This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
allow evals to see the full lexical scope
[perl5.git] / pod / perlmod.pod
1 =head1 NAME
2
3 perlmod - Perl modules (packages and symbol tables)
4
5 =head1 DESCRIPTION
6
7 =head2 Packages
8
9 Perl provides a mechanism for alternative namespaces to protect
10 packages from stomping on each other's variables.  In fact, there's
11 really no such thing as a global variable in Perl.  The package
12 statement declares the compilation unit as being in the given
13 namespace.  The scope of the package declaration is from the
14 declaration itself through the end of the enclosing block, C<eval>,
15 or file, whichever comes first (the same scope as the my() and
16 local() operators).  Unqualified dynamic identifiers will be in
17 this namespace, except for those few identifiers that if unqualified,
18 default to the main package instead of the current one as described
19 below.  A package statement affects only dynamic variables--including
20 those you've used local() on--but I<not> lexical variables created
21 with my().  Typically it would be the first declaration in a file
22 included by the C<do>, C<require>, or C<use> operators.  You can
23 switch into a package in more than one place; it merely influences
24 which symbol table is used by the compiler for the rest of that
25 block.  You can refer to variables and filehandles in other packages
26 by prefixing the identifier with the package name and a double
27 colon: C<$Package::Variable>.  If the package name is null, the
28 C<main> package is assumed.  That is, C<$::sail> is equivalent to
29 C<$main::sail>.
30
31 The old package delimiter was a single quote, but double colon is now the
32 preferred delimiter, in part because it's more readable to humans, and
33 in part because it's more readable to B<emacs> macros.  It also makes C++
34 programmers feel like they know what's going on--as opposed to using the
35 single quote as separator, which was there to make Ada programmers feel
36 like they knew what's going on.  Because the old-fashioned syntax is still
37 supported for backwards compatibility, if you try to use a string like
38 C<"This is $owner's house">, you'll be accessing C<$owner::s>; that is,
39 the $s variable in package C<owner>, which is probably not what you meant.
40 Use braces to disambiguate, as in C<"This is ${owner}'s house">.
41
42 Packages may themselves contain package separators, as in
43 C<$OUTER::INNER::var>.  This implies nothing about the order of
44 name lookups, however.  There are no relative packages: all symbols
45 are either local to the current package, or must be fully qualified
46 from the outer package name down.  For instance, there is nowhere
47 within package C<OUTER> that C<$INNER::var> refers to
48 C<$OUTER::INNER::var>.  It would treat package C<INNER> as a totally
49 separate global package.
50
51 Only identifiers starting with letters (or underscore) are stored
52 in a package's symbol table.  All other symbols are kept in package
53 C<main>, including all punctuation variables, like $_.  In addition,
54 when unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV,
55 ARGVOUT, ENV, INC, and SIG are forced to be in package C<main>,
56 even when used for other purposes than their built-in one.  If you
57 have a package called C<m>, C<s>, or C<y>, then you can't use the
58 qualified form of an identifier because it would be instead interpreted
59 as a pattern match, a substitution, or a transliteration.
60
61 Variables beginning with underscore used to be forced into package
62 main, but we decided it was more useful for package writers to be able
63 to use leading underscore to indicate private variables and method names.
64 However, variables and functions named with a single C<_>, such as
65 $_ and C<sub _>, are still forced into the package C<main>.  See also
66 L<perlvar/"Technical Note on the Syntax of Variable Names">.
67
68 C<eval>ed strings are compiled in the package in which the eval() was
69 compiled.  (Assignments to C<$SIG{}>, however, assume the signal
70 handler specified is in the C<main> package.  Qualify the signal handler
71 name if you wish to have a signal handler in a package.)  For an
72 example, examine F<perldb.pl> in the Perl library.  It initially switches
73 to the C<DB> package so that the debugger doesn't interfere with variables
74 in the program you are trying to debug.  At various points, however, it
75 temporarily switches back to the C<main> package to evaluate various
76 expressions in the context of the C<main> package (or wherever you came
77 from).  See L<perldebug>.
78
79 The special symbol C<__PACKAGE__> contains the current package, but cannot
80 (easily) be used to construct variables.
