This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perldelta for 41c9461801eb6e56138478ad9229a3337b4da2b2
[perl5.git] / pod / perlretut.pod
1 =head1 NAME
2
3 perlretut - Perl regular expressions tutorial
4
5 =head1 DESCRIPTION
6
7 This page provides a basic tutorial on understanding, creating and
8 using regular expressions in Perl.  It serves as a complement to the
9 reference page on regular expressions L<perlre>.  Regular expressions
10 are an integral part of the C<m//>, C<s///>, C<qr//> and C<split>
11 operators and so this tutorial also overlaps with
12 L<perlop/"Regexp Quote-Like Operators"> and L<perlfunc/split>.
13
14 Perl is widely renowned for excellence in text processing, and regular
15 expressions are one of the big factors behind this fame.  Perl regular
16 expressions display an efficiency and flexibility unknown in most
17 other computer languages.  Mastering even the basics of regular
18 expressions will allow you to manipulate text with surprising ease.
19
20 What is a regular expression?  A regular expression is simply a string
21 that describes a pattern.  Patterns are in common use these days;
22 examples are the patterns typed into a search engine to find web pages
23 and the patterns used to list files in a directory, e.g., C<ls *.txt>
24 or C<dir *.*>.  In Perl, the patterns described by regular expressions
25 are used to search strings, extract desired parts of strings, and to
26 do search and replace operations.
27
28 Regular expressions have the undeserved reputation of being abstract
29 and difficult to understand.  Regular expressions are constructed using
30 simple concepts like conditionals and loops and are no more difficult
31 to understand than the corresponding C<if> conditionals and C<while>
32 loops in the Perl language itself.  In fact, the main challenge in
33 learning regular expressions is just getting used to the terse
34 notation used to express these concepts.
35
36 This tutorial flattens the learning curve by discussing regular
37 expression concepts, along with their notation, one at a time and with
38 many examples.  The first part of the tutorial will progress from the
39 simplest word searches to the basic regular expression concepts.  If
40 you master the first part, you will have all the tools needed to solve
41 about 98% of your needs.  The second part of the tutorial is for those
42 comfortable with the basics and hungry for more power tools.  It
43 discusses the more advanced regular expression operators and
44 introduces the latest cutting-edge innovations.
45
46 A note: to save time, 'regular expression' is often abbreviated as
47 regexp or regex.  Regexp is a more natural abbreviation than regex, but
48 is harder to pronounce.  The Perl pod documentation is evenly split on
49 regexp vs regex; in Perl, there is more than one way to abbreviate it.
50 We'll use regexp in this tutorial.
51
52 New in v5.22, L<C<use re 'strict'>|re/'strict' mode> applies stricter
53 rules than otherwise when compiling regular expression patterns.  It can
54 find things that, while legal, may not be what you intended.
55
56 =head1 Part 1: The basics
57
58 =head2 Simple word matching
59
60 The simplest regexp is simply a word, or more generally, a string of
61 characters.  A regexp consisting of a word matches any string that
62 contains that word:
63
64     "Hello World" =~ /World/;  # matches
65
66 What is this Perl statement all about? C<"Hello World"> is a simple
67 double-quoted string.  C<World> is the regular expression and the
68 C<//> enclosing C</World/> tells Perl to search a string for a match.
69 The operator C<=~> associates the string with the regexp match and
70 produces a true value if the regexp matched, or false if the regexp
71 did not match.  In our case, C<World> matches the second word in
72 C<"Hello World">, so the expression is true.  Expressions like this
73 are useful in conditionals:
74
75     if ("Hello World" =~ /World/) {
76         print "It matches\n";
77     }
78     else {
79         print "It doesn't match\n";
80     }
81
82 There are useful variations on this theme.  The sense of the match can
83 be reversed by using the C<!~> operator:
84
85     if ("Hello World" !~ /World/) {
86         print "It doesn't match\n";
87     }
88     else {
89         print "It matches\n";
90     }
91
92 The literal string in the regexp can be replaced by a variable:
93
94     $greeting = "World";
95     if ("Hello World" =~ /$greeting/) {
96         print "It matches\n";
97     }
98     else {
99         print "It doesn't match\n";
100     }
101
102 If you're matching against the special default variable C<$_>, the
103 C<$_ =~> part can be omitted:
104
105     $_ = "Hello World";
106     if (/World/) {
107         print "It matches\n";
108     }
109     else {
110         print "It doesn't match\n";
111     }
112
113 And finally, the C<//> default delimiters for a match can be changed
114 to arbitrary delimiters by putting an C<'m'> out front:
115
116     "Hello World" =~ m!World!;   # matches, delimited by '!'
117     "Hello World" =~ m{World};   # matches, note the matching '{}'
118     "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
119                                  # '/' becomes an ordinary char
120
121 C</World/>, C<m!World!>, and C<m{World}> all represent the
122 same thing.  When, e.g., the quote (C<">) is used as a delimiter, the forward
123 slash C<'/'> becomes an ordinary character and can be used in this regexp
124 without trouble.
125
126 Let's consider how different regexps would match C<"Hello World">:
127
128     "Hello World" =~ /world/;  # doesn't match
129     "Hello World" =~ /o W/;    # matches
130     "Hello World" =~ /oW/;     # doesn't match
131     "Hello World" =~ /World /; # doesn't match
132
133 The first regexp C<world> doesn't match because regexps are
134 case-sensitive.  The second regexp matches because the substring
135 S<C<'o W'>> occurs in the string S<C<"Hello World">>.  The space
136 character ' ' is treated like any other character in a regexp and is
137 needed to match in this case.  The lack of a space character is the
138 reason the third regexp C<'oW'> doesn't match.  The fourth regexp
139 C<'World '> doesn't match because there is a space at the end of the
140 regexp, but not at the end of the string.  The lesson here is that
141 regexps must match a part of the string I<exactly> in order for the
142 statement to be true.
143
144 If a regexp matches in more than one place in the string, Perl will
145 always match at the earliest possible point in the string:
146
147     "Hello World" =~ /o/;       # matches 'o' in 'Hello'
148     "That hat is red" =~ /hat/; # matches 'hat' in 'That'
149
150 With respect to character matching, there are a few more points you
151 need to know about.   First of all, not all characters can be used 'as
152 is' in a match.  Some characters, called I<metacharacters>, are reserved
153 for use in regexp notation.  The metacharacters are
154
155     {}[]()^$.|*+?\
156
157 The significance of each of these will be explained
158 in the rest of the tutorial, but for now, it is important only to know
159 that a metacharacter can be matched by putting a backslash before it:
160
161     "2+2=4" =~ /2+2/;    # doesn't match, + is a metacharacter
162     "2+2=4" =~ /2\+2/;   # matches, \+ is treated like an ordinary +
163     "The interval is [0,1)." =~ /[0,1)./     # is a syntax error!
164     "The interval is [0,1)." =~ /\[0,1\)\./  # matches
165     "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/;  # matches
166
167 In the last regexp, the forward slash C<'/'> is also backslashed,
168 because it is used to delimit the regexp.  This can lead to LTS
169 (leaning toothpick syndrome), however, and it is often more readable
170 to change delimiters.
171
172     "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!;  # easier to read
173
174 The backslash character C<'\'> is a metacharacter itself and needs to
175 be backslashed:
176
177     'C:\WIN32' =~ /C:\\WIN/;   # matches
178
179 In addition to the metacharacters, there are some ASCII characters
180 which don't have printable character equivalents and are instead
181 represented by I<escape sequences>.  Common examples are C<\t> for a
182 tab, C<\n> for a newline, C<\r> for a carriage return and C<\a> for a
183 bell (or alert).  If your string is better thought of as a sequence of arbitrary
184 bytes, the octal escape sequence, e.g., C<\033>, or hexadecimal escape
185 sequence, e.g., C<\x1B> may be a more natural representation for your
186 bytes.  Here are some examples of escapes:
187
188     "1000\t2000" =~ m(0\t2)   # matches
189     "1000\n2000" =~ /0\n20/   # matches
190     "1000\t2000" =~ /\000\t2/ # doesn't match, "0" ne "\000"
191     "cat"   =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way
192                                  # to spell cat
193
194 If you've been around Perl a while, all this talk of escape sequences
195 may seem familiar.  Similar escape sequences are used in double-quoted
196 strings and in fact the regexps in Perl are mostly treated as
197 double-quoted strings.  This means that variables can be used in
198 regexps as well.  Just like double-quoted strings, the values of the
199 variables in the regexp will be substituted in before the regexp is
200 evaluated for matching purposes.  So we have:
201
202     $foo = 'house';
203     'housecat' =~ /$foo/;      # matches
204     'cathouse' =~ /cat$foo/;   # matches
205     'housecat' =~ /${foo}cat/; # matches
206
207 So far, so good.  With the knowledge above you can already perform
208 searches with just about any literal string regexp you can dream up.
209 Here is a I<very simple> emulation of the Unix grep program:
210
211     % cat > simple_grep
212     #!/usr/bin/perl
213     $regexp = shift;
214     while (<>) {
215         print if /$regexp/;
216     }
217     ^D
218
219     % chmod +x simple_grep
220
221     % simple_grep abba /usr/dict/words
222     Babbage
223     cabbage
224     cabbages
225     sabbath
226     Sabbathize
227     Sabbathizes
228     sabbatical
229     scabbard
230     scabbards
231
232 This program is easy to understand.  C<#!/usr/bin/perl> is the standard
233 way to invoke a perl program from the shell.
234 S<C<$regexp = shift;>> saves the first command line argument as the
235 regexp to be used, leaving the rest of the command line arguments to
236 be treated as files.  S<C<< while (<>) >>> loops over all the lines in
237 all the files.  For each line, S<C<print if /$regexp/;>> prints the
238 line if the regexp matches the line.  In this line, both C<print> and
239 C</$regexp/> use the default variable C<$_> implicitly.
240
241 With all of the regexps above, if the regexp matched anywhere in the
242 string, it was considered a match.  Sometimes, however, we'd like to
243 specify I<where> in the string the regexp should try to match.  To do
244 this, we would use the I<anchor> metacharacters C<^> and C<$>.  The
245 anchor C<^> means match at the beginning of the string and the anchor
246 C<$> means match at the end of the string, or before a newline at the
247 end of the string.  Here is how they are used:
248
249     "housekeeper" =~ /keeper/;    # matches
250     "housekeeper" =~ /^keeper/;   # doesn't match
251     "housekeeper" =~ /keeper$/;   # matches
252     "housekeeper\n" =~ /keeper$/; # matches
253
254 The second regexp doesn't match because C<^> constrains C<keeper> to
255 match only at the beginning of the string, but C<"housekeeper"> has
256 keeper starting in the middle.  The third regexp does match, since the
257 C<$> constrains C<keeper> to match only at the end of the string.
258
259 When both C<^> and C<$> are used at the same time, the regexp has to
260 match both the beginning and the end of the string, i.e., the regexp
261 matches the whole string.  Consider
262
263     "keeper" =~ /^keep$/;      # doesn't match
264     "keeper" =~ /^keeper$/;    # matches
265     ""       =~ /^$/;          # ^$ matches an empty string
266
267 The first regexp doesn't match because the string has more to it than
268 C<keep>.  Since the second regexp is exactly the string, it
269 matches.  Using both C<^> and C<$> in a regexp forces the complete
270 string to match, so it gives you complete control over which strings
271 match and which don't.  Suppose you are looking for a fellow named
272 bert, off in a string by himself:
273
274     "dogbert" =~ /bert/;   # matches, but not what you want
275
276     "dilbert" =~ /^bert/;  # doesn't match, but ..
277     "bertram" =~ /^bert/;  # matches, so still not good enough
278
279     "bertram" =~ /^bert$/; # doesn't match, good
280     "dilbert" =~ /^bert$/; # doesn't match, good
281     "bert"    =~ /^bert$/; # matches, perfect
282
283 Of course, in the case of a literal string, one could just as easily
284 use the string comparison S<C<$string eq 'bert'>> and it would be
285 more efficient.   The  C<^...$> regexp really becomes useful when we
286 add in the more powerful regexp tools below.
287
288 =head2 Using character classes
289
290 Although one can already do quite a lot with the literal string
291 regexps above, we've only scratched the surface of regular expression
292 technology.  In this and subsequent sections we will introduce regexp
293 concepts (and associated metacharacter notations) that will allow a
294 regexp to represent not just a single character sequence, but a I<whole
295 class> of them.
296
297 One such concept is that of a I<character class>.  A character class
298 allows a set of possible characters, rather than just a single
299 character, to match at a particular point in a regexp.  You can define
300 your own custom character classes.  These
301 are denoted by brackets C<[...]>, with the set of characters
302 to be possibly matched inside.  Here are some examples:
303
304     /cat/;       # matches 'cat'
305     /[bcr]at/;   # matches 'bat, 'cat', or 'rat'
306     /item[0123456789]/;  # matches 'item0' or ... or 'item9'
307     "abc" =~ /[cab]/;    # matches 'a'
308
309 In the last statement, even though C<'c'> is the first character in
310 the class, C<'a'> matches because the first character position in the
311 string is the earliest point at which the regexp can match.
312
313     /[yY][eE][sS]/;      # match 'yes' in a case-insensitive way
314                          # 'yes', 'Yes', 'YES', etc.
315
316 This regexp displays a common task: perform a case-insensitive
317 match.  Perl provides a way of avoiding all those brackets by simply
318 appending an C<'i'> to the end of the match.  Then C</[yY][eE][sS]/;>
319 can be rewritten as C</yes/i;>.  The C<'i'> stands for
320 case-insensitive and is an example of a I<modifier> of the matching
321 operation.  We will meet other modifiers later in the tutorial.
322
323 We saw in the section above that there were ordinary characters, which
324 represented themselves, and special characters, which needed a
325 backslash C<\> to represent themselves.  The same is true in a
326 character class, but the sets of ordinary and special characters
327 inside a character class are different than those outside a character
328 class.  The special characters for a character class are C<-]\^$> (and
329 the pattern delimiter, whatever it is).
330 C<]> is special because it denotes the end of a character class.  C<$> is
331 special because it denotes a scalar variable.  C<\> is special because
332 it is used in escape sequences, just like above.  Here is how the
333 special characters C<]$\> are handled:
334
335    /[\]c]def/; # matches ']def' or 'cdef'
336    $x = 'bcr';
337    /[$x]at/;   # matches 'bat', 'cat', or 'rat'
338    /[\$x]at/;  # matches '$at' or 'xat'
339    /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'
340
341 The last two are a little tricky.  In C<[\$x]>, the backslash protects
342 the dollar sign, so the character class has two members C<$> and C<x>.
343 In C<[\\$x]>, the backslash is protected, so C<$x> is treated as a
344 variable and substituted in double quote fashion.
345
346 The special character C<'-'> acts as a range operator within character
347 classes, so that a contiguous set of characters can be written as a
348 range.  With ranges, the unwieldy C<[0123456789]> and C<[abc...xyz]>
349 become the svelte C<[0-9]> and C<[a-z]>.  Some examples are
350
351     /item[0-9]/;  # matches 'item0' or ... or 'item9'
352     /[0-9bx-z]aa/;  # matches '0aa', ..., '9aa',
353                     # 'baa', 'xaa', 'yaa', or 'zaa'
354     /[0-9a-fA-F]/;  # matches a hexadecimal digit
355     /[0-9a-zA-Z_]/; # matches a "word" character,
356                     # like those in a Perl variable name
357
358 If C<'-'> is the first or last character in a character class, it is
359 treated as an ordinary character; C<[-ab]>, C<[ab-]> and C<[a\-b]> are
360 all equivalent.
