This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Update CPAN-Meta to CPAN version 2.120351
[perl5.git] / lib / Unicode / UCD.pm
CommitLineData
55d7b906 1package Unicode::UCD;
561c79ed
JH
2
3use strict;
4use warnings;
36c2430c 5no warnings 'surrogate'; # surrogates can be inputs to this
98ef7649 6use charnames ();
94c91ffc 7use Unicode::Normalize qw(getCombinClass NFD);
561c79ed 8
2a7afa74 9our $VERSION = '0.40';
561c79ed 10
741297c1
JH
11use Storable qw(dclone);
12
561c79ed
JH
13require Exporter;
14
15our @ISA = qw(Exporter);
74f8133e 16
10a6ecd2
JH
17our @EXPORT_OK = qw(charinfo
18 charblock charscript
19 charblocks charscripts
b08cd201 20 charinrange
ea508aee 21 general_categories bidi_types
b08cd201 22 compexcl
a2bd7410 23 casefold casespec
7319f91d
KW
24 namedseq
25 num
7ef25837
KW
26 prop_aliases
27 prop_value_aliases
681d705c 28 prop_invlist
62b3b855 29 prop_invmap
681d705c 30 MAX_CP
7319f91d 31 );
561c79ed
JH
32
33use Carp;
34
35=head1 NAME
36
55d7b906 37Unicode::UCD - Unicode character database
561c79ed
JH
38
39=head1 SYNOPSIS
40
55d7b906 41 use Unicode::UCD 'charinfo';
b08cd201 42 my $charinfo = charinfo($codepoint);
561c79ed 43
956cae9a
KW
44 use Unicode::UCD 'casefold';
45 my $casefold = casefold(0xFB00);
46
5d8e6e41
KW
47 use Unicode::UCD 'casespec';
48 my $casespec = casespec(0xFB00);
49
55d7b906 50 use Unicode::UCD 'charblock';
e882dd67
JH
51 my $charblock = charblock($codepoint);
52
55d7b906 53 use Unicode::UCD 'charscript';
65044554 54 my $charscript = charscript($codepoint);
561c79ed 55
55d7b906 56 use Unicode::UCD 'charblocks';
e145285f
JH
57 my $charblocks = charblocks();
58
55d7b906 59 use Unicode::UCD 'charscripts';
ea508aee 60 my $charscripts = charscripts();
e145285f 61
55d7b906 62 use Unicode::UCD qw(charscript charinrange);
e145285f
JH
63 my $range = charscript($script);
64 print "looks like $script\n" if charinrange($range, $codepoint);
65
ea508aee
JH
66 use Unicode::UCD qw(general_categories bidi_types);
67 my $categories = general_categories();
68 my $types = bidi_types();
69
7ef25837
KW
70 use Unicode::UCD 'prop_aliases';
71 my @space_names = prop_aliases("space");
72
73 use Unicode::UCD 'prop_value_aliases';
74 my @gc_punct_names = prop_value_aliases("Gc", "Punct");
75
681d705c
KW
76 use Unicode::UCD 'prop_invlist';
77 my @puncts = prop_invlist("gc=punctuation");
78
62b3b855
KW
79 use Unicode::UCD 'prop_invmap';
80 my ($list_ref, $map_ref, $format, $missing)
81 = prop_invmap("General Category");
82
55d7b906 83 use Unicode::UCD 'compexcl';
e145285f
JH
84 my $compexcl = compexcl($codepoint);
85
a2bd7410
JH
86 use Unicode::UCD 'namedseq';
87 my $namedseq = namedseq($named_sequence_name);
88
55d7b906 89 my $unicode_version = Unicode::UCD::UnicodeVersion();
e145285f 90
7319f91d 91 my $convert_to_numeric =
62a8c8c2 92 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");
7319f91d 93
561c79ed
JH
94=head1 DESCRIPTION
95
a452d459
KW
96The Unicode::UCD module offers a series of functions that
97provide a simple interface to the Unicode
8b731da2 98Character Database.
