This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Add perl594delta
[perl5.git] / vms / perlvms.pod
1 =head1 NAME
2
3 perlvms - VMS-specific documentation for Perl
4
5 =head1 DESCRIPTION
6
7 Gathered below are notes describing details of Perl 5's 
8 behavior on VMS.  They are a supplement to the regular Perl 5 
9 documentation, so we have focussed on the ways in which Perl 
10 5 functions differently under VMS than it does under Unix, 
11 and on the interactions between Perl and the rest of the 
12 operating system.  We haven't tried to duplicate complete 
13 descriptions of Perl features from the main Perl 
14 documentation, which can be found in the F<[.pod]> 
15 subdirectory of the Perl distribution.
16
17 We hope these notes will save you from confusion and lost 
18 sleep when writing Perl scripts on VMS.  If you find we've 
19 missed something you think should appear here, please don't 
20 hesitate to drop a line to vmsperl@perl.org.
21
22 =head1 Installation
23
24 Directions for building and installing Perl 5 can be found in 
25 the file F<README.vms> in the main source directory of the 
26 Perl distribution..
27
28 =head1 Organization of Perl Images
29
30 =head2 Core Images
31
32 During the installation process, three Perl images are produced.
33 F<Miniperl.Exe> is an executable image which contains all of
34 the basic functionality of Perl, but cannot take advantage of
35 Perl extensions.  It is used to generate several files needed
36 to build the complete Perl and various extensions.  Once you've
37 finished installing Perl, you can delete this image.
38
39 Most of the complete Perl resides in the shareable image
40 F<PerlShr.Exe>, which provides a core to which the Perl executable
41 image and all Perl extensions are linked.  You should place this
42 image in F<Sys$Share>, or define the logical name F<PerlShr> to
43 translate to the full file specification of this image.  It should
44 be world readable.  (Remember that if a user has execute only access
45 to F<PerlShr>, VMS will treat it as if it were a privileged shareable
46 image, and will therefore require all downstream shareable images to be
47 INSTALLed, etc.)
48
49
50 Finally, F<Perl.Exe> is an executable image containing the main
51 entry point for Perl, as well as some initialization code.  It
52 should be placed in a public directory, and made world executable.
53 In order to run Perl with command line arguments, you should
54 define a foreign command to invoke this image.
55
56 =head2 Perl Extensions
57
58 Perl extensions are packages which provide both XS and Perl code
59 to add new functionality to perl.  (XS is a meta-language which
60 simplifies writing C code which interacts with Perl, see
61 L<perlxs> for more details.)  The Perl code for an
62 extension is treated like any other library module - it's
63 made available in your script through the appropriate
64 C<use> or C<require> statement, and usually defines a Perl
65 package containing the extension.
66
67 The portion of the extension provided by the XS code may be
68 connected to the rest of Perl in either of two ways.  In the
69 B<static> configuration, the object code for the extension is
70 linked directly into F<PerlShr.Exe>, and is initialized whenever
71 Perl is invoked.  In the B<dynamic> configuration, the extension's
72 machine code is placed into a separate shareable image, which is
73 mapped by Perl's DynaLoader when the extension is C<use>d or
74 C<require>d in your script.  This allows you to maintain the
75 extension as a separate entity, at the cost of keeping track of the
76 additional shareable image.  Most extensions can be set up as either
77 static or dynamic.
78
79 The source code for an extension usually resides in its own
80 directory.  At least three files are generally provided:
81 I<Extshortname>F<.xs> (where I<Extshortname> is the portion of
82 the extension's name following the last C<::>), containing
83 the XS code, I<Extshortname>F<.pm>, the Perl library module
84 for the extension, and F<Makefile.PL>, a Perl script which uses
85 the C<MakeMaker> library modules supplied with Perl to generate
86 a F<Descrip.MMS> file for the extension.
87
88 =head2 Installing static extensions
89
90 Since static extensions are incorporated directly into
91 F<PerlShr.Exe>, you'll have to rebuild Perl to incorporate a
92 new extension.  You should edit the main F<Descrip.MMS> or F<Makefile>
93 you use to build Perl, adding the extension's name to the C<ext>
94 macro, and the extension's object file to the C<extobj> macro.
95 You'll also need to build the extension's object file, either
96 by adding dependencies to the main F<Descrip.MMS>, or using a
97 separate F<Descrip.MMS> for the extension.  Then, rebuild
98 F<PerlShr.Exe> to incorporate the new code.
99
100 Finally, you'll need to copy the extension's Perl library
101 module to the F<[.>I<Extname>F<]> subdirectory under one
102 of the directories in C<@INC>, where I<Extname> is the name
103 of the extension, with all C<::> replaced by C<.> (e.g.
104 the library module for extension Foo::Bar would be copied
105 to a F<[.Foo.Bar]> subdirectory).
106
107 =head2 Installing dynamic extensions
108
109 In general, the distributed kit for a Perl extension includes
110 a file named Makefile.PL, which is a Perl program which is used
111 to create a F<Descrip.MMS> file which can be used to build and
112 install the files required by the extension.  The kit should be
113 unpacked into a directory tree B<not> under the main Perl source
114 directory, and the procedure for building the extension is simply
115
116     $ perl Makefile.PL  ! Create Descrip.MMS
117     $ mmk               ! Build necessary files
118     $ mmk test          ! Run test code, if supplied
119     $ mmk install       ! Install into public Perl tree
120
121 I<N.B.> The procedure by which extensions are built and
122 tested creates several levels (at least 4) under the
123 directory in which the extension's source files live.
124 For this reason if you are running a version of VMS prior
125 to V7.1 you shouldn't nest the source directory
126 too deeply in your directory structure lest you exceed RMS'
127 maximum of 8 levels of subdirectory in a filespec.  (You
128 can use rooted logical names to get another 8 levels of
129 nesting, if you can't place the files near the top of
130 the physical directory structure.)
131
132 VMS support for this process in the current release of Perl
133 is sufficient to handle most extensions.  However, it does
134 not yet recognize extra libraries required to build shareable
135 images which are part of an extension, so these must be added
136 to the linker options file for the extension by hand.  For
137 instance, if the F<PGPLOT> extension to Perl requires the
138 F<PGPLOTSHR.EXE> shareable image in order to properly link
139 the Perl extension, then the line C<PGPLOTSHR/Share> must
140 be added to the linker options file F<PGPLOT.Opt> produced
141 during the build process for the Perl extension.
