This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Replace references to PL_vtbl_{bm,fm} in the code with PL_vtbl_regexp.
[perl5.git] / regcomp.c
... / ...
CommitLineData
1/* regcomp.c
2 */
3
4/*
5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
6 *
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
8 */
9
10/* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
13 *
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
18 */
19
20/* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
22 */
23
24/* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
27 */
28
29/* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
32*/
33
34#ifdef PERL_EXT_RE_BUILD
35#include "re_top.h"
36#endif
37
38/*
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
40 *
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
43 *
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
47 *
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
50 * from defects in it.
51 *
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
54 *
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
57 *
58 *
59 **** Alterations to Henry's code are...
60 ****
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
64 ****
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
67
68 *
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
72 */
73#include "EXTERN.h"
74#define PERL_IN_REGCOMP_C
75#include "perl.h"
76
77#ifndef PERL_IN_XSUB_RE
78# include "INTERN.h"
79#endif
80
81#define REG_COMP_C
82#ifdef PERL_IN_XSUB_RE
83# include "re_comp.h"
84#else
85# include "regcomp.h"
86#endif
87
88#include "dquote_static.c"
89
90#ifdef op
91#undef op
92#endif /* op */
93
94#ifdef MSDOS
95# if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97# pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99# pragma optimize("w",on )
100# endif /* BUGGY_MSC6 */
101#endif /* MSDOS */
102
103#ifndef STATIC
104#define STATIC static
105#endif
106
107typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; &regdummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
122 U32 seen;
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
127 I32 extralen;
128 I32 seen_zerolen;
129 I32 seen_evals;
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
139 utf8 */
140 HV *paren_names; /* Paren names */
141
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
144 I32 in_lookbehind;
145 I32 contains_locale;
146 I32 override_recoding;
147#if ADD_TO_REGEXEC
148 char *starttry; /* -Dr: where regtry was called. */
149#define RExC_starttry (pRExC_state->starttry)
150#endif
151#ifdef DEBUGGING
152 const char *lastparse;
153 I32 lastnum;
154 AV *paren_name_list; /* idx -> name */
155#define RExC_lastparse (pRExC_state->lastparse)
156#define RExC_lastnum (pRExC_state->lastnum)
157#define RExC_paren_name_list (pRExC_state->paren_name_list)
158#endif
159} RExC_state_t;
160
161#define RExC_flags (pRExC_state->flags)
162#define RExC_precomp (pRExC_state->precomp)
163#define RExC_rx_sv (pRExC_state->rx_sv)
164#define RExC_rx (pRExC_state->rx)
165#define RExC_rxi (pRExC_state->rxi)
166#define RExC_start (pRExC_state->start)
167#define RExC_end (pRExC_state->end)
168#define RExC_parse (pRExC_state->parse)
169#define RExC_whilem_seen (pRExC_state->whilem_seen)
170#ifdef RE_TRACK_PATTERN_OFFSETS
171#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
172#endif
173#define RExC_emit (pRExC_state->emit)
174#define RExC_emit_start (pRExC_state->emit_start)
175#define RExC_emit_bound (pRExC_state->emit_bound)
176#define RExC_naughty (pRExC_state->naughty)
177#define RExC_sawback (pRExC_state->sawback)
178#define RExC_seen (pRExC_state->seen)
179#define RExC_size (pRExC_state->size)
180#define RExC_npar (pRExC_state->npar)
181#define RExC_nestroot (pRExC_state->nestroot)
182#define RExC_extralen (pRExC_state->extralen)
183#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184#define RExC_seen_evals (pRExC_state->seen_evals)
185#define RExC_utf8 (pRExC_state->utf8)
186#define RExC_uni_semantics (pRExC_state->uni_semantics)
187#define RExC_orig_utf8 (pRExC_state->orig_utf8)
188#define RExC_open_parens (pRExC_state->open_parens)
189#define RExC_close_parens (pRExC_state->close_parens)
190#define RExC_opend (pRExC_state->opend)
191#define RExC_paren_names (pRExC_state->paren_names)
192#define RExC_recurse (pRExC_state->recurse)
193#define RExC_recurse_count (pRExC_state->recurse_count)
194#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195#define RExC_contains_locale (pRExC_state->contains_locale)
196#define RExC_override_recoding (pRExC_state->override_recoding)
197
198
199#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
202
203#ifdef SPSTART
204#undef SPSTART /* dratted cpp namespace... */
205#endif
206/*
207 * Flags to be passed up and down.
208 */
209#define WORST 0 /* Worst case. */
210#define HASWIDTH 0x01 /* Known to match non-null strings. */
211
212/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
214#define SIMPLE 0x02
215#define SPSTART 0x04 /* Starts with * or +. */
216#define TRYAGAIN 0x08 /* Weeded out a declaration. */
217#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
218
219#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
220
221/* whether trie related optimizations are enabled */
222#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223#define TRIE_STUDY_OPT
224#define FULL_TRIE_STUDY
225#define TRIE_STCLASS
226#endif
227
228
229
230#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231#define PBITVAL(paren) (1 << ((paren) & 7))
232#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
235
236/* If not already in utf8, do a longjmp back to the beginning */
237#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238#define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
240 } STMT_END
241
242/* About scan_data_t.
243
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
250 in the pattern:
251
252 /FOO[xX]A.*B[xX]BAR/
253
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
257
258 The strings can be composites, for instance
259
260 /(f)(o)(o)/
261
262 will result in a composite fixed substring 'foo'.
263
264 For each string some basic information is maintained:
265
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
272 found.
273
274 - max_offset
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
278
279 - minlenp
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
283 involved. Consider
284
285 /(?=FOO).*F/
286
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
297
298 - lookbehind
299
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
310 associated string.
311
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
314
315*/
316
317typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
320 I32 pos_min;
321 I32 pos_delta;
322 SV *last_found;
323 I32 last_end; /* min value, <0 unless valid. */
324 I32 last_start_min;
325 I32 last_start_max;
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
336 I32 flags;
337 I32 whilem_c;
338 I32 *last_closep;
339 struct regnode_charclass_class *start_class;
340} scan_data_t;
341
342/*
343 * Forward declarations for pregcomp()'s friends.
344 */
345
346static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
348
349#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350#define SF_BEFORE_SEOL 0x0001
351#define SF_BEFORE_MEOL 0x0002
352#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
354
355#ifdef NO_UNARY_PLUS
356# define SF_FIX_SHIFT_EOL (0+2)
357# define SF_FL_SHIFT_EOL (0+4)
358#else
359# define SF_FIX_SHIFT_EOL (+2)
360# define SF_FL_SHIFT_EOL (+4)
361#endif
362
363#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
365
366#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368#define SF_IS_INF 0x0040
369#define SF_HAS_PAR 0x0080
370#define SF_IN_PAR 0x0100
371#define SF_HAS_EVAL 0x0200
372#define SCF_DO_SUBSTR 0x0400
373#define SCF_DO_STCLASS_AND 0x0800
374#define SCF_DO_STCLASS_OR 0x1000
375#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376#define SCF_WHILEM_VISITED_POS 0x2000
377
378#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379#define SCF_SEEN_ACCEPT 0x8000
380
381#define UTF cBOOL(RExC_utf8)
382#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
389
390#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
391
392#define OOB_UNICODE 12345678
393#define OOB_NAMEDCLASS -1
394
395#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
397
398
399/* length of regex to show in messages that don't mark a position within */
400#define RegexLengthToShowInErrorMessages 127
401
402/*
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
406 */
407#define MARKER1 "<-- HERE" /* marker as it appears in the description */
408#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
409
410#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
411
412/*
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
415 * "...".
416 */
417#define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
420 \
421 if (!SIZE_ONLY) \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
426 ellipses = "..."; \
427 } \
428 code; \
429} STMT_END
430
431#define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
434
435#define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
438
439/*
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
441 */
442#define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
446} STMT_END
447
448/*
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
450 */
451#define vFAIL(m) STMT_START { \
452 if (!SIZE_ONLY) \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
454 Simple_vFAIL(m); \
455} STMT_END
456
457/*
458 * Like Simple_vFAIL(), but accepts two arguments.
459 */
460#define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
464} STMT_END
465
466/*
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
468 */
469#define vFAIL2(m,a1) STMT_START { \
470 if (!SIZE_ONLY) \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
473} STMT_END
474
475
476/*
477 * Like Simple_vFAIL(), but accepts three arguments.
478 */
479#define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
483} STMT_END
484
485/*
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
487 */
488#define vFAIL3(m,a1,a2) STMT_START { \
489 if (!SIZE_ONLY) \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
492} STMT_END
493
494/*
495 * Like Simple_vFAIL(), but accepts four arguments.
496 */
497#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
501} STMT_END
502
503#define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
507} STMT_END
508
509#define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
512 m REPORT_LOCATION, \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
514} STMT_END
515
516#define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
519 m REPORT_LOCATION, \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
521} STMT_END
522
523#define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
527} STMT_END
528
529#define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
533} STMT_END
534
535#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
539} STMT_END
540
541#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
545} STMT_END
546
547#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
551} STMT_END
552
553#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
557} STMT_END
558
559
560/* Allow for side effects in s */
561#define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
563} STMT_END
564
565/* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
570 */
571#ifndef RE_TRACK_PATTERN_OFFSETS
572#define Set_Node_Offset_To_R(node,byte)
573#define Set_Node_Offset(node,byte)
574#define Set_Cur_Node_Offset
575#define Set_Node_Length_To_R(node,len)
576#define Set_Node_Length(node,len)
577#define Set_Node_Cur_Length(node)
578#define Node_Offset(n)
579#define Node_Length(n)
580#define Set_Node_Offset_Length(node,offset,len)
581#define ProgLen(ri) ri->u.proglen
582#define SetProgLen(ri,x) ri->u.proglen = x
583#else
584#define ProgLen(ri) ri->u.offsets[0]
585#define SetProgLen(ri,x) ri->u.offsets[0] = x
586#define Set_Node_Offset_To_R(node,byte) STMT_START { \
587 if (! SIZE_ONLY) { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
590 if((node) < 0) { \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
592 } else { \
593 RExC_offsets[2*(node)-1] = (byte); \
594 } \
595 } \
596} STMT_END
597
598#define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
601
602#define Set_Node_Length_To_R(node,len) STMT_START { \
603 if (! SIZE_ONLY) { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
606 if((node) < 0) { \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
608 } else { \
609 RExC_offsets[2*(node)] = (len); \
610 } \
611 } \
612} STMT_END
613
614#define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617#define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
619
620/* Get offsets and lengths */
621#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
623
624#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
627} STMT_END
628#endif
629
630#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631#define EXPERIMENTAL_INPLACESCAN
632#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
633
634#define DEBUG_STUDYDATA(str,data,depth) \
635DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
646 ); \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
664 ); \
665 PerlIO_printf(Perl_debug_log,"\n"); \
666});
667
668static void clear_re(pTHX_ void *r);
669
670/* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
673
674STATIC void
675S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
676{
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
680
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
682
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
688 data->flags
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
690 else
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
694 }
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
703 data->flags
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
705 else
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
709 }
710 }
711 SvCUR_set(data->last_found, 0);
712 {
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
716 if (mg)
717 mg->mg_len = 0;
718 }
719 }
720 data->last_end = -1;
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
723}
724
725/* Can match anything (initialization) */
726STATIC void
727S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
728{
729 PERL_ARGS_ASSERT_CL_ANYTHING;
730
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
734
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
741 * necessary. */
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
745 }
746 else {
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
748 }
749}
750
751/* Can match anything (initialization) */
752STATIC int
753S_cl_is_anything(const struct regnode_charclass_class *cl)
754{
755 int value;
756
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
758
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
761 return 1;
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
763 return 0;
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
765 return 0;
766 return 1;
767}
768
769/* Can match anything (initialization) */
770STATIC void
771S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
772{
773 PERL_ARGS_ASSERT_CL_INIT;
774
775 Zero(cl, 1, struct regnode_charclass_class);
776 cl->type = ANYOF;
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
779}
780
781/* These two functions currently do the exact same thing */
782#define cl_init_zero S_cl_init
783
784/* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
787STATIC void
788S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
790{
791 PERL_ARGS_ASSERT_CL_AND;
792
793 assert(and_with->type == ANYOF);
794
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
801 int i;
802
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
806 else
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
810
811 if (and_with->flags & ANYOF_INVERT) {
812
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
819
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
825
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
830 }
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
833 }
834 }
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
837
838 if (! ANYOF_NONBITMAP(and_with)) {
839
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
849 }
850 }
851 else if (! ANYOF_NONBITMAP(cl)) {
852
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
860 */
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
863
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
868 }
869 }
870 else {
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
874 }
875
876
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
899 * the others */
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
904 }
905}
906
907/* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
910STATIC void
911S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
912{
913 PERL_ARGS_ASSERT_CL_OR;
914
915 if (or_with->flags & ANYOF_INVERT) {
916
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
922 }
923 /* We do not use
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
931 */
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
935 int i;
936
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
940 else {
941 cl_anything(pRExC_state, cl);
942 }
943
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
947
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
955 ignore this flag
956 */
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
962 int i;
963
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
971 }
972 }
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
975 }
976
977 if (ANYOF_NONBITMAP(or_with)) {
978
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
988 }
989 else if (ARG(cl) != ARG(or_with)) {
990
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
993 }
994 else {
995 cl->flags |= ANYOF_UNICODE_ALL;
996 }
997 }
998 }
999
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1002 }
1003}
1004
1005#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1009
1010
1011#ifdef DEBUGGING
1012/*
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1016
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1021
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1024
1025*/
1026
1027/*
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1030*/
1031
1032STATIC void
1033S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1035{
1036 U32 state;
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1039 U16 word;
1040 GET_RE_DEBUG_FLAGS_DECL;
1041
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1043
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1047
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1050 if ( tmp ) {
1051 PerlIO_printf( Perl_debug_log, "%*s",
1052 colwidth,
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1057 )
1058 );
1059 }
1060 }
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1063
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1067
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1070
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1072
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1075 } else {
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1077 }
1078
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1080
1081 if ( base ) {
1082 U32 ofs = 0;
1083
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1087 ofs++;
1088
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1090
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1095 {
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1097 colwidth,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1099 } else {
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1101 }
1102 }
1103
1104 PerlIO_printf( Perl_debug_log, "]");
1105
1106 }
1107 PerlIO_printf( Perl_debug_log, "\n" );
1108 }
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1114 }
1115 PerlIO_printf(Perl_debug_log, "\n" );
1116}
1117/*
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1122*/
1123STATIC void
1124S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1126 U32 depth)
1127{
1128 U32 state;
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1132
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1134
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1139
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1141 U16 charid;
1142
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1147 } else {
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1150 );
1151 }
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1154 if ( tmp ) {
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1156 colwidth,
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1161 ) ,
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1164 );
1165 if (!(charid % 10))
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1168 }
1169 }
1170 PerlIO_printf( Perl_debug_log, "\n");
1171 }
1172}
1173
1174/*
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1179*/
1180STATIC void
1181S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1183 U32 depth)
1184{
1185 U32 state;
1186 U16 charid;
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1190
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1192
1193 /*
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1196 */
1197
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1199
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1202 if ( tmp ) {
1203 PerlIO_printf( Perl_debug_log, "%*s",
1204 colwidth,
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1209 )
1210 );
1211 }
1212 }
1213
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1215
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1218 }
1219
1220 PerlIO_printf( Perl_debug_log, "\n" );
1221
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1223
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1227
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1230 if (v)
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1232 else
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1234 }
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1237 } else {
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1240 }
1241 }
1242}
1243
1244#endif
1245
1246
1247/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1257
1258Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1259
1260A trie is an N'ary tree where the branches are determined by digital
1261decomposition of the key. IE, at the root node you look up the 1st character and
1262follow that branch repeat until you find the end of the branches. Nodes can be
1263marked as "accepting" meaning they represent a complete word. Eg:
1264
1265 /he|she|his|hers/
1266
1267would convert into the following structure. Numbers represent states, letters
1268following numbers represent valid transitions on the letter from that state, if
1269the number is in square brackets it represents an accepting state, otherwise it
1270will be in parenthesis.
1271
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1273 | |
1274 | (2)
1275 | |
1276 (1) +-i->(6)-+-s->[7]
1277 |
1278 +-s->(3)-+-h->(4)-+-e->[5]
1279
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1281
1282This shows that when matching against the string 'hers' we will begin at state 1
1283read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286single traverse. We store a mapping from accepting to state to which word was
1287matched, and then when we have multiple possibilities we try to complete the
1288rest of the regex in the order in which they occured in the alternation.
1289
1290The only prior NFA like behaviour that would be changed by the TRIE support is
1291the silent ignoring of duplicate alternations which are of the form:
1292
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1294
1295Thus EVAL blocks following a trie may be called a different number of times with
1296and without the optimisation. With the optimisations dupes will be silently
1297ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298the following demonstrates:
1299
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1301
1302which prints out 'word' three times, but
1303
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1305
1306which doesnt print it out at all. This is due to other optimisations kicking in.
1307
1308Example of what happens on a structural level:
1309
1310The regexp /(ac|ad|ab)+/ will produce the following debug output:
1311
1312 1: CURLYM[1] {1,32767}(18)
1313 5: BRANCH(8)
1314 6: EXACT <ac>(16)
1315 8: BRANCH(11)
1316 9: EXACT <ad>(16)
1317 11: BRANCH(14)
1318 12: EXACT <ab>(16)
1319 16: SUCCEED(0)
1320 17: NOTHING(18)
1321 18: END(0)
1322
1323This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324and should turn into:
1325
1326 1: CURLYM[1] {1,32767}(18)
1327 5: TRIE(16)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1329 <ac>
1330 <ad>
1331 <ab>
1332 16: SUCCEED(0)
1333 17: NOTHING(18)
1334 18: END(0)
1335
1336Cases where tail != last would be like /(?foo|bar)baz/:
1337
1338 1: BRANCH(4)
1339 2: EXACT <foo>(8)
1340 4: BRANCH(7)
1341 5: EXACT <bar>(8)
1342 7: TAIL(8)
1343 8: EXACT <baz>(10)
1344 10: END(0)
1345
1346which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347and would end up looking like:
1348
1349 1: TRIE(8)
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1351 <foo>
1352 <bar>
1353 7: TAIL(8)
1354 8: EXACT <baz>(10)
1355 10: END(0)
1356
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1358
1359is the recommended Unicode-aware way of saying
1360
1361 *(d++) = uv;
1362*/
1363
1364#define TRIE_STORE_REVCHAR \
1365 STMT_START { \
1366 if (UTF) { \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1371 SvPOK_on(zlopp); \
1372 SvUTF8_on(zlopp); \
1373 av_push(revcharmap, zlopp); \
1374 } else { \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1377 } \
1378 } STMT_END
1379
1380#define TRIE_READ_CHAR STMT_START { \
1381 wordlen++; \
1382 if ( UTF ) { \
1383 if ( folder ) { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1386 foldlen -= len; \
1387 scan += len; \
1388 len = 0; \
1389 } else { \
1390 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1391 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1394 } \
1395 } else { \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1397 } \
1398 } else { \
1399 uvc = (U32)*uc; \
1400 len = 1; \
1401 } \
1402} STMT_END
1403
1404
1405
1406#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1410 } \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1414} STMT_END
1415
1416#define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1421} STMT_END
1422
1423#define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1426 \
1427 DEBUG_r({ \
1428 /* store the word for dumping */ \
1429 SV* tmp; \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1432 else \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1435 }); \
1436 \
1437 curword++; \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1441 \
1442 if ( noper_next < tail ) { \
1443 if (!trie->jump) \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1446 if (!jumper) \
1447 jumper = noper_next; \
1448 if (!nextbranch) \
1449 nextbranch= regnext(cur); \
1450 } \
1451 \
1452 if ( dupe ) { \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1458 } else { \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1461 } \
1462} STMT_END
1463
1464
1465#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1472 )
1473
1474#define MADE_TRIE 1
1475#define MADE_JUMP_TRIE 2
1476#define MADE_EXACT_TRIE 4
1477
1478STATIC I32
1479S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1480{
1481 dVAR;
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1486 regnode *cur;
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1488 STRLEN len = 0;
1489 UV uvc = 0;
1490 U16 curword = 0;
1491 U32 next_alloc = 0;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1498
1499#ifdef DEBUGGING
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1504 */
1505#else
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1508#endif
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1511
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1513#ifndef DEBUGGING
1514 PERL_UNUSED_ARG(depth);
1515#endif
1516
1517 switch (flags) {
1518 case EXACTFA:
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1522 }
1523
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1525 trie->refcount = 1;
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1534
1535 DEBUG_r({
1536 trie_words = newAV();
1537 });
1538
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1542 }
1543 DEBUG_OPTIMISE_r({
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1549 (int)depth);
1550 });
1551
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1555 convert = first;
1556 } else {
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1559 }
1560
1561 /* -- First loop and Setup --
1562
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1566 have unique chars.
1567
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1571 coded index.
1572
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1581
1582 */
1583
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1588 STRLEN foldlen = 0;
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1592 STRLEN chars = 0;
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1594
1595 if (OP(noper) == NOTHING) {
1596 trie->minlen= 0;
1597 continue;
1598 }
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1602
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1605 TRIE_READ_CHAR;
1606 chars++;
1607 if ( uvc < 256 ) {
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1610 if ( folder )
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1612 TRIE_STORE_REVCHAR;
1613 }
1614 if ( set_bit ) {
1615 /* store the codepoint in the bitmap, and its folded
1616 * equivalent. */
1617 TRIE_BITMAP_SET(trie,uvc);
1618
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1621
1622 if ( !UTF ) {
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1627 }
1628 }
1629 set_bit = 0; /* We've done our bit :-) */
1630 }
1631 } else {
1632 SV** svpp;
1633 if ( !widecharmap )
1634 widecharmap = newHV();
1635
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1637
1638 if ( !svpp )
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1640
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1643 TRIE_STORE_REVCHAR;
1644 }
1645 }
1646 }
1647 if( cur == first ) {
1648 trie->minlen=chars;
1649 trie->maxlen=chars;
1650 } else if (chars < trie->minlen) {
1651 trie->minlen=chars;
1652 } else if (chars > trie->maxlen) {
1653 trie->maxlen=chars;
1654 }
1655
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1663 );
1664
1665 /*
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1671 of lists.
1672
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1679
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1683
1684 */
1685
1686
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1688 prev_states[1] = 0;
1689
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1691 /*
1692 Second Pass -- Array Of Lists Representation
1693
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1697
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1701 */
1702
1703 STRLEN transcount = 1;
1704
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1708
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1712 TRIE_LIST_NEW(1);
1713 next_alloc = 2;
1714
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1716
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1726
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1729
1730 TRIE_READ_CHAR;
1731
1732 if ( uvc < 256 ) {
1733 charid = trie->charmap[ uvc ];
1734 } else {
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1736 if ( !svpp ) {
1737 charid = 0;
1738 } else {
1739 charid=(U16)SvIV( *svpp );
1740 }
1741 }
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1743 if ( charid ) {
1744
1745 U16 check;
1746 U32 newstate = 0;
1747
1748 charid--;
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1751 }
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1755 break;
1756 }
1757 }
1758 if ( ! newstate ) {
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1762 transcount++;
1763 }
1764 state = newstate;
1765 } else {
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1767 }
1768 }
1769 }
1770 TRIE_HANDLE_WORD(state);
1771
1772 } /* end second pass */
1773
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1778 next_alloc
1779 * sizeof(reg_trie_state) );
1780
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1784 depth+1)
1785 );
1786
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1789 {
1790 U32 state;
1791 U32 tp = 0;
1792 U32 zp = 0;
1793
1794
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1796 U32 base=0;
1797
1798 /*
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1801 );
1802 */
1803
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1806 U16 maxid=minid;
1807 U16 idx;
1808
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1812 minid=forid;
1813 } else if ( forid > maxid ) {
1814 maxid=forid;
1815 }
1816 }
1817 if ( transcount < tp + maxid - minid + 1) {
1818 transcount *= 2;
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1821 transcount
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1824 }
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1827 U32 set = 0;
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1833 set = 1;
1834 break;
1835 }
1836 }
1837 if ( !set ) {
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1840 tp++;
1841 zp = tp;
1842 }
1843 } else {
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1848 }
1849 tp += ( maxid - minid + 1 );
1850 }
1851 Safefree(trie->states[ state ].trans.list);
1852 }
1853 /*
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1856 );
1857 */
1858 trie->states[ state ].trans.base=base;
1859 }
1860 trie->lasttrans = tp + 1;
1861 }
1862 } else {
1863 /*
1864 Second Pass -- Flat Table Representation.
1865
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1870
1871 We then construct the trie using only the .next slots of the entry
1872 structs.
1873
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1877
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1879 transition.
1880
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1886
1887 A B A B
1888 1. 2 4 1. 3 7
1889 2. 0 3 3. 0 5
1890 3. 0 0 5. 0 0
1891 4. 0 0 7. 0 0
1892
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1896
1897 */
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1901
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1910
1911
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1913
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1917
1918 U32 state = 1; /* required init */
1919
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1923
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1927
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1930
1931 TRIE_READ_CHAR;
1932
1933 if ( uvc < 256 ) {
1934 charid = trie->charmap[ uvc ];
1935 } else {
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1938 }
1939 if ( charid ) {
1940 charid--;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1947 }
1948 state = trie->trans[ state + charid ].next;
1949 } else {
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1951 }
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1953 }
1954 }
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1957
1958 } /* end second pass */
1959
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1962 revcharmap,
1963 next_alloc, depth+1));
1964
1965 {
1966 /*
1967 * Inplace compress the table.*
1968
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1972
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1975
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1978
1979 - If .base is 0 there are no valid transitions from that node.
1980
1981 - If .base is nonzero then charid is added to it to find an entry in
1982 the trans array.
1983
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1989 valid.
1990
1991 XXX - wrong maybe?
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1997 than 0.
1998
1999 - We set 'pos' to indicate the first entry of the second node.
2000
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2007 compression.
2008
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2011
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2018
2019 - Once compressed we can Renew/realloc the structures to release the
2020 excess space.
2021
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2024
2025 demq
2026 */
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2028 U32 state, charid;
2029 U32 pos = 0, zp=0;
2030 trie->statecount = laststate;
2031
2032 for ( state = 1 ; state < laststate ; state++ ) {
2033 U8 flag = 0;
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2038
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2042 if (o_used == 1) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2045 break;
2046 }
2047 }
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2052 break;
2053 }
2054 used--;
2055 }
2056 if ( !flag ) {
2057 flag = 1;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2059 }
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2062 pos++;
2063 }
2064 }
2065 }
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2075 (IV)next_alloc,
2076 (IV)pos,
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2078 );
2079
2080 } /* end table compress */
2081 }
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2087 );
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2092
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2095 char *str=NULL;
2096
2097#ifdef DEBUGGING
2098 regnode *optimize = NULL;
2099#ifdef RE_TRACK_PATTERN_OFFSETS
2100
2101 U32 mjd_offset = 0;
2102 U32 mjd_nodelen = 0;
2103#endif /* RE_TRACK_PATTERN_OFFSETS */
2104#endif /* DEBUGGING */
2105 /*
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2112 */
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117#ifdef RE_TRACK_PATTERN_OFFSETS
2118 DEBUG_r({
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2121 });
2122#endif
2123 /* whole branch chain */
2124 }
2125#ifdef RE_TRACK_PATTERN_OFFSETS
2126 else {
2127 DEBUG_r({
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2131 });
2132 }
2133 DEBUG_OPTIMISE_r(
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2137 );
2138#endif
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2143 U32 state;
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2145 U32 ofs = 0;
2146 I32 idx = -1;
2147 U32 count = 0;
2148 const U32 base = trie->states[ state ].trans.base;
2149
2150 if ( trie->states[state].wordnum )
2151 count = 1;
2152
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2157 {
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2162 if ( count == 2 ) {
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2164 DEBUG_OPTIMISE_r(
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2168 (UV)state));
2169 if (idx >= 0) {
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2172
2173 TRIE_BITMAP_SET(trie,*ch);
2174 if ( folder )
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2176 DEBUG_OPTIMISE_r(
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2178 );
2179 }
2180 }
2181 TRIE_BITMAP_SET(trie,*ch);
2182 if ( folder )
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2185 }
2186 idx = ofs;
2187 }
2188 }
2189 if ( count == 1 ) {
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2191 STRLEN len;
2192 char *ch = SvPV( *tmp, len );
2193 DEBUG_OPTIMISE_r({
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2198 (UV)state, (UV)idx,
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2203 )
2204 );
2205 });
2206 if ( state==1 ) {
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2209 STR_LEN(convert)=0;
2210 }
2211 STR_LEN(convert) += len;
2212 while (len--)
2213 *str++ = *ch++;
2214 } else {
2215#ifdef DEBUGGING
2216 if (state>1)
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2218#endif
2219 break;
2220 }
2221 }
2222 trie->prefixlen = (state-1);
2223 if (str) {
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2229#ifdef DEBUGGING
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2232 * it right here. */
2233 if (
2234#ifdef PERL_EXT_RE_BUILD
2235 1
2236#else
2237 DEBUG_r_TEST
2238#endif
2239 ) {
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2242 mjd_nodelen++;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2246 }
2247 while (word--) {
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2249 if (tmp) {
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2252 else
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2254 }
2255 }
2256 }
2257#endif
2258 if (trie->maxlen) {
2259 convert = n;
2260 } else {
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2263 }
2264 }
2265 }
2266 if (!jumper)
2267 jumper = last;
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2274 if (trie->jump)
2275 trie->jump[0] = (U16)(nextbranch - convert);
2276
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2282 */
2283 if ( !trie->states[trie->startstate].wordnum
2284 && trie->bitmap
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2286 {
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2290 trie->bitmap= NULL;
2291 } else
2292 OP( convert ) = TRIE;
2293
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2296 DEBUG_r({
2297 optimize = convert
2298 + NODE_STEP_REGNODE
2299 + regarglen[ OP( convert ) ];
2300 });
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2303 }
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2307
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2310 }
2311 /*
2312 Try to clean up some of the debris left after the
2313 optimisation.
2314 */
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2319 optimize++;
2320 }
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2322 });
2323 } /* end node insert */
2324
2325 /* Finish populating the prev field of the wordinfo array. Walk back
2326 * from each accept state until we find another accept state, and if
2327 * so, point the first word's .prev field at the second word. If the
2328 * second already has a .prev field set, stop now. This will be the
2329 * case either if we've already processed that word's accept state,
2330 * or that state had multiple words, and the overspill words were
2331 * already linked up earlier.
2332 */
2333 {
2334 U16 word;
2335 U32 state;
2336 U16 prev;
2337
2338 for (word=1; word <= trie->wordcount; word++) {
2339 prev = 0;
2340 if (trie->wordinfo[word].prev)
2341 continue;
2342 state = trie->wordinfo[word].accept;
2343 while (state) {
2344 state = prev_states[state];
2345 if (!state)
2346 break;
2347 prev = trie->states[state].wordnum;
2348 if (prev)
2349 break;
2350 }
2351 trie->wordinfo[word].prev = prev;
2352 }
2353 Safefree(prev_states);
2354 }
2355
2356
2357 /* and now dump out the compressed format */
2358 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2359
2360 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2361#ifdef DEBUGGING
2362 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2363 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2364#else
2365 SvREFCNT_dec(revcharmap);
2366#endif
2367 return trie->jump
2368 ? MADE_JUMP_TRIE
2369 : trie->startstate>1
2370 ? MADE_EXACT_TRIE
2371 : MADE_TRIE;
2372}
2373
2374STATIC void
2375S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2376{
2377/* The Trie is constructed and compressed now so we can build a fail array if it's needed
2378
2379 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2380 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2381 ISBN 0-201-10088-6
2382
2383 We find the fail state for each state in the trie, this state is the longest proper
2384 suffix of the current state's 'word' that is also a proper prefix of another word in our
2385 trie. State 1 represents the word '' and is thus the default fail state. This allows
2386 the DFA not to have to restart after its tried and failed a word at a given point, it
2387 simply continues as though it had been matching the other word in the first place.
2388 Consider
2389 'abcdgu'=~/abcdefg|cdgu/
2390 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2391 fail, which would bring us to the state representing 'd' in the second word where we would
2392 try 'g' and succeed, proceeding to match 'cdgu'.
2393 */
2394 /* add a fail transition */
2395 const U32 trie_offset = ARG(source);
2396 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2397 U32 *q;
2398 const U32 ucharcount = trie->uniquecharcount;
2399 const U32 numstates = trie->statecount;
2400 const U32 ubound = trie->lasttrans + ucharcount;
2401 U32 q_read = 0;
2402 U32 q_write = 0;
2403 U32 charid;
2404 U32 base = trie->states[ 1 ].trans.base;
2405 U32 *fail;
2406 reg_ac_data *aho;
2407 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2408 GET_RE_DEBUG_FLAGS_DECL;
2409
2410 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2411#ifndef DEBUGGING
2412 PERL_UNUSED_ARG(depth);
2413#endif
2414
2415
2416 ARG_SET( stclass, data_slot );
2417 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2418 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2419 aho->trie=trie_offset;
2420 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2421 Copy( trie->states, aho->states, numstates, reg_trie_state );
2422 Newxz( q, numstates, U32);
2423 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2424 aho->refcount = 1;
2425 fail = aho->fail;
2426 /* initialize fail[0..1] to be 1 so that we always have
2427 a valid final fail state */
2428 fail[ 0 ] = fail[ 1 ] = 1;
2429
2430 for ( charid = 0; charid < ucharcount ; charid++ ) {
2431 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2432 if ( newstate ) {
2433 q[ q_write ] = newstate;
2434 /* set to point at the root */
2435 fail[ q[ q_write++ ] ]=1;
2436 }
2437 }
2438 while ( q_read < q_write) {
2439 const U32 cur = q[ q_read++ % numstates ];
2440 base = trie->states[ cur ].trans.base;
2441
2442 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2443 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2444 if (ch_state) {
2445 U32 fail_state = cur;
2446 U32 fail_base;
2447 do {
2448 fail_state = fail[ fail_state ];
2449 fail_base = aho->states[ fail_state ].trans.base;
2450 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2451
2452 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2453 fail[ ch_state ] = fail_state;
2454 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2455 {
2456 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2457 }
2458 q[ q_write++ % numstates] = ch_state;
2459 }
2460 }
2461 }
2462 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2463 when we fail in state 1, this allows us to use the
2464 charclass scan to find a valid start char. This is based on the principle
2465 that theres a good chance the string being searched contains lots of stuff
2466 that cant be a start char.
2467 */
2468 fail[ 0 ] = fail[ 1 ] = 0;
2469 DEBUG_TRIE_COMPILE_r({
2470 PerlIO_printf(Perl_debug_log,
2471 "%*sStclass Failtable (%"UVuf" states): 0",
2472 (int)(depth * 2), "", (UV)numstates
2473 );
2474 for( q_read=1; q_read<numstates; q_read++ ) {
2475 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2476 }
2477 PerlIO_printf(Perl_debug_log, "\n");
2478 });
2479 Safefree(q);
2480 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2481}
2482
2483
2484/*
2485 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2486 * These need to be revisited when a newer toolchain becomes available.
2487 */
2488#if defined(__sparc64__) && defined(__GNUC__)
2489# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2490# undef SPARC64_GCC_WORKAROUND
2491# define SPARC64_GCC_WORKAROUND 1
2492# endif
2493#endif
2494
2495#define DEBUG_PEEP(str,scan,depth) \
2496 DEBUG_OPTIMISE_r({if (scan){ \
2497 SV * const mysv=sv_newmortal(); \
2498 regnode *Next = regnext(scan); \
2499 regprop(RExC_rx, mysv, scan); \
2500 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2501 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2502 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2503 }});
2504
2505
2506
2507
2508
2509#define JOIN_EXACT(scan,min,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2512
2513STATIC U32
2514S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2517 U32 stringok = 1;
2518 regnode *next = scan + NODE_SZ_STR(scan);
2519 U32 merged = 0;
2520 U32 stopnow = 0;
2521#ifdef DEBUGGING
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2524#else
2525 PERL_UNUSED_ARG(depth);
2526#endif
2527
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529#ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2532#endif
2533 DEBUG_PEEP("join",scan,depth);
2534
2535 /* Skip NOTHING, merge EXACT*. */
2536 while (n &&
2537 ( PL_regkind[OP(n)] == NOTHING ||
2538 (stringok && (OP(n) == OP(scan))))
2539 && NEXT_OFF(n)
2540 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2541
2542 if (OP(n) == TAIL || n > next)
2543 stringok = 0;
2544 if (PL_regkind[OP(n)] == NOTHING) {
2545 DEBUG_PEEP("skip:",n,depth);
2546 NEXT_OFF(scan) += NEXT_OFF(n);
2547 next = n + NODE_STEP_REGNODE;
2548#ifdef DEBUGGING
2549 if (stringok)
2550 stop = n;
2551#endif
2552 n = regnext(n);
2553 }
2554 else if (stringok) {
2555 const unsigned int oldl = STR_LEN(scan);
2556 regnode * const nnext = regnext(n);
2557
2558 DEBUG_PEEP("merg",n,depth);
2559
2560 merged++;
2561 if (oldl + STR_LEN(n) > U8_MAX)
2562 break;
2563 NEXT_OFF(scan) += NEXT_OFF(n);
2564 STR_LEN(scan) += STR_LEN(n);
2565 next = n + NODE_SZ_STR(n);
2566 /* Now we can overwrite *n : */
2567 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2568#ifdef DEBUGGING
2569 stop = next - 1;
2570#endif
2571 n = nnext;
2572 if (stopnow) break;
2573 }
2574
2575#ifdef EXPERIMENTAL_INPLACESCAN
2576 if (flags && !NEXT_OFF(n)) {
2577 DEBUG_PEEP("atch", val, depth);
2578 if (reg_off_by_arg[OP(n)]) {
2579 ARG_SET(n, val - n);
2580 }
2581 else {
2582 NEXT_OFF(n) = val - n;
2583 }
2584 stopnow = 1;
2585 }
2586#endif
2587 }
2588#define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2589#define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2590#define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2591#define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2592
2593 if (UTF
2594 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2595 && ( STR_LEN(scan) >= 6 ) )
2596 {
2597 /*
2598 Two problematic code points in Unicode casefolding of EXACT nodes:
2599
2600 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2601 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2602
2603 which casefold to
2604
2605 Unicode UTF-8
2606
2607 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2608 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2609
2610 This means that in case-insensitive matching (or "loose matching",
2611 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2612 length of the above casefolded versions) can match a target string
2613 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2614 This would rather mess up the minimum length computation.
2615
2616 What we'll do is to look for the tail four bytes, and then peek
2617 at the preceding two bytes to see whether we need to decrease
2618 the minimum length by four (six minus two).
2619
2620 Thanks to the design of UTF-8, there cannot be false matches:
2621 A sequence of valid UTF-8 bytes cannot be a subsequence of
2622 another valid sequence of UTF-8 bytes.
2623
2624 */
2625 char * const s0 = STRING(scan), *s, *t;
2626 char * const s1 = s0 + STR_LEN(scan) - 1;
2627 char * const s2 = s1 - 4;
2628#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2629 const char t0[] = "\xaf\x49\xaf\x42";
2630#else
2631 const char t0[] = "\xcc\x88\xcc\x81";
2632#endif
2633 const char * const t1 = t0 + 3;
2634
2635 for (s = s0 + 2;
2636 s < s2 && (t = ninstr(s, s1, t0, t1));
2637 s = t + 4) {
2638#ifdef EBCDIC
2639 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2640 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2641#else
2642 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2643 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2644#endif
2645 *min -= 4;
2646 }
2647 }
2648
2649#ifdef DEBUGGING
2650 /* Allow dumping */
2651 n = scan + NODE_SZ_STR(scan);
2652 while (n <= stop) {
2653 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2654 OP(n) = OPTIMIZED;
2655 NEXT_OFF(n) = 0;
2656 }
2657 n++;
2658 }
2659#endif
2660 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2661 return stopnow;
2662}
2663
2664/* REx optimizer. Converts nodes into quicker variants "in place".