561c79ed 99
a452d459
KW
100=head2 code point argument
101
102Some of the functions are called with a I<code point argument>, which is either
103a decimal or a hexadecimal scalar designating a Unicode code point, or C<U+>
104followed by hexadecimals designating a Unicode code point. In other words, if
105you want a code point to be interpreted as a hexadecimal number, you must
106prefix it with either C<0x> or C<U+>, because a string like e.g. C<123> will be
f200dd12
KW
107interpreted as a decimal code point. Note that the largest code point in
108Unicode is U+10FFFF.
c3e5bc54 109
561c79ed
JH
110=cut
111
10a6ecd2 112my $BLOCKSFH;
10a6ecd2 113my $VERSIONFH;
b08cd201
JH
114my $CASEFOLDFH;
115my $CASESPECFH;
a2bd7410 116my $NAMEDSEQFH;
561c79ed
JH
117
118sub openunicode {
119 my ($rfh, @path) = @_;
120 my $f;
121 unless (defined $$rfh) {
122 for my $d (@INC) {
123 use File::Spec;
55d7b906 124 $f = File::Spec->catfile($d, "unicore", @path);
32c16050 125 last if open($$rfh, $f);
e882dd67 126 undef $f;
561c79ed 127 }
e882dd67
JH
128 croak __PACKAGE__, ": failed to find ",
129 File::Spec->catfile(@path), " in @INC"
130 unless defined $f;
561c79ed
JH
131 }
132 return $f;
133}
134
a452d459 135=head2 B<charinfo()>
561c79ed 136
55d7b906 137 use Unicode::UCD 'charinfo';
561c79ed 138
b08cd201 139 my $charinfo = charinfo(0x41);
561c79ed 140
a452d459
KW
141This returns information about the input L</code point argument>
142as a reference to a hash of fields as defined by the Unicode
143standard. If the L</code point argument> is not assigned in the standard
144(i.e., has the general category C<Cn> meaning C<Unassigned>)
145or is a non-character (meaning it is guaranteed to never be assigned in
146the standard),
a18e976f 147C<undef> is returned.
a452d459
KW
148
149Fields that aren't applicable to the particular code point argument exist in the
150returned hash, and are empty.
151
152The keys in the hash with the meanings of their values are:
153
154=over
155
156=item B<code>
157
158the input L</code point argument> expressed in hexadecimal, with leading zeros
159added if necessary to make it contain at least four hexdigits
160
161=item B<name>
162
163name of I<code>, all IN UPPER CASE.
164Some control-type code points do not have names.
165This field will be empty for C<Surrogate> and C<Private Use> code points,
166and for the others without a name,
167it will contain a description enclosed in angle brackets, like
168C<E<lt>controlE<gt>>.
169
170
171=item B<category>
172
173The short name of the general category of I<code>.
174This will match one of the keys in the hash returned by L</general_categories()>.
175
7ef25837
KW
176The L</prop_value_aliases()> function can be used to get all the synonyms
177of the category name.
178
a452d459
KW
179=item B<combining>
180
181the combining class number for I<code> used in the Canonical Ordering Algorithm.
182For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior>
183available at
184L<http://www.unicode.org/versions/Unicode5.1.0/>
185
7ef25837
KW
186The L</prop_value_aliases()> function can be used to get all the synonyms
187of the combining class number.
188
a452d459
KW
189=item B<bidi>
190
191bidirectional type of I<code>.
192This will match one of the keys in the hash returned by L</bidi_types()>.
193
7ef25837
KW
194The L</prop_value_aliases()> function can be used to get all the synonyms
195of the bidi type name.
196
a452d459
KW
197=item B<decomposition>
198
199is empty if I<code> has no decomposition; or is one or more codes
a18e976f 200(separated by spaces) that, taken in order, represent a decomposition for
a452d459
KW
201I<code>. Each has at least four hexdigits.
202The codes may be preceded by a word enclosed in angle brackets then a space,
203like C<E<lt>compatE<gt> >, giving the type of decomposition
204
06bba7d5
KW
205This decomposition may be an intermediate one whose components are also
206decomposable. Use L<Unicode::Normalize> to get the final decomposition.
207
a452d459
KW
208=item B<decimal>
209
210if I<code> is a decimal digit this is its integer numeric value
211
212=item B<digit>
213
89e4a205
KW
214if I<code> represents some other digit-like number, this is its integer
215numeric value
a452d459
KW
216
217=item B<numeric>
218
219if I<code> represents a whole or rational number, this is its numeric value.
220Rational values are expressed as a string like C<1/4>.
221
222=item B<mirrored>
223
224C<Y> or C<N> designating if I<code> is mirrored in bidirectional text
225
226=item B<unicode10>
227
228name of I<code> in the Unicode 1.0 standard if one
229existed for this code point and is different from the current name
230
231=item B<comment>
232
89e4a205 233As of Unicode 6.0, this is always empty.
a452d459
KW
234
235=item B<upper>
236
06bba7d5 237is empty if there is no single code point uppercase mapping for I<code>
4f66642e 238(its uppercase mapping is itself);
a452d459
KW
239otherwise it is that mapping expressed as at least four hexdigits.
