This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perldelta for 2384afee9 / #123553
[perl5.git] / pod / perlthrtut.pod
1 =encoding utf8
2
3 =head1 NAME
4
5 perlthrtut - Tutorial on threads in Perl
6
7 =head1 DESCRIPTION
8
9 This tutorial describes the use of Perl interpreter threads (sometimes
10 referred to as I<ithreads>).  In this
11 model, each thread runs in its own Perl interpreter, and any data sharing
12 between threads must be explicit.  The user-level interface for I<ithreads>
13 uses the L<threads> class.
14
15 B<NOTE>: There was another older Perl threading flavor called the 5.005 model
16 that used the L<threads> class.  This old model was known to have problems, is
17 deprecated, and was removed for release 5.10.  You are
18 strongly encouraged to migrate any existing 5.005 threads code to the new
19 model as soon as possible.
20
21 You can see which (or neither) threading flavour you have by
22 running C<perl -V> and looking at the C<Platform> section.
23 If you have C<useithreads=define> you have ithreads, if you
24 have C<use5005threads=define> you have 5.005 threads.
25 If you have neither, you don't have any thread support built in.
26 If you have both, you are in trouble.
27
28 The L<threads> and L<threads::shared> modules are included in the core Perl
29 distribution.  Additionally, they are maintained as a separate modules on
30 CPAN, so you can check there for any updates.
31
32 =head1 What Is A Thread Anyway?
33
34 A thread is a flow of control through a program with a single
35 execution point.
36
37 Sounds an awful lot like a process, doesn't it? Well, it should.
38 Threads are one of the pieces of a process.  Every process has at least
39 one thread and, up until now, every process running Perl had only one
40 thread.  With 5.8, though, you can create extra threads.  We're going
41 to show you how, when, and why.
42
43 =head1 Threaded Program Models
44
45 There are three basic ways that you can structure a threaded
46 program.  Which model you choose depends on what you need your program
47 to do.  For many non-trivial threaded programs, you'll need to choose
48 different models for different pieces of your program.
49
50 =head2 Boss/Worker
51
52 The boss/worker model usually has one I<boss> thread and one or more
53 I<worker> threads.  The boss thread gathers or generates tasks that need
54 to be done, then parcels those tasks out to the appropriate worker
55 thread.
56
57 This model is common in GUI and server programs, where a main thread
58 waits for some event and then passes that event to the appropriate
59 worker threads for processing.  Once the event has been passed on, the
60 boss thread goes back to waiting for another event.
61
62 The boss thread does relatively little work.  While tasks aren't
63 necessarily performed faster than with any other method, it tends to
64 have the best user-response times.
65
66 =head2 Work Crew
67
68 In the work crew model, several threads are created that do
69 essentially the same thing to different pieces of data.  It closely
70 mirrors classical parallel processing and vector processors, where a
71 large array of processors do the exact same thing to many pieces of
72 data.
73
74 This model is particularly useful if the system running the program
75 will distribute multiple threads across different processors.  It can
76 also be useful in ray tracing or rendering engines, where the
77 individual threads can pass on interim results to give the user visual
78 feedback.
79
80 =head2 Pipeline
81
82 The pipeline model divides up a task into a series of steps, and
83 passes the results of one step on to the thread processing the
84 next.  Each thread does one thing to each piece of data and passes the
85 results to the next thread in line.
86
87 This model makes the most sense if you have multiple processors so two
88 or more threads will be executing in parallel, though it can often
89 make sense in other contexts as well.  It tends to keep the individual
90 tasks small and simple, as well as allowing some parts of the pipeline
91 to block (on I/O or system calls, for example) while other parts keep
92 going.  If you're running different parts of the pipeline on different
93 processors you may also take advantage of the caches on each
94 processor.
95
96 This model is also handy for a form of recursive programming where,
97 rather than having a subroutine call itself, it instead creates
98 another thread.  Prime and Fibonacci generators both map well to this
99 form of the pipeline model. (A version of a prime number generator is
100 presented later on.)
101
102 =head1 What kind of threads are Perl threads?
103
104 If you have experience with other thread implementations, you might
105 find that things aren't quite what you expect.  It's very important to
106 remember when dealing with Perl threads that I<Perl Threads Are Not X
107 Threads> for all values of X.  They aren't POSIX threads, or
108 DecThreads, or Java's Green threads, or Win32 threads.  There are
109 similarities, and the broad concepts are the same, but if you start
110 looking for implementation details you're going to be either
111 disappointed or confused.  Possibly both.
112
113 This is not to say that Perl threads are completely different from
114 everything that's ever come before. They're not.  Perl's threading
115 model owes a lot to other thread models, especially POSIX.  Just as
116 Perl is not C, though, Perl threads are not POSIX threads.  So if you
117 find yourself looking for mutexes, or thread priorities, it's time to
118 step back a bit and think about what you want to do and how Perl can
119 do it.
120
121 However, it is important to remember that Perl threads cannot magically
122 do things unless your operating system's threads allow it. So if your
123 system blocks the entire process on C<sleep()>, Perl usually will, as well.
124
125 B<Perl Threads Are Different.>
126
127 =head1 Thread-Safe Modules
128
129 The addition of threads has changed Perl's internals
130 substantially. There are implications for people who write
131 modules with XS code or external libraries. However, since Perl data is
132 not shared among threads by default, Perl modules stand a high chance of
133 being thread-safe or can be made thread-safe easily.  Modules that are not
134 tagged as thread-safe should be tested or code reviewed before being used
135 in production code.
136
137 Not all modules that you might use are thread-safe, and you should
138 always assume a module is unsafe unless the documentation says
139 otherwise.  This includes modules that are distributed as part of the
140 core.  Threads are a relatively new feature, and even some of the standard
141 modules aren't thread-safe.
