This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perldelta for 7bdb4ff09
[perl5.git] / pod / perlfunc.pod
1 =head1 NAME
2 X<function>
3
4 perlfunc - Perl builtin functions
5
6 =head1 DESCRIPTION
7
8 The functions in this section can serve as terms in an expression.
9 They fall into two major categories: list operators and named unary
10 operators.  These differ in their precedence relationship with a
11 following comma.  (See the precedence table in L<perlop>.)  List
12 operators take more than one argument, while unary operators can never
13 take more than one argument.  Thus, a comma terminates the argument of
14 a unary operator, but merely separates the arguments of a list
15 operator.  A unary operator generally provides scalar context to its
16 argument, while a list operator may provide either scalar or list
17 contexts for its arguments.  If it does both, scalar arguments 
18 come first and list argument follow, and there can only ever
19 be one such list argument.  For instance, splice() has three scalar
20 arguments followed by a list, whereas gethostbyname() has four scalar
21 arguments.
22
23 In the syntax descriptions that follow, list operators that expect a
24 list (and provide list context for elements of the list) are shown
25 with LIST as an argument.  Such a list may consist of any combination
26 of scalar arguments or list values; the list values will be included
27 in the list as if each individual element were interpolated at that
28 point in the list, forming a longer single-dimensional list value.
29 Commas should separate literal elements of the LIST.
30
31 Any function in the list below may be used either with or without
32 parentheses around its arguments.  (The syntax descriptions omit the
33 parentheses.)  If you use parentheses, the simple but occasionally 
34 surprising rule is this: It I<looks> like a function, therefore it I<is> a
35 function, and precedence doesn't matter.  Otherwise it's a list
36 operator or unary operator, and precedence does matter.  Whitespace
37 between the function and left parenthesis doesn't count, so sometimes
38 you need to be careful:
39
40     print 1+2+4;      # Prints 7.
41     print(1+2) + 4;   # Prints 3.
42     print (1+2)+4;    # Also prints 3!
43     print +(1+2)+4;   # Prints 7.
44     print ((1+2)+4);  # Prints 7.
45
46 If you run Perl with the B<-w> switch it can warn you about this.  For
47 example, the third line above produces:
48
49     print (...) interpreted as function at - line 1.
50     Useless use of integer addition in void context at - line 1.
51
52 A few functions take no arguments at all, and therefore work as neither
53 unary nor list operators.  These include such functions as C<time>
54 and C<endpwent>.  For example, C<time+86_400> always means
55 C<time() + 86_400>.
56
57 For functions that can be used in either a scalar or list context,
58 nonabortive failure is generally indicated in scalar context by
59 returning the undefined value, and in list context by returning the
60 empty list.
61
62 Remember the following important rule: There is B<no rule> that relates
63 the behavior of an expression in list context to its behavior in scalar
64 context, or vice versa.  It might do two totally different things.
65 Each operator and function decides which sort of value would be most
66 appropriate to return in scalar context.  Some operators return the
67 length of the list that would have been returned in list context.  Some
68 operators return the first value in the list.  Some operators return the
69 last value in the list.  Some operators return a count of successful
70 operations.  In general, they do what you want, unless you want
71 consistency.
72 X<context>
73
74 A named array in scalar context is quite different from what would at
75 first glance appear to be a list in scalar context.  You can't get a list
76 like C<(1,2,3)> into being in scalar context, because the compiler knows
77 the context at compile time.  It would generate the scalar comma operator
78 there, not the list construction version of the comma.  That means it
79 was never a list to start with.
80
81 In general, functions in Perl that serve as wrappers for system calls ("syscalls")
82 of the same name (like chown(2), fork(2), closedir(2), etc.) return
83 true when they succeed and C<undef> otherwise, as is usually mentioned
84 in the descriptions below.  This is different from the C interfaces,
85 which return C<-1> on failure.  Exceptions to this rule include C<wait>,
86 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
87 variable on failure.  Other functions do not, except accidentally.
88
89 Extension modules can also hook into the Perl parser to define new
90 kinds of keyword-headed expression.  These may look like functions, but
91 may also look completely different.  The syntax following the keyword
92 is defined entirely by the extension.  If you are an implementor, see
93 L<perlapi/PL_keyword_plugin> for the mechanism.  If you are using such
94 a module, see the module's documentation for details of the syntax that
95 it defines.
96
97 =head2 Perl Functions by Category
98 X<function>
99
100 Here are Perl's functions (including things that look like
101 functions, like some keywords and named operators)
102 arranged by category.  Some functions appear in more
103 than one place.
104
105 =over 4
106
107 =item Functions for SCALARs or strings
108 X<scalar> X<string> X<character>
109
110 =for Pod::Functions =String
111
112 C<chomp>, C<chop>, C<chr>, C<crypt>, C<fc>, C<hex>, C<index>, C<lc>,
113 C<lcfirst>, C<length>, C<oct>, C<ord>, C<pack>, C<q//>, C<qq//>, C<reverse>,
114 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
115
116 C<fc> is available only if the C<"fc"> feature is enabled or if it is
117 prefixed with C<CORE::>.  The C<"fc"> feature is enabled automatically
118 with a C<use v5.16> (or higher) declaration in the current scope.
119
120
121 =item Regular expressions and pattern matching
122 X<regular expression> X<regex> X<regexp>
123
124 =for Pod::Functions =Regexp
125
126 C<m//>, C<pos>, C<qr//>, C<quotemeta>, C<s///>, C<split>, C<study>
127
128 =item Numeric functions
129 X<numeric> X<number> X<trigonometric> X<trigonometry>
130
131 =for Pod::Functions =Math
132
133 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
134 C<sin>, C<sqrt>, C<srand>
135
136 =item Functions for real @ARRAYs
137 X<array>
138
139 =for Pod::Functions =ARRAY
140
141 C<each>, C<keys>, C<pop>, C<push>, C<shift>, C<splice>, C<unshift>, C<values>
142
143 =item Functions for list data
144 X<list>
145
146 =for Pod::Functions =LIST
147
148 C<grep>, C<join>, C<map>, C<qw//>, C<reverse>, C<sort>, C<unpack>
149
150 =item Functions for real %HASHes
151 X<hash>
152
153 =for Pod::Functions =HASH
154
155 C<delete>, C<each>, C<exists>, C<keys>, C<values>
156
157 =item Input and output functions
158 X<I/O> X<input> X<output> X<dbm>
159
160 =for Pod::Functions =I/O
161
162 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
163 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
164 C<readdir>, C<readline> C<rewinddir>, C<say>, C<seek>, C<seekdir>, C<select>,
165 C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>,
166 C<truncate>, C<warn>, C<write>
167
168 C<say> is available only if the C<"say"> feature is enabled or if it is
169 prefixed with C<CORE::>.  The C<"say"> feature is enabled automatically
170 with a C<use v5.10> (or higher) declaration in the current scope.
171
172 =item Functions for fixed-length data or records
173
174 =for Pod::Functions =Binary
175
176 C<pack>, C<read>, C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<unpack>,
177 C<vec>
178
179 =item Functions for filehandles, files, or directories
180 X<file> X<filehandle> X<directory> X<pipe> X<link> X<symlink>
181
182 =for Pod::Functions =File
183
184 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
185 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
186 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
187 C<umask>, C<unlink>, C<utime>
188
189 =item Keywords related to the control flow of your Perl program
190 X<control flow>
191
192 =for Pod::Functions =Flow
193
194 C<break>, C<caller>, C<continue>, C<die>, C<do>,
195 C<dump>, C<eval>, C<evalbytes> C<exit>,
196 C<__FILE__>, C<goto>, C<last>, C<__LINE__>, C<next>, C<__PACKAGE__>,
197 C<redo>, C<return>, C<sub>, C<__SUB__>, C<wantarray>
198
199 C<break> is available only if you enable the experimental C<"switch">
200 feature or use the C<CORE::> prefix.  The C<"switch"> feature also enables
201 the C<default>, C<given> and C<when> statements, which are documented in
202 L<perlsyn/"Switch Statements">.  The C<"switch"> feature is enabled
203 automatically with a C<use v5.10> (or higher) declaration in the current
204 scope.  In Perl v5.14 and earlier, C<continue> required the C<"switch">
205 feature, like the other keywords.
206
207 C<evalbytes> is only available with the C<"evalbytes"> feature (see
208 L<feature>) or if prefixed with C<CORE::>.  C<__SUB__> is only available
209 with the C<"current_sub"> feature or if prefixed with C<CORE::>.  Both
210 the C<"evalbytes"> and C<"current_sub"> features are enabled automatically
211 with a C<use v5.16> (or higher) declaration in the current scope.
212
213 =item Keywords related to scoping
214
215 =for Pod::Functions =Namespace
216
217 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<state>, C<use>
218
219 C<state> is available only if the C<"state"> feature is enabled or if it is
220 prefixed with C<CORE::>.  The C<"state"> feature is enabled automatically
221 with a C<use v5.10> (or higher) declaration in the current scope.
222
223 =item Miscellaneous functions
224
225 =for Pod::Functions =Misc
226
227 C<defined>, C<formline>, C<lock>, C<prototype>, C<reset>, C<scalar>, C<undef>
228
229 =item Functions for processes and process groups
230 X<process> X<pid> X<process id>
231
232 =for Pod::Functions =Process
233
234 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
235 C<pipe>, C<qx//>, C<readpipe>, C<setpgrp>,
236 C<setpriority>, C<sleep>, C<system>,
237 C<times>, C<wait>, C<waitpid>
238
239 =item Keywords related to Perl modules
240 X<module>
241
242 =for Pod::Functions =Modules
243
244 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
245
246 =item Keywords related to classes and object-orientation
247 X<object> X<class> X<package>
248
249 =for Pod::Functions =Objects
250
251 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
252 C<untie>, C<use>
253
254 =item Low-level socket functions
255 X<socket> X<sock>
256
257 =for Pod::Functions =Socket
258
259 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
260 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
261 C<socket>, C<socketpair>
262
263 =item System V interprocess communication functions
264 X<IPC> X<System V> X<semaphore> X<shared memory> X<memory> X<message>
265
266 =for Pod::Functions =SysV
267
268 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
269 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
270
271 =item Fetching user and group info
272 X<user> X<group> X<password> X<uid> X<gid>  X<passwd> X</etc/passwd>
273
274 =for Pod::Functions =User
275
276 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
277 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
278 C<getpwuid>, C<setgrent>, C<setpwent>
279
280 =item Fetching network info
281 X<network> X<protocol> X<host> X<hostname> X<IP> X<address> X<service>
282
283 =for Pod::Functions =Network
284
285 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
286 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
287 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
288 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
289 C<setnetent>, C<setprotoent>, C<setservent>
290
291 =item Time-related functions
292 X<time> X<date>
293
294 =for Pod::Functions =Time
295
296 C<gmtime>, C<localtime>, C<time>, C<times>
297
298 =item Non-function keywords
299
300 =for Pod::Functions =!Non-functions
301
302 C<and>, C<AUTOLOAD>, C<BEGIN>, C<CHECK>, C<cmp>, C<CORE>, C<__DATA__>,
303 C<default>, C<DESTROY>, C<else>, C<elseif>, C<elsif>, C<END>, C<__END__>,
304 C<eq>, C<for>, C<foreach>, C<ge>, C<given>, C<gt>, C<if>, C<INIT>, C<le>,
305 C<lt>, C<ne>, C<not>, C<or>, C<UNITCHECK>, C<unless>, C<until>, C<when>,
306 C<while>, C<x>, C<xor>
307
308 =back
309
310 =head2 Portability
311 X<portability> X<Unix> X<portable>
312
313 Perl was born in Unix and can therefore access all common Unix
314 system calls.  In non-Unix environments, the functionality of some
315 Unix system calls may not be available or details of the available
316 functionality may differ slightly.  The Perl functions affected
317 by this are:
318
319 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
320 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
321 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
322 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
323 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
324 C<getppid>, C<getpgrp>, C<getpriority>, C<getprotobynumber>,
325 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
326 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
327 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
328 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
329 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
330 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
331 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
332 C<shmwrite>, C<socket>, C<socketpair>,
333 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
334 C<times>, C<truncate>, C<umask>, C<unlink>,
335 C<utime>, C<wait>, C<waitpid>
336
337 For more information about the portability of these functions, see
338 L<perlport> and other available platform-specific documentation.
339
340 =head2 Alphabetical Listing of Perl Functions
341
342 =over 
343
344 =item -X FILEHANDLE
345 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
346 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
347
348 =item -X EXPR
349
350 =item -X DIRHANDLE
351
352 =item -X
353
354 =for Pod::Functions a file test (-r, -x, etc)
355
356 A file test, where X is one of the letters listed below.  This unary
357 operator takes one argument, either a filename, a filehandle, or a dirhandle, 
358 and tests the associated file to see if something is true about it.  If the
359 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
360 Unless otherwise documented, it returns C<1> for true and C<''> for false.
361 If the file doesn't exist or can't be examined, it returns C<undef> and
362 sets C<$!> (errno).  Despite the funny names, precedence is the same as any
363 other named unary operator.  The operator may be any of:
364
365     -r  File is readable by effective uid/gid.
366     -w  File is writable by effective uid/gid.
367     -x  File is executable by effective uid/gid.
368     -o  File is owned by effective uid.
369
370     -R  File is readable by real uid/gid.
371     -W  File is writable by real uid/gid.
372     -X  File is executable by real uid/gid.
373     -O  File is owned by real uid.
374
375     -e  File exists.
376     -z  File has zero size (is empty).
377     -s  File has nonzero size (returns size in bytes).
378
379     -f  File is a plain file.
380     -d  File is a directory.
381     -l  File is a symbolic link (false if symlinks aren't
382         supported by the file system).
383     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
384     -S  File is a socket.
385     -b  File is a block special file.
386     -c  File is a character special file.
387     -t  Filehandle is opened to a tty.
388
389     -u  File has setuid bit set.
390     -g  File has setgid bit set.
391     -k  File has sticky bit set.
392
393     -T  File is an ASCII or UTF-8 text file (heuristic guess).
394     -B  File is a "binary" file (opposite of -T).
395
396     -M  Script start time minus file modification time, in days.
397     -A  Same for access time.
398     -C  Same for inode change time (Unix, may differ for other
399         platforms)
400
401 Example:
402
403     while (<>) {
404         chomp;
405         next unless -f $_;  # ignore specials
406         #...
407     }
408
409 Note that C<-s/a/b/> does not do a negated substitution.  Saying
410 C<-exp($foo)> still works as expected, however: only single letters
411 following a minus are interpreted as file tests.
412
413 These operators are exempt from the "looks like a function rule" described
414 above.  That is, an opening parenthesis after the operator does not affect
415 how much of the following code constitutes the argument.  Put the opening
416 parentheses before the operator to separate it from code that follows (this
417 applies only to operators with higher precedence than unary operators, of
418 course):
419
420     -s($file) + 1024   # probably wrong; same as -s($file + 1024)
421     (-s $file) + 1024  # correct
422
423 The interpretation of the file permission operators C<-r>, C<-R>,
424 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
425 of the file and the uids and gids of the user.  There may be other
426 reasons you can't actually read, write, or execute the file: for
427 example network filesystem access controls, ACLs (access control lists),
428 read-only filesystems, and unrecognized executable formats.  Note
429 that the use of these six specific operators to verify if some operation
430 is possible is usually a mistake, because it may be open to race
431 conditions.
432
433 Also note that, for the superuser on the local filesystems, the C<-r>,
434 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
435 if any execute bit is set in the mode.  Scripts run by the superuser
436 may thus need to do a stat() to determine the actual mode of the file,
437 or temporarily set their effective uid to something else.
438
439 If you are using ACLs, there is a pragma called C<filetest> that may
440 produce more accurate results than the bare stat() mode bits.
441 When under C<use filetest 'access'> the above-mentioned filetests
442 test whether the permission can(not) be granted using the
443 access(2) family of system calls.  Also note that the C<-x> and C<-X> may
444 under this pragma return true even if there are no execute permission
445 bits set (nor any extra execute permission ACLs).  This strangeness is
446 due to the underlying system calls' definitions.  Note also that, due to
447 the implementation of C<use filetest 'access'>, the C<_> special
448 filehandle won't cache the results of the file tests when this pragma is
449 in effect.  Read the documentation for the C<filetest> pragma for more
450 information.
451
452 The C<-T> and C<-B> switches work as follows.  The first block or so of
453 the file is examined to see if it is valid UTF-8 that includes non-ASCII
454 characters.  If, so it's a C<-T> file.  Otherwise, that same portion of
455 the file is examined for odd characters such as strange control codes or
456 characters with the high bit set.  If more than a third of the
457 characters are strange, it's a C<-B> file; otherwise it's a C<-T> file.
458 Also, any file containing a zero byte in the examined portion is
459 considered a binary file.  (If executed within the scope of a L<S<use
460 locale>|perllocale> which includes C<LC_CTYPE>, odd characters are
461 anything that isn't a printable nor space in the current locale.)  If
462 C<-T> or C<-B> is used on a filehandle, the current IO buffer is
463 examined
464 rather than the first block.  Both C<-T> and C<-B> return true on an empty
465 file, or a file at EOF when testing a filehandle.  Because you have to
466 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
467 against the file first, as in C<next unless -f $file && -T $file>.
468
469 If any of the file tests (or either the C<stat> or C<lstat> operator) is given
470 the special filehandle consisting of a solitary underline, then the stat
471 structure of the previous file test (or stat operator) is used, saving
472 a system call.  (This doesn't work with C<-t>, and you need to remember
473 that lstat() and C<-l> leave values in the stat structure for the
474 symbolic link, not the real file.)  (Also, if the stat buffer was filled by
475 an C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
476 Example:
477
478     print "Can do.\n" if -r $a || -w _ || -x _;
479
480     stat($filename);
481     print "Readable\n" if -r _;
482     print "Writable\n" if -w _;
483     print "Executable\n" if -x _;
484     print "Setuid\n" if -u _;
485     print "Setgid\n" if -g _;
486     print "Sticky\n" if -k _;
487     print "Text\n" if -T _;
488     print "Binary\n" if -B _;
489
490 As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file
491 test operators, in a way that C<-f -w -x $file> is equivalent to
492 C<-x $file && -w _ && -f _>.  (This is only fancy syntax: if you use
493 the return value of C<-f $file> as an argument to another filetest
494 operator, no special magic will happen.)
495
496 Portability issues: L<perlport/-X>.
497
498 To avoid confusing would-be users of your code with mysterious
499 syntax errors, put something like this at the top of your script:
500
501     use 5.010;  # so filetest ops can stack
502
503 =item abs VALUE
504 X<abs> X<absolute>
505
506 =item abs
507
508 =for Pod::Functions absolute value function
509
510 Returns the absolute value of its argument.
511 If VALUE is omitted, uses C<$_>.
512
513 =item accept NEWSOCKET,GENERICSOCKET
514 X<accept>
515
516 =for Pod::Functions accept an incoming socket connect
517
518 Accepts an incoming socket connect, just as accept(2) 
519 does.  Returns the packed address if it succeeded, false otherwise.
520 See the example in L<perlipc/"Sockets: Client/Server Communication">.
521
522 On systems that support a close-on-exec flag on files, the flag will
523 be set for the newly opened file descriptor, as determined by the
524 value of $^F.  See L<perlvar/$^F>.
525
526 =item alarm SECONDS
527 X<alarm>
528 X<SIGALRM>
529 X<timer>
530
531 =item alarm
532
533 =for Pod::Functions schedule a SIGALRM
534
535 Arranges to have a SIGALRM delivered to this process after the
536 specified number of wallclock seconds has elapsed.  If SECONDS is not
537 specified, the value stored in C<$_> is used.  (On some machines,
538 unfortunately, the elapsed time may be up to one second less or more
539 than you specified because of how seconds are counted, and process
540 scheduling may delay the delivery of the signal even further.)
541
542 Only one timer may be counting at once.  Each call disables the
543 previous timer, and an argument of C<0> may be supplied to cancel the
544 previous timer without starting a new one.  The returned value is the
545 amount of time remaining on the previous timer.
546
547 For delays of finer granularity than one second, the Time::HiRes module
548 (from CPAN, and starting from Perl 5.8 part of the standard
549 distribution) provides ualarm().  You may also use Perl's four-argument
550 version of select() leaving the first three arguments undefined, or you
551 might be able to use the C<syscall> interface to access setitimer(2) if
552 your system supports it.  See L<perlfaq8> for details.
553
554 It is usually a mistake to intermix C<alarm> and C<sleep> calls, because
555 C<sleep> may be internally implemented on your system with C<alarm>.
556
557 If you want to use C<alarm> to time out a system call you need to use an
558 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
559 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
560 restart system calls on some systems.  Using C<eval>/C<die> always works,
561 modulo the caveats given in L<perlipc/"Signals">.
562
563     eval {
564         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
565         alarm $timeout;
566         $nread = sysread SOCKET, $buffer, $size;
567         alarm 0;
568     };
569     if ($@) {
570         die unless $@ eq "alarm\n";   # propagate unexpected errors
571         # timed out
572     }
573     else {
574         # didn't
575     }
576
577 For more information see L<perlipc>.
578
579 Portability issues: L<perlport/alarm>.
580
581 =item atan2 Y,X
582 X<atan2> X<arctangent> X<tan> X<tangent>
583
584 =for Pod::Functions arctangent of Y/X in the range -PI to PI
585
586 Returns the arctangent of Y/X in the range -PI to PI.
587
588 For the tangent operation, you may use the C<Math::Trig::tan>
589 function, or use the familiar relation:
590
591     sub tan { sin($_[0]) / cos($_[0])  }
592
593 The return value for C<atan2(0,0)> is implementation-defined; consult
594 your atan2(3) manpage for more information.
595
596 Portability issues: L<perlport/atan2>.
597
598 =item bind SOCKET,NAME
599 X<bind>
600
601 =for Pod::Functions binds an address to a socket
602
603 Binds a network address to a socket, just as bind(2)
604 does.  Returns true if it succeeded, false otherwise.  NAME should be a
605 packed address of the appropriate type for the socket.  See the examples in
606 L<perlipc/"Sockets: Client/Server Communication">.
607
608 =item binmode FILEHANDLE, LAYER
609 X<binmode> X<binary> X<text> X<DOS> X<Windows>
610
611 =item binmode FILEHANDLE
612
613 =for Pod::Functions prepare binary files for I/O
614
615 Arranges for FILEHANDLE to be read or written in "binary" or "text"
616 mode on systems where the run-time libraries distinguish between
617 binary and text files.  If FILEHANDLE is an expression, the value is
618 taken as the name of the filehandle.  Returns true on success,
619 otherwise it returns C<undef> and sets C<$!> (errno).
620
621 On some systems (in general, DOS- and Windows-based systems) binmode()
622 is necessary when you're not working with a text file.  For the sake
623 of portability it is a good idea always to use it when appropriate,
624 and never to use it when it isn't appropriate.  Also, people can
625 set their I/O to be by default UTF8-encoded Unicode, not bytes.
626
627 In other words: regardless of platform, use binmode() on binary data,
628 like images, for example.
629
630 If LAYER is present it is a single string, but may contain multiple
631 directives.  The directives alter the behaviour of the filehandle.
632 When LAYER is present, using binmode on a text file makes sense.
633
634 If LAYER is omitted or specified as C<:raw> the filehandle is made
635 suitable for passing binary data.  This includes turning off possible CRLF
636 translation and marking it as bytes (as opposed to Unicode characters).
637 Note that, despite what may be implied in I<"Programming Perl"> (the
638 Camel, 3rd edition) or elsewhere, C<:raw> is I<not> simply the inverse of C<:crlf>.
639 Other layers that would affect the binary nature of the stream are
640 I<also> disabled.  See L<PerlIO>, L<perlrun>, and the discussion about the
641 PERLIO environment variable.
642
643 The C<:bytes>, C<:crlf>, C<:utf8>, and any other directives of the
644 form C<:...>, are called I/O I<layers>.  The C<open> pragma can be used to
645 establish default I/O layers.  See L<open>.
646
647 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
648 in "Programming Perl, 3rd Edition".  However, since the publishing of this
649 book, by many known as "Camel III", the consensus of the naming of this
650 functionality has moved from "discipline" to "layer".  All documentation
651 of this version of Perl therefore refers to "layers" rather than to
652 "disciplines".  Now back to the regularly scheduled documentation...>
653
654 To mark FILEHANDLE as UTF-8, use C<:utf8> or C<:encoding(UTF-8)>.
655 C<:utf8> just marks the data as UTF-8 without further checking,
656 while C<:encoding(UTF-8)> checks the data for actually being valid
657 UTF-8.  More details can be found in L<PerlIO::encoding>.
658
659 In general, binmode() should be called after open() but before any I/O
660 is done on the filehandle.  Calling binmode() normally flushes any
661 pending buffered output data (and perhaps pending input data) on the
662 handle.  An exception to this is the C<:encoding> layer that
663 changes the default character encoding of the handle; see L</open>.
664 The C<:encoding> layer sometimes needs to be called in
665 mid-stream, and it doesn't flush the stream.  The C<:encoding>
666 also implicitly pushes on top of itself the C<:utf8> layer because
667 internally Perl operates on UTF8-encoded Unicode characters.
668
669 The operating system, device drivers, C libraries, and Perl run-time
670 system all conspire to let the programmer treat a single
671 character (C<\n>) as the line terminator, irrespective of external
672 representation.  On many operating systems, the native text file
673 representation matches the internal representation, but on some
674 platforms the external representation of C<\n> is made up of more than
675 one character.
676
677 All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use
678 a single character to end each line in the external representation of text
679 (even though that single character is CARRIAGE RETURN on old, pre-Darwin
680 flavors of Mac OS, and is LINE FEED on Unix and most VMS files).  In other
681 systems like OS/2, DOS, and the various flavors of MS-Windows, your program
682 sees a C<\n> as a simple C<\cJ>, but what's stored in text files are the
683 two characters C<\cM\cJ>.  That means that if you don't use binmode() on
684 these systems, C<\cM\cJ> sequences on disk will be converted to C<\n> on
685 input, and any C<\n> in your program will be converted back to C<\cM\cJ> on
686 output.  This is what you want for text files, but it can be disastrous for
687 binary files.
688
689 Another consequence of using binmode() (on some systems) is that
690 special end-of-file markers will be seen as part of the data stream.
691 For systems from the Microsoft family this means that, if your binary
692 data contain C<\cZ>, the I/O subsystem will regard it as the end of
693 the file, unless you use binmode().
694
695 binmode() is important not only for readline() and print() operations,
696 but also when using read(), seek(), sysread(), syswrite() and tell()
697 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
698 in L<perlvar> for how to manually set your input and output
699 line-termination sequences.
700
701 Portability issues: L<perlport/binmode>.
702
703 =item bless REF,CLASSNAME
704 X<bless>
705
706 =item bless REF
707
708 =for Pod::Functions create an object
709
710 This function tells the thingy referenced by REF that it is now an object
711 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
712 is used.  Because a C<bless> is often the last thing in a constructor,
713 it returns the reference for convenience.  Always use the two-argument
714 version if a derived class might inherit the function doing the blessing.
715 See L<perlobj> for more about the blessing (and blessings) of objects.
716
717 Consider always blessing objects in CLASSNAMEs that are mixed case.
718 Namespaces with all lowercase names are considered reserved for
719 Perl pragmata.  Builtin types have all uppercase names.  To prevent
720 confusion, you may wish to avoid such package names as well.  Make sure
721 that CLASSNAME is a true value.
722
723 See L<perlmod/"Perl Modules">.
724
725 =item break
726
727 =for Pod::Functions +switch break out of a C<given> block
728
729 Break out of a C<given()> block.
730
731 This keyword is enabled by the C<"switch"> feature; see L<feature> for
732 more information on C<"switch">.  You can also access it by prefixing it
733 with C<CORE::>.  Alternatively, include a C<use v5.10> or later to the
734 current scope.
735
736 =item caller EXPR
737 X<caller> X<call stack> X<stack> X<stack trace>
738
739 =item caller
740
741 =for Pod::Functions get context of the current subroutine call
742
743 Returns the context of the current pure perl subroutine call.  In scalar
744 context, returns the caller's package name if there I<is> a caller (that is, if
745 we're in a subroutine or C<eval> or C<require>) and the undefined value
746 otherwise.  caller never returns XS subs and they are skipped.  The next pure
747 perl sub will appear instead of the XS
748 sub in caller's return values.  In list
749 context, caller returns
750
751     # 0         1          2
752     ($package, $filename, $line) = caller;
753
754 With EXPR, it returns some extra information that the debugger uses to
755 print a stack trace.  The value of EXPR indicates how many call frames
756 to go back before the current one.
757
758     #  0         1          2      3            4
759     ($package, $filename, $line, $subroutine, $hasargs,
760
761     #  5          6          7            8       9         10
762     $wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)
763      = caller($i);
764
765 Here, $subroutine is the function that the caller called (rather than the
766 function containing the caller).  Note that $subroutine may be C<(eval)> if
767 the frame is not a subroutine call, but an C<eval>.  In such a case
768 additional elements $evaltext and
769 C<$is_require> are set: C<$is_require> is true if the frame is created by a
770 C<require> or C<use> statement, $evaltext contains the text of the
771 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
772 $subroutine is C<(eval)>, but $evaltext is undefined.  (Note also that
773 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
774 frame.)  $subroutine may also be C<(unknown)> if this particular
775 subroutine happens to have been deleted from the symbol table.
776 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
777 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
778 compiled with.  C<$hints> corresponds to C<$^H>, and C<$bitmask>
779 corresponds to C<${^WARNING_BITS}>.  The
780 C<$hints> and C<$bitmask> values are subject
781 to change between versions of Perl, and are not meant for external use.
782
783 C<$hinthash> is a reference to a hash containing the value of C<%^H> when the
784 caller was compiled, or C<undef> if C<%^H> was empty.  Do not modify the values
785 of this hash, as they are the actual values stored in the optree.
786
787 Furthermore, when called from within the DB package in
788 list context, and with an argument, caller returns more
789 detailed information: it sets the list variable C<@DB::args> to be the
790 arguments with which the subroutine was invoked.
791
792 Be aware that the optimizer might have optimized call frames away before
793 C<caller> had a chance to get the information.  That means that C<caller(N)>
794 might not return information about the call frame you expect it to, for
795 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
796 previous time C<caller> was called.
797
798 Be aware that setting C<@DB::args> is I<best effort>, intended for
799 debugging or generating backtraces, and should not be relied upon.  In
800 particular, as C<@_> contains aliases to the caller's arguments, Perl does
801 not take a copy of C<@_>, so C<@DB::args> will contain modifications the
802 subroutine makes to C<@_> or its contents, not the original values at call
803 time.  C<@DB::args>, like C<@_>, does not hold explicit references to its
804 elements, so under certain cases its elements may have become freed and
805 reallocated for other variables or temporary values.  Finally, a side effect
806 of the current implementation is that the effects of C<shift @_> can
807 I<normally> be undone (but not C<pop @_> or other splicing, I<and> not if a
808 reference to C<@_> has been taken, I<and> subject to the caveat about reallocated
809 elements), so C<@DB::args> is actually a hybrid of the current state and
810 initial state of C<@_>.  Buyer beware.
811
812 =item chdir EXPR
813 X<chdir>
814 X<cd>
815 X<directory, change>
816
817 =item chdir FILEHANDLE
818
819 =item chdir DIRHANDLE
820
821 =item chdir
822
823 =for Pod::Functions change your current working directory
824
825 Changes the working directory to EXPR, if possible.  If EXPR is omitted,
826 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
827 changes to the directory specified by C<$ENV{LOGDIR}>.  (Under VMS, the
828 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.)  If
829 neither is set, C<chdir> does nothing.  It returns true on success,
830 false otherwise.  See the example under C<die>.
831
832 On systems that support fchdir(2), you may pass a filehandle or
833 directory handle as the argument.  On systems that don't support fchdir(2),
834 passing handles raises an exception.
835
836 =item chmod LIST
837 X<chmod> X<permission> X<mode>
838
839 =for Pod::Functions changes the permissions on a list of files
840
841 Changes the permissions of a list of files.  The first element of the
842 list must be the numeric mode, which should probably be an octal
843 number, and which definitely should I<not> be a string of octal digits:
844 C<0644> is okay, but C<"0644"> is not.  Returns the number of files
845 successfully changed.  See also L</oct> if all you have is a string.
846
847     $cnt = chmod 0755, "foo", "bar";
848     chmod 0755, @executables;
849     $mode = "0644"; chmod $mode, "foo";      # !!! sets mode to
850                                              # --w----r-T
851     $mode = "0644"; chmod oct($mode), "foo"; # this is better
852     $mode = 0644;   chmod $mode, "foo";      # this is best
853
854 On systems that support fchmod(2), you may pass filehandles among the
855 files.  On systems that don't support fchmod(2), passing filehandles raises
856 an exception.  Filehandles must be passed as globs or glob references to be
857 recognized; barewords are considered filenames.
858
859     open(my $fh, "<", "foo");
860     my $perm = (stat $fh)[2] & 07777;
861     chmod($perm | 0600, $fh);
862
863 You can also import the symbolic C<S_I*> constants from the C<Fcntl>
864 module:
865
866     use Fcntl qw( :mode );
867     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
868     # Identical to the chmod 0755 of the example above.
869
870 Portability issues: L<perlport/chmod>.
871
872 =item chomp VARIABLE
873 X<chomp> X<INPUT_RECORD_SEPARATOR> X<$/> X<newline> X<eol>
874
875 =item chomp( LIST )
876
877 =item chomp
878
879 =for Pod::Functions remove a trailing record separator from a string
880
881 This safer version of L</chop> removes any trailing string
882 that corresponds to the current value of C<$/> (also known as
883 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
884 number of characters removed from all its arguments.  It's often used to
885 remove the newline from the end of an input record when you're worried
886 that the final record may be missing its newline.  When in paragraph
887 mode (C<$/ = "">), it removes all trailing newlines from the string.
888 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
889 a reference to an integer or the like; see L<perlvar>) chomp() won't
890 remove anything.
891 If VARIABLE is omitted, it chomps C<$_>.  Example:
892
893     while (<>) {
894         chomp;  # avoid \n on last field
895         @array = split(/:/);
896         # ...
897     }
898
899 If VARIABLE is a hash, it chomps the hash's values, but not its keys,
900 resetting the C<each> iterator in the process.
901
902 You can actually chomp anything that's an lvalue, including an assignment:
903
904     chomp($cwd = `pwd`);
905     chomp($answer = <STDIN>);
906
907 If you chomp a list, each element is chomped, and the total number of
908 characters removed is returned.
909
910 Note that parentheses are necessary when you're chomping anything
911 that is not a simple variable.  This is because C<chomp $cwd = `pwd`;>
912 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
913 C<chomp( $cwd = `pwd` )> which you might expect.  Similarly,
914 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
915 as C<chomp($a, $b)>.
916
917 =item chop VARIABLE
918 X<chop>
919
920 =item chop( LIST )
921
922 =item chop
923
924 =for Pod::Functions remove the last character from a string
925
926 Chops off the last character of a string and returns the character
927 chopped.  It is much more efficient than C<s/.$//s> because it neither
928 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
929 If VARIABLE is a hash, it chops the hash's values, but not its keys,
930 resetting the C<each> iterator in the process.
931
932 You can actually chop anything that's an lvalue, including an assignment.
933
934 If you chop a list, each element is chopped.  Only the value of the
935 last C<chop> is returned.
936
937 Note that C<chop> returns the last character.  To return all but the last
938 character, use C<substr($string, 0, -1)>.
939
940 See also L</chomp>.
941
942 =item chown LIST
943 X<chown> X<owner> X<user> X<group>
944
945 =for Pod::Functions change the ownership on a list of files
946
947 Changes the owner (and group) of a list of files.  The first two
948 elements of the list must be the I<numeric> uid and gid, in that
949 order.  A value of -1 in either position is interpreted by most
950 systems to leave that value unchanged.  Returns the number of files
951 successfully changed.
952
953     $cnt = chown $uid, $gid, 'foo', 'bar';
954     chown $uid, $gid, @filenames;
955
956 On systems that support fchown(2), you may pass filehandles among the
957 files.  On systems that don't support fchown(2), passing filehandles raises
958 an exception.  Filehandles must be passed as globs or glob references to be
959 recognized; barewords are considered filenames.
960
961 Here's an example that looks up nonnumeric uids in the passwd file:
962
963     print "User: ";
964     chomp($user = <STDIN>);
965     print "Files: ";
966     chomp($pattern = <STDIN>);
967
968     ($login,$pass,$uid,$gid) = getpwnam($user)
969         or die "$user not in passwd file";
970
971     @ary = glob($pattern);  # expand filenames
972     chown $uid, $gid, @ary;
973
974 On most systems, you are not allowed to change the ownership of the
975 file unless you're the superuser, although you should be able to change
976 the group to any of your secondary groups.  On insecure systems, these
977 restrictions may be relaxed, but this is not a portable assumption.
978 On POSIX systems, you can detect this condition this way:
979
980     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
981     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
982
983 Portability issues: L<perlport/chown>.
984
985 =item chr NUMBER
986 X<chr> X<character> X<ASCII> X<Unicode>
987
988 =item chr
989
990 =for Pod::Functions get character this number represents
991
992 Returns the character represented by that NUMBER in the character set.
993 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
994 chr(0x263a) is a Unicode smiley face.  
995
996 Negative values give the Unicode replacement character (chr(0xfffd)),
997 except under the L<bytes> pragma, where the low eight bits of the value
998 (truncated to an integer) are used.
999
1000 If NUMBER is omitted, uses C<$_>.
1001
1002 For the reverse, use L</ord>.
1003
1004 Note that characters from 128 to 255 (inclusive) are by default
1005 internally not encoded as UTF-8 for backward compatibility reasons.
1006
1007 See L<perlunicode> for more about Unicode.
1008
1009 =item chroot FILENAME
1010 X<chroot> X<root>
1011
1012 =item chroot
1013
1014 =for Pod::Functions make directory new root for path lookups
1015
1016 This function works like the system call by the same name: it makes the
1017 named directory the new root directory for all further pathnames that
1018 begin with a C</> by your process and all its children.  (It doesn't
1019 change your current working directory, which is unaffected.)  For security
1020 reasons, this call is restricted to the superuser.  If FILENAME is
1021 omitted, does a C<chroot> to C<$_>.
1022
1023 B<NOTE:>  It is good security practice to do C<chdir("/")> (to the root
1024 directory) immediately after a C<chroot()>.
1025
1026 Portability issues: L<perlport/chroot>.
1027
1028 =item close FILEHANDLE
1029 X<close>
1030
1031 =item close
1032
1033 =for Pod::Functions close file (or pipe or socket) handle
1034
1035 Closes the file or pipe associated with the filehandle, flushes the IO
1036 buffers, and closes the system file descriptor.  Returns true if those
1037 operations succeed and if no error was reported by any PerlIO
1038 layer.  Closes the currently selected filehandle if the argument is
1039 omitted.
1040
1041 You don't have to close FILEHANDLE if you are immediately going to do
1042 another C<open> on it, because C<open> closes it for you.  (See
1043 L<open|/open FILEHANDLE>.)  However, an explicit C<close> on an input file resets the line
1044 counter (C<$.>), while the implicit close done by C<open> does not.
1045
1046 If the filehandle came from a piped open, C<close> returns false if one of
1047 the other syscalls involved fails or if its program exits with non-zero
1048 status.  If the only problem was that the program exited non-zero, C<$!>
1049 will be set to C<0>.  Closing a pipe also waits for the process executing
1050 on the pipe to exit--in case you wish to look at the output of the pipe
1051 afterwards--and implicitly puts the exit status value of that command into
1052 C<$?> and C<${^CHILD_ERROR_NATIVE}>.
1053
1054 If there are multiple threads running, C<close> on a filehandle from a
1055 piped open returns true without waiting for the child process to terminate,
1056 if the filehandle is still open in another thread.
1057
1058 Closing the read end of a pipe before the process writing to it at the
1059 other end is done writing results in the writer receiving a SIGPIPE.  If
1060 the other end can't handle that, be sure to read all the data before
1061 closing the pipe.
1062
1063 Example:
1064
1065     open(OUTPUT, '|sort >foo')  # pipe to sort
1066         or die "Can't start sort: $!";
1067     #...                        # print stuff to output
1068     close OUTPUT                # wait for sort to finish
1069         or warn $! ? "Error closing sort pipe: $!"
1070                    : "Exit status $? from sort";
1071     open(INPUT, 'foo')          # get sort's results
1072         or die "Can't open 'foo' for input: $!";
1073
1074 FILEHANDLE may be an expression whose value can be used as an indirect
1075 filehandle, usually the real filehandle name or an autovivified handle.
1076
1077 =item closedir DIRHANDLE
1078 X<closedir>
1079
1080 =for Pod::Functions close directory handle
1081
1082 Closes a directory opened by C<opendir> and returns the success of that
1083 system call.
1084
1085 =item connect SOCKET,NAME
1086 X<connect>
1087
1088 =for Pod::Functions connect to a remote socket
1089
1090 Attempts to connect to a remote socket, just like connect(2).
1091 Returns true if it succeeded, false otherwise.  NAME should be a
1092 packed address of the appropriate type for the socket.  See the examples in
1093 L<perlipc/"Sockets: Client/Server Communication">.
1094
1095 =item continue BLOCK
1096 X<continue>
1097
1098 =item continue
1099
1100 =for Pod::Functions optional trailing block in a while or foreach
1101
1102 When followed by a BLOCK, C<continue> is actually a
1103 flow control statement rather than a function.  If
1104 there is a C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
1105 C<foreach>), it is always executed just before the conditional is about to
1106 be evaluated again, just like the third part of a C<for> loop in C.  Thus
1107 it can be used to increment a loop variable, even when the loop has been
1108 continued via the C<next> statement (which is similar to the C C<continue>
1109 statement).
1110
1111 C<last>, C<next>, or C<redo> may appear within a C<continue>
1112 block; C<last> and C<redo> behave as if they had been executed within
1113 the main block.  So will C<next>, but since it will execute a C<continue>
1114 block, it may be more entertaining.
1115
1116     while (EXPR) {
1117         ### redo always comes here
1118         do_something;
1119     } continue {
1120         ### next always comes here
1121         do_something_else;
1122         # then back the top to re-check EXPR
1123     }
1124     ### last always comes here
1125
1126 Omitting the C<continue> section is equivalent to using an
1127 empty one, logically enough, so C<next> goes directly back
1128 to check the condition at the top of the loop.
1129
1130 When there is no BLOCK, C<continue> is a function that
1131 falls through the current C<when> or C<default> block instead of iterating
1132 a dynamically enclosing C<foreach> or exiting a lexically enclosing C<given>.
1133 In Perl 5.14 and earlier, this form of C<continue> was
1134 only available when the C<"switch"> feature was enabled.
1135 See L<feature> and L<perlsyn/"Switch Statements"> for more
1136 information.
1137
1138 =item cos EXPR
1139 X<cos> X<cosine> X<acos> X<arccosine>
1140
1141 =item cos
1142
1143 =for Pod::Functions cosine function
1144
1145 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
1146 takes the cosine of C<$_>.
1147
1148 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
1149 function, or use this relation:
1150
1151     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
1152
1153 =item crypt PLAINTEXT,SALT
1154 X<crypt> X<digest> X<hash> X<salt> X<plaintext> X<password>
1155 X<decrypt> X<cryptography> X<passwd> X<encrypt>
1156
1157 =for Pod::Functions one-way passwd-style encryption
1158
1159 Creates a digest string exactly like the crypt(3) function in the C
1160 library (assuming that you actually have a version there that has not
1161 been extirpated as a potential munition).
1162
1163 crypt() is a one-way hash function.  The PLAINTEXT and SALT are turned
1164 into a short string, called a digest, which is returned.  The same
1165 PLAINTEXT and SALT will always return the same string, but there is no
1166 (known) way to get the original PLAINTEXT from the hash.  Small
1167 changes in the PLAINTEXT or SALT will result in large changes in the
1168 digest.
1169
1170 There is no decrypt function.  This function isn't all that useful for
1171 cryptography (for that, look for F<Crypt> modules on your nearby CPAN
1172 mirror) and the name "crypt" is a bit of a misnomer.  Instead it is
1173 primarily used to check if two pieces of text are the same without
1174 having to transmit or store the text itself.  An example is checking
1175 if a correct password is given.  The digest of the password is stored,
1176 not the password itself.  The user types in a password that is
1177 crypt()'d with the same salt as the stored digest.  If the two digests
1178 match, the password is correct.
1179
1180 When verifying an existing digest string you should use the digest as
1181 the salt (like C<crypt($plain, $digest) eq $digest>).  The SALT used
1182 to create the digest is visible as part of the digest.  This ensures
1183 crypt() will hash the new string with the same salt as the digest.
1184 This allows your code to work with the standard L<crypt|/crypt> and
1185 with more exotic implementations.  In other words, assume
1186 nothing about the returned string itself nor about how many bytes 
1187 of SALT may matter.
1188
1189 Traditionally the result is a string of 13 bytes: two first bytes of
1190 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
1191 the first eight bytes of PLAINTEXT mattered.  But alternative
1192 hashing schemes (like MD5), higher level security schemes (like C2),
1193 and implementations on non-Unix platforms may produce different
1194 strings.
1195
1196 When choosing a new salt create a random two character string whose
1197 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
1198 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).  This set of
1199 characters is just a recommendation; the characters allowed in
1200 the salt depend solely on your system's crypt library, and Perl can't
1201 restrict what salts C<crypt()> accepts.
1202
1203 Here's an example that makes sure that whoever runs this program knows
1204 their password:
1205
1206     $pwd = (getpwuid($<))[1];
1207
1208     system "stty -echo";
1209     print "Password: ";
1210     chomp($word = <STDIN>);
1211     print "\n";
1212     system "stty echo";
1213
1214     if (crypt($word, $pwd) ne $pwd) {
1215         die "Sorry...\n";
1216     } else {
1217         print "ok\n";
1218     }
1219
1220 Of course, typing in your own password to whoever asks you
1221 for it is unwise.
1222
1223 The L<crypt|/crypt> function is unsuitable for hashing large quantities
1224 of data, not least of all because you can't get the information
1225 back.  Look at the L<Digest> module for more robust algorithms.
