one happens at run time--although it may be optimized to
1679 be calculated at compile time if appropriate.  After preprocessing
1680 described above, and possibly after evaluation if catenation,
1681 joining, casing translation, or metaquoting are involved, the
1682 resulting I<string> is passed to the RE engine for compilation.
1683
1684 Whatever happens in the RE engine might be better discussed in L<perlre>,
1685 but for the sake of continuity, we shall do so here.
1686
1687 This is another step where the presence of the C<//x> modifier is
1688 relevant.  The RE engine scans the string from left to right and
1689 converts it to a finite automaton.
1690
1691 Backslashed characters are either replaced with corresponding
1692 literal strings (as with C<\{>), or else they generate special nodes
1693 in the finite automaton (as with C<\b>).  Characters special to the
1694 RE engine (such as C<|>) generate corresponding nodes or groups of
1695 nodes.  C<(?#...)> comments are ignored.  All the rest is either
1696 converted to literal strings to match, or else is ignored (as is
1697 whitespace and C<#>-style comments if C<//x> is present).
1698
1699 Parsing of the bracketed character class construct, C<[...]>, is
1700 rather different than the rule used for the rest of the pattern.
1701 The terminator of this construct is found using the same rules as
1702 for finding the terminator of a C<{}>-delimited construct, the only
1703 exception being that C<]> immediately following C<[> is treated as
1704 though preceded by a backslash.  Similarly, the terminator of
1705 C<(?{...})> is found using the same rules as for finding the
1706 terminator of a C<{}>-delimited construct.
1707
1708 It is possible to inspect both the string given to RE engine and the
1709 resulting finite automaton.  See the arguments C<debug>/C<debugcolor>
1710 in the C<use L<re>> pragma, as well as Perl's B<-Dr> command-line
1711 switch documented in L<perlrun/"Command Switches">.
1712
1713 =item Optimization of regular expressions
1714
1715 This step is listed for completeness only.  Since it does not change
1716 semantics, details of this step are not documented and are subject
1717 to change without notice.  This step is performed over the finite
1718 automaton that was generated during the previous pass.
1719
1720 It is at this stage that C<split()> silently optimizes C</^/> to
1721 mean C</^/m>.
1722
1723 =back
1724
1725 =head2 I/O Operators
1726
1727 There are several I/O operators you should know about.
1728
1729 A string enclosed by backticks (grave accents) first undergoes
1730 double-quote interpolation.  It is then interpreted as an external
1731 command, and the output of that command is the value of the
1732 backtick string, like in a shell.  In scalar context, a single string
1733 consisting of all output is returned.  In list context, a list of
1734 values is returned, one per line of output.  (You can set C<$/> to use
1735 a different line terminator.)  The command is executed each time the
1736 pseudo-literal is evaluated.  The status value of the command is
1737 returned in C<$?> (see L<perlvar> for the interpretation of C<$?>).
1738 Unlike in B<csh>, no translation is done on the return data--newlines
1739 remain newlines.  Unlike in any of the shells, single quotes do not
1740 hide variable names in the command from interpretation.  To pass a
1741 literal dollar-sign through to the shell you need to hide it with a
1742 backslash.  The generalized form of backticks is C<qx//>.  (Because
1743 backticks always undergo shell expansion as well, see L<perlsec> for
1744 security concerns.)
1745
1746 In scalar context, evaluating a filehandle in angle brackets yields
1747 the next line from that file (the newline, if any, included), or
1748 C<undef> at end-of-file or on error.  When C<$/> is set to C<undef>
1749 (sometimes known as file-slurp mode) and the file is empty, it
1750 returns C<''> the first time, followed by C<undef> subsequently.
1751
1752 Ordinarily you must assign the returned value to a variable, but
1753 there is one situation where an automatic assignment happens.  If
1754 and only if the input symbol is the only thing inside the conditional
1755 of a C<while> statement (even if disguised as a C<for(;;)> loop),
1756 the value is automatically assigned to the global variable $_,
1757 destroying whatever was there previously.  (This may seem like an
1758 odd thing to you, but you'll use the construct in almost every Perl
1759 script you write.)  The $_ variable is not implicitly localized.
1760 You'll have to put a C<local $_;> before the loop if you want that
1761 to happen.
