This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Unicode::UCD: Fix blocks to work on early Unicodes
[perl5.git] / lib / Unicode / UCD.pm
CommitLineData
55d7b906 1package Unicode::UCD;
561c79ed
JH
2
3use strict;
4use warnings;
36c2430c 5no warnings 'surrogate'; # surrogates can be inputs to this
98ef7649 6use charnames ();
94c91ffc 7use Unicode::Normalize qw(getCombinClass NFD);
561c79ed 8
e80c2d9d 9our $VERSION = '0.44';
561c79ed 10
741297c1
JH
11use Storable qw(dclone);
12
561c79ed
JH
13require Exporter;
14
15our @ISA = qw(Exporter);
74f8133e 16
10a6ecd2
JH
17our @EXPORT_OK = qw(charinfo
18 charblock charscript
19 charblocks charscripts
b08cd201 20 charinrange
ea508aee 21 general_categories bidi_types
b08cd201 22 compexcl
a2bd7410 23 casefold casespec
7319f91d
KW
24 namedseq
25 num
7ef25837
KW
26 prop_aliases
27 prop_value_aliases
681d705c 28 prop_invlist
62b3b855 29 prop_invmap
681d705c 30 MAX_CP
7319f91d 31 );
561c79ed
JH
32
33use Carp;
34
35=head1 NAME
36
55d7b906 37Unicode::UCD - Unicode character database
561c79ed
JH
38
39=head1 SYNOPSIS
40
55d7b906 41 use Unicode::UCD 'charinfo';
b08cd201 42 my $charinfo = charinfo($codepoint);
561c79ed 43
956cae9a
KW
44 use Unicode::UCD 'casefold';
45 my $casefold = casefold(0xFB00);
46
5d8e6e41
KW
47 use Unicode::UCD 'casespec';
48 my $casespec = casespec(0xFB00);
49
55d7b906 50 use Unicode::UCD 'charblock';
e882dd67
JH
51 my $charblock = charblock($codepoint);
52
55d7b906 53 use Unicode::UCD 'charscript';
65044554 54 my $charscript = charscript($codepoint);
561c79ed 55
55d7b906 56 use Unicode::UCD 'charblocks';
e145285f
JH
57 my $charblocks = charblocks();
58
55d7b906 59 use Unicode::UCD 'charscripts';
ea508aee 60 my $charscripts = charscripts();
e145285f 61
55d7b906 62 use Unicode::UCD qw(charscript charinrange);
e145285f
JH
63 my $range = charscript($script);
64 print "looks like $script\n" if charinrange($range, $codepoint);
65
ea508aee
JH
66 use Unicode::UCD qw(general_categories bidi_types);
67 my $categories = general_categories();
68 my $types = bidi_types();
69
7ef25837
KW
70 use Unicode::UCD 'prop_aliases';
71 my @space_names = prop_aliases("space");
72
73 use Unicode::UCD 'prop_value_aliases';
74 my @gc_punct_names = prop_value_aliases("Gc", "Punct");
75
681d705c
KW
76 use Unicode::UCD 'prop_invlist';
77 my @puncts = prop_invlist("gc=punctuation");
78
62b3b855
KW
79 use Unicode::UCD 'prop_invmap';
80 my ($list_ref, $map_ref, $format, $missing)
81 = prop_invmap("General Category");
82
55d7b906 83 use Unicode::UCD 'compexcl';
e145285f
JH
84 my $compexcl = compexcl($codepoint);
85
a2bd7410
JH
86 use Unicode::UCD 'namedseq';
87 my $namedseq = namedseq($named_sequence_name);
88
55d7b906 89 my $unicode_version = Unicode::UCD::UnicodeVersion();
e145285f 90
7319f91d 91 my $convert_to_numeric =
62a8c8c2 92 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");
7319f91d 93
561c79ed
JH
94=head1 DESCRIPTION
95
a452d459
KW
96The Unicode::UCD module offers a series of functions that
97provide a simple interface to the Unicode
8b731da2 98Character Database.
561c79ed 99
a452d459
KW
100=head2 code point argument
101
102Some of the functions are called with a I<code point argument>, which is either
103a decimal or a hexadecimal scalar designating a Unicode code point, or C<U+>
104followed by hexadecimals designating a Unicode code point. In other words, if
105you want a code point to be interpreted as a hexadecimal number, you must
106prefix it with either C<0x> or C<U+>, because a string like e.g. C<123> will be
f200dd12
KW
107interpreted as a decimal code point. Note that the largest code point in
108Unicode is U+10FFFF.
c3e5bc54 109
561c79ed
JH
110=cut
111
10a6ecd2 112my $BLOCKSFH;
10a6ecd2 113my $VERSIONFH;
b08cd201
JH
114my $CASEFOLDFH;
115my $CASESPECFH;
a2bd7410 116my $NAMEDSEQFH;
e80c2d9d 117my $v_unicode_version; # v-string.
561c79ed
JH
118
119sub openunicode {
120 my ($rfh, @path) = @_;
121 my $f;
122 unless (defined $$rfh) {
123 for my $d (@INC) {
124 use File::Spec;
55d7b906 125 $f = File::Spec->catfile($d, "unicore", @path);
32c16050 126 last if open($$rfh, $f);
e882dd67 127 undef $f;
561c79ed 128 }
e882dd67
JH
129 croak __PACKAGE__, ": failed to find ",
130 File::Spec->catfile(@path), " in @INC"
131 unless defined $f;
561c79ed
JH
132 }
133 return $f;
134}
135
a452d459 136=head2 B<charinfo()>
561c79ed 137
55d7b906 138 use Unicode::UCD 'charinfo';
561c79ed 139
b08cd201 140 my $charinfo = charinfo(0x41);
561c79ed 141
a452d459
KW
142This returns information about the input L</code point argument>
143as a reference to a hash of fields as defined by the Unicode
144standard. If the L</code point argument> is not assigned in the standard
145(i.e., has the general category C<Cn> meaning C<Unassigned>)
146or is a non-character (meaning it is guaranteed to never be assigned in
147the standard),
a18e976f 148C<undef> is returned.
a452d459
KW
149
150Fields that aren't applicable to the particular code point argument exist in the
151returned hash, and are empty.
152
153The keys in the hash with the meanings of their values are:
154
155=over
156
157=item B<code>
158
159the input L</code point argument> expressed in hexadecimal, with leading zeros
160added if necessary to make it contain at least four hexdigits
161
162=item B<name>
163
164name of I<code>, all IN UPPER CASE.
165Some control-type code points do not have names.
166This field will be empty for C<Surrogate> and C<Private Use> code points,
167and for the others without a name,
168it will contain a description enclosed in angle brackets, like
169C<E<lt>controlE<gt>>.
170
171
172=item B<category>
173
174The short name of the general category of I<code>.
175This will match one of the keys in the hash returned by L</general_categories()>.
176
7ef25837
KW
177The L</prop_value_aliases()> function can be used to get all the synonyms
178of the category name.
179
a452d459
KW
180=item B<combining>
181
182the combining class number for I<code> used in the Canonical Ordering Algorithm.
183For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior>
184available at
185L<http://www.unicode.org/versions/Unicode5.1.0/>
186
7ef25837
KW
187The L</prop_value_aliases()> function can be used to get all the synonyms
188of the combining class number.
189
a452d459
KW
190=item B<bidi>
191
192bidirectional type of I<code>.
193This will match one of the keys in the hash returned by L</bidi_types()>.
194
7ef25837
KW
195The L</prop_value_aliases()> function can be used to get all the synonyms
196of the bidi type name.
197
a452d459
KW
198=item B<decomposition>
199
200is empty if I<code> has no decomposition; or is one or more codes
a18e976f 201(separated by spaces) that, taken in order, represent a decomposition for
a452d459
KW
202I<code>. Each has at least four hexdigits.
203The codes may be preceded by a word enclosed in angle brackets then a space,
204like C<E<lt>compatE<gt> >, giving the type of decomposition
205
06bba7d5
KW
206This decomposition may be an intermediate one whose components are also
207decomposable. Use L<Unicode::Normalize> to get the final decomposition.
208
a452d459
KW
209=item B<decimal>
210
211if I<code> is a decimal digit this is its integer numeric value
212
213=item B<digit>
214
89e4a205
KW
215if I<code> represents some other digit-like number, this is its integer
216numeric value
a452d459
KW
217
218=item B<numeric>
219
220if I<code> represents a whole or rational number, this is its numeric value.
221Rational values are expressed as a string like C<1/4>.
222
223=item B<mirrored>
224
225C<Y> or C<N> designating if I<code> is mirrored in bidirectional text
226
227=item B<unicode10>
228
229name of I<code> in the Unicode 1.0 standard if one
230existed for this code point and is different from the current name
231
232=item B<comment>
233
89e4a205 234As of Unicode 6.0, this is always empty.
a452d459
KW
235
236=item B<upper>
237
06bba7d5 238is empty if there is no single code point uppercase mapping for I<code>
4f66642e 239(its uppercase mapping is itself);
a452d459
KW
240otherwise it is that mapping expressed as at least four hexdigits.
241(L</casespec()> should be used in addition to B<charinfo()>
242for case mappings when the calling program can cope with multiple code point
243mappings.)
244
245=item B<lower>
246
06bba7d5 247is empty if there is no single code point lowercase mapping for I<code>
4f66642e 248(its lowercase mapping is itself);
a452d459
KW
249otherwise it is that mapping expressed as at least four hexdigits.
250(L</casespec()> should be used in addition to B<charinfo()>
251for case mappings when the calling program can cope with multiple code point
252mappings.)
253
254=item B<title>
255
06bba7d5 256is empty if there is no single code point titlecase mapping for I<code>
4f66642e 257(its titlecase mapping is itself);
a452d459
KW
258otherwise it is that mapping expressed as at least four hexdigits.
259(L</casespec()> should be used in addition to B<charinfo()>
260for case mappings when the calling program can cope with multiple code point
261mappings.)
262
263=item B<block>
264
a18e976f 265the block I<code> belongs to (used in C<\p{Blk=...}>).
a452d459
KW
266See L</Blocks versus Scripts>.
267
268
269=item B<script>
270
a18e976f 271the script I<code> belongs to.
a452d459
KW
272See L</Blocks versus Scripts>.
273
274=back
32c16050
JH
275
276Note that you cannot do (de)composition and casing based solely on the
a452d459
KW
277I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields;
278you will need also the L</compexcl()>, and L</casespec()> functions.
561c79ed
JH
279
280=cut
281
e10d7780 282# NB: This function is nearly duplicated in charnames.pm
10a6ecd2
JH
283sub _getcode {
284 my $arg = shift;
285
dc0a4417 286 if ($arg =~ /^[1-9]\d*$/) {
10a6ecd2 287 return $arg;
dc0a4417 288 } elsif ($arg =~ /^(?:[Uu]\+|0[xX])?([[:xdigit:]]+)$/) {
10a6ecd2
JH
289 return hex($1);
290 }
291
292 return;
293}
294
05dbc6f8
KW
295# Populated by _num. Converts real number back to input rational
296my %real_to_rational;
297
298# To store the contents of files found on disk.
299my @BIDIS;
300my @CATEGORIES;
301my @DECOMPOSITIONS;
302my @NUMERIC_TYPES;
5c3b35c9
KW
303my %SIMPLE_LOWER;
304my %SIMPLE_TITLE;
305my %SIMPLE_UPPER;
306my %UNICODE_1_NAMES;
72fcb9f0 307my %ISO_COMMENT;
05dbc6f8 308
05dbc6f8 309sub charinfo {
a6fa416b 310
05dbc6f8
KW
311 # This function has traditionally mimicked what is in UnicodeData.txt,
312 # warts and all. This is a re-write that avoids UnicodeData.txt so that
313 # it can be removed to save disk space. Instead, this assembles
314 # information gotten by other methods that get data from various other
315 # files. It uses charnames to get the character name; and various
316 # mktables tables.
324f9e44 317
05dbc6f8 318 use feature 'unicode_strings';
a6fa416b 319
10a6ecd2
JH
320 my $arg = shift;
321 my $code = _getcode($arg);
05dbc6f8
KW
322 croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code;
323
324 # Non-unicode implies undef.
325 return if $code > 0x10FFFF;
326
327 my %prop;
328 my $char = chr($code);
329
35a865d4 330 @CATEGORIES =_read_table("To/Gc.pl") unless @CATEGORIES;
05dbc6f8
KW
331 $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code)
332 // $utf8::SwashInfo{'ToGc'}{'missing'};
333
334 return if $prop{'category'} eq 'Cn'; # Unassigned code points are undef
335
336 $prop{'code'} = sprintf "%04X", $code;
337 $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>'
338 : (charnames::viacode($code) // "");
339
340 $prop{'combining'} = getCombinClass($code);
341
35a865d4 342 @BIDIS =_read_table("To/Bc.pl") unless @BIDIS;
05dbc6f8
KW
343 $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code)
344 // $utf8::SwashInfo{'ToBc'}{'missing'};
345
346 # For most code points, we can just read in "unicore/Decomposition.pl", as
347 # its contents are exactly what should be output. But that file doesn't
348 # contain the data for the Hangul syllable decompositions, which can be
94c91ffc
KW
349 # algorithmically computed, and NFD() does that, so we call NFD() for
350 # those. We can't use NFD() for everything, as it does a complete
05dbc6f8 351 # recursive decomposition, and what this function has always done is to
94c91ffc
KW
352 # return what's in UnicodeData.txt which doesn't show that recursiveness.
353 # Fortunately, the NFD() of the Hanguls doesn't have any recursion
354 # issues.
355 # Having no decomposition implies an empty field; otherwise, all but
356 # "Canonical" imply a compatible decomposition, and the type is prefixed
357 # to that, as it is in UnicodeData.txt
9abdc62b
KW
358 UnicodeVersion() unless defined $v_unicode_version;
359 if ($v_unicode_version ge v2.0.0 && $char =~ /\p{Block=Hangul_Syllables}/) {
05dbc6f8
KW
360 # The code points of the decomposition are output in standard Unicode
361 # hex format, separated by blanks.
362 $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)}
94c91ffc 363 unpack "U*", NFD($char);
a6fa416b 364 }
05dbc6f8 365 else {
35a865d4 366 @DECOMPOSITIONS = _read_table("Decomposition.pl")
05dbc6f8
KW
367 unless @DECOMPOSITIONS;
368 $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS,
369 $code) // "";
561c79ed 370 }
05dbc6f8
KW
371
372 # Can use num() to get the numeric values, if any.
373 if (! defined (my $value = num($char))) {
374 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = "";
375 }
376 else {
377 if ($char =~ /\d/) {
378 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value;
379 }
380 else {
381
382 # For non-decimal-digits, we have to read in the Numeric type
383 # to distinguish them. It is not just a matter of integer vs.
384 # rational, as some whole number values are not considered digits,
385 # e.g., TAMIL NUMBER TEN.
386 $prop{'decimal'} = "";
387
35a865d4 388 @NUMERIC_TYPES =_read_table("To/Nt.pl") unless @NUMERIC_TYPES;
05dbc6f8
KW
389 if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "")
390 eq 'Digit')
391 {
392 $prop{'digit'} = $prop{'numeric'} = $value;
393 }
394 else {
395 $prop{'digit'} = "";
396 $prop{'numeric'} = $real_to_rational{$value} // $value;
397 }
398 }
399 }
400
401 $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N';
402
35a865d4 403 %UNICODE_1_NAMES =_read_table("To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES;
5c3b35c9 404 $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // "";
05dbc6f8 405
72fcb9f0
KW
406 UnicodeVersion() unless defined $v_unicode_version;
407 if ($v_unicode_version ge v6.0.0) {
408 $prop{'comment'} = "";
409 }
410 else {
411 %ISO_COMMENT = _read_table("To/Isc.pl", "use_hash") unless %ISO_COMMENT;
412 $prop{'comment'} = (defined $ISO_COMMENT{$code})
413 ? $ISO_COMMENT{$code}
414 : "";
415 }
05dbc6f8 416
35a865d4 417 %SIMPLE_UPPER = _read_table("To/Uc.pl", "use_hash") unless %SIMPLE_UPPER;
bf7fe2df 418 $prop{'upper'} = (defined $SIMPLE_UPPER{$code})
d11155ec 419 ? sprintf("%04X", $SIMPLE_UPPER{$code})
bf7fe2df 420 : "";
75e7c50b 421
35a865d4 422 %SIMPLE_LOWER = _read_table("To/Lc.pl", "use_hash") unless %SIMPLE_LOWER;
bf7fe2df 423 $prop{'lower'} = (defined $SIMPLE_LOWER{$code})
d11155ec 424 ? sprintf("%04X", $SIMPLE_LOWER{$code})
bf7fe2df 425 : "";
75e7c50b 426
35a865d4 427 %SIMPLE_TITLE = _read_table("To/Tc.pl", "use_hash") unless %SIMPLE_TITLE;
bf7fe2df 428 $prop{'title'} = (defined $SIMPLE_TITLE{$code})
d11155ec 429 ? sprintf("%04X", $SIMPLE_TITLE{$code})
bf7fe2df 430 : "";
05dbc6f8
KW
431
432 $prop{block} = charblock($code);
433 $prop{script} = charscript($code);
434 return \%prop;
561c79ed
JH
435}
436
e882dd67
JH
437sub _search { # Binary search in a [[lo,hi,prop],[...],...] table.