1226
1227 If using crypt() on a Unicode string (which I<potentially> has
1228 characters with codepoints above 255), Perl tries to make sense
1229 of the situation by trying to downgrade (a copy of)
1230 the string back to an eight-bit byte string before calling crypt()
1231 (on that copy).  If that works, good.  If not, crypt() dies with
1232 C<Wide character in crypt>.
1233
1234 Portability issues: L<perlport/crypt>.
1235
1236 =item dbmclose HASH
1237 X<dbmclose>
1238
1239 =for Pod::Functions breaks binding on a tied dbm file
1240
1241 [This function has been largely superseded by the C<untie> function.]
1242
1243 Breaks the binding between a DBM file and a hash.
1244
1245 Portability issues: L<perlport/dbmclose>.
1246
1247 =item dbmopen HASH,DBNAME,MASK
1248 X<dbmopen> X<dbm> X<ndbm> X<sdbm> X<gdbm>
1249
1250 =for Pod::Functions create binding on a tied dbm file
1251
1252 [This function has been largely superseded by the
1253 L<tie|/tie VARIABLE,CLASSNAME,LIST> function.]
1254
1255 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
1256 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
1257 argument is I<not> a filehandle, even though it looks like one).  DBNAME
1258 is the name of the database (without the F<.dir> or F<.pag> extension if
1259 any).  If the database does not exist, it is created with protection
1260 specified by MASK (as modified by the C<umask>).  To prevent creation of
1261 the database if it doesn't exist, you may specify a MODE
1262 of 0, and the function will return a false value if it
1263 can't find an existing database.  If your system supports
1264 only the older DBM functions, you may make only one C<dbmopen> call in your
1265 program.  In older versions of Perl, if your system had neither DBM nor
1266 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
1267 sdbm(3).
1268
1269 If you don't have write access to the DBM file, you can only read hash
1270 variables, not set them.  If you want to test whether you can write,
1271 either use file tests or try setting a dummy hash entry inside an C<eval> 
1272 to trap the error.
1273
1274 Note that functions such as C<keys> and C<values> may return huge lists
1275 when used on large DBM files.  You may prefer to use the C<each>
1276 function to iterate over large DBM files.  Example:
1277
1278     # print out history file offsets
1279     dbmopen(%HIST,'/usr/lib/news/history',0666);
1280     while (($key,$val) = each %HIST) {
1281         print $key, ' = ', unpack('L',$val), "\n";
1282     }
1283     dbmclose(%HIST);
1284
1285 See also L<AnyDBM_File> for a more general description of the pros and
1286 cons of the various dbm approaches, as well as L<DB_File> for a particularly
1287 rich implementation.
1288
1289 You can control which DBM library you use by loading that library
1290 before you call dbmopen():
1291
1292     use DB_File;
1293     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
1294         or die "Can't open netscape history file: $!";
1295
1296 Portability issues: L<perlport/dbmopen>.
1297
1298 =item defined EXPR
1299 X<defined> X<undef> X<undefined>
1300
1301 =item defined
1302
1303 =for Pod::Functions test whether a value, variable, or function is defined
1304
1305 Returns a Boolean value telling whether EXPR has a value other than
1306 the undefined value C<undef>.  If EXPR is not present, C<$_> is
1307 checked.
1308
1309 Many operations return C<undef> to indicate failure, end of file,
1310 system error, uninitialized variable, and other exceptional
1311 conditions.  This function allows you to distinguish C<undef> from
1312 other values.  (A simple Boolean test will not distinguish among
1313 C<undef>, zero, the empty string, and C<"0">, which are all equally
1314 false.)  Note that since C<undef> is a valid scalar, its presence
1315 doesn't I<necessarily> indicate an exceptional condition: C<pop>
1316 returns C<undef> when its argument is an empty array, I<or> when the
1317 element to return happens to be C<undef>.
1318
1319 You may also use C<defined(&func)> to check whether subroutine C<&func>
1320 has ever been defined.  The return value is unaffected by any forward
1321 declarations of C<&func>.  A subroutine that is not defined
1322 may still be callable: its package may have an C<AUTOLOAD> method that
1323 makes it spring into existence the first time that it is called; see
1324 L<perlsub>.
1325
1326 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
1327 used to report whether memory for that aggregate had ever been
1328 allocated.  This behavior may disappear in future versions of Perl.
1329 You should instead use a simple test for size:
1330
1331     if (@an_array) { print "has array elements\n" }
1332     if (%a_hash)   { print "has hash members\n"   }
1333
1334 When used on a hash element, it tells you whether the value is defined,
1335 not whether the key exists in the hash.  Use L</exists> for the latter
1336 purpose.
1337
1338 Examples:
1339
1340     print if defined $switch{D};
1341     print "$val\n" while defined($val = pop(@ary));
1342     die "Can't readlink $sym: $!"
1343         unless defined($value = readlink $sym);
1344     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1345     $debugging = 0 unless defined $debugging;
1346
1347 Note:  Many folks tend to overuse C<defined> and are then surprised to
1348 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1349 defined values.  For example, if you say
1350
1351     "ab" =~ /a(.*)b/;
1352
1353 The pattern match succeeds and C<$1> is defined, although it
1354 matched "nothing".  It didn't really fail to match anything.  Rather, it
1355 matched something that happened to be zero characters long.  This is all
1356 very above-board and honest.  When a function returns an undefined value,
1357 it's an admission that it couldn't give you an honest answer.  So you
1358 should use C<defined> only when questioning the integrity of what
1359 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
1360 what you want.
1361
1362 See also L</undef>, L</exists>, L</ref>.
1363
1364 =item delete EXPR
1365 X<delete>
1366
1367 =for Pod::Functions deletes a value from a hash
1368
1369 Given an expression that specifies an element or slice of a hash, C<delete>
1370 deletes the specified elements from that hash so that exists() on that element
1371 no longer returns true.  Setting a hash element to the undefined value does
1372 not remove its key, but deleting it does; see L</exists>.
1373
1374 In list context, returns the value or values deleted, or the last such
1375 element in scalar context.  The return list's length always matches that of
1376 the argument list: deleting non-existent elements returns the undefined value
1377 in their corresponding positions.
1378
1379 delete() may also be used on arrays and array slices, but its behavior is less
1380 straightforward.  Although exists() will return false for deleted entries,
1381 deleting array elements never changes indices of existing values; use shift()
1382 or splice() for that.  However, if any deleted elements fall at the end of an
1383 array, the array's size shrinks to the position of the highest element that
1384 still tests true for exists(), or to 0 if none do.  In other words, an
1385 array won't have trailing nonexistent elements after a delete.
1386
1387 B<WARNING:> Calling delete on array values is deprecated and likely to
1388 be removed in a future version of Perl.
1389
1390 Deleting from C<%ENV> modifies the environment.  Deleting from a hash tied to
1391 a DBM file deletes the entry from the DBM file.  Deleting from a C<tied> hash
1392 or array may not necessarily return anything; it depends on the implementation
1393 of the C<tied> package's DELETE method, which may do whatever it pleases.
1394
1395 The C<delete local EXPR> construct localizes the deletion to the current
1396 block at run time.  Until the block exits, elements locally deleted
1397 temporarily no longer exist.  See L<perlsub/"Localized deletion of elements
1398 of composite types">.
1399
1400     %hash = (foo => 11, bar => 22, baz => 33);
1401     $scalar = delete $hash{foo};         # $scalar is 11
1402     $scalar = delete @hash{qw(foo bar)}; # $scalar is 22
1403     @array  = delete @hash{qw(foo baz)}; # @array  is (undef,33)
1404
1405 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1406
1407     foreach $key (keys %HASH) {
1408         delete $HASH{$key};
1409     }
1410
1411     foreach $index (0 .. $#ARRAY) {
1412         delete $ARRAY[$index];
1413     }
1414
1415 And so do these:
1416
1417     delete @HASH{keys %HASH};
1418
1419     delete @ARRAY[0 .. $#ARRAY];
1420
1421 But both are slower than assigning the empty list
1422 or undefining %HASH or @ARRAY, which is the customary 
1423 way to empty out an aggregate:
1424
1425     %HASH = ();     # completely empty %HASH
1426     undef %HASH;    # forget %HASH ever existed
1427
1428     @ARRAY = ();    # completely empty @ARRAY
1429     undef @ARRAY;   # forget @ARRAY ever existed
1430
1431 The EXPR can be arbitrarily complicated provided its
1432 final operation is an element or slice of an aggregate:
1433
1434     delete $ref->[$x][$y]{$key};
1435     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1436
1437     delete $ref->[$x][$y][$index];
1438     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1439
1440 =item die LIST
1441 X<die> X<throw> X<exception> X<raise> X<$@> X<abort>
1442
1443 =for Pod::Functions raise an exception or bail out
1444
1445 C<die> raises an exception.  Inside an C<eval> the error message is stuffed
1446 into C<$@> and the C<eval> is terminated with the undefined value.
1447 If the exception is outside of all enclosing C<eval>s, then the uncaught
1448 exception prints LIST to C<STDERR> and exits with a non-zero value.  If you
1449 need to exit the process with a specific exit code, see L</exit>.
1450
1451 Equivalent examples:
1452
1453     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1454     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1455
1456 If the last element of LIST does not end in a newline, the current
1457 script line number and input line number (if any) are also printed,
1458 and a newline is supplied.  Note that the "input line number" (also
1459 known as "chunk") is subject to whatever notion of "line" happens to
1460 be currently in effect, and is also available as the special variable
1461 C<$.>.  See L<perlvar/"$/"> and L<perlvar/"$.">.
1462
1463 Hint: sometimes appending C<", stopped"> to your message will cause it
1464 to make better sense when the string C<"at foo line 123"> is appended.
1465 Suppose you are running script "canasta".
1466
1467     die "/etc/games is no good";
1468     die "/etc/games is no good, stopped";
1469
1470 produce, respectively
1471
1472     /etc/games is no good at canasta line 123.
1473     /etc/games is no good, stopped at canasta line 123.
1474
1475 If the output is empty and C<$@> already contains a value (typically from a
1476 previous eval) that value is reused after appending C<"\t...propagated">.
1477 This is useful for propagating exceptions:
1478
1479     eval { ... };
1480     die unless $@ =~ /Expected exception/;
1481
1482 If the output is empty and C<$@> contains an object reference that has a
1483 C<PROPAGATE> method, that method will be called with additional file
1484 and line number parameters.  The return value replaces the value in
1485 C<$@>;  i.e., as if C<< $@ = eval { $@->PROPAGATE(__FILE__, __LINE__) }; >>
1486 were called.
1487
1488 If C<$@> is empty then the string C<"Died"> is used.
1489
1490 If an uncaught exception results in interpreter exit, the exit code is
1491 determined from the values of C<$!> and C<$?> with this pseudocode:
1492
1493     exit $! if $!;              # errno
1494     exit $? >> 8 if $? >> 8;    # child exit status
1495     exit 255;                   # last resort
1496
1497 The intent is to squeeze as much possible information about the likely cause
1498 into the limited space of the system exit
1499 code.  However, as C<$!> is the value
1500 of C's C<errno>, which can be set by any system call, this means that the value
1501 of the exit code used by C<die> can be non-predictable, so should not be relied
1502 upon, other than to be non-zero.
1503
1504 You can also call C<die> with a reference argument, and if this is trapped
1505 within an C<eval>, C<$@> contains that reference.  This permits more
1506 elaborate exception handling using objects that maintain arbitrary state
1507 about the exception.  Such a scheme is sometimes preferable to matching
1508 particular string values of C<$@> with regular expressions.  Because C<$@> 
1509 is a global variable and C<eval> may be used within object implementations,
1510 be careful that analyzing the error object doesn't replace the reference in
1511 the global variable.  It's easiest to make a local copy of the reference
1512 before any manipulations.  Here's an example:
1513
1514     use Scalar::Util "blessed";
1515
1516     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1517     if (my $ev_err = $@) {
1518         if (blessed($ev_err)
1519             && $ev_err->isa("Some::Module::Exception")) {
1520             # handle Some::Module::Exception
1521         }
1522         else {
1523             # handle all other possible exceptions
1524         }
1525     }
1526
1527 Because Perl stringifies uncaught exception messages before display,
1528 you'll probably want to overload stringification operations on
1529 exception objects.  See L<overload> for details about that.
1530
1531 You can arrange for a callback to be run just before the C<die>
1532 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1533 handler is called with the error text and can change the error
1534 message, if it sees fit, by calling C<die> again.  See
1535 L<perlvar/%SIG> for details on setting C<%SIG> entries, and
1536 L<"eval BLOCK"> for some examples.  Although this feature was 
1537 to be run only right before your program was to exit, this is not
1538 currently so: the C<$SIG{__DIE__}> hook is currently called
1539 even inside eval()ed blocks/strings!  If one wants the hook to do
1540 nothing in such situations, put
1541
1542     die @_ if $^S;
1543
1544 as the first line of the handler (see L<perlvar/$^S>).  Because
1545 this promotes strange action at a distance, this counterintuitive
1546 behavior may be fixed in a future release.
1547
1548 See also exit(), warn(), and the Carp module.
1549
1550 =item do BLOCK
1551 X<do> X<block>
1552
1553 =for Pod::Functions turn a BLOCK into a TERM
1554
1555 Not really a function.  Returns the value of the last command in the
1556 sequence of commands indicated by BLOCK.  When modified by the C<while> or
1557 C<until> loop modifier, executes the BLOCK once before testing the loop
1558 condition.  (On other statements the loop modifiers test the conditional
1559 first.)
1560
1561 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1562 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1563 See L<perlsyn> for alternative strategies.
1564
1565 =item do EXPR
1566 X<do>
1567
1568 Uses the value of EXPR as a filename and executes the contents of the
1569 file as a Perl script.
1570
1571     do 'stat.pl';
1572
1573 is largely like
1574
1575     eval `cat stat.pl`;
1576
1577 except that it's more concise, runs no external processes, keeps track of
1578 the current
1579 filename for error messages, searches the C<@INC> directories, and updates
1580 C<%INC> if the file is found.  See L<perlvar/@INC> and L<perlvar/%INC> for
1581 these variables.  It also differs in that code evaluated with C<do FILENAME>
1582 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1583 same, however, in that it does reparse the file every time you call it,
1584 so you probably don't want to do this inside a loop.
1585
1586 If C<do> can read the file but cannot compile it, it returns C<undef> and sets
1587 an error message in C<$@>.  If C<do> cannot read the file, it returns undef
1588 and sets C<$!> to the error.  Always check C<$@> first, as compilation
1589 could fail in a way that also sets C<$!>.  If the file is successfully
1590 compiled, C<do> returns the value of the last expression evaluated.
1591
1592 Inclusion of library modules is better done with the
1593 C<use> and C<require> operators, which also do automatic error checking
1594 and raise an exception if there's a problem.
1595
1596 You might like to use C<do> to read in a program configuration
1597 file.  Manual error checking can be done this way:
1598
1599     # read in config files: system first, then user
1600     for $file ("/share/prog/defaults.rc",
1601                "$ENV{HOME}/.someprogrc")
1602     {
1603         unless ($return = do $file) {
1604             warn "couldn't parse $file: $@" if $@;
1605             warn "couldn't do $file: $!"    unless defined $return;
1606             warn "couldn't run $file"       unless $return;
1607         }
1608     }
1609
1610 =item dump LABEL
1611 X<dump> X<core> X<undump>
1612
1613 =item dump EXPR
1614
1615 =item dump
1616
1617 =for Pod::Functions create an immediate core dump
1618
1619 This function causes an immediate core dump.  See also the B<-u>
1620 command-line switch in L<perlrun>, which does the same thing.
1621 Primarily this is so that you can use the B<undump> program (not
1622 supplied) to turn your core dump into an executable binary after
1623 having initialized all your variables at the beginning of the
1624 program.  When the new binary is executed it will begin by executing
1625 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1626 Think of it as a goto with an intervening core dump and reincarnation.
1627 If C<LABEL> is omitted, restarts the program from the top.  The
1628 C<dump EXPR> form, available starting in Perl 5.18.0, allows a name to be
1629 computed at run time, being otherwise identical to C<dump LABEL>.
1630
1631 B<WARNING>: Any files opened at the time of the dump will I<not>
1632 be open any more when the program is reincarnated, with possible
1633 resulting confusion by Perl.
1634
1635 This function is now largely obsolete, mostly because it's very hard to
1636 convert a core file into an executable.  That's why you should now invoke
1637 it as C<CORE::dump()>, if you don't want to be warned against a possible
1638 typo.
1639
1640 Unlike most named operators, this has the same precedence as assignment.
1641 It is also exempt from the looks-like-a-function rule, so
1642 C<dump ("foo")."bar"> will cause "bar" to be part of the argument to
1643 C<dump>.
1644
1645 Portability issues: L<perlport/dump>.
1646
1647 =item each HASH
1648 X<each> X<hash, iterator>
1649
1650 =item each ARRAY
1651 X<array, iterator>
1652
1653 =item each EXPR
1654
1655 =for Pod::Functions retrieve the next key/value pair from a hash
1656
1657 When called on a hash in list context, returns a 2-element list
1658 consisting of the key and value for the next element of a hash.  In Perl
1659 5.12 and later only, it will also return the index and value for the next
1660 element of an array so that you can iterate over it; older Perls consider
1661 this a syntax error.  When called in scalar context, returns only the key
1662 (not the value) in a hash, or the index in an array.
1663
1664 Hash entries are returned in an apparently random order.  The actual random
1665 order is specific to a given hash; the exact same series of operations
1666 on two hashes may result in a different order for each hash.  Any insertion
1667 into the hash may change the order, as will any deletion, with the exception
1668 that the most recent key returned by C<each> or C<keys> may be deleted
1669 without changing the order.  So long as a given hash is unmodified you may
1670 rely on C<keys>, C<values> and C<each> to repeatedly return the same order
1671 as each other.  See L<perlsec/"Algorithmic Complexity Attacks"> for
1672 details on why hash order is randomized.  Aside from the guarantees
1673 provided here the exact details of Perl's hash algorithm and the hash
1674 traversal order are subject to change in any release of Perl.
1675
1676 After C<each> has returned all entries from the hash or array, the next
1677 call to C<each> returns the empty list in list context and C<undef> in
1678 scalar context; the next call following I<that> one restarts iteration.
1679 Each hash or array has its own internal iterator, accessed by C<each>,
1680 C<keys>, and C<values>.  The iterator is implicitly reset when C<each> has
1681 reached the end as just described; it can be explicitly reset by calling
1682 C<keys> or C<values> on the hash or array.  If you add or delete a hash's
1683 elements while iterating over it, the effect on the iterator is
1684 unspecified; for example, entries may be skipped or duplicated--so don't
1685 do that.  Exception: It is always safe to delete the item most recently
1686 returned by C<each()>, so the following code works properly:
1687
1688         while (($key, $value) = each %hash) {
1689           print $key, "\n";
1690           delete $hash{$key};   # This is safe
1691         }
1692
1693 Tied hashes may have a different ordering behaviour to perl's hash
1694 implementation.
1695
1696 This prints out your environment like the printenv(1) program,
1697 but in a different order:
1698
1699     while (($key,$value) = each %ENV) {
1700         print "$key=$value\n";
1701     }
1702
1703 Starting with Perl 5.14, C<each> can take a scalar EXPR, which must hold
1704 reference to an unblessed hash or array.  The argument will be dereferenced
1705 automatically.  This aspect of C<each> is considered highly experimental.
1706 The exact behaviour may change in a future version of Perl.
1707
1708     while (($key,$value) = each $hashref) { ... }
1709
1710 As of Perl 5.18 you can use a bare C<each> in a C<while> loop,
1711 which will set C<$_> on every iteration.
1712
1713     while(each %ENV) {
1714         print "$_=$ENV{$_}\n";
1715     }
1716
1717 To avoid confusing would-be users of your code who are running earlier
1718 versions of Perl with mysterious syntax errors, put this sort of thing at
1719 the top of your file to signal that your code will work I<only> on Perls of
1720 a recent vintage:
1721
1722     use 5.012;  # so keys/values/each work on arrays
1723     use 5.014;  # so keys/values/each work on scalars (experimental)
1724     use 5.018;  # so each assigns to $_ in a lone while test
1725
1726 See also C<keys>, C<values>, and C<sort>.
1727
1728 =item eof FILEHANDLE
1729 X<eof>
1730 X<end of file>
1731 X<end-of-file>
1732
1733 =item eof ()
1734
1735 =item eof
1736
1737 =for Pod::Functions test a filehandle for its end
1738
1739 Returns 1 if the next read on FILEHANDLE will return end of file I<or> if
1740 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1741 gives the real filehandle.  (Note that this function actually
1742 reads a character and then C<ungetc>s it, so isn't useful in an
1743 interactive context.)  Do not read from a terminal file (or call
1744 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1745 as terminals may lose the end-of-file condition if you do.
1746
1747 An C<eof> without an argument uses the last file read.  Using C<eof()>
1748 with empty parentheses is different.  It refers to the pseudo file
1749 formed from the files listed on the command line and accessed via the
1750 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1751 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1752 used will cause C<@ARGV> to be examined to determine if input is
1753 available.   Similarly, an C<eof()> after C<< <> >> has returned
1754 end-of-file will assume you are processing another C<@ARGV> list,
1755 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1756 see L<perlop/"I/O Operators">.
1757
1758 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1759 detect the end of each file, whereas C<eof()> will detect the end 
1760 of the very last file only.  Examples:
1761
1762     # reset line numbering on each input file
1763     while (<>) {
1764         next if /^\s*#/;  # skip comments
1765         print "$.\t$_";
1766     } continue {
1767         close ARGV if eof;  # Not eof()!
1768     }
1769
1770     # insert dashes just before last line of last file
1771     while (<>) {
1772         if (eof()) {  # check for end of last file
1773             print "--------------\n";
1774         }
1775         print;
1776         last if eof();     # needed if we're reading from a terminal
1777     }
1778
1779 Practical hint: you almost never need to use C<eof> in Perl, because the
1780 input operators typically return C<undef> when they run out of data or 
1781 encounter an error.
1782
1783 =item eval EXPR
1784 X<eval> X<try> X<catch> X<evaluate> X<parse> X<execute>
1785 X<error, handling> X<exception, handling>
1786
1787 =item eval BLOCK
1788
1789 =item eval
1790
1791 =for Pod::Functions catch exceptions or compile and run code
1792
1793 In the first form, often referred to as a "string eval", the return
1794 value of EXPR is parsed and executed as if it
1795 were a little Perl program.  The value of the expression (which is itself
1796 determined within scalar context) is first parsed, and if there were no
1797 errors, executed as a block within the lexical context of the current Perl
1798 program.  This means, that in particular, any outer lexical variables are
1799 visible to it, and any package variable settings or subroutine and format
1800 definitions remain afterwards.
1801
1802 Note that the value is parsed every time the C<eval> executes.
1803 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1804 delay parsing and subsequent execution of the text of EXPR until run time.
1805
1806 If the C<unicode_eval> feature is enabled (which is the default under a
1807 C<use 5.16> or higher declaration), EXPR or C<$_> is treated as a string of
1808 characters, so C<use utf8> declarations have no effect, and source filters
1809 are forbidden.  In the absence of the C<unicode_eval> feature, the string
1810 will sometimes be treated as characters and sometimes as bytes, depending
1811 on the internal encoding, and source filters activated within the C<eval>
1812 exhibit the erratic, but historical, behaviour of affecting some outer file
1813 scope that is still compiling.  See also the L</evalbytes> keyword, which
1814 always treats its input as a byte stream and works properly with source
1815 filters, and the L<feature> pragma.
1816
1817 Problems can arise if the string expands a scalar containing a floating
1818 point number.  That scalar can expand to letters, such as C<"NaN"> or
1819 C<"Infinity">; or, within the scope of a C<use locale>, the decimal
1820 point character may be something other than a dot (such as a comma).
1821 None of these are likely to parse as you are likely expecting.
1822
1823 In the second form, the code within the BLOCK is parsed only once--at the
1824 same time the code surrounding the C<eval> itself was parsed--and executed
1825 within the context of the current Perl program.  This form is typically
1826 used to trap exceptions more efficiently than the first (see below), while
1827 also providing the benefit of checking the code within BLOCK at compile
1828 time.
1829
1830 The final semicolon, if any, may be omitted from the value of EXPR or within
1831 the BLOCK.
1832
1833 In both forms, the value returned is the value of the last expression
1834 evaluated inside the mini-program; a return statement may be also used, just
1835 as with subroutines.  The expression providing the return value is evaluated
1836 in void, scalar, or list context, depending on the context of the C<eval> 
1837 itself.  See L</wantarray> for more on how the evaluation context can be 
1838 determined.
1839
1840 If there is a syntax error or runtime error, or a C<die> statement is
1841 executed, C<eval> returns C<undef> in scalar context
1842 or an empty list in list context, and C<$@> is set to the error
1843 message.  (Prior to 5.16, a bug caused C<undef> to be returned
1844 in list context for syntax errors, but not for runtime errors.)
1845 If there was no error, C<$@> is set to the empty string.  A
1846 control flow operator like C<last> or C<goto> can bypass the setting of
1847 C<$@>.  Beware that using C<eval> neither silences Perl from printing
1848 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1849 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1850 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1851 See L</warn>, L<perlvar>, and L<warnings>.
1852
1853 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1854 determining whether a particular feature (such as C<socket> or C<symlink>)
1855 is implemented.  It is also Perl's exception-trapping mechanism, where
1856 the die operator is used to raise exceptions.
1857
1858 If you want to trap errors when loading an XS module, some problems with
1859 the binary interface (such as Perl version skew) may be fatal even with
1860 C<eval> unless C<$ENV{PERL_DL_NONLAZY}> is set.  See L<perlrun>.
1861
1862 If the code to be executed doesn't vary, you may use the eval-BLOCK
1863 form to trap run-time errors without incurring the penalty of
1864 recompiling each time.  The error, if any, is still returned in C<$@>.
1865 Examples:
1866
1867     # make divide-by-zero nonfatal
1868     eval { $answer = $a / $b; }; warn $@ if $@;
1869
1870     # same thing, but less efficient
1871     eval '$answer = $a / $b'; warn $@ if $@;
1872
1873     # a compile-time error
1874     eval { $answer = }; # WRONG
1875
1876     # a run-time error
1877     eval '$answer =';   # sets $@
1878
1879 Using the C<eval{}> form as an exception trap in libraries does have some
1880 issues.  Due to the current arguably broken state of C<__DIE__> hooks, you
1881 may wish not to trigger any C<__DIE__> hooks that user code may have installed.
1882 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1883 as this example shows:
1884
1885     # a private exception trap for divide-by-zero
1886     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1887     warn $@ if $@;
1888
1889 This is especially significant, given that C<__DIE__> hooks can call
1890 C<die> again, which has the effect of changing their error messages:
1891
1892     # __DIE__ hooks may modify error messages
1893     {
1894        local $SIG{'__DIE__'} =
1895               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1896        eval { die "foo lives here" };
1897        print $@ if $@;                # prints "bar lives here"
1898     }
1899
1900 Because this promotes action at a distance, this counterintuitive behavior
1901 may be fixed in a future release.
1902
1903 With an C<eval>, you should be especially careful to remember what's
1904 being looked at when:
1905
1906     eval $x;        # CASE 1
1907     eval "$x";      # CASE 2
1908
1909     eval '$x';      # CASE 3
1910     eval { $x };    # CASE 4
1911
1912     eval "\$$x++";  # CASE 5
1913     $$x++;          # CASE 6
1914
1915 Cases 1 and 2 above behave identically: they run the code contained in
1916 the variable $x.  (Although case 2 has misleading double quotes making
1917 the reader wonder what else might be happening (nothing is).)  Cases 3
1918 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1919 does nothing but return the value of $x.  (Case 4 is preferred for
1920 purely visual reasons, but it also has the advantage of compiling at
1921 compile-time instead of at run-time.)  Case 5 is a place where
1922 normally you I<would> like to use double quotes, except that in this
1923 particular situation, you can just use symbolic references instead, as
1924 in case 6.
1925
1926 Before Perl 5.14, the assignment to C<$@> occurred before restoration 
1927 of localized variables, which means that for your code to run on older
1928 versions, a temporary is required if you want to mask some but not all
1929 errors:
1930
1931     # alter $@ on nefarious repugnancy only
1932     {
1933        my $e;
1934        {
1935          local $@; # protect existing $@
1936          eval { test_repugnancy() };
1937          # $@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only
1938          $@ =~ /nefarious/ and $e = $@;
1939        }
1940        die $e if defined $e
1941     }
1942
1943 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1944 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1945
1946 An C<eval ''> executed within a subroutine defined
1947 in the C<DB> package doesn't see the usual
1948 surrounding lexical scope, but rather the scope of the first non-DB piece
1949 of code that called it.  You don't normally need to worry about this unless
1950 you are writing a Perl debugger.
1951
1952 =item evalbytes EXPR
1953 X<evalbytes>
1954
1955 =item evalbytes
1956
1957 =for Pod::Functions +evalbytes similar to string eval, but intend to parse a bytestream
1958
1959 This function is like L</eval> with a string argument, except it always
1960 parses its argument, or C<$_> if EXPR is omitted, as a string of bytes.  A
1961 string containing characters whose ordinal value exceeds 255 results in an
1962 error.  Source filters activated within the evaluated code apply to the
1963 code itself.
1964
1965 This function is only available under the C<evalbytes> feature, a
1966 C<use v5.16> (or higher) declaration, or with a C<CORE::> prefix.  See
1967 L<feature> for more information.
1968
1969 =item exec LIST
1970 X<exec> X<execute>
1971
1972 =item exec PROGRAM LIST
1973
1974 =for Pod::Functions abandon this program to run another
1975
1976 The C<exec> function executes a system command I<and never returns>;
1977 use C<system> instead of C<exec> if you want it to return.  It fails and
1978 returns false only if the command does not exist I<and> it is executed
1979 directly instead of via your system's command shell (see below).
1980
1981 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1982 warns you if C<exec> is called in void context and if there is a following
1983 statement that isn't C<die>, C<warn>, or C<exit> (if C<-w> is set--but
1984 you always do that, right?).  If you I<really> want to follow an C<exec>
1985 with some other statement, you can use one of these styles to avoid the warning:
1986
1987     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1988     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1989
1990 If there is more than one argument in LIST, this calls execvp(3) with the
1991 arguments in LIST.  If there is only one element in LIST, the argument is
1992 checked for shell metacharacters, and if there are any, the entire
1993 argument is passed to the system's command shell for parsing (this is
1994 C</bin/sh -c> on Unix platforms, but varies on other platforms).  If
1995 there are no shell metacharacters in the argument, it is split into words
1996 and passed directly to C<execvp>, which is more efficient.  Examples:
1997
1998     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1999     exec "sort $outfile | uniq";
2000
2001 If you don't really want to execute the first argument, but want to lie
2002 to the program you are executing about its own name, you can specify
2003 the program you actually want to run as an "indirect object" (without a
2004 comma) in front of the LIST, as in C<exec PROGRAM LIST>.  (This always
2005 forces interpretation of the LIST as a multivalued list, even if there
2006 is only a single scalar in the list.)  Example:
2007
2008     $shell = '/bin/csh';
2009     exec $shell '-sh';    # pretend it's a login shell
2010
2011 or, more directly,
2012
2013     exec {'/bin/csh'} '-sh';  # pretend it's a login shell
2014
2015 When the arguments get executed via the system shell, results are
2016 subject to its quirks and capabilities.  See L<perlop/"`STRING`">
2017 for details.
2018
2019 Using an indirect object with C<exec> or C<system> is also more
2020 secure.  This usage (which also works fine with system()) forces
2021 interpretation of the arguments as a multivalued list, even if the
2022 list had just one argument.  That way you're safe from the shell
2023 expanding wildcards or splitting up words with whitespace in them.
2024
2025     @args = ( "echo surprise" );
2026
2027     exec @args;               # subject to shell escapes
2028                                 # if @args == 1
2029     exec { $args[0] } @args;  # safe even with one-arg list
2030
2031 The first version, the one without the indirect object, ran the I<echo>
2032 program, passing it C<"surprise"> an argument.  The second version didn't;
2033 it tried to run a program named I<"echo surprise">, didn't find it, and set
2034 C<$?> to a non-zero value indicating failure.
2035
2036 On Windows, only the C<exec PROGRAM LIST> indirect object syntax will
2037 reliably avoid using the shell; C<exec LIST>, even with more than one
2038 element, will fall back to the shell if the first spawn fails.
2039
2040 Perl attempts to flush all files opened for output before the exec,
2041 but this may not be supported on some platforms (see L<perlport>).
2042 To be safe, you may need to set C<$|> ($AUTOFLUSH in English) or
2043 call the C<autoflush()> method of C<IO::Handle> on any open handles
2044 to avoid lost output.
2045
2046 Note that C<exec> will not call your C<END> blocks, nor will it invoke
2047 C<DESTROY> methods on your objects.
2048
2049 Portability issues: L<perlport/exec>.
2050
2051 =item exists EXPR
2052 X<exists> X<autovivification>
2053
2054 =for Pod::Functions test whether a hash key is present
2055
2056 Given an expression that specifies an element of a hash, returns true if the
2057 specified element in the hash has ever been initialized, even if the
2058 corresponding value is undefined.
2059
2060     print "Exists\n"    if exists $hash{$key};
2061     print "Defined\n"   if defined $hash{$key};
2062     print "True\n"      if $hash{$key};
2063
2064 exists may also be called on array elements, but its behavior is much less
2065 obvious and is strongly tied to the use of L</delete> on arrays.  B<Be aware>
2066 that calling exists on array values is deprecated and likely to be removed in
2067 a future version of Perl.
2068
2069     print "Exists\n"    if exists $array[$index];
2070     print "Defined\n"   if defined $array[$index];
2071     print "True\n"      if $array[$index];
2072
2073 A hash or array element can be true only if it's defined and defined only if
2074 it exists, but the reverse doesn't necessarily hold true.
2075
2076 Given an expression that specifies the name of a subroutine,
2077 returns true if the specified subroutine has ever been declared, even
2078 if it is undefined.  Mentioning a subroutine name for exists or defined
2079 does not count as declaring it.  Note that a subroutine that does not
2080 exist may still be callable: its package may have an C<AUTOLOAD>
2081 method that makes it spring into existence the first time that it is
2082 called; see L<perlsub>.
2083
2084     print "Exists\n"  if exists &subroutine;
2085     print "Defined\n" if defined &subroutine;
2086
2087 Note that the EXPR can be arbitrarily complicated as long as the final
2088 operation is a hash or array key lookup or subroutine name:
2089
2090     if (exists $ref->{A}->{B}->{$key})  { }
2091     if (exists $hash{A}{B}{$key})       { }
2092
2093     if (exists $ref->{A}->{B}->[$ix])   { }
2094     if (exists $hash{A}{B}[$ix])        { }
2095
2096     if (exists &{$ref->{A}{B}{$key}})   { }
2097
2098 Although the most deeply nested array or hash element will not spring into
2099 existence just because its existence was tested, any intervening ones will.
2100 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
2101 into existence due to the existence test for the $key element above.
2102 This happens anywhere the arrow operator is used, including even here:
2103
2104     undef $ref;
2105     if (exists $ref->{"Some key"})    { }
2106     print $ref;  # prints HASH(0x80d3d5c)
2107
2108 This surprising autovivification in what does not at first--or even
2109 second--glance appear to be an lvalue context may be fixed in a future
2110 release.
2111
2112 Use of a subroutine call, rather than a subroutine name, as an argument
2113 to exists() is an error.
2114
2115     exists &sub;    # OK
2116     exists &sub();  # Error
2117
2118 =item exit EXPR
2119 X<exit> X<terminate> X<abort>
2120
2121 =item exit
2122
2123 =for Pod::Functions terminate this program
2124
2125 Evaluates EXPR and exits immediately with that value.    Example:
2126
2127     $ans = <STDIN>;
2128     exit 0 if $ans =~ /^[Xx]/;
2129
2130 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
2131 universally recognized values for EXPR are C<0> for success and C<1>
2132 for error; other values are subject to interpretation depending on the
2133 environment in which the Perl program is running.  For example, exiting
2134 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
2135 the mailer to return the item undelivered, but that's not true everywhere.
2136
2137 Don't use C<exit> to abort a subroutine if there's any chance that
2138 someone might want to trap whatever error happened.  Use C<die> instead,
2139 which can be trapped by an C<eval>.
2140
2141 The exit() function does not always exit immediately.  It calls any
2142 defined C<END> routines first, but these C<END> routines may not
2143 themselves abort the exit.  Likewise any object destructors that need to
2144 be called are called before the real exit.  C<END> routines and destructors
2145 can change the exit status by modifying C<$?>.  If this is a problem, you
2146 can call C<POSIX::_exit($status)> to avoid END and destructor processing.
2147 See L<perlmod> for details.
2148
2149 Portability issues: L<perlport/exit>.
2150
2151 =item exp EXPR
2152 X<exp> X<exponential> X<antilog> X<antilogarithm> X<e>
2153
2154 =item exp
2155
2156 =for Pod::Functions raise I<e> to a power
2157
2158 Returns I<e> (the natural logarithm base) to the power of EXPR.
2159 If EXPR is omitted, gives C<exp($_)>.
2160
2161 =item fc EXPR
2162 X<fc> X<foldcase> X<casefold> X<fold-case> X<case-fold>
2163
2164 =item fc
2165
2166 =for Pod::Functions +fc return casefolded version of a string
2167
2168 Returns the casefolded version of EXPR.  This is the internal function
2169 implementing the C<\F> escape in double-quoted strings.
2170
2171 Casefolding is the process of mapping strings to a form where case
2172 differences are erased; comparing two strings in their casefolded
2173 form is effectively a way of asking if two strings are equal,
2174 regardless of case.
2175
2176 Roughly, if you ever found yourself writing this
2177
2178     lc($this) eq lc($that)    # Wrong!
2179         # or
2180     uc($this) eq uc($that)    # Also wrong!
2181         # or
2182     $this =~ /^\Q$that\E\z/i  # Right!
2183
2184 Now you can write
2185
2186     fc($this) eq fc($that)
2187
2188 And get the correct results.
2189
2190 Perl only implements the full form of casefolding,
2191 but you can access the simple folds using L<Unicode::UCD/casefold()> and
2192 L<Unicode::UCD/prop_invmap()>.
2193 For further information on casefolding, refer to
2194 the Unicode Standard, specifically sections 3.13 C<Default Case Operations>,
2195 4.2 C<Case-Normative>, and 5.18 C<Case Mappings>,
2196 available at L<http://www.unicode.org/versions/latest/>, as well as the
2197 Case Charts available at L<http://www.unicode.org/charts/case/>.
2198
2199 If EXPR is omitted, uses C<$_>.
2200
2201 This function behaves the same way under various pragma, such as within
2202 S<C<"use feature 'unicode_strings">>, as L</lc> does, with the single
2203 exception of C<fc> of LATIN CAPITAL LETTER SHARP S (U+1E9E) within the
2204 scope of S<C<use locale>>.  The foldcase of this character would
2205 normally be C<"ss">, but as explained in the L</lc> section, case
2206 changes that cross the 255/256 boundary are problematic under locales,
2207 and are hence prohibited.  Therefore, this function under locale returns
2208 instead the string C<"\x{17F}\x{17F}">, which is the LATIN SMALL LETTER
2209 LONG S.  Since that character itself folds to C<"s">, the string of two
2210 of them together should be equivalent to a single U+1E9E when foldcased.
2211
2212 While the Unicode Standard defines two additional forms of casefolding,
2213 one for Turkic languages and one that never maps one character into multiple
2214 characters, these are not provided by the Perl core; However, the CPAN module
2215 C<Unicode::Casing> may be used to provide an implementation.
2216
2217 This keyword is available only when the C<"fc"> feature is enabled,
2218 or when prefixed with C<CORE::>; See L<feature>.  Alternately,
2219 include a C<use v5.16> or later to the current scope.
2220
2221 =item fcntl FILEHANDLE,FUNCTION,SCALAR
2222 X<fcntl>
2223
2224 =for Pod::Functions file control system call
2225
2226 Implements the fcntl(2) function.  You'll probably have to say
2227
2228     use Fcntl;
2229
2230 first to get the correct constant definitions.  Argument processing and
2231 value returned work just like C<ioctl> below.
2232 For example:
2233
2234     use Fcntl;
2235     fcntl($filehandle, F_GETFL, $packed_return_buffer)
2236         or die "can't fcntl F_GETFL: $!";
2237
2238 You don't have to check for C<defined> on the return from C<fcntl>.
2239 Like C<ioctl>, it maps a C<0> return from the system call into
2240 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
2241 in numeric context.  It is also exempt from the normal B<-w> warnings
2242 on improper numeric conversions.
2243
2244 Note that C<fcntl> raises an exception if used on a machine that
2245 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
2246 manpage to learn what functions are available on your system.
2247
2248 Here's an example of setting a filehandle named C<REMOTE> to be
2249 non-blocking at the system level.  You'll have to negotiate C<$|>
2250 on your own, though.
2251
2252     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2253
2254     $flags = fcntl(REMOTE, F_GETFL, 0)
2255                 or die "Can't get flags for the socket: $!\n";
2256
2257     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2258                 or die "Can't set flags for the socket: $!\n";
2259
2260 Portability issues: L<perlport/fcntl>.
2261
2262 =item __FILE__
2263 X<__FILE__>
2264
2265 =for Pod::Functions the name of the current source file
2266
2267 A special token that returns the name of the file in which it occurs.
2268
2269 =item fileno FILEHANDLE
2270 X<fileno>
2271
2272 =for Pod::Functions return file descriptor from filehandle
2273
2274 Returns the file descriptor for a filehandle, or undefined if the
2275 filehandle is not open.  If there is no real file descriptor at the OS
2276 level, as can happen with filehandles connected to memory objects via
2277 C<open> with a reference for the third argument, -1 is returned.
2278
2279 This is mainly useful for constructing
2280 bitmaps for C<select> and low-level POSIX tty-handling operations.
2281 If FILEHANDLE is an expression, the value is taken as an indirect
2282 filehandle, generally its name.
2283
2284 You can use this to find out whether two handles refer to the
2285 same underlying descriptor:
2286
2287     if (fileno(THIS) != -1 && fileno(THIS) == fileno(THAT)) {
2288         print "THIS and THAT are dups\n";
2289     } elsif (fileno(THIS) != -1 && fileno(THAT) != -1) {
2290         print "THIS and THAT have different " .
2291             "underlying file descriptors\n";
2292     } else {
2293         print "At least one of THIS and THAT does " .
2294             "not have a real file descriptor\n";
2295     }
2296
2297 =item flock FILEHANDLE,OPERATION
2298 X<flock> X<lock> X<locking>
2299
2300 =for Pod::Functions lock an entire file with an advisory lock
2301
2302 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
2303 for success, false on failure.  Produces a fatal error if used on a
2304 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
2305 C<flock> is Perl's portable file-locking interface, although it locks
2306 entire files only, not records.
2307
2308 Two potentially non-obvious but traditional C<flock> semantics are
2309 that it waits indefinitely until the lock is granted, and that its locks
2310 are B<merely advisory>.  Such discretionary locks are more flexible, but
2311 offer fewer guarantees.  This means that programs that do not also use
2312 C<flock> may modify files locked with C<flock>.  See L<perlport>, 
2313 your port's specific documentation, and your system-specific local manpages
2314 for details.  It's best to assume traditional behavior if you're writing
2315 portable programs.  (But if you're not, you should as always feel perfectly
2316 free to write for your own system's idiosyncrasies (sometimes called
2317 "features").  Slavish adherence to portability concerns shouldn't get
2318 in the way of your getting your job done.)
2319
2320 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
2321 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
2322 you can use the symbolic names if you import them from the L<Fcntl> module,
2323 either individually, or as a group using the C<:flock> tag.  LOCK_SH
2324 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
2325 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
2326 LOCK_SH or LOCK_EX, then C<flock> returns immediately rather than blocking
2327 waiting for the lock; check the return status to see if you got it.
2328
2329 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
2330 before locking or unlocking it.
2331
2332 Note that the emulation built with lockf(3) doesn't provide shared
2333 locks, and it requires that FILEHANDLE be open with write intent.  These
2334 are the semantics that lockf(3) implements.  Most if not all systems
2335 implement lockf(3) in terms of fcntl(2) locking, though, so the
2336 differing semantics shouldn't bite too many people.
2337
2338 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
2339 be open with read intent to use LOCK_SH and requires that it be open
2340 with write intent to use LOCK_EX.
2341
2342 Note also that some versions of C<flock> cannot lock things over the
2343 network; you would need to use the more system-specific C<fcntl> for
2344 that.  If you like you can force Perl to ignore your system's flock(2)
2345 function, and so provide its own fcntl(2)-based emulation, by passing
2346 the switch C<-Ud_flock> to the F<Configure> program when you configure
2347 and build a new Perl.
2348
2349 Here's a mailbox appender for BSD systems.
2350
2351     # import LOCK_* and SEEK_END constants
2352     use Fcntl qw(:flock SEEK_END);
2353
2354     sub lock {
2355         my ($fh) = @_;
2356         flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";
2357
2358         # and, in case someone appended while we were waiting...
2359         seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";
2360     }
2361
2362     sub unlock {
2363         my ($fh) = @_;
2364         flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";
2365     }
2366
2367     open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
2368         or die "Can't open mailbox: $!";
2369
2370     lock($mbox);
2371     print $mbox $msg,"\n\n";
2372     unlock($mbox);
2373
2374 On systems that support a real flock(2), locks are inherited across fork()
2375 calls, whereas those that must resort to the more capricious fcntl(2)
2376 function lose their locks, making it seriously harder to write servers.
2377
2378 See also L<DB_File> for other flock() examples.
2379
2380 Portability issues: L<perlport/flock>.
2381
2382 =item fork
2383 X<fork> X<child> X<parent>
2384
2385 =for Pod::Functions create a new process just like this one
2386
2387 Does a fork(2) system call to create a new process running the
2388 same program at the same point.  It returns the child pid to the
2389 parent process, C<0> to the child process, or C<undef> if the fork is
2390 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
2391 are shared, while everything else is copied.  On most systems supporting
2392 fork(), great care has gone into making it extremely efficient (for
2393 example, using copy-on-write technology on data pages), making it the
2394 dominant paradigm for multitasking over the last few decades.