2665 Finds fixed substrings. */
2666
2667/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2668 to the position after last scanned or to NULL. */
2669
2670#define INIT_AND_WITHP \
2671 assert(!and_withp); \
2672 Newx(and_withp,1,struct regnode_charclass_class); \
2673 SAVEFREEPV(and_withp)
2674
2675/* this is a chain of data about sub patterns we are processing that
2676 need to be handled separately/specially in study_chunk. Its so
2677 we can simulate recursion without losing state. */
2678struct scan_frame;
2679typedef struct scan_frame {
2680 regnode *last; /* last node to process in this frame */
2681 regnode *next; /* next node to process when last is reached */
2682 struct scan_frame *prev; /*previous frame*/
2683 I32 stop; /* what stopparen do we use */
2684} scan_frame;
2685
2686
2687#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2688
2689#define CASE_SYNST_FNC(nAmE) \
2690case nAmE: \
2691 if (flags & SCF_DO_STCLASS_AND) { \
2692 for (value = 0; value < 256; value++) \
2693 if (!is_ ## nAmE ## _cp(value)) \
2694 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2695 } \
2696 else { \
2697 for (value = 0; value < 256; value++) \
2698 if (is_ ## nAmE ## _cp(value)) \
2699 ANYOF_BITMAP_SET(data->start_class, value); \
2700 } \
2701 break; \
2702case N ## nAmE: \
2703 if (flags & SCF_DO_STCLASS_AND) { \
2704 for (value = 0; value < 256; value++) \
2705 if (is_ ## nAmE ## _cp(value)) \
2706 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2707 } \
2708 else { \
2709 for (value = 0; value < 256; value++) \
2710 if (!is_ ## nAmE ## _cp(value)) \
2711 ANYOF_BITMAP_SET(data->start_class, value); \
2712 } \
2713 break
2714
2715
2716
2717STATIC I32
2718S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2719 I32 *minlenp, I32 *deltap,
2720 regnode *last,
2721 scan_data_t *data,
2722 I32 stopparen,
2723 U8* recursed,
2724 struct regnode_charclass_class *and_withp,
2725 U32 flags, U32 depth)
2726 /* scanp: Start here (read-write). */
2727 /* deltap: Write maxlen-minlen here. */
2728 /* last: Stop before this one. */
2729 /* data: string data about the pattern */
2730 /* stopparen: treat close N as END */
2731 /* recursed: which subroutines have we recursed into */
2732 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2733{
2734 dVAR;
2735 I32 min = 0, pars = 0, code;
2736 regnode *scan = *scanp, *next;
2737 I32 delta = 0;
2738 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2739 int is_inf_internal = 0; /* The studied chunk is infinite */
2740 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2741 scan_data_t data_fake;
2742 SV *re_trie_maxbuff = NULL;
2743 regnode *first_non_open = scan;
2744 I32 stopmin = I32_MAX;
2745 scan_frame *frame = NULL;
2746 GET_RE_DEBUG_FLAGS_DECL;
2747
2748 PERL_ARGS_ASSERT_STUDY_CHUNK;
2749
2750#ifdef DEBUGGING
2751 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2752#endif
2753
2754 if ( depth == 0 ) {
2755 while (first_non_open && OP(first_non_open) == OPEN)
2756 first_non_open=regnext(first_non_open);
2757 }
2758
2759
2760 fake_study_recurse:
2761 while ( scan && OP(scan) != END && scan < last ){
2762 /* Peephole optimizer: */
2763 DEBUG_STUDYDATA("Peep:", data,depth);
2764 DEBUG_PEEP("Peep",scan,depth);
2765 JOIN_EXACT(scan,&min,0);
2766
2767 /* Follow the next-chain of the current node and optimize
2768 away all the NOTHINGs from it. */
2769 if (OP(scan) != CURLYX) {
2770 const int max = (reg_off_by_arg[OP(scan)]
2771 ? I32_MAX
2772 /* I32 may be smaller than U16 on CRAYs! */
2773 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2774 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2775 int noff;
2776 regnode *n = scan;
2777
2778 /* Skip NOTHING and LONGJMP. */
2779 while ((n = regnext(n))
2780 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2781 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2782 && off + noff < max)
2783 off += noff;
2784 if (reg_off_by_arg[OP(scan)])
2785 ARG(scan) = off;
2786 else
2787 NEXT_OFF(scan) = off;
2788 }
2789
2790
2791
2792 /* The principal pseudo-switch. Cannot be a switch, since we
2793 look into several different things. */
2794 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2795 || OP(scan) == IFTHEN) {
2796 next = regnext(scan);
2797 code = OP(scan);
2798 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2799
2800 if (OP(next) == code || code == IFTHEN) {
2801 /* NOTE - There is similar code to this block below for handling
2802 TRIE nodes on a re-study. If you change stuff here check there
2803 too. */
2804 I32 max1 = 0, min1 = I32_MAX, num = 0;
2805 struct regnode_charclass_class accum;
2806 regnode * const startbranch=scan;
2807
2808 if (flags & SCF_DO_SUBSTR)
2809 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2810 if (flags & SCF_DO_STCLASS)
2811 cl_init_zero(pRExC_state, &accum);
2812
2813 while (OP(scan) == code) {
2814 I32 deltanext, minnext, f = 0, fake;
2815 struct regnode_charclass_class this_class;
2816
2817 num++;
2818 data_fake.flags = 0;
2819 if (data) {
2820 data_fake.whilem_c = data->whilem_c;
2821 data_fake.last_closep = data->last_closep;
2822 }
2823 else
2824 data_fake.last_closep = &fake;
2825
2826 data_fake.pos_delta = delta;
2827 next = regnext(scan);
2828 scan = NEXTOPER(scan);
2829 if (code != BRANCH)
2830 scan = NEXTOPER(scan);
2831 if (flags & SCF_DO_STCLASS) {
2832 cl_init(pRExC_state, &this_class);
2833 data_fake.start_class = &this_class;
2834 f = SCF_DO_STCLASS_AND;
2835 }
2836 if (flags & SCF_WHILEM_VISITED_POS)
2837 f |= SCF_WHILEM_VISITED_POS;
2838
2839 /* we suppose the run is continuous, last=next...*/
2840 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2841 next, &data_fake,
2842 stopparen, recursed, NULL, f,depth+1);
2843 if (min1 > minnext)
2844 min1 = minnext;
2845 if (max1 < minnext + deltanext)
2846 max1 = minnext + deltanext;
2847 if (deltanext == I32_MAX)
2848 is_inf = is_inf_internal = 1;
2849 scan = next;
2850 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2851 pars++;
2852 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2853 if ( stopmin > minnext)
2854 stopmin = min + min1;
2855 flags &= ~SCF_DO_SUBSTR;
2856 if (data)
2857 data->flags |= SCF_SEEN_ACCEPT;
2858 }
2859 if (data) {
2860 if (data_fake.flags & SF_HAS_EVAL)
2861 data->flags |= SF_HAS_EVAL;
2862 data->whilem_c = data_fake.whilem_c;
2863 }
2864 if (flags & SCF_DO_STCLASS)
2865 cl_or(pRExC_state, &accum, &this_class);
2866 }
2867 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2868 min1 = 0;
2869 if (flags & SCF_DO_SUBSTR) {
2870 data->pos_min += min1;
2871 data->pos_delta += max1 - min1;
2872 if (max1 != min1 || is_inf)
2873 data->longest = &(data->longest_float);
2874 }
2875 min += min1;
2876 delta += max1 - min1;
2877 if (flags & SCF_DO_STCLASS_OR) {
2878 cl_or(pRExC_state, data->start_class, &accum);
2879 if (min1) {
2880 cl_and(data->start_class, and_withp);
2881 flags &= ~SCF_DO_STCLASS;
2882 }
2883 }
2884 else if (flags & SCF_DO_STCLASS_AND) {
2885 if (min1) {
2886 cl_and(data->start_class, &accum);
2887 flags &= ~SCF_DO_STCLASS;
2888 }
2889 else {
2890 /* Switch to OR mode: cache the old value of
2891 * data->start_class */
2892 INIT_AND_WITHP;
2893 StructCopy(data->start_class, and_withp,
2894 struct regnode_charclass_class);
2895 flags &= ~SCF_DO_STCLASS_AND;
2896 StructCopy(&accum, data->start_class,
2897 struct regnode_charclass_class);
2898 flags |= SCF_DO_STCLASS_OR;
2899 data->start_class->flags |= ANYOF_EOS;
2900 }
2901 }
2902
2903 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2904 /* demq.
2905
2906 Assuming this was/is a branch we are dealing with: 'scan' now
2907 points at the item that follows the branch sequence, whatever
2908 it is. We now start at the beginning of the sequence and look
2909 for subsequences of
2910
2911 BRANCH->EXACT=>x1
2912 BRANCH->EXACT=>x2
2913 tail
2914
2915 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2916
2917 If we can find such a subsequence we need to turn the first
2918 element into a trie and then add the subsequent branch exact
2919 strings to the trie.
2920
2921 We have two cases
2922
2923 1. patterns where the whole set of branches can be converted.
2924
2925 2. patterns where only a subset can be converted.
2926
2927 In case 1 we can replace the whole set with a single regop
2928 for the trie. In case 2 we need to keep the start and end
2929 branches so
2930
2931 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2932 becomes BRANCH TRIE; BRANCH X;
2933
2934 There is an additional case, that being where there is a
2935 common prefix, which gets split out into an EXACT like node
2936 preceding the TRIE node.
2937
2938 If x(1..n)==tail then we can do a simple trie, if not we make
2939 a "jump" trie, such that when we match the appropriate word
2940 we "jump" to the appropriate tail node. Essentially we turn
2941 a nested if into a case structure of sorts.
2942
2943 */
2944
2945 int made=0;
2946 if (!re_trie_maxbuff) {
2947 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2948 if (!SvIOK(re_trie_maxbuff))
2949 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2950 }
2951 if ( SvIV(re_trie_maxbuff)>=0 ) {
2952 regnode *cur;
2953 regnode *first = (regnode *)NULL;
2954 regnode *last = (regnode *)NULL;
2955 regnode *tail = scan;
2956 U8 optype = 0;
2957 U32 count=0;
2958
2959#ifdef DEBUGGING
2960 SV * const mysv = sv_newmortal(); /* for dumping */
2961#endif
2962 /* var tail is used because there may be a TAIL
2963 regop in the way. Ie, the exacts will point to the
2964 thing following the TAIL, but the last branch will
2965 point at the TAIL. So we advance tail. If we
2966 have nested (?:) we may have to move through several
2967 tails.
2968 */
2969
2970 while ( OP( tail ) == TAIL ) {
2971 /* this is the TAIL generated by (?:) */
2972 tail = regnext( tail );
2973 }
2974
2975
2976 DEBUG_OPTIMISE_r({
2977 regprop(RExC_rx, mysv, tail );
2978 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2979 (int)depth * 2 + 2, "",
2980 "Looking for TRIE'able sequences. Tail node is: ",
2981 SvPV_nolen_const( mysv )
2982 );
2983 });
2984
2985 /*
2986
2987 step through the branches, cur represents each
2988 branch, noper is the first thing to be matched
2989 as part of that branch and noper_next is the
2990 regnext() of that node. if noper is an EXACT
2991 and noper_next is the same as scan (our current
2992 position in the regex) then the EXACT branch is
2993 a possible optimization target. Once we have
2994 two or more consecutive such branches we can
2995 create a trie of the EXACT's contents and stich
2996 it in place. If the sequence represents all of
2997 the branches we eliminate the whole thing and
2998 replace it with a single TRIE. If it is a
2999 subsequence then we need to stitch it in. This
3000 means the first branch has to remain, and needs
3001 to be repointed at the item on the branch chain
3002 following the last branch optimized. This could
3003 be either a BRANCH, in which case the
3004 subsequence is internal, or it could be the
3005 item following the branch sequence in which
3006 case the subsequence is at the end.
3007
3008 */
3009
3010 /* dont use tail as the end marker for this traverse */
3011 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3012 regnode * const noper = NEXTOPER( cur );
3013#if defined(DEBUGGING) || defined(NOJUMPTRIE)
3014 regnode * const noper_next = regnext( noper );
3015#endif
3016
3017 DEBUG_OPTIMISE_r({
3018 regprop(RExC_rx, mysv, cur);
3019 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3020 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3021
3022 regprop(RExC_rx, mysv, noper);
3023 PerlIO_printf( Perl_debug_log, " -> %s",
3024 SvPV_nolen_const(mysv));
3025
3026 if ( noper_next ) {
3027 regprop(RExC_rx, mysv, noper_next );
3028 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3029 SvPV_nolen_const(mysv));
3030 }
3031 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3032 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3033 });
3034 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3035 : PL_regkind[ OP( noper ) ] == EXACT )
3036 || OP(noper) == NOTHING )
3037#ifdef NOJUMPTRIE
3038 && noper_next == tail
3039#endif
3040 && count < U16_MAX)
3041 {
3042 count++;
3043 if ( !first || optype == NOTHING ) {
3044 if (!first) first = cur;
3045 optype = OP( noper );
3046 } else {
3047 last = cur;
3048 }
3049 } else {
3050/*
3051 Currently the trie logic handles case insensitive matching properly only
3052 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3053 semantics).
3054
3055 If/when this is fixed the following define can be swapped
3056 in below to fully enable trie logic.
3057
3058#define TRIE_TYPE_IS_SAFE 1
3059
3060*/
3061#define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3062
3063 if ( last && TRIE_TYPE_IS_SAFE ) {
3064 make_trie( pRExC_state,
3065 startbranch, first, cur, tail, count,
3066 optype, depth+1 );
3067 }
3068 if ( PL_regkind[ OP( noper ) ] == EXACT
3069#ifdef NOJUMPTRIE
3070 && noper_next == tail
3071#endif
3072 ){
3073 count = 1;
3074 first = cur;
3075 optype = OP( noper );
3076 } else {
3077 count = 0;
3078 first = NULL;
3079 optype = 0;
3080 }
3081 last = NULL;
3082 }
3083 }
3084 DEBUG_OPTIMISE_r({
3085 regprop(RExC_rx, mysv, cur);
3086 PerlIO_printf( Perl_debug_log,
3087 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3088 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3089
3090 });
3091
3092 if ( last && TRIE_TYPE_IS_SAFE ) {
3093 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3094#ifdef TRIE_STUDY_OPT
3095 if ( ((made == MADE_EXACT_TRIE &&
3096 startbranch == first)
3097 || ( first_non_open == first )) &&
3098 depth==0 ) {
3099 flags |= SCF_TRIE_RESTUDY;
3100 if ( startbranch == first
3101 && scan == tail )
3102 {
3103 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3104 }
3105 }
3106#endif
3107 }
3108 }
3109
3110 } /* do trie */
3111
3112 }
3113 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3114 scan = NEXTOPER(NEXTOPER(scan));
3115 } else /* single branch is optimized. */
3116 scan = NEXTOPER(scan);
3117 continue;
3118 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3119 scan_frame *newframe = NULL;
3120 I32 paren;
3121 regnode *start;
3122 regnode *end;
3123
3124 if (OP(scan) != SUSPEND) {
3125 /* set the pointer */
3126 if (OP(scan) == GOSUB) {
3127 paren = ARG(scan);
3128 RExC_recurse[ARG2L(scan)] = scan;
3129 start = RExC_open_parens[paren-1];
3130 end = RExC_close_parens[paren-1];
3131 } else {
3132 paren = 0;
3133 start = RExC_rxi->program + 1;
3134 end = RExC_opend;
3135 }
3136 if (!recursed) {
3137 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3138 SAVEFREEPV(recursed);
3139 }
3140 if (!PAREN_TEST(recursed,paren+1)) {
3141 PAREN_SET(recursed,paren+1);
3142 Newx(newframe,1,scan_frame);
3143 } else {
3144 if (flags & SCF_DO_SUBSTR) {
3145 SCAN_COMMIT(pRExC_state,data,minlenp);
3146 data->longest = &(data->longest_float);
3147 }
3148 is_inf = is_inf_internal = 1;
3149 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3150 cl_anything(pRExC_state, data->start_class);
3151 flags &= ~SCF_DO_STCLASS;
3152 }
3153 } else {
3154 Newx(newframe,1,scan_frame);
3155 paren = stopparen;
3156 start = scan+2;
3157 end = regnext(scan);
3158 }
3159 if (newframe) {
3160 assert(start);
3161 assert(end);
3162 SAVEFREEPV(newframe);
3163 newframe->next = regnext(scan);
3164 newframe->last = last;
3165 newframe->stop = stopparen;
3166 newframe->prev = frame;
3167
3168 frame = newframe;
3169 scan = start;
3170 stopparen = paren;
3171 last = end;
3172
3173 continue;
3174 }
3175 }
3176 else if (OP(scan) == EXACT) {
3177 I32 l = STR_LEN(scan);
3178 UV uc;
3179 if (UTF) {
3180 const U8 * const s = (U8*)STRING(scan);
3181 l = utf8_length(s, s + l);
3182 uc = utf8_to_uvchr(s, NULL);
3183 } else {
3184 uc = *((U8*)STRING(scan));
3185 }
3186 min += l;
3187 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3188 /* The code below prefers earlier match for fixed
3189 offset, later match for variable offset. */
3190 if (data->last_end == -1) { /* Update the start info. */
3191 data->last_start_min = data->pos_min;
3192 data->last_start_max = is_inf
3193 ? I32_MAX : data->pos_min + data->pos_delta;
3194 }
3195 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3196 if (UTF)
3197 SvUTF8_on(data->last_found);
3198 {
3199 SV * const sv = data->last_found;
3200 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3201 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3202 if (mg && mg->mg_len >= 0)
3203 mg->mg_len += utf8_length((U8*)STRING(scan),
3204 (U8*)STRING(scan)+STR_LEN(scan));
3205 }
3206 data->last_end = data->pos_min + l;
3207 data->pos_min += l; /* As in the first entry. */
3208 data->flags &= ~SF_BEFORE_EOL;
3209 }
3210 if (flags & SCF_DO_STCLASS_AND) {
3211 /* Check whether it is compatible with what we know already! */
3212 int compat = 1;
3213
3214
3215 /* If compatible, we or it in below. It is compatible if is
3216 * in the bitmp and either 1) its bit or its fold is set, or 2)
3217 * it's for a locale. Even if there isn't unicode semantics
3218 * here, at runtime there may be because of matching against a
3219 * utf8 string, so accept a possible false positive for
3220 * latin1-range folds */
3221 if (uc >= 0x100 ||
3222 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3223 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3224 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3225 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3226 )
3227 {
3228 compat = 0;
3229 }
3230 ANYOF_CLASS_ZERO(data->start_class);
3231 ANYOF_BITMAP_ZERO(data->start_class);
3232 if (compat)
3233 ANYOF_BITMAP_SET(data->start_class, uc);
3234 else if (uc >= 0x100) {
3235 int i;
3236
3237 /* Some Unicode code points fold to the Latin1 range; as
3238 * XXX temporary code, instead of figuring out if this is
3239 * one, just assume it is and set all the start class bits
3240 * that could be some such above 255 code point's fold
3241 * which will generate fals positives. As the code
3242 * elsewhere that does compute the fold settles down, it
3243 * can be extracted out and re-used here */
3244 for (i = 0; i < 256; i++){
3245 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3246 ANYOF_BITMAP_SET(data->start_class, i);
3247 }
3248 }
3249 }
3250 data->start_class->flags &= ~ANYOF_EOS;
3251 if (uc < 0x100)
3252 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3253 }
3254 else if (flags & SCF_DO_STCLASS_OR) {
3255 /* false positive possible if the class is case-folded */
3256 if (uc < 0x100)
3257 ANYOF_BITMAP_SET(data->start_class, uc);
3258 else
3259 data->start_class->flags |= ANYOF_UNICODE_ALL;
3260 data->start_class->flags &= ~ANYOF_EOS;
3261 cl_and(data->start_class, and_withp);
3262 }
3263 flags &= ~SCF_DO_STCLASS;
3264 }
3265 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3266 I32 l = STR_LEN(scan);
3267 UV uc = *((U8*)STRING(scan));
3268
3269 /* Search for fixed substrings supports EXACT only. */
3270 if (flags & SCF_DO_SUBSTR) {
3271 assert(data);
3272 SCAN_COMMIT(pRExC_state, data, minlenp);
3273 }
3274 if (UTF) {
3275 const U8 * const s = (U8 *)STRING(scan);
3276 l = utf8_length(s, s + l);
3277 uc = utf8_to_uvchr(s, NULL);
3278 }
3279 min += l;
3280 if (flags & SCF_DO_SUBSTR)
3281 data->pos_min += l;
3282 if (flags & SCF_DO_STCLASS_AND) {
3283 /* Check whether it is compatible with what we know already! */
3284 int compat = 1;
3285 if (uc >= 0x100 ||
3286 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3287 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3288 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3289 {
3290 compat = 0;
3291 }
3292 ANYOF_CLASS_ZERO(data->start_class);
3293 ANYOF_BITMAP_ZERO(data->start_class);
3294 if (compat) {
3295 ANYOF_BITMAP_SET(data->start_class, uc);
3296 data->start_class->flags &= ~ANYOF_EOS;
3297 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3298 if (OP(scan) == EXACTFL) {
3299 /* XXX This set is probably no longer necessary, and
3300 * probably wrong as LOCALE now is on in the initial
3301 * state */
3302 data->start_class->flags |= ANYOF_LOCALE;
3303 }
3304 else {
3305
3306 /* Also set the other member of the fold pair. In case
3307 * that unicode semantics is called for at runtime, use
3308 * the full latin1 fold. (Can't do this for locale,
3309 * because not known until runtime */
3310 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3311 }
3312 }
3313 else if (uc >= 0x100) {
3314 int i;
3315 for (i = 0; i < 256; i++){
3316 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3317 ANYOF_BITMAP_SET(data->start_class, i);
3318 }
3319 }
3320 }
3321 }
3322 else if (flags & SCF_DO_STCLASS_OR) {
3323 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3324 /* false positive possible if the class is case-folded.
3325 Assume that the locale settings are the same... */
3326 if (uc < 0x100) {
3327 ANYOF_BITMAP_SET(data->start_class, uc);
3328 if (OP(scan) != EXACTFL) {
3329
3330 /* And set the other member of the fold pair, but
3331 * can't do that in locale because not known until
3332 * run-time */
3333 ANYOF_BITMAP_SET(data->start_class,
3334 PL_fold_latin1[uc]);
3335 }
3336 }
3337 data->start_class->flags &= ~ANYOF_EOS;
3338 }
3339 cl_and(data->start_class, and_withp);
3340 }
3341 flags &= ~SCF_DO_STCLASS;
3342 }
3343 else if (REGNODE_VARIES(OP(scan))) {
3344 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3345 I32 f = flags, pos_before = 0;
3346 regnode * const oscan = scan;
3347 struct regnode_charclass_class this_class;
3348 struct regnode_charclass_class *oclass = NULL;
3349 I32 next_is_eval = 0;
3350
3351 switch (PL_regkind[OP(scan)]) {
3352 case WHILEM: /* End of (?:...)* . */
3353 scan = NEXTOPER(scan);
3354 goto finish;
3355 case PLUS:
3356 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3357 next = NEXTOPER(scan);
3358 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3359 mincount = 1;
3360 maxcount = REG_INFTY;
3361 next = regnext(scan);
3362 scan = NEXTOPER(scan);
3363 goto do_curly;
3364 }
3365 }
3366 if (flags & SCF_DO_SUBSTR)
3367 data->pos_min++;
3368 min++;
3369 /* Fall through. */
3370 case STAR:
3371 if (flags & SCF_DO_STCLASS) {
3372 mincount = 0;
3373 maxcount = REG_INFTY;
3374 next = regnext(scan);
3375 scan = NEXTOPER(scan);
3376 goto do_curly;
3377 }
3378 is_inf = is_inf_internal = 1;
3379 scan = regnext(scan);
3380 if (flags & SCF_DO_SUBSTR) {
3381 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3382 data->longest = &(data->longest_float);
3383 }
3384 goto optimize_curly_tail;
3385 case CURLY:
3386 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3387 && (scan->flags == stopparen))
3388 {
3389 mincount = 1;
3390 maxcount = 1;
3391 } else {
3392 mincount = ARG1(scan);
3393 maxcount = ARG2(scan);
3394 }
3395 next = regnext(scan);
3396 if (OP(scan) == CURLYX) {
3397 I32 lp = (data ? *(data->last_closep) : 0);
3398 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3399 }
3400 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3401 next_is_eval = (OP(scan) == EVAL);
3402 do_curly:
3403 if (flags & SCF_DO_SUBSTR) {
3404 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3405 pos_before = data->pos_min;
3406 }
3407 if (data) {
3408 fl = data->flags;
3409 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3410 if (is_inf)
3411 data->flags |= SF_IS_INF;
3412 }
3413 if (flags & SCF_DO_STCLASS) {
3414 cl_init(pRExC_state, &this_class);
3415 oclass = data->start_class;
3416 data->start_class = &this_class;
3417 f |= SCF_DO_STCLASS_AND;
3418 f &= ~SCF_DO_STCLASS_OR;
3419 }
3420 /* Exclude from super-linear cache processing any {n,m}
3421 regops for which the combination of input pos and regex
3422 pos is not enough information to determine if a match
3423 will be possible.
3424
3425 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3426 regex pos at the \s*, the prospects for a match depend not
3427 only on the input position but also on how many (bar\s*)
3428 repeats into the {4,8} we are. */
3429 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3430 f &= ~SCF_WHILEM_VISITED_POS;
3431
3432 /* This will finish on WHILEM, setting scan, or on NULL: */
3433 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3434 last, data, stopparen, recursed, NULL,
3435 (mincount == 0
3436 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3437
3438 if (flags & SCF_DO_STCLASS)
3439 data->start_class = oclass;
3440 if (mincount == 0 || minnext == 0) {
3441 if (flags & SCF_DO_STCLASS_OR) {
3442 cl_or(pRExC_state, data->start_class, &this_class);
3443 }
3444 else if (flags & SCF_DO_STCLASS_AND) {
3445 /* Switch to OR mode: cache the old value of
3446 * data->start_class */
3447 INIT_AND_WITHP;
3448 StructCopy(data->start_class, and_withp,
3449 struct regnode_charclass_class);
3450 flags &= ~SCF_DO_STCLASS_AND;
3451 StructCopy(&this_class, data->start_class,
3452 struct regnode_charclass_class);
3453 flags |= SCF_DO_STCLASS_OR;
3454 data->start_class->flags |= ANYOF_EOS;
3455 }
3456 } else { /* Non-zero len */
3457 if (flags & SCF_DO_STCLASS_OR) {
3458 cl_or(pRExC_state, data->start_class, &this_class);
3459 cl_and(data->start_class, and_withp);
3460 }
3461 else if (flags & SCF_DO_STCLASS_AND)
3462 cl_and(data->start_class, &this_class);
3463 flags &= ~SCF_DO_STCLASS;
3464 }
3465 if (!scan) /* It was not CURLYX, but CURLY. */
3466 scan = next;
3467 if ( /* ? quantifier ok, except for (?{ ... }) */
3468 (next_is_eval || !(mincount == 0 && maxcount == 1))
3469 && (minnext == 0) && (deltanext == 0)
3470 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3471 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3472 {
3473 ckWARNreg(RExC_parse,
3474 "Quantifier unexpected on zero-length expression");
3475 }
3476
3477 min += minnext * mincount;
3478 is_inf_internal |= ((maxcount == REG_INFTY
3479 && (minnext + deltanext) > 0)
3480 || deltanext == I32_MAX);
3481 is_inf |= is_inf_internal;
3482 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3483
3484 /* Try powerful optimization CURLYX => CURLYN. */
3485 if ( OP(oscan) == CURLYX && data
3486 && data->flags & SF_IN_PAR
3487 && !(data->flags & SF_HAS_EVAL)
3488 && !deltanext && minnext == 1 ) {
3489 /* Try to optimize to CURLYN. */
3490 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3491 regnode * const nxt1 = nxt;
3492#ifdef DEBUGGING
3493 regnode *nxt2;
3494#endif
3495
3496 /* Skip open. */
3497 nxt = regnext(nxt);
3498 if (!REGNODE_SIMPLE(OP(nxt))
3499 && !(PL_regkind[OP(nxt)] == EXACT
3500 && STR_LEN(nxt) == 1))
3501 goto nogo;
3502#ifdef DEBUGGING
3503 nxt2 = nxt;
3504#endif
3505 nxt = regnext(nxt);
3506 if (OP(nxt) != CLOSE)
3507 goto nogo;
3508 if (RExC_open_parens) {
3509 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3510 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3511 }
3512 /* Now we know that nxt2 is the only contents: */
3513 oscan->flags = (U8)ARG(nxt);
3514 OP(oscan) = CURLYN;
3515 OP(nxt1) = NOTHING; /* was OPEN. */
3516
3517#ifdef DEBUGGING
3518 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3519 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3520 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3521 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3522 OP(nxt + 1) = OPTIMIZED; /* was count. */
3523 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3524#endif
3525 }
3526 nogo:
3527
3528 /* Try optimization CURLYX => CURLYM. */
3529 if ( OP(oscan) == CURLYX && data
3530 && !(data->flags & SF_HAS_PAR)
3531 && !(data->flags & SF_HAS_EVAL)
3532 && !deltanext /* atom is fixed width */
3533 && minnext != 0 /* CURLYM can't handle zero width */
3534 ) {
3535 /* XXXX How to optimize if data == 0? */
3536 /* Optimize to a simpler form. */
3537 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3538 regnode *nxt2;
3539
3540 OP(oscan) = CURLYM;
3541 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3542 && (OP(nxt2) != WHILEM))
3543 nxt = nxt2;
3544 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3545 /* Need to optimize away parenths. */
3546 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3547 /* Set the parenth number. */
3548 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3549
3550 oscan->flags = (U8)ARG(nxt);
3551 if (RExC_open_parens) {
3552 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3553 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3554 }
3555 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3556 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3557
3558#ifdef DEBUGGING
3559 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3560 OP(nxt + 1) = OPTIMIZED; /* was count. */
3561 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3562 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3563#endif
3564#if 0
3565 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3566 regnode *nnxt = regnext(nxt1);
3567 if (nnxt == nxt) {
3568 if (reg_off_by_arg[OP(nxt1)])
3569 ARG_SET(nxt1, nxt2 - nxt1);
3570 else if (nxt2 - nxt1 < U16_MAX)
3571 NEXT_OFF(nxt1) = nxt2 - nxt1;
3572 else
3573 OP(nxt) = NOTHING; /* Cannot beautify */
3574 }
3575 nxt1 = nnxt;
3576 }
3577#endif
3578 /* Optimize again: */
3579 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3580 NULL, stopparen, recursed, NULL, 0,depth+1);
3581 }
3582 else
3583 oscan->flags = 0;
3584 }
3585 else if ((OP(oscan) == CURLYX)
3586 && (flags & SCF_WHILEM_VISITED_POS)
3587 /* See the comment on a similar expression above.
3588 However, this time it's not a subexpression
3589 we care about, but the expression itself. */
3590 && (maxcount == REG_INFTY)
3591 && data && ++data->whilem_c < 16) {
3592 /* This stays as CURLYX, we can put the count/of pair. */
3593 /* Find WHILEM (as in regexec.c) */
3594 regnode *nxt = oscan + NEXT_OFF(oscan);
3595
3596 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3597 nxt += ARG(nxt);
3598 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3599 | (RExC_whilem_seen << 4)); /* On WHILEM */
3600 }
3601 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3602 pars++;
3603 if (flags & SCF_DO_SUBSTR) {
3604 SV *last_str = NULL;
3605 int counted = mincount != 0;
3606
3607 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3608#if defined(SPARC64_GCC_WORKAROUND)
3609 I32 b = 0;
3610 STRLEN l = 0;
3611 const char *s = NULL;
3612 I32 old = 0;
3613
3614 if (pos_before >= data->last_start_min)
3615 b = pos_before;
3616 else
3617 b = data->last_start_min;
3618
3619 l = 0;
3620 s = SvPV_const(data->last_found, l);
3621 old = b - data->last_start_min;
3622
3623#else
3624 I32 b = pos_before >= data->last_start_min
3625 ? pos_before : data->last_start_min;
3626 STRLEN l;
3627 const char * const s = SvPV_const(data->last_found, l);
3628 I32 old = b - data->last_start_min;
3629#endif
3630
3631 if (UTF)
3632 old = utf8_hop((U8*)s, old) - (U8*)s;
3633 l -= old;
3634 /* Get the added string: */
3635 last_str = newSVpvn_utf8(s + old, l, UTF);
3636 if (deltanext == 0 && pos_before == b) {
3637 /* What was added is a constant string */
3638 if (mincount > 1) {
3639 SvGROW(last_str, (mincount * l) + 1);
3640 repeatcpy(SvPVX(last_str) + l,
3641 SvPVX_const(last_str), l, mincount - 1);
3642 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3643 /* Add additional parts. */
3644 SvCUR_set(data->last_found,
3645 SvCUR(data->last_found) - l);
3646 sv_catsv(data->last_found, last_str);
3647 {
3648 SV * sv = data->last_found;
3649 MAGIC *mg =
3650 SvUTF8(sv) && SvMAGICAL(sv) ?
3651 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3652 if (mg && mg->mg_len >= 0)
3653 mg->mg_len += CHR_SVLEN(last_str) - l;
3654 }
3655 data->last_end += l * (mincount - 1);
3656 }
3657 } else {
3658 /* start offset must point into the last copy */
3659 data->last_start_min += minnext * (mincount - 1);
3660 data->last_start_max += is_inf ? I32_MAX
3661 : (maxcount - 1) * (minnext + data->pos_delta);
3662 }
3663 }
3664 /* It is counted once already... */
3665 data->pos_min += minnext * (mincount - counted);
3666 data->pos_delta += - counted * deltanext +
3667 (minnext + deltanext) * maxcount - minnext * mincount;
3668 if (mincount != maxcount) {
3669 /* Cannot extend fixed substrings found inside
3670 the group. */
3671 SCAN_COMMIT(pRExC_state,data,minlenp);
3672 if (mincount && last_str) {
3673 SV * const sv = data->last_found;
3674 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3675 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3676
3677 if (mg)
3678 mg->mg_len = -1;
3679 sv_setsv(sv, last_str);
3680 data->last_end = data->pos_min;
3681 data->last_start_min =
3682 data->pos_min - CHR_SVLEN(last_str);
3683 data->last_start_max = is_inf
3684 ? I32_MAX
3685 : data->pos_min + data->pos_delta
3686 - CHR_SVLEN(last_str);
3687 }
3688 data->longest = &(data->longest_float);
3689 }
3690 SvREFCNT_dec(last_str);
3691 }
3692 if (data && (fl & SF_HAS_EVAL))
3693 data->flags |= SF_HAS_EVAL;
3694 optimize_curly_tail:
3695 if (OP(oscan) != CURLYX) {
3696 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3697 && NEXT_OFF(next))
3698 NEXT_OFF(oscan) += NEXT_OFF(next);
3699 }
3700 continue;
3701 default: /* REF, ANYOFV, and CLUMP only? */
3702 if (flags & SCF_DO_SUBSTR) {
3703 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3704 data->longest = &(data->longest_float);
3705 }
3706 is_inf = is_inf_internal = 1;
3707 if (flags & SCF_DO_STCLASS_OR)
3708 cl_anything(pRExC_state, data->start_class);
3709 flags &= ~SCF_DO_STCLASS;
3710 break;
3711 }
3712 }
3713 else if (OP(scan) == LNBREAK) {
3714 if (flags & SCF_DO_STCLASS) {
3715 int value = 0;
3716 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3717 if (flags & SCF_DO_STCLASS_AND) {
3718 for (value = 0; value < 256; value++)
3719 if (!is_VERTWS_cp(value))
3720 ANYOF_BITMAP_CLEAR(data->start_class, value);
3721 }
3722 else {
3723 for (value = 0; value < 256; value++)
3724 if (is_VERTWS_cp(value))
3725 ANYOF_BITMAP_SET(data->start_class, value);
3726 }
3727 if (flags & SCF_DO_STCLASS_OR)
3728 cl_and(data->start_class, and_withp);
3729 flags &= ~SCF_DO_STCLASS;
3730 }
3731 min += 1;
3732 delta += 1;
3733 if (flags & SCF_DO_SUBSTR) {
3734 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3735 data->pos_min += 1;
3736 data->pos_delta += 1;
3737 data->longest = &(data->longest_float);
3738 }
3739 }
3740 else if (OP(scan) == FOLDCHAR) {
3741 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3742 flags &= ~SCF_DO_STCLASS;
3743 min += 1;
3744 delta += d;
3745 if (flags & SCF_DO_SUBSTR) {
3746 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3747 data->pos_min += 1;
3748 data->pos_delta += d;
3749 data->longest = &(data->longest_float);
3750 }
3751 }
3752 else if (REGNODE_SIMPLE(OP(scan))) {
3753 int value = 0;
3754
3755 if (flags & SCF_DO_SUBSTR) {
3756 SCAN_COMMIT(pRExC_state,data,minlenp);
3757 data->pos_min++;
3758 }
3759 min++;
3760 if (flags & SCF_DO_STCLASS) {
3761 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3762
3763 /* Some of the logic below assumes that switching
3764 locale on will only add false positives. */
3765 switch (PL_regkind[OP(scan)]) {
3766 case SANY:
3767 default:
3768 do_default:
3769 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3770 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3771 cl_anything(pRExC_state, data->start_class);
3772 break;
3773 case REG_ANY:
3774 if (OP(scan) == SANY)
3775 goto do_default;
3776 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3777 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3778 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3779 cl_anything(pRExC_state, data->start_class);
3780 }
3781 if (flags & SCF_DO_STCLASS_AND || !value)
3782 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3783 break;
3784 case ANYOF:
3785 if (flags & SCF_DO_STCLASS_AND)
3786 cl_and(data->start_class,
3787 (struct regnode_charclass_class*)scan);
3788 else
3789 cl_or(pRExC_state, data->start_class,
3790 (struct regnode_charclass_class*)scan);
3791 break;
3792 case ALNUM:
3793 if (flags & SCF_DO_STCLASS_AND) {
3794 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3795 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3796 if (OP(scan) == ALNUMU) {
3797 for (value = 0; value < 256; value++) {
3798 if (!isWORDCHAR_L1(value)) {
3799 ANYOF_BITMAP_CLEAR(data->start_class, value);
3800 }
3801 }
3802 } else {
3803 for (value = 0; value < 256; value++) {
3804 if (!isALNUM(value)) {
3805 ANYOF_BITMAP_CLEAR(data->start_class, value);
3806 }
3807 }
3808 }
3809 }
3810 }
3811 else {
3812 if (data->start_class->flags & ANYOF_LOCALE)
3813 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3814
3815 /* Even if under locale, set the bits for non-locale
3816 * in case it isn't a true locale-node. This will
3817 * create false positives if it truly is locale */
3818 if (OP(scan) == ALNUMU) {
3819 for (value = 0; value < 256; value++) {
3820 if (isWORDCHAR_L1(value)) {
3821 ANYOF_BITMAP_SET(data->start_class, value);
3822 }
3823 }
3824 } else {
3825 for (value = 0; value < 256; value++) {
3826 if (isALNUM(value)) {
3827 ANYOF_BITMAP_SET(data->start_class, value);
3828 }
3829 }
3830 }
3831 }
3832 break;
3833 case NALNUM:
3834 if (flags & SCF_DO_STCLASS_AND) {
3835 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3836 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3837 if (OP(scan) == NALNUMU) {
3838 for (value = 0; value < 256; value++) {
3839 if (isWORDCHAR_L1(value)) {
3840 ANYOF_BITMAP_CLEAR(data->start_class, value);
3841 }
3842 }
3843 } else {
3844 for (value = 0; value < 256; value++) {
3845 if (isALNUM(value)) {
3846 ANYOF_BITMAP_CLEAR(data->start_class, value);
3847 }
3848 }
3849 }
3850 }
3851 }
3852 else {
3853 if (data->start_class->flags & ANYOF_LOCALE)
3854 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3855
3856 /* Even if under locale, set the bits for non-locale in
3857 * case it isn't a true locale-node. This will create
3858 * false positives if it truly is locale */
3859 if (OP(scan) == NALNUMU) {
3860 for (value = 0; value < 256; value++) {
3861 if (! isWORDCHAR_L1(value)) {
3862 ANYOF_BITMAP_SET(data->start_class, value);
3863 }
3864 }
3865 } else {
3866 for (value = 0; value < 256; value++) {
3867 if (! isALNUM(value)) {
3868 ANYOF_BITMAP_SET(data->start_class, value);
3869 }
3870 }
3871 }
3872 }
3873 break;
3874 case SPACE:
3875 if (flags & SCF_DO_STCLASS_AND) {
3876 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3877 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3878 if (OP(scan) == SPACEU) {
3879 for (value = 0; value < 256; value++) {
3880 if (!isSPACE_L1(value)) {
3881 ANYOF_BITMAP_CLEAR(data->start_class, value);
3882 }
3883 }
3884 } else {
3885 for (value = 0; value < 256; value++) {
3886 if (!isSPACE(value)) {
3887 ANYOF_BITMAP_CLEAR(data->start_class, value);
3888 }
3889 }
3890 }
3891 }
3892 }
3893 else {
3894 if (data->start_class->flags & ANYOF_LOCALE) {
3895 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3896 }
3897 if (OP(scan) == SPACEU) {
3898 for (value = 0; value < 256; value++) {
3899 if (isSPACE_L1(value)) {
3900 ANYOF_BITMAP_SET(data->start_class, value);
3901 }
3902 }
3903 } else {
3904 for (value = 0; value < 256; value++) {
3905 if (isSPACE(value)) {
3906 ANYOF_BITMAP_SET(data->start_class, value);
3907 }
3908 }
3909 }
3910 }
3911 break;
3912 case NSPACE:
3913 if (flags & SCF_DO_STCLASS_AND) {
3914 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3915 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3916 if (OP(scan) == NSPACEU) {
3917 for (value = 0; value < 256; value++) {
3918 if (isSPACE_L1(value)) {
3919 ANYOF_BITMAP_CLEAR(data->start_class, value);
3920 }
3921 }
3922 } else {
3923 for (value = 0; value < 256; value++) {
3924 if (isSPACE(value)) {
3925 ANYOF_BITMAP_CLEAR(data->start_class, value);
3926 }
3927 }
3928 }
3929 }
3930 }
3931 else {
3932 if (data->start_class->flags & ANYOF_LOCALE)
3933 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3934 if (OP(scan) == NSPACEU) {
3935 for (value = 0; value < 256; value++) {
3936 if (!isSPACE_L1(value)) {
3937 ANYOF_BITMAP_SET(data->start_class, value);
3938 }
3939 }
3940 }
3941 else {
3942 for (value = 0; value < 256; value++) {
3943 if (!isSPACE(value)) {
3944 ANYOF_BITMAP_SET(data->start_class, value);
3945 }
3946 }
3947 }
3948 }
3949 break;
3950 case DIGIT:
3951 if (flags & SCF_DO_STCLASS_AND) {
3952 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3953 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3954 for (value = 0; value < 256; value++)
3955 if (!isDIGIT(value))
3956 ANYOF_BITMAP_CLEAR(data->start_class, value);
3957 }
3958 }
3959 else {
3960 if (data->start_class->flags & ANYOF_LOCALE)
3961 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3962 for (value = 0; value < 256; value++)
3963 if (isDIGIT(value))
3964 ANYOF_BITMAP_SET(data->start_class, value);
3965 }
3966 break;
3967 case NDIGIT:
3968 if (flags & SCF_DO_STCLASS_AND) {
3969 if (!(data->start_class->flags & ANYOF_LOCALE))
3970 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3971 for (value = 0; value < 256; value++)
3972 if (isDIGIT(value))
3973 ANYOF_BITMAP_CLEAR(data->start_class, value);
3974 }
3975 else {
3976 if (data->start_class->flags & ANYOF_LOCALE)
3977 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3978 for (value = 0; value < 256; value++)
3979 if (!isDIGIT(value))
3980 ANYOF_BITMAP_SET(data->start_class, value);
3981 }
3982 break;
3983 CASE_SYNST_FNC(VERTWS);
3984 CASE_SYNST_FNC(HORIZWS);
3985
3986 }
3987 if (flags & SCF_DO_STCLASS_OR)
3988 cl_and(data->start_class, and_withp);
3989 flags &= ~SCF_DO_STCLASS;
3990 }
3991 }
3992 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3993 data->flags |= (OP(scan) == MEOL
3994 ? SF_BEFORE_MEOL
3995 : SF_BEFORE_SEOL);
3996 }
3997 else if ( PL_regkind[OP(scan)] == BRANCHJ
3998 /* Lookbehind, or need to calculate parens/evals/stclass: */
3999 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4000 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4001 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4002 || OP(scan) == UNLESSM )
4003 {
4004 /* Negative Lookahead/lookbehind
4005 In this case we can't do fixed string optimisation.
4006 */
4007
4008 I32 deltanext, minnext, fake = 0;
4009 regnode *nscan;
4010 struct regnode_charclass_class intrnl;
4011 int f = 0;
4012
4013 data_fake.flags = 0;
4014 if (data) {
4015 data_fake.whilem_c = data->whilem_c;
4016 data_fake.last_closep = data->last_closep;
4017 }
4018 else
4019 data_fake.last_closep = &fake;
4020 data_fake.pos_delta = delta;
4021 if ( flags & SCF_DO_STCLASS && !scan->flags
4022 && OP(scan) == IFMATCH ) { /* Lookahead */
4023 cl_init(pRExC_state, &intrnl);
4024 data_fake.start_class = &intrnl;
4025 f |= SCF_DO_STCLASS_AND;
4026 }
4027 if (flags & SCF_WHILEM_VISITED_POS)
4028 f |= SCF_WHILEM_VISITED_POS;
4029 next = regnext(scan);
4030 nscan = NEXTOPER(NEXTOPER(scan));
4031 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4032 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4033 if (scan->flags) {
4034 if (deltanext) {
4035 FAIL("Variable length lookbehind not implemented");
4036 }
4037 else if (minnext > (I32)U8_MAX) {
4038 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4039 }
4040 scan->flags = (U8)minnext;
4041 }
4042 if (data) {
4043 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4044 pars++;
4045 if (data_fake.flags & SF_HAS_EVAL)
4046 data->flags |= SF_HAS_EVAL;
4047 data->whilem_c = data_fake.whilem_c;
4048 }
4049 if (f & SCF_DO_STCLASS_AND) {
4050 if (flags & SCF_DO_STCLASS_OR) {
4051 /* OR before, AND after: ideally we would recurse with
4052 * data_fake to get the AND applied by study of the
4053 * remainder of the pattern, and then derecurse;
4054 * *** HACK *** for now just treat as "no information".
