This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Integrate perl
[perl5.git] / ext / Storable / Storable.pm
1 #
2 #  Copyright (c) 1995-2000, Raphael Manfredi
3 #  
4 #  You may redistribute only under the same terms as Perl 5, as specified
5 #  in the README file that comes with the distribution.
6 #
7
8 require DynaLoader;
9 require Exporter;
10 package Storable; @ISA = qw(Exporter DynaLoader);
11
12 @EXPORT = qw(store retrieve);
13 @EXPORT_OK = qw(
14         nstore store_fd nstore_fd fd_retrieve
15         freeze nfreeze thaw
16         dclone
17         retrieve_fd
18         lock_store lock_nstore lock_retrieve
19 );
20
21 use AutoLoader;
22 use vars qw($canonical $forgive_me $VERSION);
23
24 $VERSION = '2.04';
25 *AUTOLOAD = \&AutoLoader::AUTOLOAD;             # Grrr...
26
27 #
28 # Use of Log::Agent is optional
29 #
30
31 eval "use Log::Agent";
32
33 require Carp;
34
35 #
36 # They might miss :flock in Fcntl
37 #
38
39 BEGIN {
40         if (eval { require Fcntl; 1 } && exists $Fcntl::EXPORT_TAGS{'flock'}) {
41                 Fcntl->import(':flock');
42         } else {
43                 eval q{
44                         sub LOCK_SH ()  {1}
45                         sub LOCK_EX ()  {2}
46                 };
47         }
48 }
49
50 # Can't Autoload cleanly as this clashes 8.3 with &retrieve
51 sub retrieve_fd { &fd_retrieve }                # Backward compatibility
52
53 # By default restricted hashes are downgraded on earlier perls.
54
55 $Storable::downgrade_restricted = 1;
56 $Storable::accept_future_minor = 1;
57 bootstrap Storable;
58 1;
59 __END__
60 #
61 # Use of Log::Agent is optional. If it hasn't imported these subs then
62 # Autoloader will kindly supply our fallback implementation.
63 #
64
65 sub logcroak {
66     Carp::croak(@_);
67 }
68
69 sub logcarp {
70   Carp::carp(@_);
71 }
72
73 #
74 # Determine whether locking is possible, but only when needed.
75 #
76
77 sub CAN_FLOCK; my $CAN_FLOCK; sub CAN_FLOCK {
78         return $CAN_FLOCK if defined $CAN_FLOCK;
79         require Config; import Config;
80         return $CAN_FLOCK =
81                 $Config{'d_flock'} ||
82                 $Config{'d_fcntl_can_lock'} ||
83                 $Config{'d_lockf'};
84 }
85
86 sub show_file_magic {
87     print <<EOM;
88 #
89 # To recognize the data files of the Perl module Storable,
90 # the following lines need to be added to the local magic(5) file,
91 # usually either /usr/share/misc/magic or /etc/magic.
92 #
93 0       string  perl-store      perl Storable(v0.6) data
94 >4      byte    >0      (net-order %d)
95 >>4     byte    &01     (network-ordered)
96 >>4     byte    =3      (major 1)
97 >>4     byte    =2      (major 1)
98
99 0       string  pst0    perl Storable(v0.7) data
100 >4      byte    >0
101 >>4     byte    &01     (network-ordered)
102 >>4     byte    =5      (major 2)
103 >>4     byte    =4      (major 2)
104 >>5     byte    >0      (minor %d)
105 EOM
106 }
107
108 sub read_magic {
109   my $header = shift;
110   return unless defined $header and length $header > 11;
111   my $result;
112   if ($header =~ s/^perl-store//) {
113     die "Can't deal with version 0 headers";
114   } elsif ($header =~ s/^pst0//) {
115     $result->{file} = 1;
116   }
117   # Assume it's a string.
118   my ($major, $minor, $bytelen) = unpack "C3", $header;
119
120   my $net_order = $major & 1;
121   $major >>= 1;
122   @$result{qw(major minor netorder)} = ($major, $minor, $net_order);
123
124   return $result if $net_order;
125
126   # I assume that it is rare to find v1 files, so this is an intentionally
127   # inefficient way of doing it, to make the rest of the code constant.
128   if ($major < 2) {
129     delete $result->{minor};
130     $header = '.' . $header;
131     $bytelen = $minor;
132   }
133
134   @$result{qw(byteorder intsize longsize ptrsize)} =
135     unpack "x3 A$bytelen C3", $header;
136
137   if ($major >= 2 and $minor >= 2) {
138     $result->{nvsize} = unpack "x6 x$bytelen C", $header;
139   }
140   $result;
141 }
142
143 #
144 # store
145 #
146 # Store target object hierarchy, identified by a reference to its root.