361
362 The special character C<^> in the first position of a character class
363 denotes a I<negated character class>, which matches any character but
364 those in the brackets.  Both C<[...]> and C<[^...]> must match a
365 character, or the match fails.  Then
366
367     /[^a]at/;  # doesn't match 'aat' or 'at', but matches
368                # all other 'bat', 'cat, '0at', '%at', etc.
369     /[^0-9]/;  # matches a non-numeric character
370     /[a^]at/;  # matches 'aat' or '^at'; here '^' is ordinary
371
372 Now, even C<[0-9]> can be a bother to write multiple times, so in the
373 interest of saving keystrokes and making regexps more readable, Perl
374 has several abbreviations for common character classes, as shown below.
375 Since the introduction of Unicode, unless the C<//a> modifier is in
376 effect, these character classes match more than just a few characters in
377 the ASCII range.
378
379 =over 4
380
381 =item *
382
383 \d matches a digit, not just [0-9] but also digits from non-roman scripts
384
385 =item *
386
387 \s matches a whitespace character, the set [\ \t\r\n\f] and others
388
389 =item *
390
391 \w matches a word character (alphanumeric or _), not just [0-9a-zA-Z_]
392 but also digits and characters from non-roman scripts
393
394 =item *
395
396 \D is a negated \d; it represents any other character than a digit, or [^\d]
397
398 =item *
399
400 \S is a negated \s; it represents any non-whitespace character [^\s]
401
402 =item *
403
404 \W is a negated \w; it represents any non-word character [^\w]
405
406 =item *
407
408 The period '.' matches any character but "\n" (unless the modifier C<//s> is
409 in effect, as explained below).
410
411 =item *
412
413 \N, like the period, matches any character but "\n", but it does so
414 regardless of whether the modifier C<//s> is in effect.
415
416 =back
417
418 The C<//a> modifier, available starting in Perl 5.14,  is used to
419 restrict the matches of \d, \s, and \w to just those in the ASCII range.
420 It is useful to keep your program from being needlessly exposed to full
421 Unicode (and its accompanying security considerations) when all you want
422 is to process English-like text.  (The "a" may be doubled, C<//aa>, to
423 provide even more restrictions, preventing case-insensitive matching of
424 ASCII with non-ASCII characters; otherwise a Unicode "Kelvin Sign"
425 would caselessly match a "k" or "K".)
426
427 The C<\d\s\w\D\S\W> abbreviations can be used both inside and outside
428 of bracketed character classes.  Here are some in use:
429
430     /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
431     /[\d\s]/;         # matches any digit or whitespace character
432     /\w\W\w/;         # matches a word char, followed by a
433                       # non-word char, followed by a word char
434     /..rt/;           # matches any two chars, followed by 'rt'
435     /end\./;          # matches 'end.'
436     /end[.]/;         # same thing, matches 'end.'
437
438 Because a period is a metacharacter, it needs to be escaped to match
439 as an ordinary period. Because, for example, C<\d> and C<\w> are sets
440 of characters, it is incorrect to think of C<[^\d\w]> as C<[\D\W]>; in
441 fact C<[^\d\w]> is the same as C<[^\w]>, which is the same as
442 C<[\W]>. Think DeMorgan's laws.
443
444 In actuality, the period and C<\d\s\w\D\S\W> abbreviations are
445 themselves types of character classes, so the ones surrounded by
446 brackets are just one type of character class.  When we need to make a
447 distinction, we refer to them as "bracketed character classes."
448
449 An anchor useful in basic regexps is the I<word anchor>
450 C<\b>.  This matches a boundary between a word character and a non-word
451 character C<\w\W> or C<\W\w>:
452
453     $x = "Housecat catenates house and cat";
454     $x =~ /cat/;    # matches cat in 'housecat'
455     $x =~ /\bcat/;  # matches cat in 'catenates'
456     $x =~ /cat\b/;  # matches cat in 'housecat'
457     $x =~ /\bcat\b/;  # matches 'cat' at end of string
458
459 Note in the last example, the end of the string is considered a word
460 boundary.
461
462 You might wonder why C<'.'> matches everything but C<"\n"> - why not
463 every character? The reason is that often one is matching against
464 lines and would like to ignore the newline characters.  For instance,
465 while the string C<"\n"> represents one line, we would like to think
466 of it as empty.  Then
467
468     ""   =~ /^$/;    # matches
469     "\n" =~ /^$/;    # matches, $ anchors before "\n"
470
471     ""   =~ /./;      # doesn't match; it needs a char
472     ""   =~ /^.$/;    # doesn't match; it needs a char
473     "\n" =~ /^.$/;    # doesn't match; it needs a char other than "\n"
474     "a"  =~ /^.$/;    # matches
475     "a\n"  =~ /^.$/;  # matches, $ anchors before "\n"
476
477 This behavior is convenient, because we usually want to ignore
478 newlines when we count and match characters in a line.  Sometimes,
479 however, we want to keep track of newlines.  We might even want C<^>
480 and C<$> to anchor at the beginning and end of lines within the
481 string, rather than just the beginning and end of the string.  Perl
482 allows us to choose between ignoring and paying attention to newlines
483 by using the C<//s> and C<//m> modifiers.  C<//s> and C<//m> stand for
484 single line and multi-line and they determine whether a string is to
485 be treated as one continuous string, or as a set of lines.  The two
486 modifiers affect two aspects of how the regexp is interpreted: 1) how
487 the C<'.'> character class is defined, and 2) where the anchors C<^>
488 and C<$> are able to match.  Here are the four possible combinations:
489
490 =over 4
491
492 =item *
493
494 no modifiers (//): Default behavior.  C<'.'> matches any character
495 except C<"\n">.  C<^> matches only at the beginning of the string and
496 C<$> matches only at the end or before a newline at the end.
497
498 =item *
499
500 s modifier (//s): Treat string as a single long line.  C<'.'> matches
501 any character, even C<"\n">.  C<^> matches only at the beginning of
502 the string and C<$> matches only at the end or before a newline at the
503 end.
504
505 =item *
506
507 m modifier (//m): Treat string as a set of multiple lines.  C<'.'>
508 matches any character except C<"\n">.  C<^> and C<$> are able to match
509 at the start or end of I<any> line within the string.
510
511 =item *
512
513 both s and m modifiers (//sm): Treat string as a single long line, but
514 detect multiple lines.  C<'.'> matches any character, even
515 C<"\n">.  C<^> and C<$>, however, are able to match at the start or end
516 of I<any> line within the string.
517
518 =back
519
520 Here are examples of C<//s> and C<//m> in action:
521
522     $x = "There once was a girl\nWho programmed in Perl\n";
523
524     $x =~ /^Who/;   # doesn't match, "Who" not at start of string
525     $x =~ /^Who/s;  # doesn't match, "Who" not at start of string
526     $x =~ /^Who/m;  # matches, "Who" at start of second line
527     $x =~ /^Who/sm; # matches, "Who" at start of second line
528
529     $x =~ /girl.Who/;   # doesn't match, "." doesn't match "\n"
530     $x =~ /girl.Who/s;  # matches, "." matches "\n"
531     $x =~ /girl.Who/m;  # doesn't match, "." doesn't match "\n"
532     $x =~ /girl.Who/sm; # matches, "." matches "\n"
533
534 Most of the time, the default behavior is what is wanted, but C<//s> and
535 C<//m> are occasionally very useful.  If C<//m> is being used, the start
536 of the string can still be matched with C<\A> and the end of the string
537 can still be matched with the anchors C<\Z> (matches both the end and
538 the newline before, like C<$>), and C<\z> (matches only the end):
539
540     $x =~ /^Who/m;   # matches, "Who" at start of second line
541     $x =~ /\AWho/m;  # doesn't match, "Who" is not at start of string
542
543     $x =~ /girl$/m;  # matches, "girl" at end of first line
544     $x =~ /girl\Z/m; # doesn't match, "girl" is not at end of string
545
546     $x =~ /Perl\Z/m; # matches, "Perl" is at newline before end
547     $x =~ /Perl\z/m; # doesn't match, "Perl" is not at end of string
548
549 We now know how to create choices among classes of characters in a
550 regexp.  What about choices among words or character strings? Such
551 choices are described in the next section.
552
553 =head2 Matching this or that
554
555 Sometimes we would like our regexp to be able to match different
556 possible words or character strings.  This is accomplished by using
557 the I<alternation> metacharacter C<|>.  To match C<dog> or C<cat>, we
558 form the regexp C<dog|cat>.  As before, Perl will try to match the
559 regexp at the earliest possible point in the string.  At each
560 character position, Perl will first try to match the first
561 alternative, C<dog>.  If C<dog> doesn't match, Perl will then try the
562 next alternative, C<cat>.  If C<cat> doesn't match either, then the
563 match fails and Perl moves to the next position in the string.  Some
564 examples:
565
566     "cats and dogs" =~ /cat|dog|bird/;  # matches "cat"
567     "cats and dogs" =~ /dog|cat|bird/;  # matches "cat"
568
569 Even though C<dog> is the first alternative in the second regexp,
570 C<cat> is able to match earlier in the string.
571
572     "cats"          =~ /c|ca|cat|cats/; # matches "c"
573     "cats"          =~ /cats|cat|ca|c/; # matches "cats"
574
575 Here, all the alternatives match at the first string position, so the
576 first alternative is the one that matches.  If some of the
577 alternatives are truncations of the others, put the longest ones first
578 to give them a chance to match.
579
580     "cab" =~ /a|b|c/ # matches "c"
581                      # /a|b|c/ == /[abc]/
582
583 The last example points out that character classes are like
584 alternations of characters.  At a given character position, the first
585 alternative that allows the regexp match to succeed will be the one
586 that matches.
587
588 =head2 Grouping things and hierarchical matching
589
590 Alternation allows a regexp to choose among alternatives, but by
591 itself it is unsatisfying.  The reason is that each alternative is a whole
592 regexp, but sometime we want alternatives for just part of a
593 regexp.  For instance, suppose we want to search for housecats or
594 housekeepers.  The regexp C<housecat|housekeeper> fits the bill, but is
595 inefficient because we had to type C<house> twice.  It would be nice to
596 have parts of the regexp be constant, like C<house>, and some
597 parts have alternatives, like C<cat|keeper>.
598
599 The I<grouping> metacharacters C<()> solve this problem.  Grouping
600 allows parts of a regexp to be treated as a single unit.  Parts of a
601 regexp are grouped by enclosing them in parentheses.  Thus we could solve
602 the C<housecat|housekeeper> by forming the regexp as
603 C<house(cat|keeper)>.  The regexp C<house(cat|keeper)> means match
604 C<house> followed by either C<cat> or C<keeper>.  Some more examples
605 are
606
607     /(a|b)b/;    # matches 'ab' or 'bb'
608     /(ac|b)b/;   # matches 'acb' or 'bb'
609     /(^a|b)c/;   # matches 'ac' at start of string or 'bc' anywhere
610     /(a|[bc])d/; # matches 'ad', 'bd', or 'cd'
611
612     /house(cat|)/;  # matches either 'housecat' or 'house'
613     /house(cat(s|)|)/;  # matches either 'housecats' or 'housecat' or
614                         # 'house'.  Note groups can be nested.
615
616     /(19|20|)\d\d/;  # match years 19xx, 20xx, or the Y2K problem, xx
617     "20" =~ /(19|20|)\d\d/;  # matches the null alternative '()\d\d',
618                              # because '20\d\d' can't match
619
620 Alternations behave the same way in groups as out of them: at a given
621 string position, the leftmost alternative that allows the regexp to
622 match is taken.  So in the last example at the first string position,
623 C<"20"> matches the second alternative, but there is nothing left over
624 to match the next two digits C<\d\d>.  So Perl moves on to the next
625 alternative, which is the null alternative and that works, since
626 C<"20"> is two digits.
627
628 The process of trying one alternative, seeing if it matches, and
629 moving on to the next alternative, while going back in the string
630 from where the previous alternative was tried, if it doesn't, is called
631 I<backtracking>.  The term 'backtracking' comes from the idea that
632 matching a regexp is like a walk in the woods.  Successfully matching
633 a regexp is like arriving at a destination.  There are many possible
634 trailheads, one for each string position, and each one is tried in
635 order, left to right.  From each trailhead there may be many paths,
636 some of which get you there, and some which are dead ends.  When you
637 walk along a trail and hit a dead end, you have to backtrack along the
638 trail to an earlier point to try another trail.  If you hit your
639 destination, you stop immediately and forget about trying all the
640 other trails.  You are persistent, and only if you have tried all the
641 trails from all the trailheads and not arrived at your destination, do
642 you declare failure.  To be concrete, here is a step-by-step analysis
643 of what Perl does when it tries to match the regexp
644
645     "abcde" =~ /(abd|abc)(df|d|de)/;
646
647 =over 4
648
649 =item Z<>0
650
651 Start with the first letter in the string 'a'.
652
653 =item Z<>1
654
655 Try the first alternative in the first group 'abd'.
656
657 =item Z<>2
658
659 Match 'a' followed by 'b'. So far so good.
660
661 =item Z<>3
662
663 'd' in the regexp doesn't match 'c' in the string - a dead
664 end.  So backtrack two characters and pick the second alternative in
665 the first group 'abc'.
666
667 =item Z<>4
668
669 Match 'a' followed by 'b' followed by 'c'.  We are on a roll
670 and have satisfied the first group. Set $1 to 'abc'.
671
672 =item Z<>5
673
674 Move on to the second group and pick the first alternative
675 'df'.
676
677 =item Z<>6
678
679 Match the 'd'.
680
681 =item Z<>7
682
683 'f' in the regexp doesn't match 'e' in the string, so a dead
684 end.  Backtrack one character and pick the second alternative in the
685 second group 'd'.
686
687 =item Z<>8
688
689 'd' matches. The second grouping is satisfied, so set $2 to
690 'd'.
691
692 =item Z<>9
693
694 We are at the end of the regexp, so we are done! We have
695 matched 'abcd' out of the string "abcde".
696
697 =back
698
699 There are a couple of things to note about this analysis.  First, the
700 third alternative in the second group 'de' also allows a match, but we
701 stopped before we got to it - at a given character position, leftmost
702 wins.  Second, we were able to get a match at the first character
703 position of the string 'a'.  If there were no matches at the first
704 position, Perl would move to the second character position 'b' and
705 attempt the match all over again.  Only when all possible paths at all
706 possible character positions have been exhausted does Perl give
707 up and declare S<C<$string =~ /(abd|abc)(df|d|de)/;>> to be false.
708
709 Even with all this work, regexp matching happens remarkably fast.  To
710 speed things up, Perl compiles the regexp into a compact sequence of
711 opcodes that can often fit inside a processor cache.  When the code is
712 executed, these opcodes can then run at full throttle and search very
713 quickly.
714
715 =head2 Extracting matches
716
717 The grouping metacharacters C<()> also serve another completely
718 different function: they allow the extraction of the parts of a string
719 that matched.  This is very useful to find out what matched and for
720 text processing in general.  For each grouping, the part that matched
721 inside goes into the special variables C<$1>, C<$2>, etc.  They can be
722 used just as ordinary variables:
723
724     # extract hours, minutes, seconds
725     if ($time =~ /(\d\d):(\d\d):(\d\d)/) {    # match hh:mm:ss format
726         $hours = $1;
727         $minutes = $2;
728         $seconds = $3;
729     }
730
731 Now, we know that in scalar context,
732 S<C<$time =~ /(\d\d):(\d\d):(\d\d)/>> returns a true or false
733 value.  In list context, however, it returns the list of matched values
734 C<($1,$2,$3)>.  So we could write the code more compactly as
735
736     # extract hours, minutes, seconds
737     ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);
738
739 If the groupings in a regexp are nested, C<$1> gets the group with the
740 leftmost opening parenthesis, C<$2> the next opening parenthesis,
741 etc.  Here is a regexp with nested groups:
742
743     /(ab(cd|ef)((gi)|j))/;
744      1  2      34
745
746 If this regexp matches, C<$1> contains a string starting with
747 C<'ab'>, C<$2> is either set to C<'cd'> or C<'ef'>, C<$3> equals either
748 C<'gi'> or C<'j'>, and C<$4> is either set to C<'gi'>, just like C<$3>,
749 or it remains undefined.