438 my ($table, $lo, $hi, $code) = @_;
439
440 return if $lo > $hi;
441
442 my $mid = int(($lo+$hi) / 2);
443
444 if ($table->[$mid]->[0] < $code) {
10a6ecd2 445 if ($table->[$mid]->[1] >= $code) {
e882dd67
JH
446 return $table->[$mid]->[2];
447 } else {
448 _search($table, $mid + 1, $hi, $code);
449 }
450 } elsif ($table->[$mid]->[0] > $code) {
451 _search($table, $lo, $mid - 1, $code);
452 } else {
453 return $table->[$mid]->[2];
454 }
455}
456
cb366075 457sub _read_table ($;$) {
3a12600d
KW
458
459 # Returns the contents of the mktables generated table file located at $1
cb366075
KW
460 # in the form of either an array of arrays or a hash, depending on if the
461 # optional second parameter is true (for hash return) or not. In the case
462 # of a hash return, each key is a code point, and its corresponding value
463 # is what the table gives as the code point's corresponding value. In the
464 # case of an array return, each outer array denotes a range with [0] the
465 # start point of that range; [1] the end point; and [2] the value that
466 # every code point in the range has. The hash return is useful for fast
467 # lookup when the table contains only single code point ranges. The array
468 # return takes much less memory when there are large ranges.
3a12600d 469 #
cb366075 470 # This function has the side effect of setting
3a12600d
KW
471 # $utf8::SwashInfo{$property}{'format'} to be the mktables format of the
472 # table; and
473 # $utf8::SwashInfo{$property}{'missing'} to be the value for all entries
474 # not listed in the table.
475 # where $property is the Unicode property name, preceded by 'To' for map
476 # properties., e.g., 'ToSc'.
477 #
478 # Table entries look like one of:
479 # 0000 0040 Common # [65]
480 # 00AA Latin
481
482 my $table = shift;
cb366075
KW
483 my $return_hash = shift;
484 $return_hash = 0 unless defined $return_hash;
3a12600d 485 my @return;
cb366075 486 my %return;
3a12600d 487 local $_;
d11155ec 488 my $list = do "unicore/$table";
3a12600d 489
d11155ec
KW
490 # Look up if this property requires adjustments, which we do below if it
491 # does.
492 require "unicore/Heavy.pl";
493 my $property = $table =~ s/\.pl//r;
494 $property = $utf8::file_to_swash_name{$property};
495 my $to_adjust = defined $property
496 && $utf8::SwashInfo{$property}{'format'} eq 'a';
497
498 for (split /^/m, $list) {
3a12600d
KW
499 my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?)
500 \s* ( \# .* )? # Optional comment
501 $ /x;
83fd1222
KW
502 my $decimal_start = hex $start;
503 my $decimal_end = ($end eq "") ? $decimal_start : hex $end;
cb366075 504 if ($return_hash) {
83fd1222 505 foreach my $i ($decimal_start .. $decimal_end) {
d11155ec
KW
506 $return{$i} = ($to_adjust)
507 ? $value + $i - $decimal_start
508 : $value;
cb366075
KW
509 }
510 }
d11155ec
KW
511 elsif (! $to_adjust
512 && @return
513 && $return[-1][1] == $decimal_start - 1
9a96c106
KW
514 && $return[-1][2] eq $value)
515 {
516 # If this is merely extending the previous range, do just that.
517 $return[-1]->[1] = $decimal_end;
518 }
cb366075 519 else {
83fd1222 520 push @return, [ $decimal_start, $decimal_end, $value ];
cb366075 521 }
3a12600d 522 }
cb366075 523 return ($return_hash) ? %return : @return;
3a12600d
KW
524}
525
10a6ecd2
JH
526sub charinrange {
527 my ($range, $arg) = @_;
528 my $code = _getcode($arg);
529 croak __PACKAGE__, "::charinrange: unknown code '$arg'"
530 unless defined $code;
531 _search($range, 0, $#$range, $code);
532}
533
a452d459 534=head2 B<charblock()>
561c79ed 535
55d7b906 536 use Unicode::UCD 'charblock';
561c79ed
JH
537
538 my $charblock = charblock(0x41);
10a6ecd2 539 my $charblock = charblock(1234);
a452d459 540 my $charblock = charblock(0x263a);
10a6ecd2
JH
541 my $charblock = charblock("U+263a");
542
78bf21c2 543 my $range = charblock('Armenian');
10a6ecd2 544
a452d459 545With a L</code point argument> charblock() returns the I<block> the code point
430fe03d
KW
546belongs to, e.g. C<Basic Latin>. The old-style block name is returned (see
547L</Old-style versus new-style block names>).
a452d459 548If the code point is unassigned, this returns the block it would belong to if
fe252ba7
KW
549it were assigned. (If the Unicode version being used is so early as to not
550have blocks, all code points are considered to be in C<No_Block>.)
10a6ecd2 551
78bf21c2
JH
552See also L</Blocks versus Scripts>.
553
18972f4b 554If supplied with an argument that can't be a code point, charblock() tries to
430fe03d
KW
555do the opposite and interpret the argument as an old-style block name. The
556return value
a18e976f
KW
557is a I<range set> with one range: an anonymous list with a single element that
558consists of another anonymous list whose first element is the first code point
559in the block, and whose second (and final) element is the final code point in
560the block. (The extra list consisting of just one element is so that the same
561program logic can be used to handle both this return, and the return from
562L</charscript()> which can have multiple ranges.) You can test whether a code
563point is in a range using the L</charinrange()> function. If the argument is
564not a known block, C<undef> is returned.
561c79ed 565
561c79ed
JH
566=cut
567
568my @BLOCKS;
10a6ecd2 569my %BLOCKS;
561c79ed 570
10a6ecd2 571sub _charblocks {
06bba7d5
KW
572
573 # Can't read from the mktables table because it loses the hyphens in the
574 # original.
561c79ed 575 unless (@BLOCKS) {
fe252ba7
KW
576 UnicodeVersion() unless defined $v_unicode_version;
577 if ($v_unicode_version lt v2.0.0) {
578 my $subrange = [ 0, 0x10FFFF, 'No_Block' ];
579 push @BLOCKS, $subrange;
580 push @{$BLOCKS{$3}}, $subrange;
581 }
582 elsif (openunicode(\$BLOCKSFH, "Blocks.txt")) {
6c8d78fb 583 local $_;
ce066323 584 local $/ = "\n";
10a6ecd2 585 while (<$BLOCKSFH>) {
2796c109 586 if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) {
10a6ecd2
JH
587 my ($lo, $hi) = (hex($1), hex($2));
588 my $subrange = [ $lo, $hi, $3 ];
589 push @BLOCKS, $subrange;
590 push @{$BLOCKS{$3}}, $subrange;
561c79ed
JH
591 }
592 }
10a6ecd2 593 close($BLOCKSFH);
561c79ed
JH
594 }
595 }
10a6ecd2
JH
596}
597
598sub charblock {
599 my $arg = shift;
600
601 _charblocks() unless @BLOCKS;
602
603 my $code = _getcode($arg);
561c79ed 604
10a6ecd2 605 if (defined $code) {
c707cf8e
KW
606 my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code);
607 return $result if defined $result;
608 return 'No_Block';
609 }
610 elsif (exists $BLOCKS{$arg}) {
611 return dclone $BLOCKS{$arg};
10a6ecd2 612 }
e882dd67
JH
613}
614
a452d459 615=head2 B<charscript()>
e882dd67 616
55d7b906 617 use Unicode::UCD 'charscript';
e882dd67
JH
618
619 my $charscript = charscript(0x41);
10a6ecd2
JH
620 my $charscript = charscript(1234);
621 my $charscript = charscript("U+263a");
e882dd67 622
78bf21c2 623 my $range = charscript('Thai');
10a6ecd2 624
a452d459
KW
625With a L</code point argument> charscript() returns the I<script> the
626code point belongs to, e.g. C<Latin>, C<Greek>, C<Han>.
49ea58c8
KW
627If the code point is unassigned or the Unicode version being used is so early
628that it doesn't have scripts, this function returns C<"Unknown">.
78bf21c2 629
eb0cc9e3 630If supplied with an argument that can't be a code point, charscript() tries
a18e976f
KW
631to do the opposite and interpret the argument as a script name. The
632return value is a I<range set>: an anonymous list of lists that contain
eb0cc9e3 633I<start-of-range>, I<end-of-range> code point pairs. You can test whether a
a18e976f
KW
634code point is in a range set using the L</charinrange()> function. If the
635argument is not a known script, C<undef> is returned.
a452d459
KW
636
637See also L</Blocks versus Scripts>.
e882dd67 638
e882dd67
JH
639=cut
640
641my @SCRIPTS;
10a6ecd2 642my %SCRIPTS;
e882dd67 643
10a6ecd2 644sub _charscripts {
49ea58c8
KW
645 unless (@SCRIPTS) {
646 UnicodeVersion() unless defined $v_unicode_version;
647 if ($v_unicode_version lt v3.1.0) {
648 push @SCRIPTS, [ 0, 0x10FFFF, 'Unknown' ];
649 }
650 else {
651 @SCRIPTS =_read_table("To/Sc.pl");
652 }
653 }
7bccef0b 654 foreach my $entry (@SCRIPTS) {
f3d50ac9 655 $entry->[2] =~ s/(_\w)/\L$1/g; # Preserve old-style casing
7bccef0b 656 push @{$SCRIPTS{$entry->[2]}}, $entry;
e882dd67 657 }
10a6ecd2
JH
658}
659
660sub charscript {
661 my $arg = shift;
662
663 _charscripts() unless @SCRIPTS;
e882dd67 664
10a6ecd2
JH
665 my $code = _getcode($arg);
666
667 if (defined $code) {
7bccef0b
KW
668 my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code);
669 return $result if defined $result;
8079ad82 670 return $utf8::SwashInfo{'ToSc'}{'missing'};
7bccef0b
KW
671 } elsif (exists $SCRIPTS{$arg}) {
672 return dclone $SCRIPTS{$arg};
10a6ecd2 673 }
7bccef0b
KW
674
675 return;
10a6ecd2
JH
676}
677
a452d459 678=head2 B<charblocks()>
10a6ecd2 679
55d7b906 680 use Unicode::UCD 'charblocks';
10a6ecd2 681
b08cd201 682 my $charblocks = charblocks();
10a6ecd2 683
b08cd201 684charblocks() returns a reference to a hash with the known block names
a452d459 685as the keys, and the code point ranges (see L</charblock()>) as the values.
10a6ecd2 686
430fe03d
KW
687The names are in the old-style (see L</Old-style versus new-style block
688names>).
689
62b3b855
KW
690L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a
691different type of data structure.
692
78bf21c2
JH
693See also L</Blocks versus Scripts>.
694
10a6ecd2
JH
695=cut
696
697sub charblocks {
b08cd201 698 _charblocks() unless %BLOCKS;
741297c1 699 return dclone \%BLOCKS;
10a6ecd2
JH
700}
701
a452d459 702=head2 B<charscripts()>
10a6ecd2 703
55d7b906 704 use Unicode::UCD 'charscripts';
10a6ecd2 705
ea508aee 706 my $charscripts = charscripts();
10a6ecd2 707
ea508aee 708charscripts() returns a reference to a hash with the known script
a452d459 709names as the keys, and the code point ranges (see L</charscript()>) as
ea508aee 710the values.
10a6ecd2 711
62b3b855
KW
712L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a
713different type of data structure.
714
78bf21c2
JH
715See also L</Blocks versus Scripts>.
716
10a6ecd2
JH
717=cut
718
719sub charscripts {
b08cd201 720 _charscripts() unless %SCRIPTS;
741297c1 721 return dclone \%SCRIPTS;
561c79ed
JH
722}
723
a452d459 724=head2 B<charinrange()>
10a6ecd2 725
f200dd12 726In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you
10a6ecd2 727can also test whether a code point is in the I<range> as returned by
a452d459
KW
728L</charblock()> and L</charscript()> or as the values of the hash returned
729by L</charblocks()> and L</charscripts()> by using charinrange():
10a6ecd2 730
55d7b906 731 use Unicode::UCD qw(charscript charinrange);
10a6ecd2
JH
732
733 $range = charscript('Hiragana');
e145285f 734 print "looks like hiragana\n" if charinrange($range, $codepoint);
10a6ecd2
JH
735
736=cut
737
ea508aee
JH
738my %GENERAL_CATEGORIES =
739 (
740 'L' => 'Letter',
741 'LC' => 'CasedLetter',
742 'Lu' => 'UppercaseLetter',
743 'Ll' => 'LowercaseLetter',
744 'Lt' => 'TitlecaseLetter',
745 'Lm' => 'ModifierLetter',
746 'Lo' => 'OtherLetter',
747 'M' => 'Mark',
748 'Mn' => 'NonspacingMark',
749 'Mc' => 'SpacingMark',
750 'Me' => 'EnclosingMark',
751 'N' => 'Number',
752 'Nd' => 'DecimalNumber',
753 'Nl' => 'LetterNumber',
754 'No' => 'OtherNumber',
755 'P' => 'Punctuation',
756 'Pc' => 'ConnectorPunctuation',
757 'Pd' => 'DashPunctuation',
758 'Ps' => 'OpenPunctuation',
759 'Pe' => 'ClosePunctuation',
760 'Pi' => 'InitialPunctuation',
761 'Pf' => 'FinalPunctuation',
762 'Po' => 'OtherPunctuation',
763 'S' => 'Symbol',
764 'Sm' => 'MathSymbol',
765 'Sc' => 'CurrencySymbol',
766 'Sk' => 'ModifierSymbol',
767 'So' => 'OtherSymbol',
768 'Z' => 'Separator',
769 'Zs' => 'SpaceSeparator',
770 'Zl' => 'LineSeparator',
771 'Zp' => 'ParagraphSeparator',
772 'C' => 'Other',
773 'Cc' => 'Control',
774 'Cf' => 'Format',
775 'Cs' => 'Surrogate',
776 'Co' => 'PrivateUse',
777 'Cn' => 'Unassigned',
778 );
779
780sub general_categories {
781 return dclone \%GENERAL_CATEGORIES;
782}
783
a452d459 784=head2 B<general_categories()>
ea508aee
JH
785
786 use Unicode::UCD 'general_categories';
787
788 my $categories = general_categories();
789
a452d459 790This returns a reference to a hash which has short
ea508aee
JH
791general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long
792names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>,
793C<Symbol>) as values. The hash is reversible in case you need to go
794from the long names to the short names. The general category is the
a452d459
KW
795one returned from
796L</charinfo()> under the C<category> key.
ea508aee 797
7ef25837
KW
798The L</prop_value_aliases()> function can be used to get all the synonyms of
799the category name.
800
ea508aee
JH
801=cut
802
803my %BIDI_TYPES =
804 (
805 'L' => 'Left-to-Right',
806 'LRE' => 'Left-to-Right Embedding',
807 'LRO' => 'Left-to-Right Override',
808 'R' => 'Right-to-Left',
809 'AL' => 'Right-to-Left Arabic',
810 'RLE' => 'Right-to-Left Embedding',
811 'RLO' => 'Right-to-Left Override',
812 'PDF' => 'Pop Directional Format',
813 'EN' => 'European Number',
814 'ES' => 'European Number Separator',
815 'ET' => 'European Number Terminator',
816 'AN' => 'Arabic Number',
817 'CS' => 'Common Number Separator',
818 'NSM' => 'Non-Spacing Mark',
819 'BN' => 'Boundary Neutral',
820 'B' => 'Paragraph Separator',
821 'S' => 'Segment Separator',
822 'WS' => 'Whitespace',
823 'ON' => 'Other Neutrals',
824 );
825
a452d459 826=head2 B<bidi_types()>
ea508aee
JH
827
828 use Unicode::UCD 'bidi_types';
829
830 my $categories = bidi_types();
831
a452d459 832This returns a reference to a hash which has the short
ea508aee
JH
833bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long
834names (such as C<Left-to-Right>, C<Right-to-Left>) as values. The
835hash is reversible in case you need to go from the long names to the
a452d459
KW
836short names. The bidi type is the one returned from
837L</charinfo()>
ea508aee
JH
838under the C<bidi> key. For the exact meaning of the various bidi classes
839the Unicode TR9 is recommended reading:
a452d459 840L<http://www.unicode.org/reports/tr9/>
ea508aee
JH
841(as of Unicode 5.0.0)
842
7ef25837
KW
843The L</prop_value_aliases()> function can be used to get all the synonyms of
844the bidi type name.
845
ea508aee
JH
846=cut
847
a452d459
KW
848sub bidi_types {
849 return dclone \%BIDI_TYPES;
850}
851
852=head2 B<compexcl()>
b08cd201 853
55d7b906 854 use Unicode::UCD 'compexcl';
b08cd201 855
a452d459 856 my $compexcl = compexcl(0x09dc);
b08cd201 857
2afba6a4
KW
858This routine returns C<undef> if the Unicode version being used is so early
859that it doesn't have this property. It is included for backwards
860compatibility, but as of Perl 5.12 and more modern Unicode versions, for
71a442a8
KW
861most purposes it is probably more convenient to use one of the following
862instead:
863
864 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
865 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};
866
867or even
868
869 my $compexcl = chr(0x09dc) =~ /\p{CE};
870 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};
871
872The first two forms return B<true> if the L</code point argument> should not
76b05678
KW
873be produced by composition normalization. For the final two forms to return
874B<true>, it is additionally required that this fact not otherwise be
875determinable from the Unicode data base.
