This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Fixes to make test pass for regexp nocapture bit addition.
[perl5.git] / lib / Benchmark.pm
... / ...
CommitLineData
1package Benchmark;
2
3use strict;
4
5
6=head1 NAME
7
8Benchmark - benchmark running times of Perl code
9
10=head1 SYNOPSIS
11
12 use Benchmark qw(:all) ;
13
14 timethis ($count, "code");
15
16 # Use Perl code in strings...
17 timethese($count, {
18 'Name1' => '...code1...',
19 'Name2' => '...code2...',
20 });
21
22 # ... or use subroutine references.
23 timethese($count, {
24 'Name1' => sub { ...code1... },
25 'Name2' => sub { ...code2... },
26 });
27
28 # cmpthese can be used both ways as well
29 cmpthese($count, {
30 'Name1' => '...code1...',
31 'Name2' => '...code2...',
32 });
33
34 cmpthese($count, {
35 'Name1' => sub { ...code1... },
36 'Name2' => sub { ...code2... },
37 });
38
39 # ...or in two stages
40 $results = timethese($count,
41 {
42 'Name1' => sub { ...code1... },
43 'Name2' => sub { ...code2... },
44 },
45 'none'
46 );
47 cmpthese( $results ) ;
48
49 $t = timeit($count, '...other code...')
50 print "$count loops of other code took:",timestr($t),"\n";
51
52 $t = countit($time, '...other code...')
53 $count = $t->iters ;
54 print "$count loops of other code took:",timestr($t),"\n";
55
56 # enable hires wallclock timing if possible
57 use Benchmark ':hireswallclock';
58
59=head1 DESCRIPTION
60
61The Benchmark module encapsulates a number of routines to help you
62figure out how long it takes to execute some code.
63
64timethis - run a chunk of code several times
65
66timethese - run several chunks of code several times
67
68cmpthese - print results of timethese as a comparison chart
69
70timeit - run a chunk of code and see how long it goes
71
72countit - see how many times a chunk of code runs in a given time
73
74
75=head2 Methods
76
77=over 10
78
79=item new
80
81Returns the current time. Example:
82
83 use Benchmark;
84 $t0 = Benchmark->new;
85 # ... your code here ...
86 $t1 = Benchmark->new;
87 $td = timediff($t1, $t0);
88 print "the code took:",timestr($td),"\n";
89
90=item debug
91
92Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
93
94 Benchmark->debug(1);
95 $t = timeit(10, ' 5 ** $Global ');
96 Benchmark->debug(0);
97
98=item iters
99
100Returns the number of iterations.
101
102=back
103
104=head2 Standard Exports
105
106The following routines will be exported into your namespace
107if you use the Benchmark module:
108
109=over 10
110
111=item timeit(COUNT, CODE)
112
113Arguments: COUNT is the number of times to run the loop, and CODE is
114the code to run. CODE may be either a code reference or a string to
115be eval'd; either way it will be run in the caller's package.
116
117Returns: a Benchmark object.
118
119=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
120
121Time COUNT iterations of CODE. CODE may be a string to eval or a
122code reference; either way the CODE will run in the caller's package.
123Results will be printed to STDOUT as TITLE followed by the times.
124TITLE defaults to "timethis COUNT" if none is provided. STYLE
125determines the format of the output, as described for timestr() below.
126
127The COUNT can be zero or negative: this means the I<minimum number of
128CPU seconds> to run. A zero signifies the default of 3 seconds. For
129example to run at least for 10 seconds:
130
131 timethis(-10, $code)
132
133or to run two pieces of code tests for at least 3 seconds:
134
135 timethese(0, { test1 => '...', test2 => '...'})
136
137CPU seconds is, in UNIX terms, the user time plus the system time of
138the process itself, as opposed to the real (wallclock) time and the
139time spent by the child processes. Less than 0.1 seconds is not
140accepted (-0.01 as the count, for example, will cause a fatal runtime
141exception).
142
143Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144other operating system factors may complicate the attempt so that a
145little bit more time is spent. The benchmark output will, however,
146also tell the number of C<$code> runs/second, which should be a more
147interesting number than the actually spent seconds.