240(L</casespec()> should be used in addition to B<charinfo()>
241for case mappings when the calling program can cope with multiple code point
242mappings.)
243
244=item B<lower>
245
06bba7d5 246is empty if there is no single code point lowercase mapping for I<code>
4f66642e 247(its lowercase mapping is itself);
a452d459
KW
248otherwise it is that mapping expressed as at least four hexdigits.
249(L</casespec()> should be used in addition to B<charinfo()>
250for case mappings when the calling program can cope with multiple code point
251mappings.)
252
253=item B<title>
254
06bba7d5 255is empty if there is no single code point titlecase mapping for I<code>
4f66642e 256(its titlecase mapping is itself);
a452d459
KW
257otherwise it is that mapping expressed as at least four hexdigits.
258(L</casespec()> should be used in addition to B<charinfo()>
259for case mappings when the calling program can cope with multiple code point
260mappings.)
261
262=item B<block>
263
a18e976f 264the block I<code> belongs to (used in C<\p{Blk=...}>).
a452d459
KW
265See L</Blocks versus Scripts>.
266
267
268=item B<script>
269
a18e976f 270the script I<code> belongs to.
a452d459
KW
271See L</Blocks versus Scripts>.
272
273=back
32c16050
JH
274
275Note that you cannot do (de)composition and casing based solely on the
a452d459
KW
276I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields;
277you will need also the L</compexcl()>, and L</casespec()> functions.
561c79ed
JH
278
279=cut
280
e10d7780 281# NB: This function is nearly duplicated in charnames.pm
10a6ecd2
JH
282sub _getcode {
283 my $arg = shift;
284
dc0a4417 285 if ($arg =~ /^[1-9]\d*$/) {
10a6ecd2 286 return $arg;
dc0a4417 287 } elsif ($arg =~ /^(?:[Uu]\+|0[xX])?([[:xdigit:]]+)$/) {
10a6ecd2
JH
288 return hex($1);
289 }
290
291 return;
292}
293
05dbc6f8
KW
294# Populated by _num. Converts real number back to input rational
295my %real_to_rational;
296
297# To store the contents of files found on disk.
298my @BIDIS;
299my @CATEGORIES;
300my @DECOMPOSITIONS;
301my @NUMERIC_TYPES;
5c3b35c9
KW
302my %SIMPLE_LOWER;
303my %SIMPLE_TITLE;
304my %SIMPLE_UPPER;
305my %UNICODE_1_NAMES;
05dbc6f8
KW
306
307sub _charinfo_case {
308
309 # Returns the value to set into one of the case fields in the charinfo
310 # structure.
311 # $char is the character,
312 # $cased is the case-changed character
313 # $file is the file in lib/unicore/To/$file that contains the data
314 # needed for this, in the form that _search() understands.
5c3b35c9 315 # $hash_ref points to the hash holding the contents of $file. It will
05dbc6f8
KW
316 # be populated if empty.
317 # By using the 'uc', etc. functions, we avoid loading more files into
318 # memory except for those rare cases where the simple casing (which has
319 # been what charinfo() has always returned, is different than the full
320 # casing.
5c3b35c9 321 my ($char, $cased, $file, $hash_ref) = @_;
05dbc6f8
KW
322
323 return "" if $cased eq $char;
324
325 return sprintf("%04X", ord $cased) if length($cased) == 1;
326
5c3b35c9
KW
327 %$hash_ref =_read_table("unicore/To/$file", 'use_hash') unless %$hash_ref;
328 return $hash_ref->{ord $char} // "";
a6fa416b
TS
329}
330
05dbc6f8 331sub charinfo {
a6fa416b 332
05dbc6f8
KW
333 # This function has traditionally mimicked what is in UnicodeData.txt,
334 # warts and all. This is a re-write that avoids UnicodeData.txt so that
335 # it can be removed to save disk space. Instead, this assembles
336 # information gotten by other methods that get data from various other
337 # files. It uses charnames to get the character name; and various
338 # mktables tables.
324f9e44 339
05dbc6f8 340 use feature 'unicode_strings';
a6fa416b 341
10a6ecd2
JH
342 my $arg = shift;
343 my $code = _getcode($arg);
05dbc6f8
KW
344 croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code;
345
346 # Non-unicode implies undef.