750
751 For convenience, Perl sets C<$+> to the string held by the highest numbered
752 C<$1>, C<$2>,... that got assigned (and, somewhat related, C<$^N> to the
753 value of the C<$1>, C<$2>,... most-recently assigned; i.e. the C<$1>,
754 C<$2>,... associated with the rightmost closing parenthesis used in the
755 match).
756
757
758 =head2 Backreferences
759
760 Closely associated with the matching variables C<$1>, C<$2>, ... are
761 the I<backreferences> C<\g1>, C<\g2>,...  Backreferences are simply
762 matching variables that can be used I<inside> a regexp.  This is a
763 really nice feature; what matches later in a regexp is made to depend on
764 what matched earlier in the regexp.  Suppose we wanted to look
765 for doubled words in a text, like 'the the'.  The following regexp finds
766 all 3-letter doubles with a space in between:
767
768     /\b(\w\w\w)\s\g1\b/;
769
770 The grouping assigns a value to \g1, so that the same 3-letter sequence
771 is used for both parts.
772
773 A similar task is to find words consisting of two identical parts:
774
775     % simple_grep '^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$' /usr/dict/words
776     beriberi
777     booboo
778     coco
779     mama
780     murmur
781     papa
782
783 The regexp has a single grouping which considers 4-letter
784 combinations, then 3-letter combinations, etc., and uses C<\g1> to look for
785 a repeat.  Although C<$1> and C<\g1> represent the same thing, care should be
786 taken to use matched variables C<$1>, C<$2>,... only I<outside> a regexp
787 and backreferences C<\g1>, C<\g2>,... only I<inside> a regexp; not doing
788 so may lead to surprising and unsatisfactory results.
789
790
791 =head2 Relative backreferences
792
793 Counting the opening parentheses to get the correct number for a
794 backreference is error-prone as soon as there is more than one
795 capturing group.  A more convenient technique became available
796 with Perl 5.10: relative backreferences. To refer to the immediately
797 preceding capture group one now may write C<\g{-1}>, the next but
798 last is available via C<\g{-2}>, and so on.
799
800 Another good reason in addition to readability and maintainability
801 for using relative backreferences is illustrated by the following example,
802 where a simple pattern for matching peculiar strings is used:
803
804     $a99a = '([a-z])(\d)\g2\g1';   # matches a11a, g22g, x33x, etc.
805
806 Now that we have this pattern stored as a handy string, we might feel
807 tempted to use it as a part of some other pattern:
808
809     $line = "code=e99e";
810     if ($line =~ /^(\w+)=$a99a$/){   # unexpected behavior!
811         print "$1 is valid\n";
812     } else {
813         print "bad line: '$line'\n";
814     }
815
816 But this doesn't match, at least not the way one might expect. Only
817 after inserting the interpolated C<$a99a> and looking at the resulting
818 full text of the regexp is it obvious that the backreferences have
819 backfired. The subexpression C<(\w+)> has snatched number 1 and
820 demoted the groups in C<$a99a> by one rank. This can be avoided by
821 using relative backreferences:
822
823     $a99a = '([a-z])(\d)\g{-1}\g{-2}';  # safe for being interpolated
824
825
826 =head2 Named backreferences
827
828 Perl 5.10 also introduced named capture groups and named backreferences.
829 To attach a name to a capturing group, you write either
830 C<< (?<name>...) >> or C<< (?'name'...) >>.  The backreference may
831 then be written as C<\g{name}>.  It is permissible to attach the
832 same name to more than one group, but then only the leftmost one of the
833 eponymous set can be referenced.  Outside of the pattern a named
834 capture group is accessible through the C<%+> hash.
835
836 Assuming that we have to match calendar dates which may be given in one
837 of the three formats yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write
838 three suitable patterns where we use 'd', 'm' and 'y' respectively as the
839 names of the groups capturing the pertaining components of a date. The
840 matching operation combines the three patterns as alternatives:
841
842     $fmt1 = '(?<y>\d\d\d\d)-(?<m>\d\d)-(?<d>\d\d)';
843     $fmt2 = '(?<m>\d\d)/(?<d>\d\d)/(?<y>\d\d\d\d)';
844     $fmt3 = '(?<d>\d\d)\.(?<m>\d\d)\.(?<y>\d\d\d\d)';
845     for my $d qw( 2006-10-21 15.01.2007 10/31/2005 ){
846         if ( $d =~ m{$fmt1|$fmt2|$fmt3} ){
847             print "day=$+{d} month=$+{m} year=$+{y}\n";
848         }
849     }
850
851 If any of the alternatives matches, the hash C<%+> is bound to contain the
852 three key-value pairs.
853
854
855 =head2 Alternative capture group numbering
856
857 Yet another capturing group numbering technique (also as from Perl 5.10)
858 deals with the problem of referring to groups within a set of alternatives.
859 Consider a pattern for matching a time of the day, civil or military style:
860
861     if ( $time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/ ){
862         # process hour and minute
863     }
864
865 Processing the results requires an additional if statement to determine
866 whether C<$1> and C<$2> or C<$3> and C<$4> contain the goodies. It would
867 be easier if we could use group numbers 1 and 2 in second alternative as
868 well, and this is exactly what the parenthesized construct C<(?|...)>,
869 set around an alternative achieves. Here is an extended version of the
870 previous pattern:
871
872   if($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/){
873       print "hour=$1 minute=$2 zone=$3\n";
874   }
875
876 Within the alternative numbering group, group numbers start at the same
877 position for each alternative. After the group, numbering continues
878 with one higher than the maximum reached across all the alternatives.
879
880 =head2 Position information
881
882 In addition to what was matched, Perl also provides the
883 positions of what was matched as contents of the C<@-> and C<@+>
884 arrays. C<$-[0]> is the position of the start of the entire match and
885 C<$+[0]> is the position of the end. Similarly, C<$-[n]> is the
886 position of the start of the C<$n> match and C<$+[n]> is the position
887 of the end. If C<$n> is undefined, so are C<$-[n]> and C<$+[n]>. Then
888 this code
889
890     $x = "Mmm...donut, thought Homer";
891     $x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches
892     foreach $exp (1..$#-) {
893         print "Match $exp: '${$exp}' at position ($-[$exp],$+[$exp])\n";
894     }
895
896 prints
897
898     Match 1: 'Mmm' at position (0,3)
899     Match 2: 'donut' at position (6,11)
900
901 Even if there are no groupings in a regexp, it is still possible to
902 find out what exactly matched in a string.  If you use them, Perl
903 will set C<$`> to the part of the string before the match, will set C<$&>
904 to the part of the string that matched, and will set C<$'> to the part
905 of the string after the match.  An example:
906
907     $x = "the cat caught the mouse";
908     $x =~ /cat/;  # $` = 'the ', $& = 'cat', $' = ' caught the mouse'
909     $x =~ /the/;  # $` = '', $& = 'the', $' = ' cat caught the mouse'
910
911 In the second match, C<$`> equals C<''> because the regexp matched at the
912 first character position in the string and stopped; it never saw the
913 second 'the'.
914
915 If your code is to run on Perl versions earlier than
916 5.20, it is worthwhile to note that using C<$`> and C<$'>
917 slows down regexp matching quite a bit, while C<$&> slows it down to a
918 lesser extent, because if they are used in one regexp in a program,
919 they are generated for I<all> regexps in the program.  So if raw
920 performance is a goal of your application, they should be avoided.
921 If you need to extract the corresponding substrings, use C<@-> and
922 C<@+> instead:
923
924     $` is the same as substr( $x, 0, $-[0] )
925     $& is the same as substr( $x, $-[0], $+[0]-$-[0] )
926     $' is the same as substr( $x, $+[0] )
927
928 As of Perl 5.10, the C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}>
929 variables may be used.  These are only set if the C</p> modifier is
930 present.  Consequently they do not penalize the rest of the program.  In
931 Perl 5.20, C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}> are available
932 whether the C</p> has been used or not (the modifier is ignored), and
933 C<$`>, C<$'> and C<$&> do not cause any speed difference.
934
935 =head2 Non-capturing groupings
936
937 A group that is required to bundle a set of alternatives may or may not be
938 useful as a capturing group.  If it isn't, it just creates a superfluous
939 addition to the set of available capture group values, inside as well as
940 outside the regexp.  Non-capturing groupings, denoted by C<(?:regexp)>,
941 still allow the regexp to be treated as a single unit, but don't establish
942 a capturing group at the same time.  Both capturing and non-capturing
943 groupings are allowed to co-exist in the same regexp.  Because there is
944 no extraction, non-capturing groupings are faster than capturing
945 groupings.  Non-capturing groupings are also handy for choosing exactly
946 which parts of a regexp are to be extracted to matching variables:
947
948     # match a number, $1-$4 are set, but we only want $1
949     /([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;
950
951     # match a number faster , only $1 is set
952     /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/;
953
954     # match a number, get $1 = whole number, $2 = exponent
955     /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;
956
957 Non-capturing groupings are also useful for removing nuisance
958 elements gathered from a split operation where parentheses are
959 required for some reason:
960
961     $x = '12aba34ba5';
962     @num = split /(a|b)+/, $x;    # @num = ('12','a','34','a','5')
963     @num = split /(?:a|b)+/, $x;  # @num = ('12','34','5')
964
965 In Perl 5.22 and later, all groups within a regexp can be set to
966 non-capturing by using the new C</n> flag:
967
968     "hello" =~ /(hi|hello)/n; # $1 is not set!
969
970 See L<perlre/"n"> for more information.
971
972 =head2 Matching repetitions
973
974 The examples in the previous section display an annoying weakness.  We
975 were only matching 3-letter words, or chunks of words of 4 letters or
976 less.  We'd like to be able to match words or, more generally, strings
977 of any length, without writing out tedious alternatives like
978 C<\w\w\w\w|\w\w\w|\w\w|\w>.
979
980 This is exactly the problem the I<quantifier> metacharacters C<?>,
981 C<*>, C<+>, and C<{}> were created for.  They allow us to delimit the
982 number of repeats for a portion of a regexp we consider to be a
983 match.  Quantifiers are put immediately after the character, character
984 class, or grouping that we want to specify.  They have the following
985 meanings:
986
987 =over 4
988
989 =item *
990
991 C<a?> means: match 'a' 1 or 0 times
992
993 =item *
994
995 C<a*> means: match 'a' 0 or more times, i.e., any number of times
996
997 =item *
998
999 C<a+> means: match 'a' 1 or more times, i.e., at least once
1000
1001 =item *
1002
1003 C<a{n,m}> means: match at least C<n> times, but not more than C<m>
1004 times.
1005
1006 =item *
1007
1008 C<a{n,}> means: match at least C<n> or more times
1009
1010 =item *
1011
1012 C<a{n}> means: match exactly C<n> times
1013
1014 =back
1015
1016 Here are some examples:
1017
1018     /[a-z]+\s+\d*/;  # match a lowercase word, at least one space, and
1019                      # any number of digits
1020     /(\w+)\s+\g1/;    # match doubled words of arbitrary length
1021     /y(es)?/i;       # matches 'y', 'Y', or a case-insensitive 'yes'
1022     $year =~ /^\d{2,4}$/;  # make sure year is at least 2 but not more
1023                            # than 4 digits
1024     $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates
1025     $year =~ /^\d{2}(\d{2})?$/; # same thing written differently.
1026                                 # However, this captures the last two
1027                                 # digits in $1 and the other does not.
1028
1029     % simple_grep '^(\w+)\g1$' /usr/dict/words   # isn't this easier?
1030     beriberi
1031     booboo
1032     coco
1033     mama
1034     murmur
1035     papa
1036
1037 For all of these quantifiers, Perl will try to match as much of the
1038 string as possible, while still allowing the regexp to succeed.  Thus
1039 with C</a?.../>, Perl will first try to match the regexp with the C<a>
1040 present; if that fails, Perl will try to match the regexp without the
1041 C<a> present.  For the quantifier C<*>, we get the following:
1042
1043     $x = "the cat in the hat";
1044     $x =~ /^(.*)(cat)(.*)$/; # matches,
1045                              # $1 = 'the '
1046                              # $2 = 'cat'
1047                              # $3 = ' in the hat'
1048
1049 Which is what we might expect, the match finds the only C<cat> in the
1050 string and locks onto it.  Consider, however, this regexp:
1051
1052     $x =~ /^(.*)(at)(.*)$/; # matches,
1053                             # $1 = 'the cat in the h'
1054                             # $2 = 'at'
1055                             # $3 = ''   (0 characters match)
1056
1057 One might initially guess that Perl would find the C<at> in C<cat> and
1058 stop there, but that wouldn't give the longest possible string to the
1059 first quantifier C<.*>.  Instead, the first quantifier C<.*> grabs as
1060 much of the string as possible while still having the regexp match.  In
1061 this example, that means having the C<at> sequence with the final C<at>
1062 in the string.  The other important principle illustrated here is that,
1063 when there are two or more elements in a regexp, the I<leftmost>
1064 quantifier, if there is one, gets to grab as much of the string as
1065 possible, leaving the rest of the regexp to fight over scraps.  Thus in
1066 our example, the first quantifier C<.*> grabs most of the string, while
1067 the second quantifier C<.*> gets the empty string.   Quantifiers that
1068 grab as much of the string as possible are called I<maximal match> or
1069 I<greedy> quantifiers.
1070
1071 When a regexp can match a string in several different ways, we can use
1072 the principles above to predict which way the regexp will match:
1073
1074 =over 4
1075
1076 =item *
1077
1078 Principle 0: Taken as a whole, any regexp will be matched at the
1079 earliest possible position in the string.
1080
1081 =item *
1082
1083 Principle 1: In an alternation C<a|b|c...>, the leftmost alternative
1084 that allows a match for the whole regexp will be the one used.
1085
1086 =item *
1087
1088 Principle 2: The maximal matching quantifiers C<?>, C<*>, C<+> and
1089 C<{n,m}> will in general match as much of the string as possible while
1090 still allowing the whole regexp to match.
1091
1092 =item *
1093
1094 Principle 3: If there are two or more elements in a regexp, the
1095 leftmost greedy quantifier, if any, will match as much of the string
1096 as possible while still allowing the whole regexp to match.  The next
1097 leftmost greedy quantifier, if any, will try to match as much of the
1098 string remaining available to it as possible, while still allowing the
1099 whole regexp to match.  And so on, until all the regexp elements are
1100 satisfied.
1101
1102 =back
1103
1104 As we have seen above, Principle 0 overrides the others. The regexp
1105 will be matched as early as possible, with the other principles
1106 determining how the regexp matches at that earliest character
1107 position.
1108
1109 Here is an example of these principles in action:
1110
1111     $x = "The programming republic of Perl";
1112     $x =~ /^(.+)(e|r)(.*)$/;  # matches,
1113                               # $1 = 'The programming republic of Pe'
1114                               # $2 = 'r'
1115                               # $3 = 'l'
1116
1117 This regexp matches at the earliest string position, C<'T'>.  One
1118 might think that C<e>, being leftmost in the alternation, would be
1119 matched, but C<r> produces the longest string in the first quantifier.
1120
1121     $x =~ /(m{1,2})(.*)$/;  # matches,
1122                             # $1 = 'mm'
1123                             # $2 = 'ing republic of Perl'
1124
1125 Here, The earliest possible match is at the first C<'m'> in
1126 C<programming>. C<m{1,2}> is the first quantifier, so it gets to match
1127 a maximal C<mm>.