148
149Returns a Benchmark object.
150
151=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
152
153The CODEHASHREF is a reference to a hash containing names as keys
154and either a string to eval or a code reference for each value.
155For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156call
157
158 timethis(COUNT, VALUE, KEY, STYLE)
159
160The routines are called in string comparison order of KEY.
161
162The COUNT can be zero or negative, see timethis().
163
164Returns a hash reference of Benchmark objects, keyed by name.
165
166=item timediff ( T1, T2 )
167
168Returns the difference between two Benchmark times as a Benchmark
169object suitable for passing to timestr().
170
171=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
172
173Returns a string that formats the times in the TIMEDIFF object in
174the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175similar to that returned by timediff().
176
177STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178each of the 5 times available ('wallclock' time, user time, system time,
179user time of children, and system time of children). 'noc' shows all
180except the two children times. 'nop' shows only wallclock and the
181two children times. 'auto' (the default) will act as 'all' unless
182the children times are both zero, in which case it acts as 'noc'.
183'none' prevents output.
184
185FORMAT is the L<printf(3)>-style format specifier (without the
186leading '%') to use to print the times. It defaults to '5.2f'.
187
188=back
189
190=head2 Optional Exports
191
192The following routines will be exported into your namespace
193if you specifically ask that they be imported:
194
195=over 10
196
197=item clearcache ( COUNT )
198
199Clear the cached time for COUNT rounds of the null loop.
200
201=item clearallcache ( )
202
203Clear all cached times.
204
205=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
206
207=item cmpthese ( RESULTSHASHREF, [ STYLE ] )
208
209Optionally calls timethese(), then outputs comparison chart. This:
210
211 cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
212
213outputs a chart like:
214
215 Rate b a
216 b 2831802/s -- -61%
217 a 7208959/s 155% --
218
219This chart is sorted from slowest to fastest, and shows the percent speed
220difference between each pair of tests.
221
222C<cmpthese> can also be passed the data structure that timethese() returns:
223
224 $results = timethese( -1,
225 { a => "++\$i", b => "\$i *= 2" } ) ;
226 cmpthese( $results );
227
228in case you want to see both sets of results.
229If the first argument is an unblessed hash reference,
230that is RESULTSHASHREF; otherwise that is COUNT.
231
232Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
233above chart, including labels. This:
234
235 my $rows = cmpthese( -1,
236 { a => '++$i', b => '$i *= 2' }, "none" );
237
238returns a data structure like:
239
240 [
241 [ '', 'Rate', 'b', 'a' ],
242 [ 'b', '2885232/s', '--', '-59%' ],
243 [ 'a', '7099126/s', '146%', '--' ],
244 ]
245
246B<NOTE>: This result value differs from previous versions, which returned
247the C<timethese()> result structure. If you want that, just use the two
248statement C<timethese>...C<cmpthese> idiom shown above.
249
250Incidentally, note the variance in the result values between the two examples;
251this is typical of benchmarking. If this were a real benchmark, you would
252probably want to run a lot more iterations.
253
254=item countit(TIME, CODE)
255
256Arguments: TIME is the minimum length of time to run CODE for, and CODE is
257the code to run. CODE may be either a code reference or a string to
258be eval'd; either way it will be run in the caller's package.
259
260TIME is I<not> negative. countit() will run the loop many times to
261calculate the speed of CODE before running it for TIME. The actual
262time run for will usually be greater than TIME due to system clock
263resolution, so it's best to look at the number of iterations divided
264by the times that you are concerned with, not just the iterations.
265
266Returns: a Benchmark object.
267
268=item disablecache ( )
269
270Disable caching of timings for the null loop. This will force Benchmark
271to recalculate these timings for each new piece of code timed.
272
273=item enablecache ( )
274
275Enable caching of timings for the null loop. The time taken for COUNT
276rounds of the null loop will be calculated only once for each
277different COUNT used.
278
279=item timesum ( T1, T2 )
280
281Returns the sum of two Benchmark times as a Benchmark object suitable
282for passing to timestr().
