This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Unused dTHX, even under threads.
[perl5.git] / pod / perldata.pod
1 =head1 NAME
2
3 perldata - Perl data types
4
5 =head1 DESCRIPTION
6
7 =head2 Variable names
8 X<variable, name> X<variable name> X<data type> X<type>
9
10 Perl has three built-in data types: scalars, arrays of scalars, and
11 associative arrays of scalars, known as "hashes".  A scalar is a 
12 single string (of any size, limited only by the available memory),
13 number, or a reference to something (which will be discussed
14 in L<perlref>).  Normal arrays are ordered lists of scalars indexed
15 by number, starting with 0.  Hashes are unordered collections of scalar 
16 values indexed by their associated string key.
17
18 Values are usually referred to by name, or through a named reference.
19 The first character of the name tells you to what sort of data
20 structure it refers.  The rest of the name tells you the particular
21 value to which it refers.  Usually this name is a single I<identifier>,
22 that is, a string beginning with a letter or underscore, and
23 containing letters, underscores, and digits.  In some cases, it may
24 be a chain of identifiers, separated by C<::> (or by the slightly
25 archaic C<'>); all but the last are interpreted as names of packages,
26 to locate the namespace in which to look up the final identifier
27 (see L<perlmod/Packages> for details).  For a more in-depth discussion
28 on identifiers, see L<Identifier parsing>.  It's possible to
29 substitute for a simple identifier, an expression that produces a reference
30 to the value at runtime.   This is described in more detail below
31 and in L<perlref>.
32 X<identifier>
33
34 Perl also has its own built-in variables whose names don't follow
35 these rules.  They have strange names so they don't accidentally
36 collide with one of your normal variables.  Strings that match
37 parenthesized parts of a regular expression are saved under names
38 containing only digits after the C<$> (see L<perlop> and L<perlre>).
39 In addition, several special variables that provide windows into
40 the inner working of Perl have names containing punctuation characters
41 and control characters.  These are documented in L<perlvar>.
42 X<variable, built-in>
43
44 Scalar values are always named with '$', even when referring to a
45 scalar that is part of an array or a hash.  The '$' symbol works
46 semantically like the English word "the" in that it indicates a
47 single value is expected.
48 X<scalar>
49
50     $days               # the simple scalar value "days"
51     $days[28]           # the 29th element of array @days
52     $days{'Feb'}        # the 'Feb' value from hash %days
53     $#days              # the last index of array @days
54
55 Entire arrays (and slices of arrays and hashes) are denoted by '@',
56 which works much as the word "these" or "those" does in English,
57 in that it indicates multiple values are expected.
58 X<array>
59
60     @days               # ($days[0], $days[1],... $days[n])
61     @days[3,4,5]        # same as ($days[3],$days[4],$days[5])
62     @days{'a','c'}      # same as ($days{'a'},$days{'c'})
63
64 Entire hashes are denoted by '%':
65 X<hash>
66
67     %days               # (key1, val1, key2, val2 ...)
68
69 In addition, subroutines are named with an initial '&', though this
70 is optional when unambiguous, just as the word "do" is often redundant
71 in English.  Symbol table entries can be named with an initial '*',
72 but you don't really care about that yet (if ever :-).
73
74 Every variable type has its own namespace, as do several
75 non-variable identifiers.  This means that you can, without fear
76 of conflict, use the same name for a scalar variable, an array, or
77 a hash--or, for that matter, for a filehandle, a directory handle, a
78 subroutine name, a format name, or a label.  This means that $foo
79 and @foo are two different variables.  It also means that C<$foo[1]>
80 is a part of @foo, not a part of $foo.  This may seem a bit weird,
81 but that's okay, because it is weird.
82 X<namespace>
83
84 Because variable references always start with '$', '@', or '%', the
85 "reserved" words aren't in fact reserved with respect to variable
86 names.  They I<are> reserved with respect to labels and filehandles,
87 however, which don't have an initial special character.  You can't
88 have a filehandle named "log", for instance.  Hint: you could say
89 C<open(LOG,'logfile')> rather than C<open(log,'logfile')>.  Using
90 uppercase filehandles also improves readability and protects you
91 from conflict with future reserved words.  Case I<is> significant--"FOO",
92 "Foo", and "foo" are all different names.  Names that start with a
93 letter or underscore may also contain digits and underscores.
94 X<identifier, case sensitivity>
95 X<case>
96
97 It is possible to replace such an alphanumeric name with an expression
98 that returns a reference to the appropriate type.  For a description
99 of this, see L<perlref>.
100
101 Names that start with a digit may contain only more digits.  Names
102 that do not start with a letter, underscore, digit or a caret (i.e.
103 a control character) are limited to one character, e.g.,  C<$%> or
104 C<$$>.  (Most of these one character names have a predefined
105 significance to Perl.  For instance, C<$$> is the current process
106 id.)
107
108 =head2 Identifier parsing
109 X<identifiers>
110
111 Up until Perl 5.18, the actual rules of what a valid identifier
112 was were a bit fuzzy.  However, in general, anything defined here should
113 work on previous versions of Perl, while the opposite -- edge cases
114 that work in previous versions, but aren't defined here -- probably
115 won't work on newer versions.
116 As an important side note, please note that the following only applies
117 to bareword identifiers as found in Perl source code, not identifiers
118 introduced through symbolic references, which have much fewer
119 restrictions.