71a442a8
KW
876
877This routine behaves identically to the final two forms. That is,
878it does not return B<true> if the code point has a decomposition
a452d459
KW
879consisting of another single code point, nor if its decomposition starts
880with a code point whose combining class is non-zero. Code points that meet
881either of these conditions should also not be produced by composition
71a442a8
KW
882normalization, which is probably why you should use the
883C<Full_Composition_Exclusion> property instead, as shown above.
b08cd201 884
71a442a8 885The routine returns B<false> otherwise.
b08cd201
JH
886
887=cut
888
b08cd201
JH
889sub compexcl {
890 my $arg = shift;
891 my $code = _getcode($arg);
74f8133e
JH
892 croak __PACKAGE__, "::compexcl: unknown code '$arg'"
893 unless defined $code;
b08cd201 894
2afba6a4
KW
895 UnicodeVersion() unless defined $v_unicode_version;
896 return if $v_unicode_version lt v3.0.0;
897
36c2430c 898 no warnings "non_unicode"; # So works on non-Unicode code points
71a442a8 899 return chr($code) =~ /\p{Composition_Exclusion}/;
b08cd201
JH
900}
901
a452d459 902=head2 B<casefold()>
b08cd201 903
55d7b906 904 use Unicode::UCD 'casefold';
b08cd201 905
a452d459
KW
906 my $casefold = casefold(0xDF);
907 if (defined $casefold) {
908 my @full_fold_hex = split / /, $casefold->{'full'};
909 my $full_fold_string =
910 join "", map {chr(hex($_))} @full_fold_hex;
911 my @turkic_fold_hex =
912 split / /, ($casefold->{'turkic'} ne "")
913 ? $casefold->{'turkic'}
914 : $casefold->{'full'};
915 my $turkic_fold_string =
916 join "", map {chr(hex($_))} @turkic_fold_hex;
917 }
918 if (defined $casefold && $casefold->{'simple'} ne "") {
919 my $simple_fold_hex = $casefold->{'simple'};
920 my $simple_fold_string = chr(hex($simple_fold_hex));
921 }
b08cd201 922
a452d459 923This returns the (almost) locale-independent case folding of the
6329003c
KW
924character specified by the L</code point argument>. (Starting in Perl v5.16,
925the core function C<fc()> returns the C<full> mapping (described below)
926faster than this does, and for entire strings.)
b08cd201 927
6329003c 928If there is no case folding for the input code point, C<undef> is returned.
a452d459
KW
929
930If there is a case folding for that code point, a reference to a hash
b08cd201
JH
931with the following fields is returned:
932
a452d459
KW
933=over
934
935=item B<code>
936
937the input L</code point argument> expressed in hexadecimal, with leading zeros
938added if necessary to make it contain at least four hexdigits
939
940=item B<full>
941
a18e976f 942one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
943code points for the case folding for I<code>.
944Each has at least four hexdigits.
945
946=item B<simple>
947
948is empty, or is exactly one code with at least four hexdigits which can be used
949as an alternative case folding when the calling program cannot cope with the
950fold being a sequence of multiple code points. If I<full> is just one code
951point, then I<simple> equals I<full>. If there is no single code point folding
952defined for I<code>, then I<simple> is the empty string. Otherwise, it is an
953inferior, but still better-than-nothing alternative folding to I<full>.
954
955=item B<mapping>
956
957is the same as I<simple> if I<simple> is not empty, and it is the same as I<full>
958otherwise. It can be considered to be the simplest possible folding for
959I<code>. It is defined primarily for backwards compatibility.
960
961=item B<status>
b08cd201 962
a452d459
KW
963is C<C> (for C<common>) if the best possible fold is a single code point
964(I<simple> equals I<full> equals I<mapping>). It is C<S> if there are distinct
965folds, I<simple> and I<full> (I<mapping> equals I<simple>). And it is C<F> if
a18e976f
KW
966there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty).
967Note that this
a452d459
KW
968describes the contents of I<mapping>. It is defined primarily for backwards
969compatibility.
b08cd201 970
6329003c 971For Unicode versions between 3.1 and 3.1.1 inclusive, I<status> can also be
a452d459
KW
972C<I> which is the same as C<C> but is a special case for dotted uppercase I and
973dotless lowercase i:
b08cd201 974
a452d459 975=over
b08cd201 976
a18e976f 977=item B<*> If you use this C<I> mapping
a452d459 978
a18e976f 979the result is case-insensitive,
a452d459
KW
980but dotless and dotted I's are not distinguished
981
a18e976f 982=item B<*> If you exclude this C<I> mapping
a452d459 983
a18e976f 984the result is not fully case-insensitive, but
a452d459
KW
985dotless and dotted I's are distinguished
986
987=back
988
989=item B<turkic>
990
991contains any special folding for Turkic languages. For versions of Unicode
992starting with 3.2, this field is empty unless I<code> has a different folding
993in Turkic languages, in which case it is one or more codes (separated by
a18e976f 994spaces) that, taken in order, give the code points for the case folding for
a452d459
KW
995I<code> in those languages.
996Each code has at least four hexdigits.
997Note that this folding does not maintain canonical equivalence without
998additional processing.
999
6329003c
KW
1000For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless
1001there is a
a452d459
KW
1002special folding for Turkic languages, in which case I<status> is C<I>, and
1003I<mapping>, I<full>, I<simple>, and I<turkic> are all equal.
1004
1005=back
1006
1007Programs that want complete generality and the best folding results should use
1008the folding contained in the I<full> field. But note that the fold for some
1009code points will be a sequence of multiple code points.
1010
1011Programs that can't cope with the fold mapping being multiple code points can
1012use the folding contained in the I<simple> field, with the loss of some
1013generality. In Unicode 5.1, about 7% of the defined foldings have no single
1014code point folding.
1015
1016The I<mapping> and I<status> fields are provided for backwards compatibility for
1017existing programs. They contain the same values as in previous versions of
1018this function.
1019
1020Locale is not completely independent. The I<turkic> field contains results to
1021use when the locale is a Turkic language.
b08cd201
JH
1022
1023For more information about case mappings see
a452d459 1024L<http://www.unicode.org/unicode/reports/tr21>
b08cd201
JH
1025
1026=cut
1027
1028my %CASEFOLD;
1029
1030sub _casefold {
1031 unless (%CASEFOLD) {
551b6b6f 1032 if (openunicode(\$CASEFOLDFH, "CaseFolding.txt")) {
6c8d78fb 1033 local $_;
ce066323 1034 local $/ = "\n";
b08cd201 1035 while (<$CASEFOLDFH>) {
a452d459 1036 if (/^([0-9A-F]+); ([CFIST]); ([0-9A-F]+(?: [0-9A-F]+)*);/) {
b08cd201 1037 my $code = hex($1);
a452d459
KW
1038 $CASEFOLD{$code}{'code'} = $1;
1039 $CASEFOLD{$code}{'turkic'} = "" unless
1040 defined $CASEFOLD{$code}{'turkic'};
1041 if ($2 eq 'C' || $2 eq 'I') { # 'I' is only on 3.1 and
1042 # earlier Unicodes
1043 # Both entries there (I
1044 # only checked 3.1) are
1045 # the same as C, and
1046 # there are no other
1047 # entries for those
1048 # codepoints, so treat
1049 # as if C, but override
1050 # the turkic one for
1051 # 'I'.
1052 $CASEFOLD{$code}{'status'} = $2;
1053 $CASEFOLD{$code}{'full'} = $CASEFOLD{$code}{'simple'} =
1054 $CASEFOLD{$code}{'mapping'} = $3;
1055 $CASEFOLD{$code}{'turkic'} = $3 if $2 eq 'I';
1056 } elsif ($2 eq 'F') {
1057 $CASEFOLD{$code}{'full'} = $3;
1058 unless (defined $CASEFOLD{$code}{'simple'}) {
1059 $CASEFOLD{$code}{'simple'} = "";
1060 $CASEFOLD{$code}{'mapping'} = $3;
1061 $CASEFOLD{$code}{'status'} = $2;
1062 }
1063 } elsif ($2 eq 'S') {
1064
1065
1066 # There can't be a simple without a full, and simple
1067 # overrides all but full
1068
1069 $CASEFOLD{$code}{'simple'} = $3;
1070 $CASEFOLD{$code}{'mapping'} = $3;
1071 $CASEFOLD{$code}{'status'} = $2;
1072 } elsif ($2 eq 'T') {
1073 $CASEFOLD{$code}{'turkic'} = $3;
1074 } # else can't happen because only [CIFST] are possible
b08cd201
JH
1075 }
1076 }
1077 close($CASEFOLDFH);
1078 }
1079 }
1080}
1081
1082sub casefold {
1083 my $arg = shift;
1084 my $code = _getcode($arg);
74f8133e
JH
1085 croak __PACKAGE__, "::casefold: unknown code '$arg'"
1086 unless defined $code;
b08cd201
JH
1087
1088 _casefold() unless %CASEFOLD;
1089
1090 return $CASEFOLD{$code};
1091}
1092
a452d459 1093=head2 B<casespec()>
b08cd201 1094
55d7b906 1095 use Unicode::UCD 'casespec';
b08cd201 1096
a452d459 1097 my $casespec = casespec(0xFB00);
b08cd201 1098
a452d459
KW
1099This returns the potentially locale-dependent case mappings of the L</code point
1100argument>. The mappings may be longer than a single code point (which the basic
1101Unicode case mappings as returned by L</charinfo()> never are).
b08cd201 1102
a452d459
KW
1103If there are no case mappings for the L</code point argument>, or if all three
1104possible mappings (I<lower>, I<title> and I<upper>) result in single code
a18e976f 1105points and are locale independent and unconditional, C<undef> is returned
5d8e6e41
KW
1106(which means that the case mappings, if any, for the code point are those
1107returned by L</charinfo()>).
a452d459
KW
1108
1109Otherwise, a reference to a hash giving the mappings (or a reference to a hash
5d8e6e41
KW
1110of such hashes, explained below) is returned with the following keys and their
1111meanings:
a452d459
KW
1112
1113The keys in the bottom layer hash with the meanings of their values are:
1114
1115=over
1116
1117=item B<code>
1118
1119the input L</code point argument> expressed in hexadecimal, with leading zeros
1120added if necessary to make it contain at least four hexdigits
1121
1122=item B<lower>
1123
a18e976f 1124one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1125code points for the lower case of I<code>.
1126Each has at least four hexdigits.
1127
1128=item B<title>
b08cd201 1129
a18e976f 1130one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1131code points for the title case of I<code>.
1132Each has at least four hexdigits.
b08cd201 1133
d2da20e3 1134=item B<upper>
b08cd201 1135
a18e976f 1136one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1137code points for the upper case of I<code>.
1138Each has at least four hexdigits.
1139
1140=item B<condition>
1141
1142the conditions for the mappings to be valid.
a18e976f 1143If C<undef>, the mappings are always valid.
a452d459
KW
1144When defined, this field is a list of conditions,
1145all of which must be true for the mappings to be valid.
1146The list consists of one or more
1147I<locales> (see below)
1148and/or I<contexts> (explained in the next paragraph),
1149separated by spaces.
1150(Other than as used to separate elements, spaces are to be ignored.)
1151Case distinctions in the condition list are not significant.
82c0b05b 1152Conditions preceded by "NON_" represent the negation of the condition.
b08cd201 1153
a452d459
KW
1154A I<context> is one of those defined in the Unicode standard.
1155For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations>
1156available at
5d8e6e41
KW
1157L<http://www.unicode.org/versions/Unicode5.1.0/>.
1158These are for context-sensitive casing.
f499c386 1159
a452d459
KW
1160=back
1161
5d8e6e41 1162The hash described above is returned for locale-independent casing, where
a18e976f 1163at least one of the mappings has length longer than one. If C<undef> is
5d8e6e41
KW
1164returned, the code point may have mappings, but if so, all are length one,
1165and are returned by L</charinfo()>.
1166Note that when this function does return a value, it will be for the complete
1167set of mappings for a code point, even those whose length is one.
1168
1169If there are additional casing rules that apply only in certain locales,
1170an additional key for each will be defined in the returned hash. Each such key
1171will be its locale name, defined as a 2-letter ISO 3166 country code, possibly
1172followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"
1173and a variant code). You can find the lists of all possible locales, see
1174L<Locale::Country> and L<Locale::Language>.
89e4a205 1175(In Unicode 6.0, the only locales returned by this function
a452d459 1176are C<lt>, C<tr>, and C<az>.)
b08cd201 1177
5d8e6e41
KW
1178Each locale key is a reference to a hash that has the form above, and gives
1179the casing rules for that particular locale, which take precedence over the
1180locale-independent ones when in that locale.
1181
1182If the only casing for a code point is locale-dependent, then the returned
1183hash will not have any of the base keys, like C<code>, C<upper>, etc., but
1184will contain only locale keys.
1185
b08cd201 1186For more information about case mappings see
a452d459 1187L<http://www.unicode.org/unicode/reports/tr21/>
b08cd201
JH
1188
1189=cut
1190
1191my %CASESPEC;
1192
1193sub _casespec {
1194 unless (%CASESPEC) {
551b6b6f 1195 if (openunicode(\$CASESPECFH, "SpecialCasing.txt")) {
6c8d78fb 1196 local $_;
ce066323 1197 local $/ = "\n";
b08cd201
JH
1198 while (<$CASESPECFH>) {
1199 if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) {
f499c386
JH
1200 my ($hexcode, $lower, $title, $upper, $condition) =
1201 ($1, $2, $3, $4, $5);
1202 my $code = hex($hexcode);
1203 if (exists $CASESPEC{$code}) {
1204 if (exists $CASESPEC{$code}->{code}) {
1205 my ($oldlower,
1206 $oldtitle,
1207 $oldupper,
1208 $oldcondition) =
1209 @{$CASESPEC{$code}}{qw(lower
1210 title
1211 upper
1212 condition)};
822ebcc8
JH
1213 if (defined $oldcondition) {
1214 my ($oldlocale) =
f499c386 1215 ($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/);
f499c386
JH
1216 delete $CASESPEC{$code};
1217 $CASESPEC{$code}->{$oldlocale} =
1218 { code => $hexcode,
1219 lower => $oldlower,
1220 title => $oldtitle,
1221 upper => $oldupper,
1222 condition => $oldcondition };
f499c386
JH
1223 }
1224 }
1225 my ($locale) =
1226 ($condition =~ /^([a-z][a-z](?:_\S+)?)/);
1227 $CASESPEC{$code}->{$locale} =
1228 { code => $hexcode,
1229 lower => $lower,
1230 title => $title,
1231 upper => $upper,
1232 condition => $condition };
1233 } else {
1234 $CASESPEC{$code} =
1235 { code => $hexcode,
1236 lower => $lower,
1237 title => $title,
1238 upper => $upper,
1239 condition => $condition };
1240 }
b08cd201
JH
1241 }
1242 }
1243 close($CASESPECFH);
1244 }
1245 }
1246}
1247
1248sub casespec {
1249 my $arg = shift;
1250 my $code = _getcode($arg);
74f8133e
JH
1251 croak __PACKAGE__, "::casespec: unknown code '$arg'"
1252 unless defined $code;
b08cd201
JH
1253
1254 _casespec() unless %CASESPEC;
1255
741297c1 1256 return ref $CASESPEC{$code} ? dclone $CASESPEC{$code} : $CASESPEC{$code};
b08cd201
JH
1257}
1258
a452d459 1259=head2 B<namedseq()>
a2bd7410
JH
1260
1261 use Unicode::UCD 'namedseq';
1262
1263 my $namedseq = namedseq("KATAKANA LETTER AINU P");
1264 my @namedseq = namedseq("KATAKANA LETTER AINU P");
1265 my %namedseq = namedseq();
1266
1267If used with a single argument in a scalar context, returns the string
a18e976f 1268consisting of the code points of the named sequence, or C<undef> if no
a2bd7410 1269named sequence by that name exists. If used with a single argument in
956cae9a
KW
1270a list context, it returns the list of the ordinals of the code points. If used
1271with no
a2bd7410
JH
1272arguments in a list context, returns a hash with the names of the
1273named sequences as the keys and the named sequences as strings as
a18e976f 1274the values. Otherwise, it returns C<undef> or an empty list depending
a2bd7410
JH
1275on the context.
1276
a452d459
KW
1277This function only operates on officially approved (not provisional) named
1278sequences.
a2bd7410 1279
27f853a0
KW
1280Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named
1281sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA
1282LETTER AINU P")> will return the same string this function does, but will also
1283operate on character names that aren't named sequences, without you having to
1284know which are which. See L<charnames>.
1285
a2bd7410
JH
1286=cut
1287
1288my %NAMEDSEQ;
1289
1290sub _namedseq {
1291 unless (%NAMEDSEQ) {
98ef7649 1292 if (openunicode(\$NAMEDSEQFH, "Name.pl")) {
a2bd7410 1293 local $_;
ce066323 1294 local $/ = "\n";
a2bd7410 1295 while (<$NAMEDSEQFH>) {
98ef7649
KW
1296 if (/^ [0-9A-F]+ \ /x) {
1297 chomp;
1298 my ($sequence, $name) = split /\t/;
1299 my @s = map { chr(hex($_)) } split(' ', $sequence);
1300 $NAMEDSEQ{$name} = join("", @s);
a2bd7410
JH
1301 }
1302 }
1303 close($NAMEDSEQFH);
1304 }
1305 }
1306}
1307
1308sub namedseq {
98ef7649
KW
1309
1310 # Use charnames::string_vianame() which now returns this information,
1311 # unless the caller wants the hash returned, in which case we read it in,
1312 # and thereafter use it instead of calling charnames, as it is faster.