147 # The stored object tree may later be retrieved to memory via retrieve.
148 # Returns undef if an I/O error occurred, in which case the file is
149 # removed.
150 #
151 sub store {
152         return _store(\&pstore, @_, 0);
153 }
154
155 #
156 # nstore
157 #
158 # Same as store, but in network order.
159 #
160 sub nstore {
161         return _store(\&net_pstore, @_, 0);
162 }
163
164 #
165 # lock_store
166 #
167 # Same as store, but flock the file first (advisory locking).
168 #
169 sub lock_store {
170         return _store(\&pstore, @_, 1);
171 }
172
173 #
174 # lock_nstore
175 #
176 # Same as nstore, but flock the file first (advisory locking).
177 #
178 sub lock_nstore {
179         return _store(\&net_pstore, @_, 1);
180 }
181
182 # Internal store to file routine
183 sub _store {
184         my $xsptr = shift;
185         my $self = shift;
186         my ($file, $use_locking) = @_;
187         logcroak "not a reference" unless ref($self);
188         logcroak "wrong argument number" unless @_ == 2;        # No @foo in arglist
189         local *FILE;
190         if ($use_locking) {
191                 open(FILE, ">>$file") || logcroak "can't write into $file: $!";
192                 unless (&CAN_FLOCK) {
193                         logcarp "Storable::lock_store: fcntl/flock emulation broken on $^O";
194                         return undef;
195                 }
196                 flock(FILE, LOCK_EX) ||
197                         logcroak "can't get exclusive lock on $file: $!";
198                 truncate FILE, 0;
199                 # Unlocking will happen when FILE is closed
200         } else {
201                 open(FILE, ">$file") || logcroak "can't create $file: $!";
202         }
203         binmode FILE;                           # Archaic systems...
204         my $da = $@;                            # Don't mess if called from exception handler
205         my $ret;
206         # Call C routine nstore or pstore, depending on network order
207         eval { $ret = &$xsptr(*FILE, $self) };
208         close(FILE) or $ret = undef;
209         unlink($file) or warn "Can't unlink $file: $!\n" if $@ || !defined $ret;
210         logcroak $@ if $@ =~ s/\.?\n$/,/;
211         $@ = $da;
212         return $ret ? $ret : undef;
213 }
214
215 #
216 # store_fd
217 #
218 # Same as store, but perform on an already opened file descriptor instead.
219 # Returns undef if an I/O error occurred.
220 #
221 sub store_fd {
222         return _store_fd(\&pstore, @_);
223 }
224
225 #
226 # nstore_fd
227 #
228 # Same as store_fd, but in network order.
229 #
230 sub nstore_fd {
231         my ($self, $file) = @_;
232         return _store_fd(\&net_pstore, @_);
233 }
234
235 # Internal store routine on opened file descriptor
236 sub _store_fd {
237         my $xsptr = shift;
238         my $self = shift;
239         my ($file) = @_;
240         logcroak "not a reference" unless ref($self);
241         logcroak "too many arguments" unless @_ == 1;   # No @foo in arglist
242         my $fd = fileno($file);
243         logcroak "not a valid file descriptor" unless defined $fd;
244         my $da = $@;                            # Don't mess if called from exception handler
245         my $ret;
246         # Call C routine nstore or pstore, depending on network order
247         eval { $ret = &$xsptr($file, $self) };
248         logcroak $@ if $@ =~ s/\.?\n$/,/;
249         local $\; print $file '';       # Autoflush the file if wanted
250         $@ = $da;
251         return $ret ? $ret : undef;
252 }
253
254 #
255 # freeze
256 #
257 # Store oject and its hierarchy in memory and return a scalar
258 # containing the result.
259 #
260 sub freeze {
261         _freeze(\&mstore, @_);
262 }
263
264 #
265 # nfreeze
266 #
267 # Same as freeze but in network order.
268 #
269 sub nfreeze {
270         _freeze(\&net_mstore, @_);
271 }
272
273 # Internal freeze routine
274 sub _freeze {
275         my $xsptr = shift;
276         my $self = shift;
277         logcroak "not a reference" unless ref($self);
278         logcroak "too many arguments" unless @_ == 0;   # No @foo in arglist
279         my $da = $@;                            # Don't mess if called from exception handler
280         my $ret;
281         # Call C routine mstore or net_mstore, depending on network order
282         eval { $ret = &$xsptr($self) };
283         logcroak $@ if $@ =~ s/\.?\n$/,/;
284         $@ = $da;
285         return $ret ? $ret : undef;
286 }
287
288 #
289 # retrieve
290 #
291 # Retrieve object hierarchy from disk, returning a reference to the root
292 # object of that tree.