347 return if $code > 0x10FFFF;
348
349 my %prop;
350 my $char = chr($code);
351
352 @CATEGORIES =_read_table("unicore/To/Gc.pl") unless @CATEGORIES;
353 $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code)
354 // $utf8::SwashInfo{'ToGc'}{'missing'};
355
356 return if $prop{'category'} eq 'Cn'; # Unassigned code points are undef
357
358 $prop{'code'} = sprintf "%04X", $code;
359 $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>'
360 : (charnames::viacode($code) // "");
361
362 $prop{'combining'} = getCombinClass($code);
363
364 @BIDIS =_read_table("unicore/To/Bc.pl") unless @BIDIS;
365 $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code)
366 // $utf8::SwashInfo{'ToBc'}{'missing'};
367
368 # For most code points, we can just read in "unicore/Decomposition.pl", as
369 # its contents are exactly what should be output. But that file doesn't
370 # contain the data for the Hangul syllable decompositions, which can be
94c91ffc
KW
371 # algorithmically computed, and NFD() does that, so we call NFD() for
372 # those. We can't use NFD() for everything, as it does a complete
05dbc6f8 373 # recursive decomposition, and what this function has always done is to
94c91ffc
KW
374 # return what's in UnicodeData.txt which doesn't show that recursiveness.
375 # Fortunately, the NFD() of the Hanguls doesn't have any recursion
376 # issues.
377 # Having no decomposition implies an empty field; otherwise, all but
378 # "Canonical" imply a compatible decomposition, and the type is prefixed
379 # to that, as it is in UnicodeData.txt
05dbc6f8
KW
380 if ($char =~ /\p{Block=Hangul_Syllables}/) {
381 # The code points of the decomposition are output in standard Unicode
382 # hex format, separated by blanks.
383 $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)}
94c91ffc 384 unpack "U*", NFD($char);
a6fa416b 385 }
05dbc6f8
KW
386 else {
387 @DECOMPOSITIONS = _read_table("unicore/Decomposition.pl")
388 unless @DECOMPOSITIONS;
389 $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS,
390 $code) // "";
561c79ed 391 }
05dbc6f8
KW
392
393 # Can use num() to get the numeric values, if any.
394 if (! defined (my $value = num($char))) {
395 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = "";
396 }
397 else {
398 if ($char =~ /\d/) {
399 $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value;
400 }
401 else {
402
403 # For non-decimal-digits, we have to read in the Numeric type
404 # to distinguish them. It is not just a matter of integer vs.
405 # rational, as some whole number values are not considered digits,
406 # e.g., TAMIL NUMBER TEN.
407 $prop{'decimal'} = "";
408
409 @NUMERIC_TYPES =_read_table("unicore/To/Nt.pl")
410 unless @NUMERIC_TYPES;
411 if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "")
412 eq 'Digit')
413 {
414 $prop{'digit'} = $prop{'numeric'} = $value;
415 }
416 else {
417 $prop{'digit'} = "";
418 $prop{'numeric'} = $real_to_rational{$value} // $value;
419 }
420 }
421 }
422
423 $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N';
424
5c3b35c9
KW
425 %UNICODE_1_NAMES =_read_table("unicore/To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES;
426 $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // "";
05dbc6f8
KW
427
428 # This is true starting in 6.0, but, num() also requires 6.0, so
429 # don't need to test for version again here.
430 $prop{'comment'} = "";
431
5c3b35c9
KW
432 $prop{'upper'} = _charinfo_case($char, uc $char, '_suc.pl', \%SIMPLE_UPPER);
433 $prop{'lower'} = _charinfo_case($char, lc $char, '_slc.pl', \%SIMPLE_LOWER);
05dbc6f8 434 $prop{'title'} = _charinfo_case($char, ucfirst $char, '_stc.pl',
5c3b35c9 435 \%SIMPLE_TITLE);
05dbc6f8
KW
436
437 $prop{block} = charblock($code);
438 $prop{script} = charscript($code);
439 return \%prop;
561c79ed
JH
440}
441
e882dd67
JH
442sub _search { # Binary search in a [[lo,hi,prop],[...],...] table.
443 my ($table, $lo, $hi, $code) = @_;
444
445 return if $lo > $hi;
446
447 my $mid = int(($lo+$hi) / 2);
448
449 if ($table->[$mid]->[0] < $code) {
10a6ecd2 450 if ($table->[$mid]->[1] >= $code) {
e882dd67
JH
451 return $table->[$mid]->[2];
452 } else {
453 _search($table, $mid + 1, $hi, $code);
454 }
455 } elsif ($table->[$mid]->[0] > $code) {
456 _search($table, $lo, $mid - 1, $code);
457 } else {
458 return $table->[$mid]->[2];
459 }
460}
461
cb366075 462sub _read_table ($;$) {
3a12600d
KW
463
464 # Returns the contents of the mktables generated table file located at $1
cb366075
KW
465 # in the form of either an array of arrays or a hash, depending on if the
466 # optional second parameter is true (for hash return) or not. In the case
467 # of a hash return, each key is a code point, and its corresponding value
468 # is what the table gives as the code point's corresponding value. In the
469 # case of an array return, each outer array denotes a range with [0] the
470 # start point of that range; [1] the end point; and [2] the value that
471 # every code point in the range has. The hash return is useful for fast
472 # lookup when the table contains only single code point ranges. The array
473 # return takes much less memory when there are large ranges.