2395
2396 Perl attempts to flush all files opened for
2397 output before forking the child process, but this may not be supported
2398 on some platforms (see L<perlport>).  To be safe, you may need to set
2399 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
2400 C<IO::Handle> on any open handles to avoid duplicate output.
2401
2402 If you C<fork> without ever waiting on your children, you will
2403 accumulate zombies.  On some systems, you can avoid this by setting
2404 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
2405 forking and reaping moribund children.
2406
2407 Note that if your forked child inherits system file descriptors like
2408 STDIN and STDOUT that are actually connected by a pipe or socket, even
2409 if you exit, then the remote server (such as, say, a CGI script or a
2410 backgrounded job launched from a remote shell) won't think you're done.
2411 You should reopen those to F</dev/null> if it's any issue.
2412
2413 On some platforms such as Windows, where the fork() system call is not available,
2414 Perl can be built to emulate fork() in the Perl interpreter.
2415 The emulation is designed, at the level of the Perl program,
2416 to be as compatible as possible with the "Unix" fork().
2417 However it has limitations that have to be considered in code intended to be portable.
2418 See L<perlfork> for more details.
2419
2420 Portability issues: L<perlport/fork>.
2421
2422 =item format
2423 X<format>
2424
2425 =for Pod::Functions declare a picture format with use by the write() function
2426
2427 Declare a picture format for use by the C<write> function.  For
2428 example:
2429
2430     format Something =
2431         Test: @<<<<<<<< @||||| @>>>>>
2432               $str,     $%,    '$' . int($num)
2433     .
2434
2435     $str = "widget";
2436     $num = $cost/$quantity;
2437     $~ = 'Something';
2438     write;
2439
2440 See L<perlform> for many details and examples.
2441
2442 =item formline PICTURE,LIST
2443 X<formline>
2444
2445 =for Pod::Functions internal function used for formats
2446
2447 This is an internal function used by C<format>s, though you may call it,
2448 too.  It formats (see L<perlform>) a list of values according to the
2449 contents of PICTURE, placing the output into the format output
2450 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
2451 Eventually, when a C<write> is done, the contents of
2452 C<$^A> are written to some filehandle.  You could also read C<$^A>
2453 and then set C<$^A> back to C<"">.  Note that a format typically
2454 does one C<formline> per line of form, but the C<formline> function itself
2455 doesn't care how many newlines are embedded in the PICTURE.  This means
2456 that the C<~> and C<~~> tokens treat the entire PICTURE as a single line.
2457 You may therefore need to use multiple formlines to implement a single
2458 record format, just like the C<format> compiler.
2459
2460 Be careful if you put double quotes around the picture, because an C<@>
2461 character may be taken to mean the beginning of an array name.
2462 C<formline> always returns true.  See L<perlform> for other examples.
2463
2464 If you are trying to use this instead of C<write> to capture the output,
2465 you may find it easier to open a filehandle to a scalar
2466 (C<< open $fh, ">", \$output >>) and write to that instead.
2467
2468 =item getc FILEHANDLE
2469 X<getc> X<getchar> X<character> X<file, read>
2470
2471 =item getc
2472
2473 =for Pod::Functions get the next character from the filehandle
2474
2475 Returns the next character from the input file attached to FILEHANDLE,
2476 or the undefined value at end of file or if there was an error (in
2477 the latter case C<$!> is set).  If FILEHANDLE is omitted, reads from
2478 STDIN.  This is not particularly efficient.  However, it cannot be
2479 used by itself to fetch single characters without waiting for the user
2480 to hit enter.  For that, try something more like:
2481
2482     if ($BSD_STYLE) {
2483         system "stty cbreak </dev/tty >/dev/tty 2>&1";
2484     }
2485     else {
2486         system "stty", '-icanon', 'eol', "\001";
2487     }
2488
2489     $key = getc(STDIN);
2490
2491     if ($BSD_STYLE) {
2492         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
2493     }
2494     else {
2495         system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL
2496     }
2497     print "\n";
2498
2499 Determination of whether $BSD_STYLE should be set
2500 is left as an exercise to the reader.
2501
2502 The C<POSIX::getattr> function can do this more portably on
2503 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
2504 module from your nearest L<CPAN|http://www.cpan.org> site.
2505
2506 =item getlogin
2507 X<getlogin> X<login>
2508
2509 =for Pod::Functions return who logged in at this tty
2510
2511 This implements the C library function of the same name, which on most
2512 systems returns the current login from F</etc/utmp>, if any.  If it
2513 returns the empty string, use C<getpwuid>.
2514
2515     $login = getlogin || getpwuid($<) || "Kilroy";
2516
2517 Do not consider C<getlogin> for authentication: it is not as
2518 secure as C<getpwuid>.
2519
2520 Portability issues: L<perlport/getlogin>.
2521
2522 =item getpeername SOCKET
2523 X<getpeername> X<peer>
2524
2525 =for Pod::Functions find the other end of a socket connection
2526
2527 Returns the packed sockaddr address of the other end of the SOCKET
2528 connection.
2529
2530     use Socket;
2531     $hersockaddr    = getpeername(SOCK);
2532     ($port, $iaddr) = sockaddr_in($hersockaddr);
2533     $herhostname    = gethostbyaddr($iaddr, AF_INET);
2534     $herstraddr     = inet_ntoa($iaddr);
2535
2536 =item getpgrp PID
2537 X<getpgrp> X<group>
2538
2539 =for Pod::Functions get process group
2540
2541 Returns the current process group for the specified PID.  Use
2542 a PID of C<0> to get the current process group for the
2543 current process.  Will raise an exception if used on a machine that
2544 doesn't implement getpgrp(2).  If PID is omitted, returns the process
2545 group of the current process.  Note that the POSIX version of C<getpgrp>
2546 does not accept a PID argument, so only C<PID==0> is truly portable.
2547
2548 Portability issues: L<perlport/getpgrp>.
2549
2550 =item getppid
2551 X<getppid> X<parent> X<pid>
2552
2553 =for Pod::Functions get parent process ID
2554
2555 Returns the process id of the parent process.
2556
2557 Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work
2558 around non-POSIX thread semantics the minority of Linux systems (and
2559 Debian GNU/kFreeBSD systems) that used LinuxThreads, this emulation
2560 has since been removed.  See the documentation for L<$$|perlvar/$$> for
2561 details.
2562
2563 Portability issues: L<perlport/getppid>.
2564
2565 =item getpriority WHICH,WHO
2566 X<getpriority> X<priority> X<nice>
2567
2568 =for Pod::Functions get current nice value
2569
2570 Returns the current priority for a process, a process group, or a user.
2571 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
2572 machine that doesn't implement getpriority(2).
2573
2574 Portability issues: L<perlport/getpriority>.
2575
2576 =item getpwnam NAME
2577 X<getpwnam> X<getgrnam> X<gethostbyname> X<getnetbyname> X<getprotobyname>
2578 X<getpwuid> X<getgrgid> X<getservbyname> X<gethostbyaddr> X<getnetbyaddr>
2579 X<getprotobynumber> X<getservbyport> X<getpwent> X<getgrent> X<gethostent>
2580 X<getnetent> X<getprotoent> X<getservent> X<setpwent> X<setgrent> X<sethostent>
2581 X<setnetent> X<setprotoent> X<setservent> X<endpwent> X<endgrent> X<endhostent>
2582 X<endnetent> X<endprotoent> X<endservent> 
2583
2584 =for Pod::Functions get passwd record given user login name
2585
2586 =item getgrnam NAME
2587
2588 =for Pod::Functions get group record given group name
2589
2590 =item gethostbyname NAME
2591
2592 =for Pod::Functions get host record given name
2593
2594 =item getnetbyname NAME
2595
2596 =for Pod::Functions get networks record given name
2597
2598 =item getprotobyname NAME
2599
2600 =for Pod::Functions get protocol record given name
2601
2602 =item getpwuid UID
2603
2604 =for Pod::Functions get passwd record given user ID
2605
2606 =item getgrgid GID
2607
2608 =for Pod::Functions get group record given group user ID
2609
2610 =item getservbyname NAME,PROTO
2611
2612 =for Pod::Functions get services record given its name
2613
2614 =item gethostbyaddr ADDR,ADDRTYPE
2615
2616 =for Pod::Functions get host record given its address
2617
2618 =item getnetbyaddr ADDR,ADDRTYPE
2619
2620 =for Pod::Functions get network record given its address
2621
2622 =item getprotobynumber NUMBER
2623
2624 =for Pod::Functions get protocol record numeric protocol
2625
2626 =item getservbyport PORT,PROTO
2627
2628 =for Pod::Functions get services record given numeric port
2629
2630 =item getpwent
2631
2632 =for Pod::Functions get next passwd record
2633
2634 =item getgrent
2635
2636 =for Pod::Functions get next group record
2637
2638 =item gethostent
2639
2640 =for Pod::Functions get next hosts record
2641
2642 =item getnetent
2643
2644 =for Pod::Functions get next networks record
2645
2646 =item getprotoent
2647
2648 =for Pod::Functions get next protocols record
2649
2650 =item getservent
2651
2652 =for Pod::Functions get next services record
2653
2654 =item setpwent
2655
2656 =for Pod::Functions prepare passwd file for use
2657
2658 =item setgrent
2659
2660 =for Pod::Functions prepare group file for use
2661
2662 =item sethostent STAYOPEN
2663
2664 =for Pod::Functions prepare hosts file for use
2665
2666 =item setnetent STAYOPEN
2667
2668 =for Pod::Functions prepare networks file for use
2669
2670 =item setprotoent STAYOPEN
2671
2672 =for Pod::Functions prepare protocols file for use
2673
2674 =item setservent STAYOPEN
2675
2676 =for Pod::Functions prepare services file for use
2677
2678 =item endpwent
2679
2680 =for Pod::Functions be done using passwd file
2681
2682 =item endgrent
2683
2684 =for Pod::Functions be done using group file
2685
2686 =item endhostent
2687
2688 =for Pod::Functions be done using hosts file
2689
2690 =item endnetent
2691
2692 =for Pod::Functions be done using networks file
2693
2694 =item endprotoent
2695
2696 =for Pod::Functions be done using protocols file
2697
2698 =item endservent
2699
2700 =for Pod::Functions be done using services file
2701
2702 These routines are the same as their counterparts in the
2703 system C library.  In list context, the return values from the
2704 various get routines are as follows:
2705
2706  # 0        1          2           3         4
2707  ( $name,   $passwd,   $gid,       $members  ) = getgr*
2708  ( $name,   $aliases,  $addrtype,  $net      ) = getnet*
2709  ( $name,   $aliases,  $port,      $proto    ) = getserv*
2710  ( $name,   $aliases,  $proto                ) = getproto*
2711  ( $name,   $aliases,  $addrtype,  $length,  @addrs ) = gethost*
2712  ( $name,   $passwd,   $uid,       $gid,     $quota,
2713  $comment,  $gcos,     $dir,       $shell,   $expire ) = getpw*
2714  # 5        6          7           8         9
2715
2716 (If the entry doesn't exist you get an empty list.)
2717
2718 The exact meaning of the $gcos field varies but it usually contains
2719 the real name of the user (as opposed to the login name) and other
2720 information pertaining to the user.  Beware, however, that in many
2721 system users are able to change this information and therefore it
2722 cannot be trusted and therefore the $gcos is tainted (see
2723 L<perlsec>).  The $passwd and $shell, user's encrypted password and
2724 login shell, are also tainted, for the same reason.
2725
2726 In scalar context, you get the name, unless the function was a
2727 lookup by name, in which case you get the other thing, whatever it is.
2728 (If the entry doesn't exist you get the undefined value.)  For example:
2729
2730     $uid   = getpwnam($name);
2731     $name  = getpwuid($num);
2732     $name  = getpwent();
2733     $gid   = getgrnam($name);
2734     $name  = getgrgid($num);
2735     $name  = getgrent();
2736     #etc.
2737
2738 In I<getpw*()> the fields $quota, $comment, and $expire are special
2739 in that they are unsupported on many systems.  If the
2740 $quota is unsupported, it is an empty scalar.  If it is supported, it
2741 usually encodes the disk quota.  If the $comment field is unsupported,
2742 it is an empty scalar.  If it is supported it usually encodes some
2743 administrative comment about the user.  In some systems the $quota
2744 field may be $change or $age, fields that have to do with password
2745 aging.  In some systems the $comment field may be $class.  The $expire
2746 field, if present, encodes the expiration period of the account or the
2747 password.  For the availability and the exact meaning of these fields
2748 in your system, please consult getpwnam(3) and your system's 
2749 F<pwd.h> file.  You can also find out from within Perl what your
2750 $quota and $comment fields mean and whether you have the $expire field
2751 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2752 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
2753 files are supported only if your vendor has implemented them in the
2754 intuitive fashion that calling the regular C library routines gets the
2755 shadow versions if you're running under privilege or if there exists
2756 the shadow(3) functions as found in System V (this includes Solaris
2757 and Linux).  Those systems that implement a proprietary shadow password
2758 facility are unlikely to be supported.
2759
2760 The $members value returned by I<getgr*()> is a space-separated list of
2761 the login names of the members of the group.
2762
2763 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2764 C, it will be returned to you via C<$?> if the function call fails.  The
2765 C<@addrs> value returned by a successful call is a list of raw
2766 addresses returned by the corresponding library call.  In the
2767 Internet domain, each address is four bytes long; you can unpack it
2768 by saying something like:
2769
2770     ($a,$b,$c,$d) = unpack('W4',$addr[0]);
2771
2772 The Socket library makes this slightly easier:
2773
2774     use Socket;
2775     $iaddr = inet_aton("127.1"); # or whatever address
2776     $name  = gethostbyaddr($iaddr, AF_INET);
2777
2778     # or going the other way
2779     $straddr = inet_ntoa($iaddr);
2780
2781 In the opposite way, to resolve a hostname to the IP address
2782 you can write this:
2783
2784     use Socket;
2785     $packed_ip = gethostbyname("www.perl.org");
2786     if (defined $packed_ip) {
2787         $ip_address = inet_ntoa($packed_ip);
2788     }
2789
2790 Make sure C<gethostbyname()> is called in SCALAR context and that
2791 its return value is checked for definedness.
2792
2793 The C<getprotobynumber> function, even though it only takes one argument,
2794 has the precedence of a list operator, so beware:
2795
2796     getprotobynumber $number eq 'icmp'   # WRONG
2797     getprotobynumber($number eq 'icmp')  # actually means this
2798     getprotobynumber($number) eq 'icmp'  # better this way
2799
2800 If you get tired of remembering which element of the return list
2801 contains which return value, by-name interfaces are provided
2802 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2803 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2804 and C<User::grent>.  These override the normal built-ins, supplying
2805 versions that return objects with the appropriate names
2806 for each field.  For example:
2807
2808    use File::stat;
2809    use User::pwent;
2810    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2811
2812 Even though it looks as though they're the same method calls (uid),
2813 they aren't, because a C<File::stat> object is different from
2814 a C<User::pwent> object.
2815
2816 Portability issues: L<perlport/getpwnam> to L<perlport/endservent>.
2817
2818 =item getsockname SOCKET
2819 X<getsockname>
2820
2821 =for Pod::Functions retrieve the sockaddr for a given socket
2822
2823 Returns the packed sockaddr address of this end of the SOCKET connection,
2824 in case you don't know the address because you have several different
2825 IPs that the connection might have come in on.
2826
2827     use Socket;
2828     $mysockaddr = getsockname(SOCK);
2829     ($port, $myaddr) = sockaddr_in($mysockaddr);
2830     printf "Connect to %s [%s]\n",
2831        scalar gethostbyaddr($myaddr, AF_INET),
2832        inet_ntoa($myaddr);
2833
2834 =item getsockopt SOCKET,LEVEL,OPTNAME
2835 X<getsockopt>
2836
2837 =for Pod::Functions get socket options on a given socket
2838
2839 Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
2840 Options may exist at multiple protocol levels depending on the socket
2841 type, but at least the uppermost socket level SOL_SOCKET (defined in the
2842 C<Socket> module) will exist.  To query options at another level the
2843 protocol number of the appropriate protocol controlling the option
2844 should be supplied.  For example, to indicate that an option is to be
2845 interpreted by the TCP protocol, LEVEL should be set to the protocol
2846 number of TCP, which you can get using C<getprotobyname>.
2847
2848 The function returns a packed string representing the requested socket
2849 option, or C<undef> on error, with the reason for the error placed in
2850 C<$!>.  Just what is in the packed string depends on LEVEL and OPTNAME;
2851 consult getsockopt(2) for details.  A common case is that the option is an
2852 integer, in which case the result is a packed integer, which you can decode
2853 using C<unpack> with the C<i> (or C<I>) format.
2854
2855 Here's an example to test whether Nagle's algorithm is enabled on a socket:
2856
2857     use Socket qw(:all);
2858
2859     defined(my $tcp = getprotobyname("tcp"))
2860         or die "Could not determine the protocol number for tcp";
2861     # my $tcp = IPPROTO_TCP; # Alternative
2862     my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
2863         or die "getsockopt TCP_NODELAY: $!";
2864     my $nodelay = unpack("I", $packed);
2865     print "Nagle's algorithm is turned ",
2866            $nodelay ? "off\n" : "on\n";
2867
2868 Portability issues: L<perlport/getsockopt>.
2869
2870 =item glob EXPR
2871 X<glob> X<wildcard> X<filename, expansion> X<expand>
2872
2873 =item glob
2874
2875 =for Pod::Functions expand filenames using wildcards
2876
2877 In list context, returns a (possibly empty) list of filename expansions on
2878 the value of EXPR such as the standard Unix shell F</bin/csh> would do.  In
2879 scalar context, glob iterates through such filename expansions, returning
2880 undef when the list is exhausted.  This is the internal function
2881 implementing the C<< <*.c> >> operator, but you can use it directly.  If
2882 EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is discussed in
2883 more detail in L<perlop/"I/O Operators">.
2884
2885 Note that C<glob> splits its arguments on whitespace and treats
2886 each segment as separate pattern.  As such, C<glob("*.c *.h")> 
2887 matches all files with a F<.c> or F<.h> extension.  The expression
2888 C<glob(".* *")> matches all files in the current working directory.
2889 If you want to glob filenames that might contain whitespace, you'll
2890 have to use extra quotes around the spacey filename to protect it.
2891 For example, to glob filenames that have an C<e> followed by a space
2892 followed by an C<f>, use either of:
2893
2894     @spacies = <"*e f*">;
2895     @spacies = glob '"*e f*"';
2896     @spacies = glob q("*e f*");
2897
2898 If you had to get a variable through, you could do this:
2899
2900     @spacies = glob "'*${var}e f*'";
2901     @spacies = glob qq("*${var}e f*");
2902
2903 If non-empty braces are the only wildcard characters used in the
2904 C<glob>, no filenames are matched, but potentially many strings
2905 are returned.  For example, this produces nine strings, one for
2906 each pairing of fruits and colors:
2907
2908     @many =  glob "{apple,tomato,cherry}={green,yellow,red}";
2909
2910 This operator is implemented using the standard
2911 C<File::Glob> extension.  See L<File::Glob> for details, including
2912 C<bsd_glob> which does not treat whitespace as a pattern separator.
2913
2914 Portability issues: L<perlport/glob>.
2915
2916 =item gmtime EXPR
2917 X<gmtime> X<UTC> X<Greenwich>
2918
2919 =item gmtime
2920
2921 =for Pod::Functions convert UNIX time into record or string using Greenwich time
2922
2923 Works just like L</localtime> but the returned values are
2924 localized for the standard Greenwich time zone.
2925
2926 Note: When called in list context, $isdst, the last value
2927 returned by gmtime, is always C<0>.  There is no
2928 Daylight Saving Time in GMT.
2929
2930 Portability issues: L<perlport/gmtime>.
2931
2932 =item goto LABEL
2933 X<goto> X<jump> X<jmp>
2934
2935 =item goto EXPR
2936
2937 =item goto &NAME
2938
2939 =for Pod::Functions create spaghetti code
2940
2941 The C<goto LABEL> form finds the statement labeled with LABEL and
2942 resumes execution there.  It can't be used to get out of a block or
2943 subroutine given to C<sort>.  It can be used to go almost anywhere
2944 else within the dynamic scope, including out of subroutines, but it's
2945 usually better to use some other construct such as C<last> or C<die>.
2946 The author of Perl has never felt the need to use this form of C<goto>
2947 (in Perl, that is; C is another matter).  (The difference is that C
2948 does not offer named loops combined with loop control.  Perl does, and
2949 this replaces most structured uses of C<goto> in other languages.)
2950
2951 The C<goto EXPR> form expects to evaluate C<EXPR> to a code reference or
2952 a label name.  If it evaluates to a code reference, it will be handled
2953 like C<goto &NAME>, below.  This is especially useful for implementing
2954 tail recursion via C<goto __SUB__>.
2955
2956 If the expression evaluates to a label name, its scope will be resolved
2957 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2958 necessarily recommended if you're optimizing for maintainability:
2959
2960     goto ("FOO", "BAR", "GLARCH")[$i];
2961
2962 As shown in this example, C<goto EXPR> is exempt from the "looks like a
2963 function" rule.  A pair of parentheses following it does not (necessarily)
2964 delimit its argument.  C<goto("NE")."XT"> is equivalent to C<goto NEXT>.
2965 Also, unlike most named operators, this has the same precedence as
2966 assignment.
2967
2968 Use of C<goto LABEL> or C<goto EXPR> to jump into a construct is
2969 deprecated and will issue a warning.  Even then, it may not be used to
2970 go into any construct that requires initialization, such as a
2971 subroutine or a C<foreach> loop.  It also can't be used to go into a
2972 construct that is optimized away.
2973
2974 The C<goto &NAME> form is quite different from the other forms of
2975 C<goto>.  In fact, it isn't a goto in the normal sense at all, and
2976 doesn't have the stigma associated with other gotos.  Instead, it
2977 exits the current subroutine (losing any changes set by local()) and
2978 immediately calls in its place the named subroutine using the current
2979 value of @_.  This is used by C<AUTOLOAD> subroutines that wish to
2980 load another subroutine and then pretend that the other subroutine had
2981 been called in the first place (except that any modifications to C<@_>
2982 in the current subroutine are propagated to the other subroutine.)
2983 After the C<goto>, not even C<caller> will be able to tell that this
2984 routine was called first.
2985
2986 NAME needn't be the name of a subroutine; it can be a scalar variable
2987 containing a code reference or a block that evaluates to a code
2988 reference.
2989
2990 =item grep BLOCK LIST
2991 X<grep>
2992
2993 =item grep EXPR,LIST
2994
2995 =for Pod::Functions locate elements in a list test true against a given criterion
2996
2997 This is similar in spirit to, but not the same as, grep(1) and its
2998 relatives.  In particular, it is not limited to using regular expressions.
2999
3000 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
3001 C<$_> to each element) and returns the list value consisting of those
3002 elements for which the expression evaluated to true.  In scalar
3003 context, returns the number of times the expression was true.
3004
3005     @foo = grep(!/^#/, @bar);    # weed out comments
3006
3007 or equivalently,
3008
3009     @foo = grep {!/^#/} @bar;    # weed out comments
3010
3011 Note that C<$_> is an alias to the list value, so it can be used to
3012 modify the elements of the LIST.  While this is useful and supported,
3013 it can cause bizarre results if the elements of LIST are not variables.
3014 Similarly, grep returns aliases into the original list, much as a for
3015 loop's index variable aliases the list elements.  That is, modifying an
3016 element of a list returned by grep (for example, in a C<foreach>, C<map>
3017 or another C<grep>) actually modifies the element in the original list.
3018 This is usually something to be avoided when writing clear code.
3019
3020 If C<$_> is lexical in the scope where the C<grep> appears (because it has
3021 been declared with the deprecated C<my $_> construct)
3022 then, in addition to being locally aliased to
3023 the list elements, C<$_> keeps being lexical inside the block; i.e., it
3024 can't be seen from the outside, avoiding any potential side-effects.
3025
3026 See also L</map> for a list composed of the results of the BLOCK or EXPR.
3027
3028 =item hex EXPR
3029 X<hex> X<hexadecimal>
3030
3031 =item hex
3032
3033 =for Pod::Functions convert a string to a hexadecimal number
3034
3035 Interprets EXPR as a hex string and returns the corresponding value.
3036 (To convert strings that might start with either C<0>, C<0x>, or C<0b>, see
3037 L</oct>.)  If EXPR is omitted, uses C<$_>.
3038
3039     print hex '0xAf'; # prints '175'
3040     print hex 'aF';   # same
3041
3042 Hex strings may only represent integers.  Strings that would cause
3043 integer overflow trigger a warning.  Leading whitespace is not stripped,
3044 unlike oct().  To present something as hex, look into L</printf>,
3045 L</sprintf>, and L</unpack>.
3046
3047 =item import LIST
3048 X<import>
3049
3050 =for Pod::Functions patch a module's namespace into your own
3051
3052 There is no builtin C<import> function.  It is just an ordinary
3053 method (subroutine) defined (or inherited) by modules that wish to export
3054 names to another module.  The C<use> function calls the C<import> method
3055 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
3056
3057 =item index STR,SUBSTR,POSITION
3058 X<index> X<indexOf> X<InStr>
3059
3060 =item index STR,SUBSTR
3061
3062 =for Pod::Functions find a substring within a string
3063
3064 The index function searches for one string within another, but without
3065 the wildcard-like behavior of a full regular-expression pattern match.
3066 It returns the position of the first occurrence of SUBSTR in STR at
3067 or after POSITION.  If POSITION is omitted, starts searching from the
3068 beginning of the string.  POSITION before the beginning of the string
3069 or after its end is treated as if it were the beginning or the end,
3070 respectively.  POSITION and the return value are based at zero.
3071 If the substring is not found, C<index> returns -1.
3072
3073 =item int EXPR
3074 X<int> X<integer> X<truncate> X<trunc> X<floor>
3075
3076 =item int
3077
3078 =for Pod::Functions get the integer portion of a number
3079
3080 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
3081 You should not use this function for rounding: one because it truncates
3082 towards C<0>, and two because machine representations of floating-point
3083 numbers can sometimes produce counterintuitive results.  For example,
3084 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
3085 because it's really more like -268.99999999999994315658 instead.  Usually,
3086 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
3087 functions will serve you better than will int().
3088
3089 =item ioctl FILEHANDLE,FUNCTION,SCALAR
3090 X<ioctl>
3091
3092 =for Pod::Functions system-dependent device control system call
3093
3094 Implements the ioctl(2) function.  You'll probably first have to say
3095
3096     require "sys/ioctl.ph";  # probably in
3097                              # $Config{archlib}/sys/ioctl.ph
3098
3099 to get the correct function definitions.  If F<sys/ioctl.ph> doesn't
3100 exist or doesn't have the correct definitions you'll have to roll your
3101 own, based on your C header files such as F<< <sys/ioctl.h> >>.
3102 (There is a Perl script called B<h2ph> that comes with the Perl kit that
3103 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
3104 written depending on the FUNCTION; a C pointer to the string value of SCALAR
3105 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
3106 has no string value but does have a numeric value, that value will be
3107 passed rather than a pointer to the string value.  To guarantee this to be
3108 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
3109 functions may be needed to manipulate the values of structures used by
3110 C<ioctl>.
3111
3112 The return value of C<ioctl> (and C<fcntl>) is as follows:
3113
3114     if OS returns:      then Perl returns:
3115         -1               undefined value
3116          0              string "0 but true"
3117     anything else           that number
3118
3119 Thus Perl returns true on success and false on failure, yet you can
3120 still easily determine the actual value returned by the operating
3121 system:
3122
3123     $retval = ioctl(...) || -1;
3124     printf "System returned %d\n", $retval;
3125
3126 The special string C<"0 but true"> is exempt from B<-w> complaints
3127 about improper numeric conversions.
3128
3129 Portability issues: L<perlport/ioctl>.
3130
3131 =item join EXPR,LIST
3132 X<join>
3133
3134 =for Pod::Functions join a list into a string using a separator
3135
3136 Joins the separate strings of LIST into a single string with fields
3137 separated by the value of EXPR, and returns that new string.  Example:
3138
3139     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
3140
3141 Beware that unlike C<split>, C<join> doesn't take a pattern as its
3142 first argument.  Compare L</split>.
3143
3144 =item keys HASH
3145 X<keys> X<key>
3146
3147 =item keys ARRAY
3148
3149 =item keys EXPR
3150
3151 =for Pod::Functions retrieve list of indices from a hash
3152
3153 Called in list context, returns a list consisting of all the keys of the
3154 named hash, or in Perl 5.12 or later only, the indices of an array.  Perl
3155 releases prior to 5.12 will produce a syntax error if you try to use an
3156 array argument.  In scalar context, returns the number of keys or indices.
3157
3158 Hash entries are returned in an apparently random order.  The actual random
3159 order is specific to a given hash; the exact same series of operations
3160 on two hashes may result in a different order for each hash.  Any insertion
3161 into the hash may change the order, as will any deletion, with the exception
3162 that the most recent key returned by C<each> or C<keys> may be deleted
3163 without changing the order.  So long as a given hash is unmodified you may
3164 rely on C<keys>, C<values> and C<each> to repeatedly return the same order
3165 as each other.  See L<perlsec/"Algorithmic Complexity Attacks"> for
3166 details on why hash order is randomized.  Aside from the guarantees
3167 provided here the exact details of Perl's hash algorithm and the hash
3168 traversal order are subject to change in any release of Perl.  Tied hashes
3169 may behave differently to Perl's hashes with respect to changes in order on
3170 insertion and deletion of items.
3171
3172 As a side effect, calling keys() resets the internal iterator of the HASH or
3173 ARRAY (see L</each>).  In particular, calling keys() in void context resets
3174 the iterator with no other overhead.
3175
3176 Here is yet another way to print your environment:
3177
3178     @keys = keys %ENV;
3179     @values = values %ENV;
3180     while (@keys) {
3181         print pop(@keys), '=', pop(@values), "\n";
3182     }
3183
3184 or how about sorted by key:
3185
3186     foreach $key (sort(keys %ENV)) {
3187         print $key, '=', $ENV{$key}, "\n";
3188     }
3189
3190 The returned values are copies of the original keys in the hash, so
3191 modifying them will not affect the original hash.  Compare L</values>.
3192
3193 To sort a hash by value, you'll need to use a C<sort> function.
3194 Here's a descending numeric sort of a hash by its values:
3195
3196     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
3197         printf "%4d %s\n", $hash{$key}, $key;
3198     }
3199
3200 Used as an lvalue, C<keys> allows you to increase the number of hash buckets
3201 allocated for the given hash.  This can gain you a measure of efficiency if
3202 you know the hash is going to get big.  (This is similar to pre-extending
3203 an array by assigning a larger number to $#array.)  If you say
3204
3205     keys %hash = 200;
3206
3207 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
3208 in fact, since it rounds up to the next power of two.  These
3209 buckets will be retained even if you do C<%hash = ()>, use C<undef
3210 %hash> if you want to free the storage while C<%hash> is still in scope.
3211 You can't shrink the number of buckets allocated for the hash using
3212 C<keys> in this way (but you needn't worry about doing this by accident,
3213 as trying has no effect).  C<keys @array> in an lvalue context is a syntax
3214 error.
3215
3216 Starting with Perl 5.14, C<keys> can take a scalar EXPR, which must contain
3217 a reference to an unblessed hash or array.  The argument will be
3218 dereferenced automatically.  This aspect of C<keys> is considered highly
3219 experimental.  The exact behaviour may change in a future version of Perl.
3220
3221     for (keys $hashref) { ... }
3222     for (keys $obj->get_arrayref) { ... }
3223
3224 To avoid confusing would-be users of your code who are running earlier
3225 versions of Perl with mysterious syntax errors, put this sort of thing at
3226 the top of your file to signal that your code will work I<only> on Perls of
3227 a recent vintage:
3228
3229     use 5.012;  # so keys/values/each work on arrays
3230     use 5.014;  # so keys/values/each work on scalars (experimental)
3231
3232 See also C<each>, C<values>, and C<sort>.
3233
3234 =item kill SIGNAL, LIST
3235
3236 =item kill SIGNAL
3237 X<kill> X<signal>
3238
3239 =for Pod::Functions send a signal to a process or process group
3240
3241 Sends a signal to a list of processes.  Returns the number of arguments
3242 that were successfully used to signal (which is not necessarily the same
3243 as the number of processes actually killed, e.g. where a process group is
3244 killed).
3245
3246     $cnt = kill 'HUP', $child1, $child2;
3247     kill 'KILL', @goners;
3248
3249 SIGNAL may be either a signal name (a string) or a signal number.  A signal
3250 name may start with a C<SIG> prefix, thus C<FOO> and C<SIGFOO> refer to the
3251 same signal.  The string form of SIGNAL is recommended for portability because
3252 the same signal may have different numbers in different operating systems.
3253
3254 A list of signal names supported by the current platform can be found in
3255 C<$Config{sig_name}>, which is provided by the C<Config> module.  See L<Config>
3256 for more details.
3257
3258 A negative signal name is the same as a negative signal number, killing process
3259 groups instead of processes.  For example, C<kill '-KILL', $pgrp> and
3260 C<kill -9, $pgrp> will send C<SIGKILL> to
3261 the entire process group specified.  That
3262 means you usually want to use positive not negative signals.
3263
3264 If SIGNAL is either the number 0 or the string C<ZERO> (or C<SIGZERO>),
3265 no signal is sent to
3266 the process, but C<kill> checks whether it's I<possible> to send a signal to it
3267 (that means, to be brief, that the process is owned by the same user, or we are
3268 the super-user).  This is useful to check that a child process is still
3269 alive (even if only as a zombie) and hasn't changed its UID.  See
3270 L<perlport> for notes on the portability of this construct.
3271
3272 The behavior of kill when a I<PROCESS> number is zero or negative depends on
3273 the operating system.  For example, on POSIX-conforming systems, zero will
3274 signal the current process group, -1 will signal all processes, and any
3275 other negative PROCESS number will act as a negative signal number and
3276 kill the entire process group specified.
3277
3278 If both the SIGNAL and the PROCESS are negative, the results are undefined.
3279 A warning may be produced in a future version.
3280
3281 See L<perlipc/"Signals"> for more details.
3282
3283 On some platforms such as Windows where the fork() system call is not
3284 available, Perl can be built to emulate fork() at the interpreter level.
3285 This emulation has limitations related to kill that have to be considered,
3286 for code running on Windows and in code intended to be portable.
3287
3288 See L<perlfork> for more details.
3289
3290 If there is no I<LIST> of processes, no signal is sent, and the return
3291 value is 0.  This form is sometimes used, however, because it causes
3292 tainting checks to be run.  But see
3293 L<perlsec/Laundering and Detecting Tainted Data>.
3294
3295 Portability issues: L<perlport/kill>.
3296
3297 =item last LABEL
3298 X<last> X<break>
3299
3300 =item last EXPR
3301
3302 =item last
3303
3304 =for Pod::Functions exit a block prematurely
3305
3306 The C<last> command is like the C<break> statement in C (as used in
3307 loops); it immediately exits the loop in question.  If the LABEL is
3308 omitted, the command refers to the innermost enclosing
3309 loop.  The C<last EXPR> form, available starting in Perl
3310 5.18.0, allows a label name to be computed at run time,
3311 and is otherwise identical to C<last LABEL>.  The
3312 C<continue> block, if any, is not executed:
3313
3314     LINE: while (<STDIN>) {
3315         last LINE if /^$/;  # exit when done with header
3316         #...
3317     }
3318
3319 C<last> cannot be used to exit a block that returns a value such as
3320 C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
3321 a grep() or map() operation.
3322
3323 Note that a block by itself is semantically identical to a loop
3324 that executes once.  Thus C<last> can be used to effect an early
3325 exit out of such a block.
3326
3327 See also L</continue> for an illustration of how C<last>, C<next>, and
3328 C<redo> work.
3329
3330 Unlike most named operators, this has the same precedence as assignment.
3331 It is also exempt from the looks-like-a-function rule, so
3332 C<last ("foo")."bar"> will cause "bar" to be part of the argument to
3333 C<last>.
3334
3335 =item lc EXPR
3336 X<lc> X<lowercase>
3337
3338 =item lc
3339
3340 =for Pod::Functions return lower-case version of a string
3341
3342 Returns a lowercased version of EXPR.  This is the internal function
3343 implementing the C<\L> escape in double-quoted strings.
3344
3345 If EXPR is omitted, uses C<$_>.
3346
3347 What gets returned depends on several factors:
3348
3349 =over
3350
3351 =item If C<use bytes> is in effect:
3352
3353 The results follow ASCII rules.  Only the characters C<A-Z> change,
3354 to C<a-z> respectively.
3355
3356 =item Otherwise, if C<use locale> for C<LC_CTYPE> is in effect:
3357
3358 Respects current C<LC_CTYPE> locale for code points < 256; and uses Unicode
3359 rules for the remaining code points (this last can only happen if
3360 the UTF8 flag is also set).  See L<perllocale>.
3361
3362 Starting in v5.20, Perl wil use full Unicode rules if the locale is
3363 UTF-8.  Otherwise, there is a deficiency in this scheme, which is that
3364 case changes that cross the 255/256
3365 boundary are not well-defined.  For example, the lower case of LATIN CAPITAL
3366 LETTER SHARP S (U+1E9E) in Unicode rules is U+00DF (on ASCII
3367 platforms).   But under C<use locale> (prior to v5.20 or not a UTF-8
3368 locale), the lower case of U+1E9E is
3369 itself, because 0xDF may not be LATIN SMALL LETTER SHARP S in the
3370 current locale, and Perl has no way of knowing if that character even
3371 exists in the locale, much less what code point it is.  Perl returns
3372 the input character unchanged, for all instances (and there aren't
3373 many) where the 255/256 boundary would otherwise be crossed.
3374
3375 =item Otherwise, If EXPR has the UTF8 flag set:
3376
3377 Unicode rules are used for the case change.
3378
3379 =item Otherwise, if C<use feature 'unicode_strings'> or C<use locale ':not_characters'> is in effect:
3380
3381 Unicode rules are used for the case change.
3382
3383 =item Otherwise:
3384
3385 ASCII rules are used for the case change.  The lowercase of any character
3386 outside the ASCII range is the character itself.
3387
3388 =back
3389
3390 =item lcfirst EXPR
3391 X<lcfirst> X<lowercase>
3392
3393 =item lcfirst
3394
3395 =for Pod::Functions return a string with just the next letter in lower case
3396
3397 Returns the value of EXPR with the first character lowercased.  This
3398 is the internal function implementing the C<\l> escape in
3399 double-quoted strings.
3400
3401 If EXPR is omitted, uses C<$_>.
3402
3403 This function behaves the same way under various pragmata, such as in a locale,
3404 as L</lc> does.
3405
3406 =item length EXPR
3407 X<length> X<size>
3408
3409 =item length
3410
3411 =for Pod::Functions return the number of characters in a string
3412
3413 Returns the length in I<characters> of the value of EXPR.  If EXPR is
3414 omitted, returns the length of C<$_>.  If EXPR is undefined, returns
3415 C<undef>.
3416
3417 This function cannot be used on an entire array or hash to find out how
3418 many elements these have.  For that, use C<scalar @array> and C<scalar keys
3419 %hash>, respectively.
3420
3421 Like all Perl character operations, length() normally deals in logical
3422 characters, not physical bytes.  For how many bytes a string encoded as
3423 UTF-8 would take up, use C<length(Encode::encode_utf8(EXPR))> (you'll have
3424 to C<use Encode> first).  See L<Encode> and L<perlunicode>.
3425
3426 =item __LINE__
3427 X<__LINE__>
3428
3429 =for Pod::Functions the current source line number
3430
3431 A special token that compiles to the current line number.
3432
3433 =item link OLDFILE,NEWFILE
3434 X<link>
3435
3436 =for Pod::Functions create a hard link in the filesystem
3437
3438 Creates a new filename linked to the old filename.  Returns true for
3439 success, false otherwise.
3440
3441 Portability issues: L<perlport/link>.
3442
3443 =item listen SOCKET,QUEUESIZE
3444 X<listen>
3445
3446 =for Pod::Functions register your socket as a server
3447
3448 Does the same thing that the listen(2) system call does.  Returns true if
3449 it succeeded, false otherwise.  See the example in
3450 L<perlipc/"Sockets: Client/Server Communication">.
3451
3452 =item local EXPR
3453 X<local>
3454
3455 =for Pod::Functions create a temporary value for a global variable (dynamic scoping)
3456
3457 You really probably want to be using C<my> instead, because C<local> isn't
3458 what most people think of as "local".  See
3459 L<perlsub/"Private Variables via my()"> for details.
3460
3461 A local modifies the listed variables to be local to the enclosing
3462 block, file, or eval.  If more than one value is listed, the list must
3463 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
3464 for details, including issues with tied arrays and hashes.
3465
3466 The C<delete local EXPR> construct can also be used to localize the deletion
3467 of array/hash elements to the current block.
3468 See L<perlsub/"Localized deletion of elements of composite types">.
3469
3470 =item localtime EXPR
3471 X<localtime> X<ctime>
3472
3473 =item localtime
3474
3475 =for Pod::Functions convert UNIX time into record or string using local time
3476
3477 Converts a time as returned by the time function to a 9-element list
3478 with the time analyzed for the local time zone.  Typically used as
3479 follows:
3480
3481     #  0    1    2     3     4    5     6     7     8
3482     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
3483                                                 localtime(time);
3484
3485 All list elements are numeric and come straight out of the C `struct
3486 tm'.  C<$sec>, C<$min>, and C<$hour> are the seconds, minutes, and hours
3487 of the specified time.
3488
3489 C<$mday> is the day of the month and C<$mon> the month in
3490 the range C<0..11>, with 0 indicating January and 11 indicating December.
3491 This makes it easy to get a month name from a list:
3492
3493     my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
3494     print "$abbr[$mon] $mday";
3495     # $mon=9, $mday=18 gives "Oct 18"
3496
3497 C<$year> contains the number of years since 1900.  To get a 4-digit
3498 year write:
3499
3500     $year += 1900;
3501
3502 To get the last two digits of the year (e.g., "01" in 2001) do:
3503
3504     $year = sprintf("%02d", $year % 100);
3505
3506 C<$wday> is the day of the week, with 0 indicating Sunday and 3 indicating
3507 Wednesday.  C<$yday> is the day of the year, in the range C<0..364>
3508 (or C<0..365> in leap years.)
3509
3510 C<$isdst> is true if the specified time occurs during Daylight Saving
3511 Time, false otherwise.
3512
3513 If EXPR is omitted, C<localtime()> uses the current time (as returned
3514 by time(3)).
3515
3516 In scalar context, C<localtime()> returns the ctime(3) value:
3517
3518     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
3519
3520 The format of this scalar value is B<not> locale-dependent
3521 but built into Perl.  For GMT instead of local
3522 time use the L</gmtime> builtin.  See also the
3523 C<Time::Local> module (for converting seconds, minutes, hours, and such back to
3524 the integer value returned by time()), and the L<POSIX> module's strftime(3)
3525 and mktime(3) functions.
3526
3527 To get somewhat similar but locale-dependent date strings, set up your
3528 locale environment variables appropriately (please see L<perllocale>) and
3529 try for example:
3530
3531     use POSIX qw(strftime);
3532     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
3533     # or for GMT formatted appropriately for your locale:
3534     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
3535
3536 Note that the C<%a> and C<%b>, the short forms of the day of the week
3537 and the month of the year, may not necessarily be three characters wide.
3538
3539 The L<Time::gmtime> and L<Time::localtime> modules provide a convenient,
3540 by-name access mechanism to the gmtime() and localtime() functions,
3541 respectively.
3542
3543 For a comprehensive date and time representation look at the
3544 L<DateTime> module on CPAN.
3545
3546 Portability issues: L<perlport/localtime>.
3547
3548 =item lock THING
3549 X<lock>
3550
3551 =for Pod::Functions +5.005 get a thread lock on a variable, subroutine, or method
3552
3553 This function places an advisory lock on a shared variable or referenced
3554 object contained in I<THING> until the lock goes out of scope.
3555
3556 The value returned is the scalar itself, if the argument is a scalar, or a
3557 reference, if the argument is a hash, array or subroutine.
3558
3559 lock() is a "weak keyword" : this means that if you've defined a function
3560 by this name (before any calls to it), that function will be called
3561 instead.  If you are not under C<use threads::shared> this does nothing.
3562 See L<threads::shared>.
3563
3564 =item log EXPR
3565 X<log> X<logarithm> X<e> X<ln> X<base>
3566
3567 =item log
3568
3569 =for Pod::Functions retrieve the natural logarithm for a number
3570
3571 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
3572 returns the log of C<$_>.  To get the
3573 log of another base, use basic algebra:
3574 The base-N log of a number is equal to the natural log of that number
3575 divided by the natural log of N.  For example:
3576
3577     sub log10 {
3578         my $n = shift;
3579         return log($n)/log(10);
3580     }
3581
3582 See also L</exp> for the inverse operation.
3583
3584 =item lstat FILEHANDLE
3585 X<lstat>
3586
3587 =item lstat EXPR
3588
3589 =item lstat DIRHANDLE
3590
3591 =item lstat
3592
3593 =for Pod::Functions stat a symbolic link
3594
3595 Does the same thing as the C<stat> function (including setting the
3596 special C<_> filehandle) but stats a symbolic link instead of the file
3597 the symbolic link points to.  If symbolic links are unimplemented on
3598 your system, a normal C<stat> is done.  For much more detailed
3599 information, please see the documentation for C<stat>.
3600
3601 If EXPR is omitted, stats C<$_>.
3602
3603 Portability issues: L<perlport/lstat>.
3604
3605 =item m//
3606
3607 =for Pod::Functions match a string with a regular expression pattern
3608
3609 The match operator.  See L<perlop/"Regexp Quote-Like Operators">.
3610
3611 =item map BLOCK LIST
3612 X<map>
3613
3614 =item map EXPR,LIST
3615
3616 =for Pod::Functions apply a change to a list to get back a new list with the changes
3617
3618 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
3619 C<$_> to each element) and returns the list value composed of the
3620 results of each such evaluation.  In scalar context, returns the
3621 total number of elements so generated.  Evaluates BLOCK or EXPR in
3622 list context, so each element of LIST may produce zero, one, or
3623 more elements in the returned value.