4055 * See [perl #56690].
4056 */
4057 cl_init(pRExC_state, data->start_class);
4058 } else {
4059 /* AND before and after: combine and continue */
4060 const int was = (data->start_class->flags & ANYOF_EOS);
4061
4062 cl_and(data->start_class, &intrnl);
4063 if (was)
4064 data->start_class->flags |= ANYOF_EOS;
4065 }
4066 }
4067 }
4068#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4069 else {
4070 /* Positive Lookahead/lookbehind
4071 In this case we can do fixed string optimisation,
4072 but we must be careful about it. Note in the case of
4073 lookbehind the positions will be offset by the minimum
4074 length of the pattern, something we won't know about
4075 until after the recurse.
4076 */
4077 I32 deltanext, fake = 0;
4078 regnode *nscan;
4079 struct regnode_charclass_class intrnl;
4080 int f = 0;
4081 /* We use SAVEFREEPV so that when the full compile
4082 is finished perl will clean up the allocated
4083 minlens when it's all done. This way we don't
4084 have to worry about freeing them when we know
4085 they wont be used, which would be a pain.
4086 */
4087 I32 *minnextp;
4088 Newx( minnextp, 1, I32 );
4089 SAVEFREEPV(minnextp);
4090
4091 if (data) {
4092 StructCopy(data, &data_fake, scan_data_t);
4093 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4094 f |= SCF_DO_SUBSTR;
4095 if (scan->flags)
4096 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4097 data_fake.last_found=newSVsv(data->last_found);
4098 }
4099 }
4100 else
4101 data_fake.last_closep = &fake;
4102 data_fake.flags = 0;
4103 data_fake.pos_delta = delta;
4104 if (is_inf)
4105 data_fake.flags |= SF_IS_INF;
4106 if ( flags & SCF_DO_STCLASS && !scan->flags
4107 && OP(scan) == IFMATCH ) { /* Lookahead */
4108 cl_init(pRExC_state, &intrnl);
4109 data_fake.start_class = &intrnl;
4110 f |= SCF_DO_STCLASS_AND;
4111 }
4112 if (flags & SCF_WHILEM_VISITED_POS)
4113 f |= SCF_WHILEM_VISITED_POS;
4114 next = regnext(scan);
4115 nscan = NEXTOPER(NEXTOPER(scan));
4116
4117 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4118 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4119 if (scan->flags) {
4120 if (deltanext) {
4121 FAIL("Variable length lookbehind not implemented");
4122 }
4123 else if (*minnextp > (I32)U8_MAX) {
4124 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4125 }
4126 scan->flags = (U8)*minnextp;
4127 }
4128
4129 *minnextp += min;
4130
4131 if (f & SCF_DO_STCLASS_AND) {
4132 const int was = (data->start_class->flags & ANYOF_EOS);
4133
4134 cl_and(data->start_class, &intrnl);
4135 if (was)
4136 data->start_class->flags |= ANYOF_EOS;
4137 }
4138 if (data) {
4139 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4140 pars++;
4141 if (data_fake.flags & SF_HAS_EVAL)
4142 data->flags |= SF_HAS_EVAL;
4143 data->whilem_c = data_fake.whilem_c;
4144 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4145 if (RExC_rx->minlen<*minnextp)
4146 RExC_rx->minlen=*minnextp;
4147 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4148 SvREFCNT_dec(data_fake.last_found);
4149
4150 if ( data_fake.minlen_fixed != minlenp )
4151 {
4152 data->offset_fixed= data_fake.offset_fixed;
4153 data->minlen_fixed= data_fake.minlen_fixed;
4154 data->lookbehind_fixed+= scan->flags;
4155 }
4156 if ( data_fake.minlen_float != minlenp )
4157 {
4158 data->minlen_float= data_fake.minlen_float;
4159 data->offset_float_min=data_fake.offset_float_min;
4160 data->offset_float_max=data_fake.offset_float_max;
4161 data->lookbehind_float+= scan->flags;
4162 }
4163 }
4164 }
4165
4166
4167 }
4168#endif
4169 }
4170 else if (OP(scan) == OPEN) {
4171 if (stopparen != (I32)ARG(scan))
4172 pars++;
4173 }
4174 else if (OP(scan) == CLOSE) {
4175 if (stopparen == (I32)ARG(scan)) {
4176 break;
4177 }
4178 if ((I32)ARG(scan) == is_par) {
4179 next = regnext(scan);
4180
4181 if ( next && (OP(next) != WHILEM) && next < last)
4182 is_par = 0; /* Disable optimization */
4183 }
4184 if (data)
4185 *(data->last_closep) = ARG(scan);
4186 }
4187 else if (OP(scan) == EVAL) {
4188 if (data)
4189 data->flags |= SF_HAS_EVAL;
4190 }
4191 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4192 if (flags & SCF_DO_SUBSTR) {
4193 SCAN_COMMIT(pRExC_state,data,minlenp);
4194 flags &= ~SCF_DO_SUBSTR;
4195 }
4196 if (data && OP(scan)==ACCEPT) {
4197 data->flags |= SCF_SEEN_ACCEPT;
4198 if (stopmin > min)
4199 stopmin = min;
4200 }
4201 }
4202 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4203 {
4204 if (flags & SCF_DO_SUBSTR) {
4205 SCAN_COMMIT(pRExC_state,data,minlenp);
4206 data->longest = &(data->longest_float);
4207 }
4208 is_inf = is_inf_internal = 1;
4209 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4210 cl_anything(pRExC_state, data->start_class);
4211 flags &= ~SCF_DO_STCLASS;
4212 }
4213 else if (OP(scan) == GPOS) {
4214 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4215 !(delta || is_inf || (data && data->pos_delta)))
4216 {
4217 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4218 RExC_rx->extflags |= RXf_ANCH_GPOS;
4219 if (RExC_rx->gofs < (U32)min)
4220 RExC_rx->gofs = min;
4221 } else {
4222 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4223 RExC_rx->gofs = 0;
4224 }
4225 }
4226#ifdef TRIE_STUDY_OPT
4227#ifdef FULL_TRIE_STUDY
4228 else if (PL_regkind[OP(scan)] == TRIE) {
4229 /* NOTE - There is similar code to this block above for handling
4230 BRANCH nodes on the initial study. If you change stuff here
4231 check there too. */
4232 regnode *trie_node= scan;
4233 regnode *tail= regnext(scan);
4234 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4235 I32 max1 = 0, min1 = I32_MAX;
4236 struct regnode_charclass_class accum;
4237
4238 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4239 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4240 if (flags & SCF_DO_STCLASS)
4241 cl_init_zero(pRExC_state, &accum);
4242
4243 if (!trie->jump) {
4244 min1= trie->minlen;
4245 max1= trie->maxlen;
4246 } else {
4247 const regnode *nextbranch= NULL;
4248 U32 word;
4249
4250 for ( word=1 ; word <= trie->wordcount ; word++)
4251 {
4252 I32 deltanext=0, minnext=0, f = 0, fake;
4253 struct regnode_charclass_class this_class;
4254
4255 data_fake.flags = 0;
4256 if (data) {
4257 data_fake.whilem_c = data->whilem_c;
4258 data_fake.last_closep = data->last_closep;
4259 }
4260 else
4261 data_fake.last_closep = &fake;
4262 data_fake.pos_delta = delta;
4263 if (flags & SCF_DO_STCLASS) {
4264 cl_init(pRExC_state, &this_class);
4265 data_fake.start_class = &this_class;
4266 f = SCF_DO_STCLASS_AND;
4267 }
4268 if (flags & SCF_WHILEM_VISITED_POS)
4269 f |= SCF_WHILEM_VISITED_POS;
4270
4271 if (trie->jump[word]) {
4272 if (!nextbranch)
4273 nextbranch = trie_node + trie->jump[0];
4274 scan= trie_node + trie->jump[word];
4275 /* We go from the jump point to the branch that follows
4276 it. Note this means we need the vestigal unused branches
4277 even though they arent otherwise used.
4278 */
4279 minnext = study_chunk(pRExC_state, &scan, minlenp,
4280 &deltanext, (regnode *)nextbranch, &data_fake,
4281 stopparen, recursed, NULL, f,depth+1);
4282 }
4283 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4284 nextbranch= regnext((regnode*)nextbranch);
4285
4286 if (min1 > (I32)(minnext + trie->minlen))
4287 min1 = minnext + trie->minlen;
4288 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4289 max1 = minnext + deltanext + trie->maxlen;
4290 if (deltanext == I32_MAX)
4291 is_inf = is_inf_internal = 1;
4292
4293 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4294 pars++;
4295 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4296 if ( stopmin > min + min1)
4297 stopmin = min + min1;
4298 flags &= ~SCF_DO_SUBSTR;
4299 if (data)
4300 data->flags |= SCF_SEEN_ACCEPT;
4301 }
4302 if (data) {
4303 if (data_fake.flags & SF_HAS_EVAL)
4304 data->flags |= SF_HAS_EVAL;
4305 data->whilem_c = data_fake.whilem_c;
4306 }
4307 if (flags & SCF_DO_STCLASS)
4308 cl_or(pRExC_state, &accum, &this_class);
4309 }
4310 }
4311 if (flags & SCF_DO_SUBSTR) {
4312 data->pos_min += min1;
4313 data->pos_delta += max1 - min1;
4314 if (max1 != min1 || is_inf)
4315 data->longest = &(data->longest_float);
4316 }
4317 min += min1;
4318 delta += max1 - min1;
4319 if (flags & SCF_DO_STCLASS_OR) {
4320 cl_or(pRExC_state, data->start_class, &accum);
4321 if (min1) {
4322 cl_and(data->start_class, and_withp);
4323 flags &= ~SCF_DO_STCLASS;
4324 }
4325 }
4326 else if (flags & SCF_DO_STCLASS_AND) {
4327 if (min1) {
4328 cl_and(data->start_class, &accum);
4329 flags &= ~SCF_DO_STCLASS;
4330 }
4331 else {
4332 /* Switch to OR mode: cache the old value of
4333 * data->start_class */
4334 INIT_AND_WITHP;
4335 StructCopy(data->start_class, and_withp,
4336 struct regnode_charclass_class);
4337 flags &= ~SCF_DO_STCLASS_AND;
4338 StructCopy(&accum, data->start_class,
4339 struct regnode_charclass_class);
4340 flags |= SCF_DO_STCLASS_OR;
4341 data->start_class->flags |= ANYOF_EOS;
4342 }
4343 }
4344 scan= tail;
4345 continue;
4346 }
4347#else
4348 else if (PL_regkind[OP(scan)] == TRIE) {
4349 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4350 U8*bang=NULL;
4351
4352 min += trie->minlen;
4353 delta += (trie->maxlen - trie->minlen);
4354 flags &= ~SCF_DO_STCLASS; /* xxx */
4355 if (flags & SCF_DO_SUBSTR) {
4356 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4357 data->pos_min += trie->minlen;
4358 data->pos_delta += (trie->maxlen - trie->minlen);
4359 if (trie->maxlen != trie->minlen)
4360 data->longest = &(data->longest_float);
4361 }
4362 if (trie->jump) /* no more substrings -- for now /grr*/
4363 flags &= ~SCF_DO_SUBSTR;
4364 }
4365#endif /* old or new */
4366#endif /* TRIE_STUDY_OPT */
4367
4368 /* Else: zero-length, ignore. */
4369 scan = regnext(scan);
4370 }
4371 if (frame) {
4372 last = frame->last;
4373 scan = frame->next;
4374 stopparen = frame->stop;
4375 frame = frame->prev;
4376 goto fake_study_recurse;
4377 }
4378
4379 finish:
4380 assert(!frame);
4381 DEBUG_STUDYDATA("pre-fin:",data,depth);
4382
4383 *scanp = scan;
4384 *deltap = is_inf_internal ? I32_MAX : delta;
4385 if (flags & SCF_DO_SUBSTR && is_inf)
4386 data->pos_delta = I32_MAX - data->pos_min;
4387 if (is_par > (I32)U8_MAX)
4388 is_par = 0;
4389 if (is_par && pars==1 && data) {
4390 data->flags |= SF_IN_PAR;
4391 data->flags &= ~SF_HAS_PAR;
4392 }
4393 else if (pars && data) {
4394 data->flags |= SF_HAS_PAR;
4395 data->flags &= ~SF_IN_PAR;
4396 }
4397 if (flags & SCF_DO_STCLASS_OR)
4398 cl_and(data->start_class, and_withp);
4399 if (flags & SCF_TRIE_RESTUDY)
4400 data->flags |= SCF_TRIE_RESTUDY;
4401
4402 DEBUG_STUDYDATA("post-fin:",data,depth);
4403
4404 return min < stopmin ? min : stopmin;
4405}
4406
4407STATIC U32
4408S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4409{
4410 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4411
4412 PERL_ARGS_ASSERT_ADD_DATA;
4413
4414 Renewc(RExC_rxi->data,
4415 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4416 char, struct reg_data);
4417 if(count)
4418 Renew(RExC_rxi->data->what, count + n, U8);
4419 else
4420 Newx(RExC_rxi->data->what, n, U8);
4421 RExC_rxi->data->count = count + n;
4422 Copy(s, RExC_rxi->data->what + count, n, U8);
4423 return count;
4424}
4425
4426/*XXX: todo make this not included in a non debugging perl */
4427#ifndef PERL_IN_XSUB_RE
4428void
4429Perl_reginitcolors(pTHX)
4430{
4431 dVAR;
4432 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4433 if (s) {
4434 char *t = savepv(s);
4435 int i = 0;
4436 PL_colors[0] = t;
4437 while (++i < 6) {
4438 t = strchr(t, '\t');
4439 if (t) {
4440 *t = '\0';
4441 PL_colors[i] = ++t;
4442 }
4443 else
4444 PL_colors[i] = t = (char *)"";
4445 }
4446 } else {
4447 int i = 0;
4448 while (i < 6)
4449 PL_colors[i++] = (char *)"";
4450 }
4451 PL_colorset = 1;
4452}
4453#endif
4454
4455
4456#ifdef TRIE_STUDY_OPT
4457#define CHECK_RESTUDY_GOTO \
4458 if ( \
4459 (data.flags & SCF_TRIE_RESTUDY) \
4460 && ! restudied++ \
4461 ) goto reStudy
4462#else
4463#define CHECK_RESTUDY_GOTO
4464#endif
4465
4466/*
4467 - pregcomp - compile a regular expression into internal code
4468 *
4469 * We can't allocate space until we know how big the compiled form will be,
4470 * but we can't compile it (and thus know how big it is) until we've got a
4471 * place to put the code. So we cheat: we compile it twice, once with code
4472 * generation turned off and size counting turned on, and once "for real".
4473 * This also means that we don't allocate space until we are sure that the
4474 * thing really will compile successfully, and we never have to move the
4475 * code and thus invalidate pointers into it. (Note that it has to be in
4476 * one piece because free() must be able to free it all.) [NB: not true in perl]
4477 *
4478 * Beware that the optimization-preparation code in here knows about some
4479 * of the structure of the compiled regexp. [I'll say.]
4480 */
4481
4482
4483
4484#ifndef PERL_IN_XSUB_RE
4485#define RE_ENGINE_PTR &PL_core_reg_engine
4486#else
4487extern const struct regexp_engine my_reg_engine;
4488#define RE_ENGINE_PTR &my_reg_engine
4489#endif
4490
4491#ifndef PERL_IN_XSUB_RE
4492REGEXP *
4493Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4494{
4495 dVAR;
4496 HV * const table = GvHV(PL_hintgv);
4497
4498 PERL_ARGS_ASSERT_PREGCOMP;
4499
4500 /* Dispatch a request to compile a regexp to correct
4501 regexp engine. */
4502 if (table) {
4503 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4504 GET_RE_DEBUG_FLAGS_DECL;
4505 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4506 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4507 DEBUG_COMPILE_r({
4508 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4509 SvIV(*ptr));
4510 });
4511 return CALLREGCOMP_ENG(eng, pattern, flags);
4512 }
4513 }
4514 return Perl_re_compile(aTHX_ pattern, flags);
4515}
4516#endif
4517
4518REGEXP *
4519Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4520{
4521 dVAR;
4522 REGEXP *rx;
4523 struct regexp *r;
4524 register regexp_internal *ri;
4525 STRLEN plen;
4526 char *exp;
4527 char* xend;
4528 regnode *scan;
4529 I32 flags;
4530 I32 minlen = 0;
4531 U32 pm_flags;
4532
4533 /* these are all flags - maybe they should be turned
4534 * into a single int with different bit masks */
4535 I32 sawlookahead = 0;
4536 I32 sawplus = 0;
4537 I32 sawopen = 0;
4538 bool used_setjump = FALSE;
4539 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4540
4541 U8 jump_ret = 0;
4542 dJMPENV;
4543 scan_data_t data;
4544 RExC_state_t RExC_state;
4545 RExC_state_t * const pRExC_state = &RExC_state;
4546#ifdef TRIE_STUDY_OPT
4547 int restudied;
4548 RExC_state_t copyRExC_state;
4549#endif
4550 GET_RE_DEBUG_FLAGS_DECL;
4551
4552 PERL_ARGS_ASSERT_RE_COMPILE;
4553
4554 DEBUG_r(if (!PL_colorset) reginitcolors());
4555
4556 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4557 RExC_uni_semantics = 0;
4558 RExC_contains_locale = 0;
4559
4560 /****************** LONG JUMP TARGET HERE***********************/
4561 /* Longjmp back to here if have to switch in midstream to utf8 */
4562 if (! RExC_orig_utf8) {
4563 JMPENV_PUSH(jump_ret);
4564 used_setjump = TRUE;
4565 }
4566
4567 if (jump_ret == 0) { /* First time through */
4568 exp = SvPV(pattern, plen);
4569 xend = exp + plen;
4570 /* ignore the utf8ness if the pattern is 0 length */
4571 if (plen == 0) {
4572 RExC_utf8 = RExC_orig_utf8 = 0;
4573 }
4574
4575 DEBUG_COMPILE_r({
4576 SV *dsv= sv_newmortal();
4577 RE_PV_QUOTED_DECL(s, RExC_utf8,
4578 dsv, exp, plen, 60);
4579 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4580 PL_colors[4],PL_colors[5],s);
4581 });
4582 }
4583 else { /* longjumped back */
4584 STRLEN len = plen;
4585
4586 /* If the cause for the longjmp was other than changing to utf8, pop
4587 * our own setjmp, and longjmp to the correct handler */
4588 if (jump_ret != UTF8_LONGJMP) {
4589 JMPENV_POP;
4590 JMPENV_JUMP(jump_ret);
4591 }
4592
4593 GET_RE_DEBUG_FLAGS;
4594
4595 /* It's possible to write a regexp in ascii that represents Unicode
4596 codepoints outside of the byte range, such as via \x{100}. If we
4597 detect such a sequence we have to convert the entire pattern to utf8
4598 and then recompile, as our sizing calculation will have been based
4599 on 1 byte == 1 character, but we will need to use utf8 to encode
4600 at least some part of the pattern, and therefore must convert the whole
4601 thing.
4602 -- dmq */
4603 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4604 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4605 exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
4606 xend = exp + len;
4607 RExC_orig_utf8 = RExC_utf8 = 1;
4608 SAVEFREEPV(exp);
4609 }
4610
4611#ifdef TRIE_STUDY_OPT
4612 restudied = 0;
4613#endif
4614
4615 pm_flags = orig_pm_flags;
4616
4617 if (initial_charset == REGEX_LOCALE_CHARSET) {
4618 RExC_contains_locale = 1;
4619 }
4620 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4621
4622 /* Set to use unicode semantics if the pattern is in utf8 and has the
4623 * 'depends' charset specified, as it means unicode when utf8 */
4624 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4625 }
4626
4627 RExC_precomp = exp;
4628 RExC_flags = pm_flags;
4629 RExC_sawback = 0;
4630
4631 RExC_seen = 0;
4632 RExC_in_lookbehind = 0;
4633 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4634 RExC_seen_evals = 0;
4635 RExC_extralen = 0;
4636 RExC_override_recoding = 0;
4637
4638 /* First pass: determine size, legality. */
4639 RExC_parse = exp;
4640 RExC_start = exp;
4641 RExC_end = xend;
4642 RExC_naughty = 0;
4643 RExC_npar = 1;
4644 RExC_nestroot = 0;
4645 RExC_size = 0L;
4646 RExC_emit = &PL_regdummy;
4647 RExC_whilem_seen = 0;
4648 RExC_open_parens = NULL;
4649 RExC_close_parens = NULL;
4650 RExC_opend = NULL;
4651 RExC_paren_names = NULL;
4652#ifdef DEBUGGING
4653 RExC_paren_name_list = NULL;
4654#endif
4655 RExC_recurse = NULL;
4656 RExC_recurse_count = 0;
4657
4658#if 0 /* REGC() is (currently) a NOP at the first pass.
4659 * Clever compilers notice this and complain. --jhi */
4660 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4661#endif
4662 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4663 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4664 RExC_precomp = NULL;
4665 return(NULL);
4666 }
4667
4668 /* Here, finished first pass. Get rid of any added setjmp */
4669 if (used_setjump) {
4670 JMPENV_POP;
4671 }
4672
4673 DEBUG_PARSE_r({
4674 PerlIO_printf(Perl_debug_log,
4675 "Required size %"IVdf" nodes\n"
4676 "Starting second pass (creation)\n",
4677 (IV)RExC_size);
4678 RExC_lastnum=0;
4679 RExC_lastparse=NULL;
4680 });
4681
4682 /* The first pass could have found things that force Unicode semantics */
4683 if ((RExC_utf8 || RExC_uni_semantics)
4684 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4685 {
4686 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4687 }
4688
4689 /* Small enough for pointer-storage convention?
4690 If extralen==0, this means that we will not need long jumps. */
4691 if (RExC_size >= 0x10000L && RExC_extralen)
4692 RExC_size += RExC_extralen;
4693 else
4694 RExC_extralen = 0;
4695 if (RExC_whilem_seen > 15)
4696 RExC_whilem_seen = 15;
4697
4698 /* Allocate space and zero-initialize. Note, the two step process
4699 of zeroing when in debug mode, thus anything assigned has to
4700 happen after that */
4701 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4702 r = (struct regexp*)SvANY(rx);
4703 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4704 char, regexp_internal);
4705 if ( r == NULL || ri == NULL )
4706 FAIL("Regexp out of space");
4707#ifdef DEBUGGING
4708 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4709 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4710#else
4711 /* bulk initialize base fields with 0. */
4712 Zero(ri, sizeof(regexp_internal), char);
4713#endif
4714
4715 /* non-zero initialization begins here */
4716 RXi_SET( r, ri );
4717 r->engine= RE_ENGINE_PTR;
4718 r->extflags = pm_flags;
4719 {
4720 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4721 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4722
4723 /* The caret is output if there are any defaults: if not all the STD
4724 * flags are set, or if no character set specifier is needed */
4725 bool has_default =
4726 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4727 || ! has_charset);
4728 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4729 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4730 >> RXf_PMf_STD_PMMOD_SHIFT);
4731 const char *fptr = STD_PAT_MODS; /*"msix"*/
4732 char *p;
4733 /* Allocate for the worst case, which is all the std flags are turned
4734 * on. If more precision is desired, we could do a population count of
4735 * the flags set. This could be done with a small lookup table, or by
4736 * shifting, masking and adding, or even, when available, assembly
4737 * language for a machine-language population count.
4738 * We never output a minus, as all those are defaults, so are
4739 * covered by the caret */
4740 const STRLEN wraplen = plen + has_p + has_runon
4741 + has_default /* If needs a caret */
4742
4743 /* If needs a character set specifier */
4744 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4745 + (sizeof(STD_PAT_MODS) - 1)
4746 + (sizeof("(?:)") - 1);
4747
4748 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4749 SvPOK_on(rx);
4750 SvFLAGS(rx) |= SvUTF8(pattern);
4751 *p++='('; *p++='?';
4752
4753 /* If a default, cover it using the caret */
4754 if (has_default) {
4755 *p++= DEFAULT_PAT_MOD;
4756 }
4757 if (has_charset) {
4758 STRLEN len;
4759 const char* const name = get_regex_charset_name(r->extflags, &len);
4760 Copy(name, p, len, char);
4761 p += len;
4762 }
4763 if (has_p)
4764 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4765 {
4766 char ch;
4767 while((ch = *fptr++)) {
4768 if(reganch & 1)
4769 *p++ = ch;
4770 reganch >>= 1;
4771 }
4772 }
4773
4774 *p++ = ':';
4775 Copy(RExC_precomp, p, plen, char);
4776 assert ((RX_WRAPPED(rx) - p) < 16);
4777 r->pre_prefix = p - RX_WRAPPED(rx);
4778 p += plen;
4779 if (has_runon)
4780 *p++ = '\n';
4781 *p++ = ')';
4782 *p = 0;
4783 SvCUR_set(rx, p - SvPVX_const(rx));
4784 }
4785
4786 r->intflags = 0;
4787 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4788
4789 if (RExC_seen & REG_SEEN_RECURSE) {
4790 Newxz(RExC_open_parens, RExC_npar,regnode *);
4791 SAVEFREEPV(RExC_open_parens);
4792 Newxz(RExC_close_parens,RExC_npar,regnode *);
4793 SAVEFREEPV(RExC_close_parens);
4794 }
4795
4796 /* Useful during FAIL. */
4797#ifdef RE_TRACK_PATTERN_OFFSETS
4798 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4799 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4800 "%s %"UVuf" bytes for offset annotations.\n",
4801 ri->u.offsets ? "Got" : "Couldn't get",
4802 (UV)((2*RExC_size+1) * sizeof(U32))));
4803#endif
4804 SetProgLen(ri,RExC_size);
4805 RExC_rx_sv = rx;
4806 RExC_rx = r;
4807 RExC_rxi = ri;
4808
4809 /* Second pass: emit code. */
4810 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4811 RExC_parse = exp;
4812 RExC_end = xend;
4813 RExC_naughty = 0;
4814 RExC_npar = 1;
4815 RExC_emit_start = ri->program;
4816 RExC_emit = ri->program;
4817 RExC_emit_bound = ri->program + RExC_size + 1;
4818
4819 /* Store the count of eval-groups for security checks: */
4820 RExC_rx->seen_evals = RExC_seen_evals;
4821 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4822 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4823 ReREFCNT_dec(rx);
4824 return(NULL);
4825 }
4826 /* XXXX To minimize changes to RE engine we always allocate
4827 3-units-long substrs field. */
4828 Newx(r->substrs, 1, struct reg_substr_data);
4829 if (RExC_recurse_count) {
4830 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4831 SAVEFREEPV(RExC_recurse);
4832 }
4833
4834reStudy:
4835 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4836 Zero(r->substrs, 1, struct reg_substr_data);
4837
4838#ifdef TRIE_STUDY_OPT
4839 if (!restudied) {
4840 StructCopy(&zero_scan_data, &data, scan_data_t);
4841 copyRExC_state = RExC_state;
4842 } else {
4843 U32 seen=RExC_seen;
4844 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4845
4846 RExC_state = copyRExC_state;
4847 if (seen & REG_TOP_LEVEL_BRANCHES)
4848 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4849 else
4850 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4851 if (data.last_found) {
4852 SvREFCNT_dec(data.longest_fixed);
4853 SvREFCNT_dec(data.longest_float);
4854 SvREFCNT_dec(data.last_found);
4855 }
4856 StructCopy(&zero_scan_data, &data, scan_data_t);
4857 }
4858#else
4859 StructCopy(&zero_scan_data, &data, scan_data_t);
4860#endif
4861
4862 /* Dig out information for optimizations. */
4863 r->extflags = RExC_flags; /* was pm_op */
4864 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4865
4866 if (UTF)
4867 SvUTF8_on(rx); /* Unicode in it? */
4868 ri->regstclass = NULL;
4869 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4870 r->intflags |= PREGf_NAUGHTY;
4871 scan = ri->program + 1; /* First BRANCH. */
4872
4873 /* testing for BRANCH here tells us whether there is "must appear"
4874 data in the pattern. If there is then we can use it for optimisations */
4875 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4876 I32 fake;
4877 STRLEN longest_float_length, longest_fixed_length;
4878 struct regnode_charclass_class ch_class; /* pointed to by data */
4879 int stclass_flag;
4880 I32 last_close = 0; /* pointed to by data */
4881 regnode *first= scan;
4882 regnode *first_next= regnext(first);
4883 /*
4884 * Skip introductions and multiplicators >= 1
4885 * so that we can extract the 'meat' of the pattern that must
4886 * match in the large if() sequence following.
4887 * NOTE that EXACT is NOT covered here, as it is normally
4888 * picked up by the optimiser separately.
4889 *
4890 * This is unfortunate as the optimiser isnt handling lookahead
4891 * properly currently.
4892 *
4893 */
4894 while ((OP(first) == OPEN && (sawopen = 1)) ||
4895 /* An OR of *one* alternative - should not happen now. */
4896 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4897 /* for now we can't handle lookbehind IFMATCH*/
4898 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4899 (OP(first) == PLUS) ||
4900 (OP(first) == MINMOD) ||
4901 /* An {n,m} with n>0 */
4902 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4903 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4904 {
4905 /*
4906 * the only op that could be a regnode is PLUS, all the rest
4907 * will be regnode_1 or regnode_2.
4908 *
4909 */
4910 if (OP(first) == PLUS)
4911 sawplus = 1;
4912 else
4913 first += regarglen[OP(first)];
4914
4915 first = NEXTOPER(first);
4916 first_next= regnext(first);
4917 }
4918
4919 /* Starting-point info. */
4920 again:
4921 DEBUG_PEEP("first:",first,0);
4922 /* Ignore EXACT as we deal with it later. */
4923 if (PL_regkind[OP(first)] == EXACT) {
4924 if (OP(first) == EXACT)
4925 NOOP; /* Empty, get anchored substr later. */
4926 else
4927 ri->regstclass = first;
4928 }
4929#ifdef TRIE_STCLASS
4930 else if (PL_regkind[OP(first)] == TRIE &&
4931 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4932 {
4933 regnode *trie_op;
4934 /* this can happen only on restudy */
4935 if ( OP(first) == TRIE ) {
4936 struct regnode_1 *trieop = (struct regnode_1 *)
4937 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4938 StructCopy(first,trieop,struct regnode_1);
4939 trie_op=(regnode *)trieop;
4940 } else {
4941 struct regnode_charclass *trieop = (struct regnode_charclass *)
4942 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4943 StructCopy(first,trieop,struct regnode_charclass);
4944 trie_op=(regnode *)trieop;
4945 }
4946 OP(trie_op)+=2;
4947 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4948 ri->regstclass = trie_op;
4949 }
4950#endif
4951 else if (REGNODE_SIMPLE(OP(first)))
4952 ri->regstclass = first;
4953 else if (PL_regkind[OP(first)] == BOUND ||
4954 PL_regkind[OP(first)] == NBOUND)
4955 ri->regstclass = first;
4956 else if (PL_regkind[OP(first)] == BOL) {
4957 r->extflags |= (OP(first) == MBOL
4958 ? RXf_ANCH_MBOL
4959 : (OP(first) == SBOL
4960 ? RXf_ANCH_SBOL
4961 : RXf_ANCH_BOL));
4962 first = NEXTOPER(first);
4963 goto again;
4964 }
4965 else if (OP(first) == GPOS) {
4966 r->extflags |= RXf_ANCH_GPOS;
4967 first = NEXTOPER(first);
4968 goto again;
4969 }
4970 else if ((!sawopen || !RExC_sawback) &&
4971 (OP(first) == STAR &&
4972 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4973 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4974 {
4975 /* turn .* into ^.* with an implied $*=1 */
4976 const int type =
4977 (OP(NEXTOPER(first)) == REG_ANY)
4978 ? RXf_ANCH_MBOL
4979 : RXf_ANCH_SBOL;
4980 r->extflags |= type;
4981 r->intflags |= PREGf_IMPLICIT;
4982 first = NEXTOPER(first);
4983 goto again;
4984 }
4985 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4986 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4987 /* x+ must match at the 1st pos of run of x's */
4988 r->intflags |= PREGf_SKIP;
4989
4990 /* Scan is after the zeroth branch, first is atomic matcher. */
4991#ifdef TRIE_STUDY_OPT
4992 DEBUG_PARSE_r(
4993 if (!restudied)
4994 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
4995 (IV)(first - scan + 1))
4996 );
4997#else
4998 DEBUG_PARSE_r(
4999 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5000 (IV)(first - scan + 1))
5001 );
5002#endif
5003
5004
5005 /*
5006 * If there's something expensive in the r.e., find the
5007 * longest literal string that must appear and make it the
5008 * regmust. Resolve ties in favor of later strings, since
5009 * the regstart check works with the beginning of the r.e.
5010 * and avoiding duplication strengthens checking. Not a
5011 * strong reason, but sufficient in the absence of others.
5012 * [Now we resolve ties in favor of the earlier string if
5013 * it happens that c_offset_min has been invalidated, since the
5014 * earlier string may buy us something the later one won't.]
5015 */
5016
5017 data.longest_fixed = newSVpvs("");
5018 data.longest_float = newSVpvs("");
5019 data.last_found = newSVpvs("");
5020 data.longest = &(data.longest_fixed);
5021 first = scan;
5022 if (!ri->regstclass) {
5023 cl_init(pRExC_state, &ch_class);
5024 data.start_class = &ch_class;
5025 stclass_flag = SCF_DO_STCLASS_AND;
5026 } else /* XXXX Check for BOUND? */
5027 stclass_flag = 0;
5028 data.last_closep = &last_close;
5029
5030 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5031 &data, -1, NULL, NULL,
5032 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5033
5034
5035 CHECK_RESTUDY_GOTO;
5036
5037
5038 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5039 && data.last_start_min == 0 && data.last_end > 0
5040 && !RExC_seen_zerolen
5041 && !(RExC_seen & REG_SEEN_VERBARG)
5042 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5043 r->extflags |= RXf_CHECK_ALL;
5044 scan_commit(pRExC_state, &data,&minlen,0);
5045 SvREFCNT_dec(data.last_found);
5046
5047 /* Note that code very similar to this but for anchored string
5048 follows immediately below, changes may need to be made to both.
5049 Be careful.
5050 */
5051 longest_float_length = CHR_SVLEN(data.longest_float);
5052 if (longest_float_length
5053 || (data.flags & SF_FL_BEFORE_EOL
5054 && (!(data.flags & SF_FL_BEFORE_MEOL)
5055 || (RExC_flags & RXf_PMf_MULTILINE))))
5056 {
5057 I32 t,ml;
5058
5059 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5060 && data.offset_fixed == data.offset_float_min
5061 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5062 goto remove_float; /* As in (a)+. */
5063
5064 /* copy the information about the longest float from the reg_scan_data
5065 over to the program. */
5066 if (SvUTF8(data.longest_float)) {
5067 r->float_utf8 = data.longest_float;
5068 r->float_substr = NULL;
5069 } else {
5070 r->float_substr = data.longest_float;
5071 r->float_utf8 = NULL;
5072 }
5073 /* float_end_shift is how many chars that must be matched that
5074 follow this item. We calculate it ahead of time as once the
5075 lookbehind offset is added in we lose the ability to correctly
5076 calculate it.*/
5077 ml = data.minlen_float ? *(data.minlen_float)
5078 : (I32)longest_float_length;
5079 r->float_end_shift = ml - data.offset_float_min
5080 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5081 + data.lookbehind_float;
5082 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5083 r->float_max_offset = data.offset_float_max;
5084 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5085 r->float_max_offset -= data.lookbehind_float;
5086
5087 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5088 && (!(data.flags & SF_FL_BEFORE_MEOL)
5089 || (RExC_flags & RXf_PMf_MULTILINE)));
5090 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5091 }
5092 else {
5093 remove_float:
5094 r->float_substr = r->float_utf8 = NULL;
5095 SvREFCNT_dec(data.longest_float);
5096 longest_float_length = 0;
5097 }
5098
5099 /* Note that code very similar to this but for floating string
5100 is immediately above, changes may need to be made to both.