1762
1763 The following lines are equivalent:
1764
1765     while (defined($_ = <STDIN>)) { print; }
1766     while ($_ = <STDIN>) { print; }
1767     while (<STDIN>) { print; }
1768     for (;<STDIN>;) { print; }
1769     print while defined($_ = <STDIN>);
1770     print while ($_ = <STDIN>);
1771     print while <STDIN>;
1772
1773 This also behaves similarly, but avoids $_ :
1774
1775     while (my $line = <STDIN>) { print $line }    
1776
1777 In these loop constructs, the assigned value (whether assignment
1778 is automatic or explicit) is then tested to see whether it is
1779 defined.  The defined test avoids problems where line has a string
1780 value that would be treated as false by Perl, for example a "" or
1781 a "0" with no trailing newline.  If you really mean for such values
1782 to terminate the loop, they should be tested for explicitly:
1783
1784     while (($_ = <STDIN>) ne '0') { ... }
1785     while (<STDIN>) { last unless $_; ... }
1786
1787 In other boolean contexts, C<< <I<filehandle>> >> without an
1788 explicit C<defined> test or comparison elicit a warning if the 
1789 C<use warnings> pragma or the B<-w>
1790 command-line switch (the C<$^W> variable) is in effect.
1791
1792 The filehandles STDIN, STDOUT, and STDERR are predefined.  (The
1793 filehandles C<stdin>, C<stdout>, and C<stderr> will also work except
1794 in packages, where they would be interpreted as local identifiers
1795 rather than global.)  Additional filehandles may be created with
1796 the open() function, amongst others.  See L<perlopentut> and
1797 L<perlfunc/open> for details on this.
1798
1799 If a <FILEHANDLE> is used in a context that is looking for
1800 a list, a list comprising all input lines is returned, one line per
1801 list element.  It's easy to grow to a rather large data space this
1802 way, so use with care.
1803
1804 <FILEHANDLE> may also be spelled C<readline(*FILEHANDLE)>.
1805 See L<perlfunc/readline>.
1806
1807 The null filehandle <> is special: it can be used to emulate the
1808 behavior of B<sed> and B<awk>.  Input from <> comes either from
1809 standard input, or from each file listed on the command line.  Here's
1810 how it works: the first time <> is evaluated, the @ARGV array is
1811 checked, and if it is empty, C<$ARGV[0]> is set to "-", which when opened
1812 gives you standard input.  The @ARGV array is then processed as a list
1813 of filenames.  The loop
1814
1815     while (<>) {
1816         ...                     # code for each line
1817     }
1818
1819 is equivalent to the following Perl-like pseudo code:
1820
1821     unshift(@ARGV, '-') unless @ARGV;
1822     while ($ARGV = shift) {
1823         open(ARGV, $ARGV);
1824         while (<ARGV>) {
1825             ...         # code for each line
1826         }
1827     }
1828
1829 except that it isn't so cumbersome to say, and will actually work.
1830 It really does shift the @ARGV array and put the current filename
1831 into the $ARGV variable.  It also uses filehandle I<ARGV>
1832 internally--<> is just a synonym for <ARGV>, which
1833 is magical.  (The pseudo code above doesn't work because it treats
1834 <ARGV> as non-magical.)
1835
1836 You can modify @ARGV before the first <> as long as the array ends up
1837 containing the list of filenames you really want.  Line numbers (C<$.>)
1838 continue as though the input were one big happy file.  See the example
1839 in L<perlfunc/eof> for how to reset line numbers on each file.
1840
1841 If you want to set @ARGV to your own list of files, go right ahead.  
1842 This sets @ARGV to all plain text files if no @ARGV was given:
1843
1844     @ARGV = grep { -f && -T } glob('*') unless @ARGV;
1845
1846 You can even set them to pipe commands.  For example, this automatically
1847 filters compressed arguments through B<gzip>:
1848
1849     @ARGV = map { /\.(gz|Z)$/ ? "gzip -dc < $_ |" : $_ } @ARGV;
1850
1851 If you want to pass switches into your script, you can use one of the
1852 Getopts modules or put a loop on the front like this:
1853
1854     while ($_ = $ARGV[0], /^-/) {
1855         shift;
1856         last if /^--$/;
1857         if (/^-D(.*)/) { $debug = $1 }
1858         if (/^-v/)     { $verbose++  }
1859         # ...           # other switches
1860     }
1861
1862     while (<>) {
1863         # ...           # code for each line
1864     }
1865
1866 The <> symbol will return C<undef> for end-of-file only once.  
1867 If you call it again after this, it will assume you are processing another 
1868 @ARGV list, and if you haven't set @ARGV, will read input from STDIN.
1869
1870 If what the angle brackets contain is a simple scalar variable (e.g.,
1871 <$foo>), then that variable contains the name of the
1872 filehandle to input from, or its typeglob, or a reference to the
1873 same.  For example:
1874
1875     $fh = \*STDIN;
1876     $line = <$fh>;
1877
1878 If what's within the angle brackets is neither a filehandle nor a simple
1879 scalar variable containing a filehandle name, typeglob, or typeglob
1880 reference, it is interpreted as a filename pattern to be globbed, and
1881 either a list of filenames or the next filename in the list is returned,
1882 depending on context.  This distinction is determined on syntactic
1883 grounds alone.  That means C<< <$x> >> is always a readline() from
1884 an indirect handle, but C<< <$hash{key}> >> is always a glob().