142
143 By default, the shareable image for an extension is placed in
144 the F<[.lib.site_perl.auto>I<Arch>.I<Extname>F<]> directory of the
145 installed Perl directory tree (where I<Arch> is F<VMS_VAX> or
146 F<VMS_AXP>, and I<Extname> is the name of the extension, with
147 each C<::> translated to C<.>).  (See the MakeMaker documentation
148 for more details on installation options for extensions.)
149 However, it can be manually placed in any of several locations:
150
151 =over 4
152
153 =item *
154
155 the F<[.Lib.Auto.>I<Arch>I<$PVers>I<Extname>F<]> subdirectory
156 of one of the directories in C<@INC> (where I<PVers>
157 is the version of Perl you're using, as supplied in C<$]>,
158 with '.' converted to '_'), or
159
160 =item *
161
162 one of the directories in C<@INC>, or
163
164 =item *
165
166 a directory which the extensions Perl library module
167 passes to the DynaLoader when asking it to map
168 the shareable image, or
169
170 =item *
171
172 F<Sys$Share> or F<Sys$Library>.
173
174 =back
175
176 If the shareable image isn't in any of these places, you'll need
177 to define a logical name I<Extshortname>, where I<Extshortname>
178 is the portion of the extension's name after the last C<::>, which
179 translates to the full file specification of the shareable image.
180
181 =head1 File specifications
182
183 =head2 Syntax
184
185 We have tried to make Perl aware of both VMS-style and Unix-
186 style file specifications wherever possible.  You may use 
187 either style, or both, on the command line and in scripts, 
188 but you may not combine the two styles within a single file 
189 specification.  VMS Perl interprets Unix pathnames in much
190 the same way as the CRTL (I<e.g.> the first component of
191 an absolute path is read as the device name for the
192 VMS file specification).  There are a set of functions
193 provided in the C<VMS::Filespec> package for explicit
194 interconversion between VMS and Unix syntax; its
195 documentation provides more details.
196
197 Perl is now in the process of evolving to follow the setting of
198 the DECC$* feature logical names in the interpretation of UNIX pathnames.
199 This is still a work in progress.
200
201 For handling extended characters, and case sensitivity, as long as
202 DECC$POSIX_COMPLIANT_PATHNAMES, DECC$FILENAME_UNIX_REPORT, and
203 DECC$FILENAME_UNIX_ONLY are not set, then the older Perl behavior
204 for conversions of file specifications from UNIX to VMS is followed,
205 except that VMS paths with concealed rooted logical names are now
206 translated correctly to UNIX paths.
207
208 With those features set, then new routines may handle the translation,
209 because some of the rules are different.  The presence of ./.../
210 in a UNIX path is no longer translated to the VMS [...].  It will
211 translate to [.^.^.^.].  To be compatible with what MakeMaker expects,
212 if a VMS path can not be translated to a UNIX path when unixify
213 is called, it is passed through unchanged.  So unixify("[...]") will
214 return "[...]".
215
216 The handling of extended characters will also be better with the
217 newer translation routines.  But more work is needed to fully support
218 extended file syntax names.  In particular, at this writing Pathtools
219 can not deal with directories containing some extended characters.
220
221 There are several ambiguous cases where a conversion routine can not
222 determine if an input filename is in UNIX format or in VMS format,
223 since now both VMS UNIX file specifications can have characters in
224 them that could be mistaken for syntax delimiters of the other type.
225 So some pathnames simply can not be used in a mode that allows either
226 type of pathname to be present.
227
228 Perl will tend to assume that an ambiguous filename is in UNIX format.
229
230 Allowing "." as a version delimiter is simply incompatible with
231 determining if a pathname is already VMS format or UNIX with the
232 extended file syntax.  There is no way to know if "perl-5.8.6" that
233 TAR produces is a UNIX "perl-5.8.6" or a VMS "perl-5.8;6" when
234 passing it to unixify() or vmsify().
235
236 The DECC$FILENAME_UNIX_REPORT or the DECC$FILENAME_UNIX_ONLY logical
237 names control how Perl interprets filenames.
238
239 The DECC$FILENAME_UNIX_ONLY setting has not been tested at this time.
240 Perl uses traditional OpenVMS file specifications internally and in
241 the test harness, so this mode may have limited use, or require more
242 changes to make usable.
243
244 Everything about DECC$FILENAME_UNIX_REPORT should be assumed to apply
245 to DECC$FILENAME_UNIX_ONLY mode.  The DECC$FILENAME_UNIX_ONLY differs
246 in that it expects all filenames passed to the C runtime to be already
247 in UNIX format.
248
249 Again, currently most of the core Perl modules have not yet been updated
250 to understand that VMS is not as limited as it use to be.  Fixing that
251 is a work in progress.
252
253 The logical name DECC$POSIX_COMPLIANT_PATHNAMES is new with the
254 RMS Symbolic Link SDK.  This version of Perl does not support it being set.
255
256
257 Filenames are case-insensitive on VAX, and on ODS-2 formatted
258 volumes on ALPHA and I64.
259
260 On ODS-5 volumes filenames are case preserved and on newer
261 versions of OpenVMS can be optionally case sensitive.
262
263 On ALPHA and I64, Perl is in the process of being changed to follow the
264 process case sensitivity setting to report if the file system is case
265 sensitive.
266
267 Perl programs should not assume that VMS is case blind, or that
268 filenames will be in lowercase.
269
270 Programs should use the File::Spec:case_tolerant setting to determine
271 the state, and not the $^O setting.
272
273 For consistency, when the above feature is clear and when not
274 otherwise overridden by DECC feature logical names, most Perl routines
275 return file specifications using lower case letters only,
276 regardless of the case used in the arguments passed to them.
277 (This is true only when running under VMS; Perl respects the
278 case-sensitivity of OSs like Unix.)
279
280 We've tried to minimize the dependence of Perl library 
281 modules on Unix syntax, but you may find that some of these, 
282 as well as some scripts written for Unix systems, will 
283 require that you use Unix syntax, since they will assume that 
284 '/' is the directory separator, I<etc.>  If you find instances 
285 of this in the Perl distribution itself, please let us know, 
286 so we can try to work around them. 
287
288 Also when working on Perl programs on VMS, if you need a syntax
289 in a specific operating system format, then you need to either
290 check the appropriate DECC$ feature logical, or call a conversion
291 routine to force it to that format.