1128
1129     $x =~ /.*(m{1,2})(.*)$/;  # matches,
1130                               # $1 = 'm'
1131                               # $2 = 'ing republic of Perl'
1132
1133 Here, the regexp matches at the start of the string. The first
1134 quantifier C<.*> grabs as much as possible, leaving just a single
1135 C<'m'> for the second quantifier C<m{1,2}>.
1136
1137     $x =~ /(.?)(m{1,2})(.*)$/;  # matches,
1138                                 # $1 = 'a'
1139                                 # $2 = 'mm'
1140                                 # $3 = 'ing republic of Perl'
1141
1142 Here, C<.?> eats its maximal one character at the earliest possible
1143 position in the string, C<'a'> in C<programming>, leaving C<m{1,2}>
1144 the opportunity to match both C<m>'s. Finally,
1145
1146     "aXXXb" =~ /(X*)/; # matches with $1 = ''
1147
1148 because it can match zero copies of C<'X'> at the beginning of the
1149 string.  If you definitely want to match at least one C<'X'>, use
1150 C<X+>, not C<X*>.
1151
1152 Sometimes greed is not good.  At times, we would like quantifiers to
1153 match a I<minimal> piece of string, rather than a maximal piece.  For
1154 this purpose, Larry Wall created the I<minimal match> or
1155 I<non-greedy> quantifiers C<??>, C<*?>, C<+?>, and C<{}?>.  These are
1156 the usual quantifiers with a C<?> appended to them.  They have the
1157 following meanings:
1158
1159 =over 4
1160
1161 =item *
1162
1163 C<a??> means: match 'a' 0 or 1 times. Try 0 first, then 1.
1164
1165 =item *
1166
1167 C<a*?> means: match 'a' 0 or more times, i.e., any number of times,
1168 but as few times as possible
1169
1170 =item *
1171
1172 C<a+?> means: match 'a' 1 or more times, i.e., at least once, but
1173 as few times as possible
1174
1175 =item *
1176
1177 C<a{n,m}?> means: match at least C<n> times, not more than C<m>
1178 times, as few times as possible
1179
1180 =item *
1181
1182 C<a{n,}?> means: match at least C<n> times, but as few times as
1183 possible
1184
1185 =item *
1186
1187 C<a{n}?> means: match exactly C<n> times.  Because we match exactly
1188 C<n> times, C<a{n}?> is equivalent to C<a{n}> and is just there for
1189 notational consistency.
1190
1191 =back
1192
1193 Let's look at the example above, but with minimal quantifiers:
1194
1195     $x = "The programming republic of Perl";
1196     $x =~ /^(.+?)(e|r)(.*)$/; # matches,
1197                               # $1 = 'Th'
1198                               # $2 = 'e'
1199                               # $3 = ' programming republic of Perl'
1200
1201 The minimal string that will allow both the start of the string C<^>
1202 and the alternation to match is C<Th>, with the alternation C<e|r>
1203 matching C<e>.  The second quantifier C<.*> is free to gobble up the
1204 rest of the string.
1205
1206     $x =~ /(m{1,2}?)(.*?)$/;  # matches,
1207                               # $1 = 'm'
1208                               # $2 = 'ming republic of Perl'
1209
1210 The first string position that this regexp can match is at the first
1211 C<'m'> in C<programming>. At this position, the minimal C<m{1,2}?>
1212 matches just one C<'m'>.  Although the second quantifier C<.*?> would
1213 prefer to match no characters, it is constrained by the end-of-string
1214 anchor C<$> to match the rest of the string.
1215
1216     $x =~ /(.*?)(m{1,2}?)(.*)$/;  # matches,
1217                                   # $1 = 'The progra'
1218                                   # $2 = 'm'
1219                                   # $3 = 'ming republic of Perl'
1220
1221 In this regexp, you might expect the first minimal quantifier C<.*?>
1222 to match the empty string, because it is not constrained by a C<^>
1223 anchor to match the beginning of the word.  Principle 0 applies here,
1224 however.  Because it is possible for the whole regexp to match at the
1225 start of the string, it I<will> match at the start of the string.  Thus
1226 the first quantifier has to match everything up to the first C<m>.  The
1227 second minimal quantifier matches just one C<m> and the third
1228 quantifier matches the rest of the string.
1229
1230     $x =~ /(.??)(m{1,2})(.*)$/;  # matches,
1231                                  # $1 = 'a'
1232                                  # $2 = 'mm'
1233                                  # $3 = 'ing republic of Perl'
1234
1235 Just as in the previous regexp, the first quantifier C<.??> can match
1236 earliest at position C<'a'>, so it does.  The second quantifier is
1237 greedy, so it matches C<mm>, and the third matches the rest of the
1238 string.
1239
1240 We can modify principle 3 above to take into account non-greedy
1241 quantifiers:
1242
1243 =over 4
1244
1245 =item *
1246
1247 Principle 3: If there are two or more elements in a regexp, the
1248 leftmost greedy (non-greedy) quantifier, if any, will match as much
1249 (little) of the string as possible while still allowing the whole
1250 regexp to match.  The next leftmost greedy (non-greedy) quantifier, if
1251 any, will try to match as much (little) of the string remaining
1252 available to it as possible, while still allowing the whole regexp to
1253 match.  And so on, until all the regexp elements are satisfied.
1254
1255 =back
1256
1257 Just like alternation, quantifiers are also susceptible to
1258 backtracking.  Here is a step-by-step analysis of the example
1259
1260     $x = "the cat in the hat";
1261     $x =~ /^(.*)(at)(.*)$/; # matches,
1262                             # $1 = 'the cat in the h'
1263                             # $2 = 'at'
1264                             # $3 = ''   (0 matches)
1265
1266 =over 4
1267
1268 =item Z<>0
1269
1270 Start with the first letter in the string 't'.
1271
1272 =item Z<>1
1273
1274 The first quantifier '.*' starts out by matching the whole
1275 string 'the cat in the hat'.
1276
1277 =item Z<>2
1278
1279 'a' in the regexp element 'at' doesn't match the end of the
1280 string.  Backtrack one character.
1281
1282 =item Z<>3
1283
1284 'a' in the regexp element 'at' still doesn't match the last
1285 letter of the string 't', so backtrack one more character.
1286
1287 =item Z<>4
1288
1289 Now we can match the 'a' and the 't'.
1290
1291 =item Z<>5
1292
1293 Move on to the third element '.*'.  Since we are at the end of
1294 the string and '.*' can match 0 times, assign it the empty string.
1295
1296 =item Z<>6
1297
1298 We are done!
1299
1300 =back
1301
1302 Most of the time, all this moving forward and backtracking happens
1303 quickly and searching is fast. There are some pathological regexps,
1304 however, whose execution time exponentially grows with the size of the
1305 string.  A typical structure that blows up in your face is of the form
1306
1307     /(a|b+)*/;
1308
1309 The problem is the nested indeterminate quantifiers.  There are many
1310 different ways of partitioning a string of length n between the C<+>
1311 and C<*>: one repetition with C<b+> of length n, two repetitions with
1312 the first C<b+> length k and the second with length n-k, m repetitions
1313 whose bits add up to length n, etc.  In fact there are an exponential
1314 number of ways to partition a string as a function of its length.  A
1315 regexp may get lucky and match early in the process, but if there is
1316 no match, Perl will try I<every> possibility before giving up.  So be
1317 careful with nested C<*>'s, C<{n,m}>'s, and C<+>'s.  The book
1318 I<Mastering Regular Expressions> by Jeffrey Friedl gives a wonderful
1319 discussion of this and other efficiency issues.
1320
1321
1322 =head2 Possessive quantifiers
1323
1324 Backtracking during the relentless search for a match may be a waste
1325 of time, particularly when the match is bound to fail.  Consider
1326 the simple pattern
1327
1328     /^\w+\s+\w+$/; # a word, spaces, a word
1329
1330 Whenever this is applied to a string which doesn't quite meet the
1331 pattern's expectations such as S<C<"abc  ">> or S<C<"abc  def ">>,
1332 the regex engine will backtrack, approximately once for each character
1333 in the string.  But we know that there is no way around taking I<all>
1334 of the initial word characters to match the first repetition, that I<all>
1335 spaces must be eaten by the middle part, and the same goes for the second
1336 word.
1337
1338 With the introduction of the I<possessive quantifiers> in Perl 5.10, we
1339 have a way of instructing the regex engine not to backtrack, with the
1340 usual quantifiers with a C<+> appended to them.  This makes them greedy as
1341 well as stingy; once they succeed they won't give anything back to permit
1342 another solution. They have the following meanings:
1343
1344 =over 4
1345
1346 =item *
1347
1348 C<a{n,m}+> means: match at least C<n> times, not more than C<m> times,
1349 as many times as possible, and don't give anything up. C<a?+> is short
1350 for C<a{0,1}+>
1351
1352 =item *
1353
1354 C<a{n,}+> means: match at least C<n> times, but as many times as possible,
1355 and don't give anything up. C<a*+> is short for C<a{0,}+> and C<a++> is
1356 short for C<a{1,}+>.
1357
1358 =item *
1359
1360 C<a{n}+> means: match exactly C<n> times.  It is just there for
1361 notational consistency.
1362
1363 =back
1364
1365 These possessive quantifiers represent a special case of a more general
1366 concept, the I<independent subexpression>, see below.
1367
1368 As an example where a possessive quantifier is suitable we consider
1369 matching a quoted string, as it appears in several programming languages.
1370 The backslash is used as an escape character that indicates that the
1371 next character is to be taken literally, as another character for the
1372 string.  Therefore, after the opening quote, we expect a (possibly
1373 empty) sequence of alternatives: either some character except an
1374 unescaped quote or backslash or an escaped character.
1375
1376     /"(?:[^"\\]++|\\.)*+"/;
1377
1378
1379 =head2 Building a regexp
1380
1381 At this point, we have all the basic regexp concepts covered, so let's
1382 give a more involved example of a regular expression.  We will build a
1383 regexp that matches numbers.
1384
1385 The first task in building a regexp is to decide what we want to match
1386 and what we want to exclude.  In our case, we want to match both
1387 integers and floating point numbers and we want to reject any string
1388 that isn't a number.
1389
1390 The next task is to break the problem down into smaller problems that
1391 are easily converted into a regexp.
1392
1393 The simplest case is integers.  These consist of a sequence of digits,
1394 with an optional sign in front.  The digits we can represent with
1395 C<\d+> and the sign can be matched with C<[+-]>.  Thus the integer
1396 regexp is
1397
1398     /[+-]?\d+/;  # matches integers
1399
1400 A floating point number potentially has a sign, an integral part, a
1401 decimal point, a fractional part, and an exponent.  One or more of these
1402 parts is optional, so we need to check out the different
1403 possibilities.  Floating point numbers which are in proper form include
1404 123., 0.345, .34, -1e6, and 25.4E-72.  As with integers, the sign out
1405 front is completely optional and can be matched by C<[+-]?>.  We can
1406 see that if there is no exponent, floating point numbers must have a
1407 decimal point, otherwise they are integers.  We might be tempted to
1408 model these with C<\d*\.\d*>, but this would also match just a single
1409 decimal point, which is not a number.  So the three cases of floating
1410 point number without exponent are
1411
1412    /[+-]?\d+\./;  # 1., 321., etc.
1413    /[+-]?\.\d+/;  # .1, .234, etc.
1414    /[+-]?\d+\.\d+/;  # 1.0, 30.56, etc.
1415
1416 These can be combined into a single regexp with a three-way alternation:
1417
1418    /[+-]?(\d+\.\d+|\d+\.|\.\d+)/;  # floating point, no exponent
1419
1420 In this alternation, it is important to put C<'\d+\.\d+'> before
1421 C<'\d+\.'>.  If C<'\d+\.'> were first, the regexp would happily match that
1422 and ignore the fractional part of the number.
1423
1424 Now consider floating point numbers with exponents.  The key
1425 observation here is that I<both> integers and numbers with decimal
1426 points are allowed in front of an exponent.  Then exponents, like the
1427 overall sign, are independent of whether we are matching numbers with
1428 or without decimal points, and can be 'decoupled' from the
1429 mantissa.  The overall form of the regexp now becomes clear:
1430
1431     /^(optional sign)(integer | f.p. mantissa)(optional exponent)$/;
1432
1433 The exponent is an C<e> or C<E>, followed by an integer.  So the
1434 exponent regexp is
1435
1436    /[eE][+-]?\d+/;  # exponent
1437
1438 Putting all the parts together, we get a regexp that matches numbers:
1439
1440    /^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/;  # Ta da!
1441
1442 Long regexps like this may impress your friends, but can be hard to
1443 decipher.  In complex situations like this, the C<//x> modifier for a
1444 match is invaluable.  It allows one to put nearly arbitrary whitespace
1445 and comments into a regexp without affecting their meaning.  Using it,
1446 we can rewrite our 'extended' regexp in the more pleasing form
1447
1448    /^
1449       [+-]?         # first, match an optional sign
1450       (             # then match integers or f.p. mantissas:
1451           \d+\.\d+  # mantissa of the form a.b
1452          |\d+\.     # mantissa of the form a.
1453          |\.\d+     # mantissa of the form .b
1454          |\d+       # integer of the form a
1455       )
1456       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1457    $/x;
1458
1459 If whitespace is mostly irrelevant, how does one include space
1460 characters in an extended regexp? The answer is to backslash it
1461 S<C<'\ '>> or put it in a character class S<C<[ ]>>.  The same thing
1462 goes for pound signs: use C<\#> or C<[#]>.  For instance, Perl allows
1463 a space between the sign and the mantissa or integer, and we could add
1464 this to our regexp as follows:
1465
1466    /^
1467       [+-]?\ *      # first, match an optional sign *and space*
1468       (             # then match integers or f.p. mantissas:
1469           \d+\.\d+  # mantissa of the form a.b
1470          |\d+\.     # mantissa of the form a.
1471          |\.\d+     # mantissa of the form .b
1472          |\d+       # integer of the form a
1473       )
1474       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1475    $/x;
1476
1477 In this form, it is easier to see a way to simplify the
1478 alternation.  Alternatives 1, 2, and 4 all start with C<\d+>, so it
1479 could be factored out:
1480
1481    /^
1482       [+-]?\ *      # first, match an optional sign
1483       (             # then match integers or f.p. mantissas:
1484           \d+       # start out with a ...
1485           (
1486               \.\d* # mantissa of the form a.b or a.
1487           )?        # ? takes care of integers of the form a
1488          |\.\d+     # mantissa of the form .b
1489       )
1490       ([eE][+-]?\d+)?  # finally, optionally match an exponent
1491    $/x;
1492
1493 or written in the compact form,
1494
1495     /^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/;
1496
1497 This is our final regexp.  To recap, we built a regexp by
1498
1499 =over 4
1500
1501 =item *
1502
1503 specifying the task in detail,
1504
1505 =item *
1506
1507 breaking down the problem into smaller parts,
1508
1509 =item *
1510
1511 translating the small parts into regexps,
1512
1513 =item *
1514
1515 combining the regexps,
1516
1517 =item *
1518
1519 and optimizing the final combined regexp.
1520
1521 =back
1522
1523 These are also the typical steps involved in writing a computer
1524 program.  This makes perfect sense, because regular expressions are
1525 essentially programs written in a little computer language that specifies
1526 patterns.
1527
1528 =head2 Using regular expressions in Perl
1529
1530 The last topic of Part 1 briefly covers how regexps are used in Perl
1531 programs.  Where do they fit into Perl syntax?