3624
3625     @chars = map(chr, @numbers);
3626
3627 translates a list of numbers to the corresponding characters.
3628
3629     my @squares = map { $_ * $_ } @numbers;
3630
3631 translates a list of numbers to their squared values.
3632
3633     my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;
3634
3635 shows that number of returned elements can differ from the number of
3636 input elements.  To omit an element, return an empty list ().
3637 This could also be achieved by writing
3638
3639     my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;
3640
3641 which makes the intention more clear.
3642
3643 Map always returns a list, which can be
3644 assigned to a hash such that the elements
3645 become key/value pairs.  See L<perldata> for more details.
3646
3647     %hash = map { get_a_key_for($_) => $_ } @array;
3648
3649 is just a funny way to write
3650
3651     %hash = ();
3652     foreach (@array) {
3653         $hash{get_a_key_for($_)} = $_;
3654     }
3655
3656 Note that C<$_> is an alias to the list value, so it can be used to
3657 modify the elements of the LIST.  While this is useful and supported,
3658 it can cause bizarre results if the elements of LIST are not variables.
3659 Using a regular C<foreach> loop for this purpose would be clearer in
3660 most cases.  See also L</grep> for an array composed of those items of
3661 the original list for which the BLOCK or EXPR evaluates to true.
3662
3663 If C<$_> is lexical in the scope where the C<map> appears (because it has
3664 been declared with the deprecated C<my $_> construct),
3665 then, in addition to being locally aliased to
3666 the list elements, C<$_> keeps being lexical inside the block; that is, it
3667 can't be seen from the outside, avoiding any potential side-effects.
3668
3669 C<{> starts both hash references and blocks, so C<map { ...> could be either
3670 the start of map BLOCK LIST or map EXPR, LIST.  Because Perl doesn't look
3671 ahead for the closing C<}> it has to take a guess at which it's dealing with
3672 based on what it finds just after the
3673 C<{>.  Usually it gets it right, but if it
3674 doesn't it won't realize something is wrong until it gets to the C<}> and
3675 encounters the missing (or unexpected) comma.  The syntax error will be
3676 reported close to the C<}>, but you'll need to change something near the C<{>
3677 such as using a unary C<+> to give Perl some help:
3678
3679     %hash = map {  "\L$_" => 1  } @array # perl guesses EXPR. wrong
3680     %hash = map { +"\L$_" => 1  } @array # perl guesses BLOCK. right
3681     %hash = map { ("\L$_" => 1) } @array # this also works
3682     %hash = map {  lc($_) => 1  } @array # as does this.
3683     %hash = map +( lc($_) => 1 ), @array # this is EXPR and works!
3684
3685     %hash = map  ( lc($_), 1 ),   @array # evaluates to (1, @array)
3686
3687 or to force an anon hash constructor use C<+{>:
3688
3689     @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
3690                                            # comma at end
3691
3692 to get a list of anonymous hashes each with only one entry apiece.
3693
3694 =item mkdir FILENAME,MASK
3695 X<mkdir> X<md> X<directory, create>
3696
3697 =item mkdir FILENAME
3698
3699 =item mkdir
3700
3701 =for Pod::Functions create a directory
3702
3703 Creates the directory specified by FILENAME, with permissions
3704 specified by MASK (as modified by C<umask>).  If it succeeds it
3705 returns true; otherwise it returns false and sets C<$!> (errno).
3706 MASK defaults to 0777 if omitted, and FILENAME defaults
3707 to C<$_> if omitted.
3708
3709 In general, it is better to create directories with a permissive MASK
3710 and let the user modify that with their C<umask> than it is to supply
3711 a restrictive MASK and give the user no way to be more permissive.
3712 The exceptions to this rule are when the file or directory should be
3713 kept private (mail files, for instance).  The perlfunc(1) entry on
3714 C<umask> discusses the choice of MASK in more detail.
3715
3716 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
3717 number of trailing slashes.  Some operating and filesystems do not get
3718 this right, so Perl automatically removes all trailing slashes to keep
3719 everyone happy.
3720
3721 To recursively create a directory structure, look at
3722 the C<make_path> function of the L<File::Path> module.
3723
3724 =item msgctl ID,CMD,ARG
3725 X<msgctl>
3726
3727 =for Pod::Functions SysV IPC message control operations
3728
3729 Calls the System V IPC function msgctl(2).  You'll probably have to say
3730
3731     use IPC::SysV;
3732
3733 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
3734 then ARG must be a variable that will hold the returned C<msqid_ds>
3735 structure.  Returns like C<ioctl>: the undefined value for error,
3736 C<"0 but true"> for zero, or the actual return value otherwise.  See also
3737 L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
3738 C<IPC::Semaphore>.
3739
3740 Portability issues: L<perlport/msgctl>.
3741
3742 =item msgget KEY,FLAGS
3743 X<msgget>
3744
3745 =for Pod::Functions get SysV IPC message queue
3746
3747 Calls the System V IPC function msgget(2).  Returns the message queue
3748 id, or C<undef> on error.  See also
3749 L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
3750 C<IPC::Msg>.
3751
3752 Portability issues: L<perlport/msgget>.
3753
3754 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
3755 X<msgrcv>
3756
3757 =for Pod::Functions receive a SysV IPC message from a message queue
3758
3759 Calls the System V IPC function msgrcv to receive a message from
3760 message queue ID into variable VAR with a maximum message size of
3761 SIZE.  Note that when a message is received, the message type as a
3762 native long integer will be the first thing in VAR, followed by the
3763 actual message.  This packing may be opened with C<unpack("l! a*")>.
3764 Taints the variable.  Returns true if successful, false 
3765 on error.  See also L<perlipc/"SysV IPC"> and the documentation for
3766 C<IPC::SysV> and C<IPC::SysV::Msg>.
3767
3768 Portability issues: L<perlport/msgrcv>.
3769
3770 =item msgsnd ID,MSG,FLAGS
3771 X<msgsnd>
3772
3773 =for Pod::Functions send a SysV IPC message to a message queue
3774
3775 Calls the System V IPC function msgsnd to send the message MSG to the
3776 message queue ID.  MSG must begin with the native long integer message
3777 type, be followed by the length of the actual message, and then finally
3778 the message itself.  This kind of packing can be achieved with
3779 C<pack("l! a*", $type, $message)>.  Returns true if successful,
3780 false on error.  See also the C<IPC::SysV>
3781 and C<IPC::SysV::Msg> documentation.
3782
3783 Portability issues: L<perlport/msgsnd>.
3784
3785 =item my VARLIST
3786 X<my>
3787
3788 =item my TYPE VARLIST
3789
3790 =item my VARLIST : ATTRS
3791
3792 =item my TYPE VARLIST : ATTRS
3793
3794 =for Pod::Functions declare and assign a local variable (lexical scoping)
3795
3796 A C<my> declares the listed variables to be local (lexically) to the
3797 enclosing block, file, or C<eval>.  If more than one variable is listed,
3798 the list must be placed in parentheses.
3799
3800 The exact semantics and interface of TYPE and ATTRS are still
3801 evolving.  TYPE may be a bareword, a constant declared
3802 with C<use constant>, or C<__PACKAGE__>.  It is
3803 currently bound to the use of the C<fields> pragma,
3804 and attributes are handled using the C<attributes> pragma, or starting
3805 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
3806 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3807 L<attributes>, and L<Attribute::Handlers>.
3808
3809 Note that with a parenthesised list, C<undef> can be used as a dummy
3810 placeholder, for example to skip assignment of initial values:
3811
3812     my ( undef, $min, $hour ) = localtime;
3813
3814 =item next LABEL
3815 X<next> X<continue>
3816
3817 =item next EXPR
3818
3819 =item next
3820
3821 =for Pod::Functions iterate a block prematurely
3822
3823 The C<next> command is like the C<continue> statement in C; it starts
3824 the next iteration of the loop:
3825
3826     LINE: while (<STDIN>) {
3827         next LINE if /^#/;  # discard comments
3828         #...
3829     }
3830
3831 Note that if there were a C<continue> block on the above, it would get
3832 executed even on discarded lines.  If LABEL is omitted, the command
3833 refers to the innermost enclosing loop.  The C<next EXPR> form, available
3834 as of Perl 5.18.0, allows a label name to be computed at run time, being
3835 otherwise identical to C<next LABEL>.
3836
3837 C<next> cannot be used to exit a block which returns a value such as
3838 C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
3839 a grep() or map() operation.
3840
3841 Note that a block by itself is semantically identical to a loop
3842 that executes once.  Thus C<next> will exit such a block early.
3843
3844 See also L</continue> for an illustration of how C<last>, C<next>, and
3845 C<redo> work.
3846
3847 Unlike most named operators, this has the same precedence as assignment.
3848 It is also exempt from the looks-like-a-function rule, so
3849 C<next ("foo")."bar"> will cause "bar" to be part of the argument to
3850 C<next>.
3851
3852 =item no MODULE VERSION LIST
3853 X<no declarations>
3854 X<unimporting>
3855
3856 =item no MODULE VERSION
3857
3858 =item no MODULE LIST
3859
3860 =item no MODULE
3861
3862 =item no VERSION
3863
3864 =for Pod::Functions unimport some module symbols or semantics at compile time
3865
3866 See the C<use> function, of which C<no> is the opposite.
3867
3868 =item oct EXPR
3869 X<oct> X<octal> X<hex> X<hexadecimal> X<binary> X<bin>
3870
3871 =item oct
3872
3873 =for Pod::Functions convert a string to an octal number
3874
3875 Interprets EXPR as an octal string and returns the corresponding
3876 value.  (If EXPR happens to start off with C<0x>, interprets it as a
3877 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
3878 binary string.  Leading whitespace is ignored in all three cases.)
3879 The following will handle decimal, binary, octal, and hex in standard
3880 Perl notation:
3881
3882     $val = oct($val) if $val =~ /^0/;
3883
3884 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
3885 in octal), use sprintf() or printf():
3886
3887     $dec_perms = (stat("filename"))[2] & 07777;
3888     $oct_perm_str = sprintf "%o", $perms;
3889
3890 The oct() function is commonly used when a string such as C<644> needs
3891 to be converted into a file mode, for example.  Although Perl 
3892 automatically converts strings into numbers as needed, this automatic
3893 conversion assumes base 10.
3894
3895 Leading white space is ignored without warning, as too are any trailing 
3896 non-digits, such as a decimal point (C<oct> only handles non-negative
3897 integers, not negative integers or floating point).
3898
3899 =item open FILEHANDLE,EXPR
3900 X<open> X<pipe> X<file, open> X<fopen>
3901
3902 =item open FILEHANDLE,MODE,EXPR
3903
3904 =item open FILEHANDLE,MODE,EXPR,LIST
3905
3906 =item open FILEHANDLE,MODE,REFERENCE
3907
3908 =item open FILEHANDLE
3909
3910 =for Pod::Functions open a file, pipe, or descriptor
3911
3912 Opens the file whose filename is given by EXPR, and associates it with
3913 FILEHANDLE.
3914
3915 Simple examples to open a file for reading:
3916
3917     open(my $fh, "<", "input.txt") 
3918         or die "cannot open < input.txt: $!";
3919
3920 and for writing:
3921
3922     open(my $fh, ">", "output.txt") 
3923         or die "cannot open > output.txt: $!";
3924
3925 (The following is a comprehensive reference to open(): for a gentler
3926 introduction you may consider L<perlopentut>.)
3927
3928 If FILEHANDLE is an undefined scalar variable (or array or hash element), a
3929 new filehandle is autovivified, meaning that the variable is assigned a
3930 reference to a newly allocated anonymous filehandle.  Otherwise if
3931 FILEHANDLE is an expression, its value is the real filehandle.  (This is
3932 considered a symbolic reference, so C<use strict "refs"> should I<not> be
3933 in effect.)
3934
3935 If three (or more) arguments are specified, the open mode (including
3936 optional encoding) in the second argument are distinct from the filename in
3937 the third.  If MODE is C<< < >> or nothing, the file is opened for input.
3938 If MODE is C<< > >>, the file is opened for output, with existing files
3939 first being truncated ("clobbered") and nonexisting files newly created.
3940 If MODE is C<<< >> >>>, the file is opened for appending, again being
3941 created if necessary.
3942
3943 You can put a C<+> in front of the C<< > >> or C<< < >> to
3944 indicate that you want both read and write access to the file; thus
3945 C<< +< >> is almost always preferred for read/write updates--the 
3946 C<< +> >> mode would clobber the file first.  You can't usually use
3947 either read-write mode for updating textfiles, since they have
3948 variable-length records.  See the B<-i> switch in L<perlrun> for a
3949 better approach.  The file is created with permissions of C<0666>
3950 modified by the process's C<umask> value.
3951
3952 These various prefixes correspond to the fopen(3) modes of C<r>,
3953 C<r+>, C<w>, C<w+>, C<a>, and C<a+>.
3954
3955 In the one- and two-argument forms of the call, the mode and filename
3956 should be concatenated (in that order), preferably separated by white
3957 space.  You can--but shouldn't--omit the mode in these forms when that mode
3958 is C<< < >>.  It is always safe to use the two-argument form of C<open> if
3959 the filename argument is a known literal.
3960
3961 For three or more arguments if MODE is C<|->, the filename is
3962 interpreted as a command to which output is to be piped, and if MODE
3963 is C<-|>, the filename is interpreted as a command that pipes
3964 output to us.  In the two-argument (and one-argument) form, one should
3965 replace dash (C<->) with the command.
3966 See L<perlipc/"Using open() for IPC"> for more examples of this.
3967 (You are not allowed to C<open> to a command that pipes both in I<and>
3968 out, but see L<IPC::Open2>, L<IPC::Open3>, and
3969 L<perlipc/"Bidirectional Communication with Another Process"> for
3970 alternatives.)
3971
3972 In the form of pipe opens taking three or more arguments, if LIST is specified
3973 (extra arguments after the command name) then LIST becomes arguments
3974 to the command invoked if the platform supports it.  The meaning of
3975 C<open> with more than three arguments for non-pipe modes is not yet
3976 defined, but experimental "layers" may give extra LIST arguments
3977 meaning.
3978
3979 In the two-argument (and one-argument) form, opening C<< <- >> 
3980 or C<-> opens STDIN and opening C<< >- >> opens STDOUT.
3981
3982 You may (and usually should) use the three-argument form of open to specify
3983 I/O layers (sometimes referred to as "disciplines") to apply to the handle
3984 that affect how the input and output are processed (see L<open> and
3985 L<PerlIO> for more details).  For example:
3986
3987   open(my $fh, "<:encoding(UTF-8)", "filename")
3988     || die "can't open UTF-8 encoded filename: $!";
3989
3990 opens the UTF8-encoded file containing Unicode characters;
3991 see L<perluniintro>.  Note that if layers are specified in the
3992 three-argument form, then default layers stored in ${^OPEN} (see L<perlvar>;
3993 usually set by the B<open> pragma or the switch B<-CioD>) are ignored.
3994 Those layers will also be ignored if you specifying a colon with no name
3995 following it.  In that case the default layer for the operating system
3996 (:raw on Unix, :crlf on Windows) is used.
3997
3998 Open returns nonzero on success, the undefined value otherwise.  If
3999 the C<open> involved a pipe, the return value happens to be the pid of
4000 the subprocess.
4001
4002 If you're running Perl on a system that distinguishes between text
4003 files and binary files, then you should check out L</binmode> for tips
4004 for dealing with this.  The key distinction between systems that need
4005 C<binmode> and those that don't is their text file formats.  Systems
4006 like Unix, Mac OS, and Plan 9, that end lines with a single
4007 character and encode that character in C as C<"\n"> do not
4008 need C<binmode>.  The rest need it.
4009
4010 When opening a file, it's seldom a good idea to continue 
4011 if the request failed, so C<open> is frequently used with
4012 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
4013 where you want to format a suitable error message (but there are
4014 modules that can help with that problem)) always check
4015 the return value from opening a file.  
4016
4017 The filehandle will be closed when its reference count reaches zero.
4018 If it is a lexically scoped variable declared with C<my>, that usually
4019 means the end of the enclosing scope.  However, this automatic close
4020 does not check for errors, so it is better to explicitly close
4021 filehandles, especially those used for writing:
4022
4023     close($handle)
4024        || warn "close failed: $!";
4025
4026 An older style is to use a bareword as the filehandle, as
4027
4028     open(FH, "<", "input.txt")
4029        or die "cannot open < input.txt: $!";
4030
4031 Then you can use C<FH> as the filehandle, in C<< close FH >> and C<<
4032 <FH> >> and so on.  Note that it's a global variable, so this form is
4033 not recommended in new code.
4034
4035 As a shortcut a one-argument call takes the filename from the global
4036 scalar variable of the same name as the filehandle:
4037
4038     $ARTICLE = 100;
4039     open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";
4040
4041 Here C<$ARTICLE> must be a global (package) scalar variable - not one
4042 declared with C<my> or C<state>.
4043
4044 As a special case the three-argument form with a read/write mode and the third
4045 argument being C<undef>:
4046
4047     open(my $tmp, "+>", undef) or die ...
4048
4049 opens a filehandle to an anonymous temporary file.  Also using C<< +< >>
4050 works for symmetry, but you really should consider writing something
4051 to the temporary file first.  You will need to seek() to do the
4052 reading.
4053
4054 Perl is built using PerlIO by default; Unless you've
4055 changed this (such as building Perl with C<Configure -Uuseperlio>), you can
4056 open filehandles directly to Perl scalars via:
4057
4058     open($fh, ">", \$variable) || ..
4059
4060 To (re)open C<STDOUT> or C<STDERR> as an in-memory file, close it first:
4061
4062     close STDOUT;
4063     open(STDOUT, ">", \$variable)
4064         or die "Can't open STDOUT: $!";
4065
4066 General examples:
4067
4068     open(LOG, ">>/usr/spool/news/twitlog");  # (log is reserved)
4069     # if the open fails, output is discarded
4070
4071     open(my $dbase, "+<", "dbase.mine")      # open for update
4072         or die "Can't open 'dbase.mine' for update: $!";
4073
4074     open(my $dbase, "+<dbase.mine")          # ditto
4075         or die "Can't open 'dbase.mine' for update: $!";
4076
4077     open(ARTICLE, "-|", "caesar <$article")  # decrypt article
4078         or die "Can't start caesar: $!";
4079
4080     open(ARTICLE, "caesar <$article |")      # ditto
4081         or die "Can't start caesar: $!";
4082
4083     open(EXTRACT, "|sort >Tmp$$")            # $$ is our process id
4084         or die "Can't start sort: $!";
4085
4086     # in-memory files
4087     open(MEMORY, ">", \$var)
4088         or die "Can't open memory file: $!";
4089     print MEMORY "foo!\n";              # output will appear in $var
4090
4091     # process argument list of files along with any includes
4092
4093     foreach $file (@ARGV) {
4094         process($file, "fh00");
4095     }
4096
4097     sub process {
4098         my($filename, $input) = @_;
4099         $input++;    # this is a string increment
4100         unless (open($input, "<", $filename)) {
4101             print STDERR "Can't open $filename: $!\n";
4102             return;
4103         }
4104
4105         local $_;
4106         while (<$input>) {    # note use of indirection
4107             if (/^#include "(.*)"/) {
4108                 process($1, $input);
4109                 next;
4110             }
4111             #...          # whatever
4112         }
4113     }
4114
4115 See L<perliol> for detailed info on PerlIO.
4116
4117 You may also, in the Bourne shell tradition, specify an EXPR beginning
4118 with C<< >& >>, in which case the rest of the string is interpreted
4119 as the name of a filehandle (or file descriptor, if numeric) to be
4120 duped (as C<dup(2)>) and opened.  You may use C<&> after C<< > >>,
4121 C<<< >> >>>, C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.
4122 The mode you specify should match the mode of the original filehandle.
4123 (Duping a filehandle does not take into account any existing contents
4124 of IO buffers.)  If you use the three-argument
4125 form, then you can pass either a
4126 number, the name of a filehandle, or the normal "reference to a glob".
4127
4128 Here is a script that saves, redirects, and restores C<STDOUT> and
4129 C<STDERR> using various methods:
4130
4131     #!/usr/bin/perl
4132     open(my $oldout, ">&STDOUT")     or die "Can't dup STDOUT: $!";
4133     open(OLDERR,     ">&", \*STDERR) or die "Can't dup STDERR: $!";
4134
4135     open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
4136     open(STDERR, ">&STDOUT")     or die "Can't dup STDOUT: $!";
4137
4138     select STDERR; $| = 1;  # make unbuffered
4139     select STDOUT; $| = 1;  # make unbuffered
4140
4141     print STDOUT "stdout 1\n";  # this works for
4142     print STDERR "stderr 1\n";  # subprocesses too
4143
4144     open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
4145     open(STDERR, ">&OLDERR")    or die "Can't dup OLDERR: $!";
4146
4147     print STDOUT "stdout 2\n";
4148     print STDERR "stderr 2\n";
4149
4150 If you specify C<< '<&=X' >>, where C<X> is a file descriptor number
4151 or a filehandle, then Perl will do an equivalent of C's C<fdopen> of
4152 that file descriptor (and not call C<dup(2)>); this is more
4153 parsimonious of file descriptors.  For example:
4154
4155     # open for input, reusing the fileno of $fd
4156     open(FILEHANDLE, "<&=$fd")
4157
4158 or
4159
4160     open(FILEHANDLE, "<&=", $fd)
4161
4162 or
4163
4164     # open for append, using the fileno of OLDFH
4165     open(FH, ">>&=", OLDFH)
4166
4167 or
4168
4169     open(FH, ">>&=OLDFH")
4170
4171 Being parsimonious on filehandles is also useful (besides being
4172 parsimonious) for example when something is dependent on file
4173 descriptors, like for example locking using flock().  If you do just
4174 C<< open(A, ">>&B") >>, the filehandle A will not have the same file
4175 descriptor as B, and therefore flock(A) will not flock(B) nor vice
4176 versa.  But with C<< open(A, ">>&=B") >>, the filehandles will share
4177 the same underlying system file descriptor.
4178
4179 Note that under Perls older than 5.8.0, Perl uses the standard C library's'
4180 fdopen() to implement the C<=> functionality.  On many Unix systems,
4181 fdopen() fails when file descriptors exceed a certain value, typically 255.
4182 For Perls 5.8.0 and later, PerlIO is (most often) the default.
4183
4184 You can see whether your Perl was built with PerlIO by running C<perl -V>
4185 and looking for the C<useperlio=> line.  If C<useperlio> is C<define>, you
4186 have PerlIO; otherwise you don't.
4187
4188 If you open a pipe on the command C<-> (that is, specify either C<|-> or C<-|>
4189 with the one- or two-argument forms of C<open>), 
4190 an implicit C<fork> is done, so C<open> returns twice: in the parent
4191 process it returns the pid
4192 of the child process, and in the child process it returns (a defined) C<0>.
4193 Use C<defined($pid)> or C<//> to determine whether the open was successful.
4194
4195 For example, use either
4196
4197     $child_pid = open(FROM_KID, "-|")   // die "can't fork: $!";
4198
4199 or
4200
4201     $child_pid = open(TO_KID,   "|-")   // die "can't fork: $!";
4202
4203 followed by 
4204
4205     if ($child_pid) {
4206         # am the parent:
4207         # either write TO_KID or else read FROM_KID
4208         ...
4209        waitpid $child_pid, 0;
4210     } else {
4211         # am the child; use STDIN/STDOUT normally
4212         ...
4213         exit;
4214     } 
4215
4216 The filehandle behaves normally for the parent, but I/O to that
4217 filehandle is piped from/to the STDOUT/STDIN of the child process.
4218 In the child process, the filehandle isn't opened--I/O happens from/to
4219 the new STDOUT/STDIN.  Typically this is used like the normal
4220 piped open when you want to exercise more control over just how the
4221 pipe command gets executed, such as when running setuid and
4222 you don't want to have to scan shell commands for metacharacters.
4223
4224 The following blocks are more or less equivalent:
4225
4226     open(FOO, "|tr '[a-z]' '[A-Z]'");
4227     open(FOO, "|-", "tr '[a-z]' '[A-Z]'");
4228     open(FOO, "|-") || exec 'tr', '[a-z]', '[A-Z]';
4229     open(FOO, "|-", "tr", '[a-z]', '[A-Z]');
4230
4231     open(FOO, "cat -n '$file'|");
4232     open(FOO, "-|", "cat -n '$file'");
4233     open(FOO, "-|") || exec "cat", "-n", $file;
4234     open(FOO, "-|", "cat", "-n", $file);
4235
4236 The last two examples in each block show the pipe as "list form", which is
4237 not yet supported on all platforms.  A good rule of thumb is that if
4238 your platform has a real C<fork()> (in other words, if your platform is
4239 Unix, including Linux and MacOS X), you can use the list form.  You would 
4240 want to use the list form of the pipe so you can pass literal arguments
4241 to the command without risk of the shell interpreting any shell metacharacters
4242 in them.  However, this also bars you from opening pipes to commands
4243 that intentionally contain shell metacharacters, such as:
4244
4245     open(FOO, "|cat -n | expand -4 | lpr")
4246         // die "Can't open pipeline to lpr: $!";
4247
4248 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
4249
4250 Perl will attempt to flush all files opened for
4251 output before any operation that may do a fork, but this may not be
4252 supported on some platforms (see L<perlport>).  To be safe, you may need
4253 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
4254 of C<IO::Handle> on any open handles.
4255
4256 On systems that support a close-on-exec flag on files, the flag will
4257 be set for the newly opened file descriptor as determined by the value
4258 of C<$^F>.  See L<perlvar/$^F>.
4259
4260 Closing any piped filehandle causes the parent process to wait for the
4261 child to finish, then returns the status value in C<$?> and
4262 C<${^CHILD_ERROR_NATIVE}>.
4263
4264 The filename passed to the one- and two-argument forms of open() will
4265 have leading and trailing whitespace deleted and normal
4266 redirection characters honored.  This property, known as "magic open",
4267 can often be used to good effect.  A user could specify a filename of
4268 F<"rsh cat file |">, or you could change certain filenames as needed:
4269
4270     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
4271     open(FH, $filename) or die "Can't open $filename: $!";
4272
4273 Use the three-argument form to open a file with arbitrary weird characters in it,
4274
4275     open(FOO, "<", $file)
4276         || die "can't open < $file: $!";
4277
4278 otherwise it's necessary to protect any leading and trailing whitespace:
4279
4280     $file =~ s#^(\s)#./$1#;
4281     open(FOO, "< $file\0")
4282         || die "open failed: $!";
4283
4284 (this may not work on some bizarre filesystems).  One should
4285 conscientiously choose between the I<magic> and I<three-argument> form
4286 of open():
4287
4288     open(IN, $ARGV[0]) || die "can't open $ARGV[0]: $!";
4289
4290 will allow the user to specify an argument of the form C<"rsh cat file |">,
4291 but will not work on a filename that happens to have a trailing space, while
4292
4293     open(IN, "<", $ARGV[0])
4294         || die "can't open < $ARGV[0]: $!";
4295
4296 will have exactly the opposite restrictions.
4297
4298 If you want a "real" C C<open> (see L<open(2)> on your system), then you
4299 should use the C<sysopen> function, which involves no such magic (but may
4300 use subtly different filemodes than Perl open(), which is mapped to C
4301 fopen()).  This is another way to protect your filenames from
4302 interpretation.  For example:
4303
4304     use IO::Handle;
4305     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
4306         or die "sysopen $path: $!";
4307     $oldfh = select(HANDLE); $| = 1; select($oldfh);
4308     print HANDLE "stuff $$\n";
4309     seek(HANDLE, 0, 0);
4310     print "File contains: ", <HANDLE>;
4311
4312 See L</seek> for some details about mixing reading and writing.
4313
4314 Portability issues: L<perlport/open>.
4315
4316 =item opendir DIRHANDLE,EXPR
4317 X<opendir>
4318
4319 =for Pod::Functions open a directory
4320
4321 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
4322 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
4323 DIRHANDLE may be an expression whose value can be used as an indirect
4324 dirhandle, usually the real dirhandle name.  If DIRHANDLE is an undefined
4325 scalar variable (or array or hash element), the variable is assigned a
4326 reference to a new anonymous dirhandle; that is, it's autovivified.
4327 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
4328
4329 See the example at C<readdir>.
4330
4331 =item ord EXPR
4332 X<ord> X<encoding>
4333
4334 =item ord
4335
4336 =for Pod::Functions find a character's numeric representation
4337
4338 Returns the numeric value of the first character of EXPR.
4339 If EXPR is an empty string, returns 0.  If EXPR is omitted, uses C<$_>.
4340 (Note I<character>, not byte.)
4341
4342 For the reverse, see L</chr>.
4343 See L<perlunicode> for more about Unicode.
4344
4345 =item our VARLIST
4346 X<our> X<global>
4347
4348 =item our TYPE VARLIST
4349
4350 =item our VARLIST : ATTRS
4351
4352 =item our TYPE VARLIST : ATTRS
4353
4354 =for Pod::Functions +5.6.0 declare and assign a package variable (lexical scoping)
4355
4356 C<our> makes a lexical alias to a package (i.e. global) variable of the
4357 same name in the current package for use within the current lexical scope.
4358
4359 C<our> has the same scoping rules as C<my> or C<state>, meaning that it is
4360 only valid within a lexical scope.  Unlike C<my> and C<state>, which both
4361 declare new (lexical) variables, C<our> only creates an alias to an
4362 existing variable: a package variable of the same name.
4363
4364 This means that when C<use strict 'vars'> is in effect, C<our> lets you use
4365 a package variable without qualifying it with the package name, but only within
4366 the lexical scope of the C<our> declaration.
4367
4368     package Foo;
4369     use strict;
4370
4371     $Foo::foo = 23;
4372
4373     {
4374         our $foo;   # alias to $Foo::foo
4375         print $foo; # prints 23
4376     }
4377
4378     print $Foo::foo; # prints 23
4379
4380     print $foo; # ERROR: requires explicit package name
4381
4382 This works even if the package variable has not been used before, as
4383 package variables spring into existence when first used.
4384
4385     package Foo;
4386     use strict;
4387
4388     our $foo = 23;   # just like $Foo::foo = 23
4389
4390     print $Foo::foo; # prints 23
4391
4392 If more than one variable is listed, the list must be placed
4393 in parentheses.
4394
4395     our($bar, $baz);
4396
4397 An C<our> declaration declares an alias for a package variable that will be visible
4398 across its entire lexical scope, even across package boundaries.  The
4399 package in which the variable is entered is determined at the point
4400 of the declaration, not at the point of use.  This means the following
4401 behavior holds:
4402
4403     package Foo;
4404     our $bar;      # declares $Foo::bar for rest of lexical scope
4405     $bar = 20;
4406
4407     package Bar;
4408     print $bar;    # prints 20, as it refers to $Foo::bar
4409
4410 Multiple C<our> declarations with the same name in the same lexical
4411 scope are allowed if they are in different packages.  If they happen
4412 to be in the same package, Perl will emit warnings if you have asked
4413 for them, just like multiple C<my> declarations.  Unlike a second
4414 C<my> declaration, which will bind the name to a fresh variable, a
4415 second C<our> declaration in the same package, in the same scope, is
4416 merely redundant.
4417
4418     use warnings;
4419     package Foo;
4420     our $bar;      # declares $Foo::bar for rest of lexical scope
4421     $bar = 20;
4422
4423     package Bar;
4424     our $bar = 30; # declares $Bar::bar for rest of lexical scope
4425     print $bar;    # prints 30
4426
4427     our $bar;      # emits warning but has no other effect
4428     print $bar;    # still prints 30
4429
4430 An C<our> declaration may also have a list of attributes associated
4431 with it.
4432
4433 The exact semantics and interface of TYPE and ATTRS are still
4434 evolving.  TYPE is currently bound to the use of the C<fields> pragma,
4435 and attributes are handled using the C<attributes> pragma, or, starting
4436 from Perl 5.8.0, also via the C<Attribute::Handlers> module.  See
4437 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
4438 L<attributes>, and L<Attribute::Handlers>.
4439
4440 Note that with a parenthesised list, C<undef> can be used as a dummy
4441 placeholder, for example to skip assignment of initial values:
4442
4443     our ( undef, $min, $hour ) = localtime;
4444
4445 C<our> differs from C<use vars>, which allows use of an unqualified name
4446 I<only> within the affected package, but across scopes.
4447
4448 =item pack TEMPLATE,LIST
4449 X<pack>
4450
4451 =for Pod::Functions convert a list into a binary representation
4452
4453 Takes a LIST of values and converts it into a string using the rules
4454 given by the TEMPLATE.  The resulting string is the concatenation of
4455 the converted values.  Typically, each converted value looks
4456 like its machine-level representation.  For example, on 32-bit machines
4457 an integer may be represented by a sequence of 4 bytes, which  will in
4458 Perl be presented as a string that's 4 characters long. 
4459
4460 See L<perlpacktut> for an introduction to this function.
4461
4462 The TEMPLATE is a sequence of characters that give the order and type
4463 of values, as follows:
4464
4465     a  A string with arbitrary binary data, will be null padded.
4466     A  A text (ASCII) string, will be space padded.
4467     Z  A null-terminated (ASCIZ) string, will be null padded.
4468
4469     b  A bit string (ascending bit order inside each byte,
4470        like vec()).
4471     B  A bit string (descending bit order inside each byte).
4472     h  A hex string (low nybble first).
4473     H  A hex string (high nybble first).
4474
4475     c  A signed char (8-bit) value.
4476     C  An unsigned char (octet) value.
4477     W  An unsigned char value (can be greater than 255).
4478
4479     s  A signed short (16-bit) value.
4480     S  An unsigned short value.
4481
4482     l  A signed long (32-bit) value.
4483     L  An unsigned long value.
4484
4485     q  A signed quad (64-bit) value.
4486     Q  An unsigned quad value.
4487          (Quads are available only if your system supports 64-bit
4488           integer values _and_ if Perl has been compiled to support
4489           those.  Raises an exception otherwise.)
4490
4491     i  A signed integer value.
4492     I  A unsigned integer value.
4493          (This 'integer' is _at_least_ 32 bits wide.  Its exact
4494           size depends on what a local C compiler calls 'int'.)
4495
4496     n  An unsigned short (16-bit) in "network" (big-endian) order.
4497     N  An unsigned long (32-bit) in "network" (big-endian) order.
4498     v  An unsigned short (16-bit) in "VAX" (little-endian) order.
4499     V  An unsigned long (32-bit) in "VAX" (little-endian) order.
4500
4501     j  A Perl internal signed integer value (IV).
4502     J  A Perl internal unsigned integer value (UV).
4503
4504     f  A single-precision float in native format.
4505     d  A double-precision float in native format.
4506
4507     F  A Perl internal floating-point value (NV) in native format
4508     D  A float of long-double precision in native format.
4509          (Long doubles are available only if your system supports
4510           long double values _and_ if Perl has been compiled to
4511           support those.  Raises an exception otherwise.
4512           Note that there are different long double formats.)
4513
4514     p  A pointer to a null-terminated string.
4515     P  A pointer to a structure (fixed-length string).
4516
4517     u  A uuencoded string.
4518     U  A Unicode character number.  Encodes to a character in char-
4519        acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in
4520        byte mode.
4521
4522     w  A BER compressed integer (not an ASN.1 BER, see perlpacktut
4523        for details).  Its bytes represent an unsigned integer in
4524        base 128, most significant digit first, with as few digits
4525        as possible.  Bit eight (the high bit) is set on each byte
4526        except the last.
4527
4528     x  A null byte (a.k.a ASCII NUL, "\000", chr(0))
4529     X  Back up a byte.
4530     @  Null-fill or truncate to absolute position, counted from the
4531        start of the innermost ()-group.
4532     .  Null-fill or truncate to absolute position specified by
4533        the value.
4534     (  Start of a ()-group.
4535
4536 One or more modifiers below may optionally follow certain letters in the
4537 TEMPLATE (the second column lists letters for which the modifier is valid):
4538
4539     !   sSlLiI     Forces native (short, long, int) sizes instead
4540                    of fixed (16-/32-bit) sizes.
4541
4542     !   xX         Make x and X act as alignment commands.
4543
4544     !   nNvV       Treat integers as signed instead of unsigned.
4545
4546     !   @.         Specify position as byte offset in the internal
4547                    representation of the packed string.  Efficient
4548                    but dangerous.
4549
4550     >   sSiIlLqQ   Force big-endian byte-order on the type.
4551         jJfFdDpP   (The "big end" touches the construct.)
4552
4553     <   sSiIlLqQ   Force little-endian byte-order on the type.
4554         jJfFdDpP   (The "little end" touches the construct.)
4555
4556 The C<< > >> and C<< < >> modifiers can also be used on C<()> groups 
4557 to force a particular byte-order on all components in that group, 
4558 including all its subgroups.
4559
4560 =begin comment
4561
4562 Larry recalls that the hex and bit string formats (H, h, B, b) were added to
4563 pack for processing data from NASA's Magellan probe.  Magellan was in an
4564 elliptical orbit, using the antenna for the radar mapping when close to
4565 Venus and for communicating data back to Earth for the rest of the orbit.
4566 There were two transmission units, but one of these failed, and then the
4567 other developed a fault whereby it would randomly flip the sense of all the
4568 bits. It was easy to automatically detect complete records with the correct
4569 sense, and complete records with all the bits flipped. However, this didn't
4570 recover the records where the sense flipped midway. A colleague of Larry's
4571 was able to pretty much eyeball where the records flipped, so they wrote an
4572 editor named kybble (a pun on the dog food Kibbles 'n Bits) to enable him to
4573 manually correct the records and recover the data. For this purpose pack
4574 gained the hex and bit string format specifiers.
4575
4576 git shows that they were added to perl 3.0 in patch #44 (Jan 1991, commit
4577 27e2fb84680b9cc1), but the patch description makes no mention of their
4578 addition, let alone the story behind them.
4579
4580 =end comment
4581
4582 The following rules apply:
4583
4584 =over 
4585
4586 =item *
4587
4588 Each letter may optionally be followed by a number indicating the repeat
4589 count.  A numeric repeat count may optionally be enclosed in brackets, as
4590 in C<pack("C[80]", @arr)>.  The repeat count gobbles that many values from
4591 the LIST when used with all format types other than C<a>, C<A>, C<Z>, C<b>,
4592 C<B>, C<h>, C<H>, C<@>, C<.>, C<x>, C<X>, and C<P>, where it means
4593 something else, described below.  Supplying a C<*> for the repeat count
4594 instead of a number means to use however many items are left, except for:
4595
4596 =over 
4597
4598 =item * 
4599
4600 C<@>, C<x>, and C<X>, where it is equivalent to C<0>.
4601
4602 =item * 
4603
4604 <.>, where it means relative to the start of the string.
4605
4606 =item * 
4607
4608 C<u>, where it is equivalent to 1 (or 45, which here is equivalent).
4609
4610 =back 
4611
4612 One can replace a numeric repeat count with a template letter enclosed in
4613 brackets to use the packed byte length of the bracketed template for the
4614 repeat count.
4615
4616 For example, the template C<x[L]> skips as many bytes as in a packed long,
4617 and the template C<"$t X[$t] $t"> unpacks twice whatever $t (when
4618 variable-expanded) unpacks.  If the template in brackets contains alignment
4619 commands (such as C<x![d]>), its packed length is calculated as if the
4620 start of the template had the maximal possible alignment.
4621
4622 When used with C<Z>, a C<*> as the repeat count is guaranteed to add a
4623 trailing null byte, so the resulting string is always one byte longer than
4624 the byte length of the item itself.
4625
4626 When used with C<@>, the repeat count represents an offset from the start
4627 of the innermost C<()> group.
4628
4629 When used with C<.>, the repeat count determines the starting position to
4630 calculate the value offset as follows:
4631
4632 =over 
4633
4634 =item *
4635
4636 If the repeat count is C<0>, it's relative to the current position.
4637
4638 =item *
4639
4640 If the repeat count is C<*>, the offset is relative to the start of the
4641 packed string.
4642
4643 =item *
4644
4645 And if it's an integer I<n>, the offset is relative to the start of the
4646 I<n>th innermost C<( )> group, or to the start of the string if I<n> is
4647 bigger then the group level.
4648
4649 =back
4650
4651 The repeat count for C<u> is interpreted as the maximal number of bytes
4652 to encode per line of output, with 0, 1 and 2 replaced by 45.  The repeat 
4653 count should not be more than 65.
4654
4655 =item *
4656
4657 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
4658 string of length count, padding with nulls or spaces as needed.  When
4659 unpacking, C<A> strips trailing whitespace and nulls, C<Z> strips everything
4660 after the first null, and C<a> returns data with no stripping at all.
4661
4662 If the value to pack is too long, the result is truncated.  If it's too
4663 long and an explicit count is provided, C<Z> packs only C<$count-1> bytes,
4664 followed by a null byte.  Thus C<Z> always packs a trailing null, except
4665 when the count is 0.
4666
4667 =item *
4668
4669 Likewise, the C<b> and C<B> formats pack a string that's that many bits long.
4670 Each such format generates 1 bit of the result.  These are typically followed
4671 by a repeat count like C<B8> or C<B64>.
4672
4673 Each result bit is based on the least-significant bit of the corresponding
4674 input character, i.e., on C<ord($char)%2>.  In particular, characters C<"0">
4675 and C<"1"> generate bits 0 and 1, as do characters C<"\000"> and C<"\001">.
4676
4677 Starting from the beginning of the input string, each 8-tuple
4678 of characters is converted to 1 character of output.  With format C<b>,
4679 the first character of the 8-tuple determines the least-significant bit of a
4680 character; with format C<B>, it determines the most-significant bit of
4681 a character.
4682
4683 If the length of the input string is not evenly divisible by 8, the
4684 remainder is packed as if the input string were padded by null characters
4685 at the end.  Similarly during unpacking, "extra" bits are ignored.
4686
4687 If the input string is longer than needed, remaining characters are ignored.
4688
4689 A C<*> for the repeat count uses all characters of the input field.  
4690 On unpacking, bits are converted to a string of C<0>s and C<1>s.
4691
4692 =item *
4693
4694 The C<h> and C<H> formats pack a string that many nybbles (4-bit groups,
4695 representable as hexadecimal digits, C<"0".."9"> C<"a".."f">) long.
4696
4697 For each such format, pack() generates 4 bits of result.
4698 With non-alphabetical characters, the result is based on the 4 least-significant
4699 bits of the input character, i.e., on C<ord($char)%16>.  In particular,
4700 characters C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
4701 C<"\000"> and C<"\001">.  For characters C<"a".."f"> and C<"A".."F">, the result
4702 is compatible with the usual hexadecimal digits, so that C<"a"> and
4703 C<"A"> both generate the nybble C<0xA==10>.  Use only these specific hex 
4704 characters with this format.
4705
4706 Starting from the beginning of the template to pack(), each pair
4707 of characters is converted to 1 character of output.  With format C<h>, the
4708 first character of the pair determines the least-significant nybble of the
4709 output character; with format C<H>, it determines the most-significant
4710 nybble.
4711
4712 If the length of the input string is not even, it behaves as if padded by
4713 a null character at the end.  Similarly, "extra" nybbles are ignored during
4714 unpacking.
4715
4716 If the input string is longer than needed, extra characters are ignored.
4717
4718 A C<*> for the repeat count uses all characters of the input field.  For
4719 unpack(), nybbles are converted to a string of hexadecimal digits.
4720
4721 =item *
4722
4723 The C<p> format packs a pointer to a null-terminated string.  You are
4724 responsible for ensuring that the string is not a temporary value, as that
4725 could potentially get deallocated before you got around to using the packed
4726 result.  The C<P> format packs a pointer to a structure of the size indicated
4727 by the length.  A null pointer is created if the corresponding value for
4728 C<p> or C<P> is C<undef>; similarly with unpack(), where a null pointer
4729 unpacks into C<undef>.
4730
4731 If your system has a strange pointer size--meaning a pointer is neither as
4732 big as an int nor as big as a long--it may not be possible to pack or
4733 unpack pointers in big- or little-endian byte order.  Attempting to do
4734 so raises an exception.
4735
4736 =item *
4737
4738 The C</> template character allows packing and unpacking of a sequence of
4739 items where the packed structure contains a packed item count followed by
4740 the packed items themselves.  This is useful when the structure you're
4741 unpacking has encoded the sizes or repeat counts for some of its fields
4742 within the structure itself as separate fields.
4743
4744 For C<pack>, you write I<length-item>C</>I<sequence-item>, and the
4745 I<length-item> describes how the length value is packed.  Formats likely
4746 to be of most use are integer-packing ones like C<n> for Java strings,
4747 C<w> for ASN.1 or SNMP, and C<N> for Sun XDR.
4748
4749 For C<pack>, I<sequence-item> may have a repeat count, in which case
4750 the minimum of that and the number of available items is used as the argument
4751 for I<length-item>.  If it has no repeat count or uses a '*', the number
4752 of available items is used.
4753
4754 For C<unpack>, an internal stack of integer arguments unpacked so far is
4755 used.  You write C</>I<sequence-item> and the repeat count is obtained by
4756 popping off the last element from the stack.  The I<sequence-item> must not
4757 have a repeat count.
4758
4759 If I<sequence-item> refers to a string type (C<"A">, C<"a">, or C<"Z">),
4760 the I<length-item> is the string length, not the number of strings.  With
4761 an explicit repeat count for pack, the packed string is adjusted to that
4762 length.  For example:
4763
4764  This code:                             gives this result:
4765
4766  unpack("W/a", "\004Gurusamy")          ("Guru")
4767  unpack("a3/A A*", "007 Bond  J ")      (" Bond", "J")
4768  unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")
4769
4770  pack("n/a* w/a","hello,","world")     "\000\006hello,\005world"
4771  pack("a/W2", ord("a") .. ord("z"))    "2ab"
4772
4773 The I<length-item> is not returned explicitly from C<unpack>.
4774
4775 Supplying a count to the I<length-item> format letter is only useful with
4776 C<A>, C<a>, or C<Z>.  Packing with a I<length-item> of C<a> or C<Z> may
4777 introduce C<"\000"> characters, which Perl does not regard as legal in
4778 numeric strings.