5101 Be careful.
5102 */
5103 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5104 if (longest_fixed_length
5105 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5106 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5107 || (RExC_flags & RXf_PMf_MULTILINE))))
5108 {
5109 I32 t,ml;
5110
5111 /* copy the information about the longest fixed
5112 from the reg_scan_data over to the program. */
5113 if (SvUTF8(data.longest_fixed)) {
5114 r->anchored_utf8 = data.longest_fixed;
5115 r->anchored_substr = NULL;
5116 } else {
5117 r->anchored_substr = data.longest_fixed;
5118 r->anchored_utf8 = NULL;
5119 }
5120 /* fixed_end_shift is how many chars that must be matched that
5121 follow this item. We calculate it ahead of time as once the
5122 lookbehind offset is added in we lose the ability to correctly
5123 calculate it.*/
5124 ml = data.minlen_fixed ? *(data.minlen_fixed)
5125 : (I32)longest_fixed_length;
5126 r->anchored_end_shift = ml - data.offset_fixed
5127 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5128 + data.lookbehind_fixed;
5129 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5130
5131 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5132 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5133 || (RExC_flags & RXf_PMf_MULTILINE)));
5134 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5135 }
5136 else {
5137 r->anchored_substr = r->anchored_utf8 = NULL;
5138 SvREFCNT_dec(data.longest_fixed);
5139 longest_fixed_length = 0;
5140 }
5141 if (ri->regstclass
5142 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5143 ri->regstclass = NULL;
5144
5145 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5146 && stclass_flag
5147 && !(data.start_class->flags & ANYOF_EOS)
5148 && !cl_is_anything(data.start_class))
5149 {
5150 const U32 n = add_data(pRExC_state, 1, "f");
5151 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5152
5153 Newx(RExC_rxi->data->data[n], 1,
5154 struct regnode_charclass_class);
5155 StructCopy(data.start_class,
5156 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5157 struct regnode_charclass_class);
5158 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5159 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5160 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5161 regprop(r, sv, (regnode*)data.start_class);
5162 PerlIO_printf(Perl_debug_log,
5163 "synthetic stclass \"%s\".\n",
5164 SvPVX_const(sv));});
5165 }
5166
5167 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5168 if (longest_fixed_length > longest_float_length) {
5169 r->check_end_shift = r->anchored_end_shift;
5170 r->check_substr = r->anchored_substr;
5171 r->check_utf8 = r->anchored_utf8;
5172 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5173 if (r->extflags & RXf_ANCH_SINGLE)
5174 r->extflags |= RXf_NOSCAN;
5175 }
5176 else {
5177 r->check_end_shift = r->float_end_shift;
5178 r->check_substr = r->float_substr;
5179 r->check_utf8 = r->float_utf8;
5180 r->check_offset_min = r->float_min_offset;
5181 r->check_offset_max = r->float_max_offset;
5182 }
5183 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5184 This should be changed ASAP! */
5185 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5186 r->extflags |= RXf_USE_INTUIT;
5187 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5188 r->extflags |= RXf_INTUIT_TAIL;
5189 }
5190 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5191 if ( (STRLEN)minlen < longest_float_length )
5192 minlen= longest_float_length;
5193 if ( (STRLEN)minlen < longest_fixed_length )
5194 minlen= longest_fixed_length;
5195 */
5196 }
5197 else {
5198 /* Several toplevels. Best we can is to set minlen. */
5199 I32 fake;
5200 struct regnode_charclass_class ch_class;
5201 I32 last_close = 0;
5202
5203 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5204
5205 scan = ri->program + 1;
5206 cl_init(pRExC_state, &ch_class);
5207 data.start_class = &ch_class;
5208 data.last_closep = &last_close;
5209
5210
5211 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5212 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5213
5214 CHECK_RESTUDY_GOTO;
5215
5216 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5217 = r->float_substr = r->float_utf8 = NULL;
5218
5219 if (!(data.start_class->flags & ANYOF_EOS)
5220 && !cl_is_anything(data.start_class))
5221 {
5222 const U32 n = add_data(pRExC_state, 1, "f");
5223 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5224
5225 Newx(RExC_rxi->data->data[n], 1,
5226 struct regnode_charclass_class);
5227 StructCopy(data.start_class,
5228 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5229 struct regnode_charclass_class);
5230 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5231 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5232 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5233 regprop(r, sv, (regnode*)data.start_class);
5234 PerlIO_printf(Perl_debug_log,
5235 "synthetic stclass \"%s\".\n",
5236 SvPVX_const(sv));});
5237 }
5238 }
5239
5240 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5241 the "real" pattern. */
5242 DEBUG_OPTIMISE_r({
5243 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5244 (IV)minlen, (IV)r->minlen);
5245 });
5246 r->minlenret = minlen;
5247 if (r->minlen < minlen)
5248 r->minlen = minlen;
5249
5250 if (RExC_seen & REG_SEEN_GPOS)
5251 r->extflags |= RXf_GPOS_SEEN;
5252 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5253 r->extflags |= RXf_LOOKBEHIND_SEEN;
5254 if (RExC_seen & REG_SEEN_EVAL)
5255 r->extflags |= RXf_EVAL_SEEN;
5256 if (RExC_seen & REG_SEEN_CANY)
5257 r->extflags |= RXf_CANY_SEEN;
5258 if (RExC_seen & REG_SEEN_VERBARG)
5259 r->intflags |= PREGf_VERBARG_SEEN;
5260 if (RExC_seen & REG_SEEN_CUTGROUP)
5261 r->intflags |= PREGf_CUTGROUP_SEEN;
5262 if (RExC_paren_names)
5263 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5264 else
5265 RXp_PAREN_NAMES(r) = NULL;
5266
5267#ifdef STUPID_PATTERN_CHECKS
5268 if (RX_PRELEN(rx) == 0)
5269 r->extflags |= RXf_NULL;
5270 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5271 /* XXX: this should happen BEFORE we compile */
5272 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5273 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5274 r->extflags |= RXf_WHITE;
5275 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5276 r->extflags |= RXf_START_ONLY;
5277#else
5278 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5279 /* XXX: this should happen BEFORE we compile */
5280 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5281 else {
5282 regnode *first = ri->program + 1;
5283 U8 fop = OP(first);
5284
5285 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5286 r->extflags |= RXf_NULL;
5287 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5288 r->extflags |= RXf_START_ONLY;
5289 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5290 && OP(regnext(first)) == END)
5291 r->extflags |= RXf_WHITE;
5292 }
5293#endif
5294#ifdef DEBUGGING
5295 if (RExC_paren_names) {
5296 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5297 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5298 } else
5299#endif
5300 ri->name_list_idx = 0;
5301
5302 if (RExC_recurse_count) {
5303 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5304 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5305 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5306 }
5307 }
5308 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5309 /* assume we don't need to swap parens around before we match */
5310
5311 DEBUG_DUMP_r({
5312 PerlIO_printf(Perl_debug_log,"Final program:\n");
5313 regdump(r);
5314 });
5315#ifdef RE_TRACK_PATTERN_OFFSETS
5316 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5317 const U32 len = ri->u.offsets[0];
5318 U32 i;
5319 GET_RE_DEBUG_FLAGS_DECL;
5320 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5321 for (i = 1; i <= len; i++) {
5322 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5323 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5324 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5325 }
5326 PerlIO_printf(Perl_debug_log, "\n");
5327 });
5328#endif
5329 return rx;
5330}
5331
5332#undef RE_ENGINE_PTR
5333
5334
5335SV*
5336Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5337 const U32 flags)
5338{
5339 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5340
5341 PERL_UNUSED_ARG(value);
5342
5343 if (flags & RXapif_FETCH) {
5344 return reg_named_buff_fetch(rx, key, flags);
5345 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5346 Perl_croak_no_modify(aTHX);
5347 return NULL;
5348 } else if (flags & RXapif_EXISTS) {
5349 return reg_named_buff_exists(rx, key, flags)
5350 ? &PL_sv_yes
5351 : &PL_sv_no;
5352 } else if (flags & RXapif_REGNAMES) {
5353 return reg_named_buff_all(rx, flags);
5354 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5355 return reg_named_buff_scalar(rx, flags);
5356 } else {
5357 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5358 return NULL;
5359 }
5360}
5361
5362SV*
5363Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5364 const U32 flags)
5365{
5366 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5367 PERL_UNUSED_ARG(lastkey);
5368
5369 if (flags & RXapif_FIRSTKEY)
5370 return reg_named_buff_firstkey(rx, flags);
5371 else if (flags & RXapif_NEXTKEY)
5372 return reg_named_buff_nextkey(rx, flags);
5373 else {
5374 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5375 return NULL;
5376 }
5377}
5378
5379SV*
5380Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5381 const U32 flags)
5382{
5383 AV *retarray = NULL;
5384 SV *ret;
5385 struct regexp *const rx = (struct regexp *)SvANY(r);
5386
5387 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5388
5389 if (flags & RXapif_ALL)
5390 retarray=newAV();
5391
5392 if (rx && RXp_PAREN_NAMES(rx)) {
5393 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5394 if (he_str) {
5395 IV i;
5396 SV* sv_dat=HeVAL(he_str);
5397 I32 *nums=(I32*)SvPVX(sv_dat);
5398 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5399 if ((I32)(rx->nparens) >= nums[i]
5400 && rx->offs[nums[i]].start != -1
5401 && rx->offs[nums[i]].end != -1)
5402 {
5403 ret = newSVpvs("");
5404 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5405 if (!retarray)
5406 return ret;
5407 } else {
5408 ret = newSVsv(&PL_sv_undef);
5409 }
5410 if (retarray)
5411 av_push(retarray, ret);
5412 }
5413 if (retarray)
5414 return newRV_noinc(MUTABLE_SV(retarray));
5415 }
5416 }
5417 return NULL;
5418}
5419
5420bool
5421Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5422 const U32 flags)
5423{
5424 struct regexp *const rx = (struct regexp *)SvANY(r);
5425
5426 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5427
5428 if (rx && RXp_PAREN_NAMES(rx)) {
5429 if (flags & RXapif_ALL) {
5430 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5431 } else {
5432 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5433 if (sv) {
5434 SvREFCNT_dec(sv);
5435 return TRUE;
5436 } else {
5437 return FALSE;
5438 }
5439 }
5440 } else {
5441 return FALSE;
5442 }
5443}
5444
5445SV*
5446Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5447{
5448 struct regexp *const rx = (struct regexp *)SvANY(r);
5449
5450 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5451
5452 if ( rx && RXp_PAREN_NAMES(rx) ) {
5453 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5454
5455 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5456 } else {
5457 return FALSE;
5458 }
5459}
5460
5461SV*
5462Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5463{
5464 struct regexp *const rx = (struct regexp *)SvANY(r);
5465 GET_RE_DEBUG_FLAGS_DECL;
5466
5467 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5468
5469 if (rx && RXp_PAREN_NAMES(rx)) {
5470 HV *hv = RXp_PAREN_NAMES(rx);
5471 HE *temphe;
5472 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5473 IV i;
5474 IV parno = 0;
5475 SV* sv_dat = HeVAL(temphe);
5476 I32 *nums = (I32*)SvPVX(sv_dat);
5477 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5478 if ((I32)(rx->lastparen) >= nums[i] &&
5479 rx->offs[nums[i]].start != -1 &&
5480 rx->offs[nums[i]].end != -1)
5481 {
5482 parno = nums[i];
5483 break;
5484 }
5485 }
5486 if (parno || flags & RXapif_ALL) {
5487 return newSVhek(HeKEY_hek(temphe));
5488 }
5489 }
5490 }
5491 return NULL;
5492}
5493
5494SV*
5495Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5496{
5497 SV *ret;
5498 AV *av;
5499 I32 length;
5500 struct regexp *const rx = (struct regexp *)SvANY(r);
5501
5502 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5503
5504 if (rx && RXp_PAREN_NAMES(rx)) {
5505 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5506 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5507 } else if (flags & RXapif_ONE) {
5508 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5509 av = MUTABLE_AV(SvRV(ret));
5510 length = av_len(av);
5511 SvREFCNT_dec(ret);
5512 return newSViv(length + 1);
5513 } else {
5514 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5515 return NULL;
5516 }
5517 }
5518 return &PL_sv_undef;
5519}
5520
5521SV*
5522Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5523{
5524 struct regexp *const rx = (struct regexp *)SvANY(r);
5525 AV *av = newAV();
5526
5527 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5528
5529 if (rx && RXp_PAREN_NAMES(rx)) {
5530 HV *hv= RXp_PAREN_NAMES(rx);
5531 HE *temphe;
5532 (void)hv_iterinit(hv);
5533 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5534 IV i;
5535 IV parno = 0;
5536 SV* sv_dat = HeVAL(temphe);
5537 I32 *nums = (I32*)SvPVX(sv_dat);
5538 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5539 if ((I32)(rx->lastparen) >= nums[i] &&
5540 rx->offs[nums[i]].start != -1 &&
5541 rx->offs[nums[i]].end != -1)
5542 {
5543 parno = nums[i];
5544 break;
5545 }
5546 }
5547 if (parno || flags & RXapif_ALL) {
5548 av_push(av, newSVhek(HeKEY_hek(temphe)));
5549 }
5550 }
5551 }
5552
5553 return newRV_noinc(MUTABLE_SV(av));
5554}
5555
5556void
5557Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5558 SV * const sv)
5559{
5560 struct regexp *const rx = (struct regexp *)SvANY(r);
5561 char *s = NULL;
5562 I32 i = 0;
5563 I32 s1, t1;
5564
5565 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5566
5567 if (!rx->subbeg) {
5568 sv_setsv(sv,&PL_sv_undef);
5569 return;
5570 }
5571 else
5572 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5573 /* $` */
5574 i = rx->offs[0].start;
5575 s = rx->subbeg;
5576 }
5577 else
5578 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5579 /* $' */
5580 s = rx->subbeg + rx->offs[0].end;
5581 i = rx->sublen - rx->offs[0].end;
5582 }
5583 else
5584 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5585 (s1 = rx->offs[paren].start) != -1 &&
5586 (t1 = rx->offs[paren].end) != -1)
5587 {
5588 /* $& $1 ... */
5589 i = t1 - s1;
5590 s = rx->subbeg + s1;
5591 } else {
5592 sv_setsv(sv,&PL_sv_undef);
5593 return;
5594 }
5595 assert(rx->sublen >= (s - rx->subbeg) + i );
5596 if (i >= 0) {
5597 const int oldtainted = PL_tainted;
5598 TAINT_NOT;
5599 sv_setpvn(sv, s, i);
5600 PL_tainted = oldtainted;
5601 if ( (rx->extflags & RXf_CANY_SEEN)
5602 ? (RXp_MATCH_UTF8(rx)
5603 && (!i || is_utf8_string((U8*)s, i)))
5604 : (RXp_MATCH_UTF8(rx)) )
5605 {
5606 SvUTF8_on(sv);
5607 }
5608 else
5609 SvUTF8_off(sv);
5610 if (PL_tainting) {
5611 if (RXp_MATCH_TAINTED(rx)) {
5612 if (SvTYPE(sv) >= SVt_PVMG) {
5613 MAGIC* const mg = SvMAGIC(sv);
5614 MAGIC* mgt;
5615 PL_tainted = 1;
5616 SvMAGIC_set(sv, mg->mg_moremagic);
5617 SvTAINT(sv);
5618 if ((mgt = SvMAGIC(sv))) {
5619 mg->mg_moremagic = mgt;
5620 SvMAGIC_set(sv, mg);
5621 }
5622 } else {
5623 PL_tainted = 1;
5624 SvTAINT(sv);
5625 }
5626 } else
5627 SvTAINTED_off(sv);
5628 }
5629 } else {
5630 sv_setsv(sv,&PL_sv_undef);
5631 return;
5632 }
5633}
5634
5635void
5636Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5637 SV const * const value)
5638{
5639 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5640
5641 PERL_UNUSED_ARG(rx);
5642 PERL_UNUSED_ARG(paren);
5643 PERL_UNUSED_ARG(value);
5644
5645 if (!PL_localizing)
5646 Perl_croak_no_modify(aTHX);
5647}
5648
5649I32
5650Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5651 const I32 paren)
5652{
5653 struct regexp *const rx = (struct regexp *)SvANY(r);
5654 I32 i;
5655 I32 s1, t1;
5656
5657 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5658
5659 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5660 switch (paren) {
5661 /* $` / ${^PREMATCH} */
5662 case RX_BUFF_IDX_PREMATCH:
5663 if (rx->offs[0].start != -1) {
5664 i = rx->offs[0].start;
5665 if (i > 0) {
5666 s1 = 0;
5667 t1 = i;
5668 goto getlen;
5669 }
5670 }
5671 return 0;
5672 /* $' / ${^POSTMATCH} */
5673 case RX_BUFF_IDX_POSTMATCH:
5674 if (rx->offs[0].end != -1) {
5675 i = rx->sublen - rx->offs[0].end;
5676 if (i > 0) {
5677 s1 = rx->offs[0].end;
5678 t1 = rx->sublen;
5679 goto getlen;
5680 }
5681 }
5682 return 0;
5683 /* $& / ${^MATCH}, $1, $2, ... */
5684 default:
5685 if (paren <= (I32)rx->nparens &&
5686 (s1 = rx->offs[paren].start) != -1 &&
5687 (t1 = rx->offs[paren].end) != -1)
5688 {
5689 i = t1 - s1;
5690 goto getlen;
5691 } else {
5692 if (ckWARN(WARN_UNINITIALIZED))
5693 report_uninit((const SV *)sv);
5694 return 0;
5695 }
5696 }
5697 getlen:
5698 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5699 const char * const s = rx->subbeg + s1;
5700 const U8 *ep;
5701 STRLEN el;
5702
5703 i = t1 - s1;
5704 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5705 i = el;
5706 }
5707 return i;
5708}
5709
5710SV*
5711Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5712{
5713 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5714 PERL_UNUSED_ARG(rx);
5715 if (0)
5716 return NULL;
5717 else
5718 return newSVpvs("Regexp");
5719}
5720
5721/* Scans the name of a named buffer from the pattern.
5722 * If flags is REG_RSN_RETURN_NULL returns null.
5723 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5724 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5725 * to the parsed name as looked up in the RExC_paren_names hash.
5726 * If there is an error throws a vFAIL().. type exception.
5727 */
5728
5729#define REG_RSN_RETURN_NULL 0
5730#define REG_RSN_RETURN_NAME 1
5731#define REG_RSN_RETURN_DATA 2
5732
5733STATIC SV*
5734S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5735{
5736 char *name_start = RExC_parse;
5737
5738 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5739
5740 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5741 /* skip IDFIRST by using do...while */
5742 if (UTF)
5743 do {
5744 RExC_parse += UTF8SKIP(RExC_parse);
5745 } while (isALNUM_utf8((U8*)RExC_parse));
5746 else
5747 do {
5748 RExC_parse++;
5749 } while (isALNUM(*RExC_parse));
5750 }
5751
5752 if ( flags ) {
5753 SV* sv_name
5754 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5755 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5756 if ( flags == REG_RSN_RETURN_NAME)
5757 return sv_name;
5758 else if (flags==REG_RSN_RETURN_DATA) {
5759 HE *he_str = NULL;
5760 SV *sv_dat = NULL;
5761 if ( ! sv_name ) /* should not happen*/
5762 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5763 if (RExC_paren_names)
5764 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5765 if ( he_str )
5766 sv_dat = HeVAL(he_str);
5767 if ( ! sv_dat )
5768 vFAIL("Reference to nonexistent named group");
5769 return sv_dat;
5770 }
5771 else {
5772 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5773 }
5774 /* NOT REACHED */
5775 }
5776 return NULL;
5777}
5778
5779#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5780 int rem=(int)(RExC_end - RExC_parse); \
5781 int cut; \
5782 int num; \
5783 int iscut=0; \
5784 if (rem>10) { \
5785 rem=10; \
5786 iscut=1; \
5787 } \
5788 cut=10-rem; \
5789 if (RExC_lastparse!=RExC_parse) \
5790 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5791 rem, RExC_parse, \
5792 cut + 4, \
5793 iscut ? "..." : "<" \
5794 ); \
5795 else \
5796 PerlIO_printf(Perl_debug_log,"%16s",""); \
5797 \
5798 if (SIZE_ONLY) \
5799 num = RExC_size + 1; \
5800 else \
5801 num=REG_NODE_NUM(RExC_emit); \
5802 if (RExC_lastnum!=num) \
5803 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5804 else \
5805 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5806 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5807 (int)((depth*2)), "", \
5808 (funcname) \
5809 ); \
5810 RExC_lastnum=num; \
5811 RExC_lastparse=RExC_parse; \
5812})
5813
5814
5815
5816#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5817 DEBUG_PARSE_MSG((funcname)); \
5818 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5819})
5820#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5821 DEBUG_PARSE_MSG((funcname)); \
5822 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5823})
5824
5825/* This section of code defines the inversion list object and its methods. The
5826 * interfaces are highly subject to change, so as much as possible is static to
5827 * this file. An inversion list is here implemented as a malloc'd C array with
5828 * some added info. More will be coming when functionality is added later.
5829 *
5830 * It is currently implemented as an HV to the outside world, but is actually
5831 * an SV pointing to an array of UVs that the SV thinks are bytes. This allows
5832 * us to have an array of UV whose memory management is automatically handled
5833 * by the existing facilities for SV's.
5834 *
5835 * Some of the methods should always be private to the implementation, and some
5836 * should eventually be made public */
5837
5838#define INVLIST_INITIAL_LEN 10
5839
5840PERL_STATIC_INLINE UV*
5841S_invlist_array(pTHX_ HV* const invlist)
5842{
5843 /* Returns the pointer to the inversion list's array. Every time the
5844 * length changes, this needs to be called in case malloc or realloc moved
5845 * it */
5846
5847 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5848
5849 return (UV *) SvPVX(invlist);
5850}
5851
5852PERL_STATIC_INLINE UV
5853S_invlist_len(pTHX_ HV* const invlist)
5854{
5855 /* Returns the current number of elements in the inversion list's array */
5856
5857 PERL_ARGS_ASSERT_INVLIST_LEN;
5858
5859 return SvCUR(invlist) / sizeof(UV);
5860}
5861
5862PERL_STATIC_INLINE UV
5863S_invlist_max(pTHX_ HV* const invlist)
5864{
5865 /* Returns the maximum number of elements storable in the inversion list's
5866 * array, without having to realloc() */
5867
5868 PERL_ARGS_ASSERT_INVLIST_MAX;
5869
5870 return SvLEN(invlist) / sizeof(UV);
5871}
5872
5873PERL_STATIC_INLINE void
5874S_invlist_set_len(pTHX_ HV* const invlist, const UV len)
5875{
5876 /* Sets the current number of elements stored in the inversion list */
5877
5878 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5879
5880 SvCUR_set(invlist, len * sizeof(UV));
5881}
5882
5883PERL_STATIC_INLINE void
5884S_invlist_set_max(pTHX_ HV* const invlist, const UV max)
5885{
5886
5887 /* Sets the maximum number of elements storable in the inversion list
5888 * without having to realloc() */
5889
5890 PERL_ARGS_ASSERT_INVLIST_SET_MAX;
5891
5892 if (max < invlist_len(invlist)) {
5893 Perl_croak(aTHX_ "panic: Can't make max size '%"UVuf"' less than current length %"UVuf" in inversion list", invlist_max(invlist), invlist_len(invlist));
5894 }
5895
5896 SvLEN_set(invlist, max * sizeof(UV));
5897}
5898
5899#ifndef PERL_IN_XSUB_RE
5900HV*
5901Perl__new_invlist(pTHX_ IV initial_size)
5902{
5903
5904 /* Return a pointer to a newly constructed inversion list, with enough
5905 * space to store 'initial_size' elements. If that number is negative, a
5906 * system default is used instead */
5907
5908 if (initial_size < 0) {
5909 initial_size = INVLIST_INITIAL_LEN;
5910 }
5911
5912 /* Allocate the initial space */
5913 return (HV *) newSV(initial_size * sizeof(UV));
5914}
5915#endif
5916
5917PERL_STATIC_INLINE void
5918S_invlist_destroy(pTHX_ HV* const invlist)
5919{
5920 /* Inversion list destructor */
5921
5922 PERL_ARGS_ASSERT_INVLIST_DESTROY;
5923
5924 SvREFCNT_dec(invlist);
5925}
5926
5927STATIC void
5928S_invlist_extend(pTHX_ HV* const invlist, const UV new_max)
5929{
5930 /* Grow the maximum size of an inversion list */
5931
5932 PERL_ARGS_ASSERT_INVLIST_EXTEND;
5933
5934 SvGROW((SV *)invlist, new_max * sizeof(UV));
5935}
5936
5937PERL_STATIC_INLINE void
5938S_invlist_trim(pTHX_ HV* const invlist)
5939{
5940 PERL_ARGS_ASSERT_INVLIST_TRIM;
5941
5942 /* Change the length of the inversion list to how many entries it currently
5943 * has */
5944
5945 SvPV_shrink_to_cur((SV *) invlist);
5946}
5947
5948/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
5949 * etc */
5950
5951#define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
5952#define PREV_ELEMENT_IN_INVLIST_SET(i) ! ELEMENT_IN_INVLIST_SET(i)
5953
5954#ifndef PERL_IN_XSUB_RE
5955void
5956Perl__append_range_to_invlist(pTHX_ HV* const invlist, const UV start, const UV end)
5957{
5958 /* Subject to change or removal. Append the range from 'start' to 'end' at
5959 * the end of the inversion list. The range must be above any existing
5960 * ones. */
5961
5962 UV* array = invlist_array(invlist);
5963 UV max = invlist_max(invlist);
5964 UV len = invlist_len(invlist);
5965
5966 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
5967
5968 if (len > 0) {
5969
5970 /* Here, the existing list is non-empty. The current max entry in the
5971 * list is generally the first value not in the set, except when the
5972 * set extends to the end of permissible values, in which case it is
5973 * the first entry in that final set, and so this call is an attempt to
5974 * append out-of-order */
5975
5976 UV final_element = len - 1;
5977 if (array[final_element] > start
5978 || ELEMENT_IN_INVLIST_SET(final_element))
5979 {
5980 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
5981 }
5982
5983 /* Here, it is a legal append. If the new range begins with the first
5984 * value not in the set, it is extending the set, so the new first
5985 * value not in the set is one greater than the newly extended range.
5986 * */
5987 if (array[final_element] == start) {
5988 if (end != UV_MAX) {
5989 array[final_element] = end + 1;
5990 }
5991 else {
5992 /* But if the end is the maximum representable on the machine,
5993 * just let the range that this would extend have no end */
5994 invlist_set_len(invlist, len - 1);
5995 }
5996 return;
5997 }
5998 }
5999
6000 /* Here the new range doesn't extend any existing set. Add it */
6001
6002 len += 2; /* Includes an element each for the start and end of range */
6003
6004 /* If overflows the existing space, extend, which may cause the array to be
6005 * moved */
6006 if (max < len) {
6007 invlist_extend(invlist, len);
6008 array = invlist_array(invlist);
6009 }
6010
6011 invlist_set_len(invlist, len);
6012
6013 /* The next item on the list starts the range, the one after that is
6014 * one past the new range. */
6015 array[len - 2] = start;
6016 if (end != UV_MAX) {
6017 array[len - 1] = end + 1;
6018 }
6019 else {
6020 /* But if the end is the maximum representable on the machine, just let
6021 * the range have no end */
6022 invlist_set_len(invlist, len - 1);
6023 }
6024}
6025#endif
6026
6027STATIC HV*
6028S_invlist_union(pTHX_ HV* const a, HV* const b)
6029{
6030 /* Return a new inversion list which is the union of two inversion lists.
6031 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6032 * Richard Gillam, published by Addison-Wesley, and explained at some
6033 * length there. The preface says to incorporate its examples into your
6034 * code at your own risk.
6035 *
6036 * The algorithm is like a merge sort.
6037 *
6038 * XXX A potential performance improvement is to keep track as we go along
6039 * if only one of the inputs contributes to the result, meaning the other
6040 * is a subset of that one. In that case, we can skip the final copy and
6041 * return the larger of the input lists */
6042
6043 UV* array_a = invlist_array(a); /* a's array */
6044 UV* array_b = invlist_array(b);
6045 UV len_a = invlist_len(a); /* length of a's array */
6046 UV len_b = invlist_len(b);
6047
6048 HV* u; /* the resulting union */
6049 UV* array_u;
6050 UV len_u;
6051
6052 UV i_a = 0; /* current index into a's array */
6053 UV i_b = 0;
6054 UV i_u = 0;
6055
6056 /* running count, as explained in the algorithm source book; items are
6057 * stopped accumulating and are output when the count changes to/from 0.
6058 * The count is incremented when we start a range that's in the set, and
6059 * decremented when we start a range that's not in the set. So its range
6060 * is 0 to 2. Only when the count is zero is something not in the set.
6061 */
6062 UV count = 0;
6063
6064 PERL_ARGS_ASSERT_INVLIST_UNION;
6065
6066 /* Size the union for the worst case: that the sets are completely
6067 * disjoint */
6068 u = _new_invlist(len_a + len_b);
6069 array_u = invlist_array(u);
6070
6071 /* Go through each list item by item, stopping when exhausted one of
6072 * them */
6073 while (i_a < len_a && i_b < len_b) {
6074 UV cp; /* The element to potentially add to the union's array */
6075 bool cp_in_set; /* is it in the the input list's set or not */
6076
6077 /* We need to take one or the other of the two inputs for the union.
6078 * Since we are merging two sorted lists, we take the smaller of the
6079 * next items. In case of a tie, we take the one that is in its set
6080 * first. If we took one not in the set first, it would decrement the
6081 * count, possibly to 0 which would cause it to be output as ending the
6082 * range, and the next time through we would take the same number, and
6083 * output it again as beginning the next range. By doing it the
6084 * opposite way, there is no possibility that the count will be
6085 * momentarily decremented to 0, and thus the two adjoining ranges will
6086 * be seamlessly merged. (In a tie and both are in the set or both not
6087 * in the set, it doesn't matter which we take first.) */
6088 if (array_a[i_a] < array_b[i_b]
6089 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6090 {
6091 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6092 cp= array_a[i_a++];
6093 }
6094 else {
6095 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6096 cp= array_b[i_b++];
6097 }
6098
6099 /* Here, have chosen which of the two inputs to look at. Only output
6100 * if the running count changes to/from 0, which marks the
6101 * beginning/end of a range in that's in the set */
6102 if (cp_in_set) {
6103 if (count == 0) {
6104 array_u[i_u++] = cp;
6105 }
6106 count++;
6107 }
6108 else {
6109 count--;
6110 if (count == 0) {
6111 array_u[i_u++] = cp;
6112 }
6113 }
6114 }
6115
6116 /* Here, we are finished going through at least one of the lists, which
6117 * means there is something remaining in at most one. We check if the list
6118 * that hasn't been exhausted is positioned such that we are in the middle
6119 * of a range in its set or not. (i_a and i_b point to the element beyond
6120 * the one we care about.) If in the set, we decrement 'count'; if 0, there
6121 * is potentially more to output.
6122 * There are four cases:
6123 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6124 * in the union is entirely from the non-exhausted set.
6125 * 2) Both were in their sets, count is 2. Nothing further should
6126 * be output, as everything that remains will be in the exhausted
6127 * list's set, hence in the union; decrementing to 1 but not 0 insures
6128 * that
6129 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6130 * Nothing further should be output because the union includes
6131 * everything from the exhausted set. Not decrementing ensures that.
6132 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6133 * decrementing to 0 insures that we look at the remainder of the
6134 * non-exhausted set */
6135 if ((i_a != len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6136 || (i_b != len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6137 {
6138 count--;
6139 }
6140
6141 /* The final length is what we've output so far, plus what else is about to
6142 * be output. (If 'count' is non-zero, then the input list we exhausted
6143 * has everything remaining up to the machine's limit in its set, and hence
6144 * in the union, so there will be no further output. */
6145 len_u = i_u;
6146 if (count == 0) {
6147 /* At most one of the subexpressions will be non-zero */
6148 len_u += (len_a - i_a) + (len_b - i_b);
6149 }
6150
6151 /* Set result to final length, which can change the pointer to array_u, so
6152 * re-find it */
6153 if (len_u != invlist_len(u)) {
6154 invlist_set_len(u, len_u);
6155 invlist_trim(u);
6156 array_u = invlist_array(u);
6157 }
6158
6159 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6160 * the other) ended with everything above it not in its set. That means
6161 * that the remaining part of the union is precisely the same as the
6162 * non-exhausted list, so can just copy it unchanged. (If both list were
6163 * exhausted at the same time, then the operations below will be both 0.)
6164 */
6165 if (count == 0) {
6166 IV copy_count; /* At most one will have a non-zero copy count */
6167 if ((copy_count = len_a - i_a) > 0) {
6168 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6169 }
6170 else if ((copy_count = len_b - i_b) > 0) {
6171 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6172 }
6173 }
6174
6175 return u;
6176}
6177
6178STATIC HV*
6179S_invlist_intersection(pTHX_ HV* const a, HV* const b)
6180{
6181 /* Return the intersection of two inversion lists. The basis for this
6182 * comes from "Unicode Demystified" Chapter 13 by Richard Gillam, published
6183 * by Addison-Wesley, and explained at some length there. The preface says
6184 * to incorporate its examples into your code at your own risk. In fact,
6185 * it had bugs
6186 *
6187 * The algorithm is like a merge sort, and is essentially the same as the
6188 * union above
6189 */
6190
6191 UV* array_a = invlist_array(a); /* a's array */
6192 UV* array_b = invlist_array(b);
6193 UV len_a = invlist_len(a); /* length of a's array */
6194 UV len_b = invlist_len(b);
6195
6196 HV* r; /* the resulting intersection */
6197 UV* array_r;
6198 UV len_r;
6199
6200 UV i_a = 0; /* current index into a's array */
6201 UV i_b = 0;
6202 UV i_r = 0;
6203
6204 /* running count, as explained in the algorithm source book; items are
6205 * stopped accumulating and are output when the count changes to/from 2.
6206 * The count is incremented when we start a range that's in the set, and
6207 * decremented when we start a range that's not in the set. So its range
6208 * is 0 to 2. Only when the count is 2 is something in the intersection.
6209 */
6210 UV count = 0;
6211
6212 PERL_ARGS_ASSERT_INVLIST_INTERSECTION;
6213
6214 /* Size the intersection for the worst case: that the intersection ends up
6215 * fragmenting everything to be completely disjoint */
6216 r= _new_invlist(len_a + len_b);
6217 array_r = invlist_array(r);
6218
6219 /* Go through each list item by item, stopping when exhausted one of
6220 * them */
6221 while (i_a < len_a && i_b < len_b) {
6222 UV cp; /* The element to potentially add to the intersection's
6223 array */
6224 bool cp_in_set; /* Is it in the input list's set or not */
6225
6226 /* We need to take one or the other of the two inputs for the
6227 * intersection. Since we are merging two sorted lists, we take the
6228 * smaller of the next items. In case of a tie, we take the one that
6229 * is not in its set first (a difference from the union algorithm). If
6230 * we took one in the set first, it would increment the count, possibly
6231 * to 2 which would cause it to be output as starting a range in the
6232 * intersection, and the next time through we would take that same
6233 * number, and output it again as ending the set. By doing it the
6234 * opposite of this, there is no possibility that the count will be
6235 * momentarily incremented to 2. (In a tie and both are in the set or
6236 * both not in the set, it doesn't matter which we take first.) */
6237 if (array_a[i_a] < array_b[i_b]
6238 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6239 {
6240 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6241 cp= array_a[i_a++];
6242 }
6243 else {
6244 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6245 cp= array_b[i_b++];
6246 }
6247
6248 /* Here, have chosen which of the two inputs to look at. Only output
6249 * if the running count changes to/from 2, which marks the
6250 * beginning/end of a range that's in the intersection */
6251 if (cp_in_set) {
6252 count++;
6253 if (count == 2) {
6254 array_r[i_r++] = cp;
6255 }
6256 }
6257 else {
6258 if (count == 2) {
6259 array_r[i_r++] = cp;
6260 }
6261 count--;
6262 }
6263 }
6264
6265 /* Here, we are finished going through at least one of the lists, which
6266 * means there is something remaining in at most one. We check if the list
6267 * that has been exhausted is positioned such that we are in the middle
6268 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
6269 * the ones we care about.) There are four cases:
6270 * 1) Both weren't in their sets, count is 0, and remains 0. There's
6271 * nothing left in the intersection.
6272 * 2) Both were in their sets, count is 2 and perhaps is incremented to
6273 * above 2. What should be output is exactly that which is in the
6274 * non-exhausted set, as everything it has is also in the intersection
6275 * set, and everything it doesn't have can't be in the intersection
6276 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
6277 * gets incremented to 2. Like the previous case, the intersection is
6278 * everything that remains in the non-exhausted set.
6279 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
6280 * remains 1. And the intersection has nothing more. */
6281 if ((i_a == len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6282 || (i_b == len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6283 {
6284 count++;
6285 }
6286
6287 /* The final length is what we've output so far plus what else is in the
6288 * intersection. At most one of the subexpressions below will be non-zero */
6289 len_r = i_r;
6290 if (count >= 2) {
6291 len_r += (len_a - i_a) + (len_b - i_b);
6292 }
6293
6294 /* Set result to final length, which can change the pointer to array_r, so
6295 * re-find it */
6296 if (len_r != invlist_len(r)) {
6297 invlist_set_len(r, len_r);
6298 invlist_trim(r);
6299 array_r = invlist_array(r);
6300 }
6301
6302 /* Finish outputting any remaining */
6303 if (count >= 2) { /* At most one will have a non-zero copy count */
6304 IV copy_count;
6305 if ((copy_count = len_a - i_a) > 0) {
6306 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6307 }
6308 else if ((copy_count = len_b - i_b) > 0) {
6309 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6310 }
6311 }
6312
6313 return r;
6314}
6315
6316STATIC HV*
6317S_add_range_to_invlist(pTHX_ HV* invlist, const UV start, const UV end)
6318{
6319 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6320 * set. A pointer to the inversion list is returned. This may actually be
6321 * a new list, in which case the passed in one has been destroyed. The
6322 * passed in inversion list can be NULL, in which case a new one is created
6323 * with just the one range in it */
6324
6325 HV* range_invlist;
6326 HV* added_invlist;
6327 UV len;
6328
6329 if (invlist == NULL) {
6330 invlist = _new_invlist(2);
6331 len = 0;
6332 }
6333 else {
6334 len = invlist_len(invlist);
6335 }
6336
6337 /* If comes after the final entry, can just append it to the end */
6338 if (len == 0
6339 || start >= invlist_array(invlist)
6340 [invlist_len(invlist) - 1])
6341 {
6342 _append_range_to_invlist(invlist, start, end);
6343 return invlist;
6344 }
6345
6346 /* Here, can't just append things, create and return a new inversion list
6347 * which is the union of this range and the existing inversion list */
6348 range_invlist = _new_invlist(2);
6349 _append_range_to_invlist(range_invlist, start, end);
6350
6351 added_invlist = invlist_union(invlist, range_invlist);
6352
6353 /* The passed in list can be freed, as well as our temporary */
6354 invlist_destroy(range_invlist);
6355 if (invlist != added_invlist) {
6356 invlist_destroy(invlist);
6357 }
6358
6359 return added_invlist;
6360}
6361
6362PERL_STATIC_INLINE HV*
6363S_add_cp_to_invlist(pTHX_ HV* invlist, const UV cp) {
6364 return add_range_to_invlist(invlist, cp, cp);
6365}
6366
6367/* End of inversion list object */
6368
6369/*
6370 - reg - regular expression, i.e. main body or parenthesized thing
6371 *
6372 * Caller must absorb opening parenthesis.
6373 *
6374 * Combining parenthesis handling with the base level of regular expression
6375 * is a trifle forced, but the need to tie the tails of the branches to what
6376 * follows makes it hard to avoid.
6377 */
6378#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6379#ifdef DEBUGGING
6380#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6381#else
6382#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6383#endif
6384
6385STATIC regnode *
6386S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6387 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6388{
6389 dVAR;
6390 register regnode *ret; /* Will be the head of the group. */
6391 register regnode *br;
6392 register regnode *lastbr;
6393 register regnode *ender = NULL;
6394 register I32 parno = 0;
6395 I32 flags;
6396 U32 oregflags = RExC_flags;
6397 bool have_branch = 0;
6398 bool is_open = 0;
6399 I32 freeze_paren = 0;
6400 I32 after_freeze = 0;
6401
6402 /* for (?g), (?gc), and (?o) warnings; warning
6403 about (?c) will warn about (?g) -- japhy */
6404
6405#define WASTED_O 0x01
6406#define WASTED_G 0x02
6407#define WASTED_C 0x04
6408#define WASTED_GC (0x02|0x04)
6409 I32 wastedflags = 0x00;
6410
6411 char * parse_start = RExC_parse; /* MJD */
6412 char * const oregcomp_parse = RExC_parse;
6413
6414 GET_RE_DEBUG_FLAGS_DECL;
6415
6416 PERL_ARGS_ASSERT_REG;
6417 DEBUG_PARSE("reg ");
6418
6419 *flagp = 0; /* Tentatively. */
6420
6421
6422 /* Make an OPEN node, if parenthesized. */
6423 if (paren) {
6424 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6425 char *start_verb = RExC_parse;
6426 STRLEN verb_len = 0;
6427 char *start_arg = NULL;
6428 unsigned char op = 0;
6429 int argok = 1;
6430 int internal_argval = 0; /* internal_argval is only useful if !argok */
6431 while ( *RExC_parse && *RExC_parse != ')' ) {
6432 if ( *RExC_parse == ':' ) {
6433 start_arg = RExC_parse + 1;
6434 break;
6435 }
6436 RExC_parse++;
6437 }
6438 ++start_verb;
6439 verb_len = RExC_parse - start_verb;
6440 if ( start_arg ) {
6441 RExC_parse++;
6442 while ( *RExC_parse && *RExC_parse != ')' )
6443 RExC_parse++;
6444 if ( *RExC_parse != ')' )
6445 vFAIL("Unterminated verb pattern argument");
6446 if ( RExC_parse == start_arg )
6447 start_arg = NULL;
6448 } else {
6449 if ( *RExC_parse != ')' )
6450 vFAIL("Unterminated verb pattern");
6451 }
6452
6453 switch ( *start_verb ) {
6454 case 'A': /* (*ACCEPT) */
6455 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6456 op = ACCEPT;
6457 internal_argval = RExC_nestroot;
6458 }
6459 break;
6460 case 'C': /* (*COMMIT) */
6461 if ( memEQs(start_verb,verb_len,"COMMIT") )
6462 op = COMMIT;
6463 break;
6464 case 'F': /* (*FAIL) */
6465 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6466 op = OPFAIL;
6467 argok = 0;
6468 }
6469 break;
6470 case ':': /* (*:NAME) */
6471 case 'M': /* (*MARK:NAME) */
6472 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6473 op = MARKPOINT;
6474 argok = -1;
6475 }
6476 break;
6477 case 'P': /* (*PRUNE) */
6478 if ( memEQs(start_verb,verb_len,"PRUNE") )
6479 op = PRUNE;
6480 break;
6481 case 'S': /* (*SKIP) */
6482 if ( memEQs(start_verb,verb_len,"SKIP") )
6483 op = SKIP;
6484 break;
6485 case 'T': /* (*THEN) */
6486 /* [19:06] <TimToady> :: is then */
6487 if ( memEQs(start_verb,verb_len,"THEN") ) {
6488 op = CUTGROUP;
6489 RExC_seen |= REG_SEEN_CUTGROUP;
6490 }
6491 break;
6492 }
6493 if ( ! op ) {
6494 RExC_parse++;
6495 vFAIL3("Unknown verb pattern '%.*s'",
6496 verb_len, start_verb);
6497 }
6498 if ( argok ) {
6499 if ( start_arg && internal_argval ) {
6500 vFAIL3("Verb pattern '%.*s' may not have an argument",
6501 verb_len, start_verb);
6502 } else if ( argok < 0 && !start_arg ) {
6503 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6504 verb_len, start_verb);
6505 } else {
6506 ret = reganode(pRExC_state, op, internal_argval);
6507 if ( ! internal_argval && ! SIZE_ONLY ) {
6508 if (start_arg) {
6509 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6510 ARG(ret) = add_data( pRExC_state, 1, "S" );
6511 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6512 ret->flags = 0;
6513 } else {
6514 ret->flags = 1;
6515 }
6516 }
6517 }
6518 if (!internal_argval)
6519 RExC_seen |= REG_SEEN_VERBARG;
6520 } else if ( start_arg ) {
6521 vFAIL3("Verb pattern '%.*s' may not have an argument",
6522 verb_len, start_verb);
6523 } else {
6524 ret = reg_node(pRExC_state, op);
6525 }
6526 nextchar(pRExC_state);
6527 return ret;
6528 } else
6529 if (*RExC_parse == '?') { /* (?...) */
6530 bool is_logical = 0;
6531 const char * const seqstart = RExC_parse;
6532 bool has_use_defaults = FALSE;
6533
6534 RExC_parse++;
6535 paren = *RExC_parse++;
6536 ret = NULL; /* For look-ahead/behind. */
6537 switch (paren) {
6538
6539 case 'P': /* (?P...) variants for those used to PCRE/Python */
6540 paren = *RExC_parse++;
6541 if ( paren == '<') /* (?P<...>) named capture */
6542 goto named_capture;
6543 else if (paren == '>') { /* (?P>name) named recursion */
6544 goto named_recursion;
6545 }
6546 else if (paren == '=') { /* (?P=...) named backref */
6547 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6548 you change this make sure you change that */
6549 char* name_start = RExC_parse;
6550 U32 num = 0;
6551 SV *sv_dat = reg_scan_name(pRExC_state,
6552 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6553 if (RExC_parse == name_start || *RExC_parse != ')')
6554 vFAIL2("Sequence %.3s... not terminated",parse_start);
6555
6556 if (!SIZE_ONLY) {
6557 num = add_data( pRExC_state, 1, "S" );
6558 RExC_rxi->data->data[num]=(void*)sv_dat;
6559 SvREFCNT_inc_simple_void(sv_dat);
6560 }
6561 RExC_sawback = 1;
6562 ret = reganode(pRExC_state,
6563 ((! FOLD)
6564 ? NREF
6565 : (MORE_ASCII_RESTRICTED)
6566 ? NREFFA
6567 : (AT_LEAST_UNI_SEMANTICS)
6568 ? NREFFU
6569 : (LOC)
6570 ? NREFFL
6571 : NREFF),
6572 num);
6573 *flagp |= HASWIDTH;
6574
6575 Set_Node_Offset(ret, parse_start+1);
6576 Set_Node_Cur_Length(ret); /* MJD */
6577
6578 nextchar(pRExC_state);
6579 return ret;
6580 }
6581 RExC_parse++;
6582 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6583 /*NOTREACHED*/
6584 case '<': /* (?<...) */
6585 if (*RExC_parse == '!')