142
143 Even if a module is thread-safe, it doesn't mean that the module is optimized
144 to work well with threads. A module could possibly be rewritten to utilize
145 the new features in threaded Perl to increase performance in a threaded
146 environment.
147
148 If you're using a module that's not thread-safe for some reason, you
149 can protect yourself by using it from one, and only one thread at all.
150 If you need multiple threads to access such a module, you can use semaphores and
151 lots of programming discipline to control access to it.  Semaphores
152 are covered in L</"Basic semaphores">.
153
154 See also L</"Thread-Safety of System Libraries">.
155
156 =head1 Thread Basics
157
158 The L<threads> module provides the basic functions you need to write
159 threaded programs.  In the following sections, we'll cover the basics,
160 showing you what you need to do to create a threaded program.   After
161 that, we'll go over some of the features of the L<threads> module that
162 make threaded programming easier.
163
164 =head2 Basic Thread Support
165
166 Thread support is a Perl compile-time option. It's something that's
167 turned on or off when Perl is built at your site, rather than when
168 your programs are compiled. If your Perl wasn't compiled with thread
169 support enabled, then any attempt to use threads will fail.
170
171 Your programs can use the Config module to check whether threads are
172 enabled. If your program can't run without them, you can say something
173 like:
174
175     use Config;
176     $Config{useithreads} or
177         die('Recompile Perl with threads to run this program.');
178
179 A possibly-threaded program using a possibly-threaded module might
180 have code like this:
181
182     use Config;
183     use MyMod;
184
185     BEGIN {
186         if ($Config{useithreads}) {
187             # We have threads
188             require MyMod_threaded;
189             import MyMod_threaded;
190         } else {
191             require MyMod_unthreaded;
192             import MyMod_unthreaded;
193         }
194     }
195
196 Since code that runs both with and without threads is usually pretty
197 messy, it's best to isolate the thread-specific code in its own
198 module.  In our example above, that's what C<MyMod_threaded> is, and it's
199 only imported if we're running on a threaded Perl.
200
201 =head2 A Note about the Examples
202
203 In a real situation, care should be taken that all threads are finished
204 executing before the program exits.  That care has B<not> been taken in these
205 examples in the interest of simplicity.  Running these examples I<as is> will
206 produce error messages, usually caused by the fact that there are still
207 threads running when the program exits.  You should not be alarmed by this.
208
209 =head2 Creating Threads
210
211 The L<threads> module provides the tools you need to create new
212 threads.  Like any other module, you need to tell Perl that you want to use
213 it; C<use threads;> imports all the pieces you need to create basic
214 threads.
215
216 The simplest, most straightforward way to create a thread is with C<create()>:
217
218     use threads;
219
220     my $thr = threads->create(\&sub1);
221
222     sub sub1 {
223         print("In the thread\n");
224     }
225
226 The C<create()> method takes a reference to a subroutine and creates a new
227 thread that starts executing in the referenced subroutine.  Control
228 then passes both to the subroutine and the caller.
229
230 If you need to, your program can pass parameters to the subroutine as
231 part of the thread startup.  Just include the list of parameters as
232 part of the C<threads-E<gt>create()> call, like this:
233
234     use threads;
235
236     my $Param3 = 'foo';
237     my $thr1 = threads->create(\&sub1, 'Param 1', 'Param 2', $Param3);
238     my @ParamList = (42, 'Hello', 3.14);
239     my $thr2 = threads->create(\&sub1, @ParamList);
240     my $thr3 = threads->create(\&sub1, qw(Param1 Param2 Param3));
241
242     sub sub1 {
243         my @InboundParameters = @_;
244         print("In the thread\n");
245         print('Got parameters >', join('<>',@InboundParameters), "<\n");
246     }
247
248 The last example illustrates another feature of threads.  You can spawn
249 off several threads using the same subroutine.  Each thread executes
250 the same subroutine, but in a separate thread with a separate
251 environment and potentially separate arguments.
252
253 C<new()> is a synonym for C<create()>.
254
255 =head2 Waiting For A Thread To Exit
256
257 Since threads are also subroutines, they can return values.  To wait
258 for a thread to exit and extract any values it might return, you can
259 use the C<join()> method:
260
261     use threads;
262
263     my ($thr) = threads->create(\&sub1);
264
265     my @ReturnData = $thr->join();
266     print('Thread returned ', join(', ', @ReturnData), "\n");
267
268     sub sub1 { return ('Fifty-six', 'foo', 2); }
269
270 In the example above, the C<join()> method returns as soon as the thread
271 ends.  In addition to waiting for a thread to finish and gathering up
272 any values that the thread might have returned, C<join()> also performs
273 any OS cleanup necessary for the thread.  That cleanup might be
274 important, especially for long-running programs that spawn lots of
275 threads.  If you don't want the return values and don't want to wait
276 for the thread to finish, you should call the C<detach()> method
277 instead, as described next.
278
279 NOTE: In the example above, the thread returns a list, thus necessitating
280 that the thread creation call be made in list context (i.e., C<my ($thr)>).
281 See L<< threads/"$thr->join()" >> and L<threads/"THREAD CONTEXT"> for more
282 details on thread context and return values.
283
284 =head2 Ignoring A Thread
285
286 C<join()> does three things: it waits for a thread to exit, cleans up
287 after it, and returns any data the thread may have produced.  But what
288 if you're not interested in the thread's return values, and you don't
289 really care when the thread finishes? All you want is for the thread
290 to get cleaned up after when it's done.
291
292 In this case, you use the C<detach()> method.  Once a thread is detached,
293 it'll run until it's finished; then Perl will clean up after it
294 automatically.