4779
4780 =item *
4781
4782 The integer types C<s>, C<S>, C<l>, and C<L> may be
4783 followed by a C<!> modifier to specify native shorts or
4784 longs.  As shown in the example above, a bare C<l> means
4785 exactly 32 bits, although the native C<long> as seen by the local C compiler
4786 may be larger.  This is mainly an issue on 64-bit platforms.  You can
4787 see whether using C<!> makes any difference this way:
4788
4789     printf "format s is %d, s! is %d\n", 
4790         length pack("s"), length pack("s!");
4791
4792     printf "format l is %d, l! is %d\n", 
4793         length pack("l"), length pack("l!");
4794
4795
4796 C<i!> and C<I!> are also allowed, but only for completeness' sake:
4797 they are identical to C<i> and C<I>.
4798
4799 The actual sizes (in bytes) of native shorts, ints, longs, and long
4800 longs on the platform where Perl was built are also available from
4801 the command line:
4802
4803     $ perl -V:{short,int,long{,long}}size
4804     shortsize='2';
4805     intsize='4';
4806     longsize='4';
4807     longlongsize='8';
4808
4809 or programmatically via the C<Config> module:
4810
4811        use Config;
4812        print $Config{shortsize},    "\n";
4813        print $Config{intsize},      "\n";
4814        print $Config{longsize},     "\n";
4815        print $Config{longlongsize}, "\n";
4816
4817 C<$Config{longlongsize}> is undefined on systems without 
4818 long long support.
4819
4820 =item *
4821
4822 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J> are
4823 inherently non-portable between processors and operating systems because
4824 they obey native byteorder and endianness.  For example, a 4-byte integer
4825 0x12345678 (305419896 decimal) would be ordered natively (arranged in and
4826 handled by the CPU registers) into bytes as
4827
4828     0x12 0x34 0x56 0x78  # big-endian
4829     0x78 0x56 0x34 0x12  # little-endian
4830
4831 Basically, Intel and VAX CPUs are little-endian, while everybody else,
4832 including Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
4833 big-endian.  Alpha and MIPS can be either: Digital/Compaq uses (well, used) 
4834 them in little-endian mode, but SGI/Cray uses them in big-endian mode.
4835
4836 The names I<big-endian> and I<little-endian> are comic references to the
4837 egg-eating habits of the little-endian Lilliputians and the big-endian
4838 Blefuscudians from the classic Jonathan Swift satire, I<Gulliver's Travels>.
4839 This entered computer lingo via the paper "On Holy Wars and a Plea for
4840 Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980.
4841
4842 Some systems may have even weirder byte orders such as
4843
4844    0x56 0x78 0x12 0x34
4845    0x34 0x12 0x78 0x56
4846
4847 You can determine your system endianness with this incantation:
4848
4849    printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678); 
4850
4851 The byteorder on the platform where Perl was built is also available
4852 via L<Config>:
4853
4854     use Config;
4855     print "$Config{byteorder}\n";
4856
4857 or from the command line:
4858
4859     $ perl -V:byteorder
4860
4861 Byteorders C<"1234"> and C<"12345678"> are little-endian; C<"4321">
4862 and C<"87654321"> are big-endian.
4863
4864 For portably packed integers, either use the formats C<n>, C<N>, C<v>, 
4865 and C<V> or else use the C<< > >> and C<< < >> modifiers described
4866 immediately below.  See also L<perlport>.
4867
4868 =item *
4869
4870 Starting with Perl 5.10.0, integer and floating-point formats, along with
4871 the C<p> and C<P> formats and C<()> groups, may all be followed by the 
4872 C<< > >> or C<< < >> endianness modifiers to respectively enforce big-
4873 or little-endian byte-order.  These modifiers are especially useful 
4874 given how C<n>, C<N>, C<v>, and C<V> don't cover signed integers, 
4875 64-bit integers, or floating-point values.
4876
4877 Here are some concerns to keep in mind when using an endianness modifier:
4878
4879 =over
4880
4881 =item * 
4882
4883 Exchanging signed integers between different platforms works only 
4884 when all platforms store them in the same format.  Most platforms store
4885 signed integers in two's-complement notation, so usually this is not an issue.
4886
4887 =item * 
4888
4889 The C<< > >> or C<< < >> modifiers can only be used on floating-point
4890 formats on big- or little-endian machines.  Otherwise, attempting to
4891 use them raises an exception.
4892
4893 =item * 
4894
4895 Forcing big- or little-endian byte-order on floating-point values for
4896 data exchange can work only if all platforms use the same
4897 binary representation such as IEEE floating-point.  Even if all
4898 platforms are using IEEE, there may still be subtle differences.  Being able
4899 to use C<< > >> or C<< < >> on floating-point values can be useful,
4900 but also dangerous if you don't know exactly what you're doing.
4901 It is not a general way to portably store floating-point values.
4902
4903 =item * 
4904
4905 When using C<< > >> or C<< < >> on a C<()> group, this affects
4906 all types inside the group that accept byte-order modifiers,
4907 including all subgroups.  It is silently ignored for all other
4908 types.  You are not allowed to override the byte-order within a group
4909 that already has a byte-order modifier suffix.
4910
4911 =back
4912
4913 =item *
4914
4915 Real numbers (floats and doubles) are in native machine format only.
4916 Due to the multiplicity of floating-point formats and the lack of a
4917 standard "network" representation for them, no facility for interchange has been
4918 made.  This means that packed floating-point data written on one machine
4919 may not be readable on another, even if both use IEEE floating-point
4920 arithmetic (because the endianness of the memory representation is not part
4921 of the IEEE spec).  See also L<perlport>.
4922
4923 If you know I<exactly> what you're doing, you can use the C<< > >> or C<< < >>
4924 modifiers to force big- or little-endian byte-order on floating-point values.
4925
4926 Because Perl uses doubles (or long doubles, if configured) internally for
4927 all numeric calculation, converting from double into float and thence 
4928 to double again loses precision, so C<unpack("f", pack("f", $foo)>)
4929 will not in general equal $foo.
4930
4931 =item *
4932
4933 Pack and unpack can operate in two modes: character mode (C<C0> mode) where
4934 the packed string is processed per character, and UTF-8 mode (C<U0> mode)
4935 where the packed string is processed in its UTF-8-encoded Unicode form on
4936 a byte-by-byte basis.  Character mode is the default
4937 unless the format string starts with C<U>.  You
4938 can always switch mode mid-format with an explicit 
4939 C<C0> or C<U0> in the format.  This mode remains in effect until the next 
4940 mode change, or until the end of the C<()> group it (directly) applies to.
4941
4942 Using C<C0> to get Unicode characters while using C<U0> to get I<non>-Unicode 
4943 bytes is not necessarily obvious.   Probably only the first of these
4944 is what you want:
4945
4946     $ perl -CS -E 'say "\x{3B1}\x{3C9}"' | 
4947       perl -CS -ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'
4948     03B1.03C9
4949     $ perl -CS -E 'say "\x{3B1}\x{3C9}"' | 
4950       perl -CS -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
4951     CE.B1.CF.89
4952     $ perl -CS -E 'say "\x{3B1}\x{3C9}"' | 
4953       perl -C0 -ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'
4954     CE.B1.CF.89
4955     $ perl -CS -E 'say "\x{3B1}\x{3C9}"' | 
4956       perl -C0 -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
4957     C3.8E.C2.B1.C3.8F.C2.89
4958
4959 Those examples also illustrate that you should not try to use
4960 C<pack>/C<unpack> as a substitute for the L<Encode> module.
4961
4962 =item *
4963
4964 You must yourself do any alignment or padding by inserting, for example,
4965 enough C<"x">es while packing.  There is no way for pack() and unpack()
4966 to know where characters are going to or coming from, so they 
4967 handle their output and input as flat sequences of characters.
4968
4969 =item *
4970
4971 A C<()> group is a sub-TEMPLATE enclosed in parentheses.  A group may
4972 take a repeat count either as postfix, or for unpack(), also via the C</>
4973 template character.  Within each repetition of a group, positioning with
4974 C<@> starts over at 0.  Therefore, the result of
4975
4976     pack("@1A((@2A)@3A)", qw[X Y Z])
4977
4978 is the string C<"\0X\0\0YZ">.
4979
4980 =item *
4981
4982 C<x> and C<X> accept the C<!> modifier to act as alignment commands: they
4983 jump forward or back to the closest position aligned at a multiple of C<count>
4984 characters.  For example, to pack() or unpack() a C structure like
4985
4986     struct {
4987         char   c;    /* one signed, 8-bit character */
4988         double d; 
4989         char   cc[2];
4990     }
4991
4992 one may need to use the template C<c x![d] d c[2]>.  This assumes that
4993 doubles must be aligned to the size of double.
4994
4995 For alignment commands, a C<count> of 0 is equivalent to a C<count> of 1;
4996 both are no-ops.
4997
4998 =item *
4999
5000 C<n>, C<N>, C<v> and C<V> accept the C<!> modifier to
5001 represent signed 16-/32-bit integers in big-/little-endian order.
5002 This is portable only when all platforms sharing packed data use the
5003 same binary representation for signed integers; for example, when all
5004 platforms use two's-complement representation.
5005
5006 =item *
5007
5008 Comments can be embedded in a TEMPLATE using C<#> through the end of line.
5009 White space can separate pack codes from each other, but modifiers and
5010 repeat counts must follow immediately.  Breaking complex templates into
5011 individual line-by-line components, suitably annotated, can do as much to
5012 improve legibility and maintainability of pack/unpack formats as C</x> can
5013 for complicated pattern matches.
5014
5015 =item *
5016
5017 If TEMPLATE requires more arguments than pack() is given, pack()
5018 assumes additional C<""> arguments.  If TEMPLATE requires fewer arguments
5019 than given, extra arguments are ignored.
5020
5021 =back
5022
5023 Examples:
5024
5025     $foo = pack("WWWW",65,66,67,68);
5026     # foo eq "ABCD"
5027     $foo = pack("W4",65,66,67,68);
5028     # same thing
5029     $foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
5030     # same thing with Unicode circled letters.
5031     $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
5032     # same thing with Unicode circled letters.  You don't get the
5033     # UTF-8 bytes because the U at the start of the format caused
5034     # a switch to U0-mode, so the UTF-8 bytes get joined into
5035     # characters
5036     $foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
5037     # foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
5038     # This is the UTF-8 encoding of the string in the
5039     # previous example
5040
5041     $foo = pack("ccxxcc",65,66,67,68);
5042     # foo eq "AB\0\0CD"
5043
5044     # NOTE: The examples above featuring "W" and "c" are true
5045     # only on ASCII and ASCII-derived systems such as ISO Latin 1
5046     # and UTF-8.  On EBCDIC systems, the first example would be
5047     #      $foo = pack("WWWW",193,194,195,196);
5048
5049     $foo = pack("s2",1,2);
5050     # "\001\000\002\000" on little-endian
5051     # "\000\001\000\002" on big-endian
5052
5053     $foo = pack("a4","abcd","x","y","z");
5054     # "abcd"
5055
5056     $foo = pack("aaaa","abcd","x","y","z");
5057     # "axyz"
5058
5059     $foo = pack("a14","abcdefg");
5060     # "abcdefg\0\0\0\0\0\0\0"
5061
5062     $foo = pack("i9pl", gmtime);
5063     # a real struct tm (on my system anyway)
5064
5065     $utmp_template = "Z8 Z8 Z16 L";
5066     $utmp = pack($utmp_template, @utmp1);
5067     # a struct utmp (BSDish)
5068
5069     @utmp2 = unpack($utmp_template, $utmp);
5070     # "@utmp1" eq "@utmp2"
5071
5072     sub bintodec {
5073         unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
5074     }
5075
5076     $foo = pack('sx2l', 12, 34);
5077     # short 12, two zero bytes padding, long 34
5078     $bar = pack('s@4l', 12, 34);
5079     # short 12, zero fill to position 4, long 34
5080     # $foo eq $bar
5081     $baz = pack('s.l', 12, 4, 34);
5082     # short 12, zero fill to position 4, long 34
5083
5084     $foo = pack('nN', 42, 4711);
5085     # pack big-endian 16- and 32-bit unsigned integers
5086     $foo = pack('S>L>', 42, 4711);
5087     # exactly the same
5088     $foo = pack('s<l<', -42, 4711);
5089     # pack little-endian 16- and 32-bit signed integers
5090     $foo = pack('(sl)<', -42, 4711);
5091     # exactly the same
5092
5093 The same template may generally also be used in unpack().
5094
5095 =item package NAMESPACE
5096
5097 =item package NAMESPACE VERSION
5098 X<package> X<module> X<namespace> X<version>
5099
5100 =item package NAMESPACE BLOCK
5101
5102 =item package NAMESPACE VERSION BLOCK
5103 X<package> X<module> X<namespace> X<version>
5104
5105 =for Pod::Functions declare a separate global namespace
5106
5107 Declares the BLOCK or the rest of the compilation unit as being in the
5108 given namespace.  The scope of the package declaration is either the
5109 supplied code BLOCK or, in the absence of a BLOCK, from the declaration
5110 itself through the end of current scope (the enclosing block, file, or
5111 C<eval>).  That is, the forms without a BLOCK are operative through the end
5112 of the current scope, just like the C<my>, C<state>, and C<our> operators.
5113 All unqualified dynamic identifiers in this scope will be in the given
5114 namespace, except where overridden by another C<package> declaration or
5115 when they're one of the special identifiers that qualify into C<main::>,
5116 like C<STDOUT>, C<ARGV>, C<ENV>, and the punctuation variables.
5117
5118 A package statement affects dynamic variables only, including those
5119 you've used C<local> on, but I<not> lexically-scoped variables, which are created
5120 with C<my>, C<state>, or C<our>.  Typically it would be the first 
5121 declaration in a file included by C<require> or C<use>.  You can switch into a
5122 package in more than one place, since this only determines which default 
5123 symbol table the compiler uses for the rest of that block.  You can refer to
5124 identifiers in other packages than the current one by prefixing the identifier
5125 with the package name and a double colon, as in C<$SomePack::var>
5126 or C<ThatPack::INPUT_HANDLE>.  If package name is omitted, the C<main>
5127 package as assumed.  That is, C<$::sail> is equivalent to
5128 C<$main::sail> (as well as to C<$main'sail>, still seen in ancient
5129 code, mostly from Perl 4).
5130
5131 If VERSION is provided, C<package> sets the C<$VERSION> variable in the given
5132 namespace to a L<version> object with the VERSION provided.  VERSION must be a
5133 "strict" style version number as defined by the L<version> module: a positive
5134 decimal number (integer or decimal-fraction) without exponentiation or else a
5135 dotted-decimal v-string with a leading 'v' character and at least three
5136 components.  You should set C<$VERSION> only once per package.
5137
5138 See L<perlmod/"Packages"> for more information about packages, modules,
5139 and classes.  See L<perlsub> for other scoping issues.
5140
5141 =item __PACKAGE__
5142 X<__PACKAGE__>
5143
5144 =for Pod::Functions +5.004 the current package
5145
5146 A special token that returns the name of the package in which it occurs.
5147
5148 =item pipe READHANDLE,WRITEHANDLE
5149 X<pipe>
5150
5151 =for Pod::Functions open a pair of connected filehandles
5152
5153 Opens a pair of connected pipes like the corresponding system call.
5154 Note that if you set up a loop of piped processes, deadlock can occur
5155 unless you are very careful.  In addition, note that Perl's pipes use
5156 IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
5157 after each command, depending on the application.
5158
5159 Returns true on success.
5160
5161 See L<IPC::Open2>, L<IPC::Open3>, and
5162 L<perlipc/"Bidirectional Communication with Another Process">
5163 for examples of such things.
5164
5165 On systems that support a close-on-exec flag on files, that flag is set
5166 on all newly opened file descriptors whose C<fileno>s are I<higher> than 
5167 the current value of $^F (by default 2 for C<STDERR>).  See L<perlvar/$^F>.
5168
5169 =item pop ARRAY
5170 X<pop> X<stack>
5171
5172 =item pop EXPR
5173
5174 =item pop
5175
5176 =for Pod::Functions remove the last element from an array and return it
5177
5178 Pops and returns the last value of the array, shortening the array by
5179 one element.
5180
5181 Returns the undefined value if the array is empty, although this may also
5182 happen at other times.  If ARRAY is omitted, pops the C<@ARGV> array in the
5183 main program, but the C<@_> array in subroutines, just like C<shift>.
5184
5185 Starting with Perl 5.14, C<pop> can take a scalar EXPR, which must hold a
5186 reference to an unblessed array.  The argument will be dereferenced
5187 automatically.  This aspect of C<pop> is considered highly experimental.
5188 The exact behaviour may change in a future version of Perl.
5189
5190 To avoid confusing would-be users of your code who are running earlier
5191 versions of Perl with mysterious syntax errors, put this sort of thing at
5192 the top of your file to signal that your code will work I<only> on Perls of
5193 a recent vintage:
5194
5195     use 5.014;  # so push/pop/etc work on scalars (experimental)
5196
5197 =item pos SCALAR
5198 X<pos> X<match, position>
5199
5200 =item pos
5201
5202 =for Pod::Functions find or set the offset for the last/next m//g search
5203
5204 Returns the offset of where the last C<m//g> search left off for the
5205 variable in question (C<$_> is used when the variable is not
5206 specified).  Note that 0 is a valid match offset.  C<undef> indicates
5207 that the search position is reset (usually due to match failure, but
5208 can also be because no match has yet been run on the scalar).
5209
5210 C<pos> directly accesses the location used by the regexp engine to
5211 store the offset, so assigning to C<pos> will change that offset, and
5212 so will also influence the C<\G> zero-width assertion in regular
5213 expressions.  Both of these effects take place for the next match, so
5214 you can't affect the position with C<pos> during the current match,
5215 such as in C<(?{pos() = 5})> or C<s//pos() = 5/e>.
5216
5217 Setting C<pos> also resets the I<matched with zero-length> flag, described
5218 under L<perlre/"Repeated Patterns Matching a Zero-length Substring">.
5219
5220 Because a failed C<m//gc> match doesn't reset the offset, the return
5221 from C<pos> won't change either in this case.  See L<perlre> and
5222 L<perlop>.
5223
5224 =item print FILEHANDLE LIST
5225 X<print>
5226
5227 =item print FILEHANDLE
5228
5229 =item print LIST
5230
5231 =item print
5232
5233 =for Pod::Functions output a list to a filehandle
5234
5235 Prints a string or a list of strings.  Returns true if successful.
5236 FILEHANDLE may be a scalar variable containing the name of or a reference
5237 to the filehandle, thus introducing one level of indirection.  (NOTE: If
5238 FILEHANDLE is a variable and the next token is a term, it may be
5239 misinterpreted as an operator unless you interpose a C<+> or put
5240 parentheses around the arguments.)  If FILEHANDLE is omitted, prints to the
5241 last selected (see L</select>) output handle.  If LIST is omitted, prints
5242 C<$_> to the currently selected output handle.  To use FILEHANDLE alone to
5243 print the content of C<$_> to it, you must use a real filehandle like
5244 C<FH>, not an indirect one like C<$fh>.  To set the default output handle
5245 to something other than STDOUT, use the select operation.
5246
5247 The current value of C<$,> (if any) is printed between each LIST item.  The
5248 current value of C<$\> (if any) is printed after the entire LIST has been
5249 printed.  Because print takes a LIST, anything in the LIST is evaluated in
5250 list context, including any subroutines whose return lists you pass to
5251 C<print>.  Be careful not to follow the print keyword with a left
5252 parenthesis unless you want the corresponding right parenthesis to
5253 terminate the arguments to the print; put parentheses around all arguments
5254 (or interpose a C<+>, but that doesn't look as good).
5255
5256 If you're storing handles in an array or hash, or in general whenever
5257 you're using any expression more complex than a bareword handle or a plain,
5258 unsubscripted scalar variable to retrieve it, you will have to use a block
5259 returning the filehandle value instead, in which case the LIST may not be
5260 omitted:
5261
5262     print { $files[$i] } "stuff\n";
5263     print { $OK ? STDOUT : STDERR } "stuff\n";
5264
5265 Printing to a closed pipe or socket will generate a SIGPIPE signal.  See
5266 L<perlipc> for more on signal handling.
5267
5268 =item printf FILEHANDLE FORMAT, LIST
5269 X<printf>
5270
5271 =item printf FILEHANDLE
5272
5273 =item printf FORMAT, LIST
5274
5275 =item printf
5276
5277 =for Pod::Functions output a formatted list to a filehandle
5278
5279 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
5280 (the output record separator) is not appended.  The FORMAT and the
5281 LIST are actually parsed as a single list.  The first argument
5282 of the list will be interpreted as the C<printf> format.  This
5283 means that C<printf(@_)> will use C<$_[0]> as the format.  See
5284 L<sprintf|/sprintf FORMAT, LIST> for an
5285 explanation of the format argument.  If C<use locale> for C<LC_NUMERIC>
5286 Look for this throught pod
5287 is in effect and
5288 POSIX::setlocale() has been called, the character used for the decimal
5289 separator in formatted floating-point numbers is affected by the C<LC_NUMERIC>
5290 locale setting.  See L<perllocale> and L<POSIX>.
5291
5292 For historical reasons, if you omit the list, C<$_> is used as the format;
5293 to use FILEHANDLE without a list, you must use a real filehandle like
5294 C<FH>, not an indirect one like C<$fh>.  However, this will rarely do what
5295 you want; if $_ contains formatting codes, they will be replaced with the
5296 empty string and a warning will be emitted if warnings are enabled.  Just
5297 use C<print> if you want to print the contents of $_.
5298
5299 Don't fall into the trap of using a C<printf> when a simple
5300 C<print> would do.  The C<print> is more efficient and less
5301 error prone.
5302
5303 =item prototype FUNCTION
5304 X<prototype>
5305
5306 =for Pod::Functions +5.002 get the prototype (if any) of a subroutine
5307
5308 Returns the prototype of a function as a string (or C<undef> if the
5309 function has no prototype).  FUNCTION is a reference to, or the name of,
5310 the function whose prototype you want to retrieve.
5311
5312 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
5313 name for a Perl builtin.  If the builtin's arguments
5314 cannot be adequately expressed by a prototype
5315 (such as C<system>), prototype() returns C<undef>, because the builtin
5316 does not really behave like a Perl function.  Otherwise, the string
5317 describing the equivalent prototype is returned.
5318
5319 =item push ARRAY,LIST
5320 X<push> X<stack>
5321
5322 =item push EXPR,LIST
5323
5324 =for Pod::Functions append one or more elements to an array
5325
5326 Treats ARRAY as a stack by appending the values of LIST to the end of
5327 ARRAY.  The length of ARRAY increases by the length of LIST.  Has the same
5328 effect as
5329
5330     for $value (LIST) {
5331         $ARRAY[++$#ARRAY] = $value;
5332     }
5333
5334 but is more efficient.  Returns the number of elements in the array following
5335 the completed C<push>.
5336
5337 Starting with Perl 5.14, C<push> can take a scalar EXPR, which must hold a
5338 reference to an unblessed array.  The argument will be dereferenced
5339 automatically.  This aspect of C<push> is considered highly experimental.
5340 The exact behaviour may change in a future version of Perl.
5341
5342 To avoid confusing would-be users of your code who are running earlier
5343 versions of Perl with mysterious syntax errors, put this sort of thing at
5344 the top of your file to signal that your code will work I<only> on Perls of
5345 a recent vintage:
5346
5347     use 5.014;  # so push/pop/etc work on scalars (experimental)
5348
5349 =item q/STRING/
5350
5351 =for Pod::Functions singly quote a string
5352
5353 =item qq/STRING/
5354
5355 =for Pod::Functions doubly quote a string
5356
5357 =item qw/STRING/
5358
5359 =for Pod::Functions quote a list of words
5360
5361 =item qx/STRING/
5362
5363 =for Pod::Functions backquote quote a string
5364
5365 Generalized quotes.  See L<perlop/"Quote-Like Operators">.
5366
5367 =item qr/STRING/
5368
5369 =for Pod::Functions +5.005 compile pattern
5370
5371 Regexp-like quote.  See L<perlop/"Regexp Quote-Like Operators">.
5372
5373 =item quotemeta EXPR
5374 X<quotemeta> X<metacharacter>
5375
5376 =item quotemeta
5377
5378 =for Pod::Functions quote regular expression magic characters
5379
5380 Returns the value of EXPR with all the ASCII non-"word"
5381 characters backslashed.  (That is, all ASCII characters not matching
5382 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
5383 returned string, regardless of any locale settings.)
5384 This is the internal function implementing
5385 the C<\Q> escape in double-quoted strings.
5386 (See below for the behavior on non-ASCII code points.)
5387
5388 If EXPR is omitted, uses C<$_>.
5389
5390 quotemeta (and C<\Q> ... C<\E>) are useful when interpolating strings into
5391 regular expressions, because by default an interpolated variable will be
5392 considered a mini-regular expression.  For example:
5393
5394     my $sentence = 'The quick brown fox jumped over the lazy dog';
5395     my $substring = 'quick.*?fox';
5396     $sentence =~ s{$substring}{big bad wolf};
5397
5398 Will cause C<$sentence> to become C<'The big bad wolf jumped over...'>.
5399
5400 On the other hand:
5401
5402     my $sentence = 'The quick brown fox jumped over the lazy dog';
5403     my $substring = 'quick.*?fox';
5404     $sentence =~ s{\Q$substring\E}{big bad wolf};
5405
5406 Or:
5407
5408     my $sentence = 'The quick brown fox jumped over the lazy dog';
5409     my $substring = 'quick.*?fox';
5410     my $quoted_substring = quotemeta($substring);
5411     $sentence =~ s{$quoted_substring}{big bad wolf};
5412
5413 Will both leave the sentence as is.
5414 Normally, when accepting literal string
5415 input from the user, quotemeta() or C<\Q> must be used.
5416
5417 In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded
5418 strings, but not quoted in UTF-8 strings.
5419
5420 Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for
5421 quoting non-ASCII characters; the quoting of ASCII characters is
5422 unchanged.
5423
5424 Also unchanged is the quoting of non-UTF-8 strings when outside the
5425 scope of a C<use feature 'unicode_strings'>, which is to quote all
5426 characters in the upper Latin1 range.  This provides complete backwards
5427 compatibility for old programs which do not use Unicode.  (Note that
5428 C<unicode_strings> is automatically enabled within the scope of a
5429 S<C<use v5.12>> or greater.)
5430
5431 Within the scope of C<use locale>, all non-ASCII Latin1 code points
5432 are quoted whether the string is encoded as UTF-8 or not.  As mentioned
5433 above, locale does not affect the quoting of ASCII-range characters.
5434 This protects against those locales where characters such as C<"|"> are
5435 considered to be word characters.
5436
5437 Otherwise, Perl quotes non-ASCII characters using an adaptation from
5438 Unicode (see L<http://www.unicode.org/reports/tr31/>).
5439 The only code points that are quoted are those that have any of the
5440 Unicode properties:  Pattern_Syntax, Pattern_White_Space, White_Space,
5441 Default_Ignorable_Code_Point, or General_Category=Control.
5442
5443 Of these properties, the two important ones are Pattern_Syntax and
5444 Pattern_White_Space.  They have been set up by Unicode for exactly this
5445 purpose of deciding which characters in a regular expression pattern
5446 should be quoted.  No character that can be in an identifier has these
5447 properties.
5448
5449 Perl promises, that if we ever add regular expression pattern
5450 metacharacters to the dozen already defined
5451 (C<\ E<verbar> ( ) [ { ^ $ * + ? .>), that we will only use ones that have the
5452 Pattern_Syntax property.  Perl also promises, that if we ever add
5453 characters that are considered to be white space in regular expressions
5454 (currently mostly affected by C</x>), they will all have the
5455 Pattern_White_Space property.
5456
5457 Unicode promises that the set of code points that have these two
5458 properties will never change, so something that is not quoted in v5.16
5459 will never need to be quoted in any future Perl release.  (Not all the
5460 code points that match Pattern_Syntax have actually had characters
5461 assigned to them; so there is room to grow, but they are quoted
5462 whether assigned or not.  Perl, of course, would never use an
5463 unassigned code point as an actual metacharacter.)
5464
5465 Quoting characters that have the other 3 properties is done to enhance
5466 the readability of the regular expression and not because they actually
5467 need to be quoted for regular expression purposes (characters with the
5468 White_Space property are likely to be indistinguishable on the page or
5469 screen from those with the Pattern_White_Space property; and the other
5470 two properties contain non-printing characters).
5471
5472 =item rand EXPR
5473 X<rand> X<random>
5474
5475 =item rand
5476
5477 =for Pod::Functions retrieve the next pseudorandom number
5478
5479 Returns a random fractional number greater than or equal to C<0> and less
5480 than the value of EXPR.  (EXPR should be positive.)  If EXPR is
5481 omitted, the value C<1> is used.  Currently EXPR with the value C<0> is
5482 also special-cased as C<1> (this was undocumented before Perl 5.8.0
5483 and is subject to change in future versions of Perl).  Automatically calls
5484 C<srand> unless C<srand> has already been called.  See also C<srand>.
5485
5486 Apply C<int()> to the value returned by C<rand()> if you want random
5487 integers instead of random fractional numbers.  For example,
5488
5489     int(rand(10))
5490
5491 returns a random integer between C<0> and C<9>, inclusive.
5492
5493 (Note: If your rand function consistently returns numbers that are too
5494 large or too small, then your version of Perl was probably compiled
5495 with the wrong number of RANDBITS.)
5496
5497 B<C<rand()> is not cryptographically secure.  You should not rely
5498 on it in security-sensitive situations.>  As of this writing, a
5499 number of third-party CPAN modules offer random number generators
5500 intended by their authors to be cryptographically secure,
5501 including: L<Data::Entropy>, L<Crypt::Random>, L<Math::Random::Secure>,
5502 and L<Math::TrulyRandom>.
5503
5504 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
5505 X<read> X<file, read>
5506
5507 =item read FILEHANDLE,SCALAR,LENGTH
5508
5509 =for Pod::Functions fixed-length buffered input from a filehandle
5510
5511 Attempts to read LENGTH I<characters> of data into variable SCALAR
5512 from the specified FILEHANDLE.  Returns the number of characters
5513 actually read, C<0> at end of file, or undef if there was an error (in
5514 the latter case C<$!> is also set).  SCALAR will be grown or shrunk 
5515 so that the last character actually read is the last character of the
5516 scalar after the read.
5517
5518 An OFFSET may be specified to place the read data at some place in the
5519 string other than the beginning.  A negative OFFSET specifies
5520 placement at that many characters counting backwards from the end of
5521 the string.  A positive OFFSET greater than the length of SCALAR
5522 results in the string being padded to the required size with C<"\0">
5523 bytes before the result of the read is appended.
5524
5525 The call is implemented in terms of either Perl's or your system's native
5526 fread(3) library function.  To get a true read(2) system call, see
5527 L<sysread|/sysread FILEHANDLE,SCALAR,LENGTH,OFFSET>.
5528
5529 Note the I<characters>: depending on the status of the filehandle,
5530 either (8-bit) bytes or characters are read.  By default, all
5531 filehandles operate on bytes, but for example if the filehandle has
5532 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
5533 pragma, L<open>), the I/O will operate on UTF8-encoded Unicode
5534 characters, not bytes.  Similarly for the C<:encoding> pragma:
5535 in that case pretty much any characters can be read.
5536
5537 =item readdir DIRHANDLE
5538 X<readdir>
5539
5540 =for Pod::Functions get a directory from a directory handle
5541
5542 Returns the next directory entry for a directory opened by C<opendir>.
5543 If used in list context, returns all the rest of the entries in the
5544 directory.  If there are no more entries, returns the undefined value in
5545 scalar context and the empty list in list context.
5546
5547 If you're planning to filetest the return values out of a C<readdir>, you'd
5548 better prepend the directory in question.  Otherwise, because we didn't
5549 C<chdir> there, it would have been testing the wrong file.
5550
5551     opendir(my $dh, $some_dir) || die "can't opendir $some_dir: $!";
5552     @dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);
5553     closedir $dh;
5554
5555 As of Perl 5.12 you can use a bare C<readdir> in a C<while> loop,
5556 which will set C<$_> on every iteration.
5557
5558     opendir(my $dh, $some_dir) || die;
5559     while(readdir $dh) {
5560         print "$some_dir/$_\n";
5561     }
5562     closedir $dh;
5563
5564 To avoid confusing would-be users of your code who are running earlier
5565 versions of Perl with mysterious failures, put this sort of thing at the
5566 top of your file to signal that your code will work I<only> on Perls of a
5567 recent vintage:
5568
5569     use 5.012; # so readdir assigns to $_ in a lone while test
5570
5571 =item readline EXPR
5572
5573 =item readline
5574 X<readline> X<gets> X<fgets>
5575
5576 =for Pod::Functions fetch a record from a file
5577
5578 Reads from the filehandle whose typeglob is contained in EXPR (or from
5579 C<*ARGV> if EXPR is not provided).  In scalar context, each call reads and
5580 returns the next line until end-of-file is reached, whereupon the
5581 subsequent call returns C<undef>.  In list context, reads until end-of-file
5582 is reached and returns a list of lines.  Note that the notion of "line"
5583 used here is whatever you may have defined with C<$/> or
5584 C<$INPUT_RECORD_SEPARATOR>).  See L<perlvar/"$/">.
5585
5586 When C<$/> is set to C<undef>, when C<readline> is in scalar
5587 context (i.e., file slurp mode), and when an empty file is read, it
5588 returns C<''> the first time, followed by C<undef> subsequently.
5589
5590 This is the internal function implementing the C<< <EXPR> >>
5591 operator, but you can use it directly.  The C<< <EXPR> >>
5592 operator is discussed in more detail in L<perlop/"I/O Operators">.
5593
5594     $line = <STDIN>;
5595     $line = readline(*STDIN);    # same thing
5596
5597 If C<readline> encounters an operating system error, C<$!> will be set
5598 with the corresponding error message.  It can be helpful to check
5599 C<$!> when you are reading from filehandles you don't trust, such as a
5600 tty or a socket.  The following example uses the operator form of
5601 C<readline> and dies if the result is not defined.
5602
5603     while ( ! eof($fh) ) {
5604         defined( $_ = <$fh> ) or die "readline failed: $!";
5605         ...
5606     }
5607
5608 Note that you have can't handle C<readline> errors that way with the
5609 C<ARGV> filehandle.  In that case, you have to open each element of
5610 C<@ARGV> yourself since C<eof> handles C<ARGV> differently.
5611
5612     foreach my $arg (@ARGV) {
5613         open(my $fh, $arg) or warn "Can't open $arg: $!";
5614
5615         while ( ! eof($fh) ) {
5616             defined( $_ = <$fh> )
5617                 or die "readline failed for $arg: $!";
5618             ...
5619         }
5620     }
5621
5622 =item readlink EXPR
5623 X<readlink>
5624
5625 =item readlink
5626
5627 =for Pod::Functions determine where a symbolic link is pointing
5628
5629 Returns the value of a symbolic link, if symbolic links are
5630 implemented.  If not, raises an exception.  If there is a system
5631 error, returns the undefined value and sets C<$!> (errno).  If EXPR is
5632 omitted, uses C<$_>.
5633
5634 Portability issues: L<perlport/readlink>.
5635
5636 =item readpipe EXPR
5637
5638 =item readpipe
5639 X<readpipe>
5640
5641 =for Pod::Functions execute a system command and collect standard output
5642
5643 EXPR is executed as a system command.
5644 The collected standard output of the command is returned.
5645 In scalar context, it comes back as a single (potentially
5646 multi-line) string.  In list context, returns a list of lines
5647 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
5648 This is the internal function implementing the C<qx/EXPR/>
5649 operator, but you can use it directly.  The C<qx/EXPR/>
5650 operator is discussed in more detail in L<perlop/"I/O Operators">.
5651 If EXPR is omitted, uses C<$_>.
5652
5653 =item recv SOCKET,SCALAR,LENGTH,FLAGS
5654 X<recv>
5655
5656 =for Pod::Functions receive a message over a Socket
5657
5658 Receives a message on a socket.  Attempts to receive LENGTH characters
5659 of data into variable SCALAR from the specified SOCKET filehandle.
5660 SCALAR will be grown or shrunk to the length actually read.  Takes the
5661 same flags as the system call of the same name.  Returns the address
5662 of the sender if SOCKET's protocol supports this; returns an empty
5663 string otherwise.  If there's an error, returns the undefined value.
5664 This call is actually implemented in terms of recvfrom(2) system call.
5665 See L<perlipc/"UDP: Message Passing"> for examples.
5666
5667 Note the I<characters>: depending on the status of the socket, either
5668 (8-bit) bytes or characters are received.  By default all sockets
5669 operate on bytes, but for example if the socket has been changed using
5670 binmode() to operate with the C<:encoding(utf8)> I/O layer (see the
5671 C<open> pragma, L<open>), the I/O will operate on UTF8-encoded Unicode
5672 characters, not bytes.  Similarly for the C<:encoding> pragma: in that
5673 case pretty much any characters can be read.
5674
5675 =item redo LABEL
5676 X<redo>
5677
5678 =item redo EXPR
5679
5680 =item redo
5681
5682 =for Pod::Functions start this loop iteration over again
5683
5684 The C<redo> command restarts the loop block without evaluating the
5685 conditional again.  The C<continue> block, if any, is not executed.  If
5686 the LABEL is omitted, the command refers to the innermost enclosing
5687 loop.  The C<redo EXPR> form, available starting in Perl 5.18.0, allows a
5688 label name to be computed at run time, and is otherwise identical to C<redo
5689 LABEL>.  Programs that want to lie to themselves about what was just input 
5690 normally use this command:
5691
5692     # a simpleminded Pascal comment stripper
5693     # (warning: assumes no { or } in strings)
5694     LINE: while (<STDIN>) {
5695         while (s|({.*}.*){.*}|$1 |) {}
5696         s|{.*}| |;
5697         if (s|{.*| |) {
5698             $front = $_;
5699             while (<STDIN>) {
5700                 if (/}/) {  # end of comment?
5701                     s|^|$front\{|;
5702                     redo LINE;
5703                 }
5704             }
5705         }
5706         print;
5707     }
5708
5709 C<redo> cannot be used to retry a block that returns a value such as
5710 C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
5711 a grep() or map() operation.
5712
5713 Note that a block by itself is semantically identical to a loop
5714 that executes once.  Thus C<redo> inside such a block will effectively
5715 turn it into a looping construct.
5716
5717 See also L</continue> for an illustration of how C<last>, C<next>, and
5718 C<redo> work.
5719
5720 Unlike most named operators, this has the same precedence as assignment.
5721 It is also exempt from the looks-like-a-function rule, so
5722 C<redo ("foo")."bar"> will cause "bar" to be part of the argument to
5723 C<redo>.
5724
5725 =item ref EXPR
5726 X<ref> X<reference>
5727
5728 =item ref
5729
5730 =for Pod::Functions find out the type of thing being referenced
5731
5732 Returns a non-empty string if EXPR is a reference, the empty
5733 string otherwise.  If EXPR is not specified, C<$_> will be used.  The
5734 value returned depends on the type of thing the reference is a reference to.
5735
5736 Builtin types include:
5737
5738     SCALAR
5739     ARRAY
5740     HASH
5741     CODE
5742     REF
5743     GLOB
5744     LVALUE
5745     FORMAT
5746     IO
5747     VSTRING
5748     Regexp
5749
5750 You can think of C<ref> as a C<typeof> operator.
5751
5752     if (ref($r) eq "HASH") {
5753         print "r is a reference to a hash.\n";
5754     }
5755     unless (ref($r)) {
5756         print "r is not a reference at all.\n";
5757     }
5758
5759 The return value C<LVALUE> indicates a reference to an lvalue that is not
5760 a variable.  You get this from taking the reference of function calls like
5761 C<pos()> or C<substr()>.  C<VSTRING> is returned if the reference points
5762 to a L<version string|perldata/"Version Strings">.
5763
5764 The result C<Regexp> indicates that the argument is a regular expression
5765 resulting from C<qr//>.
5766
5767 If the referenced object has been blessed into a package, then that package
5768 name is returned instead.  But don't use that, as it's now considered
5769 "bad practice".  For one reason, an object could be using a class called
5770 C<Regexp> or C<IO>, or even C<HASH>.  Also, C<ref> doesn't take into account
5771 subclasses, like C<isa> does.
5772
5773 Instead, use C<blessed> (in the L<Scalar::Util> module) for boolean
5774 checks, C<isa> for specific class checks and C<reftype> (also from
5775 L<Scalar::Util>) for type checks.  (See L<perlobj> for details and a
5776 C<blessed/isa> example.)
5777
5778 See also L<perlref>.
5779
5780 =item rename OLDNAME,NEWNAME
5781 X<rename> X<move> X<mv> X<ren>
5782
5783 =for Pod::Functions change a filename
5784
5785 Changes the name of a file; an existing file NEWNAME will be
5786 clobbered.  Returns true for success, false otherwise.
5787
5788 Behavior of this function varies wildly depending on your system
5789 implementation.  For example, it will usually not work across file system
5790 boundaries, even though the system I<mv> command sometimes compensates
5791 for this.  Other restrictions include whether it works on directories,
5792 open files, or pre-existing files.  Check L<perlport> and either the
5793 rename(2) manpage or equivalent system documentation for details.
5794
5795 For a platform independent C<move> function look at the L<File::Copy>
5796 module.
5797
5798 Portability issues: L<perlport/rename>.
5799
5800 =item require VERSION
5801 X<require>
5802
5803 =item require EXPR
5804
5805 =item require
5806
5807 =for Pod::Functions load in external functions from a library at runtime
5808
5809 Demands a version of Perl specified by VERSION, or demands some semantics
5810 specified by EXPR or by C<$_> if EXPR is not supplied.
5811
5812 VERSION may be either a numeric argument such as 5.006, which will be
5813 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
5814 to C<$^V> (aka $PERL_VERSION).  An exception is raised if
5815 VERSION is greater than the version of the current Perl interpreter.
5816 Compare with L</use>, which can do a similar check at compile time.
5817
5818 Specifying VERSION as a literal of the form v5.6.1 should generally be
5819 avoided, because it leads to misleading error messages under earlier
5820 versions of Perl that do not support this syntax.  The equivalent numeric
5821 version should be used instead.
5822
5823     require v5.6.1;     # run time version check
5824     require 5.6.1;      # ditto
5825     require 5.006_001;  # ditto; preferred for backwards
5826                           compatibility
5827
5828 Otherwise, C<require> demands that a library file be included if it
5829 hasn't already been included.  The file is included via the do-FILE
5830 mechanism, which is essentially just a variety of C<eval> with the
5831 caveat that lexical variables in the invoking script will be invisible
5832 to the included code.  If it were implemented in pure Perl, it
5833 would have semantics similar to the following:
5834
5835     use Carp 'croak';
5836     use version;
5837
5838     sub require {
5839         my ($filename) = @_;
5840         if ( my $version = eval { version->parse($filename) } ) {
5841             if ( $version > $^V ) {
5842                my $vn = $version->normal;
5843                croak "Perl $vn required--this is only $^V, stopped";
5844             }
5845             return 1;
5846         }
5847
5848         if (exists $INC{$filename}) {
5849             return 1 if $INC{$filename};
5850             croak "Compilation failed in require";
5851         }
5852
5853         foreach $prefix (@INC) {
5854             if (ref($prefix)) {
5855                 #... do other stuff - see text below ....
5856             }
5857             # (see text below about possible appending of .pmc
5858             # suffix to $filename)
5859             my $realfilename = "$prefix/$filename";
5860             next if ! -e $realfilename || -d _ || -b _;
5861             $INC{$filename} = $realfilename;
5862             my $result = do($realfilename);
5863                          # but run in caller's namespace
5864
5865             if (!defined $result) {
5866                 $INC{$filename} = undef;
5867                 croak $@ ? "$@Compilation failed in require"
5868                          : "Can't locate $filename: $!\n";
5869             }
5870             if (!$result) {
5871                 delete $INC{$filename};
5872                 croak "$filename did not return true value";
5873             }
5874             $! = 0;
5875             return $result;
5876         }
5877         croak "Can't locate $filename in \@INC ...";
5878     }
5879
5880 Note that the file will not be included twice under the same specified
5881 name.
5882
5883 The file must return true as the last statement to indicate
5884 successful execution of any initialization code, so it's customary to
5885 end such a file with C<1;> unless you're sure it'll return true
5886 otherwise.  But it's better just to put the C<1;>, in case you add more
5887 statements.
5888
5889 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
5890 replaces "F<::>" with "F</>" in the filename for you,
5891 to make it easy to load standard modules.  This form of loading of
5892 modules does not risk altering your namespace.
5893
5894 In other words, if you try this:
5895
5896         require Foo::Bar;     # a splendid bareword
5897
5898 The require function will actually look for the "F<Foo/Bar.pm>" file in the
5899 directories specified in the C<@INC> array.
5900
5901 But if you try this:
5902
5903         $class = 'Foo::Bar';
5904         require $class;       # $class is not a bareword
5905     #or
5906         require "Foo::Bar";   # not a bareword because of the ""
5907
5908 The require function will look for the "F<Foo::Bar>" file in the @INC array and
5909 will complain about not finding "F<Foo::Bar>" there.  In this case you can do:
5910
5911         eval "require $class";
5912
5913 Now that you understand how C<require> looks for files with a
5914 bareword argument, there is a little extra functionality going on behind
5915 the scenes.  Before C<require> looks for a "F<.pm>" extension, it will
5916 first look for a similar filename with a "F<.pmc>" extension.  If this file
5917 is found, it will be loaded in place of any file ending in a "F<.pm>"
5918 extension.
5919
5920 You can also insert hooks into the import facility by putting Perl code
5921 directly into the @INC array.  There are three forms of hooks: subroutine
5922 references, array references, and blessed objects.
5923
5924 Subroutine references are the simplest case.  When the inclusion system
5925 walks through @INC and encounters a subroutine, this subroutine gets
5926 called with two parameters, the first a reference to itself, and the
5927 second the name of the file to be included (e.g., "F<Foo/Bar.pm>").  The
5928 subroutine should return either nothing or else a list of up to four 
5929 values in the following order:
5930
5931 =over
5932
5933 =item 1
5934
5935 A reference to a scalar, containing any initial source code to prepend to
5936 the file or generator output.