6586 paren = ',';
6587 else if (*RExC_parse != '=')
6588 named_capture:
6589 { /* (?<...>) */
6590 char *name_start;
6591 SV *svname;
6592 paren= '>';
6593 case '\'': /* (?'...') */
6594 name_start= RExC_parse;
6595 svname = reg_scan_name(pRExC_state,
6596 SIZE_ONLY ? /* reverse test from the others */
6597 REG_RSN_RETURN_NAME :
6598 REG_RSN_RETURN_NULL);
6599 if (RExC_parse == name_start) {
6600 RExC_parse++;
6601 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6602 /*NOTREACHED*/
6603 }
6604 if (*RExC_parse != paren)
6605 vFAIL2("Sequence (?%c... not terminated",
6606 paren=='>' ? '<' : paren);
6607 if (SIZE_ONLY) {
6608 HE *he_str;
6609 SV *sv_dat = NULL;
6610 if (!svname) /* shouldn't happen */
6611 Perl_croak(aTHX_
6612 "panic: reg_scan_name returned NULL");
6613 if (!RExC_paren_names) {
6614 RExC_paren_names= newHV();
6615 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6616#ifdef DEBUGGING
6617 RExC_paren_name_list= newAV();
6618 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6619#endif
6620 }
6621 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6622 if ( he_str )
6623 sv_dat = HeVAL(he_str);
6624 if ( ! sv_dat ) {
6625 /* croak baby croak */
6626 Perl_croak(aTHX_
6627 "panic: paren_name hash element allocation failed");
6628 } else if ( SvPOK(sv_dat) ) {
6629 /* (?|...) can mean we have dupes so scan to check
6630 its already been stored. Maybe a flag indicating
6631 we are inside such a construct would be useful,
6632 but the arrays are likely to be quite small, so
6633 for now we punt -- dmq */
6634 IV count = SvIV(sv_dat);
6635 I32 *pv = (I32*)SvPVX(sv_dat);
6636 IV i;
6637 for ( i = 0 ; i < count ; i++ ) {
6638 if ( pv[i] == RExC_npar ) {
6639 count = 0;
6640 break;
6641 }
6642 }
6643 if ( count ) {
6644 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
6645 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
6646 pv[count] = RExC_npar;
6647 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
6648 }
6649 } else {
6650 (void)SvUPGRADE(sv_dat,SVt_PVNV);
6651 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
6652 SvIOK_on(sv_dat);
6653 SvIV_set(sv_dat, 1);
6654 }
6655#ifdef DEBUGGING
6656 /* Yes this does cause a memory leak in debugging Perls */
6657 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
6658 SvREFCNT_dec(svname);
6659#endif
6660
6661 /*sv_dump(sv_dat);*/
6662 }
6663 nextchar(pRExC_state);
6664 paren = 1;
6665 goto capturing_parens;
6666 }
6667 RExC_seen |= REG_SEEN_LOOKBEHIND;
6668 RExC_in_lookbehind++;
6669 RExC_parse++;
6670 case '=': /* (?=...) */
6671 RExC_seen_zerolen++;
6672 break;
6673 case '!': /* (?!...) */
6674 RExC_seen_zerolen++;
6675 if (*RExC_parse == ')') {
6676 ret=reg_node(pRExC_state, OPFAIL);
6677 nextchar(pRExC_state);
6678 return ret;
6679 }
6680 break;
6681 case '|': /* (?|...) */
6682 /* branch reset, behave like a (?:...) except that
6683 buffers in alternations share the same numbers */
6684 paren = ':';
6685 after_freeze = freeze_paren = RExC_npar;
6686 break;
6687 case ':': /* (?:...) */
6688 case '>': /* (?>...) */
6689 break;
6690 case '$': /* (?$...) */
6691 case '@': /* (?@...) */
6692 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
6693 break;
6694 case '#': /* (?#...) */
6695 while (*RExC_parse && *RExC_parse != ')')
6696 RExC_parse++;
6697 if (*RExC_parse != ')')
6698 FAIL("Sequence (?#... not terminated");
6699 nextchar(pRExC_state);
6700 *flagp = TRYAGAIN;
6701 return NULL;
6702 case '0' : /* (?0) */
6703 case 'R' : /* (?R) */
6704 if (*RExC_parse != ')')
6705 FAIL("Sequence (?R) not terminated");
6706 ret = reg_node(pRExC_state, GOSTART);
6707 *flagp |= POSTPONED;
6708 nextchar(pRExC_state);
6709 return ret;
6710 /*notreached*/
6711 { /* named and numeric backreferences */
6712 I32 num;
6713 case '&': /* (?&NAME) */
6714 parse_start = RExC_parse - 1;
6715 named_recursion:
6716 {
6717 SV *sv_dat = reg_scan_name(pRExC_state,
6718 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6719 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6720 }
6721 goto gen_recurse_regop;
6722 /* NOT REACHED */
6723 case '+':
6724 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6725 RExC_parse++;
6726 vFAIL("Illegal pattern");
6727 }
6728 goto parse_recursion;
6729 /* NOT REACHED*/
6730 case '-': /* (?-1) */
6731 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6732 RExC_parse--; /* rewind to let it be handled later */
6733 goto parse_flags;
6734 }
6735 /*FALLTHROUGH */
6736 case '1': case '2': case '3': case '4': /* (?1) */
6737 case '5': case '6': case '7': case '8': case '9':
6738 RExC_parse--;
6739 parse_recursion:
6740 num = atoi(RExC_parse);
6741 parse_start = RExC_parse - 1; /* MJD */
6742 if (*RExC_parse == '-')
6743 RExC_parse++;
6744 while (isDIGIT(*RExC_parse))
6745 RExC_parse++;
6746 if (*RExC_parse!=')')
6747 vFAIL("Expecting close bracket");
6748
6749 gen_recurse_regop:
6750 if ( paren == '-' ) {
6751 /*
6752 Diagram of capture buffer numbering.
6753 Top line is the normal capture buffer numbers
6754 Bottom line is the negative indexing as from
6755 the X (the (?-2))
6756
6757 + 1 2 3 4 5 X 6 7
6758 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
6759 - 5 4 3 2 1 X x x
6760
6761 */
6762 num = RExC_npar + num;
6763 if (num < 1) {
6764 RExC_parse++;
6765 vFAIL("Reference to nonexistent group");
6766 }
6767 } else if ( paren == '+' ) {
6768 num = RExC_npar + num - 1;
6769 }
6770
6771 ret = reganode(pRExC_state, GOSUB, num);
6772 if (!SIZE_ONLY) {
6773 if (num > (I32)RExC_rx->nparens) {
6774 RExC_parse++;
6775 vFAIL("Reference to nonexistent group");
6776 }
6777 ARG2L_SET( ret, RExC_recurse_count++);
6778 RExC_emit++;
6779 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
6780 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
6781 } else {
6782 RExC_size++;
6783 }
6784 RExC_seen |= REG_SEEN_RECURSE;
6785 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
6786 Set_Node_Offset(ret, parse_start); /* MJD */
6787
6788 *flagp |= POSTPONED;
6789 nextchar(pRExC_state);
6790 return ret;
6791 } /* named and numeric backreferences */
6792 /* NOT REACHED */
6793
6794 case '?': /* (??...) */
6795 is_logical = 1;
6796 if (*RExC_parse != '{') {
6797 RExC_parse++;
6798 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6799 /*NOTREACHED*/
6800 }
6801 *flagp |= POSTPONED;
6802 paren = *RExC_parse++;
6803 /* FALL THROUGH */
6804 case '{': /* (?{...}) */
6805 {
6806 I32 count = 1;
6807 U32 n = 0;
6808 char c;
6809 char *s = RExC_parse;
6810
6811 RExC_seen_zerolen++;
6812 RExC_seen |= REG_SEEN_EVAL;
6813 while (count && (c = *RExC_parse)) {
6814 if (c == '\\') {
6815 if (RExC_parse[1])
6816 RExC_parse++;
6817 }
6818 else if (c == '{')
6819 count++;
6820 else if (c == '}')
6821 count--;
6822 RExC_parse++;
6823 }
6824 if (*RExC_parse != ')') {
6825 RExC_parse = s;
6826 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
6827 }
6828 if (!SIZE_ONLY) {
6829 PAD *pad;
6830 OP_4tree *sop, *rop;
6831 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
6832
6833 ENTER;
6834 Perl_save_re_context(aTHX);
6835 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
6836 sop->op_private |= OPpREFCOUNTED;
6837 /* re_dup will OpREFCNT_inc */
6838 OpREFCNT_set(sop, 1);
6839 LEAVE;
6840
6841 n = add_data(pRExC_state, 3, "nop");
6842 RExC_rxi->data->data[n] = (void*)rop;
6843 RExC_rxi->data->data[n+1] = (void*)sop;
6844 RExC_rxi->data->data[n+2] = (void*)pad;
6845 SvREFCNT_dec(sv);
6846 }
6847 else { /* First pass */
6848 if (PL_reginterp_cnt < ++RExC_seen_evals
6849 && IN_PERL_RUNTIME)
6850 /* No compiled RE interpolated, has runtime
6851 components ===> unsafe. */
6852 FAIL("Eval-group not allowed at runtime, use re 'eval'");
6853 if (PL_tainting && PL_tainted)
6854 FAIL("Eval-group in insecure regular expression");
6855#if PERL_VERSION > 8
6856 if (IN_PERL_COMPILETIME)
6857 PL_cv_has_eval = 1;
6858#endif
6859 }
6860
6861 nextchar(pRExC_state);
6862 if (is_logical) {
6863 ret = reg_node(pRExC_state, LOGICAL);
6864 if (!SIZE_ONLY)
6865 ret->flags = 2;
6866 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
6867 /* deal with the length of this later - MJD */
6868 return ret;
6869 }
6870 ret = reganode(pRExC_state, EVAL, n);
6871 Set_Node_Length(ret, RExC_parse - parse_start + 1);
6872 Set_Node_Offset(ret, parse_start);
6873 return ret;
6874 }
6875 case '(': /* (?(?{...})...) and (?(?=...)...) */
6876 {
6877 int is_define= 0;
6878 if (RExC_parse[0] == '?') { /* (?(?...)) */
6879 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
6880 || RExC_parse[1] == '<'
6881 || RExC_parse[1] == '{') { /* Lookahead or eval. */
6882 I32 flag;
6883
6884 ret = reg_node(pRExC_state, LOGICAL);
6885 if (!SIZE_ONLY)
6886 ret->flags = 1;
6887 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
6888 goto insert_if;
6889 }
6890 }
6891 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
6892 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
6893 {
6894 char ch = RExC_parse[0] == '<' ? '>' : '\'';
6895 char *name_start= RExC_parse++;
6896 U32 num = 0;
6897 SV *sv_dat=reg_scan_name(pRExC_state,
6898 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6899 if (RExC_parse == name_start || *RExC_parse != ch)
6900 vFAIL2("Sequence (?(%c... not terminated",
6901 (ch == '>' ? '<' : ch));
6902 RExC_parse++;
6903 if (!SIZE_ONLY) {
6904 num = add_data( pRExC_state, 1, "S" );
6905 RExC_rxi->data->data[num]=(void*)sv_dat;
6906 SvREFCNT_inc_simple_void(sv_dat);
6907 }
6908 ret = reganode(pRExC_state,NGROUPP,num);
6909 goto insert_if_check_paren;
6910 }
6911 else if (RExC_parse[0] == 'D' &&
6912 RExC_parse[1] == 'E' &&
6913 RExC_parse[2] == 'F' &&
6914 RExC_parse[3] == 'I' &&
6915 RExC_parse[4] == 'N' &&
6916 RExC_parse[5] == 'E')
6917 {
6918 ret = reganode(pRExC_state,DEFINEP,0);
6919 RExC_parse +=6 ;
6920 is_define = 1;
6921 goto insert_if_check_paren;
6922 }
6923 else if (RExC_parse[0] == 'R') {
6924 RExC_parse++;
6925 parno = 0;
6926 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6927 parno = atoi(RExC_parse++);
6928 while (isDIGIT(*RExC_parse))
6929 RExC_parse++;
6930 } else if (RExC_parse[0] == '&') {
6931 SV *sv_dat;
6932 RExC_parse++;
6933 sv_dat = reg_scan_name(pRExC_state,
6934 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6935 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6936 }
6937 ret = reganode(pRExC_state,INSUBP,parno);
6938 goto insert_if_check_paren;
6939 }
6940 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6941 /* (?(1)...) */
6942 char c;
6943 parno = atoi(RExC_parse++);
6944
6945 while (isDIGIT(*RExC_parse))
6946 RExC_parse++;
6947 ret = reganode(pRExC_state, GROUPP, parno);
6948
6949 insert_if_check_paren:
6950 if ((c = *nextchar(pRExC_state)) != ')')
6951 vFAIL("Switch condition not recognized");
6952 insert_if:
6953 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
6954 br = regbranch(pRExC_state, &flags, 1,depth+1);
6955 if (br == NULL)
6956 br = reganode(pRExC_state, LONGJMP, 0);
6957 else
6958 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
6959 c = *nextchar(pRExC_state);
6960 if (flags&HASWIDTH)
6961 *flagp |= HASWIDTH;
6962 if (c == '|') {
6963 if (is_define)
6964 vFAIL("(?(DEFINE)....) does not allow branches");
6965 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
6966 regbranch(pRExC_state, &flags, 1,depth+1);
6967 REGTAIL(pRExC_state, ret, lastbr);
6968 if (flags&HASWIDTH)
6969 *flagp |= HASWIDTH;
6970 c = *nextchar(pRExC_state);
6971 }
6972 else
6973 lastbr = NULL;
6974 if (c != ')')
6975 vFAIL("Switch (?(condition)... contains too many branches");
6976 ender = reg_node(pRExC_state, TAIL);
6977 REGTAIL(pRExC_state, br, ender);
6978 if (lastbr) {
6979 REGTAIL(pRExC_state, lastbr, ender);
6980 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
6981 }
6982 else
6983 REGTAIL(pRExC_state, ret, ender);
6984 RExC_size++; /* XXX WHY do we need this?!!
6985 For large programs it seems to be required
6986 but I can't figure out why. -- dmq*/
6987 return ret;
6988 }
6989 else {
6990 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
6991 }
6992 }
6993 case 0:
6994 RExC_parse--; /* for vFAIL to print correctly */
6995 vFAIL("Sequence (? incomplete");
6996 break;
6997 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
6998 that follow */
6999 has_use_defaults = TRUE;
7000 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7001 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7002 ? REGEX_UNICODE_CHARSET
7003 : REGEX_DEPENDS_CHARSET);
7004 goto parse_flags;
7005 default:
7006 --RExC_parse;
7007 parse_flags: /* (?i) */
7008 {
7009 U32 posflags = 0, negflags = 0;
7010 U32 *flagsp = &posflags;
7011 char has_charset_modifier = '\0';
7012 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7013 ? REGEX_UNICODE_CHARSET
7014 : REGEX_DEPENDS_CHARSET;
7015
7016 while (*RExC_parse) {
7017 /* && strchr("iogcmsx", *RExC_parse) */
7018 /* (?g), (?gc) and (?o) are useless here
7019 and must be globally applied -- japhy */
7020 switch (*RExC_parse) {
7021 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7022 case LOCALE_PAT_MOD:
7023 if (has_charset_modifier) {
7024 goto excess_modifier;
7025 }
7026 else if (flagsp == &negflags) {
7027 goto neg_modifier;
7028 }
7029 cs = REGEX_LOCALE_CHARSET;
7030 has_charset_modifier = LOCALE_PAT_MOD;
7031 RExC_contains_locale = 1;
7032 break;
7033 case UNICODE_PAT_MOD:
7034 if (has_charset_modifier) {
7035 goto excess_modifier;
7036 }
7037 else if (flagsp == &negflags) {
7038 goto neg_modifier;
7039 }
7040 cs = REGEX_UNICODE_CHARSET;
7041 has_charset_modifier = UNICODE_PAT_MOD;
7042 break;
7043 case ASCII_RESTRICT_PAT_MOD:
7044 if (flagsp == &negflags) {
7045 goto neg_modifier;
7046 }
7047 if (has_charset_modifier) {
7048 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7049 goto excess_modifier;
7050 }
7051 /* Doubled modifier implies more restricted */
7052 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7053 }
7054 else {
7055 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7056 }
7057 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7058 break;
7059 case DEPENDS_PAT_MOD:
7060 if (has_use_defaults) {
7061 goto fail_modifiers;
7062 }
7063 else if (flagsp == &negflags) {
7064 goto neg_modifier;
7065 }
7066 else if (has_charset_modifier) {
7067 goto excess_modifier;
7068 }
7069
7070 /* The dual charset means unicode semantics if the
7071 * pattern (or target, not known until runtime) are
7072 * utf8, or something in the pattern indicates unicode
7073 * semantics */
7074 cs = (RExC_utf8 || RExC_uni_semantics)
7075 ? REGEX_UNICODE_CHARSET
7076 : REGEX_DEPENDS_CHARSET;
7077 has_charset_modifier = DEPENDS_PAT_MOD;
7078 break;
7079 excess_modifier:
7080 RExC_parse++;
7081 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7082 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7083 }
7084 else if (has_charset_modifier == *(RExC_parse - 1)) {
7085 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7086 }
7087 else {
7088 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7089 }
7090 /*NOTREACHED*/
7091 neg_modifier:
7092 RExC_parse++;
7093 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7094 /*NOTREACHED*/
7095 case ONCE_PAT_MOD: /* 'o' */
7096 case GLOBAL_PAT_MOD: /* 'g' */
7097 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7098 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7099 if (! (wastedflags & wflagbit) ) {
7100 wastedflags |= wflagbit;
7101 vWARN5(
7102 RExC_parse + 1,
7103 "Useless (%s%c) - %suse /%c modifier",
7104 flagsp == &negflags ? "?-" : "?",
7105 *RExC_parse,
7106 flagsp == &negflags ? "don't " : "",
7107 *RExC_parse
7108 );
7109 }
7110 }
7111 break;
7112
7113 case CONTINUE_PAT_MOD: /* 'c' */
7114 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7115 if (! (wastedflags & WASTED_C) ) {
7116 wastedflags |= WASTED_GC;
7117 vWARN3(
7118 RExC_parse + 1,
7119 "Useless (%sc) - %suse /gc modifier",
7120 flagsp == &negflags ? "?-" : "?",
7121 flagsp == &negflags ? "don't " : ""
7122 );
7123 }
7124 }
7125 break;
7126 case KEEPCOPY_PAT_MOD: /* 'p' */
7127 if (flagsp == &negflags) {
7128 if (SIZE_ONLY)
7129 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7130 } else {
7131 *flagsp |= RXf_PMf_KEEPCOPY;
7132 }
7133 break;
7134 case '-':
7135 /* A flag is a default iff it is following a minus, so
7136 * if there is a minus, it means will be trying to
7137 * re-specify a default which is an error */
7138 if (has_use_defaults || flagsp == &negflags) {
7139 fail_modifiers:
7140 RExC_parse++;
7141 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7142 /*NOTREACHED*/
7143 }
7144 flagsp = &negflags;
7145 wastedflags = 0; /* reset so (?g-c) warns twice */
7146 break;
7147 case ':':
7148 paren = ':';
7149 /*FALLTHROUGH*/
7150 case ')':
7151 RExC_flags |= posflags;
7152 RExC_flags &= ~negflags;
7153 set_regex_charset(&RExC_flags, cs);
7154 if (paren != ':') {
7155 oregflags |= posflags;
7156 oregflags &= ~negflags;
7157 set_regex_charset(&oregflags, cs);
7158 }
7159 nextchar(pRExC_state);
7160 if (paren != ':') {
7161 *flagp = TRYAGAIN;
7162 return NULL;
7163 } else {
7164 ret = NULL;
7165 goto parse_rest;
7166 }
7167 /*NOTREACHED*/
7168 default:
7169 RExC_parse++;
7170 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7171 /*NOTREACHED*/
7172 }
7173 ++RExC_parse;
7174 }
7175 }} /* one for the default block, one for the switch */
7176 }
7177 else { /* (...) */
7178 capturing_parens:
7179 parno = RExC_npar;
7180 RExC_npar++;
7181
7182 ret = reganode(pRExC_state, OPEN, parno);
7183 if (!SIZE_ONLY ){
7184 if (!RExC_nestroot)
7185 RExC_nestroot = parno;
7186 if (RExC_seen & REG_SEEN_RECURSE
7187 && !RExC_open_parens[parno-1])
7188 {
7189 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7190 "Setting open paren #%"IVdf" to %d\n",
7191 (IV)parno, REG_NODE_NUM(ret)));
7192 RExC_open_parens[parno-1]= ret;
7193 }
7194 }
7195 Set_Node_Length(ret, 1); /* MJD */
7196 Set_Node_Offset(ret, RExC_parse); /* MJD */
7197 is_open = 1;
7198 }
7199 }
7200 else /* ! paren */
7201 ret = NULL;
7202
7203 parse_rest:
7204 /* Pick up the branches, linking them together. */
7205 parse_start = RExC_parse; /* MJD */
7206 br = regbranch(pRExC_state, &flags, 1,depth+1);
7207
7208 /* branch_len = (paren != 0); */
7209
7210 if (br == NULL)
7211 return(NULL);
7212 if (*RExC_parse == '|') {
7213 if (!SIZE_ONLY && RExC_extralen) {
7214 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7215 }
7216 else { /* MJD */
7217 reginsert(pRExC_state, BRANCH, br, depth+1);
7218 Set_Node_Length(br, paren != 0);
7219 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7220 }
7221 have_branch = 1;
7222 if (SIZE_ONLY)
7223 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7224 }
7225 else if (paren == ':') {
7226 *flagp |= flags&SIMPLE;
7227 }
7228 if (is_open) { /* Starts with OPEN. */
7229 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7230 }
7231 else if (paren != '?') /* Not Conditional */
7232 ret = br;
7233 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7234 lastbr = br;
7235 while (*RExC_parse == '|') {
7236 if (!SIZE_ONLY && RExC_extralen) {
7237 ender = reganode(pRExC_state, LONGJMP,0);
7238 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7239 }
7240 if (SIZE_ONLY)
7241 RExC_extralen += 2; /* Account for LONGJMP. */
7242 nextchar(pRExC_state);
7243 if (freeze_paren) {
7244 if (RExC_npar > after_freeze)
7245 after_freeze = RExC_npar;
7246 RExC_npar = freeze_paren;
7247 }
7248 br = regbranch(pRExC_state, &flags, 0, depth+1);
7249
7250 if (br == NULL)
7251 return(NULL);
7252 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7253 lastbr = br;
7254 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7255 }
7256
7257 if (have_branch || paren != ':') {
7258 /* Make a closing node, and hook it on the end. */
7259 switch (paren) {
7260 case ':':
7261 ender = reg_node(pRExC_state, TAIL);
7262 break;
7263 case 1:
7264 ender = reganode(pRExC_state, CLOSE, parno);
7265 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7266 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7267 "Setting close paren #%"IVdf" to %d\n",
7268 (IV)parno, REG_NODE_NUM(ender)));
7269 RExC_close_parens[parno-1]= ender;
7270 if (RExC_nestroot == parno)
7271 RExC_nestroot = 0;
7272 }
7273 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7274 Set_Node_Length(ender,1); /* MJD */
7275 break;
7276 case '<':
7277 case ',':
7278 case '=':
7279 case '!':
7280 *flagp &= ~HASWIDTH;
7281 /* FALL THROUGH */
7282 case '>':
7283 ender = reg_node(pRExC_state, SUCCEED);
7284 break;
7285 case 0:
7286 ender = reg_node(pRExC_state, END);
7287 if (!SIZE_ONLY) {
7288 assert(!RExC_opend); /* there can only be one! */
7289 RExC_opend = ender;
7290 }
7291 break;
7292 }
7293 REGTAIL(pRExC_state, lastbr, ender);
7294
7295 if (have_branch && !SIZE_ONLY) {
7296 if (depth==1)
7297 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7298
7299 /* Hook the tails of the branches to the closing node. */
7300 for (br = ret; br; br = regnext(br)) {
7301 const U8 op = PL_regkind[OP(br)];
7302 if (op == BRANCH) {
7303 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7304 }
7305 else if (op == BRANCHJ) {
7306 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7307 }
7308 }
7309 }
7310 }
7311
7312 {
7313 const char *p;
7314 static const char parens[] = "=!<,>";
7315
7316 if (paren && (p = strchr(parens, paren))) {
7317 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7318 int flag = (p - parens) > 1;
7319
7320 if (paren == '>')
7321 node = SUSPEND, flag = 0;
7322 reginsert(pRExC_state, node,ret, depth+1);
7323 Set_Node_Cur_Length(ret);
7324 Set_Node_Offset(ret, parse_start + 1);
7325 ret->flags = flag;
7326 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7327 }
7328 }
7329
7330 /* Check for proper termination. */
7331 if (paren) {
7332 RExC_flags = oregflags;
7333 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7334 RExC_parse = oregcomp_parse;
7335 vFAIL("Unmatched (");
7336 }
7337 }
7338 else if (!paren && RExC_parse < RExC_end) {
7339 if (*RExC_parse == ')') {
7340 RExC_parse++;
7341 vFAIL("Unmatched )");
7342 }
7343 else
7344 FAIL("Junk on end of regexp"); /* "Can't happen". */
7345 /* NOTREACHED */
7346 }
7347
7348 if (RExC_in_lookbehind) {
7349 RExC_in_lookbehind--;
7350 }
7351 if (after_freeze > RExC_npar)
7352 RExC_npar = after_freeze;
7353 return(ret);
7354}
7355
7356/*
7357 - regbranch - one alternative of an | operator
7358 *
7359 * Implements the concatenation operator.
7360 */
7361STATIC regnode *
7362S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7363{
7364 dVAR;
7365 register regnode *ret;
7366 register regnode *chain = NULL;
7367 register regnode *latest;
7368 I32 flags = 0, c = 0;
7369 GET_RE_DEBUG_FLAGS_DECL;
7370
7371 PERL_ARGS_ASSERT_REGBRANCH;
7372
7373 DEBUG_PARSE("brnc");
7374
7375 if (first)
7376 ret = NULL;
7377 else {
7378 if (!SIZE_ONLY && RExC_extralen)
7379 ret = reganode(pRExC_state, BRANCHJ,0);
7380 else {
7381 ret = reg_node(pRExC_state, BRANCH);
7382 Set_Node_Length(ret, 1);
7383 }
7384 }
7385
7386 if (!first && SIZE_ONLY)
7387 RExC_extralen += 1; /* BRANCHJ */
7388
7389 *flagp = WORST; /* Tentatively. */
7390
7391 RExC_parse--;
7392 nextchar(pRExC_state);
7393 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7394 flags &= ~TRYAGAIN;
7395 latest = regpiece(pRExC_state, &flags,depth+1);
7396 if (latest == NULL) {
7397 if (flags & TRYAGAIN)
7398 continue;
7399 return(NULL);
7400 }
7401 else if (ret == NULL)
7402 ret = latest;
7403 *flagp |= flags&(HASWIDTH|POSTPONED);
7404 if (chain == NULL) /* First piece. */
7405 *flagp |= flags&SPSTART;
7406 else {
7407 RExC_naughty++;
7408 REGTAIL(pRExC_state, chain, latest);
7409 }
7410 chain = latest;
7411 c++;
7412 }
7413 if (chain == NULL) { /* Loop ran zero times. */
7414 chain = reg_node(pRExC_state, NOTHING);
7415 if (ret == NULL)
7416 ret = chain;
7417 }
7418 if (c == 1) {
7419 *flagp |= flags&SIMPLE;
7420 }
7421
7422 return ret;
7423}
7424
7425/*
7426 - regpiece - something followed by possible [*+?]
7427 *
7428 * Note that the branching code sequences used for ? and the general cases
7429 * of * and + are somewhat optimized: they use the same NOTHING node as
7430 * both the endmarker for their branch list and the body of the last branch.
7431 * It might seem that this node could be dispensed with entirely, but the
7432 * endmarker role is not redundant.
7433 */
7434STATIC regnode *
7435S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7436{
7437 dVAR;
7438 register regnode *ret;
7439 register char op;
7440 register char *next;
7441 I32 flags;
7442 const char * const origparse = RExC_parse;
7443 I32 min;
7444 I32 max = REG_INFTY;
7445#ifdef RE_TRACK_PATTERN_OFFSETS
7446 char *parse_start;
7447#endif
7448 const char *maxpos = NULL;
7449 GET_RE_DEBUG_FLAGS_DECL;
7450
7451 PERL_ARGS_ASSERT_REGPIECE;
7452
7453 DEBUG_PARSE("piec");
7454
7455 ret = regatom(pRExC_state, &flags,depth+1);
7456 if (ret == NULL) {
7457 if (flags & TRYAGAIN)
7458 *flagp |= TRYAGAIN;
7459 return(NULL);
7460 }
7461
7462 op = *RExC_parse;
7463
7464 if (op == '{' && regcurly(RExC_parse)) {
7465 maxpos = NULL;
7466#ifdef RE_TRACK_PATTERN_OFFSETS
7467 parse_start = RExC_parse; /* MJD */
7468#endif
7469 next = RExC_parse + 1;
7470 while (isDIGIT(*next) || *next == ',') {
7471 if (*next == ',') {
7472 if (maxpos)
7473 break;
7474 else
7475 maxpos = next;
7476 }
7477 next++;
7478 }
7479 if (*next == '}') { /* got one */
7480 if (!maxpos)
7481 maxpos = next;
7482 RExC_parse++;
7483 min = atoi(RExC_parse);
7484 if (*maxpos == ',')
7485 maxpos++;
7486 else
7487 maxpos = RExC_parse;
7488 max = atoi(maxpos);
7489 if (!max && *maxpos != '0')
7490 max = REG_INFTY; /* meaning "infinity" */
7491 else if (max >= REG_INFTY)
7492 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7493 RExC_parse = next;
7494 nextchar(pRExC_state);
7495
7496 do_curly:
7497 if ((flags&SIMPLE)) {
7498 RExC_naughty += 2 + RExC_naughty / 2;
7499 reginsert(pRExC_state, CURLY, ret, depth+1);
7500 Set_Node_Offset(ret, parse_start+1); /* MJD */
7501 Set_Node_Cur_Length(ret);
7502 }
7503 else {
7504 regnode * const w = reg_node(pRExC_state, WHILEM);
7505
7506 w->flags = 0;
7507 REGTAIL(pRExC_state, ret, w);
7508 if (!SIZE_ONLY && RExC_extralen) {
7509 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7510 reginsert(pRExC_state, NOTHING,ret, depth+1);
7511 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7512 }
7513 reginsert(pRExC_state, CURLYX,ret, depth+1);
7514 /* MJD hk */
7515 Set_Node_Offset(ret, parse_start+1);
7516 Set_Node_Length(ret,
7517 op == '{' ? (RExC_parse - parse_start) : 1);
7518
7519 if (!SIZE_ONLY && RExC_extralen)
7520 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7521 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7522 if (SIZE_ONLY)
7523 RExC_whilem_seen++, RExC_extralen += 3;
7524 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7525 }
7526 ret->flags = 0;
7527
7528 if (min > 0)
7529 *flagp = WORST;
7530 if (max > 0)
7531 *flagp |= HASWIDTH;
7532 if (max < min)
7533 vFAIL("Can't do {n,m} with n > m");
7534 if (!SIZE_ONLY) {
7535 ARG1_SET(ret, (U16)min);
7536 ARG2_SET(ret, (U16)max);
7537 }
7538
7539 goto nest_check;
7540 }
7541 }
7542
7543 if (!ISMULT1(op)) {
7544 *flagp = flags;
7545 return(ret);
7546 }
7547
7548#if 0 /* Now runtime fix should be reliable. */
7549
7550 /* if this is reinstated, don't forget to put this back into perldiag:
7551
7552 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7553
7554 (F) The part of the regexp subject to either the * or + quantifier
7555 could match an empty string. The {#} shows in the regular
7556 expression about where the problem was discovered.
7557
7558 */
7559
7560 if (!(flags&HASWIDTH) && op != '?')
7561 vFAIL("Regexp *+ operand could be empty");
7562#endif
7563
7564#ifdef RE_TRACK_PATTERN_OFFSETS
7565 parse_start = RExC_parse;
7566#endif
7567 nextchar(pRExC_state);
7568
7569 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7570
7571 if (op == '*' && (flags&SIMPLE)) {
7572 reginsert(pRExC_state, STAR, ret, depth+1);
7573 ret->flags = 0;
7574 RExC_naughty += 4;
7575 }
7576 else if (op == '*') {
7577 min = 0;
7578 goto do_curly;
7579 }
7580 else if (op == '+' && (flags&SIMPLE)) {
7581 reginsert(pRExC_state, PLUS, ret, depth+1);
7582 ret->flags = 0;
7583 RExC_naughty += 3;
7584 }
7585 else if (op == '+') {
7586 min = 1;
7587 goto do_curly;
7588 }
7589 else if (op == '?') {
7590 min = 0; max = 1;
7591 goto do_curly;
7592 }
7593 nest_check:
7594 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7595 ckWARN3reg(RExC_parse,
7596 "%.*s matches null string many times",
7597 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7598 origparse);
7599 }
7600
7601 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7602 nextchar(pRExC_state);
7603 reginsert(pRExC_state, MINMOD, ret, depth+1);
7604 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7605 }
7606#ifndef REG_ALLOW_MINMOD_SUSPEND
7607 else
7608#endif
7609 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7610 regnode *ender;
7611 nextchar(pRExC_state);
7612 ender = reg_node(pRExC_state, SUCCEED);
7613 REGTAIL(pRExC_state, ret, ender);
7614 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7615 ret->flags = 0;
7616 ender = reg_node(pRExC_state, TAIL);
7617 REGTAIL(pRExC_state, ret, ender);
7618 /*ret= ender;*/
7619 }
7620
7621 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7622 RExC_parse++;
7623 vFAIL("Nested quantifiers");
7624 }
7625
7626 return(ret);
7627}
7628
7629
7630/* reg_namedseq(pRExC_state,UVp, UV depth)
7631
7632 This is expected to be called by a parser routine that has
7633 recognized '\N' and needs to handle the rest. RExC_parse is
7634 expected to point at the first char following the N at the time
7635 of the call.
7636
7637 The \N may be inside (indicated by valuep not being NULL) or outside a
7638 character class.
7639
7640 \N may begin either a named sequence, or if outside a character class, mean
7641 to match a non-newline. For non single-quoted regexes, the tokenizer has
7642 attempted to decide which, and in the case of a named sequence converted it
7643 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
7644 where c1... are the characters in the sequence. For single-quoted regexes,
7645 the tokenizer passes the \N sequence through unchanged; this code will not
7646 attempt to determine this nor expand those. The net effect is that if the
7647 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
7648 signals that this \N occurrence means to match a non-newline.
7649
7650 Only the \N{U+...} form should occur in a character class, for the same
7651 reason that '.' inside a character class means to just match a period: it
7652 just doesn't make sense.
7653
7654 If valuep is non-null then it is assumed that we are parsing inside
7655 of a charclass definition and the first codepoint in the resolved
7656 string is returned via *valuep and the routine will return NULL.
7657 In this mode if a multichar string is returned from the charnames
7658 handler, a warning will be issued, and only the first char in the
7659 sequence will be examined. If the string returned is zero length
7660 then the value of *valuep is undefined and NON-NULL will
7661 be returned to indicate failure. (This will NOT be a valid pointer
7662 to a regnode.)
7663
7664 If valuep is null then it is assumed that we are parsing normal text and a
7665 new EXACT node is inserted into the program containing the resolved string,
7666 and a pointer to the new node is returned. But if the string is zero length
7667 a NOTHING node is emitted instead.
7668
7669 On success RExC_parse is set to the char following the endbrace.
7670 Parsing failures will generate a fatal error via vFAIL(...)
7671 */
7672STATIC regnode *
7673S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
7674{
7675 char * endbrace; /* '}' following the name */
7676 regnode *ret = NULL;
7677 char* p;
7678
7679 GET_RE_DEBUG_FLAGS_DECL;
7680
7681 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
7682
7683 GET_RE_DEBUG_FLAGS;
7684
7685 /* The [^\n] meaning of \N ignores spaces and comments under the /x
7686 * modifier. The other meaning does not */
7687 p = (RExC_flags & RXf_PMf_EXTENDED)
7688 ? regwhite( pRExC_state, RExC_parse )
7689 : RExC_parse;
7690
7691 /* Disambiguate between \N meaning a named character versus \N meaning
7692 * [^\n]. The former is assumed when it can't be the latter. */
7693 if (*p != '{' || regcurly(p)) {
7694 RExC_parse = p;
7695 if (valuep) {
7696 /* no bare \N in a charclass */
7697 vFAIL("\\N in a character class must be a named character: \\N{...}");
7698 }
7699 nextchar(pRExC_state);
7700 ret = reg_node(pRExC_state, REG_ANY);
7701 *flagp |= HASWIDTH|SIMPLE;
7702 RExC_naughty++;
7703 RExC_parse--;
7704 Set_Node_Length(ret, 1); /* MJD */
7705 return ret;
7706 }
7707
7708 /* Here, we have decided it should be a named sequence */
7709
7710 /* The test above made sure that the next real character is a '{', but
7711 * under the /x modifier, it could be separated by space (or a comment and
7712 * \n) and this is not allowed (for consistency with \x{...} and the
7713 * tokenizer handling of \N{NAME}). */
7714 if (*RExC_parse != '{') {
7715 vFAIL("Missing braces on \\N{}");
7716 }
7717
7718 RExC_parse++; /* Skip past the '{' */
7719
7720 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
7721 || ! (endbrace == RExC_parse /* nothing between the {} */
7722 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
7723 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
7724 {
7725 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
7726 vFAIL("\\N{NAME} must be resolved by the lexer");
7727 }
7728
7729 if (endbrace == RExC_parse) { /* empty: \N{} */
7730 if (! valuep) {
7731 RExC_parse = endbrace + 1;
7732 return reg_node(pRExC_state,NOTHING);
7733 }
7734
7735 if (SIZE_ONLY) {
7736 ckWARNreg(RExC_parse,
7737 "Ignoring zero length \\N{} in character class"
7738 );
7739 RExC_parse = endbrace + 1;
7740 }
7741 *valuep = 0;
7742 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
7743 }
7744
7745 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
7746 RExC_parse += 2; /* Skip past the 'U+' */
7747
7748 if (valuep) { /* In a bracketed char class */
7749 /* We only pay attention to the first char of
7750 multichar strings being returned. I kinda wonder
7751 if this makes sense as it does change the behaviour
7752 from earlier versions, OTOH that behaviour was broken
7753 as well. XXX Solution is to recharacterize as
7754 [rest-of-class]|multi1|multi2... */
7755
7756 STRLEN length_of_hex;
7757 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
7758 | PERL_SCAN_DISALLOW_PREFIX
7759 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
7760
7761 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
7762 if (endchar < endbrace) {
7763 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
7764 }
7765
7766 length_of_hex = (STRLEN)(endchar - RExC_parse);
7767 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
7768
7769 /* The tokenizer should have guaranteed validity, but it's possible to
7770 * bypass it by using single quoting, so check */
7771 if (length_of_hex == 0
7772 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
7773 {
7774 RExC_parse += length_of_hex; /* Includes all the valid */
7775 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
7776 ? UTF8SKIP(RExC_parse)
7777 : 1;
7778 /* Guard against malformed utf8 */
7779 if (RExC_parse >= endchar) RExC_parse = endchar;
7780 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7781 }
7782
7783 RExC_parse = endbrace + 1;
7784 if (endchar == endbrace) return NULL;
7785
7786 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
7787 }
7788 else { /* Not a char class */
7789
7790 /* What is done here is to convert this to a sub-pattern of the form
7791 * (?:\x{char1}\x{char2}...)
7792 * and then call reg recursively. That way, it retains its atomicness,
7793 * while not having to worry about special handling that some code
7794 * points may have. toke.c has converted the original Unicode values
7795 * to native, so that we can just pass on the hex values unchanged. We
7796 * do have to set a flag to keep recoding from happening in the
7797 * recursion */
7798
7799 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
7800 STRLEN len;
7801 char *endchar; /* Points to '.' or '}' ending cur char in the input
7802 stream */
7803 char *orig_end = RExC_end;
7804
7805 while (RExC_parse < endbrace) {
7806
7807 /* Code points are separated by dots. If none, there is only one
7808 * code point, and is terminated by the brace */
7809 endchar = RExC_parse + strcspn(RExC_parse, ".}");
7810
7811 /* Convert to notation the rest of the code understands */
7812 sv_catpv(substitute_parse, "\\x{");
7813 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
7814 sv_catpv(substitute_parse, "}");
7815
7816 /* Point to the beginning of the next character in the sequence. */
7817 RExC_parse = endchar + 1;
7818 }
7819 sv_catpv(substitute_parse, ")");
7820
7821 RExC_parse = SvPV(substitute_parse, len);
7822
7823 /* Don't allow empty number */
7824 if (len < 8) {
7825 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7826 }
7827 RExC_end = RExC_parse + len;
7828
7829 /* The values are Unicode, and therefore not subject to recoding */
7830 RExC_override_recoding = 1;
7831
7832 ret = reg(pRExC_state, 1, flagp, depth+1);
7833
7834 RExC_parse = endbrace;
7835 RExC_end = orig_end;
7836 RExC_override_recoding = 0;
7837
7838 nextchar(pRExC_state);
7839 }
7840
7841 return ret;
7842}
7843
7844
7845/*
7846 * reg_recode
7847 *
7848 * It returns the code point in utf8 for the value in *encp.
7849 * value: a code value in the source encoding
7850 * encp: a pointer to an Encode object
7851 *
7852 * If the result from Encode is not a single character,
7853 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
7854 */
7855STATIC UV
7856S_reg_recode(pTHX_ const char value, SV **encp)
7857{
7858 STRLEN numlen = 1;
7859 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
7860 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
7861 const STRLEN newlen = SvCUR(sv);
7862 UV uv = UNICODE_REPLACEMENT;
7863
7864 PERL_ARGS_ASSERT_REG_RECODE;
7865
7866 if (newlen)
7867 uv = SvUTF8(sv)
7868 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
7869 : *(U8*)s;
7870
7871 if (!newlen || numlen != newlen) {
7872 uv = UNICODE_REPLACEMENT;
7873 *encp = NULL;
7874 }
7875 return uv;
7876}
7877
7878
7879/*
7880 - regatom - the lowest level
7881
7882 Try to identify anything special at the start of the pattern. If there
7883 is, then handle it as required. This may involve generating a single regop,
7884 such as for an assertion; or it may involve recursing, such as to
7885 handle a () structure.
7886
7887 If the string doesn't start with something special then we gobble up
7888 as much literal text as we can.
7889
7890 Once we have been able to handle whatever type of thing started the
7891 sequence, we return.
7892
7893 Note: we have to be careful with escapes, as they can be both literal
7894 and special, and in the case of \10 and friends can either, depending
7895 on context. Specifically there are two separate switches for handling
7896 escape sequences, with the one for handling literal escapes requiring
7897 a dummy entry for all of the special escapes that are actually handled
7898 by the other.
7899*/
7900
7901STATIC regnode *
7902S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7903{
7904 dVAR;
7905 register regnode *ret = NULL;
7906 I32 flags;
7907 char *parse_start = RExC_parse;
7908 U8 op;
7909 GET_RE_DEBUG_FLAGS_DECL;
7910 DEBUG_PARSE("atom");
7911 *flagp = WORST; /* Tentatively. */
7912
7913 PERL_ARGS_ASSERT_REGATOM;
7914
7915tryagain:
7916 switch ((U8)*RExC_parse) {
7917 case '^':
7918 RExC_seen_zerolen++;
7919 nextchar(pRExC_state);
7920 if (RExC_flags & RXf_PMf_MULTILINE)
7921 ret = reg_node(pRExC_state, MBOL);
7922 else if (RExC_flags & RXf_PMf_SINGLELINE)
7923 ret = reg_node(pRExC_state, SBOL);
7924 else
7925 ret = reg_node(pRExC_state, BOL);
7926 Set_Node_Length(ret, 1); /* MJD */
7927 break;
7928 case '$':
7929 nextchar(pRExC_state);
7930 if (*RExC_parse)
7931 RExC_seen_zerolen++;
7932 if (RExC_flags & RXf_PMf_MULTILINE)
7933 ret = reg_node(pRExC_state, MEOL);
7934 else if (RExC_flags & RXf_PMf_SINGLELINE)
7935 ret = reg_node(pRExC_state, SEOL);
7936 else
7937 ret = reg_node(pRExC_state, EOL);
7938 Set_Node_Length(ret, 1); /* MJD */
7939 break;
7940 case '.':
7941 nextchar(pRExC_state);
7942 if (RExC_flags & RXf_PMf_SINGLELINE)
7943 ret = reg_node(pRExC_state, SANY);
7944 else
7945 ret = reg_node(pRExC_state, REG_ANY);
7946 *flagp |= HASWIDTH|SIMPLE;
7947 RExC_naughty++;
7948 Set_Node_Length(ret, 1); /* MJD */
7949 break;
7950 case '[':
7951 {
7952 char * const oregcomp_parse = ++RExC_parse;
7953 ret = regclass(pRExC_state,depth+1);
7954 if (*RExC_parse != ']') {
7955 RExC_parse = oregcomp_parse;
7956 vFAIL("Unmatched [");
7957 }
7958 nextchar(pRExC_state);
7959 *flagp |= HASWIDTH|SIMPLE;
7960 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
7961 break;
7962 }
7963 case '(':
7964 nextchar(pRExC_state);
7965 ret = reg(pRExC_state, 1, &flags,depth+1);
7966 if (ret == NULL) {
7967 if (flags & TRYAGAIN) {
7968 if (RExC_parse == RExC_end) {
7969 /* Make parent create an empty node if needed. */
7970 *flagp |= TRYAGAIN;
7971 return(NULL);
7972 }
7973 goto tryagain;
7974 }
7975 return(NULL);
7976 }
7977 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
7978 break;
7979 case '|':
7980 case ')':
7981 if (flags & TRYAGAIN) {
7982 *flagp |= TRYAGAIN;
7983 return NULL;
7984 }
7985 vFAIL("Internal urp");
7986 /* Supposed to be caught earlier. */
7987 break;
7988 case '{':
7989 if (!regcurly(RExC_parse)) {
7990 RExC_parse++;
7991 goto defchar;
7992 }
7993 /* FALL THROUGH */
7994 case '?':
7995 case '+':
7996 case '*':
7997 RExC_parse++;
7998 vFAIL("Quantifier follows nothing");
7999 break;
8000 case '\\':
8001 /* Special Escapes
8002
8003 This switch handles escape sequences that resolve to some kind
8004 of special regop and not to literal text. Escape sequnces that
8005 resolve to literal text are handled below in the switch marked
8006 "Literal Escapes".