1532
1533 We have already introduced the matching operator in its default
1534 C</regexp/> and arbitrary delimiter C<m!regexp!> forms.  We have used
1535 the binding operator C<=~> and its negation C<!~> to test for string
1536 matches.  Associated with the matching operator, we have discussed the
1537 single line C<//s>, multi-line C<//m>, case-insensitive C<//i> and
1538 extended C<//x> modifiers.  There are a few more things you might
1539 want to know about matching operators.
1540
1541 =head3 Prohibiting substitution
1542
1543 If you change C<$pattern> after the first substitution happens, Perl
1544 will ignore it.  If you don't want any substitutions at all, use the
1545 special delimiter C<m''>:
1546
1547     @pattern = ('Seuss');
1548     while (<>) {
1549         print if m'@pattern';  # matches literal '@pattern', not 'Seuss'
1550     }
1551
1552 Similar to strings, C<m''> acts like apostrophes on a regexp; all other
1553 C<m> delimiters act like quotes.  If the regexp evaluates to the empty string,
1554 the regexp in the I<last successful match> is used instead.  So we have
1555
1556     "dog" =~ /d/;  # 'd' matches
1557     "dogbert =~ //;  # this matches the 'd' regexp used before
1558
1559
1560 =head3 Global matching
1561
1562 The final two modifiers we will discuss here,
1563 C<//g> and C<//c>, concern multiple matches.
1564 The modifier C<//g> stands for global matching and allows the
1565 matching operator to match within a string as many times as possible.
1566 In scalar context, successive invocations against a string will have
1567 C<//g> jump from match to match, keeping track of position in the
1568 string as it goes along.  You can get or set the position with the
1569 C<pos()> function.
1570
1571 The use of C<//g> is shown in the following example.  Suppose we have
1572 a string that consists of words separated by spaces.  If we know how
1573 many words there are in advance, we could extract the words using
1574 groupings:
1575
1576     $x = "cat dog house"; # 3 words
1577     $x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches,
1578                                            # $1 = 'cat'
1579                                            # $2 = 'dog'
1580                                            # $3 = 'house'
1581
1582 But what if we had an indeterminate number of words? This is the sort
1583 of task C<//g> was made for.  To extract all words, form the simple
1584 regexp C<(\w+)> and loop over all matches with C</(\w+)/g>:
1585
1586     while ($x =~ /(\w+)/g) {
1587         print "Word is $1, ends at position ", pos $x, "\n";
1588     }
1589
1590 prints
1591
1592     Word is cat, ends at position 3
1593     Word is dog, ends at position 7
1594     Word is house, ends at position 13
1595
1596 A failed match or changing the target string resets the position.  If
1597 you don't want the position reset after failure to match, add the
1598 C<//c>, as in C</regexp/gc>.  The current position in the string is
1599 associated with the string, not the regexp.  This means that different
1600 strings have different positions and their respective positions can be
1601 set or read independently.
1602
1603 In list context, C<//g> returns a list of matched groupings, or if
1604 there are no groupings, a list of matches to the whole regexp.  So if
1605 we wanted just the words, we could use
1606
1607     @words = ($x =~ /(\w+)/g);  # matches,
1608                                 # $words[0] = 'cat'
1609                                 # $words[1] = 'dog'
1610                                 # $words[2] = 'house'
1611
1612 Closely associated with the C<//g> modifier is the C<\G> anchor.  The
1613 C<\G> anchor matches at the point where the previous C<//g> match left
1614 off.  C<\G> allows us to easily do context-sensitive matching:
1615
1616     $metric = 1;  # use metric units
1617     ...
1618     $x = <FILE>;  # read in measurement
1619     $x =~ /^([+-]?\d+)\s*/g;  # get magnitude
1620     $weight = $1;
1621     if ($metric) { # error checking
1622         print "Units error!" unless $x =~ /\Gkg\./g;
1623     }
1624     else {
1625         print "Units error!" unless $x =~ /\Glbs\./g;
1626     }
1627     $x =~ /\G\s+(widget|sprocket)/g;  # continue processing
1628
1629 The combination of C<//g> and C<\G> allows us to process the string a
1630 bit at a time and use arbitrary Perl logic to decide what to do next.
1631 Currently, the C<\G> anchor is only fully supported when used to anchor
1632 to the start of the pattern.
1633
1634 C<\G> is also invaluable in processing fixed-length records with
1635 regexps.  Suppose we have a snippet of coding region DNA, encoded as
1636 base pair letters C<ATCGTTGAAT...> and we want to find all the stop
1637 codons C<TGA>.  In a coding region, codons are 3-letter sequences, so
1638 we can think of the DNA snippet as a sequence of 3-letter records.  The
1639 naive regexp
1640
1641     # expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC"
1642     $dna = "ATCGTTGAATGCAAATGACATGAC";
1643     $dna =~ /TGA/;
1644
1645 doesn't work; it may match a C<TGA>, but there is no guarantee that
1646 the match is aligned with codon boundaries, e.g., the substring
1647 S<C<GTT GAA>> gives a match.  A better solution is
1648
1649     while ($dna =~ /(\w\w\w)*?TGA/g) {  # note the minimal *?
1650         print "Got a TGA stop codon at position ", pos $dna, "\n";
1651     }
1652
1653 which prints
1654
1655     Got a TGA stop codon at position 18
1656     Got a TGA stop codon at position 23
1657
1658 Position 18 is good, but position 23 is bogus.  What happened?
1659
1660 The answer is that our regexp works well until we get past the last
1661 real match.  Then the regexp will fail to match a synchronized C<TGA>
1662 and start stepping ahead one character position at a time, not what we
1663 want.  The solution is to use C<\G> to anchor the match to the codon
1664 alignment:
1665
1666     while ($dna =~ /\G(\w\w\w)*?TGA/g) {
1667         print "Got a TGA stop codon at position ", pos $dna, "\n";
1668     }
1669
1670 This prints
1671
1672     Got a TGA stop codon at position 18
1673
1674 which is the correct answer.  This example illustrates that it is
1675 important not only to match what is desired, but to reject what is not
1676 desired.
1677
1678 (There are other regexp modifiers that are available, such as
1679 C<//o>, but their specialized uses are beyond the
1680 scope of this introduction.  )
1681
1682 =head3 Search and replace
1683
1684 Regular expressions also play a big role in I<search and replace>
1685 operations in Perl.  Search and replace is accomplished with the
1686 C<s///> operator.  The general form is
1687 C<s/regexp/replacement/modifiers>, with everything we know about
1688 regexps and modifiers applying in this case as well.  The
1689 C<replacement> is a Perl double-quoted string that replaces in the
1690 string whatever is matched with the C<regexp>.  The operator C<=~> is
1691 also used here to associate a string with C<s///>.  If matching
1692 against C<$_>, the S<C<$_ =~>> can be dropped.  If there is a match,
1693 C<s///> returns the number of substitutions made; otherwise it returns
1694 false.  Here are a few examples:
1695
1696     $x = "Time to feed the cat!";
1697     $x =~ s/cat/hacker/;   # $x contains "Time to feed the hacker!"
1698     if ($x =~ s/^(Time.*hacker)!$/$1 now!/) {
1699         $more_insistent = 1;
1700     }
1701     $y = "'quoted words'";
1702     $y =~ s/^'(.*)'$/$1/;  # strip single quotes,
1703                            # $y contains "quoted words"
1704
1705 In the last example, the whole string was matched, but only the part
1706 inside the single quotes was grouped.  With the C<s///> operator, the
1707 matched variables C<$1>, C<$2>, etc. are immediately available for use
1708 in the replacement expression, so we use C<$1> to replace the quoted
1709 string with just what was quoted.  With the global modifier, C<s///g>
1710 will search and replace all occurrences of the regexp in the string:
1711
1712     $x = "I batted 4 for 4";
1713     $x =~ s/4/four/;   # doesn't do it all:
1714                        # $x contains "I batted four for 4"
1715     $x = "I batted 4 for 4";
1716     $x =~ s/4/four/g;  # does it all:
1717                        # $x contains "I batted four for four"
1718
1719 If you prefer 'regex' over 'regexp' in this tutorial, you could use
1720 the following program to replace it:
1721
1722     % cat > simple_replace
1723     #!/usr/bin/perl
1724     $regexp = shift;
1725     $replacement = shift;
1726     while (<>) {
1727         s/$regexp/$replacement/g;
1728         print;
1729     }
1730     ^D
1731
1732     % simple_replace regexp regex perlretut.pod
1733
1734 In C<simple_replace> we used the C<s///g> modifier to replace all
1735 occurrences of the regexp on each line.  (Even though the regular
1736 expression appears in a loop, Perl is smart enough to compile it
1737 only once.)  As with C<simple_grep>, both the
1738 C<print> and the C<s/$regexp/$replacement/g> use C<$_> implicitly.
1739
1740 If you don't want C<s///> to change your original variable you can use
1741 the non-destructive substitute modifier, C<s///r>.  This changes the
1742 behavior so that C<s///r> returns the final substituted string
1743 (instead of the number of substitutions):
1744
1745     $x = "I like dogs.";
1746     $y = $x =~ s/dogs/cats/r;
1747     print "$x $y\n";
1748
1749 That example will print "I like dogs. I like cats". Notice the original
1750 C<$x> variable has not been affected. The overall
1751 result of the substitution is instead stored in C<$y>. If the
1752 substitution doesn't affect anything then the original string is
1753 returned:
1754
1755     $x = "I like dogs.";
1756     $y = $x =~ s/elephants/cougars/r;
1757     print "$x $y\n"; # prints "I like dogs. I like dogs."
1758
1759 One other interesting thing that the C<s///r> flag allows is chaining
1760 substitutions:
1761
1762     $x = "Cats are great.";
1763     print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~
1764         s/Frogs/Hedgehogs/r, "\n";
1765     # prints "Hedgehogs are great."
1766
1767 A modifier available specifically to search and replace is the
1768 C<s///e> evaluation modifier.  C<s///e> treats the
1769 replacement text as Perl code, rather than a double-quoted
1770 string.  The value that the code returns is substituted for the
1771 matched substring.  C<s///e> is useful if you need to do a bit of
1772 computation in the process of replacing text.  This example counts
1773 character frequencies in a line:
1774
1775     $x = "Bill the cat";
1776     $x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself
1777     print "frequency of '$_' is $chars{$_}\n"
1778         foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars);
1779
1780 This prints
1781
1782     frequency of ' ' is 2
1783     frequency of 't' is 2
1784     frequency of 'l' is 2
1785     frequency of 'B' is 1
1786     frequency of 'c' is 1
1787     frequency of 'e' is 1
1788     frequency of 'h' is 1
1789     frequency of 'i' is 1
1790     frequency of 'a' is 1
1791
1792 As with the match C<m//> operator, C<s///> can use other delimiters,
1793 such as C<s!!!> and C<s{}{}>, and even C<s{}//>.  If single quotes are
1794 used C<s'''>, then the regexp and replacement are
1795 treated as single-quoted strings and there are no
1796 variable substitutions.  C<s///> in list context
1797 returns the same thing as in scalar context, i.e., the number of
1798 matches.
1799
1800 =head3 The split function
1801
1802 The C<split()> function is another place where a regexp is used.
1803 C<split /regexp/, string, limit> separates the C<string> operand into
1804 a list of substrings and returns that list.  The regexp must be designed
1805 to match whatever constitutes the separators for the desired substrings.
1806 The C<limit>, if present, constrains splitting into no more than C<limit>
1807 number of strings.  For example, to split a string into words, use
1808
1809     $x = "Calvin and Hobbes";
1810     @words = split /\s+/, $x;  # $word[0] = 'Calvin'
1811                                # $word[1] = 'and'
1812                                # $word[2] = 'Hobbes'
1813
1814 If the empty regexp C<//> is used, the regexp always matches and
1815 the string is split into individual characters.  If the regexp has
1816 groupings, then the resulting list contains the matched substrings from the
1817 groupings as well.  For instance,
1818
1819     $x = "/usr/bin/perl";
1820     @dirs = split m!/!, $x;  # $dirs[0] = ''
1821                              # $dirs[1] = 'usr'
1822                              # $dirs[2] = 'bin'
1823                              # $dirs[3] = 'perl'
1824     @parts = split m!(/)!, $x;  # $parts[0] = ''
1825                                 # $parts[1] = '/'
1826                                 # $parts[2] = 'usr'
1827                                 # $parts[3] = '/'
1828                                 # $parts[4] = 'bin'
1829                                 # $parts[5] = '/'
1830                                 # $parts[6] = 'perl'
1831
1832 Since the first character of $x matched the regexp, C<split> prepended
1833 an empty initial element to the list.
1834
1835 If you have read this far, congratulations! You now have all the basic
1836 tools needed to use regular expressions to solve a wide range of text
1837 processing problems.  If this is your first time through the tutorial,
1838 why not stop here and play around with regexps a while....  S<Part 2>
1839 concerns the more esoteric aspects of regular expressions and those
1840 concepts certainly aren't needed right at the start.
1841
1842 =head1 Part 2: Power tools
1843
1844 OK, you know the basics of regexps and you want to know more.  If
1845 matching regular expressions is analogous to a walk in the woods, then
1846 the tools discussed in Part 1 are analogous to topo maps and a
1847 compass, basic tools we use all the time.  Most of the tools in part 2
1848 are analogous to flare guns and satellite phones.  They aren't used
1849 too often on a hike, but when we are stuck, they can be invaluable.
1850
1851 What follows are the more advanced, less used, or sometimes esoteric
1852 capabilities of Perl regexps.  In Part 2, we will assume you are
1853 comfortable with the basics and concentrate on the advanced features.
1854
1855 =head2 More on characters, strings, and character classes
1856
1857 There are a number of escape sequences and character classes that we
1858 haven't covered yet.
1859
1860 There are several escape sequences that convert characters or strings
1861 between upper and lower case, and they are also available within
1862 patterns.  C<\l> and C<\u> convert the next character to lower or
1863 upper case, respectively:
1864
1865     $x = "perl";
1866     $string =~ /\u$x/;  # matches 'Perl' in $string
1867     $x = "M(rs?|s)\\."; # note the double backslash
1868     $string =~ /\l$x/;  # matches 'mr.', 'mrs.', and 'ms.',
1869
1870 A C<\L> or C<\U> indicates a lasting conversion of case, until
1871 terminated by C<\E> or thrown over by another C<\U> or C<\L>:
1872
1873     $x = "This word is in lower case:\L SHOUT\E";
1874     $x =~ /shout/;       # matches
1875     $x = "I STILL KEYPUNCH CARDS FOR MY 360"
1876     $x =~ /\Ukeypunch/;  # matches punch card string
1877
1878 If there is no C<\E>, case is converted until the end of the
1879 string. The regexps C<\L\u$word> or C<\u\L$word> convert the first
1880 character of C<$word> to uppercase and the rest of the characters to
1881 lowercase.
1882
1883 Control characters can be escaped with C<\c>, so that a control-Z
1884 character would be matched with C<\cZ>.  The escape sequence
1885 C<\Q>...C<\E> quotes, or protects most non-alphabetic characters.   For
1886 instance,
1887
1888     $x = "\QThat !^*&%~& cat!";
1889     $x =~ /\Q!^*&%~&\E/;  # check for rough language
1890
1891 It does not protect C<$> or C<@>, so that variables can still be
1892 substituted.
1893
1894 C<\Q>, C<\L>, C<\l>, C<\U>, C<\u> and C<\E> are actually part of
1895 double-quotish syntax, and not part of regexp syntax proper.  They will
1896 work if they appear in a regular expression embedded directly in a
1897 program, but not when contained in a string that is interpolated in a
1898 pattern.
1899
1900 Perl regexps can handle more than just the
1901 standard ASCII character set.  Perl supports I<Unicode>, a standard
1902 for representing the alphabets from virtually all of the world's written
1903 languages, and a host of symbols.  Perl's text strings are Unicode strings, so
1904 they can contain characters with a value (codepoint or character number) higher
1905 than 255.