3a12600d 474 #
cb366075 475 # This function has the side effect of setting
3a12600d
KW
476 # $utf8::SwashInfo{$property}{'format'} to be the mktables format of the
477 # table; and
478 # $utf8::SwashInfo{$property}{'missing'} to be the value for all entries
479 # not listed in the table.
480 # where $property is the Unicode property name, preceded by 'To' for map
481 # properties., e.g., 'ToSc'.
482 #
483 # Table entries look like one of:
484 # 0000 0040 Common # [65]
485 # 00AA Latin
486
487 my $table = shift;
cb366075
KW
488 my $return_hash = shift;
489 $return_hash = 0 unless defined $return_hash;
3a12600d 490 my @return;
cb366075 491 my %return;
3a12600d
KW
492 local $_;
493
494 for (split /^/m, do $table) {
495 my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?)
496 \s* ( \# .* )? # Optional comment
497 $ /x;
83fd1222
KW
498 my $decimal_start = hex $start;
499 my $decimal_end = ($end eq "") ? $decimal_start : hex $end;
cb366075 500 if ($return_hash) {
83fd1222 501 foreach my $i ($decimal_start .. $decimal_end) {
cb366075
KW
502 $return{$i} = $value;
503 }
504 }
9a96c106
KW
505 elsif (@return &&
506 $return[-1][1] == $decimal_start - 1
507 && $return[-1][2] eq $value)
508 {
509 # If this is merely extending the previous range, do just that.
510 $return[-1]->[1] = $decimal_end;
511 }
cb366075 512 else {
83fd1222 513 push @return, [ $decimal_start, $decimal_end, $value ];
cb366075 514 }
3a12600d 515 }
cb366075 516 return ($return_hash) ? %return : @return;
3a12600d
KW
517}
518
10a6ecd2
JH
519sub charinrange {
520 my ($range, $arg) = @_;
521 my $code = _getcode($arg);
522 croak __PACKAGE__, "::charinrange: unknown code '$arg'"
523 unless defined $code;
524 _search($range, 0, $#$range, $code);
525}
526
a452d459 527=head2 B<charblock()>
561c79ed 528
55d7b906 529 use Unicode::UCD 'charblock';
561c79ed
JH
530
531 my $charblock = charblock(0x41);
10a6ecd2 532 my $charblock = charblock(1234);
a452d459 533 my $charblock = charblock(0x263a);
10a6ecd2
JH
534 my $charblock = charblock("U+263a");
535
78bf21c2 536 my $range = charblock('Armenian');
10a6ecd2 537
a452d459 538With a L</code point argument> charblock() returns the I<block> the code point
430fe03d
KW
539belongs to, e.g. C<Basic Latin>. The old-style block name is returned (see
540L</Old-style versus new-style block names>).
a452d459 541If the code point is unassigned, this returns the block it would belong to if
a18e976f 542it were assigned.
10a6ecd2 543
78bf21c2
JH
544See also L</Blocks versus Scripts>.
545
18972f4b 546If supplied with an argument that can't be a code point, charblock() tries to
430fe03d
KW
547do the opposite and interpret the argument as an old-style block name. The
548return value
a18e976f
KW
549is a I<range set> with one range: an anonymous list with a single element that
550consists of another anonymous list whose first element is the first code point
551in the block, and whose second (and final) element is the final code point in
552the block. (The extra list consisting of just one element is so that the same
553program logic can be used to handle both this return, and the return from
554L</charscript()> which can have multiple ranges.) You can test whether a code
555point is in a range using the L</charinrange()> function. If the argument is
556not a known block, C<undef> is returned.
561c79ed 557
561c79ed
JH
558=cut
559
560my @BLOCKS;
10a6ecd2 561my %BLOCKS;
561c79ed 562
10a6ecd2 563sub _charblocks {
06bba7d5
KW
564
565 # Can't read from the mktables table because it loses the hyphens in the
566 # original.