8007
8008 Every entry in this switch *must* have a corresponding entry
8009 in the literal escape switch. However, the opposite is not
8010 required, as the default for this switch is to jump to the
8011 literal text handling code.
8012 */
8013 switch ((U8)*++RExC_parse) {
8014 /* Special Escapes */
8015 case 'A':
8016 RExC_seen_zerolen++;
8017 ret = reg_node(pRExC_state, SBOL);
8018 *flagp |= SIMPLE;
8019 goto finish_meta_pat;
8020 case 'G':
8021 ret = reg_node(pRExC_state, GPOS);
8022 RExC_seen |= REG_SEEN_GPOS;
8023 *flagp |= SIMPLE;
8024 goto finish_meta_pat;
8025 case 'K':
8026 RExC_seen_zerolen++;
8027 ret = reg_node(pRExC_state, KEEPS);
8028 *flagp |= SIMPLE;
8029 /* XXX:dmq : disabling in-place substitution seems to
8030 * be necessary here to avoid cases of memory corruption, as
8031 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8032 */
8033 RExC_seen |= REG_SEEN_LOOKBEHIND;
8034 goto finish_meta_pat;
8035 case 'Z':
8036 ret = reg_node(pRExC_state, SEOL);
8037 *flagp |= SIMPLE;
8038 RExC_seen_zerolen++; /* Do not optimize RE away */
8039 goto finish_meta_pat;
8040 case 'z':
8041 ret = reg_node(pRExC_state, EOS);
8042 *flagp |= SIMPLE;
8043 RExC_seen_zerolen++; /* Do not optimize RE away */
8044 goto finish_meta_pat;
8045 case 'C':
8046 ret = reg_node(pRExC_state, CANY);
8047 RExC_seen |= REG_SEEN_CANY;
8048 *flagp |= HASWIDTH|SIMPLE;
8049 goto finish_meta_pat;
8050 case 'X':
8051 ret = reg_node(pRExC_state, CLUMP);
8052 *flagp |= HASWIDTH;
8053 goto finish_meta_pat;
8054 case 'w':
8055 switch (get_regex_charset(RExC_flags)) {
8056 case REGEX_LOCALE_CHARSET:
8057 op = ALNUML;
8058 break;
8059 case REGEX_UNICODE_CHARSET:
8060 op = ALNUMU;
8061 break;
8062 case REGEX_ASCII_RESTRICTED_CHARSET:
8063 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8064 op = ALNUMA;
8065 break;
8066 case REGEX_DEPENDS_CHARSET:
8067 op = ALNUM;
8068 break;
8069 default:
8070 goto bad_charset;
8071 }
8072 ret = reg_node(pRExC_state, op);
8073 *flagp |= HASWIDTH|SIMPLE;
8074 goto finish_meta_pat;
8075 case 'W':
8076 switch (get_regex_charset(RExC_flags)) {
8077 case REGEX_LOCALE_CHARSET:
8078 op = NALNUML;
8079 break;
8080 case REGEX_UNICODE_CHARSET:
8081 op = NALNUMU;
8082 break;
8083 case REGEX_ASCII_RESTRICTED_CHARSET:
8084 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8085 op = NALNUMA;
8086 break;
8087 case REGEX_DEPENDS_CHARSET:
8088 op = NALNUM;
8089 break;
8090 default:
8091 goto bad_charset;
8092 }
8093 ret = reg_node(pRExC_state, op);
8094 *flagp |= HASWIDTH|SIMPLE;
8095 goto finish_meta_pat;
8096 case 'b':
8097 RExC_seen_zerolen++;
8098 RExC_seen |= REG_SEEN_LOOKBEHIND;
8099 switch (get_regex_charset(RExC_flags)) {
8100 case REGEX_LOCALE_CHARSET:
8101 op = BOUNDL;
8102 break;
8103 case REGEX_UNICODE_CHARSET:
8104 op = BOUNDU;
8105 break;
8106 case REGEX_ASCII_RESTRICTED_CHARSET:
8107 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8108 op = BOUNDA;
8109 break;
8110 case REGEX_DEPENDS_CHARSET:
8111 op = BOUND;
8112 break;
8113 default:
8114 goto bad_charset;
8115 }
8116 ret = reg_node(pRExC_state, op);
8117 FLAGS(ret) = get_regex_charset(RExC_flags);
8118 *flagp |= SIMPLE;
8119 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8120 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8121 }
8122 goto finish_meta_pat;
8123 case 'B':
8124 RExC_seen_zerolen++;
8125 RExC_seen |= REG_SEEN_LOOKBEHIND;
8126 switch (get_regex_charset(RExC_flags)) {
8127 case REGEX_LOCALE_CHARSET:
8128 op = NBOUNDL;
8129 break;
8130 case REGEX_UNICODE_CHARSET:
8131 op = NBOUNDU;
8132 break;
8133 case REGEX_ASCII_RESTRICTED_CHARSET:
8134 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8135 op = NBOUNDA;
8136 break;
8137 case REGEX_DEPENDS_CHARSET:
8138 op = NBOUND;
8139 break;
8140 default:
8141 goto bad_charset;
8142 }
8143 ret = reg_node(pRExC_state, op);
8144 FLAGS(ret) = get_regex_charset(RExC_flags);
8145 *flagp |= SIMPLE;
8146 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8147 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8148 }
8149 goto finish_meta_pat;
8150 case 's':
8151 switch (get_regex_charset(RExC_flags)) {
8152 case REGEX_LOCALE_CHARSET:
8153 op = SPACEL;
8154 break;
8155 case REGEX_UNICODE_CHARSET:
8156 op = SPACEU;
8157 break;
8158 case REGEX_ASCII_RESTRICTED_CHARSET:
8159 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8160 op = SPACEA;
8161 break;
8162 case REGEX_DEPENDS_CHARSET:
8163 op = SPACE;
8164 break;
8165 default:
8166 goto bad_charset;
8167 }
8168 ret = reg_node(pRExC_state, op);
8169 *flagp |= HASWIDTH|SIMPLE;
8170 goto finish_meta_pat;
8171 case 'S':
8172 switch (get_regex_charset(RExC_flags)) {
8173 case REGEX_LOCALE_CHARSET:
8174 op = NSPACEL;
8175 break;
8176 case REGEX_UNICODE_CHARSET:
8177 op = NSPACEU;
8178 break;
8179 case REGEX_ASCII_RESTRICTED_CHARSET:
8180 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8181 op = NSPACEA;
8182 break;
8183 case REGEX_DEPENDS_CHARSET:
8184 op = NSPACE;
8185 break;
8186 default:
8187 goto bad_charset;
8188 }
8189 ret = reg_node(pRExC_state, op);
8190 *flagp |= HASWIDTH|SIMPLE;
8191 goto finish_meta_pat;
8192 case 'd':
8193 switch (get_regex_charset(RExC_flags)) {
8194 case REGEX_LOCALE_CHARSET:
8195 op = DIGITL;
8196 break;
8197 case REGEX_ASCII_RESTRICTED_CHARSET:
8198 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8199 op = DIGITA;
8200 break;
8201 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8202 case REGEX_UNICODE_CHARSET:
8203 op = DIGIT;
8204 break;
8205 default:
8206 goto bad_charset;
8207 }
8208 ret = reg_node(pRExC_state, op);
8209 *flagp |= HASWIDTH|SIMPLE;
8210 goto finish_meta_pat;
8211 case 'D':
8212 switch (get_regex_charset(RExC_flags)) {
8213 case REGEX_LOCALE_CHARSET:
8214 op = NDIGITL;
8215 break;
8216 case REGEX_ASCII_RESTRICTED_CHARSET:
8217 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8218 op = NDIGITA;
8219 break;
8220 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8221 case REGEX_UNICODE_CHARSET:
8222 op = NDIGIT;
8223 break;
8224 default:
8225 goto bad_charset;
8226 }
8227 ret = reg_node(pRExC_state, op);
8228 *flagp |= HASWIDTH|SIMPLE;
8229 goto finish_meta_pat;
8230 case 'R':
8231 ret = reg_node(pRExC_state, LNBREAK);
8232 *flagp |= HASWIDTH|SIMPLE;
8233 goto finish_meta_pat;
8234 case 'h':
8235 ret = reg_node(pRExC_state, HORIZWS);
8236 *flagp |= HASWIDTH|SIMPLE;
8237 goto finish_meta_pat;
8238 case 'H':
8239 ret = reg_node(pRExC_state, NHORIZWS);
8240 *flagp |= HASWIDTH|SIMPLE;
8241 goto finish_meta_pat;
8242 case 'v':
8243 ret = reg_node(pRExC_state, VERTWS);
8244 *flagp |= HASWIDTH|SIMPLE;
8245 goto finish_meta_pat;
8246 case 'V':
8247 ret = reg_node(pRExC_state, NVERTWS);
8248 *flagp |= HASWIDTH|SIMPLE;
8249 finish_meta_pat:
8250 nextchar(pRExC_state);
8251 Set_Node_Length(ret, 2); /* MJD */
8252 break;
8253 case 'p':
8254 case 'P':
8255 {
8256 char* const oldregxend = RExC_end;
8257#ifdef DEBUGGING
8258 char* parse_start = RExC_parse - 2;
8259#endif
8260
8261 if (RExC_parse[1] == '{') {
8262 /* a lovely hack--pretend we saw [\pX] instead */
8263 RExC_end = strchr(RExC_parse, '}');
8264 if (!RExC_end) {
8265 const U8 c = (U8)*RExC_parse;
8266 RExC_parse += 2;
8267 RExC_end = oldregxend;
8268 vFAIL2("Missing right brace on \\%c{}", c);
8269 }
8270 RExC_end++;
8271 }
8272 else {
8273 RExC_end = RExC_parse + 2;
8274 if (RExC_end > oldregxend)
8275 RExC_end = oldregxend;
8276 }
8277 RExC_parse--;
8278
8279 ret = regclass(pRExC_state,depth+1);
8280
8281 RExC_end = oldregxend;
8282 RExC_parse--;
8283
8284 Set_Node_Offset(ret, parse_start + 2);
8285 Set_Node_Cur_Length(ret);
8286 nextchar(pRExC_state);
8287 *flagp |= HASWIDTH|SIMPLE;
8288 }
8289 break;
8290 case 'N':
8291 /* Handle \N and \N{NAME} here and not below because it can be
8292 multicharacter. join_exact() will join them up later on.
8293 Also this makes sure that things like /\N{BLAH}+/ and
8294 \N{BLAH} being multi char Just Happen. dmq*/
8295 ++RExC_parse;
8296 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8297 break;
8298 case 'k': /* Handle \k<NAME> and \k'NAME' */
8299 parse_named_seq:
8300 {
8301 char ch= RExC_parse[1];
8302 if (ch != '<' && ch != '\'' && ch != '{') {
8303 RExC_parse++;
8304 vFAIL2("Sequence %.2s... not terminated",parse_start);
8305 } else {
8306 /* this pretty much dupes the code for (?P=...) in reg(), if
8307 you change this make sure you change that */
8308 char* name_start = (RExC_parse += 2);
8309 U32 num = 0;
8310 SV *sv_dat = reg_scan_name(pRExC_state,
8311 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8312 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8313 if (RExC_parse == name_start || *RExC_parse != ch)
8314 vFAIL2("Sequence %.3s... not terminated",parse_start);
8315
8316 if (!SIZE_ONLY) {
8317 num = add_data( pRExC_state, 1, "S" );
8318 RExC_rxi->data->data[num]=(void*)sv_dat;
8319 SvREFCNT_inc_simple_void(sv_dat);
8320 }
8321
8322 RExC_sawback = 1;
8323 ret = reganode(pRExC_state,
8324 ((! FOLD)
8325 ? NREF
8326 : (MORE_ASCII_RESTRICTED)
8327 ? NREFFA
8328 : (AT_LEAST_UNI_SEMANTICS)
8329 ? NREFFU
8330 : (LOC)
8331 ? NREFFL
8332 : NREFF),
8333 num);
8334 *flagp |= HASWIDTH;
8335
8336 /* override incorrect value set in reganode MJD */
8337 Set_Node_Offset(ret, parse_start+1);
8338 Set_Node_Cur_Length(ret); /* MJD */
8339 nextchar(pRExC_state);
8340
8341 }
8342 break;
8343 }
8344 case 'g':
8345 case '1': case '2': case '3': case '4':
8346 case '5': case '6': case '7': case '8': case '9':
8347 {
8348 I32 num;
8349 bool isg = *RExC_parse == 'g';
8350 bool isrel = 0;
8351 bool hasbrace = 0;
8352 if (isg) {
8353 RExC_parse++;
8354 if (*RExC_parse == '{') {
8355 RExC_parse++;
8356 hasbrace = 1;
8357 }
8358 if (*RExC_parse == '-') {
8359 RExC_parse++;
8360 isrel = 1;
8361 }
8362 if (hasbrace && !isDIGIT(*RExC_parse)) {
8363 if (isrel) RExC_parse--;
8364 RExC_parse -= 2;
8365 goto parse_named_seq;
8366 } }
8367 num = atoi(RExC_parse);
8368 if (isg && num == 0)
8369 vFAIL("Reference to invalid group 0");
8370 if (isrel) {
8371 num = RExC_npar - num;
8372 if (num < 1)
8373 vFAIL("Reference to nonexistent or unclosed group");
8374 }
8375 if (!isg && num > 9 && num >= RExC_npar)
8376 goto defchar;
8377 else {
8378 char * const parse_start = RExC_parse - 1; /* MJD */
8379 while (isDIGIT(*RExC_parse))
8380 RExC_parse++;
8381 if (parse_start == RExC_parse - 1)
8382 vFAIL("Unterminated \\g... pattern");
8383 if (hasbrace) {
8384 if (*RExC_parse != '}')
8385 vFAIL("Unterminated \\g{...} pattern");
8386 RExC_parse++;
8387 }
8388 if (!SIZE_ONLY) {
8389 if (num > (I32)RExC_rx->nparens)
8390 vFAIL("Reference to nonexistent group");
8391 }
8392 RExC_sawback = 1;
8393 ret = reganode(pRExC_state,
8394 ((! FOLD)
8395 ? REF
8396 : (MORE_ASCII_RESTRICTED)
8397 ? REFFA
8398 : (AT_LEAST_UNI_SEMANTICS)
8399 ? REFFU
8400 : (LOC)
8401 ? REFFL
8402 : REFF),
8403 num);
8404 *flagp |= HASWIDTH;
8405
8406 /* override incorrect value set in reganode MJD */
8407 Set_Node_Offset(ret, parse_start+1);
8408 Set_Node_Cur_Length(ret); /* MJD */
8409 RExC_parse--;
8410 nextchar(pRExC_state);
8411 }
8412 }
8413 break;
8414 case '\0':
8415 if (RExC_parse >= RExC_end)
8416 FAIL("Trailing \\");
8417 /* FALL THROUGH */
8418 default:
8419 /* Do not generate "unrecognized" warnings here, we fall
8420 back into the quick-grab loop below */
8421 parse_start--;
8422 goto defchar;
8423 }
8424 break;
8425
8426 case '#':
8427 if (RExC_flags & RXf_PMf_EXTENDED) {
8428 if ( reg_skipcomment( pRExC_state ) )
8429 goto tryagain;
8430 }
8431 /* FALL THROUGH */
8432
8433 default:
8434
8435 parse_start = RExC_parse - 1;
8436
8437 RExC_parse++;
8438
8439 defchar: {
8440 typedef enum {
8441 generic_char = 0,
8442 char_s,
8443 upsilon_1,
8444 upsilon_2,
8445 iota_1,
8446 iota_2,
8447 } char_state;
8448 char_state latest_char_state = generic_char;
8449 register STRLEN len;
8450 register UV ender;
8451 register char *p;
8452 char *s;
8453 STRLEN foldlen;
8454 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8455 regnode * orig_emit;
8456
8457 ender = 0;
8458 orig_emit = RExC_emit; /* Save the original output node position in
8459 case we need to output a different node
8460 type */
8461 ret = reg_node(pRExC_state,
8462 (U8) ((! FOLD) ? EXACT
8463 : (LOC)
8464 ? EXACTFL
8465 : (MORE_ASCII_RESTRICTED)
8466 ? EXACTFA
8467 : (AT_LEAST_UNI_SEMANTICS)
8468 ? EXACTFU
8469 : EXACTF)
8470 );
8471 s = STRING(ret);
8472 for (len = 0, p = RExC_parse - 1;
8473 len < 127 && p < RExC_end;
8474 len++)
8475 {
8476 char * const oldp = p;
8477
8478 if (RExC_flags & RXf_PMf_EXTENDED)
8479 p = regwhite( pRExC_state, p );
8480 switch ((U8)*p) {
8481 case '^':
8482 case '$':
8483 case '.':
8484 case '[':
8485 case '(':
8486 case ')':
8487 case '|':
8488 goto loopdone;
8489 case '\\':
8490 /* Literal Escapes Switch
8491
8492 This switch is meant to handle escape sequences that
8493 resolve to a literal character.
8494
8495 Every escape sequence that represents something
8496 else, like an assertion or a char class, is handled
8497 in the switch marked 'Special Escapes' above in this
8498 routine, but also has an entry here as anything that
8499 isn't explicitly mentioned here will be treated as
8500 an unescaped equivalent literal.
8501 */
8502
8503 switch ((U8)*++p) {
8504 /* These are all the special escapes. */
8505 case 'A': /* Start assertion */
8506 case 'b': case 'B': /* Word-boundary assertion*/
8507 case 'C': /* Single char !DANGEROUS! */
8508 case 'd': case 'D': /* digit class */
8509 case 'g': case 'G': /* generic-backref, pos assertion */
8510 case 'h': case 'H': /* HORIZWS */
8511 case 'k': case 'K': /* named backref, keep marker */
8512 case 'N': /* named char sequence */
8513 case 'p': case 'P': /* Unicode property */
8514 case 'R': /* LNBREAK */
8515 case 's': case 'S': /* space class */
8516 case 'v': case 'V': /* VERTWS */
8517 case 'w': case 'W': /* word class */
8518 case 'X': /* eXtended Unicode "combining character sequence" */
8519 case 'z': case 'Z': /* End of line/string assertion */
8520 --p;
8521 goto loopdone;
8522
8523 /* Anything after here is an escape that resolves to a
8524 literal. (Except digits, which may or may not)
8525 */
8526 case 'n':
8527 ender = '\n';
8528 p++;
8529 break;
8530 case 'r':
8531 ender = '\r';
8532 p++;
8533 break;
8534 case 't':
8535 ender = '\t';
8536 p++;
8537 break;
8538 case 'f':
8539 ender = '\f';
8540 p++;
8541 break;
8542 case 'e':
8543 ender = ASCII_TO_NATIVE('\033');
8544 p++;
8545 break;
8546 case 'a':
8547 ender = ASCII_TO_NATIVE('\007');
8548 p++;
8549 break;
8550 case 'o':
8551 {
8552 STRLEN brace_len = len;
8553 UV result;
8554 const char* error_msg;
8555
8556 bool valid = grok_bslash_o(p,
8557 &result,
8558 &brace_len,
8559 &error_msg,
8560 1);
8561 p += brace_len;
8562 if (! valid) {
8563 RExC_parse = p; /* going to die anyway; point
8564 to exact spot of failure */
8565 vFAIL(error_msg);
8566 }
8567 else
8568 {
8569 ender = result;
8570 }
8571 if (PL_encoding && ender < 0x100) {
8572 goto recode_encoding;
8573 }
8574 if (ender > 0xff) {
8575 REQUIRE_UTF8;
8576 }
8577 break;
8578 }
8579 case 'x':
8580 if (*++p == '{') {
8581 char* const e = strchr(p, '}');
8582
8583 if (!e) {
8584 RExC_parse = p + 1;
8585 vFAIL("Missing right brace on \\x{}");
8586 }
8587 else {
8588 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8589 | PERL_SCAN_DISALLOW_PREFIX;
8590 STRLEN numlen = e - p - 1;
8591 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8592 if (ender > 0xff)
8593 REQUIRE_UTF8;
8594 p = e + 1;
8595 }
8596 }
8597 else {
8598 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8599 STRLEN numlen = 2;
8600 ender = grok_hex(p, &numlen, &flags, NULL);
8601 p += numlen;
8602 }
8603 if (PL_encoding && ender < 0x100)
8604 goto recode_encoding;
8605 break;
8606 case 'c':
8607 p++;
8608 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8609 break;
8610 case '0': case '1': case '2': case '3':case '4':
8611 case '5': case '6': case '7': case '8':case '9':
8612 if (*p == '0' ||
8613 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8614 {
8615 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8616 STRLEN numlen = 3;
8617 ender = grok_oct(p, &numlen, &flags, NULL);
8618 if (ender > 0xff) {
8619 REQUIRE_UTF8;
8620 }
8621 p += numlen;
8622 }
8623 else {
8624 --p;
8625 goto loopdone;
8626 }
8627 if (PL_encoding && ender < 0x100)
8628 goto recode_encoding;
8629 break;
8630 recode_encoding:
8631 if (! RExC_override_recoding) {
8632 SV* enc = PL_encoding;
8633 ender = reg_recode((const char)(U8)ender, &enc);
8634 if (!enc && SIZE_ONLY)
8635 ckWARNreg(p, "Invalid escape in the specified encoding");
8636 REQUIRE_UTF8;
8637 }
8638 break;
8639 case '\0':
8640 if (p >= RExC_end)
8641 FAIL("Trailing \\");
8642 /* FALL THROUGH */
8643 default:
8644 if (!SIZE_ONLY&& isALPHA(*p)) {
8645 /* Include any { following the alpha to emphasize
8646 * that it could be part of an escape at some point
8647 * in the future */
8648 int len = (*(p + 1) == '{') ? 2 : 1;
8649 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
8650 }
8651 goto normal_default;
8652 }
8653 break;
8654 default:
8655 normal_default:
8656 if (UTF8_IS_START(*p) && UTF) {
8657 STRLEN numlen;
8658 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
8659 &numlen, UTF8_ALLOW_DEFAULT);
8660 p += numlen;
8661 }
8662 else
8663 ender = (U8) *p++;
8664 break;
8665 } /* End of switch on the literal */
8666
8667 /* Certain characters are problematic because their folded
8668 * length is so different from their original length that it
8669 * isn't handleable by the optimizer. They are therefore not
8670 * placed in an EXACTish node; and are here handled specially.
8671 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
8672 * putting it in a special node keeps regexec from having to
8673 * deal with a non-utf8 multi-char fold */
8674 if (FOLD
8675 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
8676 {
8677 /* We look for either side of the fold. For example \xDF
8678 * folds to 'ss'. We look for both the single character
8679 * \xDF and the sequence 'ss'. When we find something that
8680 * could be one of those, we stop and flush whatever we
8681 * have output so far into the EXACTish node that was being
8682 * built. Then restore the input pointer to what it was.
8683 * regatom will return that EXACT node, and will be called
8684 * again, positioned so the first character is the one in
8685 * question, which we return in a different node type.
8686 * The multi-char folds are a sequence, so the occurrence
8687 * of the first character in that sequence doesn't
8688 * necessarily mean that what follows is the rest of the
8689 * sequence. We keep track of that with a state machine,
8690 * with the state being set to the latest character
8691 * processed before the current one. Most characters will
8692 * set the state to 0, but if one occurs that is part of a
8693 * potential tricky fold sequence, the state is set to that
8694 * character, and the next loop iteration sees if the state
8695 * should progress towards the final folded-from character,
8696 * or if it was a false alarm. If it turns out to be a
8697 * false alarm, the character(s) will be output in a new
8698 * EXACTish node, and join_exact() will later combine them.
8699 * In the case of the 'ss' sequence, which is more common
8700 * and more easily checked, some look-ahead is done to
8701 * save time by ruling-out some false alarms */
8702 switch (ender) {
8703 default:
8704 latest_char_state = generic_char;
8705 break;
8706 case 's':
8707 case 'S':
8708 case 0x17F: /* LATIN SMALL LETTER LONG S */
8709 if (AT_LEAST_UNI_SEMANTICS) {
8710 if (latest_char_state == char_s) { /* 'ss' */
8711 ender = LATIN_SMALL_LETTER_SHARP_S;
8712 goto do_tricky;
8713 }
8714 else if (p < RExC_end) {
8715
8716 /* Look-ahead at the next character. If it
8717 * is also an s, we handle as a sharp s
8718 * tricky regnode. */
8719 if (*p == 's' || *p == 'S') {
8720
8721 /* But first flush anything in the
8722 * EXACTish buffer */
8723 if (len != 0) {
8724 p = oldp;
8725 goto loopdone;
8726 }
8727 p++; /* Account for swallowing this
8728 's' up */
8729 ender = LATIN_SMALL_LETTER_SHARP_S;
8730 goto do_tricky;
8731 }
8732 /* Here, the next character is not a
8733 * literal 's', but still could
8734 * evaluate to one if part of a \o{},
8735 * \x or \OCTAL-DIGIT. The minimum
8736 * length required for that is 4, eg
8737 * \x53 or \123 */
8738 else if (*p == '\\'
8739 && p < RExC_end - 4
8740 && (isDIGIT(*(p + 1))
8741 || *(p + 1) == 'x'
8742 || *(p + 1) == 'o' ))
8743 {
8744
8745 /* Here, it could be an 's', too much
8746 * bother to figure it out here. Flush
8747 * the buffer if any; when come back
8748 * here, set the state so know that the
8749 * previous char was an 's' */
8750 if (len != 0) {
8751 latest_char_state = generic_char;
8752 p = oldp;
8753 goto loopdone;
8754 }
8755 latest_char_state = char_s;
8756 break;
8757 }
8758 }
8759 }
8760
8761 /* Here, can't be an 'ss' sequence, or at least not
8762 * one that could fold to/from the sharp ss */
8763 latest_char_state = generic_char;
8764 break;
8765 case 0x03C5: /* First char in upsilon series */
8766 case 0x03A5: /* Also capital UPSILON, which folds to
8767 03C5, and hence exhibits the same
8768 problem */
8769 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
8770 latest_char_state = upsilon_1;
8771 if (len != 0) {
8772 p = oldp;
8773 goto loopdone;
8774 }
8775 }
8776 else {
8777 latest_char_state = generic_char;
8778 }
8779 break;
8780 case 0x03B9: /* First char in iota series */
8781 case 0x0399: /* Also capital IOTA */
8782 case 0x1FBE: /* GREEK PROSGEGRAMMENI folds to 3B9 */
8783 case 0x0345: /* COMBINING GREEK YPOGEGRAMMENI folds
8784 to 3B9 */
8785 if (p < RExC_end - 4) {
8786 latest_char_state = iota_1;
8787 if (len != 0) {
8788 p = oldp;
8789 goto loopdone;
8790 }
8791 }
8792 else {
8793 latest_char_state = generic_char;
8794 }
8795 break;
8796 case 0x0308:
8797 if (latest_char_state == upsilon_1) {
8798 latest_char_state = upsilon_2;
8799 }
8800 else if (latest_char_state == iota_1) {
8801 latest_char_state = iota_2;
8802 }
8803 else {
8804 latest_char_state = generic_char;
8805 }
8806 break;
8807 case 0x301:
8808 if (latest_char_state == upsilon_2) {
8809 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
8810 goto do_tricky;
8811 }
8812 else if (latest_char_state == iota_2) {
8813 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
8814 goto do_tricky;
8815 }
8816 latest_char_state = generic_char;
8817 break;
8818
8819 /* These are the tricky fold characters. Flush any
8820 * buffer first. (When adding to this list, also should
8821 * add them to fold_grind.t to make sure get tested) */
8822 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
8823 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
8824 case LATIN_SMALL_LETTER_SHARP_S:
8825 case LATIN_CAPITAL_LETTER_SHARP_S:
8826 case 0x1FD3: /* GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA */
8827 case 0x1FE3: /* GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA */
8828 if (len != 0) {
8829 p = oldp;
8830 goto loopdone;
8831 }
8832 /* FALL THROUGH */
8833 do_tricky: {
8834 char* const oldregxend = RExC_end;
8835 U8 tmpbuf[UTF8_MAXBYTES+1];
8836
8837 /* Here, we know we need to generate a special
8838 * regnode, and 'ender' contains the tricky
8839 * character. What's done is to pretend it's in a
8840 * [bracketed] class, and let the code that deals
8841 * with those handle it, as that code has all the
8842 * intelligence necessary. First save the current
8843 * parse state, get rid of the already allocated
8844 * but empty EXACT node that the ANYOFV node will
8845 * replace, and point the parse to a buffer which
8846 * we fill with the character we want the regclass
8847 * code to think is being parsed */
8848 RExC_emit = orig_emit;
8849 RExC_parse = (char *) tmpbuf;
8850 if (UTF) {
8851 U8 *d = uvchr_to_utf8(tmpbuf, ender);
8852 *d = '\0';
8853 RExC_end = (char *) d;
8854 }
8855 else { /* ender above 255 already excluded */
8856 tmpbuf[0] = (U8) ender;
8857 tmpbuf[1] = '\0';
8858 RExC_end = RExC_parse + 1;
8859 }
8860
8861 ret = regclass(pRExC_state,depth+1);
8862
8863 /* Here, have parsed the buffer. Reset the parse to
8864 * the actual input, and return */
8865 RExC_end = oldregxend;
8866 RExC_parse = p - 1;
8867
8868 Set_Node_Offset(ret, RExC_parse);
8869 Set_Node_Cur_Length(ret);
8870 nextchar(pRExC_state);
8871 *flagp |= HASWIDTH|SIMPLE;
8872 return ret;
8873 }
8874 }
8875 }
8876
8877 if ( RExC_flags & RXf_PMf_EXTENDED)
8878 p = regwhite( pRExC_state, p );
8879 if (UTF && FOLD) {
8880 /* Prime the casefolded buffer. Locale rules, which apply
8881 * only to code points < 256, aren't known until execution,
8882 * so for them, just output the original character using
8883 * utf8 */
8884 if (LOC && ender < 256) {
8885 if (UNI_IS_INVARIANT(ender)) {
8886 *tmpbuf = (U8) ender;
8887 foldlen = 1;
8888 } else {
8889 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
8890 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
8891 foldlen = 2;
8892 }
8893 }
8894 else if (isASCII(ender)) { /* Note: Here can't also be LOC
8895 */
8896 ender = toLOWER(ender);
8897 *tmpbuf = (U8) ender;
8898 foldlen = 1;
8899 }
8900 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
8901
8902 /* Locale and /aa require more selectivity about the
8903 * fold, so are handled below. Otherwise, here, just
8904 * use the fold */
8905 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
8906 }
8907 else {
8908 /* Under locale rules or /aa we are not to mix,
8909 * respectively, ords < 256 or ASCII with non-. So
8910 * reject folds that mix them, using only the
8911 * non-folded code point. So do the fold to a
8912 * temporary, and inspect each character in it. */
8913 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
8914 U8* s = trialbuf;
8915 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
8916 U8* e = s + foldlen;
8917 bool fold_ok = TRUE;
8918
8919 while (s < e) {
8920 if (isASCII(*s)
8921 || (LOC && (UTF8_IS_INVARIANT(*s)
8922 || UTF8_IS_DOWNGRADEABLE_START(*s))))
8923 {
8924 fold_ok = FALSE;
8925 break;
8926 }
8927 s += UTF8SKIP(s);
8928 }
8929 if (fold_ok) {
8930 Copy(trialbuf, tmpbuf, foldlen, U8);
8931 ender = tmpender;
8932 }
8933 else {
8934 uvuni_to_utf8(tmpbuf, ender);
8935 foldlen = UNISKIP(ender);
8936 }
8937 }
8938 }
8939 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
8940 if (len)
8941 p = oldp;
8942 else if (UTF) {
8943 if (FOLD) {
8944 /* Emit all the Unicode characters. */
8945 STRLEN numlen;
8946 for (foldbuf = tmpbuf;
8947 foldlen;
8948 foldlen -= numlen) {
8949 ender = utf8_to_uvchr(foldbuf, &numlen);
8950 if (numlen > 0) {
8951 const STRLEN unilen = reguni(pRExC_state, ender, s);
8952 s += unilen;
8953 len += unilen;
8954 /* In EBCDIC the numlen
8955 * and unilen can differ. */
8956 foldbuf += numlen;
8957 if (numlen >= foldlen)
8958 break;
8959 }
8960 else
8961 break; /* "Can't happen." */
8962 }
8963 }
8964 else {
8965 const STRLEN unilen = reguni(pRExC_state, ender, s);
8966 if (unilen > 0) {
8967 s += unilen;
8968 len += unilen;
8969 }
8970 }
8971 }
8972 else {
8973 len++;
8974 REGC((char)ender, s++);
8975 }
8976 break;
8977 }
8978 if (UTF) {
8979 if (FOLD) {
8980 /* Emit all the Unicode characters. */
8981 STRLEN numlen;
8982 for (foldbuf = tmpbuf;
8983 foldlen;
8984 foldlen -= numlen) {
8985 ender = utf8_to_uvchr(foldbuf, &numlen);
8986 if (numlen > 0) {
8987 const STRLEN unilen = reguni(pRExC_state, ender, s);
8988 len += unilen;
8989 s += unilen;
8990 /* In EBCDIC the numlen
8991 * and unilen can differ. */
8992 foldbuf += numlen;
8993 if (numlen >= foldlen)
8994 break;
8995 }
8996 else
8997 break;
8998 }
8999 }
9000 else {
9001 const STRLEN unilen = reguni(pRExC_state, ender, s);
9002 if (unilen > 0) {
9003 s += unilen;
9004 len += unilen;
9005 }
9006 }
9007 len--;
9008 }
9009 else {
9010 REGC((char)ender, s++);
9011 }
9012 }
9013 loopdone: /* Jumped to when encounters something that shouldn't be in
9014 the node */
9015 RExC_parse = p - 1;
9016 Set_Node_Cur_Length(ret); /* MJD */
9017 nextchar(pRExC_state);
9018 {
9019 /* len is STRLEN which is unsigned, need to copy to signed */
9020 IV iv = len;
9021 if (iv < 0)
9022 vFAIL("Internal disaster");
9023 }
9024 if (len > 0)
9025 *flagp |= HASWIDTH;
9026 if (len == 1 && UNI_IS_INVARIANT(ender))
9027 *flagp |= SIMPLE;
9028
9029 if (SIZE_ONLY)
9030 RExC_size += STR_SZ(len);
9031 else {
9032 STR_LEN(ret) = len;
9033 RExC_emit += STR_SZ(len);
9034 }
9035 }
9036 break;
9037 }
9038
9039 return(ret);
9040
9041/* Jumped to when an unrecognized character set is encountered */
9042bad_charset:
9043 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9044 return(NULL);
9045}
9046
9047STATIC char *
9048S_regwhite( RExC_state_t *pRExC_state, char *p )
9049{
9050 const char *e = RExC_end;
9051
9052 PERL_ARGS_ASSERT_REGWHITE;
9053
9054 while (p < e) {
9055 if (isSPACE(*p))
9056 ++p;
9057 else if (*p == '#') {
9058 bool ended = 0;
9059 do {
9060 if (*p++ == '\n') {
9061 ended = 1;
9062 break;
9063 }
9064 } while (p < e);
9065 if (!ended)
9066 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9067 }
9068 else
9069 break;
9070 }
9071 return p;
9072}
9073
9074/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9075 Character classes ([:foo:]) can also be negated ([:^foo:]).
9076 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9077 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9078 but trigger failures because they are currently unimplemented. */
9079
9080#define POSIXCC_DONE(c) ((c) == ':')
9081#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9082#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9083
9084STATIC I32
9085S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9086{
9087 dVAR;
9088 I32 namedclass = OOB_NAMEDCLASS;
9089
9090 PERL_ARGS_ASSERT_REGPPOSIXCC;
9091
9092 if (value == '[' && RExC_parse + 1 < RExC_end &&
9093 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9094 POSIXCC(UCHARAT(RExC_parse))) {
9095 const char c = UCHARAT(RExC_parse);
9096 char* const s = RExC_parse++;
9097
9098 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9099 RExC_parse++;
9100 if (RExC_parse == RExC_end)
9101 /* Grandfather lone [:, [=, [. */
9102 RExC_parse = s;
9103 else {
9104 const char* const t = RExC_parse++; /* skip over the c */
9105 assert(*t == c);
9106
9107 if (UCHARAT(RExC_parse) == ']') {
9108 const char *posixcc = s + 1;
9109 RExC_parse++; /* skip over the ending ] */
9110
9111 if (*s == ':') {
9112 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9113 const I32 skip = t - posixcc;
9114
9115 /* Initially switch on the length of the name. */
9116 switch (skip) {
9117 case 4:
9118 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9119 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9120 break;
9121 case 5:
9122 /* Names all of length 5. */
9123 /* alnum alpha ascii blank cntrl digit graph lower
9124 print punct space upper */
9125 /* Offset 4 gives the best switch position. */
9126 switch (posixcc[4]) {
9127 case 'a':
9128 if (memEQ(posixcc, "alph", 4)) /* alpha */
9129 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9130 break;
9131 case 'e':
9132 if (memEQ(posixcc, "spac", 4)) /* space */
9133 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9134 break;
9135 case 'h':
9136 if (memEQ(posixcc, "grap", 4)) /* graph */
9137 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9138 break;
9139 case 'i':
9140 if (memEQ(posixcc, "asci", 4)) /* ascii */
9141 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9142 break;
9143 case 'k':
9144 if (memEQ(posixcc, "blan", 4)) /* blank */
9145 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9146 break;
9147 case 'l':
9148 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9149 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9150 break;
9151 case 'm':
9152 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9153 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9154 break;
9155 case 'r':
9156 if (memEQ(posixcc, "lowe", 4)) /* lower */
9157 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9158 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9159 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9160 break;
9161 case 't':
9162 if (memEQ(posixcc, "digi", 4)) /* digit */
9163 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9164 else if (memEQ(posixcc, "prin", 4)) /* print */
9165 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9166 else if (memEQ(posixcc, "punc", 4)) /* punct */
9167 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9168 break;
9169 }
9170 break;
9171 case 6:
9172 if (memEQ(posixcc, "xdigit", 6))
9173 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9174 break;
9175 }
9176
9177 if (namedclass == OOB_NAMEDCLASS)
9178 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9179 t - s - 1, s + 1);
9180 assert (posixcc[skip] == ':');
9181 assert (posixcc[skip+1] == ']');
9182 } else if (!SIZE_ONLY) {
9183 /* [[=foo=]] and [[.foo.]] are still future. */
9184
9185 /* adjust RExC_parse so the warning shows after
9186 the class closes */
9187 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9188 RExC_parse++;
9189 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9190 }
9191 } else {
9192 /* Maternal grandfather:
9193 * "[:" ending in ":" but not in ":]" */
9194 RExC_parse = s;
9195 }
9196 }
9197 }
9198
9199 return namedclass;
9200}
9201
9202STATIC void
9203S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9204{
9205 dVAR;
9206
9207 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9208
9209 if (POSIXCC(UCHARAT(RExC_parse))) {
9210 const char *s = RExC_parse;
9211 const char c = *s++;
9212
9213 while (isALNUM(*s))
9214 s++;
9215 if (*s && c == *s && s[1] == ']') {
9216 ckWARN3reg(s+2,
9217 "POSIX syntax [%c %c] belongs inside character classes",
9218 c, c);
9219
9220 /* [[=foo=]] and [[.foo.]] are still future. */
9221 if (POSIXCC_NOTYET(c)) {
9222 /* adjust RExC_parse so the error shows after
9223 the class closes */
9224 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9225 NOOP;
9226 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9227 }
9228 }
9229 }
9230}
9231
9232/* No locale test, and always Unicode semantics */
9233#define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9234ANYOF_##NAME: \
9235 for (value = 0; value < 256; value++) \
9236 if (TEST) \
9237 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9238 yesno = '+'; \
9239 what = WORD; \
9240 break; \
9241case ANYOF_N##NAME: \
9242 for (value = 0; value < 256; value++) \
9243 if (!TEST) \
9244 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9245 yesno = '!'; \
9246 what = WORD; \
9247 break
9248
9249/* Like the above, but there are differences if we are in uni-8-bit or not, so
9250 * there are two tests passed in, to use depending on that. There aren't any
9251 * cases where the label is different from the name, so no need for that
9252 * parameter */
9253#define _C_C_T_(NAME, TEST_8, TEST_7, WORD) \
9254ANYOF_##NAME: \
9255 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9256 else if (UNI_SEMANTICS) { \
9257 for (value = 0; value < 256; value++) { \
9258 if (TEST_8(value)) stored += \
9259 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9260 } \
9261 } \
9262 else { \
9263 for (value = 0; value < 128; value++) { \
9264 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9265 set_regclass_bit(pRExC_state, ret, \
9266 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9267 } \
9268 } \
9269 yesno = '+'; \
9270 what = WORD; \
9271 break; \
9272case ANYOF_N##NAME: \
9273 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9274 else if (UNI_SEMANTICS) { \
9275 for (value = 0; value < 256; value++) { \
9276 if (! TEST_8(value)) stored += \
9277 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9278 } \
9279 } \
9280 else { \
9281 for (value = 0; value < 128; value++) { \
9282 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9283 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9284 } \
9285 if (AT_LEAST_ASCII_RESTRICTED) { \
9286 for (value = 128; value < 256; value++) { \
9287 stored += set_regclass_bit( \
9288 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9289 } \
9290 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9291 } \
9292 else { \
9293 /* For a non-ut8 target string with DEPENDS semantics, all above \
9294 * ASCII Latin1 code points match the complement of any of the \
9295 * classes. But in utf8, they have their Unicode semantics, so \
9296 * can't just set them in the bitmap, or else regexec.c will think \
9297 * they matched when they shouldn't. */ \
9298 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9299 } \
9300 } \
9301 yesno = '!'; \
9302 what = WORD; \
9303 break
9304
9305STATIC U8
9306S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9307{
9308
9309 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9310 * Locale folding is done at run-time, so this function should not be
9311 * called for nodes that are for locales.
9312 *
9313 * This function sets the bit corresponding to the fold of the input
9314 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9315 * 'F' is 'f'.