1313
a2bd7410
JH
1314 my $wantarray = wantarray();
1315 if (defined $wantarray) {
1316 if ($wantarray) {
1317 if (@_ == 0) {
98ef7649 1318 _namedseq() unless %NAMEDSEQ;
a2bd7410
JH
1319 return %NAMEDSEQ;
1320 } elsif (@_ == 1) {
98ef7649
KW
1321 my $s;
1322 if (%NAMEDSEQ) {
1323 $s = $NAMEDSEQ{ $_[0] };
1324 }
1325 else {
1326 $s = charnames::string_vianame($_[0]);
1327 }
a2bd7410
JH
1328 return defined $s ? map { ord($_) } split('', $s) : ();
1329 }
1330 } elsif (@_ == 1) {
98ef7649
KW
1331 return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ;
1332 return charnames::string_vianame($_[0]);
a2bd7410
JH
1333 }
1334 }
1335 return;
1336}
1337
7319f91d
KW
1338my %NUMERIC;
1339
1340sub _numeric {
35a865d4 1341 my @numbers = _read_table("To/Nv.pl");
98025745
KW
1342 foreach my $entry (@numbers) {
1343 my ($start, $end, $value) = @$entry;
1344
05dbc6f8
KW
1345 # If value contains a slash, convert to decimal, add a reverse hash
1346 # used by charinfo.
98025745
KW
1347 if ((my @rational = split /\//, $value) == 2) {
1348 my $real = $rational[0] / $rational[1];
05dbc6f8 1349 $real_to_rational{$real} = $value;
98025745 1350 $value = $real;
98025745 1351
4f143a72
KW
1352 # Should only be single element, but just in case...
1353 for my $i ($start .. $end) {
1354 $NUMERIC{$i} = $value;
1355 }
1356 }
1357 else {
1358 # The values require adjusting, as is in 'a' format
1359 for my $i ($start .. $end) {
1360 $NUMERIC{$i} = $value + $i - $start;
1361 }
7319f91d 1362 }
7319f91d 1363 }
2dc5eb26
KW
1364
1365 # Decided unsafe to use these that aren't officially part of the Unicode
1366 # standard.
1367 #use Math::Trig;
1368 #my $pi = acos(-1.0);
98025745 1369 #$NUMERIC{0x03C0} = $pi;
7319f91d
KW
1370
1371 # Euler's constant, not to be confused with Euler's number
98025745 1372 #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992;
7319f91d
KW
1373
1374 # Euler's number
98025745 1375 #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572;
2dc5eb26 1376
7319f91d
KW
1377 return;
1378}
1379
1380=pod
1381
67592e11 1382=head2 B<num()>
7319f91d 1383
eefd7bc2
KW
1384 use Unicode::UCD 'num';
1385
1386 my $val = num("123");
1387 my $one_quarter = num("\N{VULGAR FRACTION 1/4}");
1388
7319f91d
KW
1389C<num> returns the numeric value of the input Unicode string; or C<undef> if it
1390doesn't think the entire string has a completely valid, safe numeric value.
1391
1392If the string is just one character in length, the Unicode numeric value
1393is returned if it has one, or C<undef> otherwise. Note that this need
1394not be a whole number. C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for
2dc5eb26
KW
1395example returns -0.5.
1396
1397=cut
7319f91d 1398
2dc5eb26
KW
1399#A few characters to which Unicode doesn't officially
1400#assign a numeric value are considered numeric by C<num>.
1401#These are:
1402
1403# EULER CONSTANT 0.5772... (this is NOT Euler's number)
1404# SCRIPT SMALL E 2.71828... (this IS Euler's number)
1405# GREEK SMALL LETTER PI 3.14159...
1406
1407=pod
7319f91d
KW
1408
1409If the string is more than one character, C<undef> is returned unless
8bb4c8e2 1410all its characters are decimal digits (that is, they would match C<\d+>),
7319f91d
KW
1411from the same script. For example if you have an ASCII '0' and a Bengali
1412'3', mixed together, they aren't considered a valid number, and C<undef>
1413is returned. A further restriction is that the digits all have to be of
1414the same form. A half-width digit mixed with a full-width one will
1415return C<undef>. The Arabic script has two sets of digits; C<num> will
1416return C<undef> unless all the digits in the string come from the same
1417set.
1418
1419C<num> errs on the side of safety, and there may be valid strings of
1420decimal digits that it doesn't recognize. Note that Unicode defines
1421a number of "digit" characters that aren't "decimal digit" characters.
a278d14b 1422"Decimal digits" have the property that they have a positional value, i.e.,
7319f91d
KW
1423there is a units position, a 10's position, a 100's, etc, AND they are
1424arranged in Unicode in blocks of 10 contiguous code points. The Chinese
1425digits, for example, are not in such a contiguous block, and so Unicode
1426doesn't view them as decimal digits, but merely digits, and so C<\d> will not
1427match them. A single-character string containing one of these digits will
1428have its decimal value returned by C<num>, but any longer string containing
1429only these digits will return C<undef>.
1430
a278d14b
KW
1431Strings of multiple sub- and superscripts are not recognized as numbers. You
1432can use either of the compatibility decompositions in Unicode::Normalize to
7319f91d
KW
1433change these into digits, and then call C<num> on the result.
1434
1435=cut
1436
1437# To handle sub, superscripts, this could if called in list context,
1438# consider those, and return the <decomposition> type in the second
1439# array element.
1440
1441sub num {
1442 my $string = $_[0];
1443
1444 _numeric unless %NUMERIC;
1445
1446 my $length = length($string);
98025745 1447 return $NUMERIC{ord($string)} if $length == 1;
7319f91d
KW
1448 return if $string =~ /\D/;
1449 my $first_ord = ord(substr($string, 0, 1));
98025745 1450 my $value = $NUMERIC{$first_ord};
5522af1c
KW
1451
1452 # To be a valid decimal number, it should be in a block of 10 consecutive
1453 # characters, whose values are 0, 1, 2, ... 9. Therefore this digit's
1454 # value is its offset in that block from the character that means zero.
7319f91d
KW
1455 my $zero_ord = $first_ord - $value;
1456
5522af1c
KW
1457 # Unicode 6.0 instituted the rule that only digits in a consecutive
1458 # block of 10 would be considered decimal digits. If this is an earlier
1459 # release, we verify that this first character is a member of such a
1460 # block. That is, that the block of characters surrounding this one
1461 # consists of all \d characters whose numeric values are the expected
1462 # ones.
1463 UnicodeVersion() unless defined $v_unicode_version;
1464 if ($v_unicode_version lt v6.0.0) {
1465 for my $i (0 .. 9) {
1466 my $ord = $zero_ord + $i;
1467 return unless chr($ord) =~ /\d/;
1468 my $numeric = $NUMERIC{$ord};
1469 return unless defined $numeric;
1470 return unless $numeric == $i;
1471 }
1472 }
1473
7319f91d 1474 for my $i (1 .. $length -1) {
5522af1c
KW
1475
1476 # Here we know either by verifying, or by fact of the first character
1477 # being a \d in Unicode 6.0 or later, that any character between the
1478 # character that means 0, and 9 positions above it must be \d, and
1479 # must have its value correspond to its offset from the zero. Any
1480 # characters outside these 10 do not form a legal number for this
1481 # function.
7319f91d
KW
1482 my $ord = ord(substr($string, $i, 1));
1483 my $digit = $ord - $zero_ord;
1484 return unless $digit >= 0 && $digit <= 9;
1485 $value = $value * 10 + $digit;
1486 }
5522af1c 1487
7319f91d
KW
1488 return $value;
1489}
1490
7ef25837
KW
1491=pod
1492
1493=head2 B<prop_aliases()>
1494
1495 use Unicode::UCD 'prop_aliases';
1496
1497 my ($short_name, $full_name, @other_names) = prop_aliases("space");
1498 my $same_full_name = prop_aliases("Space"); # Scalar context
1499 my ($same_short_name) = prop_aliases("Space"); # gets 0th element
1500 print "The full name is $full_name\n";
1501 print "The short name is $short_name\n";
1502 print "The other aliases are: ", join(", ", @other_names), "\n";
1503
1504 prints:
1505 The full name is White_Space
1506 The short name is WSpace
1507 The other aliases are: Space
1508
1509Most Unicode properties have several synonymous names. Typically, there is at
1510least a short name, convenient to type, and a long name that more fully
1511describes the property, and hence is more easily understood.
1512
1513If you know one name for a Unicode property, you can use C<prop_aliases> to find
1514either the long name (when called in scalar context), or a list of all of the
1515names, somewhat ordered so that the short name is in the 0th element, the long
1516name in the next element, and any other synonyms are in the remaining
1517elements, in no particular order.
1518
1519The long name is returned in a form nicely capitalized, suitable for printing.
1520
1521The input parameter name is loosely matched, which means that white space,
1522hyphens, and underscores are ignored (except for the trailing underscore in
1523the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and
1524both of which mean C<General_Category=Cased Letter>).
1525
1526If the name is unknown, C<undef> is returned (or an empty list in list
1527context). Note that Perl typically recognizes property names in regular
1528expressions with an optional C<"Is_>" (with or without the underscore)
1529prefixed to them, such as C<\p{isgc=punct}>. This function does not recognize
1530those in the input, returning C<undef>. Nor are they included in the output
1531as possible synonyms.
1532
1533C<prop_aliases> does know about the Perl extensions to Unicode properties,
1534such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode
1535properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>. The
1536final example demonstrates that the C<"Is_"> prefix is recognized for these
1537extensions; it is needed to resolve ambiguities. For example,
1538C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but
1539C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>. This is
1540because C<islc> is a Perl extension which is short for
1541C<General_Category=Cased Letter>. The lists returned for the Perl extensions
1542will not include the C<"Is_"> prefix (whether or not the input had it) unless
1543needed to resolve ambiguities, as shown in the C<"islc"> example, where the
1544returned list had one element containing C<"Is_">, and the other without.
1545
1546It is also possible for the reverse to happen: C<prop_aliases('isc')> returns
1547the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns
1548C<(C, Other)> (the latter being a Perl extension meaning
ee94c7d1
KW
1549C<General_Category=Other>.
1550L<perluniprops/Properties accessible through Unicode::UCD> lists the available
1551forms, including which ones are discouraged from use.
7ef25837
KW
1552
1553Those discouraged forms are accepted as input to C<prop_aliases>, but are not
1554returned in the lists. C<prop_aliases('isL&')> and C<prop_aliases('isL_')>,
1555which are old synonyms for C<"Is_LC"> and should not be used in new code, are
1556examples of this. These both return C<(Is_LC, Cased_Letter)>. Thus this
1557function allows you to take a discourarged form, and find its acceptable
1558alternatives. The same goes with single-form Block property equivalences.
1559Only the forms that begin with C<"In_"> are not discouraged; if you pass
1560C<prop_aliases> a discouraged form, you will get back the equivalent ones that
1561begin with C<"In_">. It will otherwise look like a new-style block name (see.
1562L</Old-style versus new-style block names>).
1563
1564C<prop_aliases> does not know about any user-defined properties, and will
1565return C<undef> if called with one of those. Likewise for Perl internal
1566properties, with the exception of "Perl_Decimal_Digit" which it does know
1567about (and which is documented below in L</prop_invmap()>).
1568
1569=cut
1570
1571# It may be that there are use cases where the discouraged forms should be
1572# returned. If that comes up, an optional boolean second parameter to the
1573# function could be created, for example.
1574
1575# These are created by mktables for this routine and stored in unicore/UCD.pl
1576# where their structures are described.
1577our %string_property_loose_to_name;
1578our %ambiguous_names;
1579our %loose_perlprop_to_name;
1580our %prop_aliases;
1581
1582sub prop_aliases ($) {
1583 my $prop = $_[0];
1584 return unless defined $prop;
1585
1586 require "unicore/UCD.pl";
1587 require "unicore/Heavy.pl";
1588 require "utf8_heavy.pl";
1589
1590 # The property name may be loosely or strictly matched; we don't know yet.
1591 # But both types use lower-case.
1592 $prop = lc $prop;
1593
1594 # It is loosely matched if its lower case isn't known to be strict.
1595 my $list_ref;
1596 if (! exists $utf8::stricter_to_file_of{$prop}) {
1597 my $loose = utf8::_loose_name($prop);
1598
1599 # There is a hash that converts from any loose name to its standard
1600 # form, mapping all synonyms for a name to one name that can be used
1601 # as a key into another hash. The whole concept is for memory
1602 # savings, as the second hash doesn't have to have all the
1603 # combinations. Actually, there are two hashes that do the
1604 # converstion. One is used in utf8_heavy.pl (stored in Heavy.pl) for
1605 # looking up properties matchable in regexes. This function needs to
1606 # access string properties, which aren't available in regexes, so a
1607 # second conversion hash is made for them (stored in UCD.pl). Look in
1608 # the string one now, as the rest can have an optional 'is' prefix,
1609 # which these don't.
1610 if (exists $string_property_loose_to_name{$loose}) {
1611
1612 # Convert to its standard loose name.
1613 $prop = $string_property_loose_to_name{$loose};
1614 }
1615 else {
1616 my $retrying = 0; # bool. ? Has an initial 'is' been stripped
1617 RETRY:
1618 if (exists $utf8::loose_property_name_of{$loose}
1619 && (! $retrying
1620 || ! exists $ambiguous_names{$loose}))
1621 {
1622 # Found an entry giving the standard form. We don't get here
1623 # (in the test above) when we've stripped off an
1624 # 'is' and the result is an ambiguous name. That is because
1625 # these are official Unicode properties (though Perl can have
1626 # an optional 'is' prefix meaning the official property), and
1627 # all ambiguous cases involve a Perl single-form extension
1628 # for the gc, script, or block properties, and the stripped
1629 # 'is' means that they mean one of those, and not one of
1630 # these
1631 $prop = $utf8::loose_property_name_of{$loose};
1632 }
1633 elsif (exists $loose_perlprop_to_name{$loose}) {
1634
1635 # This hash is specifically for this function to list Perl
1636 # extensions that aren't in the earlier hashes. If there is
1637 # only one element, the short and long names are identical.
1638 # Otherwise the form is already in the same form as
1639 # %prop_aliases, which is handled at the end of the function.
1640 $list_ref = $loose_perlprop_to_name{$loose};
1641 if (@$list_ref == 1) {
1642 my @list = ($list_ref->[0], $list_ref->[0]);
1643 $list_ref = \@list;
1644 }
1645 }
1646 elsif (! exists $utf8::loose_to_file_of{$loose}) {
1647
1648 # loose_to_file_of is a complete list of loose names. If not
1649 # there, the input is unknown.
1650 return;
1651 }
1652 else {
1653
1654 # Here we found the name but not its aliases, so it has to
1655 # exist. This means it must be one of the Perl single-form
1656 # extensions. First see if it is for a property-value
1657 # combination in one of the following properties.
1658 my @list;
1659 foreach my $property ("gc", "script") {
1660 @list = prop_value_aliases($property, $loose);
1661 last if @list;
1662 }
1663 if (@list) {
1664
1665 # Here, it is one of those property-value combination
1666 # single-form synonyms. There are ambiguities with some
1667 # of these. Check against the list for these, and adjust
1668 # if necessary.
1669 for my $i (0 .. @list -1) {
1670 if (exists $ambiguous_names
1671 {utf8::_loose_name(lc $list[$i])})
1672 {
1673 # The ambiguity is resolved by toggling whether or
1674 # not it has an 'is' prefix
1675 $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/;
1676 }
1677 }
1678 return @list;
1679 }
1680
1681 # Here, it wasn't one of the gc or script single-form
1682 # extensions. It could be a block property single-form
1683 # extension. An 'in' prefix definitely means that, and should
2a4f2769
KW
1684 # be looked up without the prefix. However, starting in
1685 # Unicode 6.1, we have to special case 'indic...', as there
1686 # is a property that begins with that name. We shouldn't
1687 # strip the 'in' from that. I'm (khw) generalizing this to
1688 # 'indic' instead of the single property, because I suspect
1689 # that others of this class may come along in the future.
1690 # However, this could backfire and a block created whose name
1691 # begins with 'dic...', and we would want to strip the 'in'.
1692 # At which point this would have to be tweaked.
1693 my $began_with_in = $loose =~ s/^in(?!dic)//;
7ef25837
KW
1694 @list = prop_value_aliases("block", $loose);
1695 if (@list) {
1696 map { $_ =~ s/^/In_/ } @list;
1697 return @list;
1698 }
1699
1700 # Here still haven't found it. The last opportunity for it
1701 # being valid is only if it began with 'is'. We retry without
1702 # the 'is', setting a flag to that effect so that we don't
1703 # accept things that begin with 'isis...'
1704 if (! $retrying && ! $began_with_in && $loose =~ s/^is//) {
1705 $retrying = 1;
1706 goto RETRY;
1707 }
1708
1709 # Here, didn't find it. Since it was in %loose_to_file_of, we
1710 # should have been able to find it.
1711 carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'. Send bug report to perlbug\@perl.org";
1712 return;
1713 }
1714 }
1715 }
1716
1717 if (! $list_ref) {
1718 # Here, we have set $prop to a standard form name of the input. Look
1719 # it up in the structure created by mktables for this purpose, which
1720 # contains both strict and loosely matched properties. Avoid
1721 # autovivifying.
1722 $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop};
1723 return unless $list_ref;
1724 }
1725
1726 # The full name is in element 1.