561c79ed 567 unless (@BLOCKS) {
10a6ecd2 568 if (openunicode(\$BLOCKSFH, "Blocks.txt")) {
6c8d78fb 569 local $_;
ce066323 570 local $/ = "\n";
10a6ecd2 571 while (<$BLOCKSFH>) {
2796c109 572 if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) {
10a6ecd2
JH
573 my ($lo, $hi) = (hex($1), hex($2));
574 my $subrange = [ $lo, $hi, $3 ];
575 push @BLOCKS, $subrange;
576 push @{$BLOCKS{$3}}, $subrange;
561c79ed
JH
577 }
578 }
10a6ecd2 579 close($BLOCKSFH);
561c79ed
JH
580 }
581 }
10a6ecd2
JH
582}
583
584sub charblock {
585 my $arg = shift;
586
587 _charblocks() unless @BLOCKS;
588
589 my $code = _getcode($arg);
561c79ed 590
10a6ecd2 591 if (defined $code) {
c707cf8e
KW
592 my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code);
593 return $result if defined $result;
594 return 'No_Block';
595 }
596 elsif (exists $BLOCKS{$arg}) {
597 return dclone $BLOCKS{$arg};
10a6ecd2 598 }
e882dd67
JH
599}
600
a452d459 601=head2 B<charscript()>
e882dd67 602
55d7b906 603 use Unicode::UCD 'charscript';
e882dd67
JH
604
605 my $charscript = charscript(0x41);
10a6ecd2
JH
606 my $charscript = charscript(1234);
607 my $charscript = charscript("U+263a");
e882dd67 608
78bf21c2 609 my $range = charscript('Thai');
10a6ecd2 610
a452d459
KW
611With a L</code point argument> charscript() returns the I<script> the
612code point belongs to, e.g. C<Latin>, C<Greek>, C<Han>.
bb2d29dc 613If the code point is unassigned, it returns C<"Unknown">.
78bf21c2 614
eb0cc9e3 615If supplied with an argument that can't be a code point, charscript() tries
a18e976f
KW
616to do the opposite and interpret the argument as a script name. The
617return value is a I<range set>: an anonymous list of lists that contain
eb0cc9e3 618I<start-of-range>, I<end-of-range> code point pairs. You can test whether a
a18e976f
KW
619code point is in a range set using the L</charinrange()> function. If the
620argument is not a known script, C<undef> is returned.
a452d459
KW
621
622See also L</Blocks versus Scripts>.
e882dd67 623
e882dd67
JH
624=cut
625
626my @SCRIPTS;
10a6ecd2 627my %SCRIPTS;
e882dd67 628
10a6ecd2 629sub _charscripts {
7bccef0b
KW
630 @SCRIPTS =_read_table("unicore/To/Sc.pl") unless @SCRIPTS;
631 foreach my $entry (@SCRIPTS) {
f3d50ac9 632 $entry->[2] =~ s/(_\w)/\L$1/g; # Preserve old-style casing
7bccef0b 633 push @{$SCRIPTS{$entry->[2]}}, $entry;
e882dd67 634 }
10a6ecd2
JH
635}
636
637sub charscript {
638 my $arg = shift;
639
640 _charscripts() unless @SCRIPTS;
e882dd67 641
10a6ecd2
JH
642 my $code = _getcode($arg);
643
644 if (defined $code) {
7bccef0b
KW
645 my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code);
646 return $result if defined $result;
8079ad82 647 return $utf8::SwashInfo{'ToSc'}{'missing'};
7bccef0b
KW
648 } elsif (exists $SCRIPTS{$arg}) {
649 return dclone $SCRIPTS{$arg};
10a6ecd2 650 }
7bccef0b
KW
651
652 return;
10a6ecd2
JH
653}
654
a452d459 655=head2 B<charblocks()>
10a6ecd2 656
55d7b906 657 use Unicode::UCD 'charblocks';
10a6ecd2 658
b08cd201 659 my $charblocks = charblocks();
10a6ecd2 660
b08cd201 661charblocks() returns a reference to a hash with the known block names
a452d459 662as the keys, and the code point ranges (see L</charblock()>) as the values.
10a6ecd2 663
430fe03d
KW
664The names are in the old-style (see L</Old-style versus new-style block
665names>).
666
62b3b855
KW
667L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a
668different type of data structure.
669
78bf21c2
JH
670See also L</Blocks versus Scripts>.
671
10a6ecd2
JH
672=cut
673
674sub charblocks {
b08cd201 675 _charblocks() unless %BLOCKS;
741297c1 676 return dclone \%BLOCKS;
10a6ecd2
JH
677}
678
a452d459 679=head2 B<charscripts()>
10a6ecd2 680
55d7b906 681 use Unicode::UCD 'charscripts';
10a6ecd2 682
ea508aee 683 my $charscripts = charscripts();
10a6ecd2 684
ea508aee 685charscripts() returns a reference to a hash with the known script
a452d459 686names as the keys, and the code point ranges (see L</charscript()>) as
ea508aee 687the values.
