This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Prefer 'Foo->new' to 'new Foo' in examples of constructors.
[perl5.git] / time64.c
... / ...
CommitLineData
1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
36S_localtime64_r() is a 64-bit equivalent of localtime_r().
37
38S_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40*/
41
42#include "time64.h"
43
44static const char days_in_month[2][12] = {
45 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47};
48
49static const short julian_days_by_month[2][12] = {
50 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52};
53
54static const short length_of_year[2] = { 365, 366 };
55
56/* Number of days in a 400 year Gregorian cycle */
57static const Year years_in_gregorian_cycle = 400;
58static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
59
60/* 28 year calendar cycle between 2010 and 2037 */
61#define SOLAR_CYCLE_LENGTH 28
62static const short safe_years[SOLAR_CYCLE_LENGTH] = {
63 2016, 2017, 2018, 2019,
64 2020, 2021, 2022, 2023,
65 2024, 2025, 2026, 2027,
66 2028, 2029, 2030, 2031,
67 2032, 2033, 2034, 2035,
68 2036, 2037, 2010, 2011,
69 2012, 2013, 2014, 2015
70};
71
72static const char dow_year_start[SOLAR_CYCLE_LENGTH] = {
73 5, 0, 1, 2, /* 0 2016 - 2019 */
74 3, 5, 6, 0, /* 4 */
75 1, 3, 4, 5, /* 8 */
76 6, 1, 2, 3, /* 12 */
77 4, 6, 0, 1, /* 16 */
78 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
79 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
80};
81
82/* Let's assume people are going to be looking for dates in the future.
83 Let's provide some cheats so you can skip ahead.
84 This has a 4x speed boost when near 2008.
85*/
86/* Number of days since epoch on Jan 1st, 2008 GMT */
87#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
88#define CHEAT_YEARS 108
89
90#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91#undef WRAP /* some <termios.h> define this */
92#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
93
94#ifdef USE_SYSTEM_LOCALTIME
95# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
96 (a) <= SYSTEM_LOCALTIME_MAX && \
97 (a) >= SYSTEM_LOCALTIME_MIN \
98)
99#else
100# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
101#endif
102
103#ifdef USE_SYSTEM_GMTIME
104# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
105 (a) <= SYSTEM_GMTIME_MAX && \
106 (a) >= SYSTEM_GMTIME_MIN \
107)
108#else
109# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
110#endif
111
112/* Multi varadic macros are a C99 thing, alas */
113#ifdef TIME_64_DEBUG
114# define TIME64_TRACE(format) (fprintf(stderr, format))
115# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
116# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
117# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
118#else
119# define TIME64_TRACE(format) ((void)0)
120# define TIME64_TRACE1(format, var1) ((void)0)
121# define TIME64_TRACE2(format, var1, var2) ((void)0)
122# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
123#endif
124
125static int S_is_exception_century(Year year)
126{
127 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
128 TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
129
130 return(is_exception);
131}
132
133
134static Time64_T S_timegm64(struct TM *date) {
135 int days = 0;
136 Time64_T seconds = 0;
137 Year year;
138
139 if( date->tm_year > 70 ) {
140 year = 70;
141 while( year < date->tm_year ) {
142 days += length_of_year[IS_LEAP(year)];
143 year++;
144 }
145 }
146 else if ( date->tm_year < 70 ) {
147 year = 69;
148 do {
149 days -= length_of_year[IS_LEAP(year)];
150 year--;
151 } while( year >= date->tm_year );
152 }
153
154 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
155 days += date->tm_mday - 1;
156
157 /* Avoid overflowing the days integer */
158 seconds = days;
159 seconds = seconds * 60 * 60 * 24;
160
161 seconds += date->tm_hour * 60 * 60;
162 seconds += date->tm_min * 60;
163 seconds += date->tm_sec;
164
165 return(seconds);
166}
167
168
169#ifdef DEBUGGING
170static int S_check_tm(struct TM *tm)
171{
172 /* Don't forget leap seconds */
173 assert(tm->tm_sec >= 0);
174 assert(tm->tm_sec <= 61);
175
176 assert(tm->tm_min >= 0);
177 assert(tm->tm_min <= 59);
178
179 assert(tm->tm_hour >= 0);
180 assert(tm->tm_hour <= 23);
181
182 assert(tm->tm_mday >= 1);
183 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
184
185 assert(tm->tm_mon >= 0);
186 assert(tm->tm_mon <= 11);
187
188 assert(tm->tm_wday >= 0);
189 assert(tm->tm_wday <= 6);
190
191 assert(tm->tm_yday >= 0);
192 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
193
194#ifdef HAS_TM_TM_GMTOFF
195 assert(tm->tm_gmtoff >= -24 * 60 * 60);
196 assert(tm->tm_gmtoff <= 24 * 60 * 60);
197#endif
198
199 return 1;
200}
201#endif
202
203
204/* The exceptional centuries without leap years cause the cycle to
205 shift by 16
206*/
207static Year S_cycle_offset(Year year)
208{
209 const Year start_year = 2000;
210 Year year_diff = year - start_year;
211 Year exceptions;
212
213 if( year > start_year )
214 year_diff--;
215
216 exceptions = year_diff / 100;
217 exceptions -= year_diff / 400;
218
219 TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
220 year, exceptions, year_diff);
221
222 return exceptions * 16;
223}
224
225/* For a given year after 2038, pick the latest possible matching
226 year in the 28 year calendar cycle.