81
82 See L<perlsub> for other scoping issues related to my() and local(),
83 and L<perlref> regarding closures.
84
85 =head2 Symbol Tables
86
87 The symbol table for a package happens to be stored in the hash of that
88 name with two colons appended.  The main symbol table's name is thus
89 C<%main::>, or C<%::> for short.  Likewise the symbol table for the nested
90 package mentioned earlier is named C<%OUTER::INNER::>.
91
92 The value in each entry of the hash is what you are referring to when you
93 use the C<*name> typeglob notation.  In fact, the following have the same
94 effect, though the first is more efficient because it does the symbol
95 table lookups at compile time:
96
97     local *main::foo    = *main::bar;
98     local $main::{foo}  = $main::{bar};
99
100 (Be sure to note the B<vast> difference between the second line above
101 and C<local $main::foo = $main::bar>. The former is accessing the hash
102 C<%main::>, which is the symbol table of package C<main>. The latter is
103 simply assigning scalar C<$bar> in package C<main> to scalar C<$foo> of
104 the same package.)
105
106 You can use this to print out all the variables in a package, for
107 instance.  The standard but antiquated F<dumpvar.pl> library and
108 the CPAN module Devel::Symdump make use of this.
109
110 Assignment to a typeglob performs an aliasing operation, i.e.,
111
112     *dick = *richard;
113
114 causes variables, subroutines, formats, and file and directory handles
115 accessible via the identifier C<richard> also to be accessible via the
116 identifier C<dick>.  If you want to alias only a particular variable or
117 subroutine, assign a reference instead:
118
119     *dick = \$richard;
120
121 Which makes $richard and $dick the same variable, but leaves
122 @richard and @dick as separate arrays.  Tricky, eh?
123
124 There is one subtle difference between the following statements:
125
126     *foo = *bar;
127     *foo = \$bar;
128
129 C<*foo = *bar> makes the typeglobs themselves synonymous while
130 C<*foo = \$bar> makes the SCALAR portions of two distinct typeglobs
131 refer to the same scalar value. This means that the following code:
132
133     $bar = 1;
134     *foo = \$bar;       # Make $foo an alias for $bar
135
136     {
137         local $bar = 2; # Restrict changes to block
138         print $foo;     # Prints '1'!
139     }
140
141 Would print '1', because C<$foo> holds a reference to the I<original>
142 C<$bar> -- the one that was stuffed away by C<local()> and which will be
143 restored when the block ends. Because variables are accessed through the
144 typeglob, you can use C<*foo = *bar> to create an alias which can be
145 localized. (But be aware that this means you can't have a separate
146 C<@foo> and C<@bar>, etc.)
147
148 What makes all of this important is that the Exporter module uses glob
149 aliasing as the import/export mechanism. Whether or not you can properly
150 localize a variable that has been exported from a module depends on how
151 it was exported:
152
153     @EXPORT = qw($FOO); # Usual form, can't be localized
154     @EXPORT = qw(*FOO); # Can be localized
155
156 You can work around the first case by using the fully qualified name 
157 (C<$Package::FOO>) where you need a local value, or by overriding it
158 by saying C<*FOO = *Package::FOO> in your script.
159
160 The C<*x = \$y> mechanism may be used to pass and return cheap references
161 into or from subroutines if you don't want to copy the whole
162 thing.  It only works when assigning to dynamic variables, not
163 lexicals.
164
165     %some_hash = ();                    # can't be my()
166     *some_hash = fn( \%another_hash );
167     sub fn {
168         local *hashsym = shift;
169         # now use %hashsym normally, and you
170         # will affect the caller's %another_hash
171         my %nhash = (); # do what you want
172         return \%nhash;
173     }
174
175 On return, the reference will overwrite the hash slot in the
176 symbol table specified by the *some_hash typeglob.  This
177 is a somewhat tricky way of passing around references cheaply
178 when you don't want to have to remember to dereference variables
179 explicitly.
180
181 Another use of symbol tables is for making "constant" scalars.
182
183     *PI = \3.14159265358979;
184
185 Now you cannot alter C<$PI>, which is probably a good thing all in all.
186 This isn't the same as a constant subroutine, which is subject to
187 optimization at compile-time.  A constant subroutine is one prototyped
188 to take no arguments and to return a constant expression.  See 
189 L<perlsub> for details on these.  The C<use constant> pragma is a
190 convenient shorthand for these.