283
284=back
285
286=head2 :hireswallclock
287
288If the Time::HiRes module has been installed, you can specify the
289special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
290available, the tag will be silently ignored). This tag will cause the
291wallclock time to be measured in microseconds, instead of integer
292seconds. Note though that the speed computations are still conducted
293in CPU time, not wallclock time.
294
295=head1 Benchmark Object
296
297Many of the functions in this module return a Benchmark object,
298or in the case of C<timethese()>, a reference to a hash, the values of
299which are Benchmark objects. This is useful if you want to store or
300further process results from Benchmark functions.
301
302Internally the Benchmark object holds timing values,
303described in L</"NOTES"> below.
304The following methods can be used to access them:
305
306=over 4
307
308=item cpu_p
309
310Total CPU (User + System) of the main (parent) process.
311
312=item cpu_c
313
314Total CPU (User + System) of any children processes.
315
316=item cpu_a
317
318Total CPU of parent and any children processes.
319
320=item real
321
322Real elapsed time "wallclock seconds".
323
324=item iters
325
326Number of iterations run.
327
328=back
329
330The following illustrates use of the Benchmark object:
331
332 $result = timethis(100000, sub { ... });
333 print "total CPU = ", $result->cpu_a, "\n";
334
335=head1 NOTES
336
337The data is stored as a list of values from the time and times
338functions:
339
340 ($real, $user, $system, $children_user, $children_system, $iters)
341
342in seconds for the whole loop (not divided by the number of rounds).
343
344The timing is done using time(3) and times(3).
345
346Code is executed in the caller's package.
347
348The time of the null loop (a loop with the same
349number of rounds but empty loop body) is subtracted
350from the time of the real loop.
351
352The null loop times can be cached, the key being the
353number of rounds. The caching can be controlled using
354calls like these:
355
356 clearcache($key);
357 clearallcache();
358
359 disablecache();
360 enablecache();
361
362Caching is off by default, as it can (usually slightly) decrease
363accuracy and does not usually noticeably affect runtimes.
364
365=head1 EXAMPLES
366
367For example,
368
369 use Benchmark qw( cmpthese ) ;
370 $x = 3;
371 cmpthese( -5, {
372 a => sub{$x*$x},
373 b => sub{$x**2},
374 } );
375
376outputs something like this:
377
378 Benchmark: running a, b, each for at least 5 CPU seconds...
379 Rate b a
380 b 1559428/s -- -62%
381 a 4152037/s 166% --
382
383
384while
385
386 use Benchmark qw( timethese cmpthese ) ;
387 $x = 3;
388 $r = timethese( -5, {
389 a => sub{$x*$x},
390 b => sub{$x**2},
391 } );
392 cmpthese $r;
393
394outputs something like this:
395
396 Benchmark: running a, b, each for at least 5 CPU seconds...
397 a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743)
398 b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452)
399 Rate b a
400 b 1574945/s -- -59%
401 a 3835056/s 144% --
402
403
404=head1 INHERITANCE
405
406Benchmark inherits from no other class, except of course
407for Exporter.
408
409=head1 CAVEATS
410
411Comparing eval'd strings with code references will give you
412inaccurate results: a code reference will show a slightly slower
413execution time than the equivalent eval'd string.
414
415The real time timing is done using time(2) and
416the granularity is therefore only one second.
417
418Short tests may produce negative figures because perl
419can appear to take longer to execute the empty loop
420than a short test; try:
421
422 timethis(100,'1');
423
424The system time of the null loop might be slightly
425more than the system time of the loop with the actual
426code and therefore the difference might end up being E<lt> 0.
427
428=head1 SEE ALSO
429
430L<Devel::NYTProf> - a Perl code profiler
431
432=head1 AUTHORS
433
434Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
435
436=head1 MODIFICATION HISTORY
437
438September 8th, 1994; by Tim Bunce.
439
440March 28th, 1997; by Hugo van der Sanden: added support for code
441references and the already documented 'debug' method; revamped
442documentation.
443
444April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
445functionality.
446
447September, 1999; by Barrie Slaymaker: math fixes and accuracy and
448efficiency tweaks. Added cmpthese(). A result is now returned from
449timethese(). Exposed countit() (was runfor()).