10a6ecd2 688
62b3b855
KW
689L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a
690different type of data structure.
691
78bf21c2
JH
692See also L</Blocks versus Scripts>.
693
10a6ecd2
JH
694=cut
695
696sub charscripts {
b08cd201 697 _charscripts() unless %SCRIPTS;
741297c1 698 return dclone \%SCRIPTS;
561c79ed
JH
699}
700
a452d459 701=head2 B<charinrange()>
10a6ecd2 702
f200dd12 703In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you
10a6ecd2 704can also test whether a code point is in the I<range> as returned by
a452d459
KW
705L</charblock()> and L</charscript()> or as the values of the hash returned
706by L</charblocks()> and L</charscripts()> by using charinrange():
10a6ecd2 707
55d7b906 708 use Unicode::UCD qw(charscript charinrange);
10a6ecd2
JH
709
710 $range = charscript('Hiragana');
e145285f 711 print "looks like hiragana\n" if charinrange($range, $codepoint);
10a6ecd2
JH
712
713=cut
714
ea508aee
JH
715my %GENERAL_CATEGORIES =
716 (
717 'L' => 'Letter',
718 'LC' => 'CasedLetter',
719 'Lu' => 'UppercaseLetter',
720 'Ll' => 'LowercaseLetter',
721 'Lt' => 'TitlecaseLetter',
722 'Lm' => 'ModifierLetter',
723 'Lo' => 'OtherLetter',
724 'M' => 'Mark',
725 'Mn' => 'NonspacingMark',
726 'Mc' => 'SpacingMark',
727 'Me' => 'EnclosingMark',
728 'N' => 'Number',
729 'Nd' => 'DecimalNumber',
730 'Nl' => 'LetterNumber',
731 'No' => 'OtherNumber',
732 'P' => 'Punctuation',
733 'Pc' => 'ConnectorPunctuation',
734 'Pd' => 'DashPunctuation',
735 'Ps' => 'OpenPunctuation',
736 'Pe' => 'ClosePunctuation',
737 'Pi' => 'InitialPunctuation',
738 'Pf' => 'FinalPunctuation',
739 'Po' => 'OtherPunctuation',
740 'S' => 'Symbol',
741 'Sm' => 'MathSymbol',
742 'Sc' => 'CurrencySymbol',
743 'Sk' => 'ModifierSymbol',
744 'So' => 'OtherSymbol',
745 'Z' => 'Separator',
746 'Zs' => 'SpaceSeparator',
747 'Zl' => 'LineSeparator',
748 'Zp' => 'ParagraphSeparator',
749 'C' => 'Other',
750 'Cc' => 'Control',
751 'Cf' => 'Format',
752 'Cs' => 'Surrogate',
753 'Co' => 'PrivateUse',
754 'Cn' => 'Unassigned',
755 );
756
757sub general_categories {
758 return dclone \%GENERAL_CATEGORIES;
759}
760
a452d459 761=head2 B<general_categories()>
ea508aee
JH
762
763 use Unicode::UCD 'general_categories';
764
765 my $categories = general_categories();
766
a452d459 767This returns a reference to a hash which has short
ea508aee
JH
768general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long
769names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>,
770C<Symbol>) as values. The hash is reversible in case you need to go
771from the long names to the short names. The general category is the
a452d459
KW
772one returned from
773L</charinfo()> under the C<category> key.
ea508aee 774
7ef25837
KW
775The L</prop_value_aliases()> function can be used to get all the synonyms of
776the category name.
777
ea508aee
JH
778=cut
779
780my %BIDI_TYPES =
781 (
782 'L' => 'Left-to-Right',
783 'LRE' => 'Left-to-Right Embedding',
784 'LRO' => 'Left-to-Right Override',
785 'R' => 'Right-to-Left',
786 'AL' => 'Right-to-Left Arabic',
787 'RLE' => 'Right-to-Left Embedding',
788 'RLO' => 'Right-to-Left Override',
789 'PDF' => 'Pop Directional Format',
790 'EN' => 'European Number',
791 'ES' => 'European Number Separator',
792 'ET' => 'European Number Terminator',
793 'AN' => 'Arabic Number',
794 'CS' => 'Common Number Separator',
795 'NSM' => 'Non-Spacing Mark',
796 'BN' => 'Boundary Neutral',
797 'B' => 'Paragraph Separator',
798 'S' => 'Segment Separator',
799 'WS' => 'Whitespace',
800 'ON' => 'Other Neutrals',
801 );
802
a452d459 803=head2 B<bidi_types()>
ea508aee
JH
804
805 use Unicode::UCD 'bidi_types';
806
807 my $categories = bidi_types();
808
a452d459 809This returns a reference to a hash which has the short
ea508aee
JH
810bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long
811names (such as C<Left-to-Right>, C<Right-to-Left>) as values. The
812hash is reversible in case you need to go from the long names to the
a452d459
KW
813short names. The bidi type is the one returned from
814L</charinfo()>
ea508aee
JH
815under the C<bidi> key. For the exact meaning of the various bidi classes
816the Unicode TR9 is recommended reading:
a452d459 817L<http://www.unicode.org/reports/tr9/>
ea508aee
JH
818(as of Unicode 5.0.0)
819
7ef25837
KW
820The L</prop_value_aliases()> function can be used to get all the synonyms of
821the bidi type name.