293 #
294 sub retrieve {
295         _retrieve($_[0], 0);
296 }
297
298 #
299 # lock_retrieve
300 #
301 # Same as retrieve, but with advisory locking.
302 #
303 sub lock_retrieve {
304         _retrieve($_[0], 1);
305 }
306
307 # Internal retrieve routine
308 sub _retrieve {
309         my ($file, $use_locking) = @_;
310         local *FILE;
311         open(FILE, $file) || logcroak "can't open $file: $!";
312         binmode FILE;                                                   # Archaic systems...
313         my $self;
314         my $da = $@;                                                    # Could be from exception handler
315         if ($use_locking) {
316                 unless (&CAN_FLOCK) {
317                         logcarp "Storable::lock_store: fcntl/flock emulation broken on $^O";
318                         return undef;
319                 }
320                 flock(FILE, LOCK_SH) || logcroak "can't get shared lock on $file: $!";
321                 # Unlocking will happen when FILE is closed
322         }
323         eval { $self = pretrieve(*FILE) };              # Call C routine
324         close(FILE);
325         logcroak $@ if $@ =~ s/\.?\n$/,/;
326         $@ = $da;
327         return $self;
328 }
329
330 #
331 # fd_retrieve
332 #
333 # Same as retrieve, but perform from an already opened file descriptor instead.
334 #
335 sub fd_retrieve {
336         my ($file) = @_;
337         my $fd = fileno($file);
338         logcroak "not a valid file descriptor" unless defined $fd;
339         my $self;
340         my $da = $@;                                                    # Could be from exception handler
341         eval { $self = pretrieve($file) };              # Call C routine
342         logcroak $@ if $@ =~ s/\.?\n$/,/;
343         $@ = $da;
344         return $self;
345 }
346
347 #
348 # thaw
349 #
350 # Recreate objects in memory from an existing frozen image created
351 # by freeze.  If the frozen image passed is undef, return undef.
352 #
353 sub thaw {
354         my ($frozen) = @_;
355         return undef unless defined $frozen;
356         my $self;
357         my $da = $@;                                                    # Could be from exception handler
358         eval { $self = mretrieve($frozen) };    # Call C routine
359         logcroak $@ if $@ =~ s/\.?\n$/,/;
360         $@ = $da;
361         return $self;
362 }
363
364 =head1 NAME
365
366 Storable - persistence for Perl data structures
367
368 =head1 SYNOPSIS
369
370  use Storable;
371  store \%table, 'file';
372  $hashref = retrieve('file');
373
374  use Storable qw(nstore store_fd nstore_fd freeze thaw dclone);
375
376  # Network order
377  nstore \%table, 'file';
378  $hashref = retrieve('file');   # There is NO nretrieve()
379
380  # Storing to and retrieving from an already opened file
381  store_fd \@array, \*STDOUT;
382  nstore_fd \%table, \*STDOUT;
383  $aryref = fd_retrieve(\*SOCKET);
384  $hashref = fd_retrieve(\*SOCKET);
385
386  # Serializing to memory
387  $serialized = freeze \%table;
388  %table_clone = %{ thaw($serialized) };
389
390  # Deep (recursive) cloning
391  $cloneref = dclone($ref);
392
393  # Advisory locking
394  use Storable qw(lock_store lock_nstore lock_retrieve)
395  lock_store \%table, 'file';
396  lock_nstore \%table, 'file';
397  $hashref = lock_retrieve('file');
398
399 =head1 DESCRIPTION
400
401 The Storable package brings persistence to your Perl data structures
402 containing SCALAR, ARRAY, HASH or REF objects, i.e. anything that can be
403 conveniently stored to disk and retrieved at a later time.
404
405 It can be used in the regular procedural way by calling C<store> with
406 a reference to the object to be stored, along with the file name where
407 the image should be written.
408
409 The routine returns C<undef> for I/O problems or other internal error,
410 a true value otherwise. Serious errors are propagated as a C<die> exception.
411
412 To retrieve data stored to disk, use C<retrieve> with a file name.
413 The objects stored into that file are recreated into memory for you,
414 and a I<reference> to the root object is returned. In case an I/O error
415 occurs while reading, C<undef> is returned instead. Other serious
416 errors are propagated via C<die>.
417
418 Since storage is performed recursively, you might want to stuff references
419 to objects that share a lot of common data into a single array or hash
420 table, and then store that object. That way, when you retrieve back the
421 whole thing, the objects will continue to share what they originally shared.