120 If working under the effect of the C<use utf8;> pragma, the following
121 rules apply:
122
123     / (?[ ( \p{Word} & \p{XID_Start} ) + [_] ])
124       (?[ ( \p{Word} & \p{XID_Continue} ) ]) *    /x
125
126 That is, a "start" character followed by any number of "continue"
127 characters.  Perl requires every character in an identifier to also
128 match C<\w> (this prevents some problematic cases); and Perl
129 additionally accepts identfier names beginning with an underscore.
130
131 If not under C<use utf8>, the source is treated as ASCII + 128 extra
132 controls, and identifiers should match
133
134     / (?aa) (?!\d) \w+ /x
135
136 That is, any word character in the ASCII range, as long as the first
137 character is not a digit.
138
139 There are two package separators in Perl: A double colon (C<::>) and a single
140 quote (C<'>).  Normal identifiers can start or end with a double colon, and
141 can contain several parts delimited by double colons.
142 Single quotes have similar rules, but with the exception that they are not
143 legal at the end of an identifier: That is, C<$'foo> and C<$foo'bar> are
144 legal, but C<$foo'bar'> is not.
145
146 Additionally, if the identifier is preceded by a sigil --
147 that is, if the identifier is part of a variable name -- it
148 may optionally be enclosed in braces.
149
150 While you can mix double colons with singles quotes, the quotes must come
151 after the colons: C<$::::'foo> and C<$foo::'bar> are legal, but C<$::'::foo>
152 and C<$foo'::bar> are not.
153
154 Put together, a grammar to match a basic identifier becomes
155
156  /
157   (?(DEFINE)
158       (?<variable>
159           (?&sigil)
160           (?:
161                   (?&normal_identifier)
162               |   \{ \s* (?&normal_identifier) \s* \}
163           )
164       )
165       (?<normal_identifier>
166           (?: :: )* '?
167            (?&basic_identifier)
168            (?: (?= (?: :: )+ '? | (?: :: )* ' ) (?&normal_identifier) )?
169           (?: :: )*
170       )
171       (?<basic_identifier>
172         # is use utf8 on?
173           (?(?{ (caller(0))[8] & $utf8::hint_bits })
174               (?&Perl_XIDS) (?&Perl_XIDC)*
175             | (?aa) (?!\d) \w+
176           )
177       )
178       (?<sigil> [&*\$\@\%])
179       (?<Perl_XIDS> (?[ ( \p{Word} & \p{XID_Start} ) + [_] ]) )
180       (?<Perl_XIDC> (?[ \p{Word} & \p{XID_Continue} ]) )
181   )
182  /x
183
184 Meanwhile, special identifiers don't follow the above rules; For the most
185 part, all of the identifiers in this category have a special meaning given
186 by Perl.  Because they have special parsing rules, these generally can't be
187 fully-qualified.  They come in four forms:
188
189 =over
190
191 =item A sigil, followed solely by digits matching \p{POSIX_Digit}, like C<$0>,
192 C<$1>, or C<$10000>.
193
194 =item A sigil, followed by either a caret and a single POSIX uppercase letter,
195 like C<$^V> or C<$^W>, or a sigil followed by a literal control character
196 matching the C<\p{POSIX_Cntrl}> property.
197 Due to a historical oddity, if not
198 running under C<use utf8>, the 128 extra controls in the C<[0x80-0xff]> range
199 may also be used in length one variables.  The use of a literal control
200 character is deprecated.  Support for this form will be removed in a future
201 version of perl.
202
203 =item Similar to the above, a sigil, followed by bareword text in brackets,
204 where the first character is either a caret followed by an uppercase letter,
205 or a literal control, like C<${^GLOBAL_PHASE}> or C<${\7LOBAL_PHASE}>.  The use
206 of a literal control character is deprecated.  Support for this form will be
207 removed in a future version of perl.
208
209 =item A sigil followed by a single character matching the C<\p{POSIX_Punct}>
210 property, like C<$!> or C<%+>.
211
212 =back
213
214 Note that as of Perl 5.20, literal control characters in variable names
215 are deprecated.
216
217 =head2 Context
218 X<context> X<scalar context> X<list context>
219
220 The interpretation of operations and values in Perl sometimes depends
221 on the requirements of the context around the operation or value.
222 There are two major contexts: list and scalar.  Certain operations
223 return list values in contexts wanting a list, and scalar values
224 otherwise.  If this is true of an operation it will be mentioned in
225 the documentation for that operation.  In other words, Perl overloads
226 certain operations based on whether the expected return value is
227 singular or plural.  Some words in English work this way, like "fish"
228 and "sheep".
229
230 In a reciprocal fashion, an operation provides either a scalar or a
231 list context to each of its arguments.  For example, if you say
232
233     int( <STDIN> )
234
235 the integer operation provides scalar context for the <>
236 operator, which responds by reading one line from STDIN and passing it
237 back to the integer operation, which will then find the integer value
238 of that line and return that.  If, on the other hand, you say
239
240     sort( <STDIN> )
241
242 then the sort operation provides list context for <>, which
243 will proceed to read every line available up to the end of file, and
244 pass that list of lines back to the sort routine, which will then
245 sort those lines and return them as a list to whatever the context
246 of the sort was.
247
248 Assignment is a little bit special in that it uses its left argument
249 to determine the context for the right argument.  Assignment to a
250 scalar evaluates the right-hand side in scalar context, while
251 assignment to an array or hash evaluates the righthand side in list
252 context.  Assignment to a list (or slice, which is just a list
253 anyway) also evaluates the right-hand side in list context.