191
192 You can say C<*foo{PACKAGE}> and C<*foo{NAME}> to find out what name and
193 package the *foo symbol table entry comes from.  This may be useful
194 in a subroutine that gets passed typeglobs as arguments:
195
196     sub identify_typeglob {
197         my $glob = shift;
198         print 'You gave me ', *{$glob}{PACKAGE}, '::', *{$glob}{NAME}, "\n";
199     }
200     identify_typeglob *foo;
201     identify_typeglob *bar::baz;
202
203 This prints
204
205     You gave me main::foo
206     You gave me bar::baz
207
208 The C<*foo{THING}> notation can also be used to obtain references to the
209 individual elements of *foo.  See L<perlref>.
210
211 Subroutine definitions (and declarations, for that matter) need
212 not necessarily be situated in the package whose symbol table they
213 occupy.  You can define a subroutine outside its package by
214 explicitly qualifying the name of the subroutine:
215
216     package main;
217     sub Some_package::foo { ... }   # &foo defined in Some_package
218
219 This is just a shorthand for a typeglob assignment at compile time:
220
221     BEGIN { *Some_package::foo = sub { ... } }
222
223 and is I<not> the same as writing:
224
225     {
226         package Some_package;
227         sub foo { ... }
228     }
229
230 In the first two versions, the body of the subroutine is
231 lexically in the main package, I<not> in Some_package. So
232 something like this:
233
234     package main;
235
236     $Some_package::name = "fred";
237     $main::name = "barney";
238
239     sub Some_package::foo {
240         print "in ", __PACKAGE__, ": \$name is '$name'\n";
241     }
242
243     Some_package::foo();
244
245 prints:
246
247     in main: $name is 'barney'
248
249 rather than:
250
251     in Some_package: $name is 'fred'
252
253 This also has implications for the use of the SUPER:: qualifier
254 (see L<perlobj>).
255
256 =head2 Package Constructors and Destructors
257
258 Four special subroutines act as package constructors and destructors.
259 These are the C<BEGIN>, C<CHECK>, C<INIT>, and C<END> routines.  The
260 C<sub> is optional for these routines.
261
262 A C<BEGIN> subroutine is executed as soon as possible, that is, the moment
263 it is completely defined, even before the rest of the containing file
264 is parsed.  You may have multiple C<BEGIN> blocks within a file--they
265 will execute in order of definition.  Because a C<BEGIN> block executes
266 immediately, it can pull in definitions of subroutines and such from other
267 files in time to be visible to the rest of the file.  Once a C<BEGIN>
268 has run, it is immediately undefined and any code it used is returned to
269 Perl's memory pool.  This means you can't ever explicitly call a C<BEGIN>.
270
271 An C<END> subroutine is executed as late as possible, that is, after
272 perl has finished running the program and just before the interpreter
273 is being exited, even if it is exiting as a result of a die() function.
274 (But not if it's polymorphing into another program via C<exec>, or
275 being blown out of the water by a signal--you have to trap that yourself
276 (if you can).)  You may have multiple C<END> blocks within a file--they
277 will execute in reverse order of definition; that is: last in, first
278 out (LIFO).  C<END> blocks are not executed when you run perl with the
279 C<-c> switch, or if compilation fails.
280
281 Inside an C<END> subroutine, C<$?> contains the value that the program is
282 going to pass to C<exit()>.  You can modify C<$?> to change the exit
283 value of the program.  Beware of changing C<$?> by accident (e.g. by
284 running something via C<system>).
285
286 Similar to C<BEGIN> blocks, C<INIT> blocks are run just before the
287 Perl runtime begins execution, in "first in, first out" (FIFO) order.
288 For example, the code generators documented in L<perlcc> make use of
289 C<INIT> blocks to initialize and resolve pointers to XSUBs.
290
291 Similar to C<END> blocks, C<CHECK> blocks are run just after the
292 Perl compile phase ends and before the run time begins, in
293 LIFO order.  C<CHECK> blocks are again useful in the Perl compiler
294 suite to save the compiled state of the program.