9316 *
9317 * It also knows about the characters that are in the bitmap that have
9318 * folds that are matchable only outside it, and sets the appropriate lists
9319 * and flags.
9320 *
9321 * It returns the number of bits that actually changed from 0 to 1 */
9322
9323 U8 stored = 0;
9324 U8 fold;
9325
9326 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9327
9328 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9329 : PL_fold[value];
9330
9331 /* It assumes the bit for 'value' has already been set */
9332 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9333 ANYOF_BITMAP_SET(node, fold);
9334 stored++;
9335 }
9336 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9337 /* Certain Latin1 characters have matches outside the bitmap. To get
9338 * here, 'value' is one of those characters. None of these matches is
9339 * valid for ASCII characters under /aa, which have been excluded by
9340 * the 'if' above. The matches fall into three categories:
9341 * 1) They are singly folded-to or -from an above 255 character, as
9342 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9343 * WITH DIAERESIS;
9344 * 2) They are part of a multi-char fold with another character in the
9345 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9346 * 3) They are part of a multi-char fold with a character not in the
9347 * bitmap, such as various ligatures.
9348 * We aren't dealing fully with multi-char folds, except we do deal
9349 * with the pattern containing a character that has a multi-char fold
9350 * (not so much the inverse).
9351 * For types 1) and 3), the matches only happen when the target string
9352 * is utf8; that's not true for 2), and we set a flag for it.
9353 *
9354 * The code below adds to the passed in inversion list the single fold
9355 * closures for 'value'. The values are hard-coded here so that an
9356 * innocent-looking character class, like /[ks]/i won't have to go out
9357 * to disk to find the possible matches. XXX It would be better to
9358 * generate these via regen, in case a new version of the Unicode
9359 * standard adds new mappings, though that is not really likely. */
9360 switch (value) {
9361 case 'k':
9362 case 'K':
9363 /* KELVIN SIGN */
9364 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9365 break;
9366 case 's':
9367 case 'S':
9368 /* LATIN SMALL LETTER LONG S */
9369 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9370 break;
9371 case MICRO_SIGN:
9372 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9373 GREEK_SMALL_LETTER_MU);
9374 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9375 GREEK_CAPITAL_LETTER_MU);
9376 break;
9377 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9378 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9379 /* ANGSTROM SIGN */
9380 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9381 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9382 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9383 PL_fold_latin1[value]);
9384 }
9385 break;
9386 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9387 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9388 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9389 break;
9390 case LATIN_SMALL_LETTER_SHARP_S:
9391 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9392 LATIN_CAPITAL_LETTER_SHARP_S);
9393
9394 /* Under /a, /d, and /u, this can match the two chars "ss" */
9395 if (! MORE_ASCII_RESTRICTED) {
9396 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9397
9398 /* And under /u or /a, it can match even if the target is
9399 * not utf8 */
9400 if (AT_LEAST_UNI_SEMANTICS) {
9401 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9402 }
9403 }
9404 break;
9405 case 'F': case 'f':
9406 case 'I': case 'i':
9407 case 'L': case 'l':
9408 case 'T': case 't':
9409 case 'A': case 'a':
9410 case 'H': case 'h':
9411 case 'J': case 'j':
9412 case 'N': case 'n':
9413 case 'W': case 'w':
9414 case 'Y': case 'y':
9415 /* These all are targets of multi-character folds from code
9416 * points that require UTF8 to express, so they can't match
9417 * unless the target string is in UTF-8, so no action here is
9418 * necessary, as regexec.c properly handles the general case
9419 * for UTF-8 matching */
9420 break;
9421 default:
9422 /* Use deprecated warning to increase the chances of this
9423 * being output */
9424 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9425 break;
9426 }
9427 }
9428 else if (DEPENDS_SEMANTICS
9429 && ! isASCII(value)
9430 && PL_fold_latin1[value] != value)
9431 {
9432 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9433 * folds only when the target string is in UTF-8. We add the fold
9434 * here to the list of things to match outside the bitmap, which
9435 * won't be looked at unless it is UTF8 (or else if something else
9436 * says to look even if not utf8, but those things better not happen
9437 * under DEPENDS semantics. */
9438 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9439 }
9440
9441 return stored;
9442}
9443
9444
9445PERL_STATIC_INLINE U8
9446S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9447{
9448 /* This inline function sets a bit in the bitmap if not already set, and if
9449 * appropriate, its fold, returning the number of bits that actually
9450 * changed from 0 to 1 */
9451
9452 U8 stored;
9453
9454 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9455
9456 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9457 return 0;
9458 }
9459
9460 ANYOF_BITMAP_SET(node, value);
9461 stored = 1;
9462
9463 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9464 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9465 }
9466
9467 return stored;
9468}
9469
9470STATIC void
9471S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9472{
9473 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9474 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9475 * the multi-character folds of characters in the node */
9476 SV *sv;
9477
9478 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9479
9480 if (! *alternate_ptr) {
9481 *alternate_ptr = newAV();
9482 }
9483 sv = newSVpvn_utf8((char*)string, len, TRUE);
9484 av_push(*alternate_ptr, sv);
9485 return;
9486}
9487
9488/*
9489 parse a class specification and produce either an ANYOF node that
9490 matches the pattern or perhaps will be optimized into an EXACTish node
9491 instead. The node contains a bit map for the first 256 characters, with the
9492 corresponding bit set if that character is in the list. For characters
9493 above 255, a range list is used */
9494
9495STATIC regnode *
9496S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9497{
9498 dVAR;
9499 register UV nextvalue;
9500 register IV prevvalue = OOB_UNICODE;
9501 register IV range = 0;
9502 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9503 register regnode *ret;
9504 STRLEN numlen;
9505 IV namedclass;
9506 char *rangebegin = NULL;
9507 bool need_class = 0;
9508 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9509 SV *listsv = NULL;
9510 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9511 than just initialized. */
9512 UV n;
9513
9514 /* code points this node matches that can't be stored in the bitmap */
9515 HV* nonbitmap = NULL;
9516
9517 /* The items that are to match that aren't stored in the bitmap, but are a
9518 * result of things that are stored there. This is the fold closure of
9519 * such a character, either because it has DEPENDS semantics and shouldn't
9520 * be matched unless the target string is utf8, or is a code point that is
9521 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9522 * above 255. This all is solely for performance reasons. By having this
9523 * code know the outside-the-bitmap folds that the bitmapped characters are
9524 * involved with, we don't have to go out to disk to find the list of
9525 * matches, unless the character class includes code points that aren't
9526 * storable in the bit map. That means that a character class with an 's'
9527 * in it, for example, doesn't need to go out to disk to find everything
9528 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9529 * empty unless there is something whose fold we don't know about, and will
9530 * have to go out to the disk to find. */
9531 HV* l1_fold_invlist = NULL;
9532
9533 /* List of multi-character folds that are matched by this node */
9534 AV* unicode_alternate = NULL;
9535#ifdef EBCDIC
9536 UV literal_endpoint = 0;
9537#endif
9538 UV stored = 0; /* how many chars stored in the bitmap */
9539
9540 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9541 case we need to change the emitted regop to an EXACT. */
9542 const char * orig_parse = RExC_parse;
9543 GET_RE_DEBUG_FLAGS_DECL;
9544
9545 PERL_ARGS_ASSERT_REGCLASS;
9546#ifndef DEBUGGING
9547 PERL_UNUSED_ARG(depth);
9548#endif
9549
9550 DEBUG_PARSE("clas");
9551
9552 /* Assume we are going to generate an ANYOF node. */
9553 ret = reganode(pRExC_state, ANYOF, 0);
9554
9555
9556 if (!SIZE_ONLY) {
9557 ANYOF_FLAGS(ret) = 0;
9558 }
9559
9560 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9561 RExC_naughty++;
9562 RExC_parse++;
9563 if (!SIZE_ONLY)
9564 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9565
9566 /* We have decided to not allow multi-char folds in inverted character
9567 * classes, due to the confusion that can happen, especially with
9568 * classes that are designed for a non-Unicode world: You have the
9569 * peculiar case that:
9570 "s s" =~ /^[^\xDF]+$/i => Y
9571 "ss" =~ /^[^\xDF]+$/i => N
9572 *
9573 * See [perl #89750] */
9574 allow_full_fold = FALSE;
9575 }
9576
9577 if (SIZE_ONLY) {
9578 RExC_size += ANYOF_SKIP;
9579 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9580 }
9581 else {
9582 RExC_emit += ANYOF_SKIP;
9583 if (LOC) {
9584 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9585 }
9586 ANYOF_BITMAP_ZERO(ret);
9587 listsv = newSVpvs("# comment\n");
9588 initial_listsv_len = SvCUR(listsv);
9589 }
9590
9591 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9592
9593 if (!SIZE_ONLY && POSIXCC(nextvalue))
9594 checkposixcc(pRExC_state);
9595
9596 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9597 if (UCHARAT(RExC_parse) == ']')
9598 goto charclassloop;
9599
9600parseit:
9601 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9602
9603 charclassloop:
9604
9605 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9606
9607 if (!range)
9608 rangebegin = RExC_parse;
9609 if (UTF) {
9610 value = utf8n_to_uvchr((U8*)RExC_parse,
9611 RExC_end - RExC_parse,
9612 &numlen, UTF8_ALLOW_DEFAULT);
9613 RExC_parse += numlen;
9614 }
9615 else
9616 value = UCHARAT(RExC_parse++);
9617
9618 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9619 if (value == '[' && POSIXCC(nextvalue))
9620 namedclass = regpposixcc(pRExC_state, value);
9621 else if (value == '\\') {
9622 if (UTF) {
9623 value = utf8n_to_uvchr((U8*)RExC_parse,
9624 RExC_end - RExC_parse,
9625 &numlen, UTF8_ALLOW_DEFAULT);
9626 RExC_parse += numlen;
9627 }
9628 else
9629 value = UCHARAT(RExC_parse++);
9630 /* Some compilers cannot handle switching on 64-bit integer
9631 * values, therefore value cannot be an UV. Yes, this will
9632 * be a problem later if we want switch on Unicode.
9633 * A similar issue a little bit later when switching on
9634 * namedclass. --jhi */
9635 switch ((I32)value) {
9636 case 'w': namedclass = ANYOF_ALNUM; break;
9637 case 'W': namedclass = ANYOF_NALNUM; break;
9638 case 's': namedclass = ANYOF_SPACE; break;
9639 case 'S': namedclass = ANYOF_NSPACE; break;
9640 case 'd': namedclass = ANYOF_DIGIT; break;
9641 case 'D': namedclass = ANYOF_NDIGIT; break;
9642 case 'v': namedclass = ANYOF_VERTWS; break;
9643 case 'V': namedclass = ANYOF_NVERTWS; break;
9644 case 'h': namedclass = ANYOF_HORIZWS; break;
9645 case 'H': namedclass = ANYOF_NHORIZWS; break;
9646 case 'N': /* Handle \N{NAME} in class */
9647 {
9648 /* We only pay attention to the first char of
9649 multichar strings being returned. I kinda wonder
9650 if this makes sense as it does change the behaviour
9651 from earlier versions, OTOH that behaviour was broken
9652 as well. */
9653 UV v; /* value is register so we cant & it /grrr */
9654 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
9655 goto parseit;
9656 }
9657 value= v;
9658 }
9659 break;
9660 case 'p':
9661 case 'P':
9662 {
9663 char *e;
9664 if (RExC_parse >= RExC_end)
9665 vFAIL2("Empty \\%c{}", (U8)value);
9666 if (*RExC_parse == '{') {
9667 const U8 c = (U8)value;
9668 e = strchr(RExC_parse++, '}');
9669 if (!e)
9670 vFAIL2("Missing right brace on \\%c{}", c);
9671 while (isSPACE(UCHARAT(RExC_parse)))
9672 RExC_parse++;
9673 if (e == RExC_parse)
9674 vFAIL2("Empty \\%c{}", c);
9675 n = e - RExC_parse;
9676 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
9677 n--;
9678 }
9679 else {
9680 e = RExC_parse;
9681 n = 1;
9682 }
9683 if (!SIZE_ONLY) {
9684 if (UCHARAT(RExC_parse) == '^') {
9685 RExC_parse++;
9686 n--;
9687 value = value == 'p' ? 'P' : 'p'; /* toggle */
9688 while (isSPACE(UCHARAT(RExC_parse))) {
9689 RExC_parse++;
9690 n--;
9691 }
9692 }
9693
9694 /* Add the property name to the list. If /i matching, give
9695 * a different name which consists of the normal name
9696 * sandwiched between two underscores and '_i'. The design
9697 * is discussed in the commit message for this. */
9698 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
9699 (value=='p' ? '+' : '!'),
9700 (FOLD) ? "__" : "",
9701 (int)n,
9702 RExC_parse,
9703 (FOLD) ? "_i" : ""
9704 );
9705 }
9706 RExC_parse = e + 1;
9707
9708 /* The \p could match something in the Latin1 range, hence
9709 * something that isn't utf8 */
9710 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
9711 namedclass = ANYOF_MAX; /* no official name, but it's named */
9712
9713 /* \p means they want Unicode semantics */
9714 RExC_uni_semantics = 1;
9715 }
9716 break;
9717 case 'n': value = '\n'; break;
9718 case 'r': value = '\r'; break;
9719 case 't': value = '\t'; break;
9720 case 'f': value = '\f'; break;
9721 case 'b': value = '\b'; break;
9722 case 'e': value = ASCII_TO_NATIVE('\033');break;
9723 case 'a': value = ASCII_TO_NATIVE('\007');break;
9724 case 'o':
9725 RExC_parse--; /* function expects to be pointed at the 'o' */
9726 {
9727 const char* error_msg;
9728 bool valid = grok_bslash_o(RExC_parse,
9729 &value,
9730 &numlen,
9731 &error_msg,
9732 SIZE_ONLY);
9733 RExC_parse += numlen;
9734 if (! valid) {
9735 vFAIL(error_msg);
9736 }
9737 }
9738 if (PL_encoding && value < 0x100) {
9739 goto recode_encoding;
9740 }
9741 break;
9742 case 'x':
9743 if (*RExC_parse == '{') {
9744 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
9745 | PERL_SCAN_DISALLOW_PREFIX;
9746 char * const e = strchr(RExC_parse++, '}');
9747 if (!e)
9748 vFAIL("Missing right brace on \\x{}");
9749
9750 numlen = e - RExC_parse;
9751 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9752 RExC_parse = e + 1;
9753 }
9754 else {
9755 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
9756 numlen = 2;
9757 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9758 RExC_parse += numlen;
9759 }
9760 if (PL_encoding && value < 0x100)
9761 goto recode_encoding;
9762 break;
9763 case 'c':
9764 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
9765 break;
9766 case '0': case '1': case '2': case '3': case '4':
9767 case '5': case '6': case '7':
9768 {
9769 /* Take 1-3 octal digits */
9770 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
9771 numlen = 3;
9772 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
9773 RExC_parse += numlen;
9774 if (PL_encoding && value < 0x100)
9775 goto recode_encoding;
9776 break;
9777 }
9778 recode_encoding:
9779 if (! RExC_override_recoding) {
9780 SV* enc = PL_encoding;
9781 value = reg_recode((const char)(U8)value, &enc);
9782 if (!enc && SIZE_ONLY)
9783 ckWARNreg(RExC_parse,
9784 "Invalid escape in the specified encoding");
9785 break;
9786 }
9787 default:
9788 /* Allow \_ to not give an error */
9789 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
9790 ckWARN2reg(RExC_parse,
9791 "Unrecognized escape \\%c in character class passed through",
9792 (int)value);
9793 }
9794 break;
9795 }
9796 } /* end of \blah */
9797#ifdef EBCDIC
9798 else
9799 literal_endpoint++;
9800#endif
9801
9802 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
9803
9804 /* What matches in a locale is not known until runtime, so need to
9805 * (one time per class) allocate extra space to pass to regexec.
9806 * The space will contain a bit for each named class that is to be
9807 * matched against. This isn't needed for \p{} and pseudo-classes,
9808 * as they are not affected by locale, and hence are dealt with
9809 * separately */
9810 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
9811 need_class = 1;
9812 if (SIZE_ONLY) {
9813 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9814 }
9815 else {
9816 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9817 ANYOF_CLASS_ZERO(ret);
9818 }
9819 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
9820 }
9821
9822 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
9823 * literal, as is the character that began the false range, i.e.
9824 * the 'a' in the examples */
9825 if (range) {
9826 if (!SIZE_ONLY) {
9827 const int w =
9828 RExC_parse >= rangebegin ?
9829 RExC_parse - rangebegin : 0;
9830 ckWARN4reg(RExC_parse,
9831 "False [] range \"%*.*s\"",
9832 w, w, rangebegin);
9833
9834 stored +=
9835 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9836 if (prevvalue < 256) {
9837 stored +=
9838 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
9839 }
9840 else {
9841 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
9842 }
9843 }
9844
9845 range = 0; /* this was not a true range */
9846 }
9847
9848
9849
9850 if (!SIZE_ONLY) {
9851 const char *what = NULL;
9852 char yesno = 0;
9853
9854 /* Possible truncation here but in some 64-bit environments
9855 * the compiler gets heartburn about switch on 64-bit values.
9856 * A similar issue a little earlier when switching on value.
9857 * --jhi */
9858 switch ((I32)namedclass) {
9859
9860 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum");
9861 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha");
9862 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank");
9863 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl");
9864 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph");
9865 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower");
9866 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint");
9867 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace");
9868 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct");
9869 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper");
9870 /* \s, \w match all unicode if utf8. */
9871 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl");
9872 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word");
9873 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit");
9874 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
9875 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
9876 case ANYOF_ASCII:
9877 if (LOC)
9878 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
9879 else {
9880 for (value = 0; value < 128; value++)
9881 stored +=
9882 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9883 }
9884 yesno = '+';
9885 what = NULL; /* Doesn't match outside ascii, so
9886 don't want to add +utf8:: */
9887 break;
9888 case ANYOF_NASCII:
9889 if (LOC)
9890 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
9891 else {
9892 for (value = 128; value < 256; value++)
9893 stored +=
9894 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9895 }
9896 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9897 yesno = '!';
9898 what = "ASCII";
9899 break;
9900 case ANYOF_DIGIT:
9901 if (LOC)
9902 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
9903 else {
9904 /* consecutive digits assumed */
9905 for (value = '0'; value <= '9'; value++)
9906 stored +=
9907 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9908 }
9909 yesno = '+';
9910 what = "Digit";
9911 break;
9912 case ANYOF_NDIGIT:
9913 if (LOC)
9914 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
9915 else {
9916 /* consecutive digits assumed */
9917 for (value = 0; value < '0'; value++)
9918 stored +=
9919 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9920 for (value = '9' + 1; value < 256; value++)
9921 stored +=
9922 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9923 }
9924 yesno = '!';
9925 what = "Digit";
9926 if (AT_LEAST_ASCII_RESTRICTED ) {
9927 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9928 }
9929 break;
9930 case ANYOF_MAX:
9931 /* this is to handle \p and \P */
9932 break;
9933 default:
9934 vFAIL("Invalid [::] class");
9935 break;
9936 }
9937 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
9938 /* Strings such as "+utf8::isWord\n" */
9939 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::Is%s\n", yesno, what);
9940 }
9941
9942 continue;
9943 }
9944 } /* end of namedclass \blah */
9945
9946 if (range) {
9947 if (prevvalue > (IV)value) /* b-a */ {
9948 const int w = RExC_parse - rangebegin;
9949 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
9950 range = 0; /* not a valid range */
9951 }
9952 }
9953 else {
9954 prevvalue = value; /* save the beginning of the range */
9955 if (RExC_parse+1 < RExC_end
9956 && *RExC_parse == '-'
9957 && RExC_parse[1] != ']')
9958 {
9959 RExC_parse++;
9960
9961 /* a bad range like \w-, [:word:]- ? */
9962 if (namedclass > OOB_NAMEDCLASS) {
9963 if (ckWARN(WARN_REGEXP)) {
9964 const int w =
9965 RExC_parse >= rangebegin ?
9966 RExC_parse - rangebegin : 0;
9967 vWARN4(RExC_parse,
9968 "False [] range \"%*.*s\"",
9969 w, w, rangebegin);
9970 }
9971 if (!SIZE_ONLY)
9972 stored +=
9973 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9974 } else
9975 range = 1; /* yeah, it's a range! */
9976 continue; /* but do it the next time */
9977 }
9978 }
9979
9980 /* non-Latin1 code point implies unicode semantics. Must be set in
9981 * pass1 so is there for the whole of pass 2 */
9982 if (value > 255) {
9983 RExC_uni_semantics = 1;
9984 }
9985
9986 /* now is the next time */
9987 if (!SIZE_ONLY) {
9988 if (prevvalue < 256) {
9989 const IV ceilvalue = value < 256 ? value : 255;
9990 IV i;
9991#ifdef EBCDIC
9992 /* In EBCDIC [\x89-\x91] should include
9993 * the \x8e but [i-j] should not. */
9994 if (literal_endpoint == 2 &&
9995 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
9996 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
9997 {
9998 if (isLOWER(prevvalue)) {
9999 for (i = prevvalue; i <= ceilvalue; i++)
10000 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10001 stored +=
10002 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10003 }
10004 } else {
10005 for (i = prevvalue; i <= ceilvalue; i++)
10006 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10007 stored +=
10008 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10009 }
10010 }
10011 }
10012 else
10013#endif
10014 for (i = prevvalue; i <= ceilvalue; i++) {
10015 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10016 }
10017 }
10018 if (value > 255) {
10019 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10020 const UV natvalue = NATIVE_TO_UNI(value);
10021 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10022 }
10023#ifdef EBCDIC
10024 literal_endpoint = 0;
10025#endif
10026 }
10027
10028 range = 0; /* this range (if it was one) is done now */
10029 }
10030
10031
10032
10033 if (SIZE_ONLY)
10034 return ret;
10035 /****** !SIZE_ONLY AFTER HERE *********/
10036
10037 /* If folding and there are code points above 255, we calculate all
10038 * characters that could fold to or from the ones already on the list */
10039 if (FOLD && nonbitmap) {
10040 UV i;
10041
10042 HV* fold_intersection;
10043 UV* fold_list;
10044
10045 /* This is a list of all the characters that participate in folds
10046 * (except marks, etc in multi-char folds */
10047 if (! PL_utf8_foldable) {
10048 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10049 PL_utf8_foldable = _swash_to_invlist(swash);
10050 }
10051
10052 /* This is a hash that for a particular fold gives all characters
10053 * that are involved in it */
10054 if (! PL_utf8_foldclosures) {
10055
10056 /* If we were unable to find any folds, then we likely won't be
10057 * able to find the closures. So just create an empty list.
10058 * Folding will effectively be restricted to the non-Unicode rules
10059 * hard-coded into Perl. (This case happens legitimately during
10060 * compilation of Perl itself before the Unicode tables are
10061 * generated) */
10062 if (invlist_len(PL_utf8_foldable) == 0) {
10063 PL_utf8_foldclosures = _new_invlist(0);
10064 } else {
10065 /* If the folds haven't been read in, call a fold function
10066 * to force that */
10067 if (! PL_utf8_tofold) {
10068 U8 dummy[UTF8_MAXBYTES+1];
10069 STRLEN dummy_len;
10070 to_utf8_fold((U8*) "A", dummy, &dummy_len);
10071 }
10072 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10073 }
10074 }
10075
10076 /* Only the characters in this class that participate in folds need
10077 * be checked. Get the intersection of this class and all the
10078 * possible characters that are foldable. This can quickly narrow
10079 * down a large class */
10080 fold_intersection = invlist_intersection(PL_utf8_foldable, nonbitmap);
10081
10082 /* Now look at the foldable characters in this class individually */
10083 fold_list = invlist_array(fold_intersection);
10084 for (i = 0; i < invlist_len(fold_intersection); i++) {
10085 UV j;
10086
10087 /* The next entry is the beginning of the range that is in the
10088 * class */
10089 UV start = fold_list[i++];
10090
10091
10092 /* The next entry is the beginning of the next range, which
10093 * isn't in the class, so the end of the current range is one
10094 * less than that */
10095 UV end = fold_list[i] - 1;
10096
10097 /* Look at every character in the range */
10098 for (j = start; j <= end; j++) {
10099
10100 /* Get its fold */
10101 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10102 STRLEN foldlen;
10103 const UV f =
10104 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10105
10106 if (foldlen > (STRLEN)UNISKIP(f)) {
10107
10108 /* Any multicharacter foldings (disallowed in
10109 * lookbehind patterns) require the following
10110 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10111 * E folds into "pq" and F folds into "rst", all other
10112 * characters fold to single characters. We save away
10113 * these multicharacter foldings, to be later saved as
10114 * part of the additional "s" data. */
10115 if (! RExC_in_lookbehind) {
10116 U8* loc = foldbuf;
10117 U8* e = foldbuf + foldlen;
10118
10119 /* If any of the folded characters of this are in
10120 * the Latin1 range, tell the regex engine that
10121 * this can match a non-utf8 target string. The
10122 * only multi-byte fold whose source is in the
10123 * Latin1 range (U+00DF) applies only when the
10124 * target string is utf8, or under unicode rules */
10125 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10126 while (loc < e) {
10127
10128 /* Can't mix ascii with non- under /aa */
10129 if (MORE_ASCII_RESTRICTED
10130 && (isASCII(*loc) != isASCII(j)))
10131 {
10132 goto end_multi_fold;
10133 }
10134 if (UTF8_IS_INVARIANT(*loc)
10135 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10136 {
10137 /* Can't mix above and below 256 under
10138 * LOC */
10139 if (LOC) {
10140 goto end_multi_fold;
10141 }
10142 ANYOF_FLAGS(ret)
10143 |= ANYOF_NONBITMAP_NON_UTF8;
10144 break;
10145 }
10146 loc += UTF8SKIP(loc);
10147 }
10148 }
10149
10150 add_alternate(&unicode_alternate, foldbuf, foldlen);
10151 end_multi_fold: ;
10152 }
10153
10154 /* This is special-cased, as it is the only letter which
10155 * has both a multi-fold and single-fold in Latin1. All
10156 * the other chars that have single and multi-folds are
10157 * always in utf8, and the utf8 folding algorithm catches
10158 * them */
10159 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10160 stored += set_regclass_bit(pRExC_state,
10161 ret,
10162 LATIN_SMALL_LETTER_SHARP_S,
10163 &l1_fold_invlist, &unicode_alternate);
10164 }
10165 }
10166 else {
10167 /* Single character fold. Add everything in its fold
10168 * closure to the list that this node should match */
10169 SV** listp;
10170
10171 /* The fold closures data structure is a hash with the
10172 * keys being every character that is folded to, like
10173 * 'k', and the values each an array of everything that
10174 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10175 if ((listp = hv_fetch(PL_utf8_foldclosures,
10176 (char *) foldbuf, foldlen, FALSE)))
10177 {
10178 AV* list = (AV*) *listp;
10179 IV k;
10180 for (k = 0; k <= av_len(list); k++) {
10181 SV** c_p = av_fetch(list, k, FALSE);
10182 UV c;
10183 if (c_p == NULL) {
10184 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10185 }
10186 c = SvUV(*c_p);
10187
10188 /* /aa doesn't allow folds between ASCII and
10189 * non-; /l doesn't allow them between above
10190 * and below 256 */
10191 if ((MORE_ASCII_RESTRICTED
10192 && (isASCII(c) != isASCII(j)))
10193 || (LOC && ((c < 256) != (j < 256))))
10194 {
10195 continue;
10196 }
10197
10198 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10199 stored += set_regclass_bit(pRExC_state,
10200 ret,
10201 (U8) c,
10202 &l1_fold_invlist, &unicode_alternate);
10203 }
10204 /* It may be that the code point is already
10205 * in this range or already in the bitmap,
10206 * in which case we need do nothing */
10207 else if ((c < start || c > end)
10208 && (c > 255
10209 || ! ANYOF_BITMAP_TEST(ret, c)))
10210 {
10211 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10212 }
10213 }
10214 }
10215 }
10216 }
10217 }
10218 invlist_destroy(fold_intersection);
10219 }
10220
10221 /* Combine the two lists into one. */
10222 if (l1_fold_invlist) {
10223 if (nonbitmap) {
10224 HV* temp = invlist_union(nonbitmap, l1_fold_invlist);
10225 invlist_destroy(nonbitmap);
10226 nonbitmap = temp;
10227 invlist_destroy(l1_fold_invlist);
10228 }
10229 else {
10230 nonbitmap = l1_fold_invlist;
10231 }
10232 }
10233
10234 /* Here, we have calculated what code points should be in the character
10235 * class. Now we can see about various optimizations. Fold calculation
10236 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10237 * include K, which under /i would match k. */
10238
10239 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10240 * set the FOLD flag yet, so this this does optimize those. It doesn't
10241 * optimize locale. Doing so perhaps could be done as long as there is
10242 * nothing like \w in it; some thought also would have to be given to the
10243 * interaction with above 0x100 chars */
10244 if (! LOC
10245 && (ANYOF_FLAGS(ret) & ANYOF_FLAGS_ALL) == ANYOF_INVERT
10246 && ! unicode_alternate
10247 && ! nonbitmap
10248 && SvCUR(listsv) == initial_listsv_len)
10249 {
10250 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10251 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10252 stored = 256 - stored;
10253
10254 /* The inversion means that everything above 255 is matched; and at the
10255 * same time we clear the invert flag */
10256 ANYOF_FLAGS(ret) = ANYOF_UNICODE_ALL;
10257 }
10258
10259 /* Folding in the bitmap is taken care of above, but not for locale (for
10260 * which we have to wait to see what folding is in effect at runtime), and
10261 * for things not in the bitmap. Set run-time fold flag for these */
10262 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10263 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10264 }
10265
10266 /* A single character class can be "optimized" into an EXACTish node.
10267 * Note that since we don't currently count how many characters there are
10268 * outside the bitmap, we are XXX missing optimization possibilities for
10269 * them. This optimization can't happen unless this is a truly single
10270 * character class, which means that it can't be an inversion into a
10271 * many-character class, and there must be no possibility of there being
10272 * things outside the bitmap. 'stored' (only) for locales doesn't include
10273 * \w, etc, so have to make a special test that they aren't present
10274 *
10275 * Similarly A 2-character class of the very special form like [bB] can be
10276 * optimized into an EXACTFish node, but only for non-locales, and for
10277 * characters which only have the two folds; so things like 'fF' and 'Ii'
10278 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10279 * FI'. */
10280 if (! nonbitmap
10281 && ! unicode_alternate
10282 && SvCUR(listsv) == initial_listsv_len
10283 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10284 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10285 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10286 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10287 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10288 /* If the latest code point has a fold whose
10289 * bit is set, it must be the only other one */
10290 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10291 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10292 {
10293 /* Note that the information needed to decide to do this optimization
10294 * is not currently available until the 2nd pass, and that the actually
10295 * used EXACTish node takes less space than the calculated ANYOF node,
10296 * and hence the amount of space calculated in the first pass is larger
10297 * than actually used, so this optimization doesn't gain us any space.
10298 * But an EXACT node is faster than an ANYOF node, and can be combined
10299 * with any adjacent EXACT nodes later by the optimizer for further
10300 * gains. The speed of executing an EXACTF is similar to an ANYOF
10301 * node, so the optimization advantage comes from the ability to join
10302 * it to adjacent EXACT nodes */
10303
10304 const char * cur_parse= RExC_parse;
10305 U8 op;
10306 RExC_emit = (regnode *)orig_emit;
10307 RExC_parse = (char *)orig_parse;
10308
10309 if (stored == 1) {
10310
10311 /* A locale node with one point can be folded; all the other cases
10312 * with folding will have two points, since we calculate them above
10313 */
10314 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10315 op = EXACTFL;
10316 }
10317 else {
10318 op = EXACT;
10319 }
10320 } /* else 2 chars in the bit map: the folds of each other */
10321 else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10322
10323 /* To join adjacent nodes, they must be the exact EXACTish type.
10324 * Try to use the most likely type, by using EXACTFU if the regex
10325 * calls for them, or is required because the character is
10326 * non-ASCII */
10327 op = EXACTFU;
10328 }
10329 else { /* Otherwise, more likely to be EXACTF type */
10330 op = EXACTF;
10331 }
10332
10333 ret = reg_node(pRExC_state, op);
10334 RExC_parse = (char *)cur_parse;
10335 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10336 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10337 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10338 STR_LEN(ret)= 2;
10339 RExC_emit += STR_SZ(2);
10340 }
10341 else {
10342 *STRING(ret)= (char)value;
10343 STR_LEN(ret)= 1;
10344 RExC_emit += STR_SZ(1);
10345 }
10346 SvREFCNT_dec(listsv);
10347 return ret;
10348 }
10349
10350 if (nonbitmap) {
10351 UV* nonbitmap_array = invlist_array(nonbitmap);
10352 UV nonbitmap_len = invlist_len(nonbitmap);
10353 UV i;
10354
10355 /* Here have the full list of items to match that aren't in the
10356 * bitmap. Convert to the structure that the rest of the code is
10357 * expecting. XXX That rest of the code should convert to this
10358 * structure */
10359 for (i = 0; i < nonbitmap_len; i++) {
10360
10361 /* The next entry is the beginning of the range that is in the
10362 * class */
10363 UV start = nonbitmap_array[i++];
10364 UV end;
10365
10366 /* The next entry is the beginning of the next range, which isn't
10367 * in the class, so the end of the current range is one less than
10368 * that. But if there is no next range, it means that the range
10369 * begun by 'start' extends to infinity, which for this platform
10370 * ends at UV_MAX */
10371 if (i == nonbitmap_len) {
10372 end = UV_MAX;
10373 }
10374 else {
10375 end = nonbitmap_array[i] - 1;
10376 }
10377
10378 if (start == end) {
10379 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10380 }
10381 else {
10382 /* The \t sets the whole range */
10383 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10384 /* XXX EBCDIC */
10385 start, end);
10386 }
10387 }
10388 invlist_destroy(nonbitmap);
10389 }
10390
10391 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10392 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10393 SvREFCNT_dec(listsv);
10394 SvREFCNT_dec(unicode_alternate);
10395 }
10396 else {
10397
10398 AV * const av = newAV();
10399 SV *rv;
10400 /* The 0th element stores the character class description
10401 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10402 * to initialize the appropriate swash (which gets stored in
10403 * the 1st element), and also useful for dumping the regnode.
10404 * The 2nd element stores the multicharacter foldings,
10405 * used later (regexec.c:S_reginclass()). */
10406 av_store(av, 0, listsv);
10407 av_store(av, 1, NULL);
10408
10409 /* Store any computed multi-char folds only if we are allowing
10410 * them */
10411 if (allow_full_fold) {
10412 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10413 if (unicode_alternate) { /* This node is variable length */
10414 OP(ret) = ANYOFV;
10415 }
10416 }
10417 else {
10418 av_store(av, 2, NULL);
10419 }
10420 rv = newRV_noinc(MUTABLE_SV(av));
10421 n = add_data(pRExC_state, 1, "s");
10422 RExC_rxi->data->data[n] = (void*)rv;
10423 ARG_SET(ret, n);
10424 }
10425 return ret;
10426}
10427#undef _C_C_T_
10428
10429
10430/* reg_skipcomment()
10431
10432 Absorbs an /x style # comments from the input stream.
10433 Returns true if there is more text remaining in the stream.
10434 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10435 terminates the pattern without including a newline.
10436
10437 Note its the callers responsibility to ensure that we are
10438 actually in /x mode
10439
10440*/
10441
10442STATIC bool
10443S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10444{
10445 bool ended = 0;
10446
10447 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10448
10449 while (RExC_parse < RExC_end)
10450 if (*RExC_parse++ == '\n') {
10451 ended = 1;
10452 break;
10453 }
10454 if (!ended) {
10455 /* we ran off the end of the pattern without ending
10456 the comment, so we have to add an \n when wrapping */
10457 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10458 return 0;
10459 } else
10460 return 1;
10461}
10462
10463/* nextchar()
10464
10465 Advances the parse position, and optionally absorbs
10466 "whitespace" from the inputstream.
10467
10468 Without /x "whitespace" means (?#...) style comments only,
10469 with /x this means (?#...) and # comments and whitespace proper.
10470
10471 Returns the RExC_parse point from BEFORE the scan occurs.
10472
10473 This is the /x friendly way of saying RExC_parse++.
10474*/
10475
10476STATIC char*
10477S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10478{
10479 char* const retval = RExC_parse++;
10480
10481 PERL_ARGS_ASSERT_NEXTCHAR;
10482
10483 for (;;) {
10484 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10485 RExC_parse[2] == '#') {
10486 while (*RExC_parse != ')') {
10487 if (RExC_parse == RExC_end)
10488 FAIL("Sequence (?#... not terminated");
10489 RExC_parse++;
10490 }
10491 RExC_parse++;
10492 continue;
10493 }
10494 if (RExC_flags & RXf_PMf_EXTENDED) {
10495 if (isSPACE(*RExC_parse)) {
10496 RExC_parse++;
10497 continue;
10498 }
10499 else if (*RExC_parse == '#') {
10500 if ( reg_skipcomment( pRExC_state ) )
10501 continue;
10502 }
10503 }
10504 return retval;
10505 }
10506}
10507
10508/*
10509- reg_node - emit a node
10510*/
10511STATIC regnode * /* Location. */
10512S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10513{
10514 dVAR;
10515 register regnode *ptr;
10516 regnode * const ret = RExC_emit;
10517 GET_RE_DEBUG_FLAGS_DECL;
10518
10519 PERL_ARGS_ASSERT_REG_NODE;
10520
10521 if (SIZE_ONLY) {
10522 SIZE_ALIGN(RExC_size);
10523 RExC_size += 1;
10524 return(ret);
10525 }
10526 if (RExC_emit >= RExC_emit_bound)
10527 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10528
10529 NODE_ALIGN_FILL(ret);
10530 ptr = ret;
10531 FILL_ADVANCE_NODE(ptr, op);
10532#ifdef RE_TRACK_PATTERN_OFFSETS
10533 if (RExC_offsets) { /* MJD */
10534 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10535 "reg_node", __LINE__,
10536 PL_reg_name[op],
10537 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10538 ? "Overwriting end of array!\n" : "OK",
10539 (UV)(RExC_emit - RExC_emit_start),
10540 (UV)(RExC_parse - RExC_start),
10541 (UV)RExC_offsets[0]));
10542 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10543 }
10544#endif
10545 RExC_emit = ptr;
10546 return(ret);
10547}
10548
10549/*
10550- reganode - emit a node with an argument
10551*/
10552STATIC regnode * /* Location. */
10553S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10554{
10555 dVAR;
10556 register regnode *ptr;
10557 regnode * const ret = RExC_emit;
10558 GET_RE_DEBUG_FLAGS_DECL;
10559
10560 PERL_ARGS_ASSERT_REGANODE;
10561
10562 if (SIZE_ONLY) {
10563 SIZE_ALIGN(RExC_size);
10564 RExC_size += 2;
10565 /*
10566 We can't do this:
10567
10568 assert(2==regarglen[op]+1);
10569
10570 Anything larger than this has to allocate the extra amount.
10571 If we changed this to be:
10572
10573 RExC_size += (1 + regarglen[op]);
10574
10575 then it wouldn't matter. Its not clear what side effect
10576 might come from that so its not done so far.
10577 -- dmq
10578 */
10579 return(ret);
10580 }
10581 if (RExC_emit >= RExC_emit_bound)
10582 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10583
10584 NODE_ALIGN_FILL(ret);
10585 ptr = ret;
10586 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10587#ifdef RE_TRACK_PATTERN_OFFSETS
10588 if (RExC_offsets) { /* MJD */
10589 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10590 "reganode",
10591 __LINE__,
10592 PL_reg_name[op],
10593 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10594 "Overwriting end of array!\n" : "OK",
10595 (UV)(RExC_emit - RExC_emit_start),
10596 (UV)(RExC_parse - RExC_start),
10597 (UV)RExC_offsets[0]));
10598 Set_Cur_Node_Offset;
10599 }
10600#endif
10601 RExC_emit = ptr;
10602 return(ret);
10603}
10604
10605/*
10606- reguni - emit (if appropriate) a Unicode character
10607*/
10608STATIC STRLEN
10609S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
10610{
10611 dVAR;
10612
10613 PERL_ARGS_ASSERT_REGUNI;
10614
10615 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
10616}
10617
10618/*
10619- reginsert - insert an operator in front of already-emitted operand
10620*
10621* Means relocating the operand.
10622*/
10623STATIC void
10624S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
10625{
10626 dVAR;
10627 register regnode *src;
10628 register regnode *dst;
10629 register regnode *place;
10630 const int offset = regarglen[(U8)op];
10631 const int size = NODE_STEP_REGNODE + offset;
10632 GET_RE_DEBUG_FLAGS_DECL;
10633
10634 PERL_ARGS_ASSERT_REGINSERT;
10635 PERL_UNUSED_ARG(depth);
10636/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
10637 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
10638 if (SIZE_ONLY) {
10639 RExC_size += size;
10640 return;
10641 }
10642
10643 src = RExC_emit;
10644 RExC_emit += size;
10645 dst = RExC_emit;
10646 if (RExC_open_parens) {
10647 int paren;
10648 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
10649 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
10650 if ( RExC_open_parens[paren] >= opnd ) {
10651 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
10652 RExC_open_parens[paren] += size;
10653 } else {
10654 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
10655 }
10656 if ( RExC_close_parens[paren] >= opnd ) {
10657 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
10658 RExC_close_parens[paren] += size;
10659 } else {
10660 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
10661 }
10662 }
10663 }
10664
10665 while (src > opnd) {
10666 StructCopy(--src, --dst, regnode);
10667#ifdef RE_TRACK_PATTERN_OFFSETS
10668 if (RExC_offsets) { /* MJD 20010112 */
10669 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
10670 "reg_insert",
10671 __LINE__,
10672 PL_reg_name[op],
10673 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
10674 ? "Overwriting end of array!\n" : "OK",
10675 (UV)(src - RExC_emit_start),
10676 (UV)(dst - RExC_emit_start),
10677 (UV)RExC_offsets[0]));
10678 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
10679 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
10680 }
10681#endif
10682 }
10683
10684
10685 place = opnd; /* Op node, where operand used to be. */
10686#ifdef RE_TRACK_PATTERN_OFFSETS
10687 if (RExC_offsets) { /* MJD */
10688 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10689 "reginsert",
10690 __LINE__,
10691 PL_reg_name[op],
10692 (UV)(place - RExC_emit_start) > RExC_offsets[0]
10693 ? "Overwriting end of array!\n" : "OK",
10694 (UV)(place - RExC_emit_start),
10695 (UV)(RExC_parse - RExC_start),
10696 (UV)RExC_offsets[0]));
10697 Set_Node_Offset(place, RExC_parse);
10698 Set_Node_Length(place, 1);
10699 }
10700#endif
10701 src = NEXTOPER(place);
10702 FILL_ADVANCE_NODE(place, op);
10703 Zero(src, offset, regnode);
10704}
10705
10706/*
10707- regtail - set the next-pointer at the end of a node chain of p to val.