295
296     use threads;
297
298     my $thr = threads->create(\&sub1);   # Spawn the thread
299
300     $thr->detach();   # Now we officially don't care any more
301
302     sleep(15);        # Let thread run for awhile
303
304     sub sub1 {
305         my $count = 0;
306         while (1) {
307             $count++;
308             print("\$count is $count\n");
309             sleep(1);
310         }
311     }
312
313 Once a thread is detached, it may not be joined, and any return data
314 that it might have produced (if it was done and waiting for a join) is
315 lost.
316
317 C<detach()> can also be called as a class method to allow a thread to
318 detach itself:
319
320     use threads;
321
322     my $thr = threads->create(\&sub1);
323
324     sub sub1 {
325         threads->detach();
326         # Do more work
327     }
328
329 =head2 Process and Thread Termination
330
331 With threads one must be careful to make sure they all have a chance to
332 run to completion, assuming that is what you want.
333
334 An action that terminates a process will terminate I<all> running
335 threads.  die() and exit() have this property,
336 and perl does an exit when the main thread exits,
337 perhaps implicitly by falling off the end of your code,
338 even if that's not what you want.
339
340 As an example of this case, this code prints the message
341 "Perl exited with active threads: 2 running and unjoined":
342
343     use threads;
344     my $thr1 = threads->new(\&thrsub, "test1");
345     my $thr2 = threads->new(\&thrsub, "test2");
346     sub thrsub {
347        my ($message) = @_;
348        sleep 1;
349        print "thread $message\n";
350     }
351
352 But when the following lines are added at the end:
353
354     $thr1->join();
355     $thr2->join();
356
357 it prints two lines of output, a perhaps more useful outcome.
358
359 =head1 Threads And Data
360
361 Now that we've covered the basics of threads, it's time for our next
362 topic: Data.  Threading introduces a couple of complications to data
363 access that non-threaded programs never need to worry about.
364
365 =head2 Shared And Unshared Data
366
367 The biggest difference between Perl I<ithreads> and the old 5.005 style
368 threading, or for that matter, to most other threading systems out there,
369 is that by default, no data is shared. When a new Perl thread is created,
370 all the data associated with the current thread is copied to the new
371 thread, and is subsequently private to that new thread!
372 This is similar in feel to what happens when a Unix process forks,
373 except that in this case, the data is just copied to a different part of
374 memory within the same process rather than a real fork taking place.
375
376 To make use of threading, however, one usually wants the threads to share
377 at least some data between themselves. This is done with the
378 L<threads::shared> module and the C<:shared> attribute:
379
380     use threads;
381     use threads::shared;
382
383     my $foo :shared = 1;
384     my $bar = 1;
385     threads->create(sub { $foo++; $bar++; })->join();
386
387     print("$foo\n");  # Prints 2 since $foo is shared
388     print("$bar\n");  # Prints 1 since $bar is not shared
389
390 In the case of a shared array, all the array's elements are shared, and for
391 a shared hash, all the keys and values are shared. This places
392 restrictions on what may be assigned to shared array and hash elements: only
393 simple values or references to shared variables are allowed - this is
394 so that a private variable can't accidentally become shared. A bad
395 assignment will cause the thread to die. For example:
396
397     use threads;
398     use threads::shared;
399
400     my $var          = 1;
401     my $svar :shared = 2;
402     my %hash :shared;
403
404     ... create some threads ...
405
406     $hash{a} = 1;       # All threads see exists($hash{a})
407                         # and $hash{a} == 1
408     $hash{a} = $var;    # okay - copy-by-value: same effect as previous
409     $hash{a} = $svar;   # okay - copy-by-value: same effect as previous
410     $hash{a} = \$svar;  # okay - a reference to a shared variable
411     $hash{a} = \$var;   # This will die
412     delete($hash{a});   # okay - all threads will see !exists($hash{a})
413
414 Note that a shared variable guarantees that if two or more threads try to
415 modify it at the same time, the internal state of the variable will not
416 become corrupted. However, there are no guarantees beyond this, as
417 explained in the next section.
418
419 =head2 Thread Pitfalls: Races
420
421 While threads bring a new set of useful tools, they also bring a
422 number of pitfalls.  One pitfall is the race condition:
423
424     use threads;
425     use threads::shared;
426
427     my $x :shared = 1;
428     my $thr1 = threads->create(\&sub1);
429     my $thr2 = threads->create(\&sub2);
430
431     $thr1->join();
432     $thr2->join();
433     print("$x\n");
434
435     sub sub1 { my $foo = $x; $x = $foo + 1; }
436     sub sub2 { my $bar = $x; $x = $bar + 1; }
437
438 What do you think C<$x> will be? The answer, unfortunately, is I<it
439 depends>. Both C<sub1()> and C<sub2()> access the global variable C<$x>, once
440 to read and once to write.  Depending on factors ranging from your
441 thread implementation's scheduling algorithm to the phase of the moon,
442 C<$x> can be 2 or 3.
443
444 Race conditions are caused by unsynchronized access to shared
445 data.  Without explicit synchronization, there's no way to be sure that
446 nothing has happened to the shared data between the time you access it
447 and the time you update it.  Even this simple code fragment has the
448 possibility of error:
449
450     use threads;
451     my $x :shared = 2;
452     my $y :shared;
453     my $z :shared;
454     my $thr1 = threads->create(sub { $y = $x; $x = $y + 1; });
455     my $thr2 = threads->create(sub { $z = $x; $x = $z + 1; });
456     $thr1->join();
457     $thr2->join();
458
459 Two threads both access C<$x>.  Each thread can potentially be interrupted
460 at any point, or be executed in any order.  At the end, C<$x> could be 3
461 or 4, and both C<$y> and C<$z> could be 2 or 3.