5937
5938 =item 2
5939
5940 A filehandle, from which the file will be read.  
5941
5942 =item 3
5943
5944 A reference to a subroutine.  If there is no filehandle (previous item),
5945 then this subroutine is expected to generate one line of source code per
5946 call, writing the line into C<$_> and returning 1, then finally at end of
5947 file returning 0.  If there is a filehandle, then the subroutine will be
5948 called to act as a simple source filter, with the line as read in C<$_>.
5949 Again, return 1 for each valid line, and 0 after all lines have been
5950 returned.
5951
5952 =item 4
5953
5954 Optional state for the subroutine.  The state is passed in as C<$_[1]>.  A
5955 reference to the subroutine itself is passed in as C<$_[0]>.
5956
5957 =back
5958
5959 If an empty list, C<undef>, or nothing that matches the first 3 values above
5960 is returned, then C<require> looks at the remaining elements of @INC.
5961 Note that this filehandle must be a real filehandle (strictly a typeglob
5962 or reference to a typeglob, whether blessed or unblessed); tied filehandles 
5963 will be ignored and processing will stop there.
5964
5965 If the hook is an array reference, its first element must be a subroutine
5966 reference.  This subroutine is called as above, but the first parameter is
5967 the array reference.  This lets you indirectly pass arguments to
5968 the subroutine.
5969
5970 In other words, you can write:
5971
5972     push @INC, \&my_sub;
5973     sub my_sub {
5974         my ($coderef, $filename) = @_;  # $coderef is \&my_sub
5975         ...
5976     }
5977
5978 or:
5979
5980     push @INC, [ \&my_sub, $x, $y, ... ];
5981     sub my_sub {
5982         my ($arrayref, $filename) = @_;
5983         # Retrieve $x, $y, ...
5984         my @parameters = @$arrayref[1..$#$arrayref];
5985         ...
5986     }
5987
5988 If the hook is an object, it must provide an INC method that will be
5989 called as above, the first parameter being the object itself.  (Note that
5990 you must fully qualify the sub's name, as unqualified C<INC> is always forced
5991 into package C<main>.)  Here is a typical code layout:
5992
5993     # In Foo.pm
5994     package Foo;
5995     sub new { ... }
5996     sub Foo::INC {
5997         my ($self, $filename) = @_;
5998         ...
5999     }
6000
6001     # In the main program
6002     push @INC, Foo->new(...);
6003
6004 These hooks are also permitted to set the %INC entry
6005 corresponding to the files they have loaded.  See L<perlvar/%INC>.
6006
6007 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
6008
6009 =item reset EXPR
6010 X<reset>
6011
6012 =item reset
6013
6014 =for Pod::Functions clear all variables of a given name
6015
6016 Generally used in a C<continue> block at the end of a loop to clear
6017 variables and reset C<??> searches so that they work again.  The
6018 expression is interpreted as a list of single characters (hyphens
6019 allowed for ranges).  All variables and arrays beginning with one of
6020 those letters are reset to their pristine state.  If the expression is
6021 omitted, one-match searches (C<?pattern?>) are reset to match again.  
6022 Only resets variables or searches in the current package.  Always returns
6023 1.  Examples:
6024
6025     reset 'X';      # reset all X variables
6026     reset 'a-z';    # reset lower case variables
6027     reset;          # just reset ?one-time? searches
6028
6029 Resetting C<"A-Z"> is not recommended because you'll wipe out your
6030 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash.  Resets only package
6031 variables; lexical variables are unaffected, but they clean themselves
6032 up on scope exit anyway, so you'll probably want to use them instead.
6033 See L</my>.
6034
6035 =item return EXPR
6036 X<return>
6037
6038 =item return
6039
6040 =for Pod::Functions get out of a function early
6041
6042 Returns from a subroutine, C<eval>, or C<do FILE> with the value
6043 given in EXPR.  Evaluation of EXPR may be in list, scalar, or void
6044 context, depending on how the return value will be used, and the context
6045 may vary from one execution to the next (see L</wantarray>).  If no EXPR
6046 is given, returns an empty list in list context, the undefined value in
6047 scalar context, and (of course) nothing at all in void context.
6048
6049 (In the absence of an explicit C<return>, a subroutine, eval,
6050 or do FILE automatically returns the value of the last expression
6051 evaluated.)
6052
6053 Unlike most named operators, this is also exempt from the
6054 looks-like-a-function rule, so C<return ("foo")."bar"> will
6055 cause "bar" to be part of the argument to C<return>.
6056
6057 =item reverse LIST
6058 X<reverse> X<rev> X<invert>
6059
6060 =for Pod::Functions flip a string or a list
6061
6062 In list context, returns a list value consisting of the elements
6063 of LIST in the opposite order.  In scalar context, concatenates the
6064 elements of LIST and returns a string value with all characters
6065 in the opposite order.
6066
6067     print join(", ", reverse "world", "Hello"); # Hello, world
6068
6069     print scalar reverse "dlrow ,", "olleH";    # Hello, world
6070
6071 Used without arguments in scalar context, reverse() reverses C<$_>.
6072
6073     $_ = "dlrow ,olleH";
6074     print reverse;                         # No output, list context
6075     print scalar reverse;                  # Hello, world
6076
6077 Note that reversing an array to itself (as in C<@a = reverse @a>) will
6078 preserve non-existent elements whenever possible; i.e., for non-magical
6079 arrays or for tied arrays with C<EXISTS> and C<DELETE> methods.
6080
6081 This operator is also handy for inverting a hash, although there are some
6082 caveats.  If a value is duplicated in the original hash, only one of those
6083 can be represented as a key in the inverted hash.  Also, this has to
6084 unwind one hash and build a whole new one, which may take some time
6085 on a large hash, such as from a DBM file.
6086
6087     %by_name = reverse %by_address;  # Invert the hash
6088
6089 =item rewinddir DIRHANDLE
6090 X<rewinddir>
6091
6092 =for Pod::Functions reset directory handle
6093
6094 Sets the current position to the beginning of the directory for the
6095 C<readdir> routine on DIRHANDLE.
6096
6097 Portability issues: L<perlport/rewinddir>.
6098
6099 =item rindex STR,SUBSTR,POSITION
6100 X<rindex>
6101
6102 =item rindex STR,SUBSTR
6103
6104 =for Pod::Functions right-to-left substring search
6105
6106 Works just like index() except that it returns the position of the I<last>
6107 occurrence of SUBSTR in STR.  If POSITION is specified, returns the
6108 last occurrence beginning at or before that position.
6109
6110 =item rmdir FILENAME
6111 X<rmdir> X<rd> X<directory, remove>
6112
6113 =item rmdir
6114
6115 =for Pod::Functions remove a directory
6116
6117 Deletes the directory specified by FILENAME if that directory is
6118 empty.  If it succeeds it returns true; otherwise it returns false and
6119 sets C<$!> (errno).  If FILENAME is omitted, uses C<$_>.
6120
6121 To remove a directory tree recursively (C<rm -rf> on Unix) look at
6122 the C<rmtree> function of the L<File::Path> module.
6123
6124 =item s///
6125
6126 =for Pod::Functions replace a pattern with a string
6127
6128 The substitution operator.  See L<perlop/"Regexp Quote-Like Operators">.
6129
6130 =item say FILEHANDLE LIST
6131 X<say>
6132
6133 =item say FILEHANDLE
6134
6135 =item say LIST
6136
6137 =item say
6138
6139 =for Pod::Functions +say output a list to a filehandle, appending a newline
6140
6141 Just like C<print>, but implicitly appends a newline.  C<say LIST> is
6142 simply an abbreviation for C<{ local $\ = "\n"; print LIST }>.  To use
6143 FILEHANDLE without a LIST to print the contents of C<$_> to it, you must
6144 use a real filehandle like C<FH>, not an indirect one like C<$fh>.
6145
6146 This keyword is available only when the C<"say"> feature
6147 is enabled, or when prefixed with C<CORE::>; see
6148 L<feature>.  Alternately, include a C<use v5.10> or later to the current
6149 scope.
6150
6151 =item scalar EXPR
6152 X<scalar> X<context>
6153
6154 =for Pod::Functions force a scalar context
6155
6156 Forces EXPR to be interpreted in scalar context and returns the value
6157 of EXPR.
6158
6159     @counts = ( scalar @a, scalar @b, scalar @c );
6160
6161 There is no equivalent operator to force an expression to
6162 be interpolated in list context because in practice, this is never
6163 needed.  If you really wanted to do so, however, you could use
6164 the construction C<@{[ (some expression) ]}>, but usually a simple
6165 C<(some expression)> suffices.
6166
6167 Because C<scalar> is a unary operator, if you accidentally use a
6168 parenthesized list for the EXPR, this behaves as a scalar comma expression,
6169 evaluating all but the last element in void context and returning the final
6170 element evaluated in scalar context.  This is seldom what you want.
6171
6172 The following single statement:
6173
6174     print uc(scalar(&foo,$bar)),$baz;
6175
6176 is the moral equivalent of these two:
6177
6178     &foo;
6179     print(uc($bar),$baz);
6180
6181 See L<perlop> for more details on unary operators and the comma operator.
6182
6183 =item seek FILEHANDLE,POSITION,WHENCE
6184 X<seek> X<fseek> X<filehandle, position>
6185
6186 =for Pod::Functions reposition file pointer for random-access I/O
6187
6188 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
6189 FILEHANDLE may be an expression whose value gives the name of the
6190 filehandle.  The values for WHENCE are C<0> to set the new position
6191 I<in bytes> to POSITION; C<1> to set it to the current position plus
6192 POSITION; and C<2> to set it to EOF plus POSITION, typically
6193 negative.  For WHENCE you may use the constants C<SEEK_SET>,
6194 C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
6195 of the file) from the L<Fcntl> module.  Returns C<1> on success, false
6196 otherwise.
6197
6198 Note the I<in bytes>: even if the filehandle has been set to
6199 operate on characters (for example by using the C<:encoding(utf8)> open
6200 layer), tell() will return byte offsets, not character offsets
6201 (because implementing that would render seek() and tell() rather slow).
6202
6203 If you want to position the file for C<sysread> or C<syswrite>, don't use
6204 C<seek>, because buffering makes its effect on the file's read-write position
6205 unpredictable and non-portable.  Use C<sysseek> instead.
6206
6207 Due to the rules and rigors of ANSI C, on some systems you have to do a
6208 seek whenever you switch between reading and writing.  Amongst other
6209 things, this may have the effect of calling stdio's clearerr(3).
6210 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
6211
6212     seek(TEST,0,1);
6213
6214 This is also useful for applications emulating C<tail -f>.  Once you hit
6215 EOF on your read and then sleep for a while, you (probably) have to stick in a
6216 dummy seek() to reset things.  The C<seek> doesn't change the position,
6217 but it I<does> clear the end-of-file condition on the handle, so that the
6218 next C<< <FILE> >> makes Perl try again to read something.  (We hope.)
6219
6220 If that doesn't work (some I/O implementations are particularly
6221 cantankerous), you might need something like this:
6222
6223     for (;;) {
6224         for ($curpos = tell(FILE); $_ = <FILE>;
6225              $curpos = tell(FILE)) {
6226             # search for some stuff and put it into files
6227         }
6228         sleep($for_a_while);
6229         seek(FILE, $curpos, 0);
6230     }
6231
6232 =item seekdir DIRHANDLE,POS
6233 X<seekdir>
6234
6235 =for Pod::Functions reposition directory pointer
6236
6237 Sets the current position for the C<readdir> routine on DIRHANDLE.  POS
6238 must be a value returned by C<telldir>.  C<seekdir> also has the same caveats
6239 about possible directory compaction as the corresponding system library
6240 routine.
6241
6242 =item select FILEHANDLE
6243 X<select> X<filehandle, default>
6244
6245 =item select
6246
6247 =for Pod::Functions reset default output or do I/O multiplexing
6248
6249 Returns the currently selected filehandle.  If FILEHANDLE is supplied,
6250 sets the new current default filehandle for output.  This has two
6251 effects: first, a C<write> or a C<print> without a filehandle 
6252 default to this FILEHANDLE.  Second, references to variables related to
6253 output will refer to this output channel.  
6254
6255 For example, to set the top-of-form format for more than one
6256 output channel, you might do the following:
6257
6258     select(REPORT1);
6259     $^ = 'report1_top';
6260     select(REPORT2);
6261     $^ = 'report2_top';
6262
6263 FILEHANDLE may be an expression whose value gives the name of the
6264 actual filehandle.  Thus:
6265
6266     $oldfh = select(STDERR); $| = 1; select($oldfh);
6267
6268 Some programmers may prefer to think of filehandles as objects with
6269 methods, preferring to write the last example as:
6270
6271     use IO::Handle;
6272     STDERR->autoflush(1);
6273
6274 Portability issues: L<perlport/select>.
6275
6276 =item select RBITS,WBITS,EBITS,TIMEOUT
6277 X<select>
6278
6279 This calls the select(2) syscall with the bit masks specified, which
6280 can be constructed using C<fileno> and C<vec>, along these lines:
6281
6282     $rin = $win = $ein = '';
6283     vec($rin, fileno(STDIN),  1) = 1;
6284     vec($win, fileno(STDOUT), 1) = 1;
6285     $ein = $rin | $win;
6286
6287 If you want to select on many filehandles, you may wish to write a
6288 subroutine like this:
6289
6290     sub fhbits {
6291         my @fhlist = @_;
6292         my $bits = "";
6293         for my $fh (@fhlist) {
6294             vec($bits, fileno($fh), 1) = 1;
6295         }
6296         return $bits;
6297     }
6298     $rin = fhbits(*STDIN, *TTY, *MYSOCK);
6299
6300 The usual idiom is:
6301
6302     ($nfound,$timeleft) =
6303       select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
6304
6305 or to block until something becomes ready just do this
6306
6307     $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
6308
6309 Most systems do not bother to return anything useful in $timeleft, so
6310 calling select() in scalar context just returns $nfound.
6311
6312 Any of the bit masks can also be undef.  The timeout, if specified, is
6313 in seconds, which may be fractional.  Note: not all implementations are
6314 capable of returning the $timeleft.  If not, they always return
6315 $timeleft equal to the supplied $timeout.
6316
6317 You can effect a sleep of 250 milliseconds this way:
6318
6319     select(undef, undef, undef, 0.25);
6320
6321 Note that whether C<select> gets restarted after signals (say, SIGALRM)
6322 is implementation-dependent.  See also L<perlport> for notes on the
6323 portability of C<select>.
6324
6325 On error, C<select> behaves just like select(2): it returns
6326 -1 and sets C<$!>.
6327
6328 On some Unixes, select(2) may report a socket file descriptor as "ready for
6329 reading" even when no data is available, and thus any subsequent C<read>
6330 would block.  This can be avoided if you always use O_NONBLOCK on the
6331 socket.  See select(2) and fcntl(2) for further details.
6332
6333 The standard C<IO::Select> module provides a user-friendlier interface
6334 to C<select>, mostly because it does all the bit-mask work for you.
6335
6336 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
6337 or <FH>) with C<select>, except as permitted by POSIX, and even
6338 then only on POSIX systems.  You have to use C<sysread> instead.
6339
6340 Portability issues: L<perlport/select>.
6341
6342 =item semctl ID,SEMNUM,CMD,ARG
6343 X<semctl>
6344
6345 =for Pod::Functions SysV semaphore control operations
6346
6347 Calls the System V IPC function semctl(2).  You'll probably have to say
6348
6349     use IPC::SysV;
6350
6351 first to get the correct constant definitions.  If CMD is IPC_STAT or
6352 GETALL, then ARG must be a variable that will hold the returned
6353 semid_ds structure or semaphore value array.  Returns like C<ioctl>:
6354 the undefined value for error, "C<0 but true>" for zero, or the actual
6355 return value otherwise.  The ARG must consist of a vector of native
6356 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
6357 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
6358 documentation.
6359
6360 Portability issues: L<perlport/semctl>.
6361
6362 =item semget KEY,NSEMS,FLAGS
6363 X<semget>
6364
6365 =for Pod::Functions get set of SysV semaphores
6366
6367 Calls the System V IPC function semget(2).  Returns the semaphore id, or
6368 the undefined value on error.  See also
6369 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
6370 documentation.
6371
6372 Portability issues: L<perlport/semget>.
6373
6374 =item semop KEY,OPSTRING
6375 X<semop>
6376
6377 =for Pod::Functions SysV semaphore operations
6378
6379 Calls the System V IPC function semop(2) for semaphore operations
6380 such as signalling and waiting.  OPSTRING must be a packed array of
6381 semop structures.  Each semop structure can be generated with
6382 C<pack("s!3", $semnum, $semop, $semflag)>.  The length of OPSTRING 
6383 implies the number of semaphore operations.  Returns true if
6384 successful, false on error.  As an example, the
6385 following code waits on semaphore $semnum of semaphore id $semid:
6386
6387     $semop = pack("s!3", $semnum, -1, 0);
6388     die "Semaphore trouble: $!\n" unless semop($semid, $semop);
6389
6390 To signal the semaphore, replace C<-1> with C<1>.  See also
6391 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
6392 documentation.
6393
6394 Portability issues: L<perlport/semop>.
6395
6396 =item send SOCKET,MSG,FLAGS,TO
6397 X<send>
6398
6399 =item send SOCKET,MSG,FLAGS
6400
6401 =for Pod::Functions send a message over a socket
6402
6403 Sends a message on a socket.  Attempts to send the scalar MSG to the SOCKET
6404 filehandle.  Takes the same flags as the system call of the same name.  On
6405 unconnected sockets, you must specify a destination to I<send to>, in which
6406 case it does a sendto(2) syscall.  Returns the number of characters sent,
6407 or the undefined value on error.  The sendmsg(2) syscall is currently
6408 unimplemented.  See L<perlipc/"UDP: Message Passing"> for examples.
6409
6410 Note the I<characters>: depending on the status of the socket, either
6411 (8-bit) bytes or characters are sent.  By default all sockets operate
6412 on bytes, but for example if the socket has been changed using
6413 binmode() to operate with the C<:encoding(utf8)> I/O layer (see
6414 L</open>, or the C<open> pragma, L<open>), the I/O will operate on UTF-8
6415 encoded Unicode characters, not bytes.  Similarly for the C<:encoding>
6416 pragma: in that case pretty much any characters can be sent.
6417
6418 =item setpgrp PID,PGRP
6419 X<setpgrp> X<group>
6420
6421 =for Pod::Functions set the process group of a process
6422
6423 Sets the current process group for the specified PID, C<0> for the current
6424 process.  Raises an exception when used on a machine that doesn't
6425 implement POSIX setpgid(2) or BSD setpgrp(2).  If the arguments are omitted,
6426 it defaults to C<0,0>.  Note that the BSD 4.2 version of C<setpgrp> does not
6427 accept any arguments, so only C<setpgrp(0,0)> is portable.  See also
6428 C<POSIX::setsid()>.
6429
6430 Portability issues: L<perlport/setpgrp>.
6431
6432 =item setpriority WHICH,WHO,PRIORITY
6433 X<setpriority> X<priority> X<nice> X<renice>
6434
6435 =for Pod::Functions set a process's nice value
6436
6437 Sets the current priority for a process, a process group, or a user.
6438 (See setpriority(2).)  Raises an exception when used on a machine
6439 that doesn't implement setpriority(2).
6440
6441 Portability issues: L<perlport/setpriority>.
6442
6443 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
6444 X<setsockopt>
6445
6446 =for Pod::Functions set some socket options
6447
6448 Sets the socket option requested.  Returns C<undef> on error.
6449 Use integer constants provided by the C<Socket> module for
6450 LEVEL and OPNAME.  Values for LEVEL can also be obtained from
6451 getprotobyname.  OPTVAL might either be a packed string or an integer.
6452 An integer OPTVAL is shorthand for pack("i", OPTVAL).
6453
6454 An example disabling Nagle's algorithm on a socket:
6455
6456     use Socket qw(IPPROTO_TCP TCP_NODELAY);
6457     setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);
6458
6459 Portability issues: L<perlport/setsockopt>.
6460
6461 =item shift ARRAY
6462 X<shift>
6463
6464 =item shift EXPR
6465
6466 =item shift
6467
6468 =for Pod::Functions remove the first element of an array, and return it
6469
6470 Shifts the first value of the array off and returns it, shortening the
6471 array by 1 and moving everything down.  If there are no elements in the
6472 array, returns the undefined value.  If ARRAY is omitted, shifts the
6473 C<@_> array within the lexical scope of subroutines and formats, and the
6474 C<@ARGV> array outside a subroutine and also within the lexical scopes
6475 established by the C<eval STRING>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>,
6476 C<UNITCHECK {}>, and C<END {}> constructs.
6477
6478 Starting with Perl 5.14, C<shift> can take a scalar EXPR, which must hold a
6479 reference to an unblessed array.  The argument will be dereferenced
6480 automatically.  This aspect of C<shift> is considered highly experimental.
6481 The exact behaviour may change in a future version of Perl.
6482
6483 To avoid confusing would-be users of your code who are running earlier
6484 versions of Perl with mysterious syntax errors, put this sort of thing at
6485 the top of your file to signal that your code will work I<only> on Perls of
6486 a recent vintage:
6487
6488     use 5.014;  # so push/pop/etc work on scalars (experimental)
6489
6490 See also C<unshift>, C<push>, and C<pop>.  C<shift> and C<unshift> do the
6491 same thing to the left end of an array that C<pop> and C<push> do to the
6492 right end.
6493
6494 =item shmctl ID,CMD,ARG
6495 X<shmctl>
6496
6497 =for Pod::Functions SysV shared memory operations
6498
6499 Calls the System V IPC function shmctl.  You'll probably have to say
6500
6501     use IPC::SysV;
6502
6503 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
6504 then ARG must be a variable that will hold the returned C<shmid_ds>
6505 structure.  Returns like ioctl: C<undef> for error; "C<0> but
6506 true" for zero; and the actual return value otherwise.
6507 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
6508
6509 Portability issues: L<perlport/shmctl>.
6510
6511 =item shmget KEY,SIZE,FLAGS
6512 X<shmget>
6513
6514 =for Pod::Functions get SysV shared memory segment identifier
6515
6516 Calls the System V IPC function shmget.  Returns the shared memory
6517 segment id, or C<undef> on error.
6518 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
6519
6520 Portability issues: L<perlport/shmget>.
6521
6522 =item shmread ID,VAR,POS,SIZE
6523 X<shmread>
6524 X<shmwrite>
6525
6526 =for Pod::Functions read SysV shared memory
6527
6528 =item shmwrite ID,STRING,POS,SIZE
6529
6530 =for Pod::Functions write SysV shared memory
6531
6532 Reads or writes the System V shared memory segment ID starting at
6533 position POS for size SIZE by attaching to it, copying in/out, and
6534 detaching from it.  When reading, VAR must be a variable that will
6535 hold the data read.  When writing, if STRING is too long, only SIZE
6536 bytes are used; if STRING is too short, nulls are written to fill out
6537 SIZE bytes.  Return true if successful, false on error.
6538 shmread() taints the variable.  See also L<perlipc/"SysV IPC">,
6539 C<IPC::SysV>, and the C<IPC::Shareable> module from CPAN.
6540
6541 Portability issues: L<perlport/shmread> and L<perlport/shmwrite>.
6542
6543 =item shutdown SOCKET,HOW
6544 X<shutdown>
6545
6546 =for Pod::Functions close down just half of a socket connection
6547
6548 Shuts down a socket connection in the manner indicated by HOW, which
6549 has the same interpretation as in the syscall of the same name.
6550
6551     shutdown(SOCKET, 0);    # I/we have stopped reading data
6552     shutdown(SOCKET, 1);    # I/we have stopped writing data
6553     shutdown(SOCKET, 2);    # I/we have stopped using this socket
6554
6555 This is useful with sockets when you want to tell the other
6556 side you're done writing but not done reading, or vice versa.
6557 It's also a more insistent form of close because it also
6558 disables the file descriptor in any forked copies in other
6559 processes.
6560
6561 Returns C<1> for success; on error, returns C<undef> if
6562 the first argument is not a valid filehandle, or returns C<0> and sets
6563 C<$!> for any other failure.
6564
6565 =item sin EXPR
6566 X<sin> X<sine> X<asin> X<arcsine>
6567
6568 =item sin
6569
6570 =for Pod::Functions return the sine of a number
6571
6572 Returns the sine of EXPR (expressed in radians).  If EXPR is omitted,
6573 returns sine of C<$_>.
6574
6575 For the inverse sine operation, you may use the C<Math::Trig::asin>
6576 function, or use this relation:
6577
6578     sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
6579
6580 =item sleep EXPR
6581 X<sleep> X<pause>
6582
6583 =item sleep
6584
6585 =for Pod::Functions block for some number of seconds
6586
6587 Causes the script to sleep for (integer) EXPR seconds, or forever if no 
6588 argument is given.  Returns the integer number of seconds actually slept.  
6589
6590 May be interrupted if the process receives a signal such as C<SIGALRM>.
6591
6592     eval {
6593         local $SIG{ALARM} = sub { die "Alarm!\n" };
6594         sleep;
6595     };
6596     die $@ unless $@ eq "Alarm!\n";
6597
6598 You probably cannot mix C<alarm> and C<sleep> calls, because C<sleep>
6599 is often implemented using C<alarm>.
6600
6601 On some older systems, it may sleep up to a full second less than what
6602 you requested, depending on how it counts seconds.  Most modern systems
6603 always sleep the full amount.  They may appear to sleep longer than that,
6604 however, because your process might not be scheduled right away in a
6605 busy multitasking system.
6606
6607 For delays of finer granularity than one second, the Time::HiRes module
6608 (from CPAN, and starting from Perl 5.8 part of the standard
6609 distribution) provides usleep().  You may also use Perl's four-argument
6610 version of select() leaving the first three arguments undefined, or you
6611 might be able to use the C<syscall> interface to access setitimer(2) if
6612 your system supports it.  See L<perlfaq8> for details.
6613
6614 See also the POSIX module's C<pause> function.
6615
6616 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
6617 X<socket>
6618
6619 =for Pod::Functions create a socket
6620
6621 Opens a socket of the specified kind and attaches it to filehandle
6622 SOCKET.  DOMAIN, TYPE, and PROTOCOL are specified the same as for
6623 the syscall of the same name.  You should C<use Socket> first
6624 to get the proper definitions imported.  See the examples in
6625 L<perlipc/"Sockets: Client/Server Communication">.
6626
6627 On systems that support a close-on-exec flag on files, the flag will
6628 be set for the newly opened file descriptor, as determined by the
6629 value of $^F.  See L<perlvar/$^F>.
6630
6631 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
6632 X<socketpair>
6633
6634 =for Pod::Functions create a pair of sockets
6635
6636 Creates an unnamed pair of sockets in the specified domain, of the
6637 specified type.  DOMAIN, TYPE, and PROTOCOL are specified the same as
6638 for the syscall of the same name.  If unimplemented, raises an exception.
6639 Returns true if successful.
6640
6641 On systems that support a close-on-exec flag on files, the flag will
6642 be set for the newly opened file descriptors, as determined by the value
6643 of $^F.  See L<perlvar/$^F>.
6644
6645 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
6646 to C<pipe(Rdr, Wtr)> is essentially:
6647
6648     use Socket;
6649     socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
6650     shutdown(Rdr, 1);        # no more writing for reader
6651     shutdown(Wtr, 0);        # no more reading for writer
6652
6653 See L<perlipc> for an example of socketpair use.  Perl 5.8 and later will
6654 emulate socketpair using IP sockets to localhost if your system implements
6655 sockets but not socketpair.
6656
6657 Portability issues: L<perlport/socketpair>.
6658
6659 =item sort SUBNAME LIST
6660 X<sort> X<qsort> X<quicksort> X<mergesort>
6661
6662 =item sort BLOCK LIST
6663
6664 =item sort LIST
6665
6666 =for Pod::Functions sort a list of values
6667
6668 In list context, this sorts the LIST and returns the sorted list value.
6669 In scalar context, the behaviour of C<sort()> is undefined.
6670
6671 If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
6672 order.  If SUBNAME is specified, it gives the name of a subroutine
6673 that returns an integer less than, equal to, or greater than C<0>,
6674 depending on how the elements of the list are to be ordered.  (The 
6675 C<< <=> >> and C<cmp> operators are extremely useful in such routines.)
6676 SUBNAME may be a scalar variable name (unsubscripted), in which case
6677 the value provides the name of (or a reference to) the actual
6678 subroutine to use.  In place of a SUBNAME, you can provide a BLOCK as
6679 an anonymous, in-line sort subroutine.
6680
6681 If the subroutine's prototype is C<($$)>, the elements to be compared are
6682 passed by reference in C<@_>, as for a normal subroutine.  This is slower
6683 than unprototyped subroutines, where the elements to be compared are passed
6684 into the subroutine as the package global variables $a and $b (see example
6685 below).  Note that in the latter case, it is usually highly counter-productive
6686 to declare $a and $b as lexicals.
6687
6688 If the subroutine is an XSUB, the elements to be compared are pushed on to
6689 the stack, the way arguments are usually passed to XSUBs.  $a and $b are
6690 not set.
6691
6692 The values to be compared are always passed by reference and should not
6693 be modified.
6694
6695 You also cannot exit out of the sort block or subroutine using any of the
6696 loop control operators described in L<perlsyn> or with C<goto>.
6697
6698 When C<use locale> (but not C<use locale 'not_characters'>) is in
6699 effect, C<sort LIST> sorts LIST according to the
6700 current collation locale.  See L<perllocale>.
6701
6702 sort() returns aliases into the original list, much as a for loop's index
6703 variable aliases the list elements.  That is, modifying an element of a
6704 list returned by sort() (for example, in a C<foreach>, C<map> or C<grep>)
6705 actually modifies the element in the original list.  This is usually
6706 something to be avoided when writing clear code.
6707
6708 Perl 5.6 and earlier used a quicksort algorithm to implement sort.
6709 That algorithm was not stable, so I<could> go quadratic.  (A I<stable> sort
6710 preserves the input order of elements that compare equal.  Although
6711 quicksort's run time is O(NlogN) when averaged over all arrays of
6712 length N, the time can be O(N**2), I<quadratic> behavior, for some
6713 inputs.)  In 5.7, the quicksort implementation was replaced with
6714 a stable mergesort algorithm whose worst-case behavior is O(NlogN).
6715 But benchmarks indicated that for some inputs, on some platforms,
6716 the original quicksort was faster.  5.8 has a sort pragma for
6717 limited control of the sort.  Its rather blunt control of the
6718 underlying algorithm may not persist into future Perls, but the
6719 ability to characterize the input or output in implementation
6720 independent ways quite probably will.  See L<the sort pragma|sort>.
6721
6722 Examples:
6723
6724     # sort lexically
6725     @articles = sort @files;
6726
6727     # same thing, but with explicit sort routine
6728     @articles = sort {$a cmp $b} @files;
6729
6730     # now case-insensitively
6731     @articles = sort {fc($a) cmp fc($b)} @files;
6732
6733     # same thing in reversed order
6734     @articles = sort {$b cmp $a} @files;
6735
6736     # sort numerically ascending
6737     @articles = sort {$a <=> $b} @files;
6738
6739     # sort numerically descending
6740     @articles = sort {$b <=> $a} @files;
6741
6742     # this sorts the %age hash by value instead of key
6743     # using an in-line function
6744     @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
6745
6746     # sort using explicit subroutine name
6747     sub byage {
6748         $age{$a} <=> $age{$b};  # presuming numeric
6749     }
6750     @sortedclass = sort byage @class;
6751
6752     sub backwards { $b cmp $a }
6753     @harry  = qw(dog cat x Cain Abel);
6754     @george = qw(gone chased yz Punished Axed);
6755     print sort @harry;
6756         # prints AbelCaincatdogx
6757     print sort backwards @harry;
6758         # prints xdogcatCainAbel
6759     print sort @george, 'to', @harry;
6760         # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
6761
6762     # inefficiently sort by descending numeric compare using
6763     # the first integer after the first = sign, or the
6764     # whole record case-insensitively otherwise
6765
6766     my @new = sort {
6767         ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
6768                             ||
6769                     fc($a)  cmp  fc($b)
6770     } @old;
6771
6772     # same thing, but much more efficiently;
6773     # we'll build auxiliary indices instead
6774     # for speed
6775     my @nums = @caps = ();
6776     for (@old) {
6777         push @nums, ( /=(\d+)/ ? $1 : undef );
6778         push @caps, fc($_);
6779     }
6780
6781     my @new = @old[ sort {
6782                            $nums[$b] <=> $nums[$a]
6783                                     ||
6784                            $caps[$a] cmp $caps[$b]
6785                          } 0..$#old
6786                   ];
6787
6788     # same thing, but without any temps
6789     @new = map { $_->[0] }
6790            sort { $b->[1] <=> $a->[1]
6791                            ||
6792                   $a->[2] cmp $b->[2]
6793            } map { [$_, /=(\d+)/, fc($_)] } @old;
6794
6795     # using a prototype allows you to use any comparison subroutine
6796     # as a sort subroutine (including other package's subroutines)
6797     package other;
6798     sub backwards ($$) { $_[1] cmp $_[0]; }  # $a and $b are
6799                                              # not set here    
6800     package main;
6801     @new = sort other::backwards @old;
6802
6803     # guarantee stability, regardless of algorithm
6804     use sort 'stable';
6805     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
6806
6807     # force use of mergesort (not portable outside Perl 5.8)
6808     use sort '_mergesort';  # note discouraging _
6809     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
6810
6811 Warning: syntactical care is required when sorting the list returned from
6812 a function.  If you want to sort the list returned by the function call
6813 C<find_records(@key)>, you can use:
6814
6815     @contact = sort { $a cmp $b } find_records @key;
6816     @contact = sort +find_records(@key);
6817     @contact = sort &find_records(@key);
6818     @contact = sort(find_records(@key));
6819
6820 If instead you want to sort the array @key with the comparison routine
6821 C<find_records()> then you can use:
6822
6823     @contact = sort { find_records() } @key;
6824     @contact = sort find_records(@key);
6825     @contact = sort(find_records @key);
6826     @contact = sort(find_records (@key));
6827
6828 If you're using strict, you I<must not> declare $a
6829 and $b as lexicals.  They are package globals.  That means
6830 that if you're in the C<main> package and type
6831
6832     @articles = sort {$b <=> $a} @files;
6833
6834 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
6835 but if you're in the C<FooPack> package, it's the same as typing
6836
6837     @articles = sort {$FooPack::b <=> $FooPack::a} @files;
6838
6839 The comparison function is required to behave.  If it returns
6840 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
6841 sometimes saying the opposite, for example) the results are not
6842 well-defined.
6843
6844 Because C<< <=> >> returns C<undef> when either operand is C<NaN>
6845 (not-a-number), be careful when sorting with a
6846 comparison function like C<< $a <=> $b >> any lists that might contain a
6847 C<NaN>.  The following example takes advantage that C<NaN != NaN> to
6848 eliminate any C<NaN>s from the input list.
6849
6850     @result = sort { $a <=> $b } grep { $_ == $_ } @input;
6851
6852 =item splice ARRAY or EXPR,OFFSET,LENGTH,LIST
6853 X<splice>
6854
6855 =item splice ARRAY or EXPR,OFFSET,LENGTH
6856
6857 =item splice ARRAY or EXPR,OFFSET
6858
6859 =item splice ARRAY or EXPR
6860
6861 =for Pod::Functions add or remove elements anywhere in an array
6862
6863 Removes the elements designated by OFFSET and LENGTH from an array, and
6864 replaces them with the elements of LIST, if any.  In list context,
6865 returns the elements removed from the array.  In scalar context,
6866 returns the last element removed, or C<undef> if no elements are
6867 removed.  The array grows or shrinks as necessary.
6868 If OFFSET is negative then it starts that far from the end of the array.
6869 If LENGTH is omitted, removes everything from OFFSET onward.
6870 If LENGTH is negative, removes the elements from OFFSET onward
6871 except for -LENGTH elements at the end of the array.
6872 If both OFFSET and LENGTH are omitted, removes everything.  If OFFSET is
6873 past the end of the array and a LENGTH was provided, Perl issues a warning,
6874 and splices at the end of the array.
6875
6876 The following equivalences hold (assuming C<< $#a >= $i >> )
6877
6878     push(@a,$x,$y)      splice(@a,@a,0,$x,$y)
6879     pop(@a)             splice(@a,-1)
6880     shift(@a)           splice(@a,0,1)
6881     unshift(@a,$x,$y)   splice(@a,0,0,$x,$y)
6882     $a[$i] = $y         splice(@a,$i,1,$y)
6883
6884 C<splice> can be used, for example, to implement n-ary queue processing:
6885
6886     sub nary_print {
6887       my $n = shift;
6888       while (my @next_n = splice @_, 0, $n) {
6889         say join q{ -- }, @next_n;
6890       }
6891     }
6892
6893     nary_print(3, qw(a b c d e f g h));
6894     # prints:
6895     #   a -- b -- c
6896     #   d -- e -- f
6897     #   g -- h
6898
6899 Starting with Perl 5.14, C<splice> can take scalar EXPR, which must hold a
6900 reference to an unblessed array.  The argument will be dereferenced
6901 automatically.  This aspect of C<splice> is considered highly experimental.
6902 The exact behaviour may change in a future version of Perl.
6903
6904 To avoid confusing would-be users of your code who are running earlier
6905 versions of Perl with mysterious syntax errors, put this sort of thing at
6906 the top of your file to signal that your code will work I<only> on Perls of
6907 a recent vintage:
6908
6909     use 5.014;  # so push/pop/etc work on scalars (experimental)
6910
6911 =item split /PATTERN/,EXPR,LIMIT
6912 X<split>
6913
6914 =item split /PATTERN/,EXPR
6915
6916 =item split /PATTERN/
6917
6918 =item split
6919
6920 =for Pod::Functions split up a string using a regexp delimiter
6921
6922 Splits the string EXPR into a list of strings and returns the
6923 list in list context, or the size of the list in scalar context.
6924
6925 If only PATTERN is given, EXPR defaults to C<$_>.
6926
6927 Anything in EXPR that matches PATTERN is taken to be a separator
6928 that separates the EXPR into substrings (called "I<fields>") that
6929 do B<not> include the separator.  Note that a separator may be
6930 longer than one character or even have no characters at all (the
6931 empty string, which is a zero-width match).
6932
6933 The PATTERN need not be constant; an expression may be used
6934 to specify a pattern that varies at runtime.
6935
6936 If PATTERN matches the empty string, the EXPR is split at the match
6937 position (between characters).  As an example, the following:
6938
6939     print join(':', split('b', 'abc')), "\n";
6940
6941 uses the 'b' in 'abc' as a separator to produce the output 'a:c'.
6942 However, this:
6943
6944     print join(':', split('', 'abc')), "\n";
6945
6946 uses empty string matches as separators to produce the output
6947 'a:b:c'; thus, the empty string may be used to split EXPR into a
6948 list of its component characters.
6949
6950 As a special case for C<split>, the empty pattern given in
6951 L<match operator|perlop/"m/PATTERN/msixpodualgc"> syntax (C<//>) specifically matches the empty string, which is contrary to its usual
6952 interpretation as the last successful match.
6953
6954 If PATTERN is C</^/>, then it is treated as if it used the
6955 L<multiline modifier|perlreref/OPERATORS> (C</^/m>), since it
6956 isn't much use otherwise.
6957
6958 As another special case, C<split> emulates the default behavior of the
6959 command line tool B<awk> when the PATTERN is either omitted or a I<literal
6960 string> composed of a single space character (such as S<C<' '>> or
6961 S<C<"\x20">>, but not e.g. S<C</ />>).  In this case, any leading
6962 whitespace in EXPR is removed before splitting occurs, and the PATTERN is
6963 instead treated as if it were C</\s+/>; in particular, this means that
6964 I<any> contiguous whitespace (not just a single space character) is used as
6965 a separator.  However, this special treatment can be avoided by specifying
6966 the pattern S<C</ />> instead of the string S<C<" ">>, thereby allowing
6967 only a single space character to be a separator.  In earlier Perls this
6968 special case was restricted to the use of a plain S<C<" ">> as the
6969 pattern argument to split, in Perl 5.18.0 and later this special case is
6970 triggered by any expression which evaluates as the simple string S<C<" ">>.
6971
6972 If omitted, PATTERN defaults to a single space, S<C<" ">>, triggering
6973 the previously described I<awk> emulation.
6974
6975 If LIMIT is specified and positive, it represents the maximum number
6976 of fields into which the EXPR may be split; in other words, LIMIT is
6977 one greater than the maximum number of times EXPR may be split.  Thus,
6978 the LIMIT value C<1> means that EXPR may be split a maximum of zero
6979 times, producing a maximum of one field (namely, the entire value of
6980 EXPR).  For instance:
6981
6982     print join(':', split(//, 'abc', 1)), "\n";
6983
6984 produces the output 'abc', and this:
6985
6986     print join(':', split(//, 'abc', 2)), "\n";
6987
6988 produces the output 'a:bc', and each of these:
6989
6990     print join(':', split(//, 'abc', 3)), "\n";
6991     print join(':', split(//, 'abc', 4)), "\n";
6992
6993 produces the output 'a:b:c'.
6994
6995 If LIMIT is negative, it is treated as if it were instead arbitrarily
6996 large; as many fields as possible are produced.
6997
6998 If LIMIT is omitted (or, equivalently, zero), then it is usually
6999 treated as if it were instead negative but with the exception that
7000 trailing empty fields are stripped (empty leading fields are always
7001 preserved); if all fields are empty, then all fields are considered to
7002 be trailing (and are thus stripped in this case).  Thus, the following:
7003
7004     print join(':', split(',', 'a,b,c,,,')), "\n";
7005
7006 produces the output 'a:b:c', but the following:
7007
7008     print join(':', split(',', 'a,b,c,,,', -1)), "\n";
7009
7010 produces the output 'a:b:c:::'.
7011
7012 In time-critical applications, it is worthwhile to avoid splitting
7013 into more fields than necessary.  Thus, when assigning to a list,
7014 if LIMIT is omitted (or zero), then LIMIT is treated as though it
7015 were one larger than the number of variables in the list; for the
7016 following, LIMIT is implicitly 3:
7017
7018     ($login, $passwd) = split(/:/);
7019
7020 Note that splitting an EXPR that evaluates to the empty string always
7021 produces zero fields, regardless of the LIMIT specified.
7022
7023 An empty leading field is produced when there is a positive-width
7024 match at the beginning of EXPR.  For instance:
7025
7026     print join(':', split(/ /, ' abc')), "\n";
7027
7028 produces the output ':abc'.  However, a zero-width match at the
7029 beginning of EXPR never produces an empty field, so that:
7030
7031     print join(':', split(//, ' abc'));
7032
7033 produces the output S<' :a:b:c'> (rather than S<': :a:b:c'>).
7034
7035 An empty trailing field, on the other hand, is produced when there is a
7036 match at the end of EXPR, regardless of the length of the match
7037 (of course, unless a non-zero LIMIT is given explicitly, such fields are
7038 removed, as in the last example).  Thus:
7039
7040     print join(':', split(//, ' abc', -1)), "\n";
7041
7042 produces the output S<' :a:b:c:'>.
7043
7044 If the PATTERN contains
7045 L<capturing groups|perlretut/Grouping things and hierarchical matching>,
7046 then for each separator, an additional field is produced for each substring
7047 captured by a group (in the order in which the groups are specified,
7048 as per L<backreferences|perlretut/Backreferences>); if any group does not
7049 match, then it captures the C<undef> value instead of a substring.  Also,
7050 note that any such additional field is produced whenever there is a
7051 separator (that is, whenever a split occurs), and such an additional field
7052 does B<not> count towards the LIMIT.  Consider the following expressions
7053 evaluated in list context (each returned list is provided in the associated
7054 comment):
7055
7056     split(/-|,/, "1-10,20", 3)
7057     # ('1', '10', '20')
7058
7059     split(/(-|,)/, "1-10,20", 3)
7060     # ('1', '-', '10', ',', '20')
7061
7062     split(/-|(,)/, "1-10,20", 3)
7063     # ('1', undef, '10', ',', '20')
7064
7065     split(/(-)|,/, "1-10,20", 3)
7066     # ('1', '-', '10', undef, '20')
7067
7068     split(/(-)|(,)/, "1-10,20", 3)
7069     # ('1', '-', undef, '10', undef, ',', '20')
7070
7071 =item sprintf FORMAT, LIST
7072 X<sprintf>
7073
7074 =for Pod::Functions formatted print into a string
7075
7076 Returns a string formatted by the usual C<printf> conventions of the C
7077 library function C<sprintf>.  See below for more details
7078 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
7079 the general principles.
7080
7081 For example:
7082
7083         # Format number with up to 8 leading zeroes
7084         $result = sprintf("%08d", $number);
7085
7086         # Round number to 3 digits after decimal point
7087         $rounded = sprintf("%.3f", $number);
7088
7089 Perl does its own C<sprintf> formatting: it emulates the C
7090 function sprintf(3), but doesn't use it except for floating-point
7091 numbers, and even then only standard modifiers are allowed.  
7092 Non-standard extensions in your local sprintf(3) are 
7093 therefore unavailable from Perl.
7094
7095 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
7096 pass it an array as your first argument. 
7097 The array is given scalar context,
7098 and instead of using the 0th element of the array as the format, Perl will
7099 use the count of elements in the array as the format, which is almost never
7100 useful.
7101
7102 Perl's C<sprintf> permits the following universally-known conversions:
7103
7104    %%    a percent sign
7105    %c    a character with the given number
7106    %s    a string
7107    %d    a signed integer, in decimal
7108    %u    an unsigned integer, in decimal
7109    %o    an unsigned integer, in octal
7110    %x    an unsigned integer, in hexadecimal
7111    %e    a floating-point number, in scientific notation
7112    %f    a floating-point number, in fixed decimal notation
7113    %g    a floating-point number, in %e or %f notation
7114
7115 In addition, Perl permits the following widely-supported conversions:
7116
7117    %X    like %x, but using upper-case letters
7118    %E    like %e, but using an upper-case "E"
7119    %G    like %g, but with an upper-case "E" (if applicable)
7120    %b    an unsigned integer, in binary
7121    %B    like %b, but using an upper-case "B" with the # flag
7122    %p    a pointer (outputs the Perl value's address in hexadecimal)
7123    %n    special: *stores* the number of characters output so far
7124          into the next argument in the parameter list
7125    %a    hexadecimal floating point
7126    %A    like %a, but using upper-case letters
7127
7128 Finally, for backward (and we do mean "backward") compatibility, Perl
7129 permits these unnecessary but widely-supported conversions:
7130
7131    %i    a synonym for %d
7132    %D    a synonym for %ld
7133    %U    a synonym for %lu
7134    %O    a synonym for %lo
7135    %F    a synonym for %f
7136
7137 Note that the number of exponent digits in the scientific notation produced
7138 by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
7139 exponent less than 100 is system-dependent: it may be three or less
7140 (zero-padded as necessary).  In other words, 1.23 times ten to the
7141 99th may be either "1.23e99" or "1.23e099".  Similarly for C<%a> and C<%A>:
7142 the exponent or the hexadecimal digits may float: especially the
7143 "long doubles" Perl configuration option may cause surprises.