292
293 =head2 Wildcard expansion
294
295 File specifications containing wildcards are allowed both on 
296 the command line and within Perl globs (e.g. C<E<lt>*.cE<gt>>).  If
297 the wildcard filespec uses VMS syntax, the resultant 
298 filespecs will follow VMS syntax; if a Unix-style filespec is 
299 passed in, Unix-style filespecs will be returned.
300 Similar to the behavior of wildcard globbing for a Unix shell,
301 one can escape command line wildcards with double quotation
302 marks C<"> around a perl program command line argument.  However,
303 owing to the stripping of C<"> characters carried out by the C
304 handling of argv you will need to escape a construct such as
305 this one (in a directory containing the files F<PERL.C>, F<PERL.EXE>,
306 F<PERL.H>, and F<PERL.OBJ>):
307
308     $ perl -e "print join(' ',@ARGV)" perl.*
309     perl.c perl.exe perl.h perl.obj
310
311 in the following triple quoted manner:
312
313     $ perl -e "print join(' ',@ARGV)" """perl.*"""
314     perl.*
315
316 In both the case of unquoted command line arguments or in calls
317 to C<glob()> VMS wildcard expansion is performed. (csh-style
318 wildcard expansion is available if you use C<File::Glob::glob>.)
319 If the wildcard filespec contains a device or directory 
320 specification, then the resultant filespecs will also contain 
321 a device and directory; otherwise, device and directory 
322 information are removed.  VMS-style resultant filespecs will 
323 contain a full device and directory, while Unix-style 
324 resultant filespecs will contain only as much of a directory 
325 path as was present in the input filespec.  For example, if 
326 your default directory is Perl_Root:[000000], the expansion 
327 of C<[.t]*.*> will yield filespecs  like 
328 "perl_root:[t]base.dir", while the expansion of C<t/*/*> will 
329 yield filespecs like "t/base.dir".  (This is done to match 
330 the behavior of glob expansion performed by Unix shells.) 
331
332 Similarly, the resultant filespec will contain the file version
333 only if one was present in the input filespec.
334
335
336 =head2 Pipes
337
338 Input and output pipes to Perl filehandles are supported; the 
339 "file name" is passed to lib$spawn() for asynchronous 
340 execution.  You should be careful to close any pipes you have 
341 opened in a Perl script, lest you leave any "orphaned" 
342 subprocesses around when Perl exits. 
343
344 You may also use backticks to invoke a DCL subprocess, whose 
345 output is used as the return value of the expression.  The 
346 string between the backticks is handled as if it were the
347 argument to the C<system> operator (see below).  In this case,
348 Perl will wait for the subprocess to complete before continuing. 
349
350 The mailbox (MBX) that perl can create to communicate with a pipe
351 defaults to a buffer size of 512.  The default buffer size is
352 adjustable via the logical name PERL_MBX_SIZE provided that the
353 value falls between 128 and the SYSGEN parameter MAXBUF inclusive.
354 For example, to double the MBX size from the default within
355 a Perl program, use C<$ENV{'PERL_MBX_SIZE'} = 1024;> and then
356 open and use pipe constructs.  An alternative would be to issue
357 the command:
358
359     $ Define PERL_MBX_SIZE 1024
360
361 before running your wide record pipe program.  A larger value may
362 improve performance at the expense of the BYTLM UAF quota.
363
364 =head1 PERL5LIB and PERLLIB
365
366 The PERL5LIB and PERLLIB logical names work as documented in L<perl>,
367 except that the element separator is '|' instead of ':'.  The
368 directory specifications may use either VMS or Unix syntax.
369
370 =head1 Command line
371
372 =head2 I/O redirection and backgrounding
373
374 Perl for VMS supports redirection of input and output on the 
375 command line, using a subset of Bourne shell syntax:
376
377 =over 4
378
379 =item *
380
381 C<E<lt>file> reads stdin from C<file>,
382
383 =item *
384
385 C<E<gt>file> writes stdout to C<file>,
386
387 =item *
388
389 C<E<gt>E<gt>file> appends stdout to C<file>,
390
391 =item *
392
393 C<2E<gt>file> writes stderr to C<file>,
394
395 =item *
396
397 C<2E<gt>E<gt>file> appends stderr to C<file>, and
398
399 =item *
400
401 C<< 2>&1 >> redirects stderr to stdout.
402
403 =back
404
405 In addition, output may be piped to a subprocess, using the  
406 character '|'.  Anything after this character on the command 
407 line is passed to a subprocess for execution; the subprocess 
408 takes the output of Perl as its input.
409
410 Finally, if the command line ends with '&', the entire 
411 command is run in the background as an asynchronous 
412 subprocess.
413
414 =head2 Command line switches
415
416 The following command line switches behave differently under
417 VMS than described in L<perlrun>.  Note also that in order
418 to pass uppercase switches to Perl, you need to enclose
419 them in double-quotes on the command line, since the CRTL
420 downcases all unquoted strings.
421
422 On newer 64 bit versions of OpenVMS, a process setting now
423 controls if the quoting is needed to preserve the case of
424 command line arguments.
425
426 =over 4
427
428 =item -i
429
430 If the C<-i> switch is present but no extension for a backup
431 copy is given, then inplace editing creates a new version of
432 a file; the existing copy is not deleted.  (Note that if
433 an extension is given, an existing file is renamed to the backup
434 file, as is the case under other operating systems, so it does
435 not remain as a previous version under the original filename.)
436
437 =item -S
438
439 If the C<"-S"> or C<-"S"> switch is present I<and> the script
440 name does not contain a directory, then Perl translates the
441 logical name DCL$PATH as a searchlist, using each translation
442 as a directory in which to look for the script.  In addition,
443 if no file type is specified, Perl looks in each directory
444 for a file matching the name specified, with a blank type,
445 a type of F<.pl>, and a type of F<.com>, in that order.
446
447 =item -u
448
449 The C<-u> switch causes the VMS debugger to be invoked
450 after the Perl program is compiled, but before it has
451 run.  It does not create a core dump file.