1727 return $list_ref->[1] unless wantarray;
1728
1729 return @{dclone $list_ref};
1730}
1731
1732=pod
1733
1734=head2 B<prop_value_aliases()>
1735
1736 use Unicode::UCD 'prop_value_aliases';
1737
1738 my ($short_name, $full_name, @other_names)
1739 = prop_value_aliases("Gc", "Punct");
1740 my $same_full_name = prop_value_aliases("Gc", "P"); # Scalar cntxt
1741 my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th
1742 # element
1743 print "The full name is $full_name\n";
1744 print "The short name is $short_name\n";
1745 print "The other aliases are: ", join(", ", @other_names), "\n";
1746
1747 prints:
1748 The full name is Punctuation
1749 The short name is P
1750 The other aliases are: Punct
1751
1752Some Unicode properties have a restricted set of legal values. For example,
1753all binary properties are restricted to just C<true> or C<false>; and there
1754are only a few dozen possible General Categories.
1755
1756For such properties, there are usually several synonyms for each possible
1757value. For example, in binary properties, I<truth> can be represented by any of
1758the strings "Y", "Yes", "T", or "True"; and the General Category
1759"Punctuation" by that string, or "Punct", or simply "P".
1760
1761Like property names, there is typically at least a short name for each such
1762property-value, and a long name. If you know any name of the property-value,
1763you can use C<prop_value_aliases>() to get the long name (when called in
1764scalar context), or a list of all the names, with the short name in the 0th
1765element, the long name in the next element, and any other synonyms in the
1766remaining elements, in no particular order, except that any all-numeric
1767synonyms will be last.
1768
1769The long name is returned in a form nicely capitalized, suitable for printing.
1770
1771Case, white space, hyphens, and underscores are ignored in the input parameters
1772(except for the trailing underscore in the old-form grandfathered-in general
1773category property value C<"L_">, which is better written as C<"LC">).
1774
1775If either name is unknown, C<undef> is returned. Note that Perl typically
1776recognizes property names in regular expressions with an optional C<"Is_>"
1777(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>.
1778This function does not recognize those in the property parameter, returning
1779C<undef>.
1780
1781If called with a property that doesn't have synonyms for its values, it
1782returns the input value, possibly normalized with capitalization and
1783underscores.
1784
1785For the block property, new-style block names are returned (see
1786L</Old-style versus new-style block names>).
1787
1788To find the synonyms for single-forms, such as C<\p{Any}>, use
1789L</prop_aliases()> instead.
1790
1791C<prop_value_aliases> does not know about any user-defined properties, and
1792will return C<undef> if called with one of those.
1793
1794=cut
1795
1796# These are created by mktables for this routine and stored in unicore/UCD.pl
1797# where their structures are described.
1798our %loose_to_standard_value;
1799our %prop_value_aliases;
1800
1801sub prop_value_aliases ($$) {
1802 my ($prop, $value) = @_;
1803 return unless defined $prop && defined $value;
1804
1805 require "unicore/UCD.pl";
1806 require "utf8_heavy.pl";
1807
1808 # Find the property name synonym that's used as the key in other hashes,
1809 # which is element 0 in the returned list.
1810 ($prop) = prop_aliases($prop);
1811 return if ! $prop;
1812 $prop = utf8::_loose_name(lc $prop);
1813
1814 # Here is a legal property, but the hash below (created by mktables for
1815 # this purpose) only knows about the properties that have a very finite
1816 # number of potential values, that is not ones whose value could be
1817 # anything, like most (if not all) string properties. These don't have
1818 # synonyms anyway. Simply return the input. For example, there is no
1819 # synonym for ('Uppercase_Mapping', A').
1820 return $value if ! exists $prop_value_aliases{$prop};
1821
1822 # The value name may be loosely or strictly matched; we don't know yet.
1823 # But both types use lower-case.
1824 $value = lc $value;
1825
1826 # If the name isn't found under loose matching, it certainly won't be
1827 # found under strict
1828 my $loose_value = utf8::_loose_name($value);
1829 return unless exists $loose_to_standard_value{"$prop=$loose_value"};
1830
1831 # Similarly if the combination under loose matching doesn't exist, it
1832 # won't exist under strict.
1833 my $standard_value = $loose_to_standard_value{"$prop=$loose_value"};
1834 return unless exists $prop_value_aliases{$prop}{$standard_value};
1835
1836 # Here we did find a combination under loose matching rules. But it could
1837 # be that is a strict property match that shouldn't have matched.
1838 # %prop_value_aliases is set up so that the strict matches will appear as
1839 # if they were in loose form. Thus, if the non-loose version is legal,
1840 # we're ok, can skip the further check.
1841 if (! exists $utf8::stricter_to_file_of{"$prop=$value"}
1842
1843 # We're also ok and skip the further check if value loosely matches.
1844 # mktables has verified that no strict name under loose rules maps to
1845 # an existing loose name. This code relies on the very limited
1846 # circumstances that strict names can be here. Strict name matching
1847 # happens under two conditions:
1848 # 1) when the name begins with an underscore. But this function
1849 # doesn't accept those, and %prop_value_aliases doesn't have
1850 # them.
1851 # 2) When the values are numeric, in which case we need to look
1852 # further, but their squeezed-out loose values will be in
1853 # %stricter_to_file_of
1854 && exists $utf8::stricter_to_file_of{"$prop=$loose_value"})
1855 {
1856 # The only thing that's legal loosely under strict is that can have an
1857 # underscore between digit pairs XXX
1858 while ($value =~ s/(\d)_(\d)/$1$2/g) {}
1859 return unless exists $utf8::stricter_to_file_of{"$prop=$value"};
1860 }
1861
1862 # Here, we know that the combination exists. Return it.
1863 my $list_ref = $prop_value_aliases{$prop}{$standard_value};
1864 if (@$list_ref > 1) {
1865 # The full name is in element 1.
1866 return $list_ref->[1] unless wantarray;
1867
1868 return @{dclone $list_ref};
1869 }
1870
1871 return $list_ref->[0] unless wantarray;
1872
1873 # Only 1 element means that it repeats
1874 return ( $list_ref->[0], $list_ref->[0] );
1875}
7319f91d 1876
681d705c
KW
1877# All 1 bits is the largest possible UV.
1878$Unicode::UCD::MAX_CP = ~0;
1879
1880=pod
1881
1882=head2 B<prop_invlist()>
1883
1884C<prop_invlist> returns an inversion list (described below) that defines all the
1885code points for the binary Unicode property (or "property=value" pair) given
1886by the input parameter string:
1887
1888 use feature 'say';
1889 use Unicode::UCD 'prop_invlist';
1890 say join ", ", prop_invlist("Any");
1891
1892 prints:
1893 0, 1114112
1894
1895An empty list is returned if the input is unknown; the number of elements in
1896the list is returned if called in scalar context.
1897
1898L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives
1899the list of properties that this function accepts, as well as all the possible
1900forms for them (including with the optional "Is_" prefixes). (Except this
1901function doesn't accept any Perl-internal properties, some of which are listed
1902there.) This function uses the same loose or tighter matching rules for
1903resolving the input property's name as is done for regular expressions. These
1904are also specified in L<perluniprops|perluniprops/Properties accessible
1905through \p{} and \P{}>. Examples of using the "property=value" form are:
1906
1907 say join ", ", prop_invlist("Script=Shavian");
1908
1909 prints:
1910 66640, 66688
1911
1912 say join ", ", prop_invlist("ASCII_Hex_Digit=No");
1913
1914 prints:
1915 0, 48, 58, 65, 71, 97, 103
1916
1917 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes");
1918
1919 prints:
1920 48, 58, 65, 71, 97, 103
1921
1922Inversion lists are a compact way of specifying Unicode property-value
1923definitions. The 0th item in the list is the lowest code point that has the
1924property-value. The next item (item [1]) is the lowest code point beyond that
1925one that does NOT have the property-value. And the next item beyond that
1926([2]) is the lowest code point beyond that one that does have the
1927property-value, and so on. Put another way, each element in the list gives
1928the beginning of a range that has the property-value (for even numbered
1929elements), or doesn't have the property-value (for odd numbered elements).
1930The name for this data structure stems from the fact that each element in the
1931list toggles (or inverts) whether the corresponding range is or isn't on the
1932list.
1933
1934In the final example above, the first ASCII Hex digit is code point 48, the
1935character "0", and all code points from it through 57 (a "9") are ASCII hex
1936digits. Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F")
1937are, as are 97 ("a") through 102 ("f"). 103 starts a range of code points
1938that aren't ASCII hex digits. That range extends to infinity, which on your
1939computer can be found in the variable C<$Unicode::UCD::MAX_CP>. (This
1940variable is as close to infinity as Perl can get on your platform, and may be
1941too high for some operations to work; you may wish to use a smaller number for
1942your purposes.)
1943
1944Note that the inversion lists returned by this function can possibly include
1945non-Unicode code points, that is anything above 0x10FFFF. This is in
1946contrast to Perl regular expression matches on those code points, in which a
1947non-Unicode code point always fails to match. For example, both of these have
1948the same result:
1949
1950 chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails.
1951 chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Fails!
1952
1953And both raise a warning that a Unicode property is being used on a
1954non-Unicode code point. It is arguable as to which is the correct thing to do
1955here. This function has chosen the way opposite to the Perl regular
1956expression behavior. This allows you to easily flip to to the Perl regular
1957expression way (for you to go in the other direction would be far harder).
1958Simply add 0x110000 at the end of the non-empty returned list if it isn't
1959already that value; and pop that value if it is; like:
1960
1961 my @list = prop_invlist("foo");
1962 if (@list) {
1963 if ($list[-1] == 0x110000) {
1964 pop @list; # Defeat the turning on for above Unicode
1965 }
1966 else {
1967 push @list, 0x110000; # Turn off for above Unicode
1968 }
1969 }
1970
1971It is a simple matter to expand out an inversion list to a full list of all
1972code points that have the property-value:
1973
1974 my @invlist = prop_invlist($property_name);
1975 die "empty" unless @invlist;
1976 my @full_list;
1977 for (my $i = 0; $i < @invlist; $i += 2) {
1978 my $upper = ($i + 1) < @invlist
1979 ? $invlist[$i+1] - 1 # In range
1980 : $Unicode::UCD::MAX_CP; # To infinity. You may want
1981 # to stop much much earlier;
1982 # going this high may expose
1983 # perl deficiencies with very
1984 # large numbers.
1985 for my $j ($invlist[$i] .. $upper) {
1986 push @full_list, $j;
1987 }
1988 }
1989
1990C<prop_invlist> does not know about any user-defined nor Perl internal-only
1991properties, and will return C<undef> if called with one of those.
1992
1993=cut
1994
1995# User-defined properties could be handled with some changes to utf8_heavy.pl;
1996# and implementing here of dealing with EXTRAS. If done, consideration should
1997# be given to the fact that the user subroutine could return different results
1998# with each call; security issues need to be thought about.
1999
2000# These are created by mktables for this routine and stored in unicore/UCD.pl
2001# where their structures are described.
2002our %loose_defaults;
2003our $MAX_UNICODE_CODEPOINT;
2004
2005sub prop_invlist ($) {
2006 my $prop = $_[0];
2007 return if ! defined $prop;
2008
2009 require "utf8_heavy.pl";
2010
2011 # Warnings for these are only for regexes, so not applicable to us
2012 no warnings 'deprecated';
2013
2014 # Get the swash definition of the property-value.
2015 my $swash = utf8::SWASHNEW(__PACKAGE__, $prop, undef, 1, 0);
2016
2017 # Fail if not found, or isn't a boolean property-value, or is a
2018 # user-defined property, or is internal-only.
2019 return if ! $swash
2020 || ref $swash eq ""
2021 || $swash->{'BITS'} != 1
2022 || $swash->{'USER_DEFINED'}
2023 || $prop =~ /^\s*_/;
2024
2025 if ($swash->{'EXTRAS'}) {
2026 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic";
2027 return;
2028 }
2029 if ($swash->{'SPECIALS'}) {
2030 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic";
2031 return;
2032 }
2033
2034 my @invlist;
2035
2036 # The input lines look like:
2037 # 0041\t005A # [26]
2038 # 005F
2039
2040 # Split into lines, stripped of trailing comments
2041 foreach my $range (split "\n",
2042 $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr)
2043 {
2044 # And find the beginning and end of the range on the line
2045 my ($hex_begin, $hex_end) = split "\t", $range;
2046 my $begin = hex $hex_begin;
2047
a39cc031
KW
2048 # If the new range merely extends the old, we remove the marker
2049 # created the last time through the loop for the old's end, which
2050 # causes the new one's end to be used instead.
2051 if (@invlist && $begin == $invlist[-1]) {
2052 pop @invlist;
2053 }
2054 else {
2f3f243e
KW
2055 # Add the beginning of the range
2056 push @invlist, $begin;
a39cc031 2057 }
681d705c
KW
2058
2059 if (defined $hex_end) { # The next item starts with the code point 1
2060 # beyond the end of the range.
2061 push @invlist, hex($hex_end) + 1;
2062 }
2063 else { # No end of range, is a single code point.
2064 push @invlist, $begin + 1;
2065 }
2066 }
2067
2068 require "unicore/UCD.pl";
2069 my $FIRST_NON_UNICODE = $MAX_UNICODE_CODEPOINT + 1;
2070
2071 # Could need to be inverted: add or subtract a 0 at the beginning of the
2072 # list. And to keep it from matching non-Unicode, add or subtract the
2073 # first non-unicode code point.
2074 if ($swash->{'INVERT_IT'}) {
2075 if (@invlist && $invlist[0] == 0) {
2076 shift @invlist;
2077 }
2078 else {
2079 unshift @invlist, 0;
2080 }
2081 if (@invlist && $invlist[-1] == $FIRST_NON_UNICODE) {
2082 pop @invlist;
2083 }
2084 else {
2085 push @invlist, $FIRST_NON_UNICODE;
2086 }
2087 }
2088
2089 # Here, the list is set up to include only Unicode code points. But, if
2090 # the table is the default one for the property, it should contain all
2091 # non-Unicode code points. First calculate the loose name for the
2092 # property. This is done even for strict-name properties, as the data
2093 # structure that mktables generates for us is set up so that we don't have
2094 # to worry about that. The property-value needs to be split if compound,
2095 # as the loose rules need to be independently calculated on each part. We
2096 # know that it is syntactically valid, or SWASHNEW would have failed.
2097
2098 $prop = lc $prop;
2099 my ($prop_only, $table) = split /\s*[:=]\s*/, $prop;
2100 if ($table) {
2101
2102 # May have optional prefixed 'is'
2103 $prop = utf8::_loose_name($prop_only) =~ s/^is//r;
2104 $prop = $utf8::loose_property_name_of{$prop};
2105 $prop .= "=" . utf8::_loose_name($table);
2106 }
2107 else {
2108 $prop = utf8::_loose_name($prop);
2109 }
2110 if (exists $loose_defaults{$prop}) {
2111
2112 # Here, is the default table. If a range ended with 10ffff, instead
2113 # continue that range to infinity, by popping the 110000; otherwise,
2114 # add the range from 11000 to infinity
2115 if (! @invlist || $invlist[-1] != $FIRST_NON_UNICODE) {
2116 push @invlist, $FIRST_NON_UNICODE;
2117 }
2118 else {
2119 pop @invlist;
2120 }
2121 }
2122
2123 return @invlist;
2124}
7319f91d 2125
62b3b855
KW
2126sub _search_invlist {
2127 # Find the range in the inversion list which contains a code point; that
2128 # is, find i such that l[i] <= code_point < l[i+1]
2129
2130 # If this is ever made public, could use to speed up .t specials. Would
2131 # need to use code point argument, as in other functions in this pm
2132
2133 my $list_ref = shift;
2134 my $code_point = shift;
2135 # Verify non-neg numeric XXX
2136
2137 my $max_element = @$list_ref - 1;
2138 return if ! $max_element < 0; # Undef if list is empty.
2139
2140 # Short cut something at the far-end of the table. This also allows us to
2141 # refer to element [$i+1] without fear of being out-of-bounds in the loop
2142 # below.
2143 return $max_element if $code_point >= $list_ref->[$max_element];
2144
2145 use integer; # want integer division
2146
2147 my $i = $max_element / 2;
2148
2149 my $lower = 0;
2150 my $upper = $max_element;
2151 while (1) {
2152
2153 if ($code_point >= $list_ref->[$i]) {
2154
2155 # Here we have met the lower constraint. We can quit if we
2156 # also meet the upper one.
2157 last if $code_point < $list_ref->[$i+1];
2158
2159 $lower = $i; # Still too low.
2160
2161 }
2162 else {
2163
2164 # Here, $code_point < $list_ref[$i], so look lower down.
2165 $upper = $i;
2166 }
2167
2168 # Split search domain in half to try again.
2169 my $temp = ($upper + $lower) / 2;
2170
2171 # No point in continuing unless $i changes for next time
2172 # in the loop.
2173 return $i if $temp == $i;
2174 $i = $temp;
2175 } # End of while loop
2176
2177 # Here we have found the offset
2178 return $i;
2179}
2180
2181=pod
2182
2183=head2 B<prop_invmap()>
2184
2185 use Unicode::UCD 'prop_invmap';
2186 my ($list_ref, $map_ref, $format, $missing)
2187 = prop_invmap("General Category");
2188
2189C<prop_invmap> is used to get the complete mapping definition for a property,
2190in the form of an inversion map. An inversion map consists of two parallel
2191arrays. One is an ordered list of code points that mark range beginnings, and
2192the other gives the value (or mapping) that all code points in the
2193corresponding range have.