295
296 When you use the B<-n> and B<-p> switches to Perl, C<BEGIN> and
297 C<END> work just as they do in B<awk>, as a degenerate case.
298 Both C<BEGIN> and C<CHECK> blocks are run when you use the B<-c>
299 switch for a compile-only syntax check, although your main code
300 is not.
301
302 =head2 Perl Classes
303
304 There is no special class syntax in Perl, but a package may act
305 as a class if it provides subroutines to act as methods.  Such a
306 package may also derive some of its methods from another class (package)
307 by listing the other package name(s) in its global @ISA array (which 
308 must be a package global, not a lexical).
309
310 For more on this, see L<perltoot> and L<perlobj>.
311
312 =head2 Perl Modules
313
314 A module is just a set of related functions in a library file, i.e.,
315 a Perl package with the same name as the file.  It is specifically 
316 designed to be reusable by other modules or programs.  It may do this
317 by providing a mechanism for exporting some of its symbols into the
318 symbol table of any package using it.  Or it may function as a class
319 definition and make its semantics available implicitly through
320 method calls on the class and its objects, without explicitly
321 exporting anything.  Or it can do a little of both.
322
323 For example, to start a traditional, non-OO module called Some::Module,
324 create a file called F<Some/Module.pm> and start with this template:
325
326     package Some::Module;  # assumes Some/Module.pm
327
328     use strict;
329     use warnings;
330
331     BEGIN {
332         use Exporter   ();
333         our ($VERSION, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
334
335         # set the version for version checking
336         $VERSION     = 1.00;
337         # if using RCS/CVS, this may be preferred
338         $VERSION = do { my @r = (q$Revision: 2.21 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r }; # must be all one line, for MakeMaker
339
340         @ISA         = qw(Exporter);
341         @EXPORT      = qw(&func1 &func2 &func4);
342         %EXPORT_TAGS = ( );     # eg: TAG => [ qw!name1 name2! ],
343
344         # your exported package globals go here,
345         # as well as any optionally exported functions
346         @EXPORT_OK   = qw($Var1 %Hashit &func3);
347     }
348     our @EXPORT_OK;
349
350     # exported package globals go here
351     our $Var1;
352     our %Hashit;
353
354     # non-exported package globals go here
355     our @more;
356     our $stuff;
357
358     # initialize package globals, first exported ones
359     $Var1   = '';
360     %Hashit = ();
361
362     # then the others (which are still accessible as $Some::Module::stuff)
363     $stuff  = '';
364     @more   = ();
365
366     # all file-scoped lexicals must be created before
367     # the functions below that use them.
368
369     # file-private lexicals go here
370     my $priv_var    = '';
371     my %secret_hash = ();
372
373     # here's a file-private function as a closure,
374     # callable as &$priv_func;  it cannot be prototyped.
375     my $priv_func = sub {
376         # stuff goes here.
377     };
378
379     # make all your functions, whether exported or not;
380     # remember to put something interesting in the {} stubs
381     sub func1      {}    # no prototype
382     sub func2()    {}    # proto'd void
383     sub func3($$)  {}    # proto'd to 2 scalars
384
385     # this one isn't exported, but could be called!
386     sub func4(\%)  {}    # proto'd to 1 hash ref
387
388     END { }       # module clean-up code here (global destructor)
389
390     ## YOUR CODE GOES HERE
391
392     1;  # don't forget to return a true value from the file
393
394 Then go on to declare and use your variables in functions without
395 any qualifications.  See L<Exporter> and the L<perlmodlib> for
396 details on mechanics and style issues in module creation.
397
398 Perl modules are included into your program by saying
399
400     use Module;
401
402 or
403
404     use Module LIST;
405
406 This is exactly equivalent to
407
408     BEGIN { require Module; import Module; }
409
410 or
411
412     BEGIN { require Module; import Module LIST; }
413
414 As a special case
415
416     use Module ();
417
418 is exactly equivalent to
419
420     BEGIN { require Module; }
421
422 All Perl module files have the extension F<.pm>.  The C<use> operator
423 assumes this so you don't have to spell out "F<Module.pm>" in quotes.