452
453 =back
454
455 =head1 Perl functions
456
457 As of the time this document was last revised, the following 
458 Perl functions were implemented in the VMS port of Perl 
459 (functions marked with * are discussed in more detail below):
460
461     file tests*, abs, alarm, atan, backticks*, binmode*, bless,
462     caller, chdir, chmod, chown, chomp, chop, chr,
463     close, closedir, cos, crypt*, defined, delete,
464     die, do, dump*, each, endpwent, eof, eval, exec*,
465     exists, exit, exp, fileno, getc, getlogin, getppid,
466     getpwent*, getpwnam*, getpwuid*, glob, gmtime*, goto,
467     grep, hex, import, index, int, join, keys, kill*,
468     last, lc, lcfirst, length, local, localtime, log, m//,
469     map, mkdir, my, next, no, oct, open, opendir, ord, pack,
470     pipe, pop, pos, print, printf, push, q//, qq//, qw//,
471     qx//*, quotemeta, rand, read, readdir, redo, ref, rename,
472     require, reset, return, reverse, rewinddir, rindex,
473     rmdir, s///, scalar, seek, seekdir, select(internal),
474     select (system call)*, setpwent, shift, sin, sleep,
475     sort, splice, split, sprintf, sqrt, srand, stat,
476     study, substr, sysread, system*, syswrite, tell,
477     telldir, tie, time, times*, tr///, uc, ucfirst, umask,
478     undef, unlink*, unpack, untie, unshift, use, utime*,
479     values, vec, wait, waitpid*, wantarray, warn, write, y///
480
481 The following functions were not implemented in the VMS port, 
482 and calling them produces a fatal error (usually) or 
483 undefined behavior (rarely, we hope):
484
485     chroot, dbmclose, dbmopen, flock, fork*,
486     getpgrp, getpriority, getgrent, getgrgid,
487     getgrnam, setgrent, endgrent, ioctl, link, lstat,
488     msgctl, msgget, msgsend, msgrcv, readlink, semctl,
489     semget, semop, setpgrp, setpriority, shmctl, shmget,
490     shmread, shmwrite, socketpair, symlink, syscall
491
492 The following functions are available on Perls compiled with Dec C
493 5.2 or greater and running VMS 7.0 or greater:
494
495     truncate
496
497 The following functions are available on Perls built on VMS 7.2 or
498 greater:
499
500     fcntl (without locking)
501
502 The following functions may or may not be implemented, 
503 depending on what type of socket support you've built into 
504 your copy of Perl:
505
506     accept, bind, connect, getpeername,
507     gethostbyname, getnetbyname, getprotobyname,
508     getservbyname, gethostbyaddr, getnetbyaddr,
509     getprotobynumber, getservbyport, gethostent,
510     getnetent, getprotoent, getservent, sethostent,
511     setnetent, setprotoent, setservent, endhostent,
512     endnetent, endprotoent, endservent, getsockname,
513     getsockopt, listen, recv, select(system call)*,
514     send, setsockopt, shutdown, socket
515
516 The following function is available on Perls built on 64 bit OpenVMS 8.2
517 with hard links enabled on an ODS-5 formatted build disk.  If someone with
518 an OpenVMS 7.3-1 system were to modify configure.com and test the results,
519 this feature can be brought back to OpenVMS 7.3-1 and later.  Hardlinks
520 must be enabled on the build disk because if the build procedure sees
521 this feature enabled, it uses it.
522
523     link
524
525 The following functions are available on Perls built on 64 bit OpenVMS
526 8.2 and can be implemented on OpenVMS 7.3-2 if someone were to modify
527 configure.com and test the results.  (While in the build, at the time
528 of this writing, they have not been specifically tested.)
529
530    getgrgid, getgrnam, getpwnam, getpwuid,
531    setgrent, ttyname
532
533 The following functions are available on Perls built on 64 bit OpenVMS 8.2
534 and later.  (While in the build, at the time of this writing, they have
535 not been specifically tested.)
536
537    statvfs, socketpair
538
539 The following functions are expected to soon be available on Perls built
540 on 64 bit OpenVMS 8.2 or later with the RMS Symbolic link package.  Use
541 of symbolic links at this time effectively requires the
542 DECC$POSIX_COMPLIANT_PATHNAMES to defined as 3, and operating in a
543 DECC$FILENAME_UNIX_REPORT mode.
544
545     lchown, link, lstat, readlink, symlink
546
547 =over 4
548
549 =item File tests
550
551 The tests C<-b>, C<-B>, C<-c>, C<-C>, C<-d>, C<-e>, C<-f>,
552 C<-o>, C<-M>, C<-s>, C<-S>, C<-t>, C<-T>, and C<-z> work as
553 advertised.  The return values for C<-r>, C<-w>, and C<-x>
554 tell you whether you can actually access the file; this may
555 not reflect the UIC-based file protections.  Since real and
556 effective UIC don't differ under VMS, C<-O>, C<-R>, C<-W>,
557 and C<-X> are equivalent to C<-o>, C<-r>, C<-w>, and C<-x>.
558 Similarly, several other tests, including C<-A>, C<-g>, C<-k>,
559 C<-l>, C<-p>, and C<-u>, aren't particularly meaningful under
560 VMS, and the values returned by these tests reflect whatever
561 your CRTL C<stat()> routine does to the equivalent bits in the
562 st_mode field.  Finally, C<-d> returns true if passed a device
563 specification without an explicit directory (e.g. C<DUA1:>), as
564 well as if passed a directory.
565
566 There are DECC feature logical names AND ODS-5 volume attributes that
567 also control what values are returned for the date fields.
568
569 Note: Some sites have reported problems when using the file-access
570 tests (C<-r>, C<-w>, and C<-x>) on files accessed via DEC's DFS.
571 Specifically, since DFS does not currently provide access to the
572 extended file header of files on remote volumes, attempts to
573 examine the ACL fail, and the file tests will return false,
574 with C<$!> indicating that the file does not exist.  You can
575 use C<stat> on these files, since that checks UIC-based protection
576 only, and then manually check the appropriate bits, as defined by
577 your C compiler's F<stat.h>, in the mode value it returns, if you
578 need an approximation of the file's protections.
579
580 =item backticks
581
582 Backticks create a subprocess, and pass the enclosed string
583 to it for execution as a DCL command.  Since the subprocess is
584 created directly via C<lib$spawn()>, any valid DCL command string
585 may be specified.
586
587 =item binmode FILEHANDLE
588
589 The C<binmode> operator will attempt to insure that no translation
590 of carriage control occurs on input from or output to this filehandle.
591 Since this involves reopening the file and then restoring its
592 file position indicator, if this function returns FALSE, the
593 underlying filehandle may no longer point to an open file, or may
594 point to a different position in the file than before C<binmode>
595 was called.