422
423 At the cost of a slight header overhead, you may store to an already
424 opened file descriptor using the C<store_fd> routine, and retrieve
425 from a file via C<fd_retrieve>. Those names aren't imported by default,
426 so you will have to do that explicitly if you need those routines.
427 The file descriptor you supply must be already opened, for read
428 if you're going to retrieve and for write if you wish to store.
429
430         store_fd(\%table, *STDOUT) || die "can't store to stdout\n";
431         $hashref = fd_retrieve(*STDIN);
432
433 You can also store data in network order to allow easy sharing across
434 multiple platforms, or when storing on a socket known to be remotely
435 connected. The routines to call have an initial C<n> prefix for I<network>,
436 as in C<nstore> and C<nstore_fd>. At retrieval time, your data will be
437 correctly restored so you don't have to know whether you're restoring
438 from native or network ordered data.  Double values are stored stringified
439 to ensure portability as well, at the slight risk of loosing some precision
440 in the last decimals.
441
442 When using C<fd_retrieve>, objects are retrieved in sequence, one
443 object (i.e. one recursive tree) per associated C<store_fd>.
444
445 If you're more from the object-oriented camp, you can inherit from
446 Storable and directly store your objects by invoking C<store> as
447 a method. The fact that the root of the to-be-stored tree is a
448 blessed reference (i.e. an object) is special-cased so that the
449 retrieve does not provide a reference to that object but rather the
450 blessed object reference itself. (Otherwise, you'd get a reference
451 to that blessed object).
452
453 =head1 MEMORY STORE
454
455 The Storable engine can also store data into a Perl scalar instead, to
456 later retrieve them. This is mainly used to freeze a complex structure in
457 some safe compact memory place (where it can possibly be sent to another
458 process via some IPC, since freezing the structure also serializes it in
459 effect). Later on, and maybe somewhere else, you can thaw the Perl scalar
460 out and recreate the original complex structure in memory.
461
462 Surprisingly, the routines to be called are named C<freeze> and C<thaw>.
463 If you wish to send out the frozen scalar to another machine, use
464 C<nfreeze> instead to get a portable image.
465
466 Note that freezing an object structure and immediately thawing it
467 actually achieves a deep cloning of that structure:
468
469     dclone(.) = thaw(freeze(.))
470
471 Storable provides you with a C<dclone> interface which does not create
472 that intermediary scalar but instead freezes the structure in some
473 internal memory space and then immediately thaws it out.
474
475 =head1 ADVISORY LOCKING
476
477 The C<lock_store> and C<lock_nstore> routine are equivalent to
478 C<store> and C<nstore>, except that they get an exclusive lock on
479 the file before writing.  Likewise, C<lock_retrieve> does the same
480 as C<retrieve>, but also gets a shared lock on the file before reading.
481
482 As with any advisory locking scheme, the protection only works if you
483 systematically use C<lock_store> and C<lock_retrieve>.  If one side of
484 your application uses C<store> whilst the other uses C<lock_retrieve>,
485 you will get no protection at all.
486
487 The internal advisory locking is implemented using Perl's flock()
488 routine.  If your system does not support any form of flock(), or if
489 you share your files across NFS, you might wish to use other forms
490 of locking by using modules such as LockFile::Simple which lock a
491 file using a filesystem entry, instead of locking the file descriptor.
492
493 =head1 SPEED
494
495 The heart of Storable is written in C for decent speed. Extra low-level
496 optimizations have been made when manipulating perl internals, to
497 sacrifice encapsulation for the benefit of greater speed.
498
499 =head1 CANONICAL REPRESENTATION
500
501 Normally, Storable stores elements of hashes in the order they are
502 stored internally by Perl, i.e. pseudo-randomly.  If you set
503 C<$Storable::canonical> to some C<TRUE> value, Storable will store
504 hashes with the elements sorted by their key.  This allows you to
505 compare data structures by comparing their frozen representations (or
506 even the compressed frozen representations), which can be useful for
507 creating lookup tables for complicated queries.
508
509 Canonical order does not imply network order; those are two orthogonal
510 settings.
511
512 =head1 FORWARD COMPATIBILITY
513
514 This release of Storable can be used on a newer version of Perl to
515 serialize data which is not supported by earlier Perls.  By default,
516 Storable will attempt to do the right thing, by C<croak()>ing if it
517 encounters data that it cannot deserialize.  However, the defaults
518 can be changed as follows:
519
520 =over 4
521
522 =item utf8 data
523
524 Perl 5.6 added support for Unicode characters with code points > 255,
525 and Perl 5.8 has full support for Unicode characters in hash keys.