227
228 A matching year...
229 1) Starts on the same day of the week.
230 2) Has the same leap year status.
231
232 This is so the calendars match up.
233
234 Also the previous year must match. When doing Jan 1st you might
235 wind up on Dec 31st the previous year when doing a -UTC time zone.
236
237 Finally, the next year must have the same start day of week. This
238 is for Dec 31st with a +UTC time zone.
239 It doesn't need the same leap year status since we only care about
240 January 1st.
241*/
242static int S_safe_year(Year year)
243{
244 int safe_year;
245 Year year_cycle = year + S_cycle_offset(year);
246
247 /* Change non-leap xx00 years to an equivalent */
248 if( S_is_exception_century(year) )
249 year_cycle += 11;
250
251 /* Also xx01 years, since the previous year will be wrong */
252 if( S_is_exception_century(year - 1) )
253 year_cycle += 17;
254
255 year_cycle %= SOLAR_CYCLE_LENGTH;
256 if( year_cycle < 0 )
257 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
258
259 assert( year_cycle >= 0 );
260 assert( year_cycle < SOLAR_CYCLE_LENGTH );
261 safe_year = safe_years[year_cycle];
262
263 assert(safe_year <= 2037 && safe_year >= 2010);
264
265 TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
266 year, year_cycle, safe_year);
267
268 return safe_year;
269}
270
271
272static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
273 assert(src);
274 assert(dest);
275#ifdef USE_TM64
276 dest->tm_sec = src->tm_sec;
277 dest->tm_min = src->tm_min;
278 dest->tm_hour = src->tm_hour;
279 dest->tm_mday = src->tm_mday;
280 dest->tm_mon = src->tm_mon;
281 dest->tm_year = (Year)src->tm_year;
282 dest->tm_wday = src->tm_wday;
283 dest->tm_yday = src->tm_yday;
284 dest->tm_isdst = src->tm_isdst;
285
286# ifdef HAS_TM_TM_GMTOFF
287 dest->tm_gmtoff = src->tm_gmtoff;
288# endif
289
290# ifdef HAS_TM_TM_ZONE
291 dest->tm_zone = src->tm_zone;
292# endif
293
294#else
295 /* They're the same type */
296 memcpy(dest, src, sizeof(*dest));
297#endif
298}
299
300
301#ifndef HAS_LOCALTIME_R
302/* Simulate localtime_r() to the best of our ability */
303static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
304#ifdef __VMS
305 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
306#endif
307 const struct tm *static_result = localtime(clock);
308
309 assert(result != NULL);
310
311 if( static_result == NULL ) {
312 memset(result, 0, sizeof(*result));
313 return NULL;
314 }
315 else {
316 memcpy(result, static_result, sizeof(*result));
317 return result;
318 }
319}
320#endif
321
322#ifndef HAS_GMTIME_R
323/* Simulate gmtime_r() to the best of our ability */
324static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
325#ifdef __VMS
326 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
327#endif
328 const struct tm *static_result = gmtime(clock);
329
330 assert(result != NULL);
331
332 if( static_result == NULL ) {
333 memset(result, 0, sizeof(*result));
334 return NULL;
335 }
336 else {
337 memcpy(result, static_result, sizeof(*result));
338 return result;
339 }
340}
341#endif
342
343static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
344{
345 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
346 Time64_T v_tm_tday;
347 int leap;
348 Time64_T m;
349 Time64_T time = *in_time;
350 Year year = 70;
351 int cycles = 0;
352
353 assert(p != NULL);
354
355 /* Use the system gmtime() if time_t is small enough */
356 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
357 time_t safe_time = (time_t)*in_time;
358 struct tm safe_date;
359 GMTIME_R(&safe_time, &safe_date);
360
361 S_copy_little_tm_to_big_TM(&safe_date, p);
362 assert(S_check_tm(p));
363
364 return p;
365 }
366
367#ifdef HAS_TM_TM_GMTOFF
368 p->tm_gmtoff = 0;
369#endif
370 p->tm_isdst = 0;
371
372#ifdef HAS_TM_TM_ZONE
373 p->tm_zone = (char *)"UTC";
374#endif
375
376 v_tm_sec = (int)Perl_fmod(time, 60.0);
377 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
378 v_tm_min = (int)Perl_fmod(time, 60.0);
379 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
380 v_tm_hour = (int)Perl_fmod(time, 24.0);
381 time = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
382 v_tm_tday = time;
383
384 WRAP (v_tm_sec, v_tm_min, 60);
385 WRAP (v_tm_min, v_tm_hour, 60);
386 WRAP (v_tm_hour, v_tm_tday, 24);
387