424 This also helps to differentiate new modules from old F<.pl> and
425 F<.ph> files.  Module names are also capitalized unless they're
426 functioning as pragmas; pragmas are in effect compiler directives,
427 and are sometimes called "pragmatic modules" (or even "pragmata"
428 if you're a classicist).
429
430 The two statements:
431
432     require SomeModule;
433     require "SomeModule.pm";            
434
435 differ from each other in two ways.  In the first case, any double
436 colons in the module name, such as C<Some::Module>, are translated
437 into your system's directory separator, usually "/".   The second
438 case does not, and would have to be specified literally.  The other
439 difference is that seeing the first C<require> clues in the compiler
440 that uses of indirect object notation involving "SomeModule", as
441 in C<$ob = purge SomeModule>, are method calls, not function calls.
442 (Yes, this really can make a difference.)
443
444 Because the C<use> statement implies a C<BEGIN> block, the importing
445 of semantics happens as soon as the C<use> statement is compiled,
446 before the rest of the file is compiled.  This is how it is able
447 to function as a pragma mechanism, and also how modules are able to
448 declare subroutines that are then visible as list or unary operators for
449 the rest of the current file.  This will not work if you use C<require>
450 instead of C<use>.  With C<require> you can get into this problem:
451
452     require Cwd;                # make Cwd:: accessible
453     $here = Cwd::getcwd();
454
455     use Cwd;                    # import names from Cwd::
456     $here = getcwd();
457
458     require Cwd;                # make Cwd:: accessible
459     $here = getcwd();           # oops! no main::getcwd()
460
461 In general, C<use Module ()> is recommended over C<require Module>,
462 because it determines module availability at compile time, not in the
463 middle of your program's execution.  An exception would be if two modules
464 each tried to C<use> each other, and each also called a function from
465 that other module.  In that case, it's easy to use C<require>s instead.
466
467 Perl packages may be nested inside other package names, so we can have
468 package names containing C<::>.  But if we used that package name
469 directly as a filename it would make for unwieldy or impossible
470 filenames on some systems.  Therefore, if a module's name is, say,
471 C<Text::Soundex>, then its definition is actually found in the library
472 file F<Text/Soundex.pm>.
473
474 Perl modules always have a F<.pm> file, but there may also be
475 dynamically linked executables (often ending in F<.so>) or autoloaded
476 subroutine definitions (often ending in F<.al>) associated with the
477 module.  If so, these will be entirely transparent to the user of
478 the module.  It is the responsibility of the F<.pm> file to load
479 (or arrange to autoload) any additional functionality.  For example,
480 although the POSIX module happens to do both dynamic loading and
481 autoloading, the user can say just C<use POSIX> to get it all.
482
483 =head2 Making your module threadsafe
484
485 Perl has since 5.6.0 support for a new type of threads called
486 interpreter threads. These threads can be used explicitly and implicitly.
487
488 Ithreads work by cloning the data tree so that no data is shared
489 between different threads. These threads can be used using the threads
490 module or by doing fork() on win32 (fake fork() support). When a
491 thread is cloned all Perl data is cloned, however non-Perl data cannot
492 be cloned automatically.  Perl after 5.7.2 has support for the C<CLONE> 
493 special subroutine .  In C<CLONE> you can do whatever you need to do,
494 like for example handle the cloning of non-Perl data, if necessary.
495 C<CLONE> will be executed once for every package that has it defined
496 (or inherits it).  It will be called in the context of the new thread,
497 so all modifications are made in the new area.
498
499 If you want to CLONE all objects you will need to keep track of them per
500 package. This is simply done using a hash and Scalar::Util::weaken().
501
502 =head1 SEE ALSO
503
504 See L<perlmodlib> for general style issues related to building Perl
505 modules and classes, as well as descriptions of the standard library
506 and CPAN, L<Exporter> for how Perl's standard import/export mechanism
507 works, L<perltoot> and L<perltooc> for an in-depth tutorial on
508 creating classes, L<perlobj> for a hard-core reference document on
509 objects, L<perlsub> for an explanation of functions and scoping,
510 and L<perlxstut> and L<perlguts> for more information on writing
511 extension modules.