596
597 Note that C<binmode> is generally not necessary when using normal
598 filehandles; it is provided so that you can control I/O to existing
599 record-structured files when necessary.  You can also use the
600 C<vmsfopen> function in the VMS::Stdio extension to gain finer
601 control of I/O to files and devices with different record structures.
602
603 =item crypt PLAINTEXT, USER
604
605 The C<crypt> operator uses the C<sys$hash_password> system
606 service to generate the hashed representation of PLAINTEXT.
607 If USER is a valid username, the algorithm and salt values
608 are taken from that user's UAF record.  If it is not, then
609 the preferred algorithm and a salt of 0 are used.  The
610 quadword encrypted value is returned as an 8-character string.
611
612 The value returned by C<crypt> may be compared against
613 the encrypted password from the UAF returned by the C<getpw*>
614 functions, in order to authenticate users.  If you're
615 going to do this, remember that the encrypted password in
616 the UAF was generated using uppercase username and
617 password strings; you'll have to upcase the arguments to
618 C<crypt> to insure that you'll get the proper value:
619
620     sub validate_passwd {
621         my($user,$passwd) = @_;
622         my($pwdhash);
623         if ( !($pwdhash = (getpwnam($user))[1]) ||
624                $pwdhash ne crypt("\U$passwd","\U$name") ) {
625             intruder_alert($name);
626         }
627         return 1;
628     }
629
630
631 =item die
632
633 C<die> will force the native VMS exit status to be an SS$_ABORT code
634 if neither of the $! or $? status values are ones that would cause
635 the native status to be interpreted as being what VMS classifies as
636 SEVERE_ERROR severity for DCL error handling.
637
638 When the future POSIX_EXIT mode is active, C<die>, the native VMS exit
639 status value will have either one of the C<$!> or C<$?> or C<$^E> or
640 the UNIX value 255 encoded into it in a way that the effective original
641 value can be decoded by other programs written in C, including Perl
642 and the GNV package.  As per the normal non-VMS behavior of C<die> if
643 either C<$!> or C<$?> are non-zero, one of those values will be
644 encoded into a native VMS status value.  If both of the UNIX status
645 values are 0, and the C<$^E> value is set one of ERROR or SEVERE_ERROR
646 severity, then the C<$^E> value will be used as the exit code as is.
647 If none of the above apply, the UNIX value of 255 will be encoded into
648 a native VMS exit status value.
649
650 Please note a significant difference in the behavior of C<die> in
651 the future POSIX_EXIT mode is that it does not force a VMS
652 SEVERE_ERROR status on exit.  The UNIX exit values of 2 through
653 255 will be encoded in VMS status values with severity levels of
654 SUCCESS.  The UNIX exit value of 1 will be encoded in a VMS status
655 value with a severity level of ERROR.  This is to be compatible with
656 how the VMS C library encodes these values.
657
658 The minimum severity level set by C<die> in a future POSIX_EXIT mode
659 may be changed to be ERROR or higher before that mode becomes fully active
660 depending on the results of testing and further review.  If this is
661 done, the behavior of c<DIE> in the future POSIX_EXIT will close enough
662 to the default mode that most DCL shell scripts will probably not notice
663 a difference.
664
665 See C<$?> for a description of the encoding of the UNIX value to
666 produce a native VMS status containing it.
667
668
669 =item dump
670
671 Rather than causing Perl to abort and dump core, the C<dump>
672 operator invokes the VMS debugger.  If you continue to
673 execute the Perl program under the debugger, control will
674 be transferred to the label specified as the argument to
675 C<dump>, or, if no label was specified, back to the
676 beginning of the program.  All other state of the program
677 (I<e.g.> values of variables, open file handles) are not
678 affected by calling C<dump>.
679
680 =item exec LIST
681
682 A call to C<exec> will cause Perl to exit, and to invoke the command
683 given as an argument to C<exec> via C<lib$do_command>.  If the
684 argument begins with '@' or '$' (other than as part of a filespec),
685 then it is executed as a DCL command.  Otherwise, the first token on
686 the command line is treated as the filespec of an image to run, and
687 an attempt is made to invoke it (using F<.Exe> and the process
688 defaults to expand the filespec) and pass the rest of C<exec>'s
689 argument to it as parameters.  If the token has no file type, and
690 matches a file with null type, then an attempt is made to determine
691 whether the file is an executable image which should be invoked
692 using C<MCR> or a text file which should be passed to DCL as a
693 command procedure.
694
695 =item fork
696
697 While in principle the C<fork> operator could be implemented via
698 (and with the same rather severe limitations as) the CRTL C<vfork()>
699 routine, and while some internal support to do just that is in
700 place, the implementation has never been completed, making C<fork>
701 currently unavailable.  A true kernel C<fork()> is expected in a
702 future version of VMS, and the pseudo-fork based on interpreter
703 threads may be available in a future version of Perl on VMS (see
704 L<perlfork>).  In the meantime, use C<system>, backticks, or piped
705 filehandles to create subprocesses.
706
707 =item getpwent
708
709 =item getpwnam
710
711 =item getpwuid
712
713 These operators obtain the information described in L<perlfunc>,
714 if you have the privileges necessary to retrieve the named user's
715 UAF information via C<sys$getuai>.  If not, then only the C<$name>,
716 C<$uid>, and C<$gid> items are returned.  The C<$dir> item contains
717 the login directory in VMS syntax, while the C<$comment> item
718 contains the login directory in Unix syntax. The C<$gcos> item
719 contains the owner field from the UAF record.  The C<$quota>
720 item is not used.
721
722 =item gmtime
723
724 The C<gmtime> operator will function properly if you have a
725 working CRTL C<gmtime()> routine, or if the logical name
726 SYS$TIMEZONE_DIFFERENTIAL is defined as the number of seconds
727 which must be added to UTC to yield local time.  (This logical
728 name is defined automatically if you are running a version of
729 VMS with built-in UTC support.)  If neither of these cases is
730 true, a warning message is printed, and C<undef> is returned.
731
732 =item kill
733
734 In most cases, C<kill> is implemented via the CRTL's C<kill()>
735 function, so it will behave according to that function's
736 documentation.  If you send a SIGKILL, however, the $DELPRC system
737 service is called directly.  This insures that the target
738 process is actually deleted, if at all possible.  (The CRTL's C<kill()>
739 function is presently implemented via $FORCEX, which is ignored by
740 supervisor-mode images like DCL.)