254
255 When you use the C<use warnings> pragma or Perl's B<-w> command-line 
256 option, you may see warnings
257 about useless uses of constants or functions in "void context".
258 Void context just means the value has been discarded, such as a
259 statement containing only C<"fred";> or C<getpwuid(0);>.  It still
260 counts as scalar context for functions that care whether or not
261 they're being called in list context.
262
263 User-defined subroutines may choose to care whether they are being
264 called in a void, scalar, or list context.  Most subroutines do not
265 need to bother, though.  That's because both scalars and lists are
266 automatically interpolated into lists.  See L<perlfunc/wantarray>
267 for how you would dynamically discern your function's calling
268 context.
269
270 =head2 Scalar values
271 X<scalar> X<number> X<string> X<reference>
272
273 All data in Perl is a scalar, an array of scalars, or a hash of
274 scalars.  A scalar may contain one single value in any of three
275 different flavors: a number, a string, or a reference.  In general,
276 conversion from one form to another is transparent.  Although a
277 scalar may not directly hold multiple values, it may contain a
278 reference to an array or hash which in turn contains multiple values.
279
280 Scalars aren't necessarily one thing or another.  There's no place
281 to declare a scalar variable to be of type "string", type "number",
282 type "reference", or anything else.  Because of the automatic
283 conversion of scalars, operations that return scalars don't need
284 to care (and in fact, cannot care) whether their caller is looking
285 for a string, a number, or a reference.  Perl is a contextually
286 polymorphic language whose scalars can be strings, numbers, or
287 references (which includes objects).  Although strings and numbers
288 are considered pretty much the same thing for nearly all purposes,
289 references are strongly-typed, uncastable pointers with builtin
290 reference-counting and destructor invocation.
291
292 A scalar value is interpreted as FALSE in the Boolean sense
293 if it is undefined, the null string or the number 0 (or its
294 string equivalent, "0"), and TRUE if it is anything else.  The
295 Boolean context is just a special kind of scalar context where no 
296 conversion to a string or a number is ever performed.
297 X<boolean> X<bool> X<true> X<false> X<truth>
298
299 There are actually two varieties of null strings (sometimes referred
300 to as "empty" strings), a defined one and an undefined one.  The
301 defined version is just a string of length zero, such as C<"">.
302 The undefined version is the value that indicates that there is
303 no real value for something, such as when there was an error, or
304 at end of file, or when you refer to an uninitialized variable or
305 element of an array or hash.  Although in early versions of Perl,
306 an undefined scalar could become defined when first used in a
307 place expecting a defined value, this no longer happens except for
308 rare cases of autovivification as explained in L<perlref>.  You can
309 use the defined() operator to determine whether a scalar value is
310 defined (this has no meaning on arrays or hashes), and the undef()
311 operator to produce an undefined value.
312 X<defined> X<undefined> X<undef> X<null> X<string, null>
313
314 To find out whether a given string is a valid non-zero number, it's
315 sometimes enough to test it against both numeric 0 and also lexical
316 "0" (although this will cause noises if warnings are on).  That's 
317 because strings that aren't numbers count as 0, just as they do in B<awk>:
318
319     if ($str == 0 && $str ne "0")  {
320         warn "That doesn't look like a number";
321     }
322
323 That method may be best because otherwise you won't treat IEEE
324 notations like C<NaN> or C<Infinity> properly.  At other times, you
325 might prefer to determine whether string data can be used numerically
326 by calling the POSIX::strtod() function or by inspecting your string
327 with a regular expression (as documented in L<perlre>).
328
329     warn "has nondigits"        if     /\D/;
330     warn "not a natural number" unless /^\d+$/;             # rejects -3
331     warn "not an integer"       unless /^-?\d+$/;           # rejects +3
332     warn "not an integer"       unless /^[+-]?\d+$/;
333     warn "not a decimal number" unless /^-?\d+\.?\d*$/;     # rejects .2
334     warn "not a decimal number" unless /^-?(?:\d+(?:\.\d*)?|\.\d+)$/;
335     warn "not a C float"
336         unless /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;
337
338 The length of an array is a scalar value.  You may find the length
339 of array @days by evaluating C<$#days>, as in B<csh>.  However, this
340 isn't the length of the array; it's the subscript of the last element,
341 which is a different value since there is ordinarily a 0th element.
342 Assigning to C<$#days> actually changes the length of the array.
343 Shortening an array this way destroys intervening values.  Lengthening
344 an array that was previously shortened does not recover values
345 that were in those elements.
346 X<$#> X<array, length>
347
348 You can also gain some minuscule measure of efficiency by pre-extending
349 an array that is going to get big.  You can also extend an array
350 by assigning to an element that is off the end of the array.  You
351 can truncate an array down to nothing by assigning the null list
352 () to it.  The following are equivalent:
353
354     @whatever = ();
355     $#whatever = -1;
356
357 If you evaluate an array in scalar context, it returns the length
358 of the array.  (Note that this is not true of lists, which return
359 the last value, like the C comma operator, nor of built-in functions,
360 which return whatever they feel like returning.)  The following is
361 always true:
362 X<array, length>
363
364     scalar(@whatever) == $#whatever + 1;
365
366 Some programmers choose to use an explicit conversion so as to 
367 leave nothing to doubt:
368
369     $element_count = scalar(@whatever);
370
371 If you evaluate a hash in scalar context, it returns false if the
372 hash is empty.  If there are any key/value pairs, it returns true;
373 more precisely, the value returned is a string consisting of the
374 number of used buckets and the number of allocated buckets, separated
375 by a slash.  This is pretty much useful only to find out whether
376 Perl's internal hashing algorithm is performing poorly on your data
377 set.  For example, you stick 10,000 things in a hash, but evaluating
378 %HASH in scalar context reveals C<"1/16">, which means only one out
379 of sixteen buckets has been touched, and presumably contains all
380 10,000 of your items.  This isn't supposed to happen.  If a tied hash
381 is evaluated in scalar context, the C<SCALAR> method is called (with a
382 fallback to C<FIRSTKEY>).