1906
1907 What does this mean for regexps? Well, regexp users don't need to know
1908 much about Perl's internal representation of strings.  But they do need
1909 to know 1) how to represent Unicode characters in a regexp and 2) that
1910 a matching operation will treat the string to be searched as a sequence
1911 of characters, not bytes.  The answer to 1) is that Unicode characters
1912 greater than C<chr(255)> are represented using the C<\x{hex}> notation, because
1913 \x hex (without curly braces) doesn't go further than 255.  (Starting in Perl
1914 5.14, if you're an octal fan, you can also use C<\o{oct}>.)
1915
1916     /\x{263a}/;  # match a Unicode smiley face :)
1917
1918 B<NOTE>: In Perl 5.6.0 it used to be that one needed to say C<use
1919 utf8> to use any Unicode features.  This is no more the case: for
1920 almost all Unicode processing, the explicit C<utf8> pragma is not
1921 needed.  (The only case where it matters is if your Perl script is in
1922 Unicode and encoded in UTF-8, then an explicit C<use utf8> is needed.)
1923
1924 Figuring out the hexadecimal sequence of a Unicode character you want
1925 or deciphering someone else's hexadecimal Unicode regexp is about as
1926 much fun as programming in machine code.  So another way to specify
1927 Unicode characters is to use the I<named character> escape
1928 sequence C<\N{I<name>}>.  I<name> is a name for the Unicode character, as
1929 specified in the Unicode standard.  For instance, if we wanted to
1930 represent or match the astrological sign for the planet Mercury, we
1931 could use
1932
1933     $x = "abc\N{MERCURY}def";
1934     $x =~ /\N{MERCURY}/;   # matches
1935
1936 One can also use "short" names:
1937
1938     print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";
1939     print "\N{greek:Sigma} is an upper-case sigma.\n";
1940
1941 You can also restrict names to a certain alphabet by specifying the
1942 L<charnames> pragma:
1943
1944     use charnames qw(greek);
1945     print "\N{sigma} is Greek sigma\n";
1946
1947 An index of character names is available on-line from the Unicode
1948 Consortium, L<http://www.unicode.org/charts/charindex.html>; explanatory
1949 material with links to other resources at
1950 L<http://www.unicode.org/standard/where>.
1951
1952 The answer to requirement 2) is that a regexp (mostly)
1953 uses Unicode characters.  The "mostly" is for messy backward
1954 compatibility reasons, but starting in Perl 5.14, any regex compiled in
1955 the scope of a C<use feature 'unicode_strings'> (which is automatically
1956 turned on within the scope of a C<use 5.012> or higher) will turn that
1957 "mostly" into "always".  If you want to handle Unicode properly, you
1958 should ensure that C<'unicode_strings'> is turned on.
1959 Internally, this is encoded to bytes using either UTF-8 or a native 8
1960 bit encoding, depending on the history of the string, but conceptually
1961 it is a sequence of characters, not bytes. See L<perlunitut> for a
1962 tutorial about that.
1963
1964 Let us now discuss Unicode character classes, most usually called
1965 "character properties".  These are represented by the
1966 C<\p{name}> escape sequence.  Closely associated is the C<\P{name}>
1967 property, which is the negation of the C<\p{name}> one.  For
1968 example, to match lower and uppercase characters,
1969
1970     $x = "BOB";
1971     $x =~ /^\p{IsUpper}/;   # matches, uppercase char class
1972     $x =~ /^\P{IsUpper}/;   # doesn't match, char class sans uppercase
1973     $x =~ /^\p{IsLower}/;   # doesn't match, lowercase char class
1974     $x =~ /^\P{IsLower}/;   # matches, char class sans lowercase
1975
1976 (The "Is" is optional.)
1977
1978 There are many, many Unicode character properties.  For the full list
1979 see L<perluniprops>.  Most of them have synonyms with shorter names,
1980 also listed there.  Some synonyms are a single character.  For these,
1981 you can drop the braces.  For instance, C<\pM> is the same thing as
1982 C<\p{Mark}>, meaning things like accent marks.
1983
1984 The Unicode C<\p{Script}> property is used to categorize every Unicode
1985 character into the language script it is written in.  For example,
1986 English, French, and a bunch of other European languages are written in
1987 the Latin script.  But there is also the Greek script, the Thai script,
1988 the Katakana script, etc.  You can test whether a character is in a
1989 particular script with, for example C<\p{Latin}>, C<\p{Greek}>,
1990 or C<\p{Katakana}>.  To test if it isn't in the Balinese script, you
1991 would use C<\P{Balinese}>.
1992
1993 What we have described so far is the single form of the C<\p{...}> character
1994 classes.  There is also a compound form which you may run into.  These
1995 look like C<\p{name=value}> or C<\p{name:value}> (the equals sign and colon
1996 can be used interchangeably).  These are more general than the single form,
1997 and in fact most of the single forms are just Perl-defined shortcuts for common
1998 compound forms.  For example, the script examples in the previous paragraph
1999 could be written equivalently as C<\p{Script=Latin}>, C<\p{Script:Greek}>,
2000 C<\p{script=katakana}>, and C<\P{script=balinese}> (case is irrelevant
2001 between the C<{}> braces).  You may
2002 never have to use the compound forms, but sometimes it is necessary, and their
2003 use can make your code easier to understand.
2004
2005 C<\X> is an abbreviation for a character class that comprises
2006 a Unicode I<extended grapheme cluster>.  This represents a "logical character":
2007 what appears to be a single character, but may be represented internally by more
2008 than one.  As an example, using the Unicode full names, e.g., S<C<A + COMBINING
2009 RING>> is a grapheme cluster with base character C<A> and combining character
2010 S<C<COMBINING RING>>, which translates in Danish to A with the circle atop it,
2011 as in the word E<Aring>ngstrom.
2012
2013 For the full and latest information about Unicode see the latest
2014 Unicode standard, or the Unicode Consortium's website L<http://www.unicode.org>
2015
2016 As if all those classes weren't enough, Perl also defines POSIX-style
2017 character classes.  These have the form C<[:name:]>, with C<name> the
2018 name of the POSIX class.  The POSIX classes are C<alpha>, C<alnum>,
2019 C<ascii>, C<cntrl>, C<digit>, C<graph>, C<lower>, C<print>, C<punct>,
2020 C<space>, C<upper>, and C<xdigit>, and two extensions, C<word> (a Perl
2021 extension to match C<\w>), and C<blank> (a GNU extension).  The C<//a>
2022 modifier restricts these to matching just in the ASCII range; otherwise
2023 they can match the same as their corresponding Perl Unicode classes:
2024 C<[:upper:]> is the same as C<\p{IsUpper}>, etc.  (There are some
2025 exceptions and gotchas with this; see L<perlrecharclass> for a full
2026 discussion.) The C<[:digit:]>, C<[:word:]>, and
2027 C<[:space:]> correspond to the familiar C<\d>, C<\w>, and C<\s>
2028 character classes.  To negate a POSIX class, put a C<^> in front of
2029 the name, so that, e.g., C<[:^digit:]> corresponds to C<\D> and, under
2030 Unicode, C<\P{IsDigit}>.  The Unicode and POSIX character classes can
2031 be used just like C<\d>, with the exception that POSIX character
2032 classes can only be used inside of a character class:
2033
2034     /\s+[abc[:digit:]xyz]\s*/;  # match a,b,c,x,y,z, or a digit
2035     /^=item\s[[:digit:]]/;      # match '=item',
2036                                 # followed by a space and a digit
2037     /\s+[abc\p{IsDigit}xyz]\s+/;  # match a,b,c,x,y,z, or a digit
2038     /^=item\s\p{IsDigit}/;        # match '=item',
2039                                   # followed by a space and a digit
2040
2041 Whew! That is all the rest of the characters and character classes.
2042
2043 =head2 Compiling and saving regular expressions
2044
2045 In Part 1 we mentioned that Perl compiles a regexp into a compact
2046 sequence of opcodes.  Thus, a compiled regexp is a data structure
2047 that can be stored once and used again and again.  The regexp quote
2048 C<qr//> does exactly that: C<qr/string/> compiles the C<string> as a
2049 regexp and transforms the result into a form that can be assigned to a
2050 variable:
2051
2052     $reg = qr/foo+bar?/;  # reg contains a compiled regexp
2053
2054 Then C<$reg> can be used as a regexp:
2055
2056     $x = "fooooba";
2057     $x =~ $reg;     # matches, just like /foo+bar?/
2058     $x =~ /$reg/;   # same thing, alternate form
2059
2060 C<$reg> can also be interpolated into a larger regexp:
2061
2062     $x =~ /(abc)?$reg/;  # still matches
2063
2064 As with the matching operator, the regexp quote can use different
2065 delimiters, e.g., C<qr!!>, C<qr{}> or C<qr~~>.  Apostrophes
2066 as delimiters (C<qr''>) inhibit any interpolation.
2067
2068 Pre-compiled regexps are useful for creating dynamic matches that
2069 don't need to be recompiled each time they are encountered.  Using
2070 pre-compiled regexps, we write a C<grep_step> program which greps
2071 for a sequence of patterns, advancing to the next pattern as soon
2072 as one has been satisfied.
2073
2074     % cat > grep_step
2075     #!/usr/bin/perl
2076     # grep_step - match <number> regexps, one after the other
2077     # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...
2078
2079     $number = shift;
2080     $regexp[$_] = shift foreach (0..$number-1);
2081     @compiled = map qr/$_/, @regexp;
2082     while ($line = <>) {
2083         if ($line =~ /$compiled[0]/) {
2084             print $line;
2085             shift @compiled;
2086             last unless @compiled;
2087         }
2088     }
2089     ^D
2090
2091     % grep_step 3 shift print last grep_step
2092     $number = shift;
2093             print $line;
2094             last unless @compiled;
2095
2096 Storing pre-compiled regexps in an array C<@compiled> allows us to
2097 simply loop through the regexps without any recompilation, thus gaining
2098 flexibility without sacrificing speed.
2099
2100
2101 =head2 Composing regular expressions at runtime
2102
2103 Backtracking is more efficient than repeated tries with different regular
2104 expressions.  If there are several regular expressions and a match with
2105 any of them is acceptable, then it is possible to combine them into a set
2106 of alternatives.  If the individual expressions are input data, this
2107 can be done by programming a join operation.  We'll exploit this idea in
2108 an improved version of the C<simple_grep> program: a program that matches
2109 multiple patterns:
2110
2111     % cat > multi_grep
2112     #!/usr/bin/perl
2113     # multi_grep - match any of <number> regexps
2114     # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...
2115
2116     $number = shift;
2117     $regexp[$_] = shift foreach (0..$number-1);
2118     $pattern = join '|', @regexp;
2119
2120     while ($line = <>) {
2121         print $line if $line =~ /$pattern/;
2122     }
2123     ^D
2124
2125     % multi_grep 2 shift for multi_grep
2126     $number = shift;
2127     $regexp[$_] = shift foreach (0..$number-1);
2128
2129 Sometimes it is advantageous to construct a pattern from the I<input>
2130 that is to be analyzed and use the permissible values on the left
2131 hand side of the matching operations.  As an example for this somewhat
2132 paradoxical situation, let's assume that our input contains a command
2133 verb which should match one out of a set of available command verbs,
2134 with the additional twist that commands may be abbreviated as long as
2135 the given string is unique. The program below demonstrates the basic
2136 algorithm.
2137
2138     % cat > keymatch
2139     #!/usr/bin/perl
2140     $kwds = 'copy compare list print';
2141     while( $cmd = <> ){
2142         $cmd =~ s/^\s+|\s+$//g;  # trim leading and trailing spaces
2143         if( ( @matches = $kwds =~ /\b$cmd\w*/g ) == 1 ){
2144             print "command: '@matches'\n";
2145         } elsif( @matches == 0 ){
2146             print "no such command: '$cmd'\n";
2147         } else {
2148             print "not unique: '$cmd' (could be one of: @matches)\n";
2149         }
2150     }
2151     ^D
2152
2153     % keymatch
2154     li
2155     command: 'list'
2156     co
2157     not unique: 'co' (could be one of: copy compare)
2158     printer
2159     no such command: 'printer'
2160
2161 Rather than trying to match the input against the keywords, we match the
2162 combined set of keywords against the input.  The pattern matching
2163 operation S<C<$kwds =~ /\b($cmd\w*)/g>> does several things at the
2164 same time. It makes sure that the given command begins where a keyword
2165 begins (C<\b>). It tolerates abbreviations due to the added C<\w*>. It
2166 tells us the number of matches (C<scalar @matches>) and all the keywords
2167 that were actually matched.  You could hardly ask for more.
2168
2169 =head2 Embedding comments and modifiers in a regular expression
2170
2171 Starting with this section, we will be discussing Perl's set of
2172 I<extended patterns>.  These are extensions to the traditional regular
2173 expression syntax that provide powerful new tools for pattern
2174 matching.  We have already seen extensions in the form of the minimal
2175 matching constructs C<??>, C<*?>, C<+?>, C<{n,m}?>, and C<{n,}?>.  Most
2176 of the extensions below have the form C<(?char...)>, where the
2177 C<char> is a character that determines the type of extension.
2178
2179 The first extension is an embedded comment C<(?#text)>.  This embeds a
2180 comment into the regular expression without affecting its meaning.  The
2181 comment should not have any closing parentheses in the text.  An
2182 example is
2183
2184     /(?# Match an integer:)[+-]?\d+/;
2185
2186 This style of commenting has been largely superseded by the raw,
2187 freeform commenting that is allowed with the C<//x> modifier.
2188
2189 Most modifiers, such as C<//i>, C<//m>, C<//s> and C<//x> (or any
2190 combination thereof) can also be embedded in
2191 a regexp using C<(?i)>, C<(?m)>, C<(?s)>, and C<(?x)>.  For instance,
2192
2193     /(?i)yes/;  # match 'yes' case insensitively
2194     /yes/i;     # same thing
2195     /(?x)(          # freeform version of an integer regexp
2196              [+-]?  # match an optional sign
2197              \d+    # match a sequence of digits
2198          )
2199     /x;
2200
2201 Embedded modifiers can have two important advantages over the usual
2202 modifiers.  Embedded modifiers allow a custom set of modifiers to
2203 I<each> regexp pattern.  This is great for matching an array of regexps
2204 that must have different modifiers:
2205
2206     $pattern[0] = '(?i)doctor';
2207     $pattern[1] = 'Johnson';
2208     ...
2209     while (<>) {
2210         foreach $patt (@pattern) {
2211             print if /$patt/;
2212         }
2213     }
2214
2215 The second advantage is that embedded modifiers (except C<//p>, which
2216 modifies the entire regexp) only affect the regexp
2217 inside the group the embedded modifier is contained in.  So grouping
2218 can be used to localize the modifier's effects:
2219
2220     /Answer: ((?i)yes)/;  # matches 'Answer: yes', 'Answer: YES', etc.
2221
2222 Embedded modifiers can also turn off any modifiers already present
2223 by using, e.g., C<(?-i)>.  Modifiers can also be combined into
2224 a single expression, e.g., C<(?s-i)> turns on single line mode and
2225 turns off case insensitivity.
2226
2227 Embedded modifiers may also be added to a non-capturing grouping.
2228 C<(?i-m:regexp)> is a non-capturing grouping that matches C<regexp>
2229 case insensitively and turns off multi-line mode.
2230
2231
2232 =head2 Looking ahead and looking behind
2233
2234 This section concerns the lookahead and lookbehind assertions.  First,
2235 a little background.