741
742 Also, negative signal values don't do anything special under
743 VMS; they're just converted to the corresponding positive value.
744
745 =item qx//
746
747 See the entry on C<backticks> above.
748
749 =item select (system call)
750
751 If Perl was not built with socket support, the system call
752 version of C<select> is not available at all.  If socket
753 support is present, then the system call version of
754 C<select> functions only for file descriptors attached
755 to sockets.  It will not provide information about regular
756 files or pipes, since the CRTL C<select()> routine does not
757 provide this functionality.
758
759 =item stat EXPR
760
761 Since VMS keeps track of files according to a different scheme
762 than Unix, it's not really possible to represent the file's ID
763 in the C<st_dev> and C<st_ino> fields of a C<struct stat>.  Perl
764 tries its best, though, and the values it uses are pretty unlikely
765 to be the same for two different files.  We can't guarantee this,
766 though, so caveat scriptor.
767
768 =item system LIST
769
770 The C<system> operator creates a subprocess, and passes its 
771 arguments to the subprocess for execution as a DCL command.  
772 Since the subprocess is created directly via C<lib$spawn()>, any 
773 valid DCL command string may be specified.  If the string begins with
774 '@', it is treated as a DCL command unconditionally.  Otherwise, if
775 the first token contains a character used as a delimiter in file
776 specification (e.g. C<:> or C<]>), an attempt is made to expand it
777 using  a default type of F<.Exe> and the process defaults, and if
778 successful, the resulting file is invoked via C<MCR>. This allows you
779 to invoke an image directly simply by passing the file specification
780 to C<system>, a common Unixish idiom.  If the token has no file type,
781 and matches a file with null type, then an attempt is made to
782 determine whether the file is an executable image which should be
783 invoked using C<MCR> or a text file which should be passed to DCL
784 as a command procedure.
785
786 If LIST consists of the empty string, C<system> spawns an
787 interactive DCL subprocess, in the same fashion as typing
788 B<SPAWN> at the DCL prompt.
789
790 Perl waits for the subprocess to complete before continuing
791 execution in the current process.  As described in L<perlfunc>,
792 the return value of C<system> is a fake "status" which follows
793 POSIX semantics unless the pragma C<use vmsish 'status'> is in
794 effect; see the description of C<$?> in this document for more 
795 detail.  
796
797 =item time
798
799 The value returned by C<time> is the offset in seconds from
800 01-JAN-1970 00:00:00 (just like the CRTL's times() routine), in order
801 to make life easier for code coming in from the POSIX/Unix world.
802
803 =item times
804
805 The array returned by the C<times> operator is divided up 
806 according to the same rules the CRTL C<times()> routine.  
807 Therefore, the "system time" elements will always be 0, since 
808 there is no difference between "user time" and "system" time 
809 under VMS, and the time accumulated by a subprocess may or may 
810 not appear separately in the "child time" field, depending on 
811 whether L<times> keeps track of subprocesses separately.  Note
812 especially that the VAXCRTL (at least) keeps track only of
813 subprocesses spawned using L<fork> and L<exec>; it will not
814 accumulate the times of subprocesses spawned via pipes, L<system>,
815 or backticks.
816
817 =item unlink LIST
818
819 C<unlink> will delete the highest version of a file only; in
820 order to delete all versions, you need to say
821
822     1 while unlink LIST;
823
824 You may need to make this change to scripts written for a
825 Unix system which expect that after a call to C<unlink>,
826 no files with the names passed to C<unlink> will exist.
827 (Note: This can be changed at compile time; if you
828 C<use Config> and C<$Config{'d_unlink_all_versions'}> is
829 C<define>, then C<unlink> will delete all versions of a
830 file on the first call.)
831
832 C<unlink> will delete a file if at all possible, even if it
833 requires changing file protection (though it won't try to
834 change the protection of the parent directory).  You can tell
835 whether you've got explicit delete access to a file by using the
836 C<VMS::Filespec::candelete> operator.  For instance, in order
837 to delete only files to which you have delete access, you could
838 say something like
839
840     sub safe_unlink {
841         my($file,$num);
842         foreach $file (@_) {
843             next unless VMS::Filespec::candelete($file);
844             $num += unlink $file;
845         }
846         $num;
847     }
848
849 (or you could just use C<VMS::Stdio::remove>, if you've installed
850 the VMS::Stdio extension distributed with Perl). If C<unlink> has to
851 change the file protection to delete the file, and you interrupt it
852 in midstream, the file may be left intact, but with a changed ACL
853 allowing you delete access.
854
855 This behavior of C<unlink> is to be compatible with POSIX behavior
856 and not traditional VMS behavior.
857
858 =item utime LIST
859
860 Since ODS-2, the VMS file structure for disk files, does not keep
861 track of access times, this operator changes only the modification
862 time of the file (VMS revision date).
863
864 =item waitpid PID,FLAGS
865
866 If PID is a subprocess started by a piped C<open()> (see L<open>), 
867 C<waitpid> will wait for that subprocess, and return its final status
868 value in C<$?>.  If PID is a subprocess created in some other way (e.g.
869 SPAWNed before Perl was invoked), C<waitpid> will simply check once per
870 second whether the process has completed, and return when it has.  (If
871 PID specifies a process that isn't a subprocess of the current process,
872 and you invoked Perl with the C<-w> switch, a warning will be issued.)
873
874 Returns PID on success, -1 on error.  The FLAGS argument is ignored
875 in all cases.
876
877 =back
878
879 =head1 Perl variables
880
881 The following VMS-specific information applies to the indicated
882 "special" Perl variables, in addition to the general information
883 in L<perlvar>.  Where there is a conflict, this information
884 takes precedence.
885
886 =over 4
887
888 =item %ENV 
889
890 The operation of the C<%ENV> array depends on the translation
891 of the logical name F<PERL_ENV_TABLES>.  If defined, it should
892 be a search list, each element of which specifies a location
893 for C<%ENV> elements.  If you tell Perl to read or set the
894 element C<$ENV{>I<name>C<}>, then Perl uses the translations of
895 F<PERL_ENV_TABLES> as follows:
896
897 =over 4
898
899 =item CRTL_ENV
900
901 This string tells Perl to consult the CRTL's internal C<environ>
902 array of key-value pairs, using I<name> as the key.  In most cases,
903 this contains only a few keys, but if Perl was invoked via the C
904 C<exec[lv]e()> function, as is the case for CGI processing by some
905 HTTP servers, then the C<environ> array may have been populated by
906 the calling program.