2194
2195C<prop_invmap> is called with the name of the desired property. The name is
2196loosely matched, meaning that differences in case, white-space, hyphens, and
2197underscores are not meaningful (except for the trailing underscore in the
2198old-form grandfathered-in property C<"L_">, which is better written as C<"LC">,
2199or even better, C<"Gc=LC">).
2200
2201Many Unicode properties have more than one name (or alias). C<prop_invmap>
2202understands all of these, including Perl extensions to them. Ambiguities are
2203resolved as described above for L</prop_aliases()>. The Perl internal
2204property "Perl_Decimal_Digit, described below, is also accepted. C<undef> is
2205returned if the property name is unknown.
ee94c7d1
KW
2206See L<perluniprops/Properties accessible through Unicode::UCD> for the
2207properties acceptable as inputs to this function.
62b3b855
KW
2208
2209It is a fatal error to call this function except in list context.
2210
2211In addition to the the two arrays that form the inversion map, C<prop_invmap>
2212returns two other values; one is a scalar that gives some details as to the
2213format of the entries of the map array; the other is used for specialized
2214purposes, described at the end of this section.
2215
2216This means that C<prop_invmap> returns a 4 element list. For example,
2217
2218 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default)
2219 = prop_invmap("Block");
2220
2221In this call, the two arrays will be populated as shown below (for Unicode
22226.0):
2223
2224 Index @blocks_ranges @blocks_maps
2225 0 0x0000 Basic Latin
2226 1 0x0080 Latin-1 Supplement
2227 2 0x0100 Latin Extended-A
2228 3 0x0180 Latin Extended-B
2229 4 0x0250 IPA Extensions
2230 5 0x02B0 Spacing Modifier Letters
2231 6 0x0300 Combining Diacritical Marks
2232 7 0x0370 Greek and Coptic
2233 8 0x0400 Cyrillic
2234 ...
2235 233 0x2B820 No_Block
2236 234 0x2F800 CJK Compatibility Ideographs Supplement
2237 235 0x2FA20 No_Block
2238 236 0xE0000 Tags
2239 237 0xE0080 No_Block
2240 238 0xE0100 Variation Selectors Supplement
2241 239 0xE01F0 No_Block
2242 240 0xF0000 Supplementary Private Use Area-A
2243 241 0x100000 Supplementary Private Use Area-B
2244 242 0x110000 No_Block
2245
2246The first line (with Index [0]) means that the value for code point 0 is "Basic
2247Latin". The entry "0x0080" in the @blocks_ranges column in the second line
2248means that the value from the first line, "Basic Latin", extends to all code
2249points in the range from 0 up to but not including 0x0080, that is, through
647396da 2250127. In other words, the code points from 0 to 127 are all in the "Basic
62b3b855
KW
2251Latin" block. Similarly, all code points in the range from 0x0080 up to (but
2252not including) 0x0100 are in the block named "Latin-1 Supplement", etc.
2253(Notice that the return is the old-style block names; see L</Old-style versus
2254new-style block names>).
2255
2256The final line (with Index [242]) means that the value for all code points above
2257the legal Unicode maximum code point have the value "No_Block", which is the
2258term Unicode uses for a non-existing block.
2259
2260The arrays completely specify the mappings for all possible code points.
2261The final element in an inversion map returned by this function will always be
2262for the range that consists of all the code points that aren't legal Unicode,
2263but that are expressible on the platform. (That is, it starts with code point
22640x110000, the first code point above the legal Unicode maximum, and extends to
2265infinity.) The value for that range will be the same that any typical
2266unassigned code point has for the specified property. (Certain unassigned
2267code points are not "typical"; for example the non-character code points, or
2268those in blocks that are to be written right-to-left. The above-Unicode
2269range's value is not based on these atypical code points.) It could be argued
2270that, instead of treating these as unassigned Unicode code points, the value
2271for this range should be C<undef>. If you wish, you can change the returned
2272arrays accordingly.
2273
2274The maps are almost always simple scalars that should be interpreted as-is.
2275These values are those given in the Unicode-supplied data files, which may be
2276inconsistent as to capitalization and as to which synonym for a property-value
2277is given. The results may be normalized by using the L</prop_value_aliases()>
2278function.
2279
2280There are exceptions to the simple scalar maps. Some properties have some
2281elements in their map list that are themselves lists of scalars; and some
2282special strings are returned that are not to be interpreted as-is. Element
2283[2] (placed into C<$format> in the example above) of the returned four element
647396da 2284list tells you if the map has any of these special elements or not, as follows:
62b3b855
KW
2285
2286=over
2287
dc8d8ea6 2288=item B<C<s>>
62b3b855
KW
2289
2290means all the elements of the map array are simple scalars, with no special
2291elements. Almost all properties are like this, like the C<block> example
2292above.
2293
dc8d8ea6 2294=item B<C<sl>>
62b3b855 2295
647396da 2296means that some of the map array elements have the form given by C<"s">, and
62b3b855
KW
2297the rest are lists of scalars. For example, here is a portion of the output
2298of calling C<prop_invmap>() with the "Script Extensions" property:
2299
2300 @scripts_ranges @scripts_maps
2301 ...
c2ca0207
KW
2302 0x0953 Devanagari
2303 0x0964 [ Bengali, Devanagari, Gurumukhi, Oriya ]
2304 0x0966 Devanagari
62b3b855
KW
2305 0x0970 Common
2306
647396da
KW
2307Here, the code points 0x964 and 0x965 are both used in Bengali,
2308Devanagari, Gurmukhi, and Oriya, but no other scripts.
62b3b855 2309
647396da 2310The Name_Alias property is also of this form. But each scalar consists of two
58b75e36 2311components: 1) the name, and 2) the type of alias this is. They are
7620cb10
KW
2312separated by a colon and a space. In Unicode 6.1, there are several alias types:
2313
2314=over
2315
2316=item C<correction>
2317
2318indicates that the name is a corrected form for the
2319original name (which remains valid) for the same code point.
2320
2321=item C<control>
2322
2323adds a new name for a control character.
2324
2325=item C<alternate>
2326
2327is an alternate name for a character
2328
2329=item C<figment>
2330
2331is a name for a character that has been documented but was never in any
2332actual standard.
2333
2334=item C<abbreviation>
2335
2336is a common abbreviation for a character
2337
2338=back
2339
2340The lists are ordered (roughly) so the most preferred names come before less
2341preferred ones.
58b75e36
KW
2342
2343For example,
2344
7620cb10
KW
2345 @aliases_ranges @alias_maps
2346 ...
2347 0x009E [ 'PRIVACY MESSAGE: control', 'PM: abbreviation' ]
2348 0x009F [ 'APPLICATION PROGRAM COMMAND: control',
2349 'APC: abbreviation'
2350 ]
2351 0x00A0 'NBSP: abbreviation'
2352 0x00A1 ""
2353 0x00AD 'SHY: abbreviation'
2354 0x00AE ""
2355 0x01A2 'LATIN CAPITAL LETTER GHA: correction'
2356 0x01A3 'LATIN SMALL LETTER GHA: correction'
2357 0x01A4 ""
58b75e36 2358 ...
58b75e36 2359
7620cb10
KW
2360A map to the empty string means that there is no alias defined for the code
2361point.
58b75e36 2362
d11155ec 2363=item B<C<a>>
62b3b855 2364
647396da 2365is like C<"s"> in that all the map array elements are scalars, but here they are
d11155ec
KW
2366restricted to all being integers, and some have to be adjusted (hence the name
2367C<"a">) to get the correct result. For example, in:
62b3b855
KW
2368
2369 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
2370 = prop_invmap("Simple_Uppercase_Mapping");
2371
2372the returned arrays look like this:
2373
2374 @$uppers_ranges_ref @$uppers_maps_ref Note
bf7fe2df 2375 0 0
d11155ec 2376 97 65 'a' maps to 'A', b => B ...
bf7fe2df 2377 123 0
d11155ec 2378 181 924 MICRO SIGN => Greek Cap MU
bf7fe2df 2379 182 0
62b3b855
KW
2380 ...
2381
d11155ec
KW
2382Let's start with the second line. It says that the uppercase of code point 97
2383is 65; or C<uc("a")> == "A". But the line is for the entire range of code
2384points 97 through 122. To get the mapping for any code point in a range, you
2385take the offset it has from the beginning code point of the range, and add
2386that to the mapping for that first code point. So, the mapping for 122 ("z")
2387is derived by taking the offset of 122 from 97 (=25) and adding that to 65,
2388yielding 90 ("z"). Likewise for everything in between.
2389
2390The first line works the same way. The first map in a range is always the
2391correct value for its code point (because the adjustment is 0). Thus the
2392C<uc(chr(0))> is just itself. Also, C<uc(chr(1))> is also itself, as the
2393adjustment is 0+1-0 .. C<uc(chr(96))> is 96.
bf7fe2df 2394
d11155ec
KW
2395Requiring this simple adjustment allows the returned arrays to be
2396significantly smaller than otherwise, up to a factor of 10, speeding up
2397searching through them.
62b3b855 2398
d11155ec 2399=item B<C<al>>
62b3b855 2400
d11155ec 2401means that some of the map array elements have the form given by C<"a">, and
62b3b855
KW
2402the rest are ordered lists of code points.
2403For example, in:
2404
2405 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
2406 = prop_invmap("Uppercase_Mapping");
2407
2408the returned arrays look like this:
2409
2410 @$uppers_ranges_ref @$uppers_maps_ref
bf7fe2df 2411 0 0
d11155ec 2412 97 65
bf7fe2df 2413 123 0
d11155ec 2414 181 924
bf7fe2df 2415 182 0
62b3b855
KW
2416 ...
2417 0x0149 [ 0x02BC 0x004E ]
bf7fe2df 2418 0x014A 0
d11155ec 2419 0x014B 330
62b3b855
KW
2420 ...
2421
2422This is the full Uppercase_Mapping property (as opposed to the
d11155ec 2423Simple_Uppercase_Mapping given in the example for format C<"a">). The only
62b3b855
KW
2424difference between the two in the ranges shown is that the code point at
24250x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two
2426characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN
2427CAPITAL LETTER N).
2428
d11155ec
KW
2429No adjustments are needed to entries that are references to arrays; each such
2430entry will have exactly one element in its range, so the offset is always 0.
bf7fe2df 2431
d11155ec 2432=item B<C<ae>>
b0b13ada 2433
d11155ec
KW
2434This is like C<"a">, but some elements are the empty string, and should not be
2435adjusted.
b0b13ada
KW
2436The one internal Perl property accessible by C<prop_invmap> is of this type:
2437"Perl_Decimal_Digit" returns an inversion map which gives the numeric values
2438that are represented by the Unicode decimal digit characters. Characters that
2439don't represent decimal digits map to the empty string, like so:
2440
2441 @digits @values
2442 0x0000 ""
d11155ec 2443 0x0030 0
b0b13ada 2444 0x003A: ""
d11155ec 2445 0x0660: 0
b0b13ada 2446 0x066A: ""
d11155ec 2447 0x06F0: 0
b0b13ada 2448 0x06FA: ""
d11155ec 2449 0x07C0: 0
b0b13ada 2450 0x07CA: ""
d11155ec 2451 0x0966: 0
b0b13ada
KW
2452 ...
2453
2454This means that the code points from 0 to 0x2F do not represent decimal digits;
d11155ec
KW
2455the code point 0x30 (DIGIT ZERO) represents 0; code point 0x31, (DIGIT ONE),
2456represents 0+1-0 = 1; ... code point 0x39, (DIGIT NINE), represents 0+9-0 = 9;
2457... code points 0x3A through 0x65F do not represent decimal digits; 0x660
2458(ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1 (NKO DIGIT ONE),
2459represents 0+1-0 = 1 ...
b0b13ada 2460
d11155ec 2461=item B<C<ale>>
62b3b855 2462
d11155ec
KW
2463is a combination of the C<"al"> type and the C<"ae"> type. Some of
2464the map array elements have the forms given by C<"al">, and
62b3b855
KW
2465the rest are the empty string. The property C<NFKC_Casefold> has this form.
2466An example slice is:
2467
2468 @$ranges_ref @$maps_ref Note
2469 ...
d11155ec
KW
2470 0x00AA 97 FEMININE ORDINAL INDICATOR => 'a'
2471 0x00AB 0
62b3b855 2472 0x00AD SOFT HYPHEN => ""
d11155ec 2473 0x00AE 0
62b3b855 2474 0x00AF [ 0x0020, 0x0304 ] MACRON => SPACE . COMBINING MACRON
d11155ec 2475 0x00B0 0
62b3b855
KW
2476 ...
2477
4f143a72 2478=item B<C<ar>>
6cc45523
KW
2479
2480means that all the elements of the map array are either rational numbers or
2481the string C<"NaN">, meaning "Not a Number". A rational number is either an
2482integer, or two integers separated by a solidus (C<"/">). The second integer
2483represents the denominator of the division implied by the solidus, and is
6329003c
KW
2484actually always positive, so it is guaranteed not to be 0 and to not to be
2485signed. When the element is a plain integer (without the
4f143a72
KW
2486solidus), it may need to be adjusted to get the correct value by adding the
2487offset, just as other C<"a"> properties. No adjustment is needed for
2488fractions, as the range is guaranteed to have just a single element, and so
2489the offset is always 0.
2490
2491If you want to convert the returned map to entirely scalar numbers, you
6cc45523
KW
2492can use something like this:
2493
2494 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property);
4f143a72 2495 if ($format && $format eq "ar") {
6cc45523
KW
2496 map { $_ = eval $_ } @$invmap_ref;
2497 }
2498
2499Here's some entries from the output of the property "Nv", which has format
4f143a72 2500C<"ar">.
6cc45523 2501
4f143a72 2502 @numerics_ranges @numerics_maps Note
6cc45523 2503 0x00 "NaN"
4f143a72 2504 0x30 0 DIGIT 0 .. DIGIT 9
6cc45523 2505 0x3A "NaN"
4f143a72 2506 0xB2 2 SUPERSCRIPTs 2 and 3
6cc45523 2507 0xB4 "NaN"
4f143a72 2508 0xB9 1 SUPERSCRIPT 1
6cc45523 2509 0xBA "NaN"
4f143a72
KW
2510 0xBC 1/4 VULGAR FRACTION 1/4
2511 0xBD 1/2 VULGAR FRACTION 1/2
2512 0xBE 3/4 VULGAR FRACTION 3/4
6cc45523 2513 0xBF "NaN"
4f143a72
KW
2514 0x660 0 ARABIC-INDIC DIGIT ZERO .. NINE
2515 0x66A "NaN"
6cc45523 2516
dc8d8ea6 2517=item B<C<n>>
62b3b855
KW
2518
2519means the Name property. All the elements of the map array are simple
2520scalars, but some of them contain special strings that require more work to
2521get the actual name.
2522
2523Entries such as:
2524
2525 CJK UNIFIED IDEOGRAPH-<code point>
2526
2527mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-"
2528with the code point (expressed in hexadecimal) appended to it, like "CJK
647396da
KW
2529UNIFIED IDEOGRAPH-3403" (similarly for S<C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code
2530pointE<gt>>>).
62b3b855
KW
2531
2532Also, entries like
2533
2534 <hangul syllable>
2535
2536means that the name is algorithmically calculated. This is easily done by
2537the function L<charnames/charnames::viacode(code)>.
2538
2539Note that for control characters (C<Gc=cc>), Unicode's data files have the
2540string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty
7620cb10 2541string. This function returns that real name, the empty string. (There are
647396da
KW
2542names for these characters, but they are considered aliases, not the Name
2543property name, and are contained in the C<Name_Alias> property.)
62b3b855 2544
d11155ec 2545=item B<C<ad>>
62b3b855 2546
d11155ec 2547means the Decomposition_Mapping property. This property is like C<"al">
bea2c146 2548properties, except that one of the scalar elements is of the form:
62b3b855
KW
2549
2550 <hangul syllable>
2551
bea2c146
KW
2552This signifies that this entry should be replaced by the decompositions for
2553all the code points whose decomposition is algorithmically calculated. (All
6329003c
KW
2554of them are currently in one range and no others outisde the range are likely
2555to ever be added to Unicode; the C<"n"> format
bea2c146 2556has this same entry.) These can be generated via the function
62b3b855
KW
2557L<Unicode::Normalize::NFD()|Unicode::Normalize>.
2558
62b3b855
KW
2559Note that the mapping is the one that is specified in the Unicode data files,
2560and to get the final decomposition, it may need to be applied recursively.
2561
2562=back
2563
d11155ec
KW
2564Note that a format begins with the letter "a" if and only the property it is
2565for requires adjustments by adding the offsets in multi-element ranges. For
2566all these properties, an entry should be adjusted only if the map is a scalar
2567which is an integer. That is, it must match the regular expression:
2568
2569 / ^ -? \d+ $ /xa
2570
2571Further, the first element in a range never needs adjustment, as the
2572adjustment would be just adding 0.
2573
62b3b855
KW
2574A binary search can be used to quickly find a code point in the inversion
2575list, and hence its corresponding mapping.