462
463 Even C<$x += 5> or C<$x++> are not guaranteed to be atomic.
464
465 Whenever your program accesses data or resources that can be accessed
466 by other threads, you must take steps to coordinate access or risk
467 data inconsistency and race conditions. Note that Perl will protect its
468 internals from your race conditions, but it won't protect you from you.
469
470 =head1 Synchronization and control
471
472 Perl provides a number of mechanisms to coordinate the interactions
473 between themselves and their data, to avoid race conditions and the like.
474 Some of these are designed to resemble the common techniques used in thread
475 libraries such as C<pthreads>; others are Perl-specific. Often, the
476 standard techniques are clumsy and difficult to get right (such as
477 condition waits). Where possible, it is usually easier to use Perlish
478 techniques such as queues, which remove some of the hard work involved.
479
480 =head2 Controlling access: lock()
481
482 The C<lock()> function takes a shared variable and puts a lock on it.
483 No other thread may lock the variable until the variable is unlocked
484 by the thread holding the lock. Unlocking happens automatically
485 when the locking thread exits the block that contains the call to the
486 C<lock()> function.  Using C<lock()> is straightforward: This example has
487 several threads doing some calculations in parallel, and occasionally
488 updating a running total:
489
490     use threads;
491     use threads::shared;
492
493     my $total :shared = 0;
494
495     sub calc {
496         while (1) {
497             my $result;
498             # (... do some calculations and set $result ...)
499             {
500                 lock($total);  # Block until we obtain the lock
501                 $total += $result;
502             } # Lock implicitly released at end of scope
503             last if $result == 0;
504         }
505     }
506
507     my $thr1 = threads->create(\&calc);
508     my $thr2 = threads->create(\&calc);
509     my $thr3 = threads->create(\&calc);
510     $thr1->join();
511     $thr2->join();
512     $thr3->join();
513     print("total=$total\n");
514
515 C<lock()> blocks the thread until the variable being locked is
516 available.  When C<lock()> returns, your thread can be sure that no other
517 thread can lock that variable until the block containing the
518 lock exits.
519
520 It's important to note that locks don't prevent access to the variable
521 in question, only lock attempts.  This is in keeping with Perl's
522 longstanding tradition of courteous programming, and the advisory file
523 locking that C<flock()> gives you.
524
525 You may lock arrays and hashes as well as scalars.  Locking an array,
526 though, will not block subsequent locks on array elements, just lock
527 attempts on the array itself.
528
529 Locks are recursive, which means it's okay for a thread to
530 lock a variable more than once.  The lock will last until the outermost
531 C<lock()> on the variable goes out of scope. For example:
532
533     my $x :shared;
534     doit();
535
536     sub doit {
537         {
538             {
539                 lock($x); # Wait for lock
540                 lock($x); # NOOP - we already have the lock
541                 {
542                     lock($x); # NOOP
543                     {
544                         lock($x); # NOOP
545                         lockit_some_more();
546                     }
547                 }
548             } # *** Implicit unlock here ***
549         }
550     }
551
552     sub lockit_some_more {
553         lock($x); # NOOP
554     } # Nothing happens here
555
556 Note that there is no C<unlock()> function - the only way to unlock a
557 variable is to allow it to go out of scope.
558
559 A lock can either be used to guard the data contained within the variable
560 being locked, or it can be used to guard something else, like a section
561 of code. In this latter case, the variable in question does not hold any
562 useful data, and exists only for the purpose of being locked. In this
563 respect, the variable behaves like the mutexes and basic semaphores of
564 traditional thread libraries.
565
566 =head2 A Thread Pitfall: Deadlocks
567
568 Locks are a handy tool to synchronize access to data, and using them
569 properly is the key to safe shared data.  Unfortunately, locks aren't
570 without their dangers, especially when multiple locks are involved.
571 Consider the following code:
572
573     use threads;
574
575     my $x :shared = 4;
576     my $y :shared = 'foo';
577     my $thr1 = threads->create(sub {
578         lock($x);
579         sleep(20);
580         lock($y);
581     });
582     my $thr2 = threads->create(sub {
583         lock($y);
584         sleep(20);
585         lock($x);
586     });
587
588 This program will probably hang until you kill it.  The only way it
589 won't hang is if one of the two threads acquires both locks
590 first.  A guaranteed-to-hang version is more complicated, but the
591 principle is the same.
592
593 The first thread will grab a lock on C<$x>, then, after a pause during which
594 the second thread has probably had time to do some work, try to grab a
595 lock on C<$y>.  Meanwhile, the second thread grabs a lock on C<$y>, then later
596 tries to grab a lock on C<$x>.  The second lock attempt for both threads will
597 block, each waiting for the other to release its lock.
598
599 This condition is called a deadlock, and it occurs whenever two or
600 more threads are trying to get locks on resources that the others
601 own.  Each thread will block, waiting for the other to release a lock
602 on a resource.  That never happens, though, since the thread with the
603 resource is itself waiting for a lock to be released.
604
605 There are a number of ways to handle this sort of problem.  The best
606 way is to always have all threads acquire locks in the exact same
607 order.  If, for example, you lock variables C<$x>, C<$y>, and C<$z>, always lock
608 C<$x> before C<$y>, and C<$y> before C<$z>.  It's also best to hold on to locks for
609 as short a period of time to minimize the risks of deadlock.
610
611 The other synchronization primitives described below can suffer from
612 similar problems.