7144
7145 Between the C<%> and the format letter, you may specify several
7146 additional attributes controlling the interpretation of the format.
7147 In order, these are:
7148
7149 =over 4
7150
7151 =item format parameter index
7152
7153 An explicit format parameter index, such as C<2$>.  By default sprintf
7154 will format the next unused argument in the list, but this allows you
7155 to take the arguments out of order:
7156
7157   printf '%2$d %1$d', 12, 34;      # prints "34 12"
7158   printf '%3$d %d %1$d', 1, 2, 3;  # prints "3 1 1"
7159
7160 =item flags
7161
7162 one or more of:
7163
7164    space   prefix non-negative number with a space
7165    +       prefix non-negative number with a plus sign
7166    -       left-justify within the field
7167    0       use zeros, not spaces, to right-justify
7168    #       ensure the leading "0" for any octal,
7169            prefix non-zero hexadecimal with "0x" or "0X",
7170            prefix non-zero binary with "0b" or "0B"
7171
7172 For example:
7173
7174   printf '<% d>',  12;   # prints "< 12>"
7175   printf '<%+d>',  12;   # prints "<+12>"
7176   printf '<%6s>',  12;   # prints "<    12>"
7177   printf '<%-6s>', 12;   # prints "<12    >"
7178   printf '<%06s>', 12;   # prints "<000012>"
7179   printf '<%#o>',  12;   # prints "<014>"
7180   printf '<%#x>',  12;   # prints "<0xc>"
7181   printf '<%#X>',  12;   # prints "<0XC>"
7182   printf '<%#b>',  12;   # prints "<0b1100>"
7183   printf '<%#B>',  12;   # prints "<0B1100>"
7184
7185 When a space and a plus sign are given as the flags at once,
7186 a plus sign is used to prefix a positive number.
7187
7188   printf '<%+ d>', 12;   # prints "<+12>"
7189   printf '<% +d>', 12;   # prints "<+12>"
7190
7191 When the # flag and a precision are given in the %o conversion,
7192 the precision is incremented if it's necessary for the leading "0".
7193
7194   printf '<%#.5o>', 012;      # prints "<00012>"
7195   printf '<%#.5o>', 012345;   # prints "<012345>"
7196   printf '<%#.0o>', 0;        # prints "<0>"
7197
7198 =item vector flag
7199
7200 This flag tells Perl to interpret the supplied string as a vector of
7201 integers, one for each character in the string.  Perl applies the format to
7202 each integer in turn, then joins the resulting strings with a separator (a
7203 dot C<.> by default).  This can be useful for displaying ordinal values of
7204 characters in arbitrary strings:
7205
7206   printf "%vd", "AB\x{100}";           # prints "65.66.256"
7207   printf "version is v%vd\n", $^V;     # Perl's version
7208
7209 Put an asterisk C<*> before the C<v> to override the string to
7210 use to separate the numbers:
7211
7212   printf "address is %*vX\n", ":", $addr;   # IPv6 address
7213   printf "bits are %0*v8b\n", " ", $bits;   # random bitstring
7214
7215 You can also explicitly specify the argument number to use for
7216 the join string using something like C<*2$v>; for example:
7217
7218   printf '%*4$vX %*4$vX %*4$vX',       # 3 IPv6 addresses
7219           @addr[1..3], ":";
7220
7221 =item (minimum) width
7222
7223 Arguments are usually formatted to be only as wide as required to
7224 display the given value.  You can override the width by putting
7225 a number here, or get the width from the next argument (with C<*>)
7226 or from a specified argument (e.g., with C<*2$>):
7227
7228  printf "<%s>", "a";       # prints "<a>"
7229  printf "<%6s>", "a";      # prints "<     a>"
7230  printf "<%*s>", 6, "a";   # prints "<     a>"
7231  printf '<%*2$s>', "a", 6; # prints "<     a>"
7232  printf "<%2s>", "long";   # prints "<long>" (does not truncate)
7233
7234 If a field width obtained through C<*> is negative, it has the same
7235 effect as the C<-> flag: left-justification.
7236
7237 =item precision, or maximum width
7238 X<precision>
7239
7240 You can specify a precision (for numeric conversions) or a maximum
7241 width (for string conversions) by specifying a C<.> followed by a number.
7242 For floating-point formats except C<g> and C<G>, this specifies
7243 how many places right of the decimal point to show (the default being 6).
7244 For example:
7245
7246   # these examples are subject to system-specific variation
7247   printf '<%f>', 1;    # prints "<1.000000>"
7248   printf '<%.1f>', 1;  # prints "<1.0>"
7249   printf '<%.0f>', 1;  # prints "<1>"
7250   printf '<%e>', 10;   # prints "<1.000000e+01>"
7251   printf '<%.1e>', 10; # prints "<1.0e+01>"
7252
7253 For "g" and "G", this specifies the maximum number of digits to show,
7254 including those prior to the decimal point and those after it; for 
7255 example:
7256
7257   # These examples are subject to system-specific variation.
7258   printf '<%g>', 1;        # prints "<1>"
7259   printf '<%.10g>', 1;     # prints "<1>"
7260   printf '<%g>', 100;      # prints "<100>"
7261   printf '<%.1g>', 100;    # prints "<1e+02>"
7262   printf '<%.2g>', 100.01; # prints "<1e+02>"
7263   printf '<%.5g>', 100.01; # prints "<100.01>"
7264   printf '<%.4g>', 100.01; # prints "<100>"
7265
7266 For integer conversions, specifying a precision implies that the
7267 output of the number itself should be zero-padded to this width,
7268 where the 0 flag is ignored:
7269
7270   printf '<%.6d>', 1;      # prints "<000001>"
7271   printf '<%+.6d>', 1;     # prints "<+000001>"
7272   printf '<%-10.6d>', 1;   # prints "<000001    >"
7273   printf '<%10.6d>', 1;    # prints "<    000001>"
7274   printf '<%010.6d>', 1;   # prints "<    000001>"
7275   printf '<%+10.6d>', 1;   # prints "<   +000001>"
7276
7277   printf '<%.6x>', 1;      # prints "<000001>"
7278   printf '<%#.6x>', 1;     # prints "<0x000001>"
7279   printf '<%-10.6x>', 1;   # prints "<000001    >"
7280   printf '<%10.6x>', 1;    # prints "<    000001>"
7281   printf '<%010.6x>', 1;   # prints "<    000001>"
7282   printf '<%#10.6x>', 1;   # prints "<  0x000001>"
7283
7284 For string conversions, specifying a precision truncates the string
7285 to fit the specified width:
7286
7287   printf '<%.5s>', "truncated";   # prints "<trunc>"
7288   printf '<%10.5s>', "truncated"; # prints "<     trunc>"
7289
7290 You can also get the precision from the next argument using C<.*>:
7291
7292   printf '<%.6x>', 1;       # prints "<000001>"
7293   printf '<%.*x>', 6, 1;    # prints "<000001>"
7294
7295 If a precision obtained through C<*> is negative, it counts
7296 as having no precision at all.
7297
7298   printf '<%.*s>',  7, "string";   # prints "<string>"
7299   printf '<%.*s>',  3, "string";   # prints "<str>"
7300   printf '<%.*s>',  0, "string";   # prints "<>"
7301   printf '<%.*s>', -1, "string";   # prints "<string>"
7302
7303   printf '<%.*d>',  1, 0;   # prints "<0>"
7304   printf '<%.*d>',  0, 0;   # prints "<>"
7305   printf '<%.*d>', -1, 0;   # prints "<0>"
7306
7307 You cannot currently get the precision from a specified number,
7308 but it is intended that this will be possible in the future, for
7309 example using C<.*2$>:
7310
7311   printf '<%.*2$x>', 1, 6;   # INVALID, but in future will print
7312                              # "<000001>"
7313
7314 =item size
7315
7316 For numeric conversions, you can specify the size to interpret the
7317 number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>.  For integer
7318 conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
7319 whatever the default integer size is on your platform (usually 32 or 64
7320 bits), but you can override this to use instead one of the standard C types,
7321 as supported by the compiler used to build Perl:
7322
7323    hh          interpret integer as C type "char" or "unsigned
7324                char" on Perl 5.14 or later
7325    h           interpret integer as C type "short" or
7326                "unsigned short"
7327    j           interpret integer as C type "intmax_t" on Perl
7328                5.14 or later, and only with a C99 compiler
7329                (unportable)
7330    l           interpret integer as C type "long" or
7331                "unsigned long"
7332    q, L, or ll interpret integer as C type "long long",
7333                "unsigned long long", or "quad" (typically
7334                64-bit integers)
7335    t           interpret integer as C type "ptrdiff_t" on Perl
7336                5.14 or later
7337    z           interpret integer as C type "size_t" on Perl 5.14
7338                or later
7339
7340 As of 5.14, none of these raises an exception if they are not supported on
7341 your platform.  However, if warnings are enabled, a warning of the
7342 C<printf> warning class is issued on an unsupported conversion flag.  
7343 Should you instead prefer an exception, do this:
7344
7345     use warnings FATAL => "printf";
7346
7347 If you would like to know about a version dependency before you
7348 start running the program, put something like this at its top:
7349
7350     use 5.014;  # for hh/j/t/z/ printf modifiers
7351
7352 You can find out whether your Perl supports quads via L<Config>:
7353
7354     use Config;
7355     if ($Config{use64bitint} eq "define"
7356         || $Config{longsize} >= 8) {
7357         print "Nice quads!\n";
7358     }
7359
7360 For floating-point conversions (C<e f g E F G>), numbers are usually assumed
7361 to be the default floating-point size on your platform (double or long double),
7362 but you can force "long double" with C<q>, C<L>, or C<ll> if your
7363 platform supports them.  You can find out whether your Perl supports long
7364 doubles via L<Config>:
7365
7366     use Config;
7367     print "long doubles\n" if $Config{d_longdbl} eq "define";
7368
7369 You can find out whether Perl considers "long double" to be the default
7370 floating-point size to use on your platform via L<Config>:
7371
7372     use Config;
7373     if ($Config{uselongdouble} eq "define") {
7374         print "long doubles by default\n";
7375     }
7376
7377 It can also be that long doubles and doubles are the same thing:
7378
7379         use Config;
7380         ($Config{doublesize} == $Config{longdblsize}) &&
7381                 print "doubles are long doubles\n";
7382
7383 The size specifier C<V> has no effect for Perl code, but is supported for
7384 compatibility with XS code.  It means "use the standard size for a Perl
7385 integer or floating-point number", which is the default.
7386
7387 =item order of arguments
7388
7389 Normally, sprintf() takes the next unused argument as the value to
7390 format for each format specification.  If the format specification
7391 uses C<*> to require additional arguments, these are consumed from
7392 the argument list in the order they appear in the format
7393 specification I<before> the value to format.  Where an argument is
7394 specified by an explicit index, this does not affect the normal
7395 order for the arguments, even when the explicitly specified index
7396 would have been the next argument.
7397
7398 So:
7399
7400     printf "<%*.*s>", $a, $b, $c;
7401
7402 uses C<$a> for the width, C<$b> for the precision, and C<$c>
7403 as the value to format; while:
7404
7405   printf '<%*1$.*s>', $a, $b;
7406
7407 would use C<$a> for the width and precision, and C<$b> as the
7408 value to format.
7409
7410 Here are some more examples; be aware that when using an explicit
7411 index, the C<$> may need escaping:
7412
7413   printf "%2\$d %d\n",    12, 34;      # will print "34 12\n"
7414   printf "%2\$d %d %d\n", 12, 34;      # will print "34 12 34\n"
7415   printf "%3\$d %d %d\n", 12, 34, 56;  # will print "56 12 34\n"
7416   printf "%2\$*3\$d %d\n", 12, 34, 3;  # will print " 34 12\n"
7417
7418 =back
7419
7420 If C<use locale> (including C<use locale 'not_characters'>) is in effect
7421 and POSIX::setlocale() has been called,
7422 the character used for the decimal separator in formatted floating-point
7423 numbers is affected by the C<LC_NUMERIC> locale.  See L<perllocale>
7424 and L<POSIX>.
7425
7426 =item sqrt EXPR
7427 X<sqrt> X<root> X<square root>
7428
7429 =item sqrt
7430
7431 =for Pod::Functions square root function
7432
7433 Return the positive square root of EXPR.  If EXPR is omitted, uses
7434 C<$_>.  Works only for non-negative operands unless you've
7435 loaded the C<Math::Complex> module.
7436
7437     use Math::Complex;
7438     print sqrt(-4);    # prints 2i
7439
7440 =item srand EXPR
7441 X<srand> X<seed> X<randseed>
7442
7443 =item srand
7444
7445 =for Pod::Functions seed the random number generator
7446
7447 Sets and returns the random number seed for the C<rand> operator.
7448
7449 The point of the function is to "seed" the C<rand> function so that C<rand>
7450 can produce a different sequence each time you run your program.  When
7451 called with a parameter, C<srand> uses that for the seed; otherwise it
7452 (semi-)randomly chooses a seed.  In either case, starting with Perl 5.14,
7453 it returns the seed.  To signal that your code will work I<only> on Perls
7454 of a recent vintage:
7455
7456     use 5.014;  # so srand returns the seed
7457
7458 If C<srand()> is not called explicitly, it is called implicitly without a
7459 parameter at the first use of the C<rand> operator.
7460 However, there are a few situations where programs are likely to
7461 want to call C<srand>.  One is for generating predictable results, generally for
7462 testing or debugging.  There, you use C<srand($seed)>, with the same C<$seed>
7463 each time.  Another case is that you may want to call C<srand()>
7464 after a C<fork()> to avoid child processes sharing the same seed value as the
7465 parent (and consequently each other).
7466
7467 Do B<not> call C<srand()> (i.e., without an argument) more than once per
7468 process.  The internal state of the random number generator should
7469 contain more entropy than can be provided by any seed, so calling
7470 C<srand()> again actually I<loses> randomness.
7471
7472 Most implementations of C<srand> take an integer and will silently
7473 truncate decimal numbers.  This means C<srand(42)> will usually
7474 produce the same results as C<srand(42.1)>.  To be safe, always pass
7475 C<srand> an integer.
7476
7477 A typical use of the returned seed is for a test program which has too many
7478 combinations to test comprehensively in the time available to it each run.  It
7479 can test a random subset each time, and should there be a failure, log the seed
7480 used for that run so that it can later be used to reproduce the same results.
7481
7482 B<C<rand()> is not cryptographically secure.  You should not rely
7483 on it in security-sensitive situations.>  As of this writing, a
7484 number of third-party CPAN modules offer random number generators
7485 intended by their authors to be cryptographically secure,
7486 including: L<Data::Entropy>, L<Crypt::Random>, L<Math::Random::Secure>,
7487 and L<Math::TrulyRandom>.
7488
7489 =item stat FILEHANDLE
7490 X<stat> X<file, status> X<ctime>
7491
7492 =item stat EXPR
7493
7494 =item stat DIRHANDLE
7495
7496 =item stat
7497
7498 =for Pod::Functions get a file's status information
7499
7500 Returns a 13-element list giving the status info for a file, either
7501 the file opened via FILEHANDLE or DIRHANDLE, or named by EXPR.  If EXPR is 
7502 omitted, it stats C<$_> (not C<_>!).  Returns the empty list if C<stat> fails.  Typically
7503 used as follows:
7504
7505     ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
7506        $atime,$mtime,$ctime,$blksize,$blocks)
7507            = stat($filename);
7508
7509 Not all fields are supported on all filesystem types.  Here are the
7510 meanings of the fields:
7511
7512   0 dev      device number of filesystem
7513   1 ino      inode number
7514   2 mode     file mode  (type and permissions)
7515   3 nlink    number of (hard) links to the file
7516   4 uid      numeric user ID of file's owner
7517   5 gid      numeric group ID of file's owner
7518   6 rdev     the device identifier (special files only)
7519   7 size     total size of file, in bytes
7520   8 atime    last access time in seconds since the epoch
7521   9 mtime    last modify time in seconds since the epoch
7522  10 ctime    inode change time in seconds since the epoch (*)
7523  11 blksize  preferred I/O size in bytes for interacting with the
7524              file (may vary from file to file)
7525  12 blocks   actual number of system-specific blocks allocated
7526              on disk (often, but not always, 512 bytes each)
7527
7528 (The epoch was at 00:00 January 1, 1970 GMT.)
7529
7530 (*) Not all fields are supported on all filesystem types.  Notably, the
7531 ctime field is non-portable.  In particular, you cannot expect it to be a
7532 "creation time"; see L<perlport/"Files and Filesystems"> for details.
7533
7534 If C<stat> is passed the special filehandle consisting of an underline, no
7535 stat is done, but the current contents of the stat structure from the
7536 last C<stat>, C<lstat>, or filetest are returned.  Example:
7537
7538     if (-x $file && (($d) = stat(_)) && $d < 0) {
7539         print "$file is executable NFS file\n";
7540     }
7541
7542 (This works on machines only for which the device number is negative
7543 under NFS.)
7544
7545 Because the mode contains both the file type and its permissions, you
7546 should mask off the file type portion and (s)printf using a C<"%o">
7547 if you want to see the real permissions.
7548
7549     $mode = (stat($filename))[2];
7550     printf "Permissions are %04o\n", $mode & 07777;
7551
7552 In scalar context, C<stat> returns a boolean value indicating success
7553 or failure, and, if successful, sets the information associated with
7554 the special filehandle C<_>.
7555
7556 The L<File::stat> module provides a convenient, by-name access mechanism:
7557
7558     use File::stat;
7559     $sb = stat($filename);
7560     printf "File is %s, size is %s, perm %04o, mtime %s\n",
7561            $filename, $sb->size, $sb->mode & 07777,
7562            scalar localtime $sb->mtime;
7563
7564 You can import symbolic mode constants (C<S_IF*>) and functions
7565 (C<S_IS*>) from the Fcntl module:
7566
7567     use Fcntl ':mode';
7568
7569     $mode = (stat($filename))[2];
7570
7571     $user_rwx      = ($mode & S_IRWXU) >> 6;
7572     $group_read    = ($mode & S_IRGRP) >> 3;
7573     $other_execute =  $mode & S_IXOTH;
7574
7575     printf "Permissions are %04o\n", S_IMODE($mode), "\n";
7576
7577     $is_setuid     =  $mode & S_ISUID;
7578     $is_directory  =  S_ISDIR($mode);
7579
7580 You could write the last two using the C<-u> and C<-d> operators.
7581 Commonly available C<S_IF*> constants are:
7582
7583     # Permissions: read, write, execute, for user, group, others.
7584
7585     S_IRWXU S_IRUSR S_IWUSR S_IXUSR
7586     S_IRWXG S_IRGRP S_IWGRP S_IXGRP
7587     S_IRWXO S_IROTH S_IWOTH S_IXOTH
7588
7589     # Setuid/Setgid/Stickiness/SaveText.
7590     # Note that the exact meaning of these is system-dependent.
7591
7592     S_ISUID S_ISGID S_ISVTX S_ISTXT
7593
7594     # File types.  Not all are necessarily available on
7595     # your system.
7596
7597     S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
7598     S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
7599
7600     # The following are compatibility aliases for S_IRUSR,
7601     # S_IWUSR, and S_IXUSR.
7602
7603     S_IREAD S_IWRITE S_IEXEC
7604
7605 and the C<S_IF*> functions are
7606
7607     S_IMODE($mode)    the part of $mode containing the permission
7608                       bits and the setuid/setgid/sticky bits
7609
7610     S_IFMT($mode)     the part of $mode containing the file type
7611                       which can be bit-anded with (for example)
7612                       S_IFREG or with the following functions
7613
7614     # The operators -f, -d, -l, -b, -c, -p, and -S.
7615
7616     S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
7617     S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
7618
7619     # No direct -X operator counterpart, but for the first one
7620     # the -g operator is often equivalent.  The ENFMT stands for
7621     # record flocking enforcement, a platform-dependent feature.
7622
7623     S_ISENFMT($mode) S_ISWHT($mode)
7624
7625 See your native chmod(2) and stat(2) documentation for more details
7626 about the C<S_*> constants.  To get status info for a symbolic link
7627 instead of the target file behind the link, use the C<lstat> function.
7628
7629 Portability issues: L<perlport/stat>.
7630
7631 =item state VARLIST
7632 X<state>
7633
7634 =item state TYPE VARLIST
7635
7636 =item state VARLIST : ATTRS
7637
7638 =item state TYPE VARLIST : ATTRS
7639
7640 =for Pod::Functions +state declare and assign a persistent lexical variable
7641
7642 C<state> declares a lexically scoped variable, just like C<my>.
7643 However, those variables will never be reinitialized, contrary to
7644 lexical variables that are reinitialized each time their enclosing block
7645 is entered.
7646 See L<perlsub/"Persistent Private Variables"> for details.
7647
7648 If more than one variable is listed, the list must be placed in
7649 parentheses.  With a parenthesised list, C<undef> can be used as a
7650 dummy placeholder.  However, since initialization of state variables in
7651 list context is currently not possible this would serve no purpose.
7652
7653 C<state> variables are enabled only when the C<use feature "state"> pragma 
7654 is in effect, unless the keyword is written as C<CORE::state>.
7655 See also L<feature>.
7656
7657 =item study SCALAR
7658 X<study>
7659
7660 =item study
7661
7662 =for Pod::Functions optimize input data for repeated searches
7663
7664 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
7665 doing many pattern matches on the string before it is next modified.
7666 This may or may not save time, depending on the nature and number of
7667 patterns you are searching and the distribution of character
7668 frequencies in the string to be searched; you probably want to compare
7669 run times with and without it to see which is faster.  Those loops
7670 that scan for many short constant strings (including the constant
7671 parts of more complex patterns) will benefit most.
7672 (The way C<study> works is this: a linked list of every
7673 character in the string to be searched is made, so we know, for
7674 example, where all the C<'k'> characters are.  From each search string,
7675 the rarest character is selected, based on some static frequency tables
7676 constructed from some C programs and English text.  Only those places
7677 that contain this "rarest" character are examined.)
7678
7679 For example, here is a loop that inserts index producing entries
7680 before any line containing a certain pattern:
7681
7682     while (<>) {
7683         study;
7684         print ".IX foo\n"    if /\bfoo\b/;
7685         print ".IX bar\n"    if /\bbar\b/;
7686         print ".IX blurfl\n" if /\bblurfl\b/;
7687         # ...
7688         print;
7689     }
7690
7691 In searching for C</\bfoo\b/>, only locations in C<$_> that contain C<f>
7692 will be looked at, because C<f> is rarer than C<o>.  In general, this is
7693 a big win except in pathological cases.  The only question is whether
7694 it saves you more time than it took to build the linked list in the
7695 first place.
7696
7697 Note that if you have to look for strings that you don't know till
7698 runtime, you can build an entire loop as a string and C<eval> that to
7699 avoid recompiling all your patterns all the time.  Together with
7700 undefining C<$/> to input entire files as one record, this can be quite
7701 fast, often faster than specialized programs like fgrep(1).  The following
7702 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
7703 out the names of those files that contain a match:
7704
7705     $search = 'while (<>) { study;';
7706     foreach $word (@words) {
7707         $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
7708     }
7709     $search .= "}";
7710     @ARGV = @files;
7711     undef $/;
7712     eval $search;        # this screams
7713     $/ = "\n";        # put back to normal input delimiter
7714     foreach $file (sort keys(%seen)) {
7715         print $file, "\n";
7716     }
7717
7718 =item sub NAME BLOCK
7719 X<sub>
7720
7721 =item sub NAME (PROTO) BLOCK
7722
7723 =item sub NAME : ATTRS BLOCK
7724
7725 =item sub NAME (PROTO) : ATTRS BLOCK
7726
7727 =for Pod::Functions declare a subroutine, possibly anonymously
7728
7729 This is subroutine definition, not a real function I<per se>.  Without a
7730 BLOCK it's just a forward declaration.  Without a NAME, it's an anonymous
7731 function declaration, so does return a value: the CODE ref of the closure
7732 just created.
7733
7734 See L<perlsub> and L<perlref> for details about subroutines and
7735 references; see L<attributes> and L<Attribute::Handlers> for more
7736 information about attributes.
7737
7738 =item __SUB__
7739 X<__SUB__>
7740
7741 =for Pod::Functions +current_sub the current subroutine, or C<undef> if not in a subroutine
7742
7743 A special token that returns a reference to the current subroutine, or
7744 C<undef> outside of a subroutine.
7745
7746 The behaviour of C<__SUB__> within a regex code block (such as C</(?{...})/>)
7747 is subject to change.
7748
7749 This token is only available under C<use v5.16> or the "current_sub"
7750 feature.  See L<feature>.
7751
7752 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
7753 X<substr> X<substring> X<mid> X<left> X<right>
7754
7755 =item substr EXPR,OFFSET,LENGTH
7756
7757 =item substr EXPR,OFFSET
7758
7759 =for Pod::Functions get or alter a portion of a string
7760
7761 Extracts a substring out of EXPR and returns it.  First character is at
7762 offset zero.  If OFFSET is negative, starts
7763 that far back from the end of the string.  If LENGTH is omitted, returns
7764 everything through the end of the string.  If LENGTH is negative, leaves that
7765 many characters off the end of the string.
7766
7767     my $s = "The black cat climbed the green tree";
7768     my $color  = substr $s, 4, 5;      # black
7769     my $middle = substr $s, 4, -11;    # black cat climbed the
7770     my $end    = substr $s, 14;        # climbed the green tree
7771     my $tail   = substr $s, -4;        # tree
7772     my $z      = substr $s, -4, 2;     # tr
7773
7774 You can use the substr() function as an lvalue, in which case EXPR
7775 must itself be an lvalue.  If you assign something shorter than LENGTH,
7776 the string will shrink, and if you assign something longer than LENGTH,
7777 the string will grow to accommodate it.  To keep the string the same
7778 length, you may need to pad or chop your value using C<sprintf>.
7779
7780 If OFFSET and LENGTH specify a substring that is partly outside the
7781 string, only the part within the string is returned.  If the substring
7782 is beyond either end of the string, substr() returns the undefined
7783 value and produces a warning.  When used as an lvalue, specifying a
7784 substring that is entirely outside the string raises an exception.
7785 Here's an example showing the behavior for boundary cases:
7786
7787     my $name = 'fred';
7788     substr($name, 4) = 'dy';         # $name is now 'freddy'
7789     my $null = substr $name, 6, 2;   # returns "" (no warning)
7790     my $oops = substr $name, 7;      # returns undef, with warning
7791     substr($name, 7) = 'gap';        # raises an exception
7792
7793 An alternative to using substr() as an lvalue is to specify the
7794 replacement string as the 4th argument.  This allows you to replace
7795 parts of the EXPR and return what was there before in one operation,
7796 just as you can with splice().
7797
7798     my $s = "The black cat climbed the green tree";
7799     my $z = substr $s, 14, 7, "jumped from";    # climbed
7800     # $s is now "The black cat jumped from the green tree"
7801
7802 Note that the lvalue returned by the three-argument version of substr() acts as
7803 a 'magic bullet'; each time it is assigned to, it remembers which part
7804 of the original string is being modified; for example:
7805
7806     $x = '1234';
7807     for (substr($x,1,2)) {
7808         $_ = 'a';   print $x,"\n";    # prints 1a4
7809         $_ = 'xyz'; print $x,"\n";    # prints 1xyz4
7810         $x = '56789';
7811         $_ = 'pq';  print $x,"\n";    # prints 5pq9
7812     }
7813
7814 With negative offsets, it remembers its position from the end of the string
7815 when the target string is modified:
7816
7817     $x = '1234';
7818     for (substr($x, -3, 2)) {
7819         $_ = 'a';   print $x,"\n";    # prints 1a4, as above
7820         $x = 'abcdefg';
7821         print $_,"\n";                # prints f
7822     }
7823
7824 Prior to Perl version 5.10, the result of using an lvalue multiple times was
7825 unspecified.  Prior to 5.16, the result with negative offsets was
7826 unspecified.
7827
7828 =item symlink OLDFILE,NEWFILE
7829 X<symlink> X<link> X<symbolic link> X<link, symbolic>
7830
7831 =for Pod::Functions create a symbolic link to a file
7832
7833 Creates a new filename symbolically linked to the old filename.
7834 Returns C<1> for success, C<0> otherwise.  On systems that don't support
7835 symbolic links, raises an exception.  To check for that,
7836 use eval:
7837
7838     $symlink_exists = eval { symlink("",""); 1 };
7839
7840 Portability issues: L<perlport/symlink>.
7841
7842 =item syscall NUMBER, LIST
7843 X<syscall> X<system call>
7844
7845 =for Pod::Functions execute an arbitrary system call
7846
7847 Calls the system call specified as the first element of the list,
7848 passing the remaining elements as arguments to the system call.  If
7849 unimplemented, raises an exception.  The arguments are interpreted
7850 as follows: if a given argument is numeric, the argument is passed as
7851 an int.  If not, the pointer to the string value is passed.  You are
7852 responsible to make sure a string is pre-extended long enough to
7853 receive any result that might be written into a string.  You can't use a
7854 string literal (or other read-only string) as an argument to C<syscall>
7855 because Perl has to assume that any string pointer might be written
7856 through.  If your
7857 integer arguments are not literals and have never been interpreted in a
7858 numeric context, you may need to add C<0> to them to force them to look
7859 like numbers.  This emulates the C<syswrite> function (or vice versa):
7860
7861     require 'syscall.ph';        # may need to run h2ph
7862     $s = "hi there\n";
7863     syscall(&SYS_write, fileno(STDOUT), $s, length $s);
7864
7865 Note that Perl supports passing of up to only 14 arguments to your syscall,
7866 which in practice should (usually) suffice.
7867
7868 Syscall returns whatever value returned by the system call it calls.
7869 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
7870 Note that some system calls I<can> legitimately return C<-1>.  The proper
7871 way to handle such calls is to assign C<$!=0> before the call, then
7872 check the value of C<$!> if C<syscall> returns C<-1>.
7873
7874 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
7875 number of the read end of the pipe it creates, but there is no way
7876 to retrieve the file number of the other end.  You can avoid this
7877 problem by using C<pipe> instead.
7878
7879 Portability issues: L<perlport/syscall>.
7880
7881 =item sysopen FILEHANDLE,FILENAME,MODE
7882 X<sysopen>
7883
7884 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
7885
7886 =for Pod::Functions +5.002 open a file, pipe, or descriptor
7887
7888 Opens the file whose filename is given by FILENAME, and associates it with
7889 FILEHANDLE.  If FILEHANDLE is an expression, its value is used as the real
7890 filehandle wanted; an undefined scalar will be suitably autovivified.  This
7891 function calls the underlying operating system's I<open>(2) function with the
7892 parameters FILENAME, MODE, and PERMS.
7893
7894 The possible values and flag bits of the MODE parameter are
7895 system-dependent; they are available via the standard module C<Fcntl>.  See
7896 the documentation of your operating system's I<open>(2) syscall to see
7897 which values and flag bits are available.  You may combine several flags
7898 using the C<|>-operator.
7899
7900 Some of the most common values are C<O_RDONLY> for opening the file in
7901 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
7902 and C<O_RDWR> for opening the file in read-write mode.
7903 X<O_RDONLY> X<O_RDWR> X<O_WRONLY>
7904
7905 For historical reasons, some values work on almost every system
7906 supported by Perl: 0 means read-only, 1 means write-only, and 2
7907 means read/write.  We know that these values do I<not> work under
7908 OS/390 and on the Macintosh; you probably don't want to
7909 use them in new code.
7910
7911 If the file named by FILENAME does not exist and the C<open> call creates
7912 it (typically because MODE includes the C<O_CREAT> flag), then the value of
7913 PERMS specifies the permissions of the newly created file.  If you omit
7914 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
7915 These permission values need to be in octal, and are modified by your
7916 process's current C<umask>.
7917 X<O_CREAT>
7918
7919 In many systems the C<O_EXCL> flag is available for opening files in
7920 exclusive mode.  This is B<not> locking: exclusiveness means here that
7921 if the file already exists, sysopen() fails.  C<O_EXCL> may not work
7922 on network filesystems, and has no effect unless the C<O_CREAT> flag
7923 is set as well.  Setting C<O_CREAT|O_EXCL> prevents the file from
7924 being opened if it is a symbolic link.  It does not protect against
7925 symbolic links in the file's path.
7926 X<O_EXCL>
7927
7928 Sometimes you may want to truncate an already-existing file.  This
7929 can be done using the C<O_TRUNC> flag.  The behavior of
7930 C<O_TRUNC> with C<O_RDONLY> is undefined.
7931 X<O_TRUNC>
7932
7933 You should seldom if ever use C<0644> as argument to C<sysopen>, because
7934 that takes away the user's option to have a more permissive umask.
7935 Better to omit it.  See the perlfunc(1) entry on C<umask> for more
7936 on this.
7937
7938 Note that C<sysopen> depends on the fdopen() C library function.
7939 On many Unix systems, fdopen() is known to fail when file descriptors
7940 exceed a certain value, typically 255.  If you need more file
7941 descriptors than that, consider using the POSIX::open() function.
7942
7943 See L<perlopentut> for a kinder, gentler explanation of opening files.
7944
7945 Portability issues: L<perlport/sysopen>.
7946
7947 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
7948 X<sysread>
7949
7950 =item sysread FILEHANDLE,SCALAR,LENGTH
7951
7952 =for Pod::Functions fixed-length unbuffered input from a filehandle
7953
7954 Attempts to read LENGTH bytes of data into variable SCALAR from the
7955 specified FILEHANDLE, using the read(2).  It bypasses
7956 buffered IO, so mixing this with other kinds of reads, C<print>,
7957 C<write>, C<seek>, C<tell>, or C<eof> can cause confusion because the
7958 perlio or stdio layers usually buffers data.  Returns the number of
7959 bytes actually read, C<0> at end of file, or undef if there was an
7960 error (in the latter case C<$!> is also set).  SCALAR will be grown or
7961 shrunk so that the last byte actually read is the last byte of the
7962 scalar after the read.
7963
7964 An OFFSET may be specified to place the read data at some place in the
7965 string other than the beginning.  A negative OFFSET specifies
7966 placement at that many characters counting backwards from the end of
7967 the string.  A positive OFFSET greater than the length of SCALAR
7968 results in the string being padded to the required size with C<"\0">
7969 bytes before the result of the read is appended.
7970
7971 There is no syseof() function, which is ok, since eof() doesn't work
7972 well on device files (like ttys) anyway.  Use sysread() and check
7973 for a return value for 0 to decide whether you're done.
7974
7975 Note that if the filehandle has been marked as C<:utf8> Unicode
7976 characters are read instead of bytes (the LENGTH, OFFSET, and the
7977 return value of sysread() are in Unicode characters).
7978 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
7979 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
7980
7981 =item sysseek FILEHANDLE,POSITION,WHENCE
7982 X<sysseek> X<lseek>
7983
7984 =for Pod::Functions +5.004 position I/O pointer on handle used with sysread and syswrite
7985
7986 Sets FILEHANDLE's system position in bytes using lseek(2).  FILEHANDLE may
7987 be an expression whose value gives the name of the filehandle.  The values
7988 for WHENCE are C<0> to set the new position to POSITION; C<1> to set the it
7989 to the current position plus POSITION; and C<2> to set it to EOF plus
7990 POSITION, typically negative.
7991
7992 Note the I<in bytes>: even if the filehandle has been set to operate
7993 on characters (for example by using the C<:encoding(utf8)> I/O layer),
7994 tell() will return byte offsets, not character offsets (because
7995 implementing that would render sysseek() unacceptably slow).
7996
7997 sysseek() bypasses normal buffered IO, so mixing it with reads other
7998 than C<sysread> (for example C<< <> >> or read()) C<print>, C<write>,
7999 C<seek>, C<tell>, or C<eof> may cause confusion.
8000
8001 For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
8002 and C<SEEK_END> (start of the file, current position, end of the file)
8003 from the Fcntl module.  Use of the constants is also more portable
8004 than relying on 0, 1, and 2.  For example to define a "systell" function:
8005
8006     use Fcntl 'SEEK_CUR';
8007     sub systell { sysseek($_[0], 0, SEEK_CUR) }
8008
8009 Returns the new position, or the undefined value on failure.  A position
8010 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
8011 true on success and false on failure, yet you can still easily determine
8012 the new position.
8013
8014 =item system LIST
8015 X<system> X<shell>
8016
8017 =item system PROGRAM LIST
8018
8019 =for Pod::Functions run a separate program
8020
8021 Does exactly the same thing as C<exec LIST>, except that a fork is
8022 done first and the parent process waits for the child process to
8023 exit.  Note that argument processing varies depending on the
8024 number of arguments.  If there is more than one argument in LIST,
8025 or if LIST is an array with more than one value, starts the program
8026 given by the first element of the list with arguments given by the
8027 rest of the list.  If there is only one scalar argument, the argument
8028 is checked for shell metacharacters, and if there are any, the
8029 entire argument is passed to the system's command shell for parsing
8030 (this is C</bin/sh -c> on Unix platforms, but varies on other
8031 platforms).  If there are no shell metacharacters in the argument,
8032 it is split into words and passed directly to C<execvp>, which is
8033 more efficient.  On Windows, only the C<system PROGRAM LIST> syntax will
8034 reliably avoid using the shell; C<system LIST>, even with more than one
8035 element, will fall back to the shell if the first spawn fails.
8036
8037 Perl will attempt to flush all files opened for
8038 output before any operation that may do a fork, but this may not be
8039 supported on some platforms (see L<perlport>).  To be safe, you may need
8040 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
8041 of C<IO::Handle> on any open handles.
8042
8043 The return value is the exit status of the program as returned by the
8044 C<wait> call.  To get the actual exit value, shift right by eight (see
8045 below).  See also L</exec>.  This is I<not> what you want to use to capture
8046 the output from a command; for that you should use merely backticks or
8047 C<qx//>, as described in L<perlop/"`STRING`">.  Return value of -1
8048 indicates a failure to start the program or an error of the wait(2) system
8049 call (inspect $! for the reason).
8050
8051 If you'd like to make C<system> (and many other bits of Perl) die on error,
8052 have a look at the L<autodie> pragma.
8053
8054 Like C<exec>, C<system> allows you to lie to a program about its name if
8055 you use the C<system PROGRAM LIST> syntax.  Again, see L</exec>.
8056
8057 Since C<SIGINT> and C<SIGQUIT> are ignored during the execution of
8058 C<system>, if you expect your program to terminate on receipt of these
8059 signals you will need to arrange to do so yourself based on the return
8060 value.
8061
8062     @args = ("command", "arg1", "arg2");
8063     system(@args) == 0
8064         or die "system @args failed: $?"
8065
8066 If you'd like to manually inspect C<system>'s failure, you can check all
8067 possible failure modes by inspecting C<$?> like this:
8068
8069     if ($? == -1) {
8070         print "failed to execute: $!\n";
8071     }
8072     elsif ($? & 127) {
8073         printf "child died with signal %d, %s coredump\n",
8074             ($? & 127),  ($? & 128) ? 'with' : 'without';
8075     }
8076     else {
8077         printf "child exited with value %d\n", $? >> 8;
8078     }
8079
8080 Alternatively, you may inspect the value of C<${^CHILD_ERROR_NATIVE}>
8081 with the C<W*()> calls from the POSIX module.
8082
8083 When C<system>'s arguments are executed indirectly by the shell, 
8084 results and return codes are subject to its quirks.
8085 See L<perlop/"`STRING`"> and L</exec> for details.
8086
8087 Since C<system> does a C<fork> and C<wait> it may affect a C<SIGCHLD>
8088 handler.  See L<perlipc> for details.
8089
8090 Portability issues: L<perlport/system>.
8091
8092 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
8093 X<syswrite>
8094
8095 =item syswrite FILEHANDLE,SCALAR,LENGTH
8096
8097 =item syswrite FILEHANDLE,SCALAR
8098
8099 =for Pod::Functions fixed-length unbuffered output to a filehandle
8100
8101 Attempts to write LENGTH bytes of data from variable SCALAR to the
8102 specified FILEHANDLE, using write(2).  If LENGTH is
8103 not specified, writes whole SCALAR.  It bypasses buffered IO, so
8104 mixing this with reads (other than C<sysread())>, C<print>, C<write>,
8105 C<seek>, C<tell>, or C<eof> may cause confusion because the perlio and
8106 stdio layers usually buffer data.  Returns the number of bytes
8107 actually written, or C<undef> if there was an error (in this case the
8108 errno variable C<$!> is also set).  If the LENGTH is greater than the
8109 data available in the SCALAR after the OFFSET, only as much data as is
8110 available will be written.
8111
8112 An OFFSET may be specified to write the data from some part of the
8113 string other than the beginning.  A negative OFFSET specifies writing
8114 that many characters counting backwards from the end of the string.
8115 If SCALAR is of length zero, you can only use an OFFSET of 0.
8116
8117 B<WARNING>: If the filehandle is marked C<:utf8>, Unicode characters
8118 encoded in UTF-8 are written instead of bytes, and the LENGTH, OFFSET, and
8119 return value of syswrite() are in (UTF8-encoded Unicode) characters.
8120 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
8121 Alternately, if the handle is not marked with an encoding but you
8122 attempt to write characters with code points over 255, raises an exception.
8123 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
8124
8125 =item tell FILEHANDLE
8126 X<tell>
8127
8128 =item tell
8129
8130 =for Pod::Functions get current seekpointer on a filehandle
8131
8132 Returns the current position I<in bytes> for FILEHANDLE, or -1 on
8133 error.  FILEHANDLE may be an expression whose value gives the name of
8134 the actual filehandle.  If FILEHANDLE is omitted, assumes the file
8135 last read.
8136
8137 Note the I<in bytes>: even if the filehandle has been set to
8138 operate on characters (for example by using the C<:encoding(utf8)> open
8139 layer), tell() will return byte offsets, not character offsets (because
8140 that would render seek() and tell() rather slow).
8141
8142 The return value of tell() for the standard streams like the STDIN
8143 depends on the operating system: it may return -1 or something else.
8144 tell() on pipes, fifos, and sockets usually returns -1.
8145
8146 There is no C<systell> function.  Use C<sysseek(FH, 0, 1)> for that.
8147
8148 Do not use tell() (or other buffered I/O operations) on a filehandle
8149 that has been manipulated by sysread(), syswrite(), or sysseek().
8150 Those functions ignore the buffering, while tell() does not.
8151
8152 =item telldir DIRHANDLE
8153 X<telldir>
8154
8155 =for Pod::Functions get current seekpointer on a directory handle
8156
8157 Returns the current position of the C<readdir> routines on DIRHANDLE.
8158 Value may be given to C<seekdir> to access a particular location in a
8159 directory.  C<telldir> has the same caveats about possible directory
8160 compaction as the corresponding system library routine.
8161
8162 =item tie VARIABLE,CLASSNAME,LIST
8163 X<tie>
8164
8165 =for Pod::Functions +5.002 bind a variable to an object class
8166
8167 This function binds a variable to a package class that will provide the
8168 implementation for the variable.  VARIABLE is the name of the variable
8169 to be enchanted.  CLASSNAME is the name of a class implementing objects
8170 of correct type.  Any additional arguments are passed to the
8171 appropriate constructor
8172 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
8173 or C<TIEHASH>).  Typically these are arguments such as might be passed
8174 to the C<dbm_open()> function of C.  The object returned by the
8175 constructor is also returned by the C<tie> function, which would be useful
8176 if you want to access other methods in CLASSNAME.
8177
8178 Note that functions such as C<keys> and C<values> may return huge lists
8179 when used on large objects, like DBM files.  You may prefer to use the
8180 C<each> function to iterate over such.  Example:
8181
8182     # print out history file offsets
8183     use NDBM_File;
8184     tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
8185     while (($key,$val) = each %HIST) {
8186         print $key, ' = ', unpack('L',$val), "\n";
8187     }
8188     untie(%HIST);
8189
8190 A class implementing a hash should have the following methods:
8191
8192     TIEHASH classname, LIST
8193     FETCH this, key
8194     STORE this, key, value
8195     DELETE this, key
8196     CLEAR this
8197     EXISTS this, key
8198     FIRSTKEY this
8199     NEXTKEY this, lastkey
8200     SCALAR this
8201     DESTROY this
8202     UNTIE this
8203
8204 A class implementing an ordinary array should have the following methods:
8205
8206     TIEARRAY classname, LIST
8207     FETCH this, key
8208     STORE this, key, value
8209     FETCHSIZE this
8210     STORESIZE this, count
8211     CLEAR this
8212     PUSH this, LIST
8213     POP this
8214     SHIFT this
8215     UNSHIFT this, LIST
8216     SPLICE this, offset, length, LIST
8217     EXTEND this, count
8218     DELETE this, key
8219     EXISTS this, key
8220     DESTROY this
8221     UNTIE this
8222
8223 A class implementing a filehandle should have the following methods:
8224
8225     TIEHANDLE classname, LIST
8226     READ this, scalar, length, offset
8227     READLINE this
8228     GETC this
8229     WRITE this, scalar, length, offset
8230     PRINT this, LIST
8231     PRINTF this, format, LIST
8232     BINMODE this
8233     EOF this
8234     FILENO this
8235     SEEK this, position, whence
8236     TELL this
8237     OPEN this, mode, LIST
8238     CLOSE this
8239     DESTROY this
8240     UNTIE this
8241
8242 A class implementing a scalar should have the following methods:
8243
8244     TIESCALAR classname, LIST
8245     FETCH this,
8246     STORE this, value
8247     DESTROY this
8248     UNTIE this
8249
8250 Not all methods indicated above need be implemented.  See L<perltie>,
8251 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
8252
8253 Unlike C<dbmopen>, the C<tie> function will not C<use> or C<require> a module
8254 for you; you need to do that explicitly yourself.  See L<DB_File>
8255 or the F<Config> module for interesting C<tie> implementations.