383 X<hash, scalar context> X<hash, bucket> X<bucket>
384
385 You can preallocate space for a hash by assigning to the keys() function.
386 This rounds up the allocated buckets to the next power of two:
387
388     keys(%users) = 1000;                # allocate 1024 buckets
389
390 =head2 Scalar value constructors
391 X<scalar, literal> X<scalar, constant>
392
393 Numeric literals are specified in any of the following floating point or
394 integer formats:
395
396     12345
397     12345.67
398     .23E-10             # a very small number
399     3.14_15_92          # a very important number
400     4_294_967_296       # underscore for legibility
401     0xff                # hex
402     0xdead_beef         # more hex   
403     0377                # octal (only numbers, begins with 0)
404     0b011011            # binary
405
406 You are allowed to use underscores (underbars) in numeric literals
407 between digits for legibility (but not multiple underscores in a row:
408 C<23__500> is not legal; C<23_500> is).
409 You could, for example, group binary
410 digits by threes (as for a Unix-style mode argument such as 0b110_100_100)
411 or by fours (to represent nibbles, as in 0b1010_0110) or in other groups.
412 X<number, literal>
413
414 String literals are usually delimited by either single or double
415 quotes.  They work much like quotes in the standard Unix shells:
416 double-quoted string literals are subject to backslash and variable
417 substitution; single-quoted strings are not (except for C<\'> and
418 C<\\>).  The usual C-style backslash rules apply for making
419 characters such as newline, tab, etc., as well as some more exotic
420 forms.  See L<perlop/"Quote and Quote-like Operators"> for a list.
421 X<string, literal>
422
423 Hexadecimal, octal, or binary, representations in string literals
424 (e.g. '0xff') are not automatically converted to their integer
425 representation.  The hex() and oct() functions make these conversions
426 for you.  See L<perlfunc/hex> and L<perlfunc/oct> for more details.
427
428 You can also embed newlines directly in your strings, i.e., they can end
429 on a different line than they begin.  This is nice, but if you forget
430 your trailing quote, the error will not be reported until Perl finds
431 another line containing the quote character, which may be much further
432 on in the script.  Variable substitution inside strings is limited to
433 scalar variables, arrays, and array or hash slices.  (In other words,
434 names beginning with $ or @, followed by an optional bracketed
435 expression as a subscript.)  The following code segment prints out "The
436 price is $Z<>100."
437 X<interpolation>
438
439     $Price = '$100';    # not interpolated
440     print "The price is $Price.\n";     # interpolated
441
442 There is no double interpolation in Perl, so the C<$100> is left as is.
443
444 By default floating point numbers substituted inside strings use the
445 dot (".")  as the decimal separator.  If C<use locale> is in effect,
446 and POSIX::setlocale() has been called, the character used for the
447 decimal separator is affected by the LC_NUMERIC locale.
448 See L<perllocale> and L<POSIX>.
449
450 As in some shells, you can enclose the variable name in braces to
451 disambiguate it from following alphanumerics (and underscores).
452 You must also do
453 this when interpolating a variable into a string to separate the
454 variable name from a following double-colon or an apostrophe, since
455 these would be otherwise treated as a package separator:
456 X<interpolation>
457
458     $who = "Larry";
459     print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
460     print "We use ${who}speak when ${who}'s here.\n";
461
462 Without the braces, Perl would have looked for a $whospeak, a
463 C<$who::0>, and a C<$who's> variable.  The last two would be the
464 $0 and the $s variables in the (presumably) non-existent package
465 C<who>.
466
467 In fact, a simple identifier within such curlies is forced to be
468 a string, and likewise within a hash subscript.  Neither need
469 quoting.  Our earlier example, C<$days{'Feb'}> can be written as
470 C<$days{Feb}> and the quotes will be assumed automatically.  But
471 anything more complicated in the subscript will be interpreted as an
472 expression.  This means for example that C<$version{2.0}++> is
473 equivalent to C<$version{2}++>, not to C<$version{'2.0'}++>.
474
475 =head3 Version Strings
476 X<version string> X<vstring> X<v-string>
477
478 A literal of the form C<v1.20.300.4000> is parsed as a string composed
479 of characters with the specified ordinals.  This form, known as
480 v-strings, provides an alternative, more readable way to construct
481 strings, rather than use the somewhat less readable interpolation form
482 C<"\x{1}\x{14}\x{12c}\x{fa0}">.  This is useful for representing
483 Unicode strings, and for comparing version "numbers" using the string
484 comparison operators, C<cmp>, C<gt>, C<lt> etc.  If there are two or
485 more dots in the literal, the leading C<v> may be omitted.
486
487     print v9786;              # prints SMILEY, "\x{263a}"
488     print v102.111.111;       # prints "foo"
489     print 102.111.111;        # same
490
491 Such literals are accepted by both C<require> and C<use> for
492 doing a version check.  Note that using the v-strings for IPv4
493 addresses is not portable unless you also use the
494 inet_aton()/inet_ntoa() routines of the Socket package.