526 Perl internally encodes strings with these characters using utf8, and
527 Storable serializes them as utf8.  By default, if an older version of
528 Perl encounters a utf8 value it cannot represent, it will C<croak()>.
529 To change this behaviour so that Storable deserializes utf8 encoded
530 values as the string of bytes (effectively dropping the I<is_utf8> flag)
531 set C<$Storable::drop_utf8> to some C<TRUE> value.  This is a form of
532 data loss, because with C<$drop_utf8> true, it becomes impossible to tell
533 whether the original data was the Unicode string, or a series of bytes
534 that happen to be valid utf8.
535
536 =item restricted hashes
537
538 Perl 5.8 adds support for restricted hashes, which have keys
539 restricted to a given set, and can have values locked to be read only.
540 By default, when Storable encounters a restricted hash on a perl
541 that doesn't support them, it will deserialize it as a normal hash,
542 silently discarding any placeholder keys and leaving the keys and
543 all values unlocked.  To make Storable C<croak()> instead, set
544 C<$Storable::downgrade_restricted> to a C<FALSE> value.  To restore
545 the default set it back to some C<TRUE> value.
546
547 =item files from future versions of Storable
548
549 Earlier versions of Storable would immediately croak if they encountered
550 a file with a higher internal version number than the reading Storable
551 knew about.  Internal version numbers are increased each time new data
552 types (such as restricted hashes) are added to the vocabulary of the file
553 format.  This meant that a newer Storable module had no way of writing a
554 file readable by an older Storable, even if the writer didn't store newer
555 data types.
556
557 This version of Storable will defer croaking until it encounters a data
558 type in the file that it does not recognize.  This means that it will
559 continue to read files generated by newer Storable modules which are careful
560 in what they write out, making it easier to upgrade Storable modules in a
561 mixed environment.
562
563 The old behaviour of immediate croaking can be re-instated by setting
564 C<$Storable::accept_future_minor> to some C<FALSE> value.
565
566 =back
567
568 All these variables have no effect on a newer Perl which supports the
569 relevant feature.
570
571 =head1 ERROR REPORTING
572
573 Storable uses the "exception" paradigm, in that it does not try to workaround
574 failures: if something bad happens, an exception is generated from the
575 caller's perspective (see L<Carp> and C<croak()>).  Use eval {} to trap
576 those exceptions.
577
578 When Storable croaks, it tries to report the error via the C<logcroak()>
579 routine from the C<Log::Agent> package, if it is available.
580
581 Normal errors are reported by having store() or retrieve() return C<undef>.
582 Such errors are usually I/O errors (or truncated stream errors at retrieval).
583
584 =head1 WIZARDS ONLY
585
586 =head2 Hooks
587
588 Any class may define hooks that will be called during the serialization
589 and deserialization process on objects that are instances of that class.
590 Those hooks can redefine the way serialization is performed (and therefore,
591 how the symmetrical deserialization should be conducted).
592
593 Since we said earlier:
594
595     dclone(.) = thaw(freeze(.))
596
597 everything we say about hooks should also hold for deep cloning. However,
598 hooks get to know whether the operation is a mere serialization, or a cloning.
599
600 Therefore, when serializing hooks are involved,
601
602     dclone(.) <> thaw(freeze(.))
603
604 Well, you could keep them in sync, but there's no guarantee it will always
605 hold on classes somebody else wrote.  Besides, there is little to gain in
606 doing so: a serializing hook could keep only one attribute of an object,
607 which is probably not what should happen during a deep cloning of that
608 same object.
609
610 Here is the hooking interface:
611
612 =over 4
613
614 =item C<STORABLE_freeze> I<obj>, I<cloning>
615
616 The serializing hook, called on the object during serialization.  It can be
617 inherited, or defined in the class itself, like any other method.
618
619 Arguments: I<obj> is the object to serialize, I<cloning> is a flag indicating
620 whether we're in a dclone() or a regular serialization via store() or freeze().
621
622 Returned value: A LIST C<($serialized, $ref1, $ref2, ...)> where $serialized
623 is the serialized form to be used, and the optional $ref1, $ref2, etc... are
624 extra references that you wish to let the Storable engine serialize.
625
626 At deserialization time, you will be given back the same LIST, but all the
627 extra references will be pointing into the deserialized structure.
628
629 The B<first time> the hook is hit in a serialization flow, you may have it
630 return an empty list.  That will signal the Storable engine to further
631 discard that hook for this class and to therefore revert to the default
632 serialization of the underlying Perl data.  The hook will again be normally
633 processed in the next serialization.