907
908 =item CLISYM_[LOCAL]
909
910 A string beginning with C<CLISYM_>tells Perl to consult the CLI's
911 symbol tables, using I<name> as the name of the symbol.  When reading
912 an element of C<%ENV>, the local symbol table is scanned first, followed
913 by the global symbol table..  The characters following C<CLISYM_> are
914 significant when an element of C<%ENV> is set or deleted: if the
915 complete string is C<CLISYM_LOCAL>, the change is made in the local
916 symbol table; otherwise the global symbol table is changed.
917
918 =item Any other string
919
920 If an element of F<PERL_ENV_TABLES> translates to any other string,
921 that string is used as the name of a logical name table, which is
922 consulted using I<name> as the logical name.  The normal search
923 order of access modes is used.
924
925 =back
926
927 F<PERL_ENV_TABLES> is translated once when Perl starts up; any changes
928 you make while Perl is running do not affect the behavior of C<%ENV>.
929 If F<PERL_ENV_TABLES> is not defined, then Perl defaults to consulting
930 first the logical name tables specified by F<LNM$FILE_DEV>, and then
931 the CRTL C<environ> array.
932
933 In all operations on %ENV, the key string is treated as if it 
934 were entirely uppercase, regardless of the case actually 
935 specified in the Perl expression.
936
937 When an element of C<%ENV> is read, the locations to which
938 F<PERL_ENV_TABLES> points are checked in order, and the value
939 obtained from the first successful lookup is returned.  If the
940 name of the C<%ENV> element contains a semi-colon, it and
941 any characters after it are removed.  These are ignored when
942 the CRTL C<environ> array or a CLI symbol table is consulted.
943 However, the name is looked up in a logical name table, the
944 suffix after the semi-colon is treated as the translation index
945 to be used for the lookup.   This lets you look up successive values
946 for search list logical names.  For instance, if you say
947
948    $  Define STORY  once,upon,a,time,there,was
949    $  perl -e "for ($i = 0; $i <= 6; $i++) " -
950    _$ -e "{ print $ENV{'story;'.$i},' '}"
951
952 Perl will print C<ONCE UPON A TIME THERE WAS>, assuming, of course,
953 that F<PERL_ENV_TABLES> is set up so that the logical name C<story>
954 is found, rather than a CLI symbol or CRTL C<environ> element with
955 the same name.
956
957 When an element of C<%ENV> is set to a defined string, the
958 corresponding definition is made in the location to which the
959 first translation of F<PERL_ENV_TABLES> points.  If this causes a
960 logical name to be created, it is defined in supervisor mode.
961 (The same is done if an existing logical name was defined in
962 executive or kernel mode; an existing user or supervisor mode
963 logical name is reset to the new value.)  If the value is an empty
964 string, the logical name's translation is defined as a single NUL
965 (ASCII 00) character, since a logical name cannot translate to a
966 zero-length string.  (This restriction does not apply to CLI symbols
967 or CRTL C<environ> values; they are set to the empty string.)
968 An element of the CRTL C<environ> array can be set only if your
969 copy of Perl knows about the CRTL's C<setenv()> function.  (This is
970 present only in some versions of the DECCRTL; check C<$Config{d_setenv}>
971 to see whether your copy of Perl was built with a CRTL that has this
972 function.)
973
974 When an element of C<%ENV> is set to C<undef>,
975 the element is looked up as if it were being read, and if it is
976 found, it is deleted.  (An item "deleted" from the CRTL C<environ>
977 array is set to the empty string; this can only be done if your
978 copy of Perl knows about the CRTL C<setenv()> function.)  Using
979 C<delete> to remove an element from C<%ENV> has a similar effect,
980 but after the element is deleted, another attempt is made to
981 look up the element, so an inner-mode logical name or a name in
982 another location will replace the logical name just deleted.
983 In either case, only the first value found searching PERL_ENV_TABLES
984 is altered.  It is not possible at present to define a search list
985 logical name via %ENV.
986
987 The element C<$ENV{DEFAULT}> is special: when read, it returns
988 Perl's current default device and directory, and when set, it
989 resets them, regardless of the definition of F<PERL_ENV_TABLES>.
990 It cannot be cleared or deleted; attempts to do so are silently
991 ignored.
992
993 Note that if you want to pass on any elements of the
994 C-local environ array to a subprocess which isn't
995 started by fork/exec, or isn't running a C program, you
996 can "promote" them to logical names in the current
997 process, which will then be inherited by all subprocesses,
998 by saying
999
1000     foreach my $key (qw[C-local keys you want promoted]) {
1001         my $temp = $ENV{$key}; # read from C-local array
1002         $ENV{$key} = $temp;    # and define as logical name
1003     }
1004
1005 (You can't just say C<$ENV{$key} = $ENV{$key}>, since the
1006 Perl optimizer is smart enough to elide the expression.)
1007
1008 Don't try to clear C<%ENV> by saying C<%ENV = ();>, it will throw
1009 a fatal error.  This is equivalent to doing the following from DCL:
1010
1011     DELETE/LOGICAL *
1012
1013 You can imagine how bad things would be if, for example, the SYS$MANAGER
1014 or SYS$SYSTEM logical names were deleted.
1015
1016 At present, the first time you iterate over %ENV using
1017 C<keys>, or C<values>,  you will incur a time penalty as all
1018 logical names are read, in order to fully populate %ENV.
1019 Subsequent iterations will not reread logical names, so they
1020 won't be as slow, but they also won't reflect any changes
1021 to logical name tables caused by other programs.
1022
1023 You do need to be careful with the logical names representing
1024 process-permanent files, such as C<SYS$INPUT> and C<SYS$OUTPUT>.
1025 The translations for these logical names are prepended with a
1026 two-byte binary value (0x1B 0x00) that needs to be stripped off
1027 if you wantto use it. (In previous versions of Perl it wasn't
1028 possible to get the values of these logical names, as the null
1029 byte acted as an end-of-string marker)
1030
1031 =item $!
1032
1033 The string value of C<$!> is that returned by the CRTL's
1034 strerror() function, so it will include the VMS message for
1035 VMS-specific errors.  The numeric value of C<$!> is the
1036 value of C<errno>, except if errno is EVMSERR, in which
1037 case C<$!> contains the value of vaxc$errno.  Setting C<$!>
1038 always sets errno to the value specified.  If this value is
1039 EVMSERR, it also sets vaxc$errno to 4 (NONAME-F-NOMSG), so
1040 that the string value of C<$!> won't reflect the VMS error
1041 message from before C<$!> was set.