613
614 =head2 Queues: Passing Data Around
615
616 A queue is a special thread-safe object that lets you put data in one
617 end and take it out the other without having to worry about
618 synchronization issues.  They're pretty straightforward, and look like
619 this:
620
621     use threads;
622     use Thread::Queue;
623
624     my $DataQueue = Thread::Queue->new();
625     my $thr = threads->create(sub {
626         while (my $DataElement = $DataQueue->dequeue()) {
627             print("Popped $DataElement off the queue\n");
628         }
629     });
630
631     $DataQueue->enqueue(12);
632     $DataQueue->enqueue("A", "B", "C");
633     sleep(10);
634     $DataQueue->enqueue(undef);
635     $thr->join();
636
637 You create the queue with C<Thread::Queue-E<gt>new()>.  Then you can
638 add lists of scalars onto the end with C<enqueue()>, and pop scalars off
639 the front of it with C<dequeue()>.  A queue has no fixed size, and can grow
640 as needed to hold everything pushed on to it.
641
642 If a queue is empty, C<dequeue()> blocks until another thread enqueues
643 something.  This makes queues ideal for event loops and other
644 communications between threads.
645
646 =head2 Semaphores: Synchronizing Data Access
647
648 Semaphores are a kind of generic locking mechanism. In their most basic
649 form, they behave very much like lockable scalars, except that they
650 can't hold data, and that they must be explicitly unlocked. In their
651 advanced form, they act like a kind of counter, and can allow multiple
652 threads to have the I<lock> at any one time.
653
654 =head2 Basic semaphores
655
656 Semaphores have two methods, C<down()> and C<up()>: C<down()> decrements the resource
657 count, while C<up()> increments it. Calls to C<down()> will block if the
658 semaphore's current count would decrement below zero.  This program
659 gives a quick demonstration:
660
661     use threads;
662     use Thread::Semaphore;
663
664     my $semaphore = Thread::Semaphore->new();
665     my $GlobalVariable :shared = 0;
666
667     $thr1 = threads->create(\&sample_sub, 1);
668     $thr2 = threads->create(\&sample_sub, 2);
669     $thr3 = threads->create(\&sample_sub, 3);
670
671     sub sample_sub {
672         my $SubNumber = shift(@_);
673         my $TryCount = 10;
674         my $LocalCopy;
675         sleep(1);
676         while ($TryCount--) {
677             $semaphore->down();
678             $LocalCopy = $GlobalVariable;
679             print("$TryCount tries left for sub $SubNumber "
680                  ."(\$GlobalVariable is $GlobalVariable)\n");
681             sleep(2);
682             $LocalCopy++;
683             $GlobalVariable = $LocalCopy;
684             $semaphore->up();
685         }
686     }
687
688     $thr1->join();
689     $thr2->join();
690     $thr3->join();
691
692 The three invocations of the subroutine all operate in sync.  The
693 semaphore, though, makes sure that only one thread is accessing the
694 global variable at once.
695
696 =head2 Advanced Semaphores
697
698 By default, semaphores behave like locks, letting only one thread
699 C<down()> them at a time.  However, there are other uses for semaphores.
700
701 Each semaphore has a counter attached to it. By default, semaphores are
702 created with the counter set to one, C<down()> decrements the counter by
703 one, and C<up()> increments by one. However, we can override any or all
704 of these defaults simply by passing in different values:
705
706     use threads;
707     use Thread::Semaphore;
708
709     my $semaphore = Thread::Semaphore->new(5);
710                     # Creates a semaphore with the counter set to five
711
712     my $thr1 = threads->create(\&sub1);
713     my $thr2 = threads->create(\&sub1);
714
715     sub sub1 {
716         $semaphore->down(5); # Decrements the counter by five
717         # Do stuff here
718         $semaphore->up(5); # Increment the counter by five
719     }
720
721     $thr1->detach();
722     $thr2->detach();
723
724 If C<down()> attempts to decrement the counter below zero, it blocks until
725 the counter is large enough.  Note that while a semaphore can be created
726 with a starting count of zero, any C<up()> or C<down()> always changes the
727 counter by at least one, and so C<< $semaphore->down(0) >> is the same as
728 C<< $semaphore->down(1) >>.
729
730 The question, of course, is why would you do something like this? Why
731 create a semaphore with a starting count that's not one, or why
732 decrement or increment it by more than one? The answer is resource
733 availability.  Many resources that you want to manage access for can be
734 safely used by more than one thread at once.
735
736 For example, let's take a GUI driven program.  It has a semaphore that
737 it uses to synchronize access to the display, so only one thread is
738 ever drawing at once.  Handy, but of course you don't want any thread
739 to start drawing until things are properly set up.  In this case, you
740 can create a semaphore with a counter set to zero, and up it when
741 things are ready for drawing.
742
743 Semaphores with counters greater than one are also useful for
744 establishing quotas.  Say, for example, that you have a number of
745 threads that can do I/O at once.  You don't want all the threads
746 reading or writing at once though, since that can potentially swamp
747 your I/O channels, or deplete your process's quota of filehandles.  You
748 can use a semaphore initialized to the number of concurrent I/O
749 requests (or open files) that you want at any one time, and have your
750 threads quietly block and unblock themselves.
751
752 Larger increments or decrements are handy in those cases where a
753 thread needs to check out or return a number of resources at once.
754
755 =head2 Waiting for a Condition
756
757 The functions C<cond_wait()> and C<cond_signal()>
758 can be used in conjunction with locks to notify
759 co-operating threads that a resource has become available. They are
760 very similar in use to the functions found in C<pthreads>. However
761 for most purposes, queues are simpler to use and more intuitive. See
762 L<threads::shared> for more details.
763
764 =head2 Giving up control
765
766 There are times when you may find it useful to have a thread
767 explicitly give up the CPU to another thread.  You may be doing something
768 processor-intensive and want to make sure that the user-interface thread
769 gets called frequently.  Regardless, there are times that you might want
770 a thread to give up the processor.