1885 That's because $x is a simple scalar variable, but C<$hash{key}> is
1886 not--it's a hash element.
1887
1888 One level of double-quote interpretation is done first, but you can't
1889 say C<< <$foo> >> because that's an indirect filehandle as explained
1890 in the previous paragraph.  (In older versions of Perl, programmers
1891 would insert curly brackets to force interpretation as a filename glob:
1892 C<< <${foo}> >>.  These days, it's considered cleaner to call the
1893 internal function directly as C<glob($foo)>, which is probably the right
1894 way to have done it in the first place.)  For example:
1895
1896     while (<*.c>) {
1897         chmod 0644, $_;
1898     }
1899
1900 is roughly equivalent to:
1901
1902     open(FOO, "echo *.c | tr -s ' \t\r\f' '\\012\\012\\012\\012'|");
1903     while (<FOO>) {
1904         chomp;
1905         chmod 0644, $_;
1906     }
1907
1908 except that the globbing is actually done internally using the standard
1909 C<File::Glob> extension.  Of course, the shortest way to do the above is:
1910
1911     chmod 0644, <*.c>;
1912
1913 A (file)glob evaluates its (embedded) argument only when it is
1914 starting a new list.  All values must be read before it will start
1915 over.  In list context, this isn't important because you automatically
1916 get them all anyway.  However, in scalar context the operator returns
1917 the next value each time it's called, or C<undef> when the list has
1918 run out.  As with filehandle reads, an automatic C<defined> is
1919 generated when the glob occurs in the test part of a C<while>,
1920 because legal glob returns (e.g. a file called F<0>) would otherwise
1921 terminate the loop.  Again, C<undef> is returned only once.  So if
1922 you're expecting a single value from a glob, it is much better to
1923 say
1924
1925     ($file) = <blurch*>;
1926
1927 than
1928
1929     $file = <blurch*>;
1930
1931 because the latter will alternate between returning a filename and
1932 returning false.
1933
1934 If you're trying to do variable interpolation, it's definitely better
1935 to use the glob() function, because the older notation can cause people
1936 to become confused with the indirect filehandle notation.
1937
1938     @files = glob("$dir/*.[ch]");
1939     @files = glob($files[$i]);
1940
1941 =head2 Constant Folding
1942
1943 Like C, Perl does a certain amount of expression evaluation at
1944 compile time whenever it determines that all arguments to an
1945 operator are static and have no side effects.  In particular, string
1946 concatenation happens at compile time between literals that don't do
1947 variable substitution.  Backslash interpolation also happens at
1948 compile time.  You can say
1949
1950     'Now is the time for all' . "\n" .
1951         'good men to come to.'
1952
1953 and this all reduces to one string internally.  Likewise, if
1954 you say
1955
1956     foreach $file (@filenames) {
1957         if (-s $file > 5 + 100 * 2**16) {  }
1958     }
1959
1960 the compiler will precompute the number which that expression
1961 represents so that the interpreter won't have to.
1962
1963 =head2 Bitwise String Operators
1964
1965 Bitstrings of any size may be manipulated by the bitwise operators
1966 (C<~ | & ^>).
1967
1968 If the operands to a binary bitwise op are strings of different
1969 sizes, B<|> and B<^> ops act as though the shorter operand had
1970 additional zero bits on the right, while the B<&> op acts as though
1971 the longer operand were truncated to the length of the shorter.
1972 The granularity for such extension or truncation is one or more
1973 bytes.
1974
1975     # ASCII-based examples 
1976     print "j p \n" ^ " a h";            # prints "JAPH\n"
1977     print "JA" | "  ph\n";              # prints "japh\n"
1978     print "japh\nJunk" & '_____';       # prints "JAPH\n";
1979     print 'p N$' ^ " E<H\n";            # prints "Perl\n";
1980
1981 If you are intending to manipulate bitstrings, be certain that
1982 you're supplying bitstrings: If an operand is a number, that will imply
1983 a B<numeric> bitwise operation.  You may explicitly show which type of
1984 operation you intend by using C<""> or C<0+>, as in the examples below.
1985
1986     $foo =  150  |  105 ;       # yields 255  (0x96 | 0x69 is 0xFF)
1987     $foo = '150' |  105 ;       # yields 255
1988     $foo =  150  | '105';       # yields 255
1989     $foo = '150' | '105';       # yields string '155' (under ASCII)
1990
1991     $baz = 0+$foo & 0+$bar;     # both ops explicitly numeric
1992     $biz = "$foo" ^ "$bar";     # both ops explicitly stringy
1993
1994 See L<perlfunc/vec> for information on how to manipulate individual bits
1995 in a bit vector.