450
451December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
452and return an empty string. If cmpthese is calling timethese, make it pass the
453style in. (so that 'none' will suppress output). Make sub new dump its
454debugging output to STDERR, to be consistent with everything else.
455All bugs found while writing a regression test.
456
457September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
458
459February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
460statistics for children instead of parent when the style is 'nop'.
461
462November, 2007; by Christophe Grosjean: make cmpthese and timestr compute
463time consistently with style argument, default is 'all' not 'noc' any more.
464
465=cut
466
467# evaluate something in a clean lexical environment
468sub _doeval { no strict; eval shift }
469
470#
471# put any lexicals at file scope AFTER here
472#
473
474use Carp;
475use Exporter;
476
477our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
478
479@ISA=qw(Exporter);
480@EXPORT=qw(timeit timethis timethese timediff timestr);
481@EXPORT_OK=qw(timesum cmpthese countit
482 clearcache clearallcache disablecache enablecache);
483%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
484
485$VERSION = 1.19;
486
487# --- ':hireswallclock' special handling
488
489my $hirestime;
490
491sub mytime () { time }
492
493init();
494
495sub BEGIN {
496 if (eval 'require Time::HiRes') {
497 import Time::HiRes qw(time);
498 $hirestime = \&Time::HiRes::time;
499 }
500}
501
502sub import {
503 my $class = shift;
504 if (grep { $_ eq ":hireswallclock" } @_) {
505 @_ = grep { $_ ne ":hireswallclock" } @_;
506 local $^W=0;
507 *mytime = $hirestime if defined $hirestime;
508 }
509 Benchmark->export_to_level(1, $class, @_);
510}
511
512our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
513 %_Usage, %Cache, $Do_Cache);
514
515sub init {
516 $Debug = 0;
517 $Min_Count = 4;
518 $Min_CPU = 0.4;
519 $Default_Format = '5.2f';
520 $Default_Style = 'auto';
521 # The cache can cause a slight loss of sys time accuracy. If a
522 # user does many tests (>10) with *very* large counts (>10000)
523 # or works on a very slow machine the cache may be useful.
524 disablecache();
525 clearallcache();
526}
527
528sub debug { $Debug = ($_[1] != 0); }
529
530sub usage {
531 my $calling_sub = (caller(1))[3];
532 $calling_sub =~ s/^Benchmark:://;
533 return $_Usage{$calling_sub} || '';
534}
535
536# The cache needs two branches: 's' for strings and 'c' for code. The
537# empty loop is different in these two cases.
538
539$_Usage{clearcache} = <<'USAGE';
540usage: clearcache($count);
541USAGE
542
543sub clearcache {
544 die usage unless @_ == 1;
545 delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
546}
547
548$_Usage{clearallcache} = <<'USAGE';
549usage: clearallcache();
550USAGE
551
552sub clearallcache {
553 die usage if @_;
554 %Cache = ();
555}
556
557$_Usage{enablecache} = <<'USAGE';
558usage: enablecache();
559USAGE
560
561sub enablecache {
562 die usage if @_;
563 $Do_Cache = 1;
564}
565
566$_Usage{disablecache} = <<'USAGE';
567usage: disablecache();
568USAGE
569
570sub disablecache {
571 die usage if @_;
572 $Do_Cache = 0;
573}
574
575
576# --- Functions to process the 'time' data type
577
578sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
579 print STDERR "new=@t\n" if $Debug;
580 bless \@t; }
581
582sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps ; }
583sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $cu+$cs ; }
584sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
585sub real { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r ; }
586sub iters { $_[0]->[5] ; }
587
588
589$_Usage{timediff} = <<'USAGE';
590usage: $result_diff = timediff($result1, $result2);
591USAGE
592
593sub timediff {
594 my($a, $b) = @_;
595
596 die usage unless ref $a and ref $b;
597
598 my @r;
599 for (my $i=0; $i < @$a; ++$i) {
600 push(@r, $a->[$i] - $b->[$i]);
601 }
602 #die "Bad timediff(): ($r[1] + $r[2]) <= 0 (@$a[1,2]|@$b[1,2])\n"
603 # if ($r[1] + $r[2]) < 0;
604 bless \@r;
605}
606
607$_Usage{timesum} = <<'USAGE';
608usage: $sum = timesum($result1, $result2);
609USAGE
610
611sub timesum {
612 my($a, $b) = @_;