634
635 Unless you know better, serializing hook should always say:
636
637     sub STORABLE_freeze {
638         my ($self, $cloning) = @_;
639         return if $cloning;         # Regular default serialization
640         ....
641     }
642
643 in order to keep reasonable dclone() semantics.
644
645 =item C<STORABLE_thaw> I<obj>, I<cloning>, I<serialized>, ...
646
647 The deserializing hook called on the object during deserialization.
648 But wait: if we're deserializing, there's no object yet... right?
649
650 Wrong: the Storable engine creates an empty one for you.  If you know Eiffel,
651 you can view C<STORABLE_thaw> as an alternate creation routine.
652
653 This means the hook can be inherited like any other method, and that
654 I<obj> is your blessed reference for this particular instance.
655
656 The other arguments should look familiar if you know C<STORABLE_freeze>:
657 I<cloning> is true when we're part of a deep clone operation, I<serialized>
658 is the serialized string you returned to the engine in C<STORABLE_freeze>,
659 and there may be an optional list of references, in the same order you gave
660 them at serialization time, pointing to the deserialized objects (which
661 have been processed courtesy of the Storable engine).
662
663 When the Storable engine does not find any C<STORABLE_thaw> hook routine,
664 it tries to load the class by requiring the package dynamically (using
665 the blessed package name), and then re-attempts the lookup.  If at that
666 time the hook cannot be located, the engine croaks.  Note that this mechanism
667 will fail if you define several classes in the same file, but L<perlmod>
668 warned you.
669
670 It is up to you to use this information to populate I<obj> the way you want.
671
672 Returned value: none.
673
674 =back
675
676 =head2 Predicates
677
678 Predicates are not exportable.  They must be called by explicitly prefixing
679 them with the Storable package name.
680
681 =over 4
682
683 =item C<Storable::last_op_in_netorder>
684
685 The C<Storable::last_op_in_netorder()> predicate will tell you whether
686 network order was used in the last store or retrieve operation.  If you
687 don't know how to use this, just forget about it.
688
689 =item C<Storable::is_storing>
690
691 Returns true if within a store operation (via STORABLE_freeze hook).
692
693 =item C<Storable::is_retrieving>
694
695 Returns true if within a retrieve operation (via STORABLE_thaw hook).
696
697 =back
698
699 =head2 Recursion
700
701 With hooks comes the ability to recurse back to the Storable engine.
702 Indeed, hooks are regular Perl code, and Storable is convenient when
703 it comes to serializing and deserializing things, so why not use it
704 to handle the serialization string?
705
706 There are a few things you need to know, however:
707
708 =over 4
709
710 =item *
711
712 You can create endless loops if the things you serialize via freeze()
713 (for instance) point back to the object we're trying to serialize in
714 the hook.
715
716 =item *
717
718 Shared references among objects will not stay shared: if we're serializing
719 the list of object [A, C] where both object A and C refer to the SAME object
720 B, and if there is a serializing hook in A that says freeze(B), then when
721 deserializing, we'll get [A', C'] where A' refers to B', but C' refers to D,
722 a deep clone of B'.  The topology was not preserved.
723
724 =back
725
726 That's why C<STORABLE_freeze> lets you provide a list of references
727 to serialize.  The engine guarantees that those will be serialized in the
728 same context as the other objects, and therefore that shared objects will
729 stay shared.
730
731 In the above [A, C] example, the C<STORABLE_freeze> hook could return:
732
733         ("something", $self->{B})
734
735 and the B part would be serialized by the engine.  In C<STORABLE_thaw>, you
736 would get back the reference to the B' object, deserialized for you.
737
738 Therefore, recursion should normally be avoided, but is nonetheless supported.
739
740 =head2 Deep Cloning
741
742 There is a Clone module available on CPAN which implements deep cloning
743 natively, i.e. without freezing to memory and thawing the result.  It is
744 aimed to replace Storable's dclone() some day.  However, it does not currently
745 support Storable hooks to redefine the way deep cloning is performed.
746
747 =head1 Storable magic
748
749 Yes, there's a lot of that :-) But more precisely, in UNIX systems
750 there's a utility called C<file>, which recognizes data files based on
751 their contents (usually their first few bytes).  For this to work,
752 a certain file called F<magic> needs to taught about the I<signature>
753 of the data.  Where that configuration file lives depends on the UNIX
754 flavour; often it's something like F</usr/share/misc/magic> or
755 F</etc/magic>.  Your system administrator needs to do the updating of
756 the F<magic> file.  The necessary signature information is output to
757 STDOUT by invoking Storable::show_file_magic().  Note that the GNU
758 implementation of the C<file> utility, version 3.38 or later,
759 is expected to contain support for recognising Storable files
760 out-of-the-box, in addition to other kinds of Perl files.