2576
2577The final element (index [3], assigned to C<$default> in the "block" example) in
2578the four element list returned by this function may be useful for applications
2579that wish to convert the returned inversion map data structure into some
2580other, such as a hash. It gives the mapping that most code points map to
2581under the property. If you establish the convention that any code point not
2582explicitly listed in your data structure maps to this value, you can
2583potentially make your data structure much smaller. As you construct your data
2584structure from the one returned by this function, simply ignore those ranges
2585that map to this value, generally called the "default" value. For example, to
2586convert to the data structure searchable by L</charinrange()>, you can follow
6329003c 2587this recipe for properties that don't require adjustments:
62b3b855
KW
2588
2589 my ($list_ref, $map_ref, $format, $missing) = prop_invmap($property);
2590 my @range_list;
6329003c
KW
2591
2592 # Look at each element in the list, but the -2 is needed because we
2593 # look at $i+1 in the loop, and the final element is guaranteed to map
2594 # to $missing by prop_invmap(), so we would skip it anyway.
62b3b855
KW
2595 for my $i (0 .. @$list_ref - 2) {
2596 next if $map_ref->[$i] eq $missing;
2597 push @range_list, [ $list_ref->[$i],
2598 $list_ref->[$i+1],
2599 $map_ref->[$i]
2600 ];
2601 }
2602
2603 print charinrange(\@range_list, $code_point), "\n";
2604
62b3b855
KW
2605With this, C<charinrange()> will return C<undef> if its input code point maps
2606to C<$missing>. You can avoid this by omitting the C<next> statement, and adding
2607a line after the loop to handle the final element of the inversion map.
2608
6329003c
KW
2609Similarly, this recipe can be used for properties that do require adjustments:
2610
2611 for my $i (0 .. @$list_ref - 2) {
2612 next if $map_ref->[$i] eq $missing;
2613
2614 # prop_invmap() guarantees that if the mapping is to an array, the
2615 # range has just one element, so no need to worry about adjustments.
2616 if (ref $map_ref->[$i]) {
2617 push @range_list,
2618 [ $list_ref->[$i], $list_ref->[$i], $map_ref->[$i] ];
2619 }
2620 else { # Otherwise each element is actually mapped to a separate
2621 # value, so the range has to be split into single code point
2622 # ranges.
2623
2624 my $adjustment = 0;
2625
2626 # For each code point that gets mapped to something...
2627 for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1 ) {
2628
2629 # ... add a range consisting of just it mapping to the
2630 # original plus the adjustment, which is incremented for the
2631 # next time through the loop, as the offset increases by 1
2632 # for each element in the range
2633 push @range_list,
2634 [ $j, $j, $map_ref->[$i] + $adjustment++ ];
2635 }
2636 }
2637 }
62b3b855
KW
2638
2639Note that the inversion maps returned for the C<Case_Folding> and
2640C<Simple_Case_Folding> properties do not include the Turkic-locale mappings.
2641Use L</casefold()> for these.
2642
62b3b855
KW
2643C<prop_invmap> does not know about any user-defined properties, and will
2644return C<undef> if called with one of those.
2645
2646=cut
2647
2648# User-defined properties could be handled with some changes to utf8_heavy.pl;
2649# if done, consideration should be given to the fact that the user subroutine
2650# could return different results with each call, which could lead to some
2651# security issues.
2652
2653# One could store things in memory so they don't have to be recalculated, but
2654# it is unlikely this will be called often, and some properties would take up
2655# significant memory.
2656
2657# These are created by mktables for this routine and stored in unicore/UCD.pl
2658# where their structures are described.
2659our @algorithmic_named_code_points;
2660our $HANGUL_BEGIN;
2661our $HANGUL_COUNT;
2662
2663sub prop_invmap ($) {
2664
2665 croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray;
2666
2667 my $prop = $_[0];
2668 return unless defined $prop;
2669
2670 # Fail internal properties
2671 return if $prop =~ /^_/;
2672
2673 # The values returned by this function.
2674 my (@invlist, @invmap, $format, $missing);
2675
2676 # The swash has two components we look at, the base list, and a hash,
2677 # named 'SPECIALS', containing any additional members whose mappings don't
2678 # fit into the the base list scheme of things. These generally 'override'
2679 # any value in the base list for the same code point.
2680 my $overrides;
2681
2682 require "utf8_heavy.pl";
2683 require "unicore/UCD.pl";
2684
2685RETRY:
2686
647396da
KW
2687 # If there are multiple entries for a single code point
2688 my $has_multiples = 0;
2689
62b3b855
KW
2690 # Try to get the map swash for the property. They have 'To' prepended to
2691 # the property name, and 32 means we will accept 32 bit return values.
647396da 2692 # The 0 means we aren't calling this from tr///.
62b3b855
KW
2693 my $swash = utf8::SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0);
2694
2695 # If didn't find it, could be because needs a proxy. And if was the
2696 # 'Block' or 'Name' property, use a proxy even if did find it. Finding it
647396da
KW
2697 # in these cases would be the result of the installation changing mktables
2698 # to output the Block or Name tables. The Block table gives block names
2699 # in the new-style, and this routine is supposed to return old-style block
2700 # names. The Name table is valid, but we need to execute the special code
2701 # below to add in the algorithmic-defined name entries.
34132297 2702 # And NFKCCF needs conversion, so handle that here too.
62b3b855 2703 if (ref $swash eq ""
34132297 2704 || $swash->{'TYPE'} =~ / ^ To (?: Blk | Na | NFKCCF ) $ /x)
62b3b855
KW
2705 {
2706
2707 # Get the short name of the input property, in standard form
2708 my ($second_try) = prop_aliases($prop);
2709 return unless $second_try;
2710 $second_try = utf8::_loose_name(lc $second_try);
2711
2712 if ($second_try eq "in") {
2713
2714 # This property is identical to age for inversion map purposes
2715 $prop = "age";
2716 goto RETRY;
2717 }
cfc5eb77 2718 elsif ($second_try =~ / ^ s ( cf | fc | [ltu] c ) $ /x) {
62b3b855 2719
75e7c50b
KW
2720 # These properties use just the LIST part of the full mapping,
2721 # which includes the simple maps that are otherwise overridden by
2722 # the SPECIALS. So all we need do is to not look at the SPECIALS;
2723 # set $overrides to indicate that
62b3b855 2724 $overrides = -1;
62b3b855 2725
75e7c50b 2726 # The full name is the simple name stripped of its initial 's'
cfc5eb77
KW
2727 $prop = $1;
2728
2729 # .. except for this case
2730 $prop = 'cf' if $prop eq 'fc';
2731
62b3b855
KW
2732 goto RETRY;
2733 }
2734 elsif ($second_try eq "blk") {
2735
2736 # We use the old block names. Just create a fake swash from its
2737 # data.
2738 _charblocks();
2739 my %blocks;
2740 $blocks{'LIST'} = "";
2741 $blocks{'TYPE'} = "ToBlk";
2742 $utf8::SwashInfo{ToBlk}{'missing'} = "No_Block";
2743 $utf8::SwashInfo{ToBlk}{'format'} = "s";
2744
2745 foreach my $block (@BLOCKS) {
2746 $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n",
2747 $block->[0],
2748 $block->[1],
2749 $block->[2];
2750 }
2751 $swash = \%blocks;
2752 }
2753 elsif ($second_try eq "na") {
2754
2755 # Use the combo file that has all the Name-type properties in it,
2756 # extracting just the ones that are for the actual 'Name'
2757 # property. And create a fake swash from it.
2758 my %names;
2759 $names{'LIST'} = "";
2760 my $original = do "unicore/Name.pl";
62b3b855
KW
2761 my $algorithm_names = \@algorithmic_named_code_points;
2762
3b6a8189
KW
2763 # We need to remove the names from it that are aliases. For that
2764 # we need to also read in that table. Create a hash with the keys
2765 # being the code points, and the values being a list of the
2766 # aliases for the code point key.
2767 my ($aliases_code_points, $aliases_maps, undef, undef) =
2768 &prop_invmap('Name_Alias');
2769 my %aliases;
2770 for (my $i = 0; $i < @$aliases_code_points; $i++) {
2771 my $code_point = $aliases_code_points->[$i];
2772 $aliases{$code_point} = $aliases_maps->[$i];
2773
2774 # If not already a list, make it into one, so that later we
2775 # can treat things uniformly
2776 if (! ref $aliases{$code_point}) {
2777 $aliases{$code_point} = [ $aliases{$code_point} ];
2778 }
2779
2780 # Remove the alias type from the entry, retaining just the
2781 # name.
2782 map { s/:.*// } @{$aliases{$code_point}};
2783 }
2784
62b3b855
KW
2785 my $i = 0;
2786 foreach my $line (split "\n", $original) {
2787 my ($hex_code_point, $name) = split "\t", $line;
2788
2789 # Weeds out all comments, blank lines, and named sequences
df46a385 2790 next if $hex_code_point =~ /[^[:xdigit:]]/a;
62b3b855
KW
2791
2792 my $code_point = hex $hex_code_point;
2793
2794 # The name of all controls is the default: the empty string.
2795 # The set of controls is immutable, so these hard-coded
2796 # constants work.
2797 next if $code_point <= 0x9F
2798 && ($code_point <= 0x1F || $code_point >= 0x7F);
2799
3b6a8189
KW
2800 # If this is a name_alias, it isn't a name
2801 next if grep { $_ eq $name } @{$aliases{$code_point}};
62b3b855
KW
2802
2803 # If we are beyond where one of the special lines needs to
2804 # be inserted ...
3b6a8189 2805 while ($i < @$algorithm_names
62b3b855
KW
2806 && $code_point > $algorithm_names->[$i]->{'low'})
2807 {
2808
2809 # ... then insert it, ahead of what we were about to
2810 # output
3b6a8189 2811 $names{'LIST'} .= sprintf "%x\t%x\t%s\n",
62b3b855
KW
2812 $algorithm_names->[$i]->{'low'},
2813 $algorithm_names->[$i]->{'high'},
2814 $algorithm_names->[$i]->{'name'};
2815
62b3b855
KW
2816 # Done with this range.
2817 $i++;
2818
3b6a8189
KW
2819 # We loop until all special lines that precede the next
2820 # regular one are output.
62b3b855
KW
2821 }
2822
3b6a8189
KW
2823 # Here, is a normal name.
2824 $names{'LIST'} .= sprintf "%x\t\t%s\n", $code_point, $name;
2825 } # End of loop through all the names
62b3b855
KW
2826
2827 $names{'TYPE'} = "ToNa";
2828 $utf8::SwashInfo{ToNa}{'missing'} = "";
2829 $utf8::SwashInfo{ToNa}{'format'} = "n";
2830 $swash = \%names;
2831 }
2832 elsif ($second_try =~ / ^ ( d [mt] ) $ /x) {
2833
2834 # The file is a combination of dt and dm properties. Create a
2835 # fake swash from the portion that we want.
2836 my $original = do "unicore/Decomposition.pl";
2837 my %decomps;
2838
2839 if ($second_try eq 'dt') {
2840 $decomps{'TYPE'} = "ToDt";
2841 $utf8::SwashInfo{'ToDt'}{'missing'} = "None";
2842 $utf8::SwashInfo{'ToDt'}{'format'} = "s";
d11155ec 2843 } # 'dm' is handled below, with 'nfkccf'
62b3b855
KW
2844
2845 $decomps{'LIST'} = "";
2846
2847 # This property has one special range not in the file: for the
1a4c9760
KW
2848 # hangul syllables. But not in Unicode version 1.
2849 UnicodeVersion() unless defined $v_unicode_version;
2850 my $done_hangul = ($v_unicode_version lt v2.0.0)
2851 ? 1
2852 : 0; # Have we done the hangul range ?
62b3b855
KW
2853 foreach my $line (split "\n", $original) {
2854 my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line;
2855 my $code_point = hex $hex_lower;
2856 my $value;
bea2c146 2857 my $redo = 0;
62b3b855
KW
2858
2859 # The type, enclosed in <...>, precedes the mapping separated
2860 # by blanks
2861 if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) {
2862 $value = ($second_try eq 'dt') ? $1 : $2
2863 }
2864 else { # If there is no type specified, it's canonical
2865 $value = ($second_try eq 'dt')
2866 ? "Canonical" :
2867 $type_and_map;
2868 }
2869
2870 # Insert the hangul range at the appropriate spot.
2871 if (! $done_hangul && $code_point > $HANGUL_BEGIN) {
2872 $done_hangul = 1;
2873 $decomps{'LIST'} .=
2874 sprintf "%x\t%x\t%s\n",
2875 $HANGUL_BEGIN,
2876 $HANGUL_BEGIN + $HANGUL_COUNT - 1,
2877 ($second_try eq 'dt')
2878 ? "Canonical"
2879 : "<hangul syllable>";
2880 }
2881
1a4c9760
KW
2882 if ($value =~ / / && $hex_upper ne "" && $hex_upper ne $hex_lower) {
2883 $line = sprintf("%04X\t%s\t%s", hex($hex_lower) + 1, $hex_upper, $value);
2884 $hex_upper = "";
2885 $redo = 1;
2886 }
2887
62b3b855
KW
2888 # And append this to our constructed LIST.
2889 $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n";
bea2c146
KW
2890
2891 redo if $redo;
62b3b855
KW
2892 }
2893 $swash = \%decomps;
2894 }
d11155ec
KW
2895 elsif ($second_try ne 'nfkccf') { # Don't know this property. Fail.
2896 return;
2897 }
2898
2899 if ($second_try eq 'nfkccf' || $second_try eq 'dm') {
34132297 2900
d11155ec
KW
2901 # The 'nfkccf' property is stored in the old format for backwards
2902 # compatibility for any applications that has read its file
2903 # directly before prop_invmap() existed.
2904 # And the code above has extracted the 'dm' property from its file
2905 # yielding the same format. So here we convert them to adjusted
2906 # format for compatibility with the other properties similar to
2907 # them.
2908 my %revised_swash;
34132297 2909
d11155ec 2910 # We construct a new converted list.
34132297 2911 my $list = "";
d11155ec
KW
2912
2913 my @ranges = split "\n", $swash->{'LIST'};
2914 for (my $i = 0; $i < @ranges; $i++) {
2915 my ($hex_begin, $hex_end, $map) = split "\t", $ranges[$i];
2916
2917 # The dm property has maps that are space separated sequences
2918 # of code points, as well as the special entry "<hangul
2919 # syllable>, which also contains a blank.
2920 my @map = split " ", $map;
2921 if (@map > 1) {
2922
2923 # If it's just the special entry, append as-is.
2924 if ($map eq '<hangul syllable>') {
2925 $list .= "$ranges[$i]\n";
2926 }
2927 else {
2928
2929 # These should all single-element ranges.
1a4c9760 2930 croak __PACKAGE__, "::prop_invmap: Not expecting a mapping with multiple code points in a multi-element range, $ranges[$i]" if $hex_end ne "" && $hex_end ne $hex_begin;
d11155ec
KW
2931
2932 # Convert them to decimal, as that's what's expected.
2933 $list .= "$hex_begin\t\t"
2934 . join(" ", map { hex } @map)
2935 . "\n";
2936 }
2937 next;
2938 }
2939
2940 # Here, the mapping doesn't have a blank, is for a single code
2941 # point.
34132297
KW
2942 my $begin = hex $hex_begin;
2943 my $end = (defined $hex_end && $hex_end ne "")
2944 ? hex $hex_end
2945 : $begin;
d11155ec
KW
2946
2947 # Again, the output is to be in decimal.
34132297 2948 my $decimal_map = hex $map;
d11155ec
KW
2949
2950 # We know that multi-element ranges with the same mapping
2951 # should not be adjusted, as after the adjustment
2952 # multi-element ranges are for consecutive increasing code
2953 # points. Further, the final element in the list won't be
2954 # adjusted, as there is nothing after it to include in the
2955 # adjustment
2956 if ($begin != $end || $i == @ranges -1) {
2957
2958 # So just convert these to single-element ranges
2959 foreach my $code_point ($begin .. $end) {
2960 $list .= sprintf("%04X\t\t%d\n",
2961 $code_point, $decimal_map);
2962 }
34132297 2963 }
d11155ec 2964 else {
34132297 2965
d11155ec
KW
2966 # Here, we have a candidate for adjusting. What we do is
2967 # look through the subsequent adjacent elements in the
2968 # input. If the map to the next one differs by 1 from the
2969 # one before, then we combine into a larger range with the
2970 # initial map. Loop doing this until we find one that
2971 # can't be combined.
2972
2973 my $offset = 0; # How far away are we from the initial
2974 # map
2975 my $squished = 0; # ? Did we squish at least two
2976 # elements together into one range
2977 for ( ; $i < @ranges; $i++) {
2978 my ($next_hex_begin, $next_hex_end, $next_map)
2979 = split "\t", $ranges[$i+1];
2980
2981 # In the case of 'dm', the map may be a sequence of
2982 # multiple code points, which are never combined with
2983 # another range
2984 last if $next_map =~ / /;
2985
2986 $offset++;
2987 my $next_decimal_map = hex $next_map;
2988
2989 # If the next map is not next in sequence, it
2990 # shouldn't be combined.
2991 last if $next_decimal_map != $decimal_map + $offset;
2992
2993 my $next_begin = hex $next_hex_begin;
2994
2995 # Likewise, if the next element isn't adjacent to the
2996 # previous one, it shouldn't be combined.
2997 last if $next_begin != $begin + $offset;
2998
2999 my $next_end = (defined $next_hex_end
3000 && $next_hex_end ne "")
3001 ? hex $next_hex_end
3002 : $next_begin;
3003
3004 # And finally, if the next element is a multi-element
3005 # range, it shouldn't be combined.
3006 last if $next_end != $next_begin;
3007
3008 # Here, we will combine. Loop to see if we should
3009 # combine the next element too.