495
496 Note that since Perl 5.8.1 the single-number v-strings (like C<v65>)
497 are not v-strings before the C<< => >> operator (which is usually used
498 to separate a hash key from a hash value); instead they are interpreted
499 as literal strings ('v65').  They were v-strings from Perl 5.6.0 to
500 Perl 5.8.0, but that caused more confusion and breakage than good.
501 Multi-number v-strings like C<v65.66> and C<65.66.67> continue to
502 be v-strings always.
503
504 =head3 Special Literals
505 X<special literal> X<__END__> X<__DATA__> X<END> X<DATA>
506 X<end> X<data> X<^D> X<^Z>
507
508 The special literals __FILE__, __LINE__, and __PACKAGE__
509 represent the current filename, line number, and package name at that
510 point in your program.  __SUB__ gives a reference to the current
511 subroutine.  They may be used only as separate tokens; they
512 will not be interpolated into strings.  If there is no current package
513 (due to an empty C<package;> directive), __PACKAGE__ is the undefined
514 value.  (But the empty C<package;> is no longer supported, as of version
515 5.10.)  Outside of a subroutine, __SUB__ is the undefined value.  __SUB__
516 is only available in 5.16 or higher, and only with a C<use v5.16> or
517 C<use feature "current_sub"> declaration.
518 X<__FILE__> X<__LINE__> X<__PACKAGE__> X<__SUB__>
519 X<line> X<file> X<package>
520
521 The two control characters ^D and ^Z, and the tokens __END__ and __DATA__
522 may be used to indicate the logical end of the script before the actual
523 end of file.  Any following text is ignored.
524
525 Text after __DATA__ may be read via the filehandle C<PACKNAME::DATA>,
526 where C<PACKNAME> is the package that was current when the __DATA__
527 token was encountered.  The filehandle is left open pointing to the
528 line after __DATA__.  The program should C<close DATA> when it is done
529 reading from it.  (Leaving it open leaks filehandles if the module is
530 reloaded for any reason, so it's a safer practice to close it.)  For
531 compatibility with older scripts written before __DATA__ was
532 introduced, __END__ behaves like __DATA__ in the top level script (but
533 not in files loaded with C<require> or C<do>) and leaves the remaining
534 contents of the file accessible via C<main::DATA>.
535
536 See L<SelfLoader> for more description of __DATA__, and
537 an example of its use.  Note that you cannot read from the DATA
538 filehandle in a BEGIN block: the BEGIN block is executed as soon
539 as it is seen (during compilation), at which point the corresponding
540 __DATA__ (or __END__) token has not yet been seen.
541
542 =head3 Barewords
543 X<bareword>
544
545 A word that has no other interpretation in the grammar will
546 be treated as if it were a quoted string.  These are known as
547 "barewords".  As with filehandles and labels, a bareword that consists
548 entirely of lowercase letters risks conflict with future reserved
549 words, and if you use the C<use warnings> pragma or the B<-w> switch, 
550 Perl will warn you about any such words.  Perl limits barewords (like
551 identifiers) to about 250 characters.  Future versions of Perl are likely
552 to eliminate these arbitrary limitations.
553
554 Some people may wish to outlaw barewords entirely.  If you
555 say
556
557     use strict 'subs';
558
559 then any bareword that would NOT be interpreted as a subroutine call
560 produces a compile-time error instead.  The restriction lasts to the
561 end of the enclosing block.  An inner block may countermand this
562 by saying C<no strict 'subs'>.
563
564 =head3 Array Interpolation
565 X<array, interpolation> X<interpolation, array> X<$">
566
567 Arrays and slices are interpolated into double-quoted strings
568 by joining the elements with the delimiter specified in the C<$">
569 variable (C<$LIST_SEPARATOR> if "use English;" is specified), 
570 space by default.  The following are equivalent:
571
572     $temp = join($", @ARGV);
573     system "echo $temp";
574
575     system "echo @ARGV";
576
577 Within search patterns (which also undergo double-quotish substitution)
578 there is an unfortunate ambiguity:  Is C</$foo[bar]/> to be interpreted as
579 C</${foo}[bar]/> (where C<[bar]> is a character class for the regular
580 expression) or as C</${foo[bar]}/> (where C<[bar]> is the subscript to array
581 @foo)?  If @foo doesn't otherwise exist, then it's obviously a
582 character class.  If @foo exists, Perl takes a good guess about C<[bar]>,
583 and is almost always right.  If it does guess wrong, or if you're just
584 plain paranoid, you can force the correct interpretation with curly
585 braces as above.
586
587 If you're looking for the information on how to use here-documents,
588 which used to be here, that's been moved to
589 L<perlop/Quote and Quote-like Operators>.
590
591 =head2 List value constructors
592 X<list>
593
594 List values are denoted by separating individual values by commas
595 (and enclosing the list in parentheses where precedence requires it):
596
597     (LIST)
598
599 In a context not requiring a list value, the value of what appears
600 to be a list literal is simply the value of the final element, as
601 with the C comma operator.  For example,
602
603     @foo = ('cc', '-E', $bar);
604
605 assigns the entire list value to array @foo, but
606
607     $foo = ('cc', '-E', $bar);
608
609 assigns the value of variable $bar to the scalar variable $foo.