761
762 =head1 EXAMPLES
763
764 Here are some code samples showing a possible usage of Storable:
765
766         use Storable qw(store retrieve freeze thaw dclone);
767
768         %color = ('Blue' => 0.1, 'Red' => 0.8, 'Black' => 0, 'White' => 1);
769
770         store(\%color, '/tmp/colors') or die "Can't store %a in /tmp/colors!\n";
771
772         $colref = retrieve('/tmp/colors');
773         die "Unable to retrieve from /tmp/colors!\n" unless defined $colref;
774         printf "Blue is still %lf\n", $colref->{'Blue'};
775
776         $colref2 = dclone(\%color);
777
778         $str = freeze(\%color);
779         printf "Serialization of %%color is %d bytes long.\n", length($str);
780         $colref3 = thaw($str);
781
782 which prints (on my machine):
783
784         Blue is still 0.100000
785         Serialization of %color is 102 bytes long.
786
787 =head1 WARNING
788
789 If you're using references as keys within your hash tables, you're bound
790 to be disappointed when retrieving your data. Indeed, Perl stringifies
791 references used as hash table keys. If you later wish to access the
792 items via another reference stringification (i.e. using the same
793 reference that was used for the key originally to record the value into
794 the hash table), it will work because both references stringify to the
795 same string.
796
797 It won't work across a sequence of C<store> and C<retrieve> operations,
798 however, because the addresses in the retrieved objects, which are
799 part of the stringified references, will probably differ from the
800 original addresses. The topology of your structure is preserved,
801 but not hidden semantics like those.
802
803 On platforms where it matters, be sure to call C<binmode()> on the
804 descriptors that you pass to Storable functions.
805
806 Storing data canonically that contains large hashes can be
807 significantly slower than storing the same data normally, as
808 temporary arrays to hold the keys for each hash have to be allocated,
809 populated, sorted and freed.  Some tests have shown a halving of the
810 speed of storing -- the exact penalty will depend on the complexity of
811 your data.  There is no slowdown on retrieval.
812
813 =head1 BUGS
814
815 You can't store GLOB, CODE, FORMLINE, etc.... If you can define
816 semantics for those operations, feel free to enhance Storable so that
817 it can deal with them.
818
819 The store functions will C<croak> if they run into such references
820 unless you set C<$Storable::forgive_me> to some C<TRUE> value. In that
821 case, the fatal message is turned in a warning and some
822 meaningless string is stored instead.
823
824 Setting C<$Storable::canonical> may not yield frozen strings that
825 compare equal due to possible stringification of numbers. When the
826 string version of a scalar exists, it is the form stored; therefore,
827 if you happen to use your numbers as strings between two freezing
828 operations on the same data structures, you will get different
829 results.
830
831 When storing doubles in network order, their value is stored as text.
832 However, you should also not expect non-numeric floating-point values
833 such as infinity and "not a number" to pass successfully through a
834 nstore()/retrieve() pair.
835
836 As Storable neither knows nor cares about character sets (although it
837 does know that characters may be more than eight bits wide), any difference
838 in the interpretation of character codes between a host and a target
839 system is your problem.  In particular, if host and target use different
840 code points to represent the characters used in the text representation
841 of floating-point numbers, you will not be able be able to exchange
842 floating-point data, even with nstore().
843
844 C<Storable::drop_utf8> is a blunt tool.  There is no facility either to
845 return B<all> strings as utf8 sequences, or to attempt to convert utf8
846 data back to 8 bit and C<croak()> if the conversion fails.
847
848 Prior to Storable 2.01, no distinction was made between signed and
849 unsigned integers on storing.  By default Storable prefers to store a
850 scalars string representation (if it has one) so this would only cause
851 problems when storing large unsigned integers that had never been coverted
852 to string or floating point.  In other words values that had been generated
853 by integer operations such as logic ops and then not used in any string or
854 arithmetic context before storing.
855
856 =head2 64 bit data in perl 5.6.0 and 5.6.1
857
858 This section only applies to you if you have existing data written out
859 by Storable 2.02 or earlier on perl 5.6.0 or 5.6.1 on Unix or Linux which
860 has been configured with 64 bit integer support (not the default)
861 If you got a precompiled perl, rather than running Configure to build
862 your own perl from source, then it almost certainly does not affect you,
863 and you can stop reading now (unless you're curious). If you're using perl
864 on Windows it does not affect you.