2236
2237 In Perl regular expressions, most regexp elements 'eat up' a certain
2238 amount of string when they match.  For instance, the regexp element
2239 C<[abc}]> eats up one character of the string when it matches, in the
2240 sense that Perl moves to the next character position in the string
2241 after the match.  There are some elements, however, that don't eat up
2242 characters (advance the character position) if they match.  The examples
2243 we have seen so far are the anchors.  The anchor C<^> matches the
2244 beginning of the line, but doesn't eat any characters.  Similarly, the
2245 word boundary anchor C<\b> matches wherever a character matching C<\w>
2246 is next to a character that doesn't, but it doesn't eat up any
2247 characters itself.  Anchors are examples of I<zero-width assertions>:
2248 zero-width, because they consume
2249 no characters, and assertions, because they test some property of the
2250 string.  In the context of our walk in the woods analogy to regexp
2251 matching, most regexp elements move us along a trail, but anchors have
2252 us stop a moment and check our surroundings.  If the local environment
2253 checks out, we can proceed forward.  But if the local environment
2254 doesn't satisfy us, we must backtrack.
2255
2256 Checking the environment entails either looking ahead on the trail,
2257 looking behind, or both.  C<^> looks behind, to see that there are no
2258 characters before.  C<$> looks ahead, to see that there are no
2259 characters after.  C<\b> looks both ahead and behind, to see if the
2260 characters on either side differ in their "word-ness".
2261
2262 The lookahead and lookbehind assertions are generalizations of the
2263 anchor concept.  Lookahead and lookbehind are zero-width assertions
2264 that let us specify which characters we want to test for.  The
2265 lookahead assertion is denoted by C<(?=regexp)> and the lookbehind
2266 assertion is denoted by C<< (?<=fixed-regexp) >>.  Some examples are
2267
2268     $x = "I catch the housecat 'Tom-cat' with catnip";
2269     $x =~ /cat(?=\s)/;   # matches 'cat' in 'housecat'
2270     @catwords = ($x =~ /(?<=\s)cat\w+/g);  # matches,
2271                                            # $catwords[0] = 'catch'
2272                                            # $catwords[1] = 'catnip'
2273     $x =~ /\bcat\b/;  # matches 'cat' in 'Tom-cat'
2274     $x =~ /(?<=\s)cat(?=\s)/; # doesn't match; no isolated 'cat' in
2275                               # middle of $x
2276
2277 Note that the parentheses in C<(?=regexp)> and C<< (?<=regexp) >> are
2278 non-capturing, since these are zero-width assertions.  Thus in the
2279 second regexp, the substrings captured are those of the whole regexp
2280 itself.  Lookahead C<(?=regexp)> can match arbitrary regexps, but
2281 lookbehind C<< (?<=fixed-regexp) >> only works for regexps of fixed
2282 width, i.e., a fixed number of characters long.  Thus
2283 C<< (?<=(ab|bc)) >> is fine, but C<< (?<=(ab)*) >> is not.  The
2284 negated versions of the lookahead and lookbehind assertions are
2285 denoted by C<(?!regexp)> and C<< (?<!fixed-regexp) >> respectively.
2286 They evaluate true if the regexps do I<not> match:
2287
2288     $x = "foobar";
2289     $x =~ /foo(?!bar)/;  # doesn't match, 'bar' follows 'foo'
2290     $x =~ /foo(?!baz)/;  # matches, 'baz' doesn't follow 'foo'
2291     $x =~ /(?<!\s)foo/;  # matches, there is no \s before 'foo'
2292
2293 The C<\C> is unsupported in lookbehind, because the already
2294 treacherous definition of C<\C> would become even more so
2295 when going backwards.
2296
2297 Here is an example where a string containing blank-separated words,
2298 numbers and single dashes is to be split into its components.
2299 Using C</\s+/> alone won't work, because spaces are not required between
2300 dashes, or a word or a dash. Additional places for a split are established
2301 by looking ahead and behind:
2302
2303     $str = "one two - --6-8";
2304     @toks = split / \s+              # a run of spaces
2305                   | (?<=\S) (?=-)    # any non-space followed by '-'
2306                   | (?<=-)  (?=\S)   # a '-' followed by any non-space
2307                   /x, $str;          # @toks = qw(one two - - - 6 - 8)
2308
2309
2310 =head2 Using independent subexpressions to prevent backtracking
2311
2312 I<Independent subexpressions> are regular expressions, in the
2313 context of a larger regular expression, that function independently of
2314 the larger regular expression.  That is, they consume as much or as
2315 little of the string as they wish without regard for the ability of
2316 the larger regexp to match.  Independent subexpressions are represented
2317 by C<< (?>regexp) >>.  We can illustrate their behavior by first
2318 considering an ordinary regexp:
2319
2320     $x = "ab";
2321     $x =~ /a*ab/;  # matches
2322
2323 This obviously matches, but in the process of matching, the
2324 subexpression C<a*> first grabbed the C<a>.  Doing so, however,
2325 wouldn't allow the whole regexp to match, so after backtracking, C<a*>
2326 eventually gave back the C<a> and matched the empty string.  Here, what
2327 C<a*> matched was I<dependent> on what the rest of the regexp matched.
2328
2329 Contrast that with an independent subexpression:
2330
2331     $x =~ /(?>a*)ab/;  # doesn't match!
2332
2333 The independent subexpression C<< (?>a*) >> doesn't care about the rest
2334 of the regexp, so it sees an C<a> and grabs it.  Then the rest of the
2335 regexp C<ab> cannot match.  Because C<< (?>a*) >> is independent, there
2336 is no backtracking and the independent subexpression does not give
2337 up its C<a>.  Thus the match of the regexp as a whole fails.  A similar
2338 behavior occurs with completely independent regexps:
2339
2340     $x = "ab";
2341     $x =~ /a*/g;   # matches, eats an 'a'
2342     $x =~ /\Gab/g; # doesn't match, no 'a' available
2343
2344 Here C<//g> and C<\G> create a 'tag team' handoff of the string from
2345 one regexp to the other.  Regexps with an independent subexpression are
2346 much like this, with a handoff of the string to the independent
2347 subexpression, and a handoff of the string back to the enclosing
2348 regexp.
2349
2350 The ability of an independent subexpression to prevent backtracking
2351 can be quite useful.  Suppose we want to match a non-empty string
2352 enclosed in parentheses up to two levels deep.  Then the following
2353 regexp matches:
2354
2355     $x = "abc(de(fg)h";  # unbalanced parentheses
2356     $x =~ /\( ( [^()]+ | \([^()]*\) )+ \)/x;
2357
2358 The regexp matches an open parenthesis, one or more copies of an
2359 alternation, and a close parenthesis.  The alternation is two-way, with
2360 the first alternative C<[^()]+> matching a substring with no
2361 parentheses and the second alternative C<\([^()]*\)>  matching a
2362 substring delimited by parentheses.  The problem with this regexp is
2363 that it is pathological: it has nested indeterminate quantifiers
2364 of the form C<(a+|b)+>.  We discussed in Part 1 how nested quantifiers
2365 like this could take an exponentially long time to execute if there
2366 was no match possible.  To prevent the exponential blowup, we need to
2367 prevent useless backtracking at some point.  This can be done by
2368 enclosing the inner quantifier as an independent subexpression:
2369
2370     $x =~ /\( ( (?>[^()]+) | \([^()]*\) )+ \)/x;
2371
2372 Here, C<< (?>[^()]+) >> breaks the degeneracy of string partitioning
2373 by gobbling up as much of the string as possible and keeping it.   Then
2374 match failures fail much more quickly.
2375
2376
2377 =head2 Conditional expressions
2378
2379 A I<conditional expression> is a form of if-then-else statement
2380 that allows one to choose which patterns are to be matched, based on
2381 some condition.  There are two types of conditional expression:
2382 C<(?(condition)yes-regexp)> and
2383 C<(?(condition)yes-regexp|no-regexp)>.  C<(?(condition)yes-regexp)> is
2384 like an S<C<'if () {}'>> statement in Perl.  If the C<condition> is true,
2385 the C<yes-regexp> will be matched.  If the C<condition> is false, the
2386 C<yes-regexp> will be skipped and Perl will move onto the next regexp
2387 element.  The second form is like an S<C<'if () {} else {}'>> statement
2388 in Perl.  If the C<condition> is true, the C<yes-regexp> will be
2389 matched, otherwise the C<no-regexp> will be matched.
2390
2391 The C<condition> can have several forms.  The first form is simply an
2392 integer in parentheses C<(integer)>.  It is true if the corresponding
2393 backreference C<\integer> matched earlier in the regexp.  The same
2394 thing can be done with a name associated with a capture group, written
2395 as C<< (<name>) >> or C<< ('name') >>.  The second form is a bare
2396 zero-width assertion C<(?...)>, either a lookahead, a lookbehind, or a
2397 code assertion (discussed in the next section).  The third set of forms
2398 provides tests that return true if the expression is executed within
2399 a recursion (C<(R)>) or is being called from some capturing group,
2400 referenced either by number (C<(R1)>, C<(R2)>,...) or by name
2401 (C<(R&name)>).
2402
2403 The integer or name form of the C<condition> allows us to choose,
2404 with more flexibility, what to match based on what matched earlier in the
2405 regexp. This searches for words of the form C<"$x$x"> or C<"$x$y$y$x">:
2406
2407     % simple_grep '^(\w+)(\w+)?(?(2)\g2\g1|\g1)$' /usr/dict/words
2408     beriberi
2409     coco
2410     couscous
2411     deed
2412     ...
2413     toot
2414     toto
2415     tutu
2416
2417 The lookbehind C<condition> allows, along with backreferences,
2418 an earlier part of the match to influence a later part of the
2419 match.  For instance,
2420
2421     /[ATGC]+(?(?<=AA)G|C)$/;
2422
2423 matches a DNA sequence such that it either ends in C<AAG>, or some
2424 other base pair combination and C<C>.  Note that the form is
2425 C<< (?(?<=AA)G|C) >> and not C<< (?((?<=AA))G|C) >>; for the
2426 lookahead, lookbehind or code assertions, the parentheses around the
2427 conditional are not needed.
2428
2429
2430 =head2 Defining named patterns
2431
2432 Some regular expressions use identical subpatterns in several places.
2433 Starting with Perl 5.10, it is possible to define named subpatterns in
2434 a section of the pattern so that they can be called up by name
2435 anywhere in the pattern.  This syntactic pattern for this definition
2436 group is C<< (?(DEFINE)(?<name>pattern)...) >>.  An insertion
2437 of a named pattern is written as C<(?&name)>.
2438
2439 The example below illustrates this feature using the pattern for
2440 floating point numbers that was presented earlier on.  The three
2441 subpatterns that are used more than once are the optional sign, the
2442 digit sequence for an integer and the decimal fraction.  The DEFINE
2443 group at the end of the pattern contains their definition.  Notice
2444 that the decimal fraction pattern is the first place where we can
2445 reuse the integer pattern.
2446
2447    /^ (?&osg)\ * ( (?&int)(?&dec)? | (?&dec) )
2448       (?: [eE](?&osg)(?&int) )?
2449     $
2450     (?(DEFINE)
2451       (?<osg>[-+]?)         # optional sign
2452       (?<int>\d++)          # integer
2453       (?<dec>\.(?&int))     # decimal fraction
2454     )/x
2455
2456
2457 =head2 Recursive patterns
2458
2459 This feature (introduced in Perl 5.10) significantly extends the
2460 power of Perl's pattern matching.  By referring to some other
2461 capture group anywhere in the pattern with the construct
2462 C<(?group-ref)>, the I<pattern> within the referenced group is used
2463 as an independent subpattern in place of the group reference itself.
2464 Because the group reference may be contained I<within> the group it
2465 refers to, it is now possible to apply pattern matching to tasks that
2466 hitherto required a recursive parser.
2467
2468 To illustrate this feature, we'll design a pattern that matches if
2469 a string contains a palindrome. (This is a word or a sentence that,
2470 while ignoring spaces, interpunctuation and case, reads the same backwards
2471 as forwards. We begin by observing that the empty string or a string
2472 containing just one word character is a palindrome. Otherwise it must
2473 have a word character up front and the same at its end, with another
2474 palindrome in between.
2475
2476     /(?: (\w) (?...Here be a palindrome...) \g{-1} | \w? )/x
2477
2478 Adding C<\W*> at either end to eliminate what is to be ignored, we already
2479 have the full pattern:
2480
2481     my $pp = qr/^(\W* (?: (\w) (?1) \g{-1} | \w? ) \W*)$/ix;
2482     for $s ( "saippuakauppias", "A man, a plan, a canal: Panama!" ){
2483         print "'$s' is a palindrome\n" if $s =~ /$pp/;
2484     }
2485
2486 In C<(?...)> both absolute and relative backreferences may be used.
2487 The entire pattern can be reinserted with C<(?R)> or C<(?0)>.
2488 If you prefer to name your groups, you can use C<(?&name)> to
2489 recurse into that group.
2490
2491
2492 =head2 A bit of magic: executing Perl code in a regular expression
2493
2494 Normally, regexps are a part of Perl expressions.
2495 I<Code evaluation> expressions turn that around by allowing
2496 arbitrary Perl code to be a part of a regexp.  A code evaluation
2497 expression is denoted C<(?{code})>, with I<code> a string of Perl
2498 statements.
2499
2500 Be warned that this feature is considered experimental, and may be
2501 changed without notice.
2502
2503 Code expressions are zero-width assertions, and the value they return
2504 depends on their environment.  There are two possibilities: either the
2505 code expression is used as a conditional in a conditional expression
2506 C<(?(condition)...)>, or it is not.  If the code expression is a
2507 conditional, the code is evaluated and the result (i.e., the result of
2508 the last statement) is used to determine truth or falsehood.  If the
2509 code expression is not used as a conditional, the assertion always
2510 evaluates true and the result is put into the special variable
2511 C<$^R>.  The variable C<$^R> can then be used in code expressions later
2512 in the regexp.  Here are some silly examples:
2513
2514     $x = "abcdef";
2515     $x =~ /abc(?{print "Hi Mom!";})def/; # matches,
2516                                          # prints 'Hi Mom!'
2517     $x =~ /aaa(?{print "Hi Mom!";})def/; # doesn't match,
2518                                          # no 'Hi Mom!'
2519
2520 Pay careful attention to the next example:
2521
2522     $x =~ /abc(?{print "Hi Mom!";})ddd/; # doesn't match,
2523                                          # no 'Hi Mom!'
2524                                          # but why not?
2525
2526 At first glance, you'd think that it shouldn't print, because obviously
2527 the C<ddd> isn't going to match the target string. But look at this
2528 example:
2529
2530     $x =~ /abc(?{print "Hi Mom!";})[dD]dd/; # doesn't match,
2531                                             # but _does_ print
2532
2533 Hmm. What happened here? If you've been following along, you know that
2534 the above pattern should be effectively (almost) the same as the last one;
2535 enclosing the C<d> in a character class isn't going to change what it
2536 matches. So why does the first not print while the second one does?
2537
2538 The answer lies in the optimizations the regex engine makes. In the first
2539 case, all the engine sees are plain old characters (aside from the
2540 C<?{}> construct). It's smart enough to realize that the string 'ddd'
2541 doesn't occur in our target string before actually running the pattern
2542 through. But in the second case, we've tricked it into thinking that our
2543 pattern is more complicated. It takes a look, sees our
2544 character class, and decides that it will have to actually run the
2545 pattern to determine whether or not it matches, and in the process of
2546 running it hits the print statement before it discovers that we don't
2547 have a match.
2548
2549 To take a closer look at how the engine does optimizations, see the
2550 section L<"Pragmas and debugging"> below.
2551
2552 More fun with C<?{}>:
2553
2554     $x =~ /(?{print "Hi Mom!";})/;       # matches,
2555                                          # prints 'Hi Mom!'