1042
1043 =item $^E
1044
1045 This variable provides direct access to VMS status values
1046 in vaxc$errno, which are often more specific than the
1047 generic Unix-style error messages in C<$!>.  Its numeric value
1048 is the value of vaxc$errno, and its string value is the
1049 corresponding VMS message string, as retrieved by sys$getmsg().
1050 Setting C<$^E> sets vaxc$errno to the value specified.
1051
1052 While Perl attempts to keep the vaxc$errno value to be current, if
1053 errno is not EVMSERR, it may not be from the current operation.
1054
1055 =item $?
1056
1057 The "status value" returned in C<$?> is synthesized from the
1058 actual exit status of the subprocess in a way that approximates
1059 POSIX wait(5) semantics, in order to allow Perl programs to
1060 portably test for successful completion of subprocesses.  The
1061 low order 8 bits of C<$?> are always 0 under VMS, since the
1062 termination status of a process may or may not have been
1063 generated by an exception.
1064
1065 The next 8 bits contain the termination status of the program.
1066
1067 If the child process follows the convention of C programs
1068 compiled with the _POSIX_EXIT macro set, the status value will
1069 contain the actual value of 0 to 255 returned by that program
1070 on a normal exit.
1071
1072 With the _POSIX_EXIT macro set, the UNIX exit value of zero is
1073 represented as a VMS native status of 1, and the UNIX values
1074 from 2 to 255 are encoded by the equation:
1075
1076    VMS_status = 0x35a000 + (unix_value * 8) + 1.
1077
1078 And in the special case of unix value 1 the encoding is:
1079
1080    VMS_status = 0x35a000 + 8 + 2 + 0x10000000.
1081
1082 For other termination statuses, the severity portion of the
1083 subprocess' exit status is used: if the severity was success or
1084 informational, these bits are all 0; if the severity was
1085 warning, they contain a value of 1; if the severity was
1086 error or fatal error, they contain the actual severity bits,
1087 which turns out to be a value of 2 for error and 4 for severe_error.
1088 Fatal is another term for the severe_error status.
1089
1090 As a result, C<$?> will always be zero if the subprocess' exit
1091 status indicated successful completion, and non-zero if a
1092 warning or error occurred or a program compliant with encoding
1093 _POSIX_EXIT values was run and set a status.
1094
1095 How can you tell the difference between a non-zero status that is
1096 the result of a VMS native error status or an encoded UNIX status?
1097 You can not unless you look at the ${^CHILD_ERROR_NATIVE} value.
1098 The ${^CHILD_ERROR_NATIVE} value returns the actual VMS status value
1099 and check the severity bits. If the severity bits are equal to 1,
1100 then if the numeric value for C<$?> is between 2 and 255 or 0, then
1101 C<$?> accurately reflects a value passed back from a UNIX application.
1102 If C<$?> is 1, and the severity bits indicate a VMS error (2), then
1103 C<$?> is from a UNIX application exit value.
1104
1105 In practice, Perl scripts that call programs that return _POSIX_EXIT
1106 type status values will be expecting those values, and programs that
1107 call traditional VMS programs will either be expecting the previous
1108 behavior or just checking for a non-zero status.
1109
1110 And success is always the value 0 in all behaviors.
1111
1112 When the actual VMS termination status of the child is an error,
1113 internally the C<$!> value will be set to the closest UNIX errno
1114 value to that error so that Perl scripts that test for error
1115 messages will see the expected UNIX style error message instead
1116 of a VMS message.
1117
1118 Conversely, when setting C<$?> in an END block, an attempt is made
1119 to convert the POSIX value into a native status intelligible to
1120 the operating system upon exiting Perl.  What this boils down to
1121 is that setting C<$?> to zero results in the generic success value
1122 SS$_NORMAL, and setting C<$?> to a non-zero value results in the
1123 generic failure status SS$_ABORT.  See also L<perlport/exit>.
1124
1125 With the future POSIX_EXIT mode set, setting C<$?> will cause the
1126 new value to also be encoded into C<$^E> so that the either the
1127 original parent or child exit status values of 0 to 255
1128 can be automatically recovered by C programs expecting _POSIX_EXIT
1129 behavior.  If both a parent and a child exit value are non-zero, then it
1130 will be assumed that this is actually a VMS native status value to
1131 be passed through.  The special value of 0xFFFF is almost a NOOP as
1132 it will cause the current native VMS status in the C library to
1133 become the current native Perl VMS status, and is handled this way
1134 as consequence of it known to not be a valid native VMS status value.
1135 It is recommend that only values in range of normal UNIX parent or
1136 child status numbers, 0 to 255 are used.
1137
1138 The pragma C<use vmsish 'status'> makes C<$?> reflect the actual 
1139 VMS exit status instead of the default emulation of POSIX status 
1140 described above.  This pragma also disables the conversion of
1141 non-zero values to SS$_ABORT when setting C<$?> in an END
1142 block (but zero will still be converted to SS$_NORMAL).
1143
1144 Do not use the pragma C<use vmsish 'status'> with the future
1145 POSIX_EXIT mode, as they are at times requesting conflicting
1146 actions and the consequence of ignoring this advice will be
1147 undefined to allow future improvements in the POSIX exit handling.
1148
1149 =item $|
1150
1151 Setting C<$|> for an I/O stream causes data to be flushed
1152 all the way to disk on each write (I<i.e.> not just to
1153 the underlying RMS buffers for a file).  In other words,
1154 it's equivalent to calling fflush() and fsync() from C.
1155
1156 =back
1157
1158 =head1 Standard modules with VMS-specific differences
1159
1160 =head2 SDBM_File
1161
1162 SDBM_File works properly on VMS. It has, however, one minor
1163 difference. The database directory file created has a F<.sdbm_dir>
1164 extension rather than a F<.dir> extension. F<.dir> files are VMS filesystem
1165 directory files, and using them for other purposes could cause unacceptable
1166 problems.
1167
1168 =head1 Revision date
1169
1170 This document was last updated on 14-Oct-2005, for Perl 5,
1171 patchlevel 8.
1172
1173 =head1 AUTHOR
1174
1175 Charles Bailey  bailey@cor.newman.upenn.edu
1176 Craig Berry  craigberry@mac.com
1177 Dan Sugalski  dan@sidhe.org
1178 John Malmberg wb8tyw@qsl.net