865
866 Storable writes a file header which contains the sizes of various C
867 language types for the C compiler that built Storable (when not writing in
868 network order), and will refuse to load files written by a Storable not
869 on the same (or compatible) architecture.  This check and a check on
870 machine byteorder is needed because the size of various fields in the file
871 are given by the sizes of the C language types, and so files written on
872 different architectures are incompatible.  This is done for increased speed.
873 (When writing in network order, all fields are written out as standard
874 lengths, which allows full interworking, but takes longer to read and write)
875
876 Perl 5.6.x introduced the ability to optional configure the perl interpreter
877 to use C's C<long long> type to allow scalars to store 64 bit integers on 32
878 bit systems.  However, due to the way the Perl configuration system
879 generated the C configuration files on non-Windows platforms, and the way
880 Storable generates its header, nothing in the Storable file header reflected
881 whether the perl writing was using 32 or 64 bit integers, despite the fact
882 that Storable was storing some data differently in the file.  Hence Storable
883 running on perl with 64 bit integers will read the header from a file
884 written by a 32 bit perl, not realise that the data is actually in a subtly
885 incompatible format, and then go horribly wrong (possibly crashing) if it
886 encountered a stored integer.  This is a design failure.
887
888 Storable has now been changed to write out and read in a file header with
889 information about the size of integers.  It's impossible to detect whether
890 an old file being read in was written with 32 or 64 bit integers (they have
891 the same header) so it's impossible to automatically switch to a correct
892 backwards compatibility mode.  Hence this Storable defaults to the new,
893 correct behaviour.
894
895 What this means is that if you have data written by Storable 1.x running
896 on perl 5.6.0 or 5.6.1 configured with 64 bit integers on Unix or Linux
897 then by default this Storable will refuse to read it, giving the error
898 I<Byte order is not compatible>.  If you have such data then you you
899 should set C<$Storable::interwork_56_64bit> to a true value to make this
900 Storable read and write files with the old header.  You should also
901 migrate your data, or any older perl you are communicating with, to this
902 current version of Storable.
903
904 If you don't have data written with specific configuration of perl described
905 above, then you do not and should not do anything.  Don't set the flag -
906 not only will Storable on an identically configured perl refuse to load them,
907 but Storable a differently configured perl will load them believing them
908 to be correct for it, and then may well fail or crash part way through
909 reading them.
910
911 =head1 CREDITS
912
913 Thank you to (in chronological order):
914
915         Jarkko Hietaniemi <jhi@iki.fi>
916         Ulrich Pfeifer <pfeifer@charly.informatik.uni-dortmund.de>
917         Benjamin A. Holzman <bah@ecnvantage.com>
918         Andrew Ford <A.Ford@ford-mason.co.uk>
919         Gisle Aas <gisle@aas.no>
920         Jeff Gresham <gresham_jeffrey@jpmorgan.com>
921         Murray Nesbitt <murray@activestate.com>
922         Marc Lehmann <pcg@opengroup.org>
923         Justin Banks <justinb@wamnet.com>
924         Jarkko Hietaniemi <jhi@iki.fi> (AGAIN, as perl 5.7.0 Pumpkin!)
925         Salvador Ortiz Garcia <sog@msg.com.mx>
926         Dominic Dunlop <domo@computer.org>
927         Erik Haugan <erik@solbors.no>
928
929 for their bug reports, suggestions and contributions.
930
931 Benjamin Holzman contributed the tied variable support, Andrew Ford
932 contributed the canonical order for hashes, and Gisle Aas fixed
933 a few misunderstandings of mine regarding the perl internals,
934 and optimized the emission of "tags" in the output streams by
935 simply counting the objects instead of tagging them (leading to
936 a binary incompatibility for the Storable image starting at version
937 0.6--older images are, of course, still properly understood).
938 Murray Nesbitt made Storable thread-safe.  Marc Lehmann added overloading
939 and references to tied items support.
940
941 =head1 AUTHOR
942
943 Storable was written by Raphael Manfredi F<E<lt>Raphael_Manfredi@pobox.comE<gt>>
944 Maintenance is now done by the perl5-porters F<E<lt>perl5-porters@perl.orgE<gt>>
945
946 Please e-mail us with problems, bug fixes, comments and complaints,
947 although if you have complements you should send them to Raphael.
948 Please don't e-mail Raphael with problems, as he no longer works on
949 Storable, and your message will be delayed while he forwards it to us.
950
951 =head1 SEE ALSO
952
953 L<Clone>.
954
955 =cut