610 Note that the value of an actual array in scalar context is the
611 length of the array; the following assigns the value 3 to $foo:
612
613     @foo = ('cc', '-E', $bar);
614     $foo = @foo;                # $foo gets 3
615
616 You may have an optional comma before the closing parenthesis of a
617 list literal, so that you can say:
618
619     @foo = (
620         1,
621         2,
622         3,
623     );
624
625 To use a here-document to assign an array, one line per element,
626 you might use an approach like this:
627
628     @sauces = <<End_Lines =~ m/(\S.*\S)/g;
629         normal tomato
630         spicy tomato
631         green chile
632         pesto
633         white wine
634     End_Lines
635
636 LISTs do automatic interpolation of sublists.  That is, when a LIST is
637 evaluated, each element of the list is evaluated in list context, and
638 the resulting list value is interpolated into LIST just as if each
639 individual element were a member of LIST.  Thus arrays and hashes lose their
640 identity in a LIST--the list
641
642     (@foo,@bar,&SomeSub,%glarch)
643
644 contains all the elements of @foo followed by all the elements of @bar,
645 followed by all the elements returned by the subroutine named SomeSub 
646 called in list context, followed by the key/value pairs of %glarch.
647 To make a list reference that does I<NOT> interpolate, see L<perlref>.
648
649 The null list is represented by ().  Interpolating it in a list
650 has no effect.  Thus ((),(),()) is equivalent to ().  Similarly,
651 interpolating an array with no elements is the same as if no
652 array had been interpolated at that point.
653
654 This interpolation combines with the facts that the opening
655 and closing parentheses are optional (except when necessary for
656 precedence) and lists may end with an optional comma to mean that
657 multiple commas within lists are legal syntax.  The list C<1,,3> is a
658 concatenation of two lists, C<1,> and C<3>, the first of which ends
659 with that optional comma.  C<1,,3> is C<(1,),(3)> is C<1,3> (And
660 similarly for C<1,,,3> is C<(1,),(,),3> is C<1,3> and so on.)  Not that
661 we'd advise you to use this obfuscation.
662
663 A list value may also be subscripted like a normal array.  You must
664 put the list in parentheses to avoid ambiguity.  For example:
665
666     # Stat returns list value.
667     $time = (stat($file))[8];
668
669     # SYNTAX ERROR HERE.
670     $time = stat($file)[8];  # OOPS, FORGOT PARENTHESES
671
672     # Find a hex digit.
673     $hexdigit = ('a','b','c','d','e','f')[$digit-10];
674
675     # A "reverse comma operator".
676     return (pop(@foo),pop(@foo))[0];
677
678 Lists may be assigned to only when each element of the list
679 is itself legal to assign to:
680
681     ($a, $b, $c) = (1, 2, 3);
682
683     ($map{'red'}, $map{'blue'}, $map{'green'}) = (0x00f, 0x0f0, 0xf00);
684
685 An exception to this is that you may assign to C<undef> in a list.
686 This is useful for throwing away some of the return values of a
687 function:
688
689     ($dev, $ino, undef, undef, $uid, $gid) = stat($file);
690
691 List assignment in scalar context returns the number of elements
692 produced by the expression on the right side of the assignment:
693
694     $x = (($foo,$bar) = (3,2,1));       # set $x to 3, not 2
695     $x = (($foo,$bar) = f());           # set $x to f()'s return count
696
697 This is handy when you want to do a list assignment in a Boolean
698 context, because most list functions return a null list when finished,
699 which when assigned produces a 0, which is interpreted as FALSE.
700
701 It's also the source of a useful idiom for executing a function or
702 performing an operation in list context and then counting the number of
703 return values, by assigning to an empty list and then using that
704 assignment in scalar context.  For example, this code:
705
706     $count = () = $string =~ /\d+/g;
707
708 will place into $count the number of digit groups found in $string.
709 This happens because the pattern match is in list context (since it
710 is being assigned to the empty list), and will therefore return a list
711 of all matching parts of the string.  The list assignment in scalar
712 context will translate that into the number of elements (here, the
713 number of times the pattern matched) and assign that to $count.  Note
714 that simply using
715
716     $count = $string =~ /\d+/g;
717
718 would not have worked, since a pattern match in scalar context will
719 only return true or false, rather than a count of matches.
720
721 The final element of a list assignment may be an array or a hash:
722
723     ($a, $b, @rest) = split;
724     my($a, $b, %rest) = @_;
725
726 You can actually put an array or hash anywhere in the list, but the first one
727 in the list will soak up all the values, and anything after it will become
728 undefined.  This may be useful in a my() or local().
729
730 A hash can be initialized using a literal list holding pairs of
731 items to be interpreted as a key and a value:
732
733     # same as map assignment above
734     %map = ('red',0x00f,'blue',0x0f0,'green',0xf00);
735
736 While literal lists and named arrays are often interchangeable, that's
737 not the case for hashes.  Just because you can subscript a list value like
738 a normal array does not mean that you can subscript a list value as a
739 hash.  Likewise, hashes included as parts of other lists (including
740 parameters lists and return lists from functions) always flatten out into
741 key/value pairs.  That's why it's good to use references sometimes.