2556     $x =~ /(?{$c = 1;})(?{print "$c";})/;  # matches,
2557                                            # prints '1'
2558     $x =~ /(?{$c = 1;})(?{print "$^R";})/; # matches,
2559                                            # prints '1'
2560
2561 The bit of magic mentioned in the section title occurs when the regexp
2562 backtracks in the process of searching for a match.  If the regexp
2563 backtracks over a code expression and if the variables used within are
2564 localized using C<local>, the changes in the variables produced by the
2565 code expression are undone! Thus, if we wanted to count how many times
2566 a character got matched inside a group, we could use, e.g.,
2567
2568     $x = "aaaa";
2569     $count = 0;  # initialize 'a' count
2570     $c = "bob";  # test if $c gets clobbered
2571     $x =~ /(?{local $c = 0;})         # initialize count
2572            ( a                        # match 'a'
2573              (?{local $c = $c + 1;})  # increment count
2574            )*                         # do this any number of times,
2575            aa                         # but match 'aa' at the end
2576            (?{$count = $c;})          # copy local $c var into $count
2577           /x;
2578     print "'a' count is $count, \$c variable is '$c'\n";
2579
2580 This prints
2581
2582     'a' count is 2, $c variable is 'bob'
2583
2584 If we replace the S<C< (?{local $c = $c + 1;})>> with
2585 S<C< (?{$c = $c + 1;})>>, the variable changes are I<not> undone
2586 during backtracking, and we get
2587
2588     'a' count is 4, $c variable is 'bob'
2589
2590 Note that only localized variable changes are undone.  Other side
2591 effects of code expression execution are permanent.  Thus
2592
2593     $x = "aaaa";
2594     $x =~ /(a(?{print "Yow\n";}))*aa/;
2595
2596 produces
2597
2598    Yow
2599    Yow
2600    Yow
2601    Yow
2602
2603 The result C<$^R> is automatically localized, so that it will behave
2604 properly in the presence of backtracking.
2605
2606 This example uses a code expression in a conditional to match a
2607 definite article, either 'the' in English or 'der|die|das' in German:
2608
2609     $lang = 'DE';  # use German
2610     ...
2611     $text = "das";
2612     print "matched\n"
2613         if $text =~ /(?(?{
2614                           $lang eq 'EN'; # is the language English?
2615                          })
2616                        the |             # if so, then match 'the'
2617                        (der|die|das)     # else, match 'der|die|das'
2618                      )
2619                     /xi;
2620
2621 Note that the syntax here is C<(?(?{...})yes-regexp|no-regexp)>, not
2622 C<(?((?{...}))yes-regexp|no-regexp)>.  In other words, in the case of a
2623 code expression, we don't need the extra parentheses around the
2624 conditional.
2625
2626 If you try to use code expressions where the code text is contained within
2627 an interpolated variable, rather than appearing literally in the pattern,
2628 Perl may surprise you:
2629
2630     $bar = 5;
2631     $pat = '(?{ 1 })';
2632     /foo(?{ $bar })bar/; # compiles ok, $bar not interpolated
2633     /foo(?{ 1 })$bar/;   # compiles ok, $bar interpolated
2634     /foo${pat}bar/;      # compile error!
2635
2636     $pat = qr/(?{ $foo = 1 })/;  # precompile code regexp
2637     /foo${pat}bar/;      # compiles ok
2638
2639 If a regexp has a variable that interpolates a code expression, Perl
2640 treats the regexp as an error. If the code expression is precompiled into
2641 a variable, however, interpolating is ok. The question is, why is this an
2642 error?
2643
2644 The reason is that variable interpolation and code expressions
2645 together pose a security risk.  The combination is dangerous because
2646 many programmers who write search engines often take user input and
2647 plug it directly into a regexp:
2648
2649     $regexp = <>;       # read user-supplied regexp
2650     $chomp $regexp;     # get rid of possible newline
2651     $text =~ /$regexp/; # search $text for the $regexp
2652
2653 If the C<$regexp> variable contains a code expression, the user could
2654 then execute arbitrary Perl code.  For instance, some joker could
2655 search for S<C<system('rm -rf *');>> to erase your files.  In this
2656 sense, the combination of interpolation and code expressions I<taints>
2657 your regexp.  So by default, using both interpolation and code
2658 expressions in the same regexp is not allowed.  If you're not
2659 concerned about malicious users, it is possible to bypass this
2660 security check by invoking S<C<use re 'eval'>>:
2661
2662     use re 'eval';       # throw caution out the door
2663     $bar = 5;
2664     $pat = '(?{ 1 })';
2665     /foo${pat}bar/;      # compiles ok
2666
2667 Another form of code expression is the I<pattern code expression>.
2668 The pattern code expression is like a regular code expression, except
2669 that the result of the code evaluation is treated as a regular
2670 expression and matched immediately.  A simple example is
2671
2672     $length = 5;
2673     $char = 'a';
2674     $x = 'aaaaabb';
2675     $x =~ /(??{$char x $length})/x; # matches, there are 5 of 'a'
2676
2677
2678 This final example contains both ordinary and pattern code
2679 expressions.  It detects whether a binary string C<1101010010001...> has a
2680 Fibonacci spacing 0,1,1,2,3,5,...  of the C<1>'s:
2681
2682     $x = "1101010010001000001";
2683     $z0 = ''; $z1 = '0';   # initial conditions
2684     print "It is a Fibonacci sequence\n"
2685         if $x =~ /^1         # match an initial '1'
2686                     (?:
2687                        ((??{ $z0 })) # match some '0'
2688                        1             # and then a '1'
2689                        (?{ $z0 = $z1; $z1 .= $^N; })
2690                     )+   # repeat as needed
2691                   $      # that is all there is
2692                  /x;
2693     printf "Largest sequence matched was %d\n", length($z1)-length($z0);
2694
2695 Remember that C<$^N> is set to whatever was matched by the last
2696 completed capture group. This prints
2697
2698     It is a Fibonacci sequence
2699     Largest sequence matched was 5
2700
2701 Ha! Try that with your garden variety regexp package...
2702
2703 Note that the variables C<$z0> and C<$z1> are not substituted when the
2704 regexp is compiled, as happens for ordinary variables outside a code
2705 expression.  Rather, the whole code block is parsed as perl code at the
2706 same time as perl is compiling the code containing the literal regexp
2707 pattern.
2708
2709 The regexp without the C<//x> modifier is
2710
2711     /^1(?:((??{ $z0 }))1(?{ $z0 = $z1; $z1 .= $^N; }))+$/
2712
2713 which shows that spaces are still possible in the code parts. Nevertheless,
2714 when working with code and conditional expressions, the extended form of
2715 regexps is almost necessary in creating and debugging regexps.
2716
2717
2718 =head2 Backtracking control verbs
2719
2720 Perl 5.10 introduced a number of control verbs intended to provide
2721 detailed control over the backtracking process, by directly influencing
2722 the regexp engine and by providing monitoring techniques.  As all
2723 the features in this group are experimental and subject to change or
2724 removal in a future version of Perl, the interested reader is
2725 referred to L<perlre/"Special Backtracking Control Verbs"> for a
2726 detailed description.
2727
2728 Below is just one example, illustrating the control verb C<(*FAIL)>,
2729 which may be abbreviated as C<(*F)>. If this is inserted in a regexp
2730 it will cause it to fail, just as it would at some
2731 mismatch between the pattern and the string. Processing
2732 of the regexp continues as it would after any "normal"
2733 failure, so that, for instance, the next position in the string or another
2734 alternative will be tried. As failing to match doesn't preserve capture
2735 groups or produce results, it may be necessary to use this in
2736 combination with embedded code.
2737
2738    %count = ();
2739    "supercalifragilisticexpialidocious" =~
2740        /([aeiou])(?{ $count{$1}++; })(*FAIL)/i;
2741    printf "%3d '%s'\n", $count{$_}, $_ for (sort keys %count);
2742
2743 The pattern begins with a class matching a subset of letters.  Whenever
2744 this matches, a statement like C<$count{'a'}++;> is executed, incrementing
2745 the letter's counter. Then C<(*FAIL)> does what it says, and
2746 the regexp engine proceeds according to the book: as long as the end of
2747 the string hasn't been reached, the position is advanced before looking
2748 for another vowel. Thus, match or no match makes no difference, and the
2749 regexp engine proceeds until the entire string has been inspected.
2750 (It's remarkable that an alternative solution using something like
2751
2752    $count{lc($_)}++ for split('', "supercalifragilisticexpialidocious");
2753    printf "%3d '%s'\n", $count2{$_}, $_ for ( qw{ a e i o u } );
2754
2755 is considerably slower.)
2756
2757
2758 =head2 Pragmas and debugging
2759
2760 Speaking of debugging, there are several pragmas available to control
2761 and debug regexps in Perl.  We have already encountered one pragma in
2762 the previous section, S<C<use re 'eval';>>, that allows variable
2763 interpolation and code expressions to coexist in a regexp.  The other
2764 pragmas are
2765
2766     use re 'taint';
2767     $tainted = <>;
2768     @parts = ($tainted =~ /(\w+)\s+(\w+)/; # @parts is now tainted
2769
2770 The C<taint> pragma causes any substrings from a match with a tainted
2771 variable to be tainted as well.  This is not normally the case, as
2772 regexps are often used to extract the safe bits from a tainted
2773 variable.  Use C<taint> when you are not extracting safe bits, but are
2774 performing some other processing.  Both C<taint> and C<eval> pragmas
2775 are lexically scoped, which means they are in effect only until
2776 the end of the block enclosing the pragmas.
2777
2778     use re '/m';  # or any other flags
2779     $multiline_string =~ /^foo/; # /m is implied
2780
2781 The C<re '/flags'> pragma (introduced in Perl
2782 5.14) turns on the given regular expression flags
2783 until the end of the lexical scope.  See
2784 L<re/"'E<sol>flags' mode"> for more
2785 detail.
2786
2787     use re 'debug';
2788     /^(.*)$/s;       # output debugging info
2789
2790     use re 'debugcolor';
2791     /^(.*)$/s;       # output debugging info in living color
2792
2793 The global C<debug> and C<debugcolor> pragmas allow one to get
2794 detailed debugging info about regexp compilation and
2795 execution.  C<debugcolor> is the same as debug, except the debugging
2796 information is displayed in color on terminals that can display
2797 termcap color sequences.  Here is example output:
2798
2799     % perl -e 'use re "debug"; "abc" =~ /a*b+c/;'
2800     Compiling REx 'a*b+c'
2801     size 9 first at 1
2802        1: STAR(4)
2803        2:   EXACT <a>(0)
2804        4: PLUS(7)
2805        5:   EXACT <b>(0)
2806        7: EXACT <c>(9)
2807        9: END(0)
2808     floating 'bc' at 0..2147483647 (checking floating) minlen 2
2809     Guessing start of match, REx 'a*b+c' against 'abc'...
2810     Found floating substr 'bc' at offset 1...
2811     Guessed: match at offset 0
2812     Matching REx 'a*b+c' against 'abc'
2813       Setting an EVAL scope, savestack=3
2814        0 <> <abc>           |  1:  STAR
2815                              EXACT <a> can match 1 times out of 32767...
2816       Setting an EVAL scope, savestack=3
2817        1 <a> <bc>           |  4:    PLUS
2818                              EXACT <b> can match 1 times out of 32767...
2819       Setting an EVAL scope, savestack=3
2820        2 <ab> <c>           |  7:      EXACT <c>
2821        3 <abc> <>           |  9:      END
2822     Match successful!
2823     Freeing REx: 'a*b+c'
2824
2825 If you have gotten this far into the tutorial, you can probably guess
2826 what the different parts of the debugging output tell you.  The first
2827 part
2828
2829     Compiling REx 'a*b+c'
2830     size 9 first at 1
2831        1: STAR(4)
2832        2:   EXACT <a>(0)
2833        4: PLUS(7)
2834        5:   EXACT <b>(0)
2835        7: EXACT <c>(9)
2836        9: END(0)
2837
2838 describes the compilation stage.  C<STAR(4)> means that there is a
2839 starred object, in this case C<'a'>, and if it matches, goto line 4,
2840 i.e., C<PLUS(7)>.  The middle lines describe some heuristics and
2841 optimizations performed before a match:
2842
2843     floating 'bc' at 0..2147483647 (checking floating) minlen 2
2844     Guessing start of match, REx 'a*b+c' against 'abc'...
2845     Found floating substr 'bc' at offset 1...
2846     Guessed: match at offset 0
2847
2848 Then the match is executed and the remaining lines describe the
2849 process:
2850
2851     Matching REx 'a*b+c' against 'abc'
2852       Setting an EVAL scope, savestack=3
2853        0 <> <abc>           |  1:  STAR
2854                              EXACT <a> can match 1 times out of 32767...
2855       Setting an EVAL scope, savestack=3
2856        1 <a> <bc>           |  4:    PLUS
2857                              EXACT <b> can match 1 times out of 32767...
2858       Setting an EVAL scope, savestack=3
2859        2 <ab> <c>           |  7:      EXACT <c>
2860        3 <abc> <>           |  9:      END
2861     Match successful!
2862     Freeing REx: 'a*b+c'
2863
2864 Each step is of the form S<C<< n <x> <y> >>>, with C<< <x> >> the
2865 part of the string matched and C<< <y> >> the part not yet
2866 matched.  The S<C<< |  1:  STAR >>> says that Perl is at line number 1
2867 in the compilation list above.  See
2868 L<perldebguts/"Debugging Regular Expressions"> for much more detail.
2869
2870 An alternative method of debugging regexps is to embed C<print>
2871 statements within the regexp.  This provides a blow-by-blow account of
2872 the backtracking in an alternation:
2873
2874     "that this" =~ m@(?{print "Start at position ", pos, "\n";})
2875                      t(?{print "t1\n";})
2876                      h(?{print "h1\n";})
2877                      i(?{print "i1\n";})
2878                      s(?{print "s1\n";})
2879                          |
2880                      t(?{print "t2\n";})
2881                      h(?{print "h2\n";})
2882                      a(?{print "a2\n";})
2883                      t(?{print "t2\n";})
2884                      (?{print "Done at position ", pos, "\n";})
2885                     @x;
2886
2887 prints
2888
2889     Start at position 0
2890     t1
2891     h1
2892     t2
2893     h2
2894     a2
2895     t2
2896     Done at position 4
2897
2898 =head1 BUGS
2899
2900 Code expressions, conditional expressions, and independent expressions
2901 are I<experimental>.  Don't use them in production code.  Yet.
2902
2903 =head1 SEE ALSO
2904
2905 This is just a tutorial.  For the full story on Perl regular
2906 expressions, see the L<perlre> regular expressions reference page.
2907
2908 For more information on the matching C<m//> and substitution C<s///>
2909 operators, see L<perlop/"Regexp Quote-Like Operators">.  For
2910 information on the C<split> operation, see L<perlfunc/split>.
2911
2912 For an excellent all-around resource on the care and feeding of
2913 regular expressions, see the book I<Mastering Regular Expressions> by
2914 Jeffrey Friedl (published by O'Reilly, ISBN 1556592-257-3).
2915
2916 =head1 AUTHOR AND COPYRIGHT
2917
2918 Copyright (c) 2000 Mark Kvale
2919 All rights reserved.
2920
2921 This document may be distributed under the same terms as Perl itself.
2922
2923 =head2 Acknowledgments
2924
2925 The inspiration for the stop codon DNA example came from the ZIP
2926 code example in chapter 7 of I<Mastering Regular Expressions>.
2927
2928 The author would like to thank Jeff Pinyan, Andrew Johnson, Peter
2929 Haworth, Ronald J Kimball, and Joe Smith for all their helpful
2930 comments.
2931
2932 =cut
2933