613
614 die usage unless ref $a and ref $b;
615
616 my @r;
617 for (my $i=0; $i < @$a; ++$i) {
618 push(@r, $a->[$i] + $b->[$i]);
619 }
620 bless \@r;
621}
622
623
624$_Usage{timestr} = <<'USAGE';
625usage: $formatted_result = timestr($result1);
626USAGE
627
628sub timestr {
629 my($tr, $style, $f) = @_;
630
631 die usage unless ref $tr;
632
633 my @t = @$tr;
634 warn "bad time value (@t)" unless @t==6;
635 my($r, $pu, $ps, $cu, $cs, $n) = @t;
636 my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
637 $f = $Default_Format unless defined $f;
638 # format a time in the required style, other formats may be added here
639 $style ||= $Default_Style;
640 return '' if $style eq 'none';
641 $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
642 my $s = "@t $style"; # default for unknown style
643 my $w = $hirestime ? "%2g" : "%2d";
644 $s = sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
645 $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
646 $s = sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
647 $r,$pu,$ps,$pt) if $style eq 'noc';
648 $s = sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
649 $r,$cu,$cs,$ct) if $style eq 'nop';
650 my $elapsed = do {
651 if ($style eq 'nop') {$cu+$cs}
652 elsif ($style eq 'noc') {$pu+$ps}
653 else {$cu+$cs+$pu+$ps}
654 };
655 $s .= sprintf(" @ %$f/s (n=$n)",$n/($elapsed)) if $n && $elapsed;
656 $s;
657}
658
659sub timedebug {
660 my($msg, $t) = @_;
661 print STDERR "$msg",timestr($t),"\n" if $Debug;
662}
663
664# --- Functions implementing low-level support for timing loops
665
666$_Usage{runloop} = <<'USAGE';
667usage: runloop($number, [$string | $coderef])
668USAGE
669
670sub runloop {
671 my($n, $c) = @_;
672
673 $n+=0; # force numeric now, so garbage won't creep into the eval
674 croak "negative loopcount $n" if $n<0;
675 confess usage unless defined $c;
676 my($t0, $t1, $td); # before, after, difference
677
678 # find package of caller so we can execute code there
679 my($curpack) = caller(0);
680 my($i, $pack)= 0;
681 while (($pack) = caller(++$i)) {
682 last if $pack ne $curpack;
683 }
684
685 my ($subcode, $subref);
686 if (ref $c eq 'CODE') {
687 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
688 $subref = eval $subcode;
689 }
690 else {
691 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
692 $subref = _doeval($subcode);
693 }
694 croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
695 print STDERR "runloop $n '$subcode'\n" if $Debug;
696
697 # Wait for the user timer to tick. This makes the error range more like
698 # -0.01, +0. If we don't wait, then it's more like -0.01, +0.01. This
699 # may not seem important, but it significantly reduces the chances of
700 # getting a too low initial $n in the initial, 'find the minimum' loop
701 # in &countit. This, in turn, can reduce the number of calls to
702 # &runloop a lot, and thus reduce additive errors.
703 #
704 # Note that its possible for the act of reading the system clock to
705 # burn lots of system CPU while we burn very little user clock in the
706 # busy loop, which can cause the loop to run for a very long wall time.
707 # So gradually ramp up the duration of the loop. See RT #122003
708 #
709 my $tbase = Benchmark->new(0)->[1];
710 my $limit = 1;
711 while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {
712 for (my $i=0; $i < $limit; $i++) { my $x = $i / 1.5 } # burn user CPU
713 $limit *= 1.1;
714 }
715 $subref->();
716 $t1 = Benchmark->new($n);
717 $td = &timediff($t1, $t0);
718 timedebug("runloop:",$td);
719 $td;
720}
721
722$_Usage{timeit} = <<'USAGE';
723usage: $result = timeit($count, 'code' ); or
724 $result = timeit($count, sub { code } );
725USAGE
726
727sub timeit {
728 my($n, $code) = @_;
729 my($wn, $wc, $wd);
730
731 die usage unless defined $code and
732 (!ref $code or ref $code eq 'CODE');
733
734 printf STDERR "timeit $n $code\n" if $Debug;
735 my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
736 if ($Do_Cache && exists $Cache{$cache_key} ) {
737 $wn = $Cache{$cache_key};
738 } else {
739 $wn = &runloop($n, ref( $code ) ? sub { } : '' );
740 # Can't let our baseline have any iterations, or they get subtracted
741 # out of the result.