3010 $squished = 1;
3011 }
3012
3013 if ($squished) {
3014
3015 # Here, 'i' is the element number of the last element to
3016 # be combined, and the range is single-element, or we
3017 # wouldn't be combining. Get it's code point.
3018 my ($hex_end, undef, undef) = split "\t", $ranges[$i];
3019 $list .= "$hex_begin\t$hex_end\t$decimal_map\n";
3020 } else {
3021
3022 # Here, no combining done. Just appen the initial
3023 # (and current) values.
3024 $list .= "$hex_begin\t\t$decimal_map\n";
3025 }
3026 }
3027 } # End of loop constructing the converted list
3028
3029 # Finish up the data structure for our converted swash
3030 my $type = ($second_try eq 'nfkccf') ? 'ToNFKCCF' : 'ToDm';
3031 $revised_swash{'LIST'} = $list;
3032 $revised_swash{'TYPE'} = $type;
3033 $revised_swash{'SPECIALS'} = $swash->{'SPECIALS'};
3034 $swash = \%revised_swash;
3035
3036 $utf8::SwashInfo{$type}{'missing'} = 0;
3037 $utf8::SwashInfo{$type}{'format'} = 'a';
62b3b855
KW
3038 }
3039 }
3040
3041 if ($swash->{'EXTRAS'}) {
3042 carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic";
3043 return;
3044 }
3045
3046 # Here, have a valid swash return. Examine it.
34132297 3047 my $returned_prop = $swash->{'TYPE'};
62b3b855
KW
3048
3049 # All properties but binary ones should have 'missing' and 'format'
3050 # entries
3051 $missing = $utf8::SwashInfo{$returned_prop}{'missing'};
3052 $missing = 'N' unless defined $missing;
3053
3054 $format = $utf8::SwashInfo{$returned_prop}{'format'};
3055 $format = 'b' unless defined $format;
3056
d11155ec
KW
3057 my $requires_adjustment = $format =~ /^a/;
3058
62b3b855
KW
3059 # The LIST input lines look like:
3060 # ...
3061 # 0374\t\tCommon
3062 # 0375\t0377\tGreek # [3]
3063 # 037A\t037D\tGreek # [4]
3064 # 037E\t\tCommon
3065 # 0384\t\tGreek
3066 # ...
3067 #
3068 # Convert them to like
3069 # 0374 => Common
3070 # 0375 => Greek
3071 # 0378 => $missing
3072 # 037A => Greek
3073 # 037E => Common
3074 # 037F => $missing
3075 # 0384 => Greek
3076 #
3077 # For binary properties, the final non-comment column is absent, and
3078 # assumed to be 'Y'.
3079
3080 foreach my $range (split "\n", $swash->{'LIST'}) {
3081 $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments
3082
3083 # Find the beginning and end of the range on the line
3084 my ($hex_begin, $hex_end, $map) = split "\t", $range;
3085 my $begin = hex $hex_begin;
3086 my $end = (defined $hex_end && $hex_end ne "")
3087 ? hex $hex_end
3088 : $begin;
3089
92bcf67b
KW
3090 # Each time through the loop (after the first):
3091 # $invlist[-2] contains the beginning of the previous range processed
3092 # $invlist[-1] contains the end+1 of the previous range processed
3093 # $invmap[-2] contains the value of the previous range processed
3094 # $invmap[-1] contains the default value for missing ranges ($missing)
3095 #
3096 # Thus, things are set up for the typical case of a new non-adjacent
3097 # range of non-missings to be added. But, if the new range is
dc8d8ea6 3098 # adjacent, it needs to replace the [-1] element; and if the new
92bcf67b
KW
3099 # range is a multiple value of the previous one, it needs to be added
3100 # to the [-2] map element.
3101
3102 # The first time through, everything will be empty. If the property
3103 # doesn't have a range that begins at 0, add one that maps to $missing
62b3b855
KW
3104 if (! @invlist) {
3105 if ($begin != 0) {
3106 push @invlist, 0;
3107 push @invmap, $missing;
3108 }
3109 }
e35c6019
KW
3110 elsif (@invlist > 1 && $invlist[-2] == $begin) {
3111
3112 # Here we handle the case where the input has multiple entries for
3113 # each code point. mktables should have made sure that each such
3114 # range contains only one code point. At this point, $invlist[-1]
3115 # is the $missing that was added at the end of the last loop
3116 # iteration, and [-2] is the last real input code point, and that
3117 # code point is the same as the one we are adding now, making the
3118 # new one a multiple entry. Add it to the existing entry, either
3119 # by pushing it to the existing list of multiple entries, or
3120 # converting the single current entry into a list with both on it.
3121 # This is all we need do for this iteration.
3122
3123 if ($end != $begin) {
294705a8 3124 croak __PACKAGE__, ":prop_invmap: Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map";
e35c6019
KW
3125 }
3126 if (! ref $invmap[-2]) {
3127 $invmap[-2] = [ $invmap[-2], $map ];
3128 }
3129 else {
3130 push @{$invmap[-2]}, $map;
3131 }
3132 $has_multiples = 1;
3133 next;
3134 }
62b3b855
KW
3135 elsif ($invlist[-1] == $begin) {
3136
3137 # If the input isn't in the most compact form, so that there are
3138 # two adjacent ranges that map to the same thing, they should be
d11155ec
KW
3139 # combined (EXCEPT where the arrays require adjustments, in which
3140 # case everything is already set up correctly). This happens in
3141 # our constructed dt mapping, as Element [-2] is the map for the
3142 # latest range so far processed. Just set the beginning point of
3143 # the map to $missing (in invlist[-1]) to 1 beyond where this
3144 # range ends. For example, in
62b3b855
KW
3145 # 12\t13\tXYZ
3146 # 14\t17\tXYZ
3147 # we have set it up so that it looks like
3148 # 12 => XYZ
3149 # 14 => $missing
3150 #
3151 # We now see that it should be
3152 # 12 => XYZ
3153 # 18 => $missing
d11155ec 3154 if (! $requires_adjustment && @invlist > 1 && ( (defined $map)
c887f93f
KW
3155 ? $invmap[-2] eq $map
3156 : $invmap[-2] eq 'Y'))
3157 {
62b3b855
KW
3158 $invlist[-1] = $end + 1;
3159 next;
3160 }
3161
3162 # Here, the range started in the previous iteration that maps to
3163 # $missing starts at the same code point as this range. That
3164 # means there is no gap to fill that that range was intended for,
3165 # so we just pop it off the parallel arrays.
3166 pop @invlist;
3167 pop @invmap;
3168 }
3169
3170 # Add the range beginning, and the range's map.
3171 push @invlist, $begin;
d11155ec 3172 if ($returned_prop eq 'ToDm') {
62b3b855
KW
3173
3174 # The decomposition maps are either a line like <hangul syllable>
3175 # which are to be taken as is; or a sequence of code points in hex
3176 # and separated by blanks. Convert them to decimal, and if there
3177 # is more than one, use an anonymous array as the map.
3178 if ($map =~ /^ < /x) {
3179 push @invmap, $map;
3180 }
3181 else {
bea2c146 3182 my @map = split " ", $map;
62b3b855
KW
3183 if (@map == 1) {
3184 push @invmap, $map[0];
3185 }
3186 else {
3187 push @invmap, \@map;
3188 }
3189 }
3190 }
3191 else {
3192
3193 # Otherwise, convert hex formatted list entries to decimal; add a
3194 # 'Y' map for the missing value in binary properties, or
3195 # otherwise, use the input map unchanged.
3196 $map = ($format eq 'x')
3197 ? hex $map
3198 : $format eq 'b'
3199 ? 'Y'
3200 : $map;
3201 push @invmap, $map;
3202 }
3203
3204 # We just started a range. It ends with $end. The gap between it and
3205 # the next element in the list must be filled with a range that maps
3206 # to the default value. If there is no gap, the next iteration will
3207 # pop this, unless there is no next iteration, and we have filled all
3208 # of the Unicode code space, so check for that and skip.
3209 if ($end < $MAX_UNICODE_CODEPOINT) {
3210 push @invlist, $end + 1;
3211 push @invmap, $missing;
3212 }
3213 }
3214
3215 # If the property is empty, make all code points use the value for missing
3216 # ones.
3217 if (! @invlist) {
3218 push @invlist, 0;
3219 push @invmap, $missing;
3220 }
3221
647396da 3222 # And add in standard element that all non-Unicode code points map to:
62b3b855
KW
3223 # $missing
3224 push @invlist, $MAX_UNICODE_CODEPOINT + 1;
3225 push @invmap, $missing;
3226
3227 # The second component of the map are those values that require
3228 # non-standard specification, stored in SPECIALS. These override any
3229 # duplicate code points in LIST. If we are using a proxy, we may have
3230 # already set $overrides based on the proxy.
3231 $overrides = $swash->{'SPECIALS'} unless defined $overrides;
3232 if ($overrides) {
3233
3234 # A negative $overrides implies that the SPECIALS should be ignored,
d11155ec 3235 # and a simple 'a' list is the value.
62b3b855 3236 if ($overrides < 0) {
d11155ec 3237 $format = 'a';
62b3b855
KW
3238 }
3239 else {
3240
3241 # Currently, all overrides are for properties that normally map to
3242 # single code points, but now some will map to lists of code
3243 # points (but there is an exception case handled below).
d11155ec 3244 $format = 'al';
62b3b855
KW
3245
3246 # Look through the overrides.
3247 foreach my $cp_maybe_utf8 (keys %$overrides) {
3248 my $cp;
3249 my @map;
3250
3251 # If the overrides came from SPECIALS, the code point keys are
3252 # packed UTF-8.
3253 if ($overrides == $swash->{'SPECIALS'}) {
3254 $cp = unpack("C0U", $cp_maybe_utf8);
3255 @map = unpack "U0U*", $swash->{'SPECIALS'}{$cp_maybe_utf8};
3256
3257 # The empty string will show up unpacked as an empty
3258 # array.
d11155ec 3259 $format = 'ale' if @map == 0;
62b3b855
KW
3260 }
3261 else {
3262
3263 # But if we generated the overrides, we didn't bother to
3264 # pack them, and we, so far, do this only for properties
d11155ec 3265 # that are 'a' ones.
62b3b855
KW
3266 $cp = $cp_maybe_utf8;
3267 @map = hex $overrides->{$cp};
d11155ec 3268 $format = 'a';
62b3b855
KW
3269 }
3270
3271 # Find the range that the override applies to.
3272 my $i = _search_invlist(\@invlist, $cp);
3273 if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) {
294705a8 3274 croak __PACKAGE__, "::prop_invmap: wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]"
62b3b855
KW
3275 }
3276
3277 # And what that range currently maps to
3278 my $cur_map = $invmap[$i];
3279
3280 # If there is a gap between the next range and the code point
3281 # we are overriding, we have to add elements to both arrays to
3282 # fill that gap, using the map that applies to it, which is
3283 # $cur_map, since it is part of the current range.
3284 if ($invlist[$i + 1] > $cp + 1) {
3285 #use feature 'say';
3286 #say "Before splice:";
3287 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3288 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3289 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3290 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3291 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3292
3293 splice @invlist, $i + 1, 0, $cp + 1;
3294 splice @invmap, $i + 1, 0, $cur_map;
3295
3296 #say "After splice:";
3297 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3298 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3299 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3300 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3301 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3302 }
3303
3304 # If the remaining portion of the range is multiple code
3305 # points (ending with the one we are replacing, guaranteed by
3306 # the earlier splice). We must split it into two
3307 if ($invlist[$i] < $cp) {
3308 $i++; # Compensate for the new element
3309
3310 #use feature 'say';
3311 #say "Before splice:";
3312 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3313 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3314 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3315 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3316 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3317
3318 splice @invlist, $i, 0, $cp;
3319 splice @invmap, $i, 0, 'dummy';
3320
3321 #say "After splice:";
3322 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3323 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3324 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3325 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3326 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3327 }
3328
3329 # Here, the range we are overriding contains a single code
3330 # point. The result could be the empty string, a single
3331 # value, or a list. If the last case, we use an anonymous
3332 # array.
3333 $invmap[$i] = (scalar @map == 0)
3334 ? ""
3335 : (scalar @map > 1)
3336 ? \@map
3337 : $map[0];
3338 }
3339 }
3340 }
3341 elsif ($format eq 'x') {
3342
647396da
KW
3343 # All hex-valued properties are really to code points, and have been
3344 # converted to decimal.
5bbfa552 3345 $format = 's';
62b3b855 3346 }
d11155ec
KW
3347 elsif ($returned_prop eq 'ToDm') {
3348 $format = 'ad';
62b3b855
KW
3349 }
3350 elsif ($format eq 'sw') { # blank-separated elements to form a list.
3351 map { $_ = [ split " ", $_ ] if $_ =~ / / } @invmap;
3352 $format = 'sl';
3353 }
3354 elsif ($returned_prop eq 'ToNameAlias') {
3355
3356 # This property currently doesn't have any lists, but theoretically
3357 # could
3358 $format = 'sl';
3359 }
b0b13ada 3360 elsif ($returned_prop eq 'ToPerlDecimalDigit') {
d11155ec 3361 $format = 'ae';
b0b13ada 3362 }
4f143a72
KW
3363 elsif ($returned_prop eq 'ToNv') {
3364
3365 # The one property that has this format is stored as a delta, so needs
3366 # to indicate that need to add code point to it.
3367 $format = 'ar';
3368 }
b577d4a6 3369 elsif ($format ne 'n' && $format ne 'a') {
62b3b855
KW
3370
3371 # All others are simple scalars
3372 $format = 's';
3373 }
e35c6019 3374 if ($has_multiples && $format !~ /l/) {
294705a8 3375 croak __PACKAGE__, "::prop_invmap: Wrong format '$format' for prop_invmap('$prop'); should indicate has lists";
e35c6019 3376 }
62b3b855
KW
3377
3378 return (\@invlist, \@invmap, $format, $missing);
3379}
3380
55d7b906 3381=head2 Unicode::UCD::UnicodeVersion
10a6ecd2 3382
a452d459
KW
3383This returns the version of the Unicode Character Database, in other words, the
3384version of the Unicode standard the database implements. The version is a
3385string of numbers delimited by dots (C<'.'>).
10a6ecd2
JH
3386
3387=cut
3388
3389my $UNICODEVERSION;
3390
3391sub UnicodeVersion {
3392 unless (defined $UNICODEVERSION) {
3393 openunicode(\$VERSIONFH, "version");
ce066323 3394 local $/ = "\n";
10a6ecd2
JH
3395 chomp($UNICODEVERSION = <$VERSIONFH>);
3396 close($VERSIONFH);
3397 croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'"
3398 unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/;
3399 }
e80c2d9d 3400 $v_unicode_version = pack "C*", split /\./, $UNICODEVERSION;
10a6ecd2
JH
3401 return $UNICODEVERSION;
3402}
3aa957f9 3403
a452d459
KW
3404=head2 B<Blocks versus Scripts>
3405
3406The difference between a block and a script is that scripts are closer
3407to the linguistic notion of a set of code points required to present
3408languages, while block is more of an artifact of the Unicode code point
3409numbering and separation into blocks of (mostly) 256 code points.
3410
3411For example the Latin B<script> is spread over several B<blocks>, such
3412as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and
3413C<Latin Extended-B>. On the other hand, the Latin script does not
3414contain all the characters of the C<Basic Latin> block (also known as
3415ASCII): it includes only the letters, and not, for example, the digits
3416or the punctuation.
3417
3418For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt>
3419
3420For scripts see UTR #24: L<http://www.unicode.org/unicode/reports/tr24/>
3421
3422=head2 B<Matching Scripts and Blocks>
3423
3424Scripts are matched with the regular-expression construct
3425C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script),
f200dd12 3426while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches
a452d459
KW
3427any of the 256 code points in the Tibetan block).
3428
430fe03d
KW
3429=head2 Old-style versus new-style block names
3430
3431Unicode publishes the names of blocks in two different styles, though the two
3432are equivalent under Unicode's loose matching rules.
3433
3434The original style uses blanks and hyphens in the block names (except for
3435C<No_Block>), like so:
3436
3437 Miscellaneous Mathematical Symbols-B
3438
3439The newer style replaces these with underscores, like this:
3440
3441 Miscellaneous_Mathematical_Symbols_B
3442
3443This newer style is consistent with the values of other Unicode properties.
3444To preserve backward compatibility, all the functions in Unicode::UCD that
3445return block names (except one) return the old-style ones. That one function,
3446L</prop_value_aliases()> can be used to convert from old-style to new-style:
3447
3448 my $new_style = prop_values_aliases("block", $old_style);
3449
3450Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>,
3451meaning C<Block=Cyrillic>. These have always been written in the new style.
3452
3453To convert from new-style to old-style, follow this recipe:
3454
3455 $old_style = charblock((prop_invlist("block=$new_style"))[0]);
3456
3457(which finds the range of code points in the block using C<prop_invlist>,
3458gets the lower end of the range (0th element) and then looks up the old name
3459for its block using C<charblock>).
3460
7620cb10
KW
3461Note that starting in Unicode 6.1, many of the block names have shorter
3462synonyms. These are always given in the new style.
3463
8b731da2
JH
3464=head1 BUGS
3465
3466Does not yet support EBCDIC platforms.
3467
561c79ed
JH
3468=head1 AUTHOR
3469
a18e976f 3470Jarkko Hietaniemi. Now maintained by perl5 porters.
561c79ed
JH
3471
3472=cut
3473
34741;