742
743 It is often more readable to use the C<< => >> operator between key/value
744 pairs.  The C<< => >> operator is mostly just a more visually distinctive
745 synonym for a comma, but it also arranges for its left-hand operand to be
746 interpreted as a string if it's a bareword that would be a legal simple
747 identifier.  C<< => >> doesn't quote compound identifiers, that contain
748 double colons.  This makes it nice for initializing hashes:
749
750     %map = (
751                  red   => 0x00f,
752                  blue  => 0x0f0,
753                  green => 0xf00,
754    );
755
756 or for initializing hash references to be used as records:
757
758     $rec = {
759                 witch => 'Mable the Merciless',
760                 cat   => 'Fluffy the Ferocious',
761                 date  => '10/31/1776',
762     };
763
764 or for using call-by-named-parameter to complicated functions:
765
766    $field = $query->radio_group(
767                name      => 'group_name',
768                values    => ['eenie','meenie','minie'],
769                default   => 'meenie',
770                linebreak => 'true',
771                labels    => \%labels
772    );
773
774 Note that just because a hash is initialized in that order doesn't
775 mean that it comes out in that order.  See L<perlfunc/sort> for examples
776 of how to arrange for an output ordering.
777
778 If a key appears more than once in the initializer list of a hash, the last
779 occurrence wins:
780
781     %circle = (
782                   center => [5, 10],
783                   center => [27, 9],
784                   radius => 100,
785                   color => [0xDF, 0xFF, 0x00],
786                   radius => 54,
787     );
788
789     # same as
790     %circle = (
791                   center => [27, 9],
792                   color => [0xDF, 0xFF, 0x00],
793                   radius => 54,
794     );
795
796 This can be used to provide overridable configuration defaults:
797
798     # values in %args take priority over %config_defaults
799     %config = (%config_defaults, %args);
800
801 =head2 Subscripts
802
803 An array can be accessed one scalar at a
804 time by specifying a dollar sign (C<$>), then the
805 name of the array (without the leading C<@>), then the subscript inside
806 square brackets.  For example:
807
808     @myarray = (5, 50, 500, 5000);
809     print "The Third Element is", $myarray[2], "\n";
810
811 The array indices start with 0.  A negative subscript retrieves its 
812 value from the end.  In our example, C<$myarray[-1]> would have been 
813 5000, and C<$myarray[-2]> would have been 500.
814
815 Hash subscripts are similar, only instead of square brackets curly brackets
816 are used.  For example:
817
818     %scientists = 
819     (
820         "Newton" => "Isaac",
821         "Einstein" => "Albert",
822         "Darwin" => "Charles",
823         "Feynman" => "Richard",
824     );
825
826     print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";
827
828 You can also subscript a list to get a single element from it:
829
830     $dir = (getpwnam("daemon"))[7];
831
832 =head2 Multi-dimensional array emulation
833
834 Multidimensional arrays may be emulated by subscripting a hash with a
835 list.  The elements of the list are joined with the subscript separator
836 (see L<perlvar/$;>).
837
838     $foo{$a,$b,$c}
839
840 is equivalent to
841
842     $foo{join($;, $a, $b, $c)}
843
844 The default subscript separator is "\034", the same as SUBSEP in B<awk>.
845
846 =head2 Slices
847 X<slice> X<array, slice> X<hash, slice>
848
849 A slice accesses several elements of a list, an array, or a hash
850 simultaneously using a list of subscripts.  It's more convenient
851 than writing out the individual elements as a list of separate
852 scalar values.
853
854     ($him, $her)   = @folks[0,-1];              # array slice
855     @them          = @folks[0 .. 3];            # array slice
856     ($who, $home)  = @ENV{"USER", "HOME"};      # hash slice
857     ($uid, $dir)   = (getpwnam("daemon"))[2,7]; # list slice
858
859 Since you can assign to a list of variables, you can also assign to
860 an array or hash slice.
861
862     @days[3..5]    = qw/Wed Thu Fri/;
863     @colors{'red','blue','green'} 
864                    = (0xff0000, 0x0000ff, 0x00ff00);
865     @folks[0, -1]  = @folks[-1, 0];
866
867 The previous assignments are exactly equivalent to
868
869     ($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
870     ($colors{'red'}, $colors{'blue'}, $colors{'green'})
871                    = (0xff0000, 0x0000ff, 0x00ff00);
872     ($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);
873
874 Since changing a slice changes the original array or hash that it's
875 slicing, a C<foreach> construct will alter some--or even all--of the
876 values of the array or hash.
877
878     foreach (@array[ 4 .. 10 ]) { s/peter/paul/ } 
879
880     foreach (@hash{qw[key1 key2]}) {
881         s/^\s+//;           # trim leading whitespace
882         s/\s+$//;           # trim trailing whitespace
883         s/(\w+)/\u\L$1/g;   # "titlecase" words
884     }
885
886 A slice of an empty list is still an empty list.  Thus:
887
888     @a = ()[1,0];           # @a has no elements
889     @b = (@a)[0,1];         # @b has no elements
890
891 But:
892
893     @a = (1)[1,0];          # @a has two elements
894     @b = (1,undef)[1,0,2];  # @b has three elements
895
896 More generally, a slice yields the empty list if it indexes only
897 beyond the end of a list:
898
899     @a = (1)[  1,2];        # @a has no elements
900     @b = (1)[0,1,2];        # @b has three elements
901
902 This makes it easy to write loops that terminate when a null list
903 is returned:
904
905     while ( ($home, $user) = (getpwent)[7,0]) {
906         printf "%-8s %s\n", $user, $home;
907     }
908
909 As noted earlier in this document, the scalar sense of list assignment
910 is the number of elements on the right-hand side of the assignment.
911 The null list contains no elements, so when the password file is
912 exhausted, the result is 0, not 2.