742 $wn->[5] = 0;
743 $Cache{$cache_key} = $wn;
744 }
745
746 $wc = &runloop($n, $code);
747
748 $wd = timediff($wc, $wn);
749 timedebug("timeit: ",$wc);
750 timedebug(" - ",$wn);
751 timedebug(" = ",$wd);
752
753 $wd;
754}
755
756
757my $default_for = 3;
758my $min_for = 0.1;
759
760
761$_Usage{countit} = <<'USAGE';
762usage: $result = countit($time, 'code' ); or
763 $result = countit($time, sub { code } );
764USAGE
765
766sub countit {
767 my ( $tmax, $code ) = @_;
768
769 die usage unless @_;
770
771 if ( not defined $tmax or $tmax == 0 ) {
772 $tmax = $default_for;
773 } elsif ( $tmax < 0 ) {
774 $tmax = -$tmax;
775 }
776
777 die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
778 if $tmax < $min_for;
779
780 my ($n, $tc);
781
782 # First find the minimum $n that gives a significant timing.
783 my $zeros=0;
784 for ($n = 1; ; $n *= 2 ) {
785 my $t0 = Benchmark->new(0);
786 my $td = timeit($n, $code);
787 my $t1 = Benchmark->new(0);
788 $tc = $td->[1] + $td->[2];
789 if ( $tc <= 0 and $n > 1024 ) {
790 my $d = timediff($t1, $t0);
791 # note that $d is the total CPU time taken to call timeit(),
792 # while $tc is is difference in CPU secs between the empty run
793 # and the code run. If the code is trivial, its possible
794 # for $d to get large while $tc is still zero (or slightly
795 # negative). Bail out once timeit() starts taking more than a
796 # few seconds without noticeable difference.
797 if ($d->[1] + $d->[2] > 8
798 || ++$zeros > 16)
799 {
800 die "Timing is consistently zero in estimation loop, cannot benchmark. N=$n\n";
801 }
802 } else {
803 $zeros = 0;
804 }
805 last if $tc > 0.1;
806 }
807
808 my $nmin = $n;
809
810 # Get $n high enough that we can guess the final $n with some accuracy.
811 my $tpra = 0.1 * $tmax; # Target/time practice.
812 while ( $tc < $tpra ) {
813 # The 5% fudge is to keep us from iterating again all
814 # that often (this speeds overall responsiveness when $tmax is big
815 # and we guess a little low). This does not noticeably affect
816 # accuracy since we're not counting these times.
817 $n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
818 my $td = timeit($n, $code);
819 my $new_tc = $td->[1] + $td->[2];
820 # Make sure we are making progress.
821 $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
822 }
823
824 # Now, do the 'for real' timing(s), repeating until we exceed
825 # the max.
826 my $ntot = 0;
827 my $rtot = 0;
828 my $utot = 0.0;
829 my $stot = 0.0;
830 my $cutot = 0.0;
831 my $cstot = 0.0;
832 my $ttot = 0.0;
833
834 # The 5% fudge is because $n is often a few % low even for routines
835 # with stable times and avoiding extra timeit()s is nice for
836 # accuracy's sake.
837 $n = int( $n * ( 1.05 * $tmax / $tc ) );
838 $zeros=0;
839 while () {
840 my $td = timeit($n, $code);
841 $ntot += $n;
842 $rtot += $td->[0];
843 $utot += $td->[1];
844 $stot += $td->[2];
845 $cutot += $td->[3];
846 $cstot += $td->[4];
847 $ttot = $utot + $stot;
848 last if $ttot >= $tmax;
849 if ( $ttot <= 0 ) {
850 ++$zeros > 16
851 and die "Timing is consistently zero, cannot benchmark. N=$n\n";
852 } else {
853 $zeros = 0;
854 }
855 $ttot = 0.01 if $ttot < 0.01;
856 my $r = $tmax / $ttot - 1; # Linear approximation.