771
772 Perl's threading package provides the C<yield()> function that does
773 this. C<yield()> is pretty straightforward, and works like this:
774
775     use threads;
776
777     sub loop {
778         my $thread = shift;
779         my $foo = 50;
780         while($foo--) { print("In thread $thread\n"); }
781         threads->yield();
782         $foo = 50;
783         while($foo--) { print("In thread $thread\n"); }
784     }
785
786     my $thr1 = threads->create(\&loop, 'first');
787     my $thr2 = threads->create(\&loop, 'second');
788     my $thr3 = threads->create(\&loop, 'third');
789
790 It is important to remember that C<yield()> is only a hint to give up the CPU,
791 it depends on your hardware, OS and threading libraries what actually happens.
792 B<On many operating systems, yield() is a no-op.>  Therefore it is important
793 to note that one should not build the scheduling of the threads around
794 C<yield()> calls. It might work on your platform but it won't work on another
795 platform.
796
797 =head1 General Thread Utility Routines
798
799 We've covered the workhorse parts of Perl's threading package, and
800 with these tools you should be well on your way to writing threaded
801 code and packages.  There are a few useful little pieces that didn't
802 really fit in anyplace else.
803
804 =head2 What Thread Am I In?
805
806 The C<threads-E<gt>self()> class method provides your program with a way to
807 get an object representing the thread it's currently in.  You can use this
808 object in the same way as the ones returned from thread creation.
809
810 =head2 Thread IDs
811
812 C<tid()> is a thread object method that returns the thread ID of the
813 thread the object represents.  Thread IDs are integers, with the main
814 thread in a program being 0.  Currently Perl assigns a unique TID to
815 every thread ever created in your program, assigning the first thread
816 to be created a TID of 1, and increasing the TID by 1 for each new
817 thread that's created.  When used as a class method, C<threads-E<gt>tid()>
818 can be used by a thread to get its own TID.
819
820 =head2 Are These Threads The Same?
821
822 The C<equal()> method takes two thread objects and returns true
823 if the objects represent the same thread, and false if they don't.
824
825 Thread objects also have an overloaded C<==> comparison so that you can do
826 comparison on them as you would with normal objects.
827
828 =head2 What Threads Are Running?
829
830 C<threads-E<gt>list()> returns a list of thread objects, one for each thread
831 that's currently running and not detached.  Handy for a number of things,
832 including cleaning up at the end of your program (from the main Perl thread,
833 of course):
834
835     # Loop through all the threads
836     foreach my $thr (threads->list()) {
837         $thr->join();
838     }
839
840 If some threads have not finished running when the main Perl thread
841 ends, Perl will warn you about it and die, since it is impossible for Perl
842 to clean up itself while other threads are running.
843
844 NOTE:  The main Perl thread (thread 0) is in a I<detached> state, and so
845 does not appear in the list returned by C<threads-E<gt>list()>.
846
847 =head1 A Complete Example
848
849 Confused yet? It's time for an example program to show some of the
850 things we've covered.  This program finds prime numbers using threads.
851
852    1 #!/usr/bin/perl
853    2 # prime-pthread, courtesy of Tom Christiansen
854    3
855    4 use strict;
856    5 use warnings;
857    6
858    7 use threads;
859    8 use Thread::Queue;
860    9
861   10 sub check_num {
862   11     my ($upstream, $cur_prime) = @_;
863   12     my $kid;
864   13     my $downstream = Thread::Queue->new();
865   14     while (my $num = $upstream->dequeue()) {
866   15         next unless ($num % $cur_prime);
867   16         if ($kid) {
868   17             $downstream->enqueue($num);
869   18         } else {
870   19             print("Found prime: $num\n");
871   20             $kid = threads->create(\&check_num, $downstream, $num);
872   21             if (! $kid) {
873   22                 warn("Sorry.  Ran out of threads.\n");
874   23                 last;
875   24             }
876   25         }
877   26     }
878   27     if ($kid) {
879   28         $downstream->enqueue(undef);
880   29         $kid->join();
881   30     }
882   31 }
883   32
884   33 my $stream = Thread::Queue->new(3..1000, undef);
885   34 check_num($stream, 2);
886
887 This program uses the pipeline model to generate prime numbers.  Each
888 thread in the pipeline has an input queue that feeds numbers to be
889 checked, a prime number that it's responsible for, and an output queue
890 into which it funnels numbers that have failed the check.  If the thread
891 has a number that's failed its check and there's no child thread, then
892 the thread must have found a new prime number.  In that case, a new
893 child thread is created for that prime and stuck on the end of the
894 pipeline.
895
896 This probably sounds a bit more confusing than it really is, so let's
897 go through this program piece by piece and see what it does.  (For
898 those of you who might be trying to remember exactly what a prime
899 number is, it's a number that's only evenly divisible by itself and 1.)
900
901 The bulk of the work is done by the C<check_num()> subroutine, which
902 takes a reference to its input queue and a prime number that it's
903 responsible for.  After pulling in the input queue and the prime that
904 the subroutine is checking (line 11), we create a new queue (line 13)
905 and reserve a scalar for the thread that we're likely to create later
906 (line 12).
907
908 The while loop from line 14 to line 26 grabs a scalar off the input
909 queue and checks against the prime this thread is responsible
910 for.  Line 15 checks to see if there's a remainder when we divide the
911 number to be checked by our prime.  If there is one, the number
912 must not be evenly divisible by our prime, so we need to either pass
913 it on to the next thread if we've created one (line 17) or create a
914 new thread if we haven't.
915
916 The new thread creation is line 20.  We pass on to it a reference to
917 the queue we've created, and the prime number we've found.  In lines 21
918 through 24, we check to make sure that our new thread got created, and
919 if not, we stop checking any remaining numbers in the queue.
920
921 Finally, once the loop terminates (because we got a 0 or C<undef> in the
922 queue, which serves as a note to terminate), we pass on the notice to our
923 child, and wait for it to exit if we've created a child (lines 27 and
924 30).