388 v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
389 if (v_tm_wday < 0)
390 v_tm_wday += 7;
391 m = v_tm_tday;
392
393 if (m >= CHEAT_DAYS) {
394 year = CHEAT_YEARS;
395 m -= CHEAT_DAYS;
396 }
397
398 if (m >= 0) {
399 /* Gregorian cycles, this is huge optimization for distant times */
400 cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
401 if( cycles ) {
402 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
403 year += (cycles * years_in_gregorian_cycle);
404 }
405
406 /* Years */
407 leap = IS_LEAP (year);
408 while (m >= (Time64_T) length_of_year[leap]) {
409 m -= (Time64_T) length_of_year[leap];
410 year++;
411 leap = IS_LEAP (year);
412 }
413
414 /* Months */
415 v_tm_mon = 0;
416 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
417 m -= (Time64_T) days_in_month[leap][v_tm_mon];
418 v_tm_mon++;
419 }
420 } else {
421 year--;
422
423 /* Gregorian cycles */
424 cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
425 if( cycles ) {
426 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
427 year += (cycles * years_in_gregorian_cycle);
428 }
429
430 /* Years */
431 leap = IS_LEAP (year);
432 while (m < (Time64_T) -length_of_year[leap]) {
433 m += (Time64_T) length_of_year[leap];
434 year--;
435 leap = IS_LEAP (year);
436 }
437
438 /* Months */
439 v_tm_mon = 11;
440 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
441 m += (Time64_T) days_in_month[leap][v_tm_mon];
442 v_tm_mon--;
443 }
444 m += (Time64_T) days_in_month[leap][v_tm_mon];
445 }
446
447 p->tm_year = year;
448 if( p->tm_year != year ) {
449#ifdef EOVERFLOW
450 errno = EOVERFLOW;
451#endif
452 return NULL;
453 }
454
455 /* At this point m is less than a year so casting to an int is safe */
456 p->tm_mday = (int) m + 1;
457 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
458 p->tm_sec = v_tm_sec;
459 p->tm_min = v_tm_min;
460 p->tm_hour = v_tm_hour;
461 p->tm_mon = v_tm_mon;
462 p->tm_wday = v_tm_wday;
463
464 assert(S_check_tm(p));
465
466 return p;
467}
468
469
470static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
471{
472 time_t safe_time;
473 struct tm safe_date;
474 struct TM gm_tm;
475 Year orig_year;
476 int month_diff;
477
478 assert(local_tm != NULL);
479
480 /* Use the system localtime() if time_t is small enough */
481 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
482 safe_time = (time_t)*time;
483
484 TIME64_TRACE1("Using system localtime for %lld\n", *time);
485
486 LOCALTIME_R(&safe_time, &safe_date);
487
488 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
489 assert(S_check_tm(local_tm));
490
491 return local_tm;
492 }
493
494 if( S_gmtime64_r(time, &gm_tm) == NULL ) {
495 TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
496 return NULL;
497 }
498
499 orig_year = gm_tm.tm_year;
500
501 if (gm_tm.tm_year > (2037 - 1900) ||
502 gm_tm.tm_year < (1970 - 1900)
503 )
504 {
505 TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
506 gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
507 }
508
509 safe_time = (time_t)S_timegm64(&gm_tm);
510 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
511 TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
512 return NULL;
513 }
514
515 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
516
517 local_tm->tm_year = orig_year;
518 if( local_tm->tm_year != orig_year ) {
519 TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
520 (Year)local_tm->tm_year, (Year)orig_year);
521
522#ifdef EOVERFLOW
523 errno = EOVERFLOW;
524#endif
525 return NULL;
526 }
527
528
529 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
530
531 /* When localtime is Dec 31st previous year and
532 gmtime is Jan 1st next year.
533 */
534 if( month_diff == 11 ) {
535 local_tm->tm_year--;
536 }
537
538 /* When localtime is Jan 1st, next year and
539 gmtime is Dec 31st, previous year.
540 */
541 if( month_diff == -11 ) {
542 local_tm->tm_year++;
543 }
544
545 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
546 in a non-leap xx00. There is one point in the cycle
547 we can't account for which the safe xx00 year is a leap
548 year. So we need to correct for Dec 31st coming out as
549 the 366th day of the year.
550 */
551 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
552 local_tm->tm_yday--;
553
554 assert(S_check_tm(local_tm));
555
556 return local_tm;
557}