857 $n = int( $r * $ntot );
858 $n = $nmin if $n < $nmin;
859 }
860
861 return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
862}
863
864# --- Functions implementing high-level time-then-print utilities
865
866sub n_to_for {
867 my $n = shift;
868 return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
869}
870
871$_Usage{timethis} = <<'USAGE';
872usage: $result = timethis($time, 'code' ); or
873 $result = timethis($time, sub { code } );
874USAGE
875
876sub timethis{
877 my($n, $code, $title, $style) = @_;
878 my($t, $forn);
879
880 die usage unless defined $code and
881 (!ref $code or ref $code eq 'CODE');
882
883 if ( $n > 0 ) {
884 croak "non-integer loopcount $n, stopped" if int($n)<$n;
885 $t = timeit($n, $code);
886 $title = "timethis $n" unless defined $title;
887 } else {
888 my $fort = n_to_for( $n );
889 $t = countit( $fort, $code );
890 $title = "timethis for $fort" unless defined $title;
891 $forn = $t->[-1];
892 }
893 local $| = 1;
894 $style = "" unless defined $style;
895 printf("%10s: ", $title) unless $style eq 'none';
896 print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
897
898 $n = $forn if defined $forn;
899
900 # A conservative warning to spot very silly tests.
901 # Don't assume that your benchmark is ok simply because
902 # you don't get this warning!
903 print " (warning: too few iterations for a reliable count)\n"
904 if $n < $Min_Count
905 || ($t->real < 1 && $n < 1000)
906 || $t->cpu_a < $Min_CPU;
907 $t;
908}
909
910
911$_Usage{timethese} = <<'USAGE';
912usage: timethese($count, { Name1 => 'code1', ... }); or
913 timethese($count, { Name1 => sub { code1 }, ... });
914USAGE
915
916sub timethese{
917 my($n, $alt, $style) = @_;
918 die usage unless ref $alt eq 'HASH';
919
920 my @names = sort keys %$alt;
921 $style = "" unless defined $style;
922 print "Benchmark: " unless $style eq 'none';
923 if ( $n > 0 ) {
924 croak "non-integer loopcount $n, stopped" if int($n)<$n;
925 print "timing $n iterations of" unless $style eq 'none';
926 } else {
927 print "running" unless $style eq 'none';
928 }
929 print " ", join(', ',@names) unless $style eq 'none';
930 unless ( $n > 0 ) {
931 my $for = n_to_for( $n );
932 print ", each" if $n > 1 && $style ne 'none';
933 print " for at least $for CPU seconds" unless $style eq 'none';
934 }
935 print "...\n" unless $style eq 'none';
936
937 # we could save the results in an array and produce a summary here
938 # sum, min, max, avg etc etc
939 my %results;
940 foreach my $name (@names) {
941 $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
942 }
943
944 return \%results;
945}
946
947
948$_Usage{cmpthese} = <<'USAGE';
949usage: cmpthese($count, { Name1 => 'code1', ... }); or
950 cmpthese($count, { Name1 => sub { code1 }, ... }); or
951 cmpthese($result, $style);
952USAGE
953
954sub cmpthese{
955 my ($results, $style);
956
957 # $count can be a blessed object.
958 if ( ref $_[0] eq 'HASH' ) {
959 ($results, $style) = @_;
960 }
961 else {
962 my($count, $code) = @_[0,1];
963 $style = $_[2] if defined $_[2];
964
965 die usage unless ref $code eq 'HASH';
966
967 $results = timethese($count, $code, ($style || "none"));
968 }
969
970 $style = "" unless defined $style;
971
972 # Flatten in to an array of arrays with the name as the first field
973 my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
974
975 for (@vals) {
976 # The epsilon fudge here is to prevent div by 0. Since clock
977 # resolutions are much larger, it's below the noise floor.