925
926 Meanwhile, back in the main thread, we first create a queue (line 33) and
927 queue up all the numbers from 3 to 1000 for checking, plus a termination
928 notice.  Then all we have to do to get the ball rolling is pass the queue
929 and the first prime to the C<check_num()> subroutine (line 34).
930
931 That's how it works.  It's pretty simple; as with many Perl programs,
932 the explanation is much longer than the program.
933
934 =head1 Different implementations of threads
935
936 Some background on thread implementations from the operating system
937 viewpoint.  There are three basic categories of threads: user-mode threads,
938 kernel threads, and multiprocessor kernel threads.
939
940 User-mode threads are threads that live entirely within a program and
941 its libraries.  In this model, the OS knows nothing about threads.  As
942 far as it's concerned, your process is just a process.
943
944 This is the easiest way to implement threads, and the way most OSes
945 start.  The big disadvantage is that, since the OS knows nothing about
946 threads, if one thread blocks they all do.  Typical blocking activities
947 include most system calls, most I/O, and things like C<sleep()>.
948
949 Kernel threads are the next step in thread evolution.  The OS knows
950 about kernel threads, and makes allowances for them.  The main
951 difference between a kernel thread and a user-mode thread is
952 blocking.  With kernel threads, things that block a single thread don't
953 block other threads.  This is not the case with user-mode threads,
954 where the kernel blocks at the process level and not the thread level.
955
956 This is a big step forward, and can give a threaded program quite a
957 performance boost over non-threaded programs.  Threads that block
958 performing I/O, for example, won't block threads that are doing other
959 things.  Each process still has only one thread running at once,
960 though, regardless of how many CPUs a system might have.
961
962 Since kernel threading can interrupt a thread at any time, they will
963 uncover some of the implicit locking assumptions you may make in your
964 program.  For example, something as simple as C<$x = $x + 2> can behave
965 unpredictably with kernel threads if C<$x> is visible to other
966 threads, as another thread may have changed C<$x> between the time it
967 was fetched on the right hand side and the time the new value is
968 stored.
969
970 Multiprocessor kernel threads are the final step in thread
971 support.  With multiprocessor kernel threads on a machine with multiple
972 CPUs, the OS may schedule two or more threads to run simultaneously on
973 different CPUs.
974
975 This can give a serious performance boost to your threaded program,
976 since more than one thread will be executing at the same time.  As a
977 tradeoff, though, any of those nagging synchronization issues that
978 might not have shown with basic kernel threads will appear with a
979 vengeance.
980
981 In addition to the different levels of OS involvement in threads,
982 different OSes (and different thread implementations for a particular
983 OS) allocate CPU cycles to threads in different ways.
984
985 Cooperative multitasking systems have running threads give up control
986 if one of two things happen.  If a thread calls a yield function, it
987 gives up control.  It also gives up control if the thread does
988 something that would cause it to block, such as perform I/O.  In a
989 cooperative multitasking implementation, one thread can starve all the
990 others for CPU time if it so chooses.
991
992 Preemptive multitasking systems interrupt threads at regular intervals
993 while the system decides which thread should run next.  In a preemptive
994 multitasking system, one thread usually won't monopolize the CPU.
995
996 On some systems, there can be cooperative and preemptive threads
997 running simultaneously. (Threads running with realtime priorities
998 often behave cooperatively, for example, while threads running at
999 normal priorities behave preemptively.)
1000
1001 Most modern operating systems support preemptive multitasking nowadays.
1002
1003 =head1 Performance considerations
1004
1005 The main thing to bear in mind when comparing Perl's I<ithreads> to other threading
1006 models is the fact that for each new thread created, a complete copy of
1007 all the variables and data of the parent thread has to be taken. Thus,
1008 thread creation can be quite expensive, both in terms of memory usage and
1009 time spent in creation. The ideal way to reduce these costs is to have a
1010 relatively short number of long-lived threads, all created fairly early
1011 on (before the base thread has accumulated too much data). Of course, this
1012 may not always be possible, so compromises have to be made. However, after
1013 a thread has been created, its performance and extra memory usage should
1014 be little different than ordinary code.
1015
1016 Also note that under the current implementation, shared variables
1017 use a little more memory and are a little slower than ordinary variables.
1018
1019 =head1 Process-scope Changes
1020
1021 Note that while threads themselves are separate execution threads and
1022 Perl data is thread-private unless explicitly shared, the threads can
1023 affect process-scope state, affecting all the threads.
1024
1025 The most common example of this is changing the current working
1026 directory using C<chdir()>.  One thread calls C<chdir()>, and the working
1027 directory of all the threads changes.
1028
1029 Even more drastic example of a process-scope change is C<chroot()>:
1030 the root directory of all the threads changes, and no thread can
1031 undo it (as opposed to C<chdir()>).
1032
1033 Further examples of process-scope changes include C<umask()> and
1034 changing uids and gids.
1035
1036 Thinking of mixing C<fork()> and threads?  Please lie down and wait
1037 until the feeling passes.  Be aware that the semantics of C<fork()> vary
1038 between platforms.  For example, some Unix systems copy all the current
1039 threads into the child process, while others only copy the thread that
1040 called C<fork()>. You have been warned!
1041
1042 Similarly, mixing signals and threads may be problematic.
1043 Implementations are platform-dependent, and even the POSIX
1044 semantics may not be what you expect (and Perl doesn't even
1045 give you the full POSIX API).  For example, there is no way to
1046 guarantee that a signal sent to a multi-threaded Perl application
1047 will get intercepted by any particular thread.  (However, a recently
1048 added feature does provide the capability to send signals between
1049 threads.  See L<threads/THREAD SIGNALLING> for more details.)