10708- SEE ALSO: regtail_study
10709*/
10710/* TODO: All three parms should be const */
10711STATIC void
10712S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10713{
10714 dVAR;
10715 register regnode *scan;
10716 GET_RE_DEBUG_FLAGS_DECL;
10717
10718 PERL_ARGS_ASSERT_REGTAIL;
10719#ifndef DEBUGGING
10720 PERL_UNUSED_ARG(depth);
10721#endif
10722
10723 if (SIZE_ONLY)
10724 return;
10725
10726 /* Find last node. */
10727 scan = p;
10728 for (;;) {
10729 regnode * const temp = regnext(scan);
10730 DEBUG_PARSE_r({
10731 SV * const mysv=sv_newmortal();
10732 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
10733 regprop(RExC_rx, mysv, scan);
10734 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
10735 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
10736 (temp == NULL ? "->" : ""),
10737 (temp == NULL ? PL_reg_name[OP(val)] : "")
10738 );
10739 });
10740 if (temp == NULL)
10741 break;
10742 scan = temp;
10743 }
10744
10745 if (reg_off_by_arg[OP(scan)]) {
10746 ARG_SET(scan, val - scan);
10747 }
10748 else {
10749 NEXT_OFF(scan) = val - scan;
10750 }
10751}
10752
10753#ifdef DEBUGGING
10754/*
10755- regtail_study - set the next-pointer at the end of a node chain of p to val.
10756- Look for optimizable sequences at the same time.
10757- currently only looks for EXACT chains.
10758
10759This is experimental code. The idea is to use this routine to perform
10760in place optimizations on branches and groups as they are constructed,
10761with the long term intention of removing optimization from study_chunk so
10762that it is purely analytical.
10763
10764Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
10765to control which is which.
10766
10767*/
10768/* TODO: All four parms should be const */
10769
10770STATIC U8
10771S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10772{
10773 dVAR;
10774 register regnode *scan;
10775 U8 exact = PSEUDO;
10776#ifdef EXPERIMENTAL_INPLACESCAN
10777 I32 min = 0;
10778#endif
10779 GET_RE_DEBUG_FLAGS_DECL;
10780
10781 PERL_ARGS_ASSERT_REGTAIL_STUDY;
10782
10783
10784 if (SIZE_ONLY)
10785 return exact;
10786
10787 /* Find last node. */
10788
10789 scan = p;
10790 for (;;) {
10791 regnode * const temp = regnext(scan);
10792#ifdef EXPERIMENTAL_INPLACESCAN
10793 if (PL_regkind[OP(scan)] == EXACT)
10794 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
10795 return EXACT;
10796#endif
10797 if ( exact ) {
10798 switch (OP(scan)) {
10799 case EXACT:
10800 case EXACTF:
10801 case EXACTFA:
10802 case EXACTFU:
10803 case EXACTFL:
10804 if( exact == PSEUDO )
10805 exact= OP(scan);
10806 else if ( exact != OP(scan) )
10807 exact= 0;
10808 case NOTHING:
10809 break;
10810 default:
10811 exact= 0;
10812 }
10813 }
10814 DEBUG_PARSE_r({
10815 SV * const mysv=sv_newmortal();
10816 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
10817 regprop(RExC_rx, mysv, scan);
10818 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
10819 SvPV_nolen_const(mysv),
10820 REG_NODE_NUM(scan),
10821 PL_reg_name[exact]);
10822 });
10823 if (temp == NULL)
10824 break;
10825 scan = temp;
10826 }
10827 DEBUG_PARSE_r({
10828 SV * const mysv_val=sv_newmortal();
10829 DEBUG_PARSE_MSG("");
10830 regprop(RExC_rx, mysv_val, val);
10831 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
10832 SvPV_nolen_const(mysv_val),
10833 (IV)REG_NODE_NUM(val),
10834 (IV)(val - scan)
10835 );
10836 });
10837 if (reg_off_by_arg[OP(scan)]) {
10838 ARG_SET(scan, val - scan);
10839 }
10840 else {
10841 NEXT_OFF(scan) = val - scan;
10842 }
10843
10844 return exact;
10845}
10846#endif
10847
10848/*
10849 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
10850 */
10851#ifdef DEBUGGING
10852static void
10853S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
10854{
10855 int bit;
10856 int set=0;
10857 regex_charset cs;
10858
10859 for (bit=0; bit<32; bit++) {
10860 if (flags & (1<<bit)) {
10861 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
10862 continue;
10863 }
10864 if (!set++ && lead)
10865 PerlIO_printf(Perl_debug_log, "%s",lead);
10866 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
10867 }
10868 }
10869 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
10870 if (!set++ && lead) {
10871 PerlIO_printf(Perl_debug_log, "%s",lead);
10872 }
10873 switch (cs) {
10874 case REGEX_UNICODE_CHARSET:
10875 PerlIO_printf(Perl_debug_log, "UNICODE");
10876 break;
10877 case REGEX_LOCALE_CHARSET:
10878 PerlIO_printf(Perl_debug_log, "LOCALE");
10879 break;
10880 case REGEX_ASCII_RESTRICTED_CHARSET:
10881 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
10882 break;
10883 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10884 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
10885 break;
10886 default:
10887 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
10888 break;
10889 }
10890 }
10891 if (lead) {
10892 if (set)
10893 PerlIO_printf(Perl_debug_log, "\n");
10894 else
10895 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
10896 }
10897}
10898#endif
10899
10900void
10901Perl_regdump(pTHX_ const regexp *r)
10902{
10903#ifdef DEBUGGING
10904 dVAR;
10905 SV * const sv = sv_newmortal();
10906 SV *dsv= sv_newmortal();
10907 RXi_GET_DECL(r,ri);
10908 GET_RE_DEBUG_FLAGS_DECL;
10909
10910 PERL_ARGS_ASSERT_REGDUMP;
10911
10912 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
10913
10914 /* Header fields of interest. */
10915 if (r->anchored_substr) {
10916 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
10917 RE_SV_DUMPLEN(r->anchored_substr), 30);
10918 PerlIO_printf(Perl_debug_log,
10919 "anchored %s%s at %"IVdf" ",
10920 s, RE_SV_TAIL(r->anchored_substr),
10921 (IV)r->anchored_offset);
10922 } else if (r->anchored_utf8) {
10923 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
10924 RE_SV_DUMPLEN(r->anchored_utf8), 30);
10925 PerlIO_printf(Perl_debug_log,
10926 "anchored utf8 %s%s at %"IVdf" ",
10927 s, RE_SV_TAIL(r->anchored_utf8),
10928 (IV)r->anchored_offset);
10929 }
10930 if (r->float_substr) {
10931 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
10932 RE_SV_DUMPLEN(r->float_substr), 30);
10933 PerlIO_printf(Perl_debug_log,
10934 "floating %s%s at %"IVdf"..%"UVuf" ",
10935 s, RE_SV_TAIL(r->float_substr),
10936 (IV)r->float_min_offset, (UV)r->float_max_offset);
10937 } else if (r->float_utf8) {
10938 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
10939 RE_SV_DUMPLEN(r->float_utf8), 30);
10940 PerlIO_printf(Perl_debug_log,
10941 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
10942 s, RE_SV_TAIL(r->float_utf8),
10943 (IV)r->float_min_offset, (UV)r->float_max_offset);
10944 }
10945 if (r->check_substr || r->check_utf8)
10946 PerlIO_printf(Perl_debug_log,
10947 (const char *)
10948 (r->check_substr == r->float_substr
10949 && r->check_utf8 == r->float_utf8
10950 ? "(checking floating" : "(checking anchored"));
10951 if (r->extflags & RXf_NOSCAN)
10952 PerlIO_printf(Perl_debug_log, " noscan");
10953 if (r->extflags & RXf_CHECK_ALL)
10954 PerlIO_printf(Perl_debug_log, " isall");
10955 if (r->check_substr || r->check_utf8)
10956 PerlIO_printf(Perl_debug_log, ") ");
10957
10958 if (ri->regstclass) {
10959 regprop(r, sv, ri->regstclass);
10960 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
10961 }
10962 if (r->extflags & RXf_ANCH) {
10963 PerlIO_printf(Perl_debug_log, "anchored");
10964 if (r->extflags & RXf_ANCH_BOL)
10965 PerlIO_printf(Perl_debug_log, "(BOL)");
10966 if (r->extflags & RXf_ANCH_MBOL)
10967 PerlIO_printf(Perl_debug_log, "(MBOL)");
10968 if (r->extflags & RXf_ANCH_SBOL)
10969 PerlIO_printf(Perl_debug_log, "(SBOL)");
10970 if (r->extflags & RXf_ANCH_GPOS)
10971 PerlIO_printf(Perl_debug_log, "(GPOS)");
10972 PerlIO_putc(Perl_debug_log, ' ');
10973 }
10974 if (r->extflags & RXf_GPOS_SEEN)
10975 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
10976 if (r->intflags & PREGf_SKIP)
10977 PerlIO_printf(Perl_debug_log, "plus ");
10978 if (r->intflags & PREGf_IMPLICIT)
10979 PerlIO_printf(Perl_debug_log, "implicit ");
10980 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
10981 if (r->extflags & RXf_EVAL_SEEN)
10982 PerlIO_printf(Perl_debug_log, "with eval ");
10983 PerlIO_printf(Perl_debug_log, "\n");
10984 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
10985#else
10986 PERL_ARGS_ASSERT_REGDUMP;
10987 PERL_UNUSED_CONTEXT;
10988 PERL_UNUSED_ARG(r);
10989#endif /* DEBUGGING */
10990}
10991
10992/*
10993- regprop - printable representation of opcode
10994*/
10995#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
10996STMT_START { \
10997 if (do_sep) { \
10998 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
10999 if (flags & ANYOF_INVERT) \
11000 /*make sure the invert info is in each */ \
11001 sv_catpvs(sv, "^"); \
11002 do_sep = 0; \
11003 } \
11004} STMT_END
11005
11006void
11007Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11008{
11009#ifdef DEBUGGING
11010 dVAR;
11011 register int k;
11012 RXi_GET_DECL(prog,progi);
11013 GET_RE_DEBUG_FLAGS_DECL;
11014
11015 PERL_ARGS_ASSERT_REGPROP;
11016
11017 sv_setpvs(sv, "");
11018
11019 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11020 /* It would be nice to FAIL() here, but this may be called from
11021 regexec.c, and it would be hard to supply pRExC_state. */
11022 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11023 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11024
11025 k = PL_regkind[OP(o)];
11026
11027 if (k == EXACT) {
11028 sv_catpvs(sv, " ");
11029 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11030 * is a crude hack but it may be the best for now since
11031 * we have no flag "this EXACTish node was UTF-8"
11032 * --jhi */
11033 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11034 PERL_PV_ESCAPE_UNI_DETECT |
11035 PERL_PV_ESCAPE_NONASCII |
11036 PERL_PV_PRETTY_ELLIPSES |
11037 PERL_PV_PRETTY_LTGT |
11038 PERL_PV_PRETTY_NOCLEAR
11039 );
11040 } else if (k == TRIE) {
11041 /* print the details of the trie in dumpuntil instead, as
11042 * progi->data isn't available here */
11043 const char op = OP(o);
11044 const U32 n = ARG(o);
11045 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11046 (reg_ac_data *)progi->data->data[n] :
11047 NULL;
11048 const reg_trie_data * const trie
11049 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11050
11051 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11052 DEBUG_TRIE_COMPILE_r(
11053 Perl_sv_catpvf(aTHX_ sv,
11054 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11055 (UV)trie->startstate,
11056 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11057 (UV)trie->wordcount,
11058 (UV)trie->minlen,
11059 (UV)trie->maxlen,
11060 (UV)TRIE_CHARCOUNT(trie),
11061 (UV)trie->uniquecharcount
11062 )
11063 );
11064 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11065 int i;
11066 int rangestart = -1;
11067 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11068 sv_catpvs(sv, "[");
11069 for (i = 0; i <= 256; i++) {
11070 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11071 if (rangestart == -1)
11072 rangestart = i;
11073 } else if (rangestart != -1) {
11074 if (i <= rangestart + 3)
11075 for (; rangestart < i; rangestart++)
11076 put_byte(sv, rangestart);
11077 else {
11078 put_byte(sv, rangestart);
11079 sv_catpvs(sv, "-");
11080 put_byte(sv, i - 1);
11081 }
11082 rangestart = -1;
11083 }
11084 }
11085 sv_catpvs(sv, "]");
11086 }
11087
11088 } else if (k == CURLY) {
11089 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11090 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11091 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11092 }
11093 else if (k == WHILEM && o->flags) /* Ordinal/of */
11094 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11095 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11096 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11097 if ( RXp_PAREN_NAMES(prog) ) {
11098 if ( k != REF || (OP(o) < NREF)) {
11099 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11100 SV **name= av_fetch(list, ARG(o), 0 );
11101 if (name)
11102 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11103 }
11104 else {
11105 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11106 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11107 I32 *nums=(I32*)SvPVX(sv_dat);
11108 SV **name= av_fetch(list, nums[0], 0 );
11109 I32 n;
11110 if (name) {
11111 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11112 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11113 (n ? "," : ""), (IV)nums[n]);
11114 }
11115 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11116 }
11117 }
11118 }
11119 } else if (k == GOSUB)
11120 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11121 else if (k == VERB) {
11122 if (!o->flags)
11123 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11124 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11125 } else if (k == LOGICAL)
11126 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11127 else if (k == FOLDCHAR)
11128 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11129 else if (k == ANYOF) {
11130 int i, rangestart = -1;
11131 const U8 flags = ANYOF_FLAGS(o);
11132 int do_sep = 0;
11133
11134 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11135 static const char * const anyofs[] = {
11136 "\\w",
11137 "\\W",
11138 "\\s",
11139 "\\S",
11140 "\\d",
11141 "\\D",
11142 "[:alnum:]",
11143 "[:^alnum:]",
11144 "[:alpha:]",
11145 "[:^alpha:]",
11146 "[:ascii:]",
11147 "[:^ascii:]",
11148 "[:cntrl:]",
11149 "[:^cntrl:]",
11150 "[:graph:]",
11151 "[:^graph:]",
11152 "[:lower:]",
11153 "[:^lower:]",
11154 "[:print:]",
11155 "[:^print:]",
11156 "[:punct:]",
11157 "[:^punct:]",
11158 "[:upper:]",
11159 "[:^upper:]",
11160 "[:xdigit:]",
11161 "[:^xdigit:]",
11162 "[:space:]",
11163 "[:^space:]",
11164 "[:blank:]",
11165 "[:^blank:]"
11166 };
11167
11168 if (flags & ANYOF_LOCALE)
11169 sv_catpvs(sv, "{loc}");
11170 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11171 sv_catpvs(sv, "{i}");
11172 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11173 if (flags & ANYOF_INVERT)
11174 sv_catpvs(sv, "^");
11175
11176 /* output what the standard cp 0-255 bitmap matches */
11177 for (i = 0; i <= 256; i++) {
11178 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11179 if (rangestart == -1)
11180 rangestart = i;
11181 } else if (rangestart != -1) {
11182 if (i <= rangestart + 3)
11183 for (; rangestart < i; rangestart++)
11184 put_byte(sv, rangestart);
11185 else {
11186 put_byte(sv, rangestart);
11187 sv_catpvs(sv, "-");
11188 put_byte(sv, i - 1);
11189 }
11190 do_sep = 1;
11191 rangestart = -1;
11192 }
11193 }
11194
11195 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11196 /* output any special charclass tests (used entirely under use locale) */
11197 if (ANYOF_CLASS_TEST_ANY_SET(o))
11198 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11199 if (ANYOF_CLASS_TEST(o,i)) {
11200 sv_catpv(sv, anyofs[i]);
11201 do_sep = 1;
11202 }
11203
11204 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11205
11206 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11207 sv_catpvs(sv, "{non-utf8-latin1-all}");
11208 }
11209
11210 /* output information about the unicode matching */
11211 if (flags & ANYOF_UNICODE_ALL)
11212 sv_catpvs(sv, "{unicode_all}");
11213 else if (ANYOF_NONBITMAP(o))
11214 sv_catpvs(sv, "{unicode}");
11215 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11216 sv_catpvs(sv, "{outside bitmap}");
11217
11218 if (ANYOF_NONBITMAP(o)) {
11219 SV *lv;
11220 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11221
11222 if (lv) {
11223 if (sw) {
11224 U8 s[UTF8_MAXBYTES_CASE+1];
11225
11226 for (i = 0; i <= 256; i++) { /* just the first 256 */
11227 uvchr_to_utf8(s, i);
11228
11229 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11230 if (rangestart == -1)
11231 rangestart = i;
11232 } else if (rangestart != -1) {
11233 if (i <= rangestart + 3)
11234 for (; rangestart < i; rangestart++) {
11235 const U8 * const e = uvchr_to_utf8(s,rangestart);
11236 U8 *p;
11237 for(p = s; p < e; p++)
11238 put_byte(sv, *p);
11239 }
11240 else {
11241 const U8 *e = uvchr_to_utf8(s,rangestart);
11242 U8 *p;
11243 for (p = s; p < e; p++)
11244 put_byte(sv, *p);
11245 sv_catpvs(sv, "-");
11246 e = uvchr_to_utf8(s, i-1);
11247 for (p = s; p < e; p++)
11248 put_byte(sv, *p);
11249 }
11250 rangestart = -1;
11251 }
11252 }
11253
11254 sv_catpvs(sv, "..."); /* et cetera */
11255 }
11256
11257 {
11258 char *s = savesvpv(lv);
11259 char * const origs = s;
11260
11261 while (*s && *s != '\n')
11262 s++;
11263
11264 if (*s == '\n') {
11265 const char * const t = ++s;
11266
11267 while (*s) {
11268 if (*s == '\n')
11269 *s = ' ';
11270 s++;
11271 }
11272 if (s[-1] == ' ')
11273 s[-1] = 0;
11274
11275 sv_catpv(sv, t);
11276 }
11277
11278 Safefree(origs);
11279 }
11280 }
11281 }
11282
11283 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11284 }
11285 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11286 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11287#else
11288 PERL_UNUSED_CONTEXT;
11289 PERL_UNUSED_ARG(sv);
11290 PERL_UNUSED_ARG(o);
11291 PERL_UNUSED_ARG(prog);
11292#endif /* DEBUGGING */
11293}
11294
11295SV *
11296Perl_re_intuit_string(pTHX_ REGEXP * const r)
11297{ /* Assume that RE_INTUIT is set */
11298 dVAR;
11299 struct regexp *const prog = (struct regexp *)SvANY(r);
11300 GET_RE_DEBUG_FLAGS_DECL;
11301
11302 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11303 PERL_UNUSED_CONTEXT;
11304
11305 DEBUG_COMPILE_r(
11306 {
11307 const char * const s = SvPV_nolen_const(prog->check_substr
11308 ? prog->check_substr : prog->check_utf8);
11309
11310 if (!PL_colorset) reginitcolors();
11311 PerlIO_printf(Perl_debug_log,
11312 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11313 PL_colors[4],
11314 prog->check_substr ? "" : "utf8 ",
11315 PL_colors[5],PL_colors[0],
11316 s,
11317 PL_colors[1],
11318 (strlen(s) > 60 ? "..." : ""));
11319 } );
11320
11321 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11322}
11323
11324/*
11325 pregfree()
11326
11327 handles refcounting and freeing the perl core regexp structure. When
11328 it is necessary to actually free the structure the first thing it
11329 does is call the 'free' method of the regexp_engine associated to
11330 the regexp, allowing the handling of the void *pprivate; member
11331 first. (This routine is not overridable by extensions, which is why
11332 the extensions free is called first.)
11333
11334 See regdupe and regdupe_internal if you change anything here.
11335*/
11336#ifndef PERL_IN_XSUB_RE
11337void
11338Perl_pregfree(pTHX_ REGEXP *r)
11339{
11340 SvREFCNT_dec(r);
11341}
11342
11343void
11344Perl_pregfree2(pTHX_ REGEXP *rx)
11345{
11346 dVAR;
11347 struct regexp *const r = (struct regexp *)SvANY(rx);
11348 GET_RE_DEBUG_FLAGS_DECL;
11349
11350 PERL_ARGS_ASSERT_PREGFREE2;
11351
11352 if (r->mother_re) {
11353 ReREFCNT_dec(r->mother_re);
11354 } else {
11355 CALLREGFREE_PVT(rx); /* free the private data */
11356 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11357 }
11358 if (r->substrs) {
11359 SvREFCNT_dec(r->anchored_substr);
11360 SvREFCNT_dec(r->anchored_utf8);
11361 SvREFCNT_dec(r->float_substr);
11362 SvREFCNT_dec(r->float_utf8);
11363 Safefree(r->substrs);
11364 }
11365 RX_MATCH_COPY_FREE(rx);
11366#ifdef PERL_OLD_COPY_ON_WRITE
11367 SvREFCNT_dec(r->saved_copy);
11368#endif
11369 Safefree(r->offs);
11370}
11371
11372/* reg_temp_copy()
11373
11374 This is a hacky workaround to the structural issue of match results
11375 being stored in the regexp structure which is in turn stored in
11376 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11377 could be PL_curpm in multiple contexts, and could require multiple
11378 result sets being associated with the pattern simultaneously, such
11379 as when doing a recursive match with (??{$qr})
11380
11381 The solution is to make a lightweight copy of the regexp structure
11382 when a qr// is returned from the code executed by (??{$qr}) this
11383 lightweight copy doesn't actually own any of its data except for
11384 the starp/end and the actual regexp structure itself.
11385
11386*/
11387
11388
11389REGEXP *
11390Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11391{
11392 struct regexp *ret;
11393 struct regexp *const r = (struct regexp *)SvANY(rx);
11394 register const I32 npar = r->nparens+1;
11395
11396 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11397
11398 if (!ret_x)
11399 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11400 ret = (struct regexp *)SvANY(ret_x);
11401
11402 (void)ReREFCNT_inc(rx);
11403 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11404 by pointing directly at the buffer, but flagging that the allocated
11405 space in the copy is zero. As we've just done a struct copy, it's now
11406 a case of zero-ing that, rather than copying the current length. */
11407 SvPV_set(ret_x, RX_WRAPPED(rx));
11408 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11409 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11410 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11411 SvLEN_set(ret_x, 0);
11412 SvSTASH_set(ret_x, NULL);
11413 SvMAGIC_set(ret_x, NULL);
11414 Newx(ret->offs, npar, regexp_paren_pair);
11415 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11416 if (r->substrs) {
11417 Newx(ret->substrs, 1, struct reg_substr_data);
11418 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11419
11420 SvREFCNT_inc_void(ret->anchored_substr);
11421 SvREFCNT_inc_void(ret->anchored_utf8);
11422 SvREFCNT_inc_void(ret->float_substr);
11423 SvREFCNT_inc_void(ret->float_utf8);
11424
11425 /* check_substr and check_utf8, if non-NULL, point to either their
11426 anchored or float namesakes, and don't hold a second reference. */
11427 }
11428 RX_MATCH_COPIED_off(ret_x);
11429#ifdef PERL_OLD_COPY_ON_WRITE
11430 ret->saved_copy = NULL;
11431#endif
11432 ret->mother_re = rx;
11433
11434 return ret_x;
11435}
11436#endif
11437
11438/* regfree_internal()
11439
11440 Free the private data in a regexp. This is overloadable by
11441 extensions. Perl takes care of the regexp structure in pregfree(),
11442 this covers the *pprivate pointer which technically perl doesn't
11443 know about, however of course we have to handle the
11444 regexp_internal structure when no extension is in use.
11445
11446 Note this is called before freeing anything in the regexp
11447 structure.
11448 */
11449
11450void
11451Perl_regfree_internal(pTHX_ REGEXP * const rx)
11452{
11453 dVAR;
11454 struct regexp *const r = (struct regexp *)SvANY(rx);
11455 RXi_GET_DECL(r,ri);
11456 GET_RE_DEBUG_FLAGS_DECL;
11457
11458 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11459
11460 DEBUG_COMPILE_r({
11461 if (!PL_colorset)
11462 reginitcolors();
11463 {
11464 SV *dsv= sv_newmortal();
11465 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11466 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11467 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11468 PL_colors[4],PL_colors[5],s);
11469 }
11470 });
11471#ifdef RE_TRACK_PATTERN_OFFSETS
11472 if (ri->u.offsets)
11473 Safefree(ri->u.offsets); /* 20010421 MJD */
11474#endif
11475 if (ri->data) {
11476 int n = ri->data->count;
11477 PAD* new_comppad = NULL;
11478 PAD* old_comppad;
11479 PADOFFSET refcnt;
11480
11481 while (--n >= 0) {
11482 /* If you add a ->what type here, update the comment in regcomp.h */
11483 switch (ri->data->what[n]) {
11484 case 'a':
11485 case 's':
11486 case 'S':
11487 case 'u':
11488 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11489 break;
11490 case 'f':
11491 Safefree(ri->data->data[n]);
11492 break;
11493 case 'p':
11494 new_comppad = MUTABLE_AV(ri->data->data[n]);
11495 break;
11496 case 'o':
11497 if (new_comppad == NULL)
11498 Perl_croak(aTHX_ "panic: pregfree comppad");
11499 PAD_SAVE_LOCAL(old_comppad,
11500 /* Watch out for global destruction's random ordering. */
11501 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11502 );
11503 OP_REFCNT_LOCK;
11504 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11505 OP_REFCNT_UNLOCK;
11506 if (!refcnt)
11507 op_free((OP_4tree*)ri->data->data[n]);
11508
11509 PAD_RESTORE_LOCAL(old_comppad);
11510 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11511 new_comppad = NULL;
11512 break;
11513 case 'n':
11514 break;
11515 case 'T':
11516 { /* Aho Corasick add-on structure for a trie node.
11517 Used in stclass optimization only */
11518 U32 refcount;
11519 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11520 OP_REFCNT_LOCK;
11521 refcount = --aho->refcount;
11522 OP_REFCNT_UNLOCK;
11523 if ( !refcount ) {
11524 PerlMemShared_free(aho->states);
11525 PerlMemShared_free(aho->fail);
11526 /* do this last!!!! */
11527 PerlMemShared_free(ri->data->data[n]);
11528 PerlMemShared_free(ri->regstclass);
11529 }
11530 }
11531 break;
11532 case 't':
11533 {
11534 /* trie structure. */
11535 U32 refcount;
11536 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11537 OP_REFCNT_LOCK;
11538 refcount = --trie->refcount;
11539 OP_REFCNT_UNLOCK;
11540 if ( !refcount ) {
11541 PerlMemShared_free(trie->charmap);
11542 PerlMemShared_free(trie->states);
11543 PerlMemShared_free(trie->trans);
11544 if (trie->bitmap)
11545 PerlMemShared_free(trie->bitmap);
11546 if (trie->jump)
11547 PerlMemShared_free(trie->jump);
11548 PerlMemShared_free(trie->wordinfo);
11549 /* do this last!!!! */
11550 PerlMemShared_free(ri->data->data[n]);
11551 }
11552 }
11553 break;
11554 default:
11555 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11556 }
11557 }
11558 Safefree(ri->data->what);
11559 Safefree(ri->data);
11560 }
11561
11562 Safefree(ri);
11563}
11564
11565#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11566#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11567#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11568
11569/*
11570 re_dup - duplicate a regexp.
11571
11572 This routine is expected to clone a given regexp structure. It is only
11573 compiled under USE_ITHREADS.
11574
11575 After all of the core data stored in struct regexp is duplicated
11576 the regexp_engine.dupe method is used to copy any private data
11577 stored in the *pprivate pointer. This allows extensions to handle
11578 any duplication it needs to do.
11579
11580 See pregfree() and regfree_internal() if you change anything here.
11581*/
11582#if defined(USE_ITHREADS)
11583#ifndef PERL_IN_XSUB_RE
11584void
11585Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11586{
11587 dVAR;
11588 I32 npar;
11589 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11590 struct regexp *ret = (struct regexp *)SvANY(dstr);
11591
11592 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11593
11594 npar = r->nparens+1;
11595 Newx(ret->offs, npar, regexp_paren_pair);
11596 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11597 if(ret->swap) {
11598 /* no need to copy these */
11599 Newx(ret->swap, npar, regexp_paren_pair);
11600 }
11601
11602 if (ret->substrs) {
11603 /* Do it this way to avoid reading from *r after the StructCopy().
11604 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11605 cache, it doesn't matter. */
11606 const bool anchored = r->check_substr
11607 ? r->check_substr == r->anchored_substr
11608 : r->check_utf8 == r->anchored_utf8;
11609 Newx(ret->substrs, 1, struct reg_substr_data);
11610 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11611
11612 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
11613 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
11614 ret->float_substr = sv_dup_inc(ret->float_substr, param);
11615 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
11616
11617 /* check_substr and check_utf8, if non-NULL, point to either their
11618 anchored or float namesakes, and don't hold a second reference. */
11619
11620 if (ret->check_substr) {
11621 if (anchored) {
11622 assert(r->check_utf8 == r->anchored_utf8);
11623 ret->check_substr = ret->anchored_substr;
11624 ret->check_utf8 = ret->anchored_utf8;
11625 } else {
11626 assert(r->check_substr == r->float_substr);
11627 assert(r->check_utf8 == r->float_utf8);
11628 ret->check_substr = ret->float_substr;
11629 ret->check_utf8 = ret->float_utf8;
11630 }
11631 } else if (ret->check_utf8) {
11632 if (anchored) {
11633 ret->check_utf8 = ret->anchored_utf8;
11634 } else {
11635 ret->check_utf8 = ret->float_utf8;
11636 }
11637 }
11638 }
11639
11640 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
11641
11642 if (ret->pprivate)
11643 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
11644
11645 if (RX_MATCH_COPIED(dstr))
11646 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
11647 else
11648 ret->subbeg = NULL;
11649#ifdef PERL_OLD_COPY_ON_WRITE
11650 ret->saved_copy = NULL;
11651#endif
11652
11653 if (ret->mother_re) {
11654 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
11655 /* Our storage points directly to our mother regexp, but that's
11656 1: a buffer in a different thread
11657 2: something we no longer hold a reference on
11658 so we need to copy it locally. */
11659 /* Note we need to sue SvCUR() on our mother_re, because it, in
11660 turn, may well be pointing to its own mother_re. */
11661 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
11662 SvCUR(ret->mother_re)+1));
11663 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
11664 }
11665 ret->mother_re = NULL;
11666 }
11667 ret->gofs = 0;
11668}
11669#endif /* PERL_IN_XSUB_RE */
11670
11671/*
11672 regdupe_internal()
11673
11674 This is the internal complement to regdupe() which is used to copy
11675 the structure pointed to by the *pprivate pointer in the regexp.
11676 This is the core version of the extension overridable cloning hook.
11677 The regexp structure being duplicated will be copied by perl prior
11678 to this and will be provided as the regexp *r argument, however
11679 with the /old/ structures pprivate pointer value. Thus this routine
11680 may override any copying normally done by perl.
11681
11682 It returns a pointer to the new regexp_internal structure.
11683*/
11684
11685void *
11686Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
11687{
11688 dVAR;
11689 struct regexp *const r = (struct regexp *)SvANY(rx);
11690 regexp_internal *reti;
11691 int len;
11692 RXi_GET_DECL(r,ri);
11693
11694 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
11695
11696 len = ProgLen(ri);
11697
11698 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
11699 Copy(ri->program, reti->program, len+1, regnode);
11700
11701
11702 reti->regstclass = NULL;
11703
11704 if (ri->data) {
11705 struct reg_data *d;
11706 const int count = ri->data->count;
11707 int i;
11708
11709 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
11710 char, struct reg_data);
11711 Newx(d->what, count, U8);
11712
11713 d->count = count;
11714 for (i = 0; i < count; i++) {
11715 d->what[i] = ri->data->what[i];
11716 switch (d->what[i]) {
11717 /* legal options are one of: sSfpontTua
11718 see also regcomp.h and pregfree() */
11719 case 'a': /* actually an AV, but the dup function is identical. */
11720 case 's':
11721 case 'S':
11722 case 'p': /* actually an AV, but the dup function is identical. */
11723 case 'u': /* actually an HV, but the dup function is identical. */
11724 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
11725 break;
11726 case 'f':
11727 /* This is cheating. */
11728 Newx(d->data[i], 1, struct regnode_charclass_class);
11729 StructCopy(ri->data->data[i], d->data[i],
11730 struct regnode_charclass_class);
11731 reti->regstclass = (regnode*)d->data[i];
11732 break;
11733 case 'o':
11734 /* Compiled op trees are readonly and in shared memory,
11735 and can thus be shared without duplication. */
11736 OP_REFCNT_LOCK;
11737 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
11738 OP_REFCNT_UNLOCK;
11739 break;
11740 case 'T':
11741 /* Trie stclasses are readonly and can thus be shared
11742 * without duplication. We free the stclass in pregfree
11743 * when the corresponding reg_ac_data struct is freed.
11744 */
11745 reti->regstclass= ri->regstclass;
11746 /* Fall through */
11747 case 't':
11748 OP_REFCNT_LOCK;
11749 ((reg_trie_data*)ri->data->data[i])->refcount++;
11750 OP_REFCNT_UNLOCK;
11751 /* Fall through */
11752 case 'n':
11753 d->data[i] = ri->data->data[i];
11754 break;
11755 default:
11756 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
11757 }
11758 }
11759
11760 reti->data = d;
11761 }
11762 else
11763 reti->data = NULL;
11764
11765 reti->name_list_idx = ri->name_list_idx;
11766
11767#ifdef RE_TRACK_PATTERN_OFFSETS
11768 if (ri->u.offsets) {
11769 Newx(reti->u.offsets, 2*len+1, U32);
11770 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
11771 }
11772#else
11773 SetProgLen(reti,len);
11774#endif
11775
11776 return (void*)reti;
11777}
11778
11779#endif /* USE_ITHREADS */
11780
11781#ifndef PERL_IN_XSUB_RE
11782
11783/*
11784 - regnext - dig the "next" pointer out of a node
11785 */
11786regnode *
11787Perl_regnext(pTHX_ register regnode *p)
11788{
11789 dVAR;
11790 register I32 offset;
11791
11792 if (!p)
11793 return(NULL);
11794
11795 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
11796 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
11797 }
11798
11799 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
11800 if (offset == 0)
11801 return(NULL);
11802
11803 return(p+offset);
11804}
11805#endif
11806
11807STATIC void
11808S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
11809{
11810 va_list args;
11811 STRLEN l1 = strlen(pat1);
11812 STRLEN l2 = strlen(pat2);
11813 char buf[512];
11814 SV *msv;
11815 const char *message;
11816
11817 PERL_ARGS_ASSERT_RE_CROAK2;
11818
11819 if (l1 > 510)
11820 l1 = 510;
11821 if (l1 + l2 > 510)
11822 l2 = 510 - l1;
11823 Copy(pat1, buf, l1 , char);
11824 Copy(pat2, buf + l1, l2 , char);
11825 buf[l1 + l2] = '\n';
11826 buf[l1 + l2 + 1] = '\0';
11827#ifdef I_STDARG
11828 /* ANSI variant takes additional second argument */
11829 va_start(args, pat2);
11830#else
11831 va_start(args);
11832#endif
11833 msv = vmess(buf, &args);
11834 va_end(args);
11835 message = SvPV_const(msv,l1);
11836 if (l1 > 512)
11837 l1 = 512;
11838 Copy(message, buf, l1 , char);
11839 buf[l1-1] = '\0'; /* Overwrite \n */
11840 Perl_croak(aTHX_ "%s", buf);
11841}
11842
11843/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
11844
11845#ifndef PERL_IN_XSUB_RE
11846void
11847Perl_save_re_context(pTHX)
11848{
11849 dVAR;
11850
11851 struct re_save_state *state;
11852
11853 SAVEVPTR(PL_curcop);
11854 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
11855
11856 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
11857 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
11858 SSPUSHUV(SAVEt_RE_STATE);
11859
11860 Copy(&PL_reg_state, state, 1, struct re_save_state);
11861
11862 PL_reg_start_tmp = 0;
11863 PL_reg_start_tmpl = 0;
11864 PL_reg_oldsaved = NULL;
11865 PL_reg_oldsavedlen = 0;
11866 PL_reg_maxiter = 0;
11867 PL_reg_leftiter = 0;
11868 PL_reg_poscache = NULL;
11869 PL_reg_poscache_size = 0;
11870#ifdef PERL_OLD_COPY_ON_WRITE
11871 PL_nrs = NULL;
11872#endif
11873
11874 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
11875 if (PL_curpm) {
11876 const REGEXP * const rx = PM_GETRE(PL_curpm);
11877 if (rx) {
11878 U32 i;
11879 for (i = 1; i <= RX_NPARENS(rx); i++) {
11880 char digits[TYPE_CHARS(long)];
11881 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
11882 GV *const *const gvp
11883 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
11884
11885 if (gvp) {
11886 GV * const gv = *gvp;
11887 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
11888 save_scalar(gv);
11889 }
11890 }
11891 }
11892 }
11893}
11894#endif
11895
11896static void
11897clear_re(pTHX_ void *r)
11898{
11899 dVAR;
11900 ReREFCNT_dec((REGEXP *)r);
11901}
11902
11903#ifdef DEBUGGING
11904
11905STATIC void
11906S_put_byte(pTHX_ SV *sv, int c)
11907{
11908 PERL_ARGS_ASSERT_PUT_BYTE;
11909
11910 /* Our definition of isPRINT() ignores locales, so only bytes that are
11911 not part of UTF-8 are considered printable. I assume that the same
11912 holds for UTF-EBCDIC.
11913 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
11914 which Wikipedia says:
11915
11916 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
11917 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
11918 identical, to the ASCII delete (DEL) or rubout control character.
11919 ) So the old condition can be simplified to !isPRINT(c) */
11920 if (!isPRINT(c)) {
11921 if (c < 256) {
11922 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
11923 }
11924 else {
11925 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
11926 }
11927 }
11928 else {
11929 const char string = c;
11930 if (c == '-' || c == ']' || c == '\\' || c == '^')
11931 sv_catpvs(sv, "\\");
11932 sv_catpvn(sv, &string, 1);
11933 }
11934}
11935
11936
11937#define CLEAR_OPTSTART \
11938 if (optstart) STMT_START { \
11939 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
11940 optstart=NULL; \
11941 } STMT_END
11942
11943#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
11944
11945STATIC const regnode *
11946S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
11947 const regnode *last, const regnode *plast,
11948 SV* sv, I32 indent, U32 depth)
11949{
11950 dVAR;
11951 register U8 op = PSEUDO; /* Arbitrary non-END op. */
11952 register const regnode *next;
11953 const regnode *optstart= NULL;
11954
11955 RXi_GET_DECL(r,ri);
11956 GET_RE_DEBUG_FLAGS_DECL;
11957
11958 PERL_ARGS_ASSERT_DUMPUNTIL;
11959
11960#ifdef DEBUG_DUMPUNTIL
11961 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
11962 last ? last-start : 0,plast ? plast-start : 0);
11963#endif
11964
11965 if (plast && plast < last)
11966 last= plast;
11967
11968 while (PL_regkind[op] != END && (!last || node < last)) {
11969 /* While that wasn't END last time... */
11970 NODE_ALIGN(node);
11971 op = OP(node);
11972 if (op == CLOSE || op == WHILEM)
11973 indent--;
11974 next = regnext((regnode *)node);
11975
11976 /* Where, what. */
11977 if (OP(node) == OPTIMIZED) {
11978 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
11979 optstart = node;
11980 else
11981 goto after_print;
11982 } else
11983 CLEAR_OPTSTART;
11984
11985 regprop(r, sv, node);
11986 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
11987 (int)(2*indent + 1), "", SvPVX_const(sv));
11988
11989 if (OP(node) != OPTIMIZED) {
11990 if (next == NULL) /* Next ptr. */
11991 PerlIO_printf(Perl_debug_log, " (0)");
11992 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
11993 PerlIO_printf(Perl_debug_log, " (FAIL)");
11994 else
11995 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
11996 (void)PerlIO_putc(Perl_debug_log, '\n');
11997 }
11998
11999 after_print:
12000 if (PL_regkind[(U8)op] == BRANCHJ) {
12001 assert(next);
12002 {
12003 register const regnode *nnode = (OP(next) == LONGJMP
12004 ? regnext((regnode *)next)
12005 : next);
12006 if (last && nnode > last)
12007 nnode = last;
12008 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12009 }
12010 }
12011 else if (PL_regkind[(U8)op] == BRANCH) {
12012 assert(next);
12013 DUMPUNTIL(NEXTOPER(node), next);
12014 }
12015 else if ( PL_regkind[(U8)op] == TRIE ) {
12016 const regnode *this_trie = node;
12017 const char op = OP(node);
12018 const U32 n = ARG(node);
12019 const reg_ac_data * const ac = op>=AHOCORASICK ?
12020 (reg_ac_data *)ri->data->data[n] :
12021 NULL;
12022 const reg_trie_data * const trie =
12023 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12024#ifdef DEBUGGING
12025 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12026#endif
12027 const regnode *nextbranch= NULL;
12028 I32 word_idx;
12029 sv_setpvs(sv, "");
12030 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12031 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12032
12033 PerlIO_printf(Perl_debug_log, "%*s%s ",
12034 (int)(2*(indent+3)), "",
12035 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12036 PL_colors[0], PL_colors[1],
12037 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12038 PERL_PV_PRETTY_ELLIPSES |
12039 PERL_PV_PRETTY_LTGT
12040 )
12041 : "???"
12042 );
12043 if (trie->jump) {
12044 U16 dist= trie->jump[word_idx+1];
12045 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12046 (UV)((dist ? this_trie + dist : next) - start));
12047 if (dist) {
12048 if (!nextbranch)
12049 nextbranch= this_trie + trie->jump[0];
12050 DUMPUNTIL(this_trie + dist, nextbranch);
12051 }
12052 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12053 nextbranch= regnext((regnode *)nextbranch);
12054 } else {
12055 PerlIO_printf(Perl_debug_log, "\n");
12056 }
12057 }
12058 if (last && next > last)
12059 node= last;
12060 else
12061 node= next;
12062 }
12063 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12064 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12065 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12066 }
12067 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12068 assert(next);
12069 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12070 }
12071 else if ( op == PLUS || op == STAR) {
12072 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12073 }
12074 else if (PL_regkind[(U8)op] == ANYOF) {
12075 /* arglen 1 + class block */
12076 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12077 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12078 node = NEXTOPER(node);
12079 }
12080 else if (PL_regkind[(U8)op] == EXACT) {
12081 /* Literal string, where present. */
12082 node += NODE_SZ_STR(node) - 1;
12083 node = NEXTOPER(node);
12084 }
12085 else {
12086 node = NEXTOPER(node);
12087 node += regarglen[(U8)op];
12088 }
12089 if (op == CURLYX || op == OPEN)
12090 indent++;
12091 }
12092 CLEAR_OPTSTART;
12093#ifdef DEBUG_DUMPUNTIL
12094 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12095#endif
12096 return node;
12097}
12098
12099#endif /* DEBUGGING */
12100
12101/*
12102 * Local variables:
12103 * c-indentation-style: bsd
12104 * c-basic-offset: 4
12105 * indent-tabs-mode: t
12106 * End:
12107 *
12108 * ex: set ts=8 sts=4 sw=4 noet:
12109 */