978 my $elapsed = do {
979 if ($style eq 'nop') {$_->[4]+$_->[5]}
980 elsif ($style eq 'noc') {$_->[2]+$_->[3]}
981 else {$_->[2]+$_->[3]+$_->[4]+$_->[5]}
982 };
983 my $rate = $_->[6]/(($elapsed)+0.000000000000001);
984 $_->[7] = $rate;
985 }
986
987 # Sort by rate
988 @vals = sort { $a->[7] <=> $b->[7] } @vals;
989
990 # If more than half of the rates are greater than one...
991 my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
992
993 my @rows;
994 my @col_widths;
995
996 my @top_row = (
997 '',
998 $display_as_rate ? 'Rate' : 's/iter',
999 map { $_->[0] } @vals
1000 );
1001
1002 push @rows, \@top_row;
1003 @col_widths = map { length( $_ ) } @top_row;
1004
1005 # Build the data rows
1006 # We leave the last column in even though it never has any data. Perhaps
1007 # it should go away. Also, perhaps a style for a single column of
1008 # percentages might be nice.
1009 for my $row_val ( @vals ) {
1010 my @row;
1011
1012 # Column 0 = test name
1013 push @row, $row_val->[0];
1014 $col_widths[0] = length( $row_val->[0] )
1015 if length( $row_val->[0] ) > $col_widths[0];
1016
1017 # Column 1 = performance
1018 my $row_rate = $row_val->[7];
1019
1020 # We assume that we'll never get a 0 rate.
1021 my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
1022
1023 # Only give a few decimal places before switching to sci. notation,
1024 # since the results aren't usually that accurate anyway.
1025 my $format =
1026 $rate >= 100 ?
1027 "%0.0f" :
1028 $rate >= 10 ?
1029 "%0.1f" :
1030 $rate >= 1 ?
1031 "%0.2f" :
1032 $rate >= 0.1 ?
1033 "%0.3f" :
1034 "%0.2e";
1035
1036 $format .= "/s"
1037 if $display_as_rate;
1038
1039 my $formatted_rate = sprintf( $format, $rate );
1040 push @row, $formatted_rate;
1041 $col_widths[1] = length( $formatted_rate )
1042 if length( $formatted_rate ) > $col_widths[1];
1043
1044 # Columns 2..N = performance ratios
1045 my $skip_rest = 0;
1046 for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
1047 my $col_val = $vals[$col_num];
1048 my $out;
1049 if ( $skip_rest ) {
1050 $out = '';
1051 }
1052 elsif ( $col_val->[0] eq $row_val->[0] ) {
1053 $out = "--";
1054 # $skip_rest = 1;
1055 }
1056 else {
1057 my $col_rate = $col_val->[7];
1058 $out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
1059 }
1060 push @row, $out;
1061 $col_widths[$col_num+2] = length( $out )
1062 if length( $out ) > $col_widths[$col_num+2];
1063
1064 # A little weirdness to set the first column width properly
1065 $col_widths[$col_num+2] = length( $col_val->[0] )
1066 if length( $col_val->[0] ) > $col_widths[$col_num+2];
1067 }
1068 push @rows, \@row;
1069 }
1070
1071 return \@rows if $style eq "none";
1072
1073 # Equalize column widths in the chart as much as possible without
1074 # exceeding 80 characters. This does not use or affect cols 0 or 1.
1075 my @sorted_width_refs =
1076 sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
1077 my $max_width = ${$sorted_width_refs[-1]};
1078
1079 my $total = @col_widths - 1 ;
1080 for ( @col_widths ) { $total += $_ }
1081
1082 STRETCHER:
1083 while ( $total < 80 ) {
1084 my $min_width = ${$sorted_width_refs[0]};
1085 last
1086 if $min_width == $max_width;
1087 for ( @sorted_width_refs ) {
1088 last
1089 if $$_ > $min_width;
1090 ++$$_;
1091 ++$total;
1092 last STRETCHER
1093 if $total >= 80;
1094 }
1095 }
1096
1097 # Dump the output
1098 my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1099 substr( $format, 1, 0 ) = '-';
1100 for ( @rows ) {
1101 printf $format, @$_;
1102 }
1103
1104 return \@rows ;
1105}
1106
1107
11081;