913
914 Slices in scalar context return the last item of the slice.
915
916     @a = qw/first second third/;
917     %h = (first => 'A', second => 'B');
918     $t = @a[0, 1];                  # $t is now 'second'
919     $u = @h{'first', 'second'};     # $u is now 'B'
920
921 If you're confused about why you use an '@' there on a hash slice
922 instead of a '%', think of it like this.  The type of bracket (square
923 or curly) governs whether it's an array or a hash being looked at.
924 On the other hand, the leading symbol ('$' or '@') on the array or
925 hash indicates whether you are getting back a singular value (a
926 scalar) or a plural one (a list).
927
928 =head3 Key/Value Hash Slices
929
930 Starting in Perl 5.20, a hash slice operation
931 with the % symbol is a variant of slice operation
932 returning a list of key/value pairs rather than just values:
933
934     %h = (blonk => 2, foo => 3, squink => 5, bar => 8);
935     %subset = %h{'foo', 'bar'}; # key/value hash slice
936     # %subset is now (foo => 3, bar => 8)
937
938 However, the result of such a slice cannot be localized, deleted or used
939 in assignment.  These are otherwise very much consistent with hash slices
940 using the @ symbol.
941
942 =head3 Index/Value Array Slices
943
944 Similar to key/value hash slices (and also introduced
945 in Perl 5.20), the % array slice syntax returns a list
946 of index/value pairs:
947
948     @a = "a".."z";
949     @list = %a[3,4,6];
950     # @list is now (3, "d", 4, "e", 6, "g")
951
952 =head2 Typeglobs and Filehandles
953 X<typeglob> X<filehandle> X<*>
954
955 Perl uses an internal type called a I<typeglob> to hold an entire
956 symbol table entry.  The type prefix of a typeglob is a C<*>, because
957 it represents all types.  This used to be the preferred way to
958 pass arrays and hashes by reference into a function, but now that
959 we have real references, this is seldom needed.  
960
961 The main use of typeglobs in modern Perl is create symbol table aliases.
962 This assignment:
963
964     *this = *that;
965
966 makes $this an alias for $that, @this an alias for @that, %this an alias
967 for %that, &this an alias for &that, etc.  Much safer is to use a reference.
968 This:
969
970     local *Here::blue = \$There::green;
971
972 temporarily makes $Here::blue an alias for $There::green, but doesn't
973 make @Here::blue an alias for @There::green, or %Here::blue an alias for
974 %There::green, etc.  See L<perlmod/"Symbol Tables"> for more examples
975 of this.  Strange though this may seem, this is the basis for the whole
976 module import/export system.
977
978 Another use for typeglobs is to pass filehandles into a function or
979 to create new filehandles.  If you need to use a typeglob to save away
980 a filehandle, do it this way:
981
982     $fh = *STDOUT;
983
984 or perhaps as a real reference, like this:
985
986     $fh = \*STDOUT;
987
988 See L<perlsub> for examples of using these as indirect filehandles
989 in functions.
990
991 Typeglobs are also a way to create a local filehandle using the local()
992 operator.  These last until their block is exited, but may be passed back.
993 For example:
994
995     sub newopen {
996         my $path = shift;
997         local  *FH;  # not my!
998         open   (FH, $path)          or  return undef;
999         return *FH;
1000     }
1001     $fh = newopen('/etc/passwd');
1002
1003 Now that we have the C<*foo{THING}> notation, typeglobs aren't used as much
1004 for filehandle manipulations, although they're still needed to pass brand
1005 new file and directory handles into or out of functions.  That's because
1006 C<*HANDLE{IO}> only works if HANDLE has already been used as a handle.
1007 In other words, C<*FH> must be used to create new symbol table entries;
1008 C<*foo{THING}> cannot.  When in doubt, use C<*FH>.
1009
1010 All functions that are capable of creating filehandles (open(),
1011 opendir(), pipe(), socketpair(), sysopen(), socket(), and accept())
1012 automatically create an anonymous filehandle if the handle passed to
1013 them is an uninitialized scalar variable.  This allows the constructs
1014 such as C<open(my $fh, ...)> and C<open(local $fh,...)> to be used to
1015 create filehandles that will conveniently be closed automatically when
1016 the scope ends, provided there are no other references to them.  This
1017 largely eliminates the need for typeglobs when opening filehandles
1018 that must be passed around, as in the following example:
1019
1020     sub myopen {
1021         open my $fh, "@_"
1022              or die "Can't open '@_': $!";
1023         return $fh;
1024     }
1025
1026     {
1027         my $f = myopen("</etc/motd");
1028         print <$f>;
1029         # $f implicitly closed here
1030     }
1031
1032 Note that if an initialized scalar variable is used instead the
1033 result is different: C<my $fh='zzz'; open($fh, ...)> is equivalent
1034 to C<open( *{'zzz'}, ...)>.
1035 C<use strict 'refs'> forbids such practice.
1036
1037 Another way to create anonymous filehandles is with the Symbol
1038 module or with the IO::Handle module and its ilk.  These modules
1039 have the advantage of not hiding different types of the same name
1040 during the local().  See the bottom of L<perlfunc/open> for an
1041 example.
1042
1043 =head1 SEE ALSO
1044
1045 See L<perlvar> for a description of Perl's built-in variables and
1046 a discussion of legal variable names.  See L<perlref>, L<perlsub>,
1047 and L<perlmod/"Symbol Tables"> for more discussion on typeglobs and
1048 the C<*foo{THING}> syntax.