1996
1997 =head2 Integer Arithmetic
1998
1999 By default, Perl assumes that it must do most of its arithmetic in
2000 floating point.  But by saying
2001
2002     use integer;
2003
2004 you may tell the compiler that it's okay to use integer operations
2005 (if it feels like it) from here to the end of the enclosing BLOCK.
2006 An inner BLOCK may countermand this by saying
2007
2008     no integer;
2009
2010 which lasts until the end of that BLOCK.  Note that this doesn't
2011 mean everything is only an integer, merely that Perl may use integer
2012 operations if it is so inclined.  For example, even under C<use
2013 integer>, if you take the C<sqrt(2)>, you'll still get C<1.4142135623731>
2014 or so.
2015
2016 Used on numbers, the bitwise operators ("&", "|", "^", "~", "<<",
2017 and ">>") always produce integral results.  (But see also 
2018 L<Bitwise String Operators>.)  However, C<use integer> still has meaning for
2019 them.  By default, their results are interpreted as unsigned integers, but
2020 if C<use integer> is in effect, their results are interpreted
2021 as signed integers.  For example, C<~0> usually evaluates to a large
2022 integral value.  However, C<use integer; ~0> is C<-1> on twos-complement
2023 machines.
2024
2025 =head2 Floating-point Arithmetic
2026
2027 While C<use integer> provides integer-only arithmetic, there is no
2028 analogous mechanism to provide automatic rounding or truncation to a
2029 certain number of decimal places.  For rounding to a certain number
2030 of digits, sprintf() or printf() is usually the easiest route.
2031 See L<perlfaq4>.
2032
2033 Floating-point numbers are only approximations to what a mathematician
2034 would call real numbers.  There are infinitely more reals than floats,
2035 so some corners must be cut.  For example:
2036
2037     printf "%.20g\n", 123456789123456789;
2038     #        produces 123456789123456784
2039
2040 Testing for exact equality of floating-point equality or inequality is
2041 not a good idea.  Here's a (relatively expensive) work-around to compare
2042 whether two floating-point numbers are equal to a particular number of
2043 decimal places.  See Knuth, volume II, for a more robust treatment of
2044 this topic.
2045
2046     sub fp_equal {
2047         my ($X, $Y, $POINTS) = @_;
2048         my ($tX, $tY);
2049         $tX = sprintf("%.${POINTS}g", $X);
2050         $tY = sprintf("%.${POINTS}g", $Y);
2051         return $tX eq $tY;
2052     }
2053
2054 The POSIX module (part of the standard perl distribution) implements
2055 ceil(), floor(), and other mathematical and trigonometric functions.
2056 The Math::Complex module (part of the standard perl distribution)
2057 defines mathematical functions that work on both the reals and the
2058 imaginary numbers.  Math::Complex not as efficient as POSIX, but
2059 POSIX can't work with complex numbers.
2060
2061 Rounding in financial applications can have serious implications, and
2062 the rounding method used should be specified precisely.  In these
2063 cases, it probably pays not to trust whichever system rounding is
2064 being used by Perl, but to instead implement the rounding function you
2065 need yourself.
2066
2067 =head2 Bigger Numbers
2068
2069 The standard Math::BigInt and Math::BigFloat modules provide
2070 variable-precision arithmetic and overloaded operators, although
2071 they're currently pretty slow. At the cost of some space and
2072 considerable speed, they avoid the normal pitfalls associated with
2073 limited-precision representations.
2074
2075     use Math::BigInt;
2076     $x = Math::BigInt->new('123456789123456789');
2077     print $x * $x;
2078
2079     # prints +15241578780673678515622620750190521
2080
2081 There are several modules that let you calculate with (bound only by
2082 memory and cpu-time) unlimited or fixed precision. There are also
2083 some non-standard modules that provide faster implementations via
2084 external C libraries.
2085
2086 Here is a short, but incomplete summary:
2087
2088         Math::Fraction          big, unlimited fractions like 9973 / 12967
2089         Math::String            treat string sequences like numbers
2090         Math::FixedPrecision    calculate with a fixed precision
2091         Math::Currency          for currency calculations
2092         Bit::Vector             manipulate bit vectors fast (uses C)
2093         Math::BigIntFast        Bit::Vector wrapper for big numbers
2094         Math::Pari              provides access to the Pari C library
2095         Math::BigInteger        uses an external C library
2096         Math::Cephes            uses external Cephes C library (no big numbers)
2097         Math::Cephes::Fraction  fractions via the Cephes library
2098         Math::GMP               another one using an external C library
2099
2100 Choose wisely.
2101
2102 =cut