1050
1051 =head1 Thread-Safety of System Libraries
1052
1053 Whether various library calls are thread-safe is outside the control
1054 of Perl.  Calls often suffering from not being thread-safe include:
1055 C<localtime()>, C<gmtime()>,  functions fetching user, group and
1056 network information (such as C<getgrent()>, C<gethostent()>,
1057 C<getnetent()> and so on), C<readdir()>, C<rand()>, and C<srand()>. In
1058 general, calls that depend on some global external state.
1059
1060 If the system Perl is compiled in has thread-safe variants of such
1061 calls, they will be used.  Beyond that, Perl is at the mercy of
1062 the thread-safety or -unsafety of the calls.  Please consult your
1063 C library call documentation.
1064
1065 On some platforms the thread-safe library interfaces may fail if the
1066 result buffer is too small (for example the user group databases may
1067 be rather large, and the reentrant interfaces may have to carry around
1068 a full snapshot of those databases).  Perl will start with a small
1069 buffer, but keep retrying and growing the result buffer
1070 until the result fits.  If this limitless growing sounds bad for
1071 security or memory consumption reasons you can recompile Perl with
1072 C<PERL_REENTRANT_MAXSIZE> defined to the maximum number of bytes you will
1073 allow.
1074
1075 =head1 Conclusion
1076
1077 A complete thread tutorial could fill a book (and has, many times),
1078 but with what we've covered in this introduction, you should be well
1079 on your way to becoming a threaded Perl expert.
1080
1081 =head1 SEE ALSO
1082
1083 Annotated POD for L<threads>:
1084 L<http://annocpan.org/?mode=search&field=Module&name=threads>
1085
1086 Latest version of L<threads> on CPAN:
1087 L<http://search.cpan.org/search?module=threads>
1088
1089 Annotated POD for L<threads::shared>:
1090 L<http://annocpan.org/?mode=search&field=Module&name=threads%3A%3Ashared>
1091
1092 Latest version of L<threads::shared> on CPAN:
1093 L<http://search.cpan.org/search?module=threads%3A%3Ashared>
1094
1095 Perl threads mailing list:
1096 L<http://lists.perl.org/list/ithreads.html>
1097
1098 =head1 Bibliography
1099
1100 Here's a short bibliography courtesy of Jürgen Christoffel:
1101
1102 =head2 Introductory Texts
1103
1104 Birrell, Andrew D. An Introduction to Programming with
1105 Threads. Digital Equipment Corporation, 1989, DEC-SRC Research Report
1106 #35 online as
1107 ftp://ftp.dec.com/pub/DEC/SRC/research-reports/SRC-035.pdf
1108 (highly recommended)
1109
1110 Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A
1111 Guide to Concurrency, Communication, and
1112 Multithreading. Prentice-Hall, 1996.
1113
1114 Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with
1115 Pthreads. Prentice Hall, 1997, ISBN 0-13-443698-9 (a well-written
1116 introduction to threads).
1117
1118 Nelson, Greg (editor). Systems Programming with Modula-3.  Prentice
1119 Hall, 1991, ISBN 0-13-590464-1.
1120
1121 Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.
1122 Pthreads Programming. O'Reilly & Associates, 1996, ISBN 156592-115-1
1123 (covers POSIX threads).
1124
1125 =head2 OS-Related References
1126
1127 Boykin, Joseph, David Kirschen, Alan Langerman, and Susan
1128 LoVerso. Programming under Mach. Addison-Wesley, 1994, ISBN
1129 0-201-52739-1.
1130
1131 Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall,
1132 1995, ISBN 0-13-219908-4 (great textbook).
1133
1134 Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts,
1135 4th ed. Addison-Wesley, 1995, ISBN 0-201-59292-4
1136
1137 =head2 Other References
1138
1139 Arnold, Ken and James Gosling. The Java Programming Language, 2nd
1140 ed. Addison-Wesley, 1998, ISBN 0-201-31006-6.
1141
1142 comp.programming.threads FAQ,
1143 L<http://www.serpentine.com/~bos/threads-faq/>
1144
1145 Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage
1146 Collection on Virtually Shared Memory Architectures" in Memory
1147 Management: Proc. of the International Workshop IWMM 92, St. Malo,
1148 France, September 1992, Yves Bekkers and Jacques Cohen, eds. Springer,
1149 1992, ISBN 3540-55940-X (real-life thread applications).
1150
1151 Artur Bergman, "Where Wizards Fear To Tread", June 11, 2002,
1152 L<http://www.perl.com/pub/a/2002/06/11/threads.html>
1153
1154 =head1 Acknowledgements
1155
1156 Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy
1157 Sarathy, Ilya Zakharevich, Benjamin Sugars, Jürgen Christoffel, Joshua
1158 Pritikin, and Alan Burlison, for their help in reality-checking and
1159 polishing this article.  Big thanks to Tom Christiansen for his rewrite
1160 of the prime number generator.
1161
1162 =head1 AUTHOR
1163
1164 Dan Sugalski E<lt>dan@sidhe.org<gt>
1165
1166 Slightly modified by Arthur Bergman to fit the new thread model/module.
1167
1168 Reworked slightly by Jörg Walter E<lt>jwalt@cpan.org<gt> to be more concise
1169 about thread-safety of Perl code.
1170
1171 Rearranged slightly by Elizabeth Mattijsen E<lt>liz@dijkmat.nl<gt> to put
1172 less emphasis on yield().
1173
1174 =head1 Copyrights
1175
1176 The original version of this article originally appeared in The Perl
1177 Journal #10, and is copyright 1998 The Perl Journal. It appears courtesy
1178 of Jon Orwant and The Perl Journal.  This document may be distributed
1179 under the same terms as Perl itself.
1180
1181 =cut