8256
8257 For further details see L<perltie>, L<"tied VARIABLE">.
8258
8259 =item tied VARIABLE
8260 X<tied>
8261
8262 =for Pod::Functions get a reference to the object underlying a tied variable
8263
8264 Returns a reference to the object underlying VARIABLE (the same value
8265 that was originally returned by the C<tie> call that bound the variable
8266 to a package.)  Returns the undefined value if VARIABLE isn't tied to a
8267 package.
8268
8269 =item time
8270 X<time> X<epoch>
8271
8272 =for Pod::Functions return number of seconds since 1970
8273
8274 Returns the number of non-leap seconds since whatever time the system
8275 considers to be the epoch, suitable for feeding to C<gmtime> and
8276 C<localtime>.  On most systems the epoch is 00:00:00 UTC, January 1, 1970;
8277 a prominent exception being Mac OS Classic which uses 00:00:00, January 1,
8278 1904 in the current local time zone for its epoch.
8279
8280 For measuring time in better granularity than one second, use the
8281 L<Time::HiRes> module from Perl 5.8 onwards (or from CPAN before then), or,
8282 if you have gettimeofday(2), you may be able to use the C<syscall>
8283 interface of Perl.  See L<perlfaq8> for details.
8284
8285 For date and time processing look at the many related modules on CPAN.
8286 For a comprehensive date and time representation look at the
8287 L<DateTime> module.
8288
8289 =item times
8290 X<times>
8291
8292 =for Pod::Functions return elapsed time for self and child processes
8293
8294 Returns a four-element list giving the user and system times in
8295 seconds for this process and any exited children of this process.
8296
8297     ($user,$system,$cuser,$csystem) = times;
8298
8299 In scalar context, C<times> returns C<$user>.
8300
8301 Children's times are only included for terminated children.
8302
8303 Portability issues: L<perlport/times>.
8304
8305 =item tr///
8306
8307 =for Pod::Functions transliterate a string
8308
8309 The transliteration operator.  Same as C<y///>.  See
8310 L<perlop/"Quote-Like Operators">.
8311
8312 =item truncate FILEHANDLE,LENGTH
8313 X<truncate>
8314
8315 =item truncate EXPR,LENGTH
8316
8317 =for Pod::Functions shorten a file
8318
8319 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
8320 specified length.  Raises an exception if truncate isn't implemented
8321 on your system.  Returns true if successful, C<undef> on error.
8322
8323 The behavior is undefined if LENGTH is greater than the length of the
8324 file.
8325
8326 The position in the file of FILEHANDLE is left unchanged.  You may want to
8327 call L<seek|/"seek FILEHANDLE,POSITION,WHENCE"> before writing to the file.
8328
8329 Portability issues: L<perlport/truncate>.
8330
8331 =item uc EXPR
8332 X<uc> X<uppercase> X<toupper>
8333
8334 =item uc
8335
8336 =for Pod::Functions return upper-case version of a string
8337
8338 Returns an uppercased version of EXPR.  This is the internal function
8339 implementing the C<\U> escape in double-quoted strings.
8340 It does not attempt to do titlecase mapping on initial letters.  See
8341 L</ucfirst> for that.
8342
8343 If EXPR is omitted, uses C<$_>.
8344
8345 This function behaves the same way under various pragma, such as in a locale,
8346 as L</lc> does.
8347
8348 =item ucfirst EXPR
8349 X<ucfirst> X<uppercase>
8350
8351 =item ucfirst
8352
8353 =for Pod::Functions return a string with just the next letter in upper case
8354
8355 Returns the value of EXPR with the first character in uppercase
8356 (titlecase in Unicode).  This is the internal function implementing
8357 the C<\u> escape in double-quoted strings.
8358
8359 If EXPR is omitted, uses C<$_>.
8360
8361 This function behaves the same way under various pragma, such as in a locale,
8362 as L</lc> does.
8363
8364 =item umask EXPR
8365 X<umask>
8366
8367 =item umask
8368
8369 =for Pod::Functions set file creation mode mask
8370
8371 Sets the umask for the process to EXPR and returns the previous value.
8372 If EXPR is omitted, merely returns the current umask.
8373
8374 The Unix permission C<rwxr-x---> is represented as three sets of three
8375 bits, or three octal digits: C<0750> (the leading 0 indicates octal
8376 and isn't one of the digits).  The C<umask> value is such a number
8377 representing disabled permissions bits.  The permission (or "mode")
8378 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
8379 even if you tell C<sysopen> to create a file with permissions C<0777>,
8380 if your umask is C<0022>, then the file will actually be created with
8381 permissions C<0755>.  If your C<umask> were C<0027> (group can't
8382 write; others can't read, write, or execute), then passing
8383 C<sysopen> C<0666> would create a file with mode C<0640> (because 
8384 C<0666 &~ 027> is C<0640>).
8385
8386 Here's some advice: supply a creation mode of C<0666> for regular
8387 files (in C<sysopen>) and one of C<0777> for directories (in
8388 C<mkdir>) and executable files.  This gives users the freedom of
8389 choice: if they want protected files, they might choose process umasks
8390 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
8391 Programs should rarely if ever make policy decisions better left to
8392 the user.  The exception to this is when writing files that should be
8393 kept private: mail files, web browser cookies, I<.rhosts> files, and
8394 so on.
8395
8396 If umask(2) is not implemented on your system and you are trying to
8397 restrict access for I<yourself> (i.e., C<< (EXPR & 0700) > 0 >>), 
8398 raises an exception.  If umask(2) is not implemented and you are
8399 not trying to restrict access for yourself, returns C<undef>.
8400
8401 Remember that a umask is a number, usually given in octal; it is I<not> a
8402 string of octal digits.  See also L</oct>, if all you have is a string.
8403
8404 Portability issues: L<perlport/umask>.
8405
8406 =item undef EXPR
8407 X<undef> X<undefine>
8408
8409 =item undef
8410
8411 =for Pod::Functions remove a variable or function definition
8412
8413 Undefines the value of EXPR, which must be an lvalue.  Use only on a
8414 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
8415 (using C<&>), or a typeglob (using C<*>).  Saying C<undef $hash{$key}>
8416 will probably not do what you expect on most predefined variables or
8417 DBM list values, so don't do that; see L</delete>.  Always returns the
8418 undefined value.  You can omit the EXPR, in which case nothing is
8419 undefined, but you still get an undefined value that you could, for
8420 instance, return from a subroutine, assign to a variable, or pass as a
8421 parameter.  Examples:
8422
8423     undef $foo;
8424     undef $bar{'blurfl'};      # Compare to: delete $bar{'blurfl'};
8425     undef @ary;
8426     undef %hash;
8427     undef &mysub;
8428     undef *xyz;       # destroys $xyz, @xyz, %xyz, &xyz, etc.
8429     return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
8430     select undef, undef, undef, 0.25;
8431     ($a, $b, undef, $c) = &foo;       # Ignore third value returned
8432
8433 Note that this is a unary operator, not a list operator.
8434
8435 =item unlink LIST
8436 X<unlink> X<delete> X<remove> X<rm> X<del>
8437
8438 =item unlink
8439
8440 =for Pod::Functions remove one link to a file
8441
8442 Deletes a list of files.  On success, it returns the number of files
8443 it successfully deleted.  On failure, it returns false and sets C<$!>
8444 (errno):
8445
8446     my $unlinked = unlink 'a', 'b', 'c';
8447     unlink @goners;
8448     unlink glob "*.bak";
8449
8450 On error, C<unlink> will not tell you which files it could not remove.
8451 If you want to know which files you could not remove, try them one
8452 at a time:
8453
8454      foreach my $file ( @goners ) {
8455          unlink $file or warn "Could not unlink $file: $!";
8456      }
8457
8458 Note: C<unlink> will not attempt to delete directories unless you are
8459 superuser and the B<-U> flag is supplied to Perl.  Even if these
8460 conditions are met, be warned that unlinking a directory can inflict
8461 damage on your filesystem.  Finally, using C<unlink> on directories is
8462 not supported on many operating systems.  Use C<rmdir> instead.
8463
8464 If LIST is omitted, C<unlink> uses C<$_>.
8465
8466 =item unpack TEMPLATE,EXPR
8467 X<unpack>
8468
8469 =item unpack TEMPLATE
8470
8471 =for Pod::Functions convert binary structure into normal perl variables
8472
8473 C<unpack> does the reverse of C<pack>: it takes a string
8474 and expands it out into a list of values.
8475 (In scalar context, it returns merely the first value produced.)
8476
8477 If EXPR is omitted, unpacks the C<$_> string.
8478 See L<perlpacktut> for an introduction to this function.
8479
8480 The string is broken into chunks described by the TEMPLATE.  Each chunk
8481 is converted separately to a value.  Typically, either the string is a result
8482 of C<pack>, or the characters of the string represent a C structure of some
8483 kind.
8484
8485 The TEMPLATE has the same format as in the C<pack> function.
8486 Here's a subroutine that does substring:
8487
8488     sub substr {
8489         my($what,$where,$howmuch) = @_;
8490         unpack("x$where a$howmuch", $what);
8491     }
8492
8493 and then there's
8494
8495     sub ordinal { unpack("W",$_[0]); } # same as ord()
8496
8497 In addition to fields allowed in pack(), you may prefix a field with
8498 a %<number> to indicate that
8499 you want a <number>-bit checksum of the items instead of the items
8500 themselves.  Default is a 16-bit checksum.  Checksum is calculated by
8501 summing numeric values of expanded values (for string fields the sum of
8502 C<ord($char)> is taken; for bit fields the sum of zeroes and ones).
8503
8504 For example, the following
8505 computes the same number as the System V sum program:
8506
8507     $checksum = do {
8508         local $/;  # slurp!
8509         unpack("%32W*",<>) % 65535;
8510     };
8511
8512 The following efficiently counts the number of set bits in a bit vector:
8513
8514     $setbits = unpack("%32b*", $selectmask);
8515
8516 The C<p> and C<P> formats should be used with care.  Since Perl
8517 has no way of checking whether the value passed to C<unpack()>
8518 corresponds to a valid memory location, passing a pointer value that's
8519 not known to be valid is likely to have disastrous consequences.
8520
8521 If there are more pack codes or if the repeat count of a field or a group
8522 is larger than what the remainder of the input string allows, the result
8523 is not well defined: the repeat count may be decreased, or
8524 C<unpack()> may produce empty strings or zeros, or it may raise an exception.
8525 If the input string is longer than one described by the TEMPLATE,
8526 the remainder of that input string is ignored.
8527
8528 See L</pack> for more examples and notes.
8529
8530 =item unshift ARRAY,LIST
8531 X<unshift>
8532
8533 =item unshift EXPR,LIST
8534
8535 =for Pod::Functions prepend more elements to the beginning of a list
8536
8537 Does the opposite of a C<shift>.  Or the opposite of a C<push>,
8538 depending on how you look at it.  Prepends list to the front of the
8539 array and returns the new number of elements in the array.
8540
8541     unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
8542
8543 Note the LIST is prepended whole, not one element at a time, so the
8544 prepended elements stay in the same order.  Use C<reverse> to do the
8545 reverse.
8546
8547 Starting with Perl 5.14, C<unshift> can take a scalar EXPR, which must hold
8548 a reference to an unblessed array.  The argument will be dereferenced
8549 automatically.  This aspect of C<unshift> is considered highly
8550 experimental.  The exact behaviour may change in a future version of Perl.
8551
8552 To avoid confusing would-be users of your code who are running earlier
8553 versions of Perl with mysterious syntax errors, put this sort of thing at
8554 the top of your file to signal that your code will work I<only> on Perls of
8555 a recent vintage:
8556
8557     use 5.014;  # so push/pop/etc work on scalars (experimental)
8558
8559 =item untie VARIABLE
8560 X<untie>
8561
8562 =for Pod::Functions break a tie binding to a variable
8563
8564 Breaks the binding between a variable and a package.
8565 (See L<tie|/tie VARIABLE,CLASSNAME,LIST>.)
8566 Has no effect if the variable is not tied.
8567
8568 =item use Module VERSION LIST
8569 X<use> X<module> X<import>
8570
8571 =item use Module VERSION
8572
8573 =item use Module LIST
8574
8575 =item use Module
8576
8577 =item use VERSION
8578
8579 =for Pod::Functions load in a module at compile time and import its namespace
8580
8581 Imports some semantics into the current package from the named module,
8582 generally by aliasing certain subroutine or variable names into your
8583 package.  It is exactly equivalent to
8584
8585     BEGIN { require Module; Module->import( LIST ); }
8586
8587 except that Module I<must> be a bareword.
8588 The importation can be made conditional by using the L<if> module.
8589
8590 In the peculiar C<use VERSION> form, VERSION may be either a positive
8591 decimal fraction such as 5.006, which will be compared to C<$]>, or a v-string
8592 of the form v5.6.1, which will be compared to C<$^V> (aka $PERL_VERSION).  An
8593 exception is raised if VERSION is greater than the version of the
8594 current Perl interpreter; Perl will not attempt to parse the rest of the
8595 file.  Compare with L</require>, which can do a similar check at run time.
8596 Symmetrically, C<no VERSION> allows you to specify that you want a version
8597 of Perl older than the specified one.
8598
8599 Specifying VERSION as a literal of the form v5.6.1 should generally be
8600 avoided, because it leads to misleading error messages under earlier
8601 versions of Perl (that is, prior to 5.6.0) that do not support this
8602 syntax.  The equivalent numeric version should be used instead.
8603
8604     use v5.6.1;     # compile time version check
8605     use 5.6.1;      # ditto
8606     use 5.006_001;  # ditto; preferred for backwards compatibility
8607
8608 This is often useful if you need to check the current Perl version before
8609 C<use>ing library modules that won't work with older versions of Perl.
8610 (We try not to do this more than we have to.)
8611
8612 C<use VERSION> also enables all features available in the requested
8613 version as defined by the C<feature> pragma, disabling any features
8614 not in the requested version's feature bundle.  See L<feature>.
8615 Similarly, if the specified Perl version is greater than or equal to
8616 5.12.0, strictures are enabled lexically as
8617 with C<use strict>.  Any explicit use of
8618 C<use strict> or C<no strict> overrides C<use VERSION>, even if it comes
8619 before it.  In both cases, the F<feature.pm> and F<strict.pm> files are
8620 not actually loaded.
8621
8622 The C<BEGIN> forces the C<require> and C<import> to happen at compile time.  The
8623 C<require> makes sure the module is loaded into memory if it hasn't been
8624 yet.  The C<import> is not a builtin; it's just an ordinary static method
8625 call into the C<Module> package to tell the module to import the list of
8626 features back into the current package.  The module can implement its
8627 C<import> method any way it likes, though most modules just choose to
8628 derive their C<import> method via inheritance from the C<Exporter> class that
8629 is defined in the C<Exporter> module.  See L<Exporter>.  If no C<import>
8630 method can be found then the call is skipped, even if there is an AUTOLOAD
8631 method.
8632
8633 If you do not want to call the package's C<import> method (for instance,
8634 to stop your namespace from being altered), explicitly supply the empty list:
8635
8636     use Module ();
8637
8638 That is exactly equivalent to
8639
8640     BEGIN { require Module }
8641
8642 If the VERSION argument is present between Module and LIST, then the
8643 C<use> will call the VERSION method in class Module with the given
8644 version as an argument.  The default VERSION method, inherited from
8645 the UNIVERSAL class, croaks if the given version is larger than the
8646 value of the variable C<$Module::VERSION>.
8647
8648 Again, there is a distinction between omitting LIST (C<import> called
8649 with no arguments) and an explicit empty LIST C<()> (C<import> not
8650 called).  Note that there is no comma after VERSION!
8651
8652 Because this is a wide-open interface, pragmas (compiler directives)
8653 are also implemented this way.  Currently implemented pragmas are:
8654
8655     use constant;
8656     use diagnostics;
8657     use integer;
8658     use sigtrap  qw(SEGV BUS);
8659     use strict   qw(subs vars refs);
8660     use subs     qw(afunc blurfl);
8661     use warnings qw(all);
8662     use sort     qw(stable _quicksort _mergesort);
8663
8664 Some of these pseudo-modules import semantics into the current
8665 block scope (like C<strict> or C<integer>, unlike ordinary modules,
8666 which import symbols into the current package (which are effective
8667 through the end of the file).
8668
8669 Because C<use> takes effect at compile time, it doesn't respect the
8670 ordinary flow control of the code being compiled.  In particular, putting
8671 a C<use> inside the false branch of a conditional doesn't prevent it
8672 from being processed.  If a module or pragma only needs to be loaded 
8673 conditionally, this can be done using the L<if> pragma:
8674
8675     use if $] < 5.008, "utf8";
8676     use if WANT_WARNINGS, warnings => qw(all);
8677
8678 There's a corresponding C<no> declaration that unimports meanings imported
8679 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
8680 It behaves just as C<import> does with VERSION, an omitted or empty LIST, 
8681 or no unimport method being found.
8682
8683     no integer;
8684     no strict 'refs';
8685     no warnings;
8686
8687 Care should be taken when using the C<no VERSION> form of C<no>.  It is
8688 I<only> meant to be used to assert that the running Perl is of a earlier
8689 version than its argument and I<not> to undo the feature-enabling side effects
8690 of C<use VERSION>.
8691
8692 See L<perlmodlib> for a list of standard modules and pragmas.  See L<perlrun>
8693 for the C<-M> and C<-m> command-line options to Perl that give C<use>
8694 functionality from the command-line.
8695
8696 =item utime LIST
8697 X<utime>
8698
8699 =for Pod::Functions set a file's last access and modify times
8700
8701 Changes the access and modification times on each file of a list of
8702 files.  The first two elements of the list must be the NUMERIC access
8703 and modification times, in that order.  Returns the number of files
8704 successfully changed.  The inode change time of each file is set
8705 to the current time.  For example, this code has the same effect as the
8706 Unix touch(1) command when the files I<already exist> and belong to
8707 the user running the program:
8708
8709     #!/usr/bin/perl
8710     $atime = $mtime = time;
8711     utime $atime, $mtime, @ARGV;
8712
8713 Since Perl 5.8.0, if the first two elements of the list are C<undef>, 
8714 the utime(2) syscall from your C library is called with a null second
8715 argument.  On most systems, this will set the file's access and
8716 modification times to the current time (i.e., equivalent to the example
8717 above) and will work even on files you don't own provided you have write
8718 permission:
8719
8720     for $file (@ARGV) {
8721         utime(undef, undef, $file) 
8722             || warn "couldn't touch $file: $!";
8723     } 
8724
8725 Under NFS this will use the time of the NFS server, not the time of
8726 the local machine.  If there is a time synchronization problem, the
8727 NFS server and local machine will have different times.  The Unix
8728 touch(1) command will in fact normally use this form instead of the
8729 one shown in the first example.
8730
8731 Passing only one of the first two elements as C<undef> is
8732 equivalent to passing a 0 and will not have the effect 
8733 described when both are C<undef>.  This also triggers an
8734 uninitialized warning.
8735
8736 On systems that support futimes(2), you may pass filehandles among the
8737 files.  On systems that don't support futimes(2), passing filehandles raises
8738 an exception.  Filehandles must be passed as globs or glob references to be
8739 recognized; barewords are considered filenames.
8740
8741 Portability issues: L<perlport/utime>.
8742
8743 =item values HASH
8744 X<values>
8745
8746 =item values ARRAY
8747
8748 =item values EXPR
8749
8750 =for Pod::Functions return a list of the values in a hash
8751
8752 In list context, returns a list consisting of all the values of the named
8753 hash.  In Perl 5.12 or later only, will also return a list of the values of
8754 an array; prior to that release, attempting to use an array argument will
8755 produce a syntax error.  In scalar context, returns the number of values.
8756
8757 Hash entries are returned in an apparently random order.  The actual random
8758 order is specific to a given hash; the exact same series of operations
8759 on two hashes may result in a different order for each hash.  Any insertion
8760 into the hash may change the order, as will any deletion, with the exception
8761 that the most recent key returned by C<each> or C<keys> may be deleted
8762 without changing the order.  So long as a given hash is unmodified you may
8763 rely on C<keys>, C<values> and C<each> to repeatedly return the same order
8764 as each other.  See L<perlsec/"Algorithmic Complexity Attacks"> for
8765 details on why hash order is randomized.  Aside from the guarantees
8766 provided here the exact details of Perl's hash algorithm and the hash
8767 traversal order are subject to change in any release of Perl.  Tied hashes
8768 may behave differently to Perl's hashes with respect to changes in order on
8769 insertion and deletion of items.
8770
8771 As a side effect, calling values() resets the HASH or ARRAY's internal
8772 iterator, see L</each>.  (In particular, calling values() in void context
8773 resets the iterator with no other overhead.  Apart from resetting the
8774 iterator, C<values @array> in list context is the same as plain C<@array>.
8775 (We recommend that you use void context C<keys @array> for this, but
8776 reasoned that taking C<values @array> out would require more
8777 documentation than leaving it in.)
8778
8779 Note that the values are not copied, which means modifying them will
8780 modify the contents of the hash:
8781
8782     for (values %hash)      { s/foo/bar/g }  # modifies %hash values
8783     for (@hash{keys %hash}) { s/foo/bar/g }  # same
8784
8785 Starting with Perl 5.14, C<values> can take a scalar EXPR, which must hold
8786 a reference to an unblessed hash or array.  The argument will be
8787 dereferenced automatically.  This aspect of C<values> is considered highly
8788 experimental.  The exact behaviour may change in a future version of Perl.
8789
8790     for (values $hashref) { ... }
8791     for (values $obj->get_arrayref) { ... }
8792
8793 To avoid confusing would-be users of your code who are running earlier
8794 versions of Perl with mysterious syntax errors, put this sort of thing at
8795 the top of your file to signal that your code will work I<only> on Perls of
8796 a recent vintage:
8797
8798     use 5.012;  # so keys/values/each work on arrays
8799     use 5.014;  # so keys/values/each work on scalars (experimental)
8800
8801 See also C<keys>, C<each>, and C<sort>.
8802
8803 =item vec EXPR,OFFSET,BITS
8804 X<vec> X<bit> X<bit vector>
8805
8806 =for Pod::Functions test or set particular bits in a string
8807
8808 Treats the string in EXPR as a bit vector made up of elements of
8809 width BITS and returns the value of the element specified by OFFSET
8810 as an unsigned integer.  BITS therefore specifies the number of bits
8811 that are reserved for each element in the bit vector.  This must
8812 be a power of two from 1 to 32 (or 64, if your platform supports
8813 that).
8814
8815 If BITS is 8, "elements" coincide with bytes of the input string.
8816
8817 If BITS is 16 or more, bytes of the input string are grouped into chunks
8818 of size BITS/8, and each group is converted to a number as with
8819 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
8820 for BITS==64).  See L<"pack"> for details.
8821
8822 If bits is 4 or less, the string is broken into bytes, then the bits
8823 of each byte are broken into 8/BITS groups.  Bits of a byte are
8824 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
8825 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>.  For example,
8826 breaking the single input byte C<chr(0x36)> into two groups gives a list
8827 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
8828
8829 C<vec> may also be assigned to, in which case parentheses are needed
8830 to give the expression the correct precedence as in
8831
8832     vec($image, $max_x * $x + $y, 8) = 3;
8833
8834 If the selected element is outside the string, the value 0 is returned.
8835 If an element off the end of the string is written to, Perl will first
8836 extend the string with sufficiently many zero bytes.   It is an error
8837 to try to write off the beginning of the string (i.e., negative OFFSET).
8838
8839 If the string happens to be encoded as UTF-8 internally (and thus has
8840 the UTF8 flag set), this is ignored by C<vec>, and it operates on the
8841 internal byte string, not the conceptual character string, even if you
8842 only have characters with values less than 256. 
8843
8844 Strings created with C<vec> can also be manipulated with the logical
8845 operators C<|>, C<&>, C<^>, and C<~>.  These operators will assume a bit
8846 vector operation is desired when both operands are strings.
8847 See L<perlop/"Bitwise String Operators">.
8848
8849 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
8850 The comments show the string after each step.  Note that this code works
8851 in the same way on big-endian or little-endian machines.
8852
8853     my $foo = '';
8854     vec($foo,  0, 32) = 0x5065726C; # 'Perl'
8855
8856     # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
8857     print vec($foo, 0, 8);  # prints 80 == 0x50 == ord('P')
8858
8859     vec($foo,  2, 16) = 0x5065; # 'PerlPe'
8860     vec($foo,  3, 16) = 0x726C; # 'PerlPerl'
8861     vec($foo,  8,  8) = 0x50;   # 'PerlPerlP'
8862     vec($foo,  9,  8) = 0x65;   # 'PerlPerlPe'
8863     vec($foo, 20,  4) = 2;      # 'PerlPerlPe'   . "\x02"
8864     vec($foo, 21,  4) = 7;      # 'PerlPerlPer'
8865                                    # 'r' is "\x72"
8866     vec($foo, 45,  2) = 3;      # 'PerlPerlPer'  . "\x0c"
8867     vec($foo, 93,  1) = 1;      # 'PerlPerlPer'  . "\x2c"
8868     vec($foo, 94,  1) = 1;      # 'PerlPerlPerl'
8869                                    # 'l' is "\x6c"
8870
8871 To transform a bit vector into a string or list of 0's and 1's, use these:
8872
8873     $bits = unpack("b*", $vector);
8874     @bits = split(//, unpack("b*", $vector));
8875
8876 If you know the exact length in bits, it can be used in place of the C<*>.
8877
8878 Here is an example to illustrate how the bits actually fall in place:
8879
8880   #!/usr/bin/perl -wl
8881
8882   print <<'EOT';
8883                                     0         1         2         3
8884                      unpack("V",$_) 01234567890123456789012345678901
8885   ------------------------------------------------------------------
8886   EOT
8887
8888   for $w (0..3) {
8889       $width = 2**$w;
8890       for ($shift=0; $shift < $width; ++$shift) {
8891           for ($off=0; $off < 32/$width; ++$off) {
8892               $str = pack("B*", "0"x32);
8893               $bits = (1<<$shift);
8894               vec($str, $off, $width) = $bits;
8895               $res = unpack("b*",$str);
8896               $val = unpack("V", $str);
8897               write;
8898           }
8899       }
8900   }
8901
8902   format STDOUT =
8903   vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
8904   $off, $width, $bits, $val, $res
8905   .
8906   __END__
8907
8908 Regardless of the machine architecture on which it runs, the 
8909 example above should print the following table:
8910
8911                                     0         1         2         3
8912                      unpack("V",$_) 01234567890123456789012345678901
8913   ------------------------------------------------------------------
8914   vec($_, 0, 1) = 1   ==          1 10000000000000000000000000000000
8915   vec($_, 1, 1) = 1   ==          2 01000000000000000000000000000000
8916   vec($_, 2, 1) = 1   ==          4 00100000000000000000000000000000
8917   vec($_, 3, 1) = 1   ==          8 00010000000000000000000000000000
8918   vec($_, 4, 1) = 1   ==         16 00001000000000000000000000000000
8919   vec($_, 5, 1) = 1   ==         32 00000100000000000000000000000000
8920   vec($_, 6, 1) = 1   ==         64 00000010000000000000000000000000
8921   vec($_, 7, 1) = 1   ==        128 00000001000000000000000000000000
8922   vec($_, 8, 1) = 1   ==        256 00000000100000000000000000000000
8923   vec($_, 9, 1) = 1   ==        512 00000000010000000000000000000000
8924   vec($_,10, 1) = 1   ==       1024 00000000001000000000000000000000
8925   vec($_,11, 1) = 1   ==       2048 00000000000100000000000000000000
8926   vec($_,12, 1) = 1   ==       4096 00000000000010000000000000000000
8927   vec($_,13, 1) = 1   ==       8192 00000000000001000000000000000000
8928   vec($_,14, 1) = 1   ==      16384 00000000000000100000000000000000
8929   vec($_,15, 1) = 1   ==      32768 00000000000000010000000000000000
8930   vec($_,16, 1) = 1   ==      65536 00000000000000001000000000000000
8931   vec($_,17, 1) = 1   ==     131072 00000000000000000100000000000000
8932   vec($_,18, 1) = 1   ==     262144 00000000000000000010000000000000
8933   vec($_,19, 1) = 1   ==     524288 00000000000000000001000000000000
8934   vec($_,20, 1) = 1   ==    1048576 00000000000000000000100000000000
8935   vec($_,21, 1) = 1   ==    2097152 00000000000000000000010000000000
8936   vec($_,22, 1) = 1   ==    4194304 00000000000000000000001000000000
8937   vec($_,23, 1) = 1   ==    8388608 00000000000000000000000100000000
8938   vec($_,24, 1) = 1   ==   16777216 00000000000000000000000010000000
8939   vec($_,25, 1) = 1   ==   33554432 00000000000000000000000001000000
8940   vec($_,26, 1) = 1   ==   67108864 00000000000000000000000000100000
8941   vec($_,27, 1) = 1   ==  134217728 00000000000000000000000000010000
8942   vec($_,28, 1) = 1   ==  268435456 00000000000000000000000000001000
8943   vec($_,29, 1) = 1   ==  536870912 00000000000000000000000000000100
8944   vec($_,30, 1) = 1   == 1073741824 00000000000000000000000000000010
8945   vec($_,31, 1) = 1   == 2147483648 00000000000000000000000000000001
8946   vec($_, 0, 2) = 1   ==          1 10000000000000000000000000000000
8947   vec($_, 1, 2) = 1   ==          4 00100000000000000000000000000000
8948   vec($_, 2, 2) = 1   ==         16 00001000000000000000000000000000
8949   vec($_, 3, 2) = 1   ==         64 00000010000000000000000000000000
8950   vec($_, 4, 2) = 1   ==        256 00000000100000000000000000000000
8951   vec($_, 5, 2) = 1   ==       1024 00000000001000000000000000000000
8952   vec($_, 6, 2) = 1   ==       4096 00000000000010000000000000000000
8953   vec($_, 7, 2) = 1   ==      16384 00000000000000100000000000000000
8954   vec($_, 8, 2) = 1   ==      65536 00000000000000001000000000000000
8955   vec($_, 9, 2) = 1   ==     262144 00000000000000000010000000000000
8956   vec($_,10, 2) = 1   ==    1048576 00000000000000000000100000000000
8957   vec($_,11, 2) = 1   ==    4194304 00000000000000000000001000000000
8958   vec($_,12, 2) = 1   ==   16777216 00000000000000000000000010000000
8959   vec($_,13, 2) = 1   ==   67108864 00000000000000000000000000100000
8960   vec($_,14, 2) = 1   ==  268435456 00000000000000000000000000001000
8961   vec($_,15, 2) = 1   == 1073741824 00000000000000000000000000000010
8962   vec($_, 0, 2) = 2   ==          2 01000000000000000000000000000000
8963   vec($_, 1, 2) = 2   ==          8 00010000000000000000000000000000
8964   vec($_, 2, 2) = 2   ==         32 00000100000000000000000000000000
8965   vec($_, 3, 2) = 2   ==        128 00000001000000000000000000000000
8966   vec($_, 4, 2) = 2   ==        512 00000000010000000000000000000000
8967   vec($_, 5, 2) = 2   ==       2048 00000000000100000000000000000000
8968   vec($_, 6, 2) = 2   ==       8192 00000000000001000000000000000000
8969   vec($_, 7, 2) = 2   ==      32768 00000000000000010000000000000000
8970   vec($_, 8, 2) = 2   ==     131072 00000000000000000100000000000000
8971   vec($_, 9, 2) = 2   ==     524288 00000000000000000001000000000000
8972   vec($_,10, 2) = 2   ==    2097152 00000000000000000000010000000000
8973   vec($_,11, 2) = 2   ==    8388608 00000000000000000000000100000000
8974   vec($_,12, 2) = 2   ==   33554432 00000000000000000000000001000000
8975   vec($_,13, 2) = 2   ==  134217728 00000000000000000000000000010000
8976   vec($_,14, 2) = 2   ==  536870912 00000000000000000000000000000100
8977   vec($_,15, 2) = 2   == 2147483648 00000000000000000000000000000001
8978   vec($_, 0, 4) = 1   ==          1 10000000000000000000000000000000
8979   vec($_, 1, 4) = 1   ==         16 00001000000000000000000000000000
8980   vec($_, 2, 4) = 1   ==        256 00000000100000000000000000000000
8981   vec($_, 3, 4) = 1   ==       4096 00000000000010000000000000000000
8982   vec($_, 4, 4) = 1   ==      65536 00000000000000001000000000000000
8983   vec($_, 5, 4) = 1   ==    1048576 00000000000000000000100000000000
8984   vec($_, 6, 4) = 1   ==   16777216 00000000000000000000000010000000
8985   vec($_, 7, 4) = 1   ==  268435456 00000000000000000000000000001000
8986   vec($_, 0, 4) = 2   ==          2 01000000000000000000000000000000
8987   vec($_, 1, 4) = 2   ==         32 00000100000000000000000000000000
8988   vec($_, 2, 4) = 2   ==        512 00000000010000000000000000000000
8989   vec($_, 3, 4) = 2   ==       8192 00000000000001000000000000000000
8990   vec($_, 4, 4) = 2   ==     131072 00000000000000000100000000000000
8991   vec($_, 5, 4) = 2   ==    2097152 00000000000000000000010000000000
8992   vec($_, 6, 4) = 2   ==   33554432 00000000000000000000000001000000
8993   vec($_, 7, 4) = 2   ==  536870912 00000000000000000000000000000100
8994   vec($_, 0, 4) = 4   ==          4 00100000000000000000000000000000
8995   vec($_, 1, 4) = 4   ==         64 00000010000000000000000000000000
8996   vec($_, 2, 4) = 4   ==       1024 00000000001000000000000000000000
8997   vec($_, 3, 4) = 4   ==      16384 00000000000000100000000000000000
8998   vec($_, 4, 4) = 4   ==     262144 00000000000000000010000000000000
8999   vec($_, 5, 4) = 4   ==    4194304 00000000000000000000001000000000
9000   vec($_, 6, 4) = 4   ==   67108864 00000000000000000000000000100000
9001   vec($_, 7, 4) = 4   == 1073741824 00000000000000000000000000000010
9002   vec($_, 0, 4) = 8   ==          8 00010000000000000000000000000000
9003   vec($_, 1, 4) = 8   ==        128 00000001000000000000000000000000
9004   vec($_, 2, 4) = 8   ==       2048 00000000000100000000000000000000
9005   vec($_, 3, 4) = 8   ==      32768 00000000000000010000000000000000
9006   vec($_, 4, 4) = 8   ==     524288 00000000000000000001000000000000
9007   vec($_, 5, 4) = 8   ==    8388608 00000000000000000000000100000000
9008   vec($_, 6, 4) = 8   ==  134217728 00000000000000000000000000010000
9009   vec($_, 7, 4) = 8   == 2147483648 00000000000000000000000000000001
9010   vec($_, 0, 8) = 1   ==          1 10000000000000000000000000000000
9011   vec($_, 1, 8) = 1   ==        256 00000000100000000000000000000000
9012   vec($_, 2, 8) = 1   ==      65536 00000000000000001000000000000000
9013   vec($_, 3, 8) = 1   ==   16777216 00000000000000000000000010000000
9014   vec($_, 0, 8) = 2   ==          2 01000000000000000000000000000000
9015   vec($_, 1, 8) = 2   ==        512 00000000010000000000000000000000
9016   vec($_, 2, 8) = 2   ==     131072 00000000000000000100000000000000
9017   vec($_, 3, 8) = 2   ==   33554432 00000000000000000000000001000000
9018   vec($_, 0, 8) = 4   ==          4 00100000000000000000000000000000
9019   vec($_, 1, 8) = 4   ==       1024 00000000001000000000000000000000
9020   vec($_, 2, 8) = 4   ==     262144 00000000000000000010000000000000
9021   vec($_, 3, 8) = 4   ==   67108864 00000000000000000000000000100000
9022   vec($_, 0, 8) = 8   ==          8 00010000000000000000000000000000
9023   vec($_, 1, 8) = 8   ==       2048 00000000000100000000000000000000
9024   vec($_, 2, 8) = 8   ==     524288 00000000000000000001000000000000
9025   vec($_, 3, 8) = 8   ==  134217728 00000000000000000000000000010000
9026   vec($_, 0, 8) = 16  ==         16 00001000000000000000000000000000
9027   vec($_, 1, 8) = 16  ==       4096 00000000000010000000000000000000
9028   vec($_, 2, 8) = 16  ==    1048576 00000000000000000000100000000000
9029   vec($_, 3, 8) = 16  ==  268435456 00000000000000000000000000001000
9030   vec($_, 0, 8) = 32  ==         32 00000100000000000000000000000000
9031   vec($_, 1, 8) = 32  ==       8192 00000000000001000000000000000000
9032   vec($_, 2, 8) = 32  ==    2097152 00000000000000000000010000000000
9033   vec($_, 3, 8) = 32  ==  536870912 00000000000000000000000000000100
9034   vec($_, 0, 8) = 64  ==         64 00000010000000000000000000000000
9035   vec($_, 1, 8) = 64  ==      16384 00000000000000100000000000000000
9036   vec($_, 2, 8) = 64  ==    4194304 00000000000000000000001000000000
9037   vec($_, 3, 8) = 64  == 1073741824 00000000000000000000000000000010
9038   vec($_, 0, 8) = 128 ==        128 00000001000000000000000000000000
9039   vec($_, 1, 8) = 128 ==      32768 00000000000000010000000000000000
9040   vec($_, 2, 8) = 128 ==    8388608 00000000000000000000000100000000
9041   vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
9042
9043 =item wait
9044 X<wait>
9045
9046 =for Pod::Functions wait for any child process to die
9047
9048 Behaves like wait(2) on your system: it waits for a child
9049 process to terminate and returns the pid of the deceased process, or
9050 C<-1> if there are no child processes.  The status is returned in C<$?>
9051 and C<${^CHILD_ERROR_NATIVE}>.
9052 Note that a return value of C<-1> could mean that child processes are
9053 being automatically reaped, as described in L<perlipc>.
9054
9055 If you use wait in your handler for $SIG{CHLD} it may accidentally for the
9056 child created by qx() or system().  See L<perlipc> for details.
9057
9058 Portability issues: L<perlport/wait>.
9059
9060 =item waitpid PID,FLAGS
9061 X<waitpid>
9062
9063 =for Pod::Functions wait for a particular child process to die
9064
9065 Waits for a particular child process to terminate and returns the pid of
9066 the deceased process, or C<-1> if there is no such child process.  On some
9067 systems, a value of 0 indicates that there are processes still running.
9068 The status is returned in C<$?> and C<${^CHILD_ERROR_NATIVE}>.  If you say
9069
9070     use POSIX ":sys_wait_h";
9071     #...
9072     do {
9073         $kid = waitpid(-1, WNOHANG);
9074     } while $kid > 0;
9075
9076 then you can do a non-blocking wait for all pending zombie processes.
9077 Non-blocking wait is available on machines supporting either the
9078 waitpid(2) or wait4(2) syscalls.  However, waiting for a particular
9079 pid with FLAGS of C<0> is implemented everywhere.  (Perl emulates the
9080 system call by remembering the status values of processes that have
9081 exited but have not been harvested by the Perl script yet.)
9082
9083 Note that on some systems, a return value of C<-1> could mean that child
9084 processes are being automatically reaped.  See L<perlipc> for details,
9085 and for other examples.
9086
9087 Portability issues: L<perlport/waitpid>.
9088
9089 =item wantarray
9090 X<wantarray> X<context>
9091
9092 =for Pod::Functions get void vs scalar vs list context of current subroutine call
9093
9094 Returns true if the context of the currently executing subroutine or
9095 C<eval> is looking for a list value.  Returns false if the context is
9096 looking for a scalar.  Returns the undefined value if the context is
9097 looking for no value (void context).
9098
9099     return unless defined wantarray; # don't bother doing more
9100     my @a = complex_calculation();
9101     return wantarray ? @a : "@a";
9102
9103 C<wantarray()>'s result is unspecified in the top level of a file,
9104 in a C<BEGIN>, C<UNITCHECK>, C<CHECK>, C<INIT> or C<END> block, or
9105 in a C<DESTROY> method.
9106
9107 This function should have been named wantlist() instead.
9108
9109 =item warn LIST
9110 X<warn> X<warning> X<STDERR>
9111
9112 =for Pod::Functions print debugging info
9113
9114 Prints the value of LIST to STDERR.  If the last element of LIST does
9115 not end in a newline, it appends the same file/line number text as C<die>
9116 does.
9117
9118 If the output is empty and C<$@> already contains a value (typically from a
9119 previous eval) that value is used after appending C<"\t...caught">
9120 to C<$@>.  This is useful for staying almost, but not entirely similar to
9121 C<die>.
9122
9123 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
9124
9125 No message is printed if there is a C<$SIG{__WARN__}> handler
9126 installed.  It is the handler's responsibility to deal with the message
9127 as it sees fit (like, for instance, converting it into a C<die>).  Most
9128 handlers must therefore arrange to actually display the
9129 warnings that they are not prepared to deal with, by calling C<warn>
9130 again in the handler.  Note that this is quite safe and will not
9131 produce an endless loop, since C<__WARN__> hooks are not called from
9132 inside one.
9133
9134 You will find this behavior is slightly different from that of
9135 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
9136 instead call C<die> again to change it).
9137
9138 Using a C<__WARN__> handler provides a powerful way to silence all
9139 warnings (even the so-called mandatory ones).  An example:
9140
9141     # wipe out *all* compile-time warnings
9142     BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
9143     my $foo = 10;
9144     my $foo = 20;          # no warning about duplicate my $foo,
9145                            # but hey, you asked for it!
9146     # no compile-time or run-time warnings before here
9147     $DOWARN = 1;
9148
9149     # run-time warnings enabled after here
9150     warn "\$foo is alive and $foo!";     # does show up
9151
9152 See L<perlvar> for details on setting C<%SIG> entries and for more
9153 examples.  See the Carp module for other kinds of warnings using its
9154 carp() and cluck() functions.
9155
9156 =item write FILEHANDLE
9157 X<write>
9158
9159 =item write EXPR
9160
9161 =item write
9162
9163 =for Pod::Functions print a picture record
9164
9165 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
9166 using the format associated with that file.  By default the format for
9167 a file is the one having the same name as the filehandle, but the
9168 format for the current output channel (see the C<select> function) may be set
9169 explicitly by assigning the name of the format to the C<$~> variable.
9170
9171 Top of form processing is handled automatically:  if there is insufficient
9172 room on the current page for the formatted record, the page is advanced by
9173 writing a form feed and a special top-of-page
9174 format is used to format the new
9175 page header before the record is written.  By default, the top-of-page
9176 format is the name of the filehandle with "_TOP" appended, or "top"
9177 in the current package if the former does not exist.  This would be a
9178 problem with autovivified filehandles, but it may be dynamically set to the
9179 format of your choice by assigning the name to the C<$^> variable while
9180 that filehandle is selected.  The number of lines remaining on the current
9181 page is in variable C<$->, which can be set to C<0> to force a new page.
9182
9183 If FILEHANDLE is unspecified, output goes to the current default output
9184 channel, which starts out as STDOUT but may be changed by the
9185 C<select> operator.  If the FILEHANDLE is an EXPR, then the expression
9186 is evaluated and the resulting string is used to look up the name of
9187 the FILEHANDLE at run time.  For more on formats, see L<perlform>.
9188
9189 Note that write is I<not> the opposite of C<read>.  Unfortunately.
9190
9191 =item y///
9192
9193 =for Pod::Functions transliterate a string
9194
9195 The transliteration operator.  Same as C<tr///>.  See
9196 L<perlop/"Quote-Like Operators">.
9197
9198 =back
9199
9200 =head2 Non-function Keywords by Cross-reference
9201
9202 =head3 perldata
9203
9204 =over
9205
9206 =item __DATA__
9207
9208 =item __END__
9209
9210 These keywords are documented in L<perldata/"Special Literals">.
9211
9212 =back
9213
9214 =head3 perlmod
9215
9216 =over
9217
9218 =item BEGIN
9219
9220 =item CHECK
9221
9222 =item END
9223
9224 =item INIT
9225
9226 =item UNITCHECK
9227
9228 These compile phase keywords are documented in L<perlmod/"BEGIN, UNITCHECK, CHECK, INIT and END">.
9229
9230 =back
9231
9232 =head3 perlobj
9233
9234 =over
9235
9236 =item DESTROY
9237
9238 This method keyword is documented in L<perlobj/"Destructors">.
9239
9240 =back
9241
9242 =head3 perlop
9243
9244 =over
9245
9246 =item and
9247
9248 =item cmp
9249
9250 =item eq
9251
9252 =item ge
9253
9254 =item gt
9255
9256 =item le
9257
9258 =item lt
9259
9260 =item ne
9261
9262 =item not
9263
9264 =item or
9265
9266 =item x
9267
9268 =item xor
9269
9270 These operators are documented in L<perlop>.
9271
9272 =back
9273
9274 =head3 perlsub
9275
9276 =over
9277
9278 =item AUTOLOAD
9279
9280 This keyword is documented in L<perlsub/"Autoloading">.
9281
9282 =back
9283
9284 =head3 perlsyn
9285
9286 =over
9287
9288 =item else
9289
9290 =item elsif
9291
9292 =item for
9293
9294 =item foreach
9295
9296 =item if
9297
9298 =item unless
9299
9300 =item until
9301
9302 =item while
9303
9304 These flow-control keywords are documented in L<perlsyn/"Compound Statements">.
9305
9306 =item elseif
9307
9308 The "else if" keyword is spelled C<elsif> in Perl.  There's no C<elif>
9309 or C<else if> either.  It does parse C<elseif>, but only to warn you
9310 about not using it.
9311
9312 See the documentation for flow-control keywords in L<perlsyn/"Compound
9313 Statements">.
9314
9315 =back
9316
9317 =over
9318
9319 =item default
9320
9321 =item given
9322
9323 =item when
9324
9325 These flow-control keywords related to the experimental switch feature are
9326 documented in L<perlsyn/"Switch Statements">.
9327
9328 =back
9329
9330 =cut