822
ea508aee
JH
823=cut
824
a452d459
KW
825sub bidi_types {
826 return dclone \%BIDI_TYPES;
827}
828
829=head2 B<compexcl()>
b08cd201 830
55d7b906 831 use Unicode::UCD 'compexcl';
b08cd201 832
a452d459 833 my $compexcl = compexcl(0x09dc);
b08cd201 834
71a442a8
KW
835This routine is included for backwards compatibility, but as of Perl 5.12, for
836most purposes it is probably more convenient to use one of the following
837instead:
838
839 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
840 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};
841
842or even
843
844 my $compexcl = chr(0x09dc) =~ /\p{CE};
845 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};
846
847The first two forms return B<true> if the L</code point argument> should not
76b05678
KW
848be produced by composition normalization. For the final two forms to return
849B<true>, it is additionally required that this fact not otherwise be
850determinable from the Unicode data base.
71a442a8
KW
851
852This routine behaves identically to the final two forms. That is,
853it does not return B<true> if the code point has a decomposition
a452d459
KW
854consisting of another single code point, nor if its decomposition starts
855with a code point whose combining class is non-zero. Code points that meet
856either of these conditions should also not be produced by composition
71a442a8
KW
857normalization, which is probably why you should use the
858C<Full_Composition_Exclusion> property instead, as shown above.
b08cd201 859
71a442a8 860The routine returns B<false> otherwise.
b08cd201
JH
861
862=cut
863
b08cd201
JH
864sub compexcl {
865 my $arg = shift;
866 my $code = _getcode($arg);
74f8133e
JH
867 croak __PACKAGE__, "::compexcl: unknown code '$arg'"
868 unless defined $code;
b08cd201 869
36c2430c 870 no warnings "non_unicode"; # So works on non-Unicode code points
71a442a8 871 return chr($code) =~ /\p{Composition_Exclusion}/;
b08cd201
JH
872}
873
a452d459 874=head2 B<casefold()>
b08cd201 875
55d7b906 876 use Unicode::UCD 'casefold';
b08cd201 877
a452d459
KW
878 my $casefold = casefold(0xDF);
879 if (defined $casefold) {
880 my @full_fold_hex = split / /, $casefold->{'full'};
881 my $full_fold_string =
882 join "", map {chr(hex($_))} @full_fold_hex;
883 my @turkic_fold_hex =
884 split / /, ($casefold->{'turkic'} ne "")
885 ? $casefold->{'turkic'}
886 : $casefold->{'full'};
887 my $turkic_fold_string =
888 join "", map {chr(hex($_))} @turkic_fold_hex;
889 }
890 if (defined $casefold && $casefold->{'simple'} ne "") {
891 my $simple_fold_hex = $casefold->{'simple'};
892 my $simple_fold_string = chr(hex($simple_fold_hex));
893 }
b08cd201 894
a452d459
KW
895This returns the (almost) locale-independent case folding of the
896character specified by the L</code point argument>.
b08cd201 897
a18e976f 898If there is no case folding for that code point, C<undef> is returned.
a452d459
KW
899
900If there is a case folding for that code point, a reference to a hash
b08cd201
JH
901with the following fields is returned:
902
a452d459
KW
903=over
904
905=item B<code>
906
907the input L</code point argument> expressed in hexadecimal, with leading zeros
908added if necessary to make it contain at least four hexdigits
909
910=item B<full>
911
a18e976f 912one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
913code points for the case folding for I<code>.
914Each has at least four hexdigits.
915
916=item B<simple>
917
918is empty, or is exactly one code with at least four hexdigits which can be used
919as an alternative case folding when the calling program cannot cope with the
920fold being a sequence of multiple code points. If I<full> is just one code
921point, then I<simple> equals I<full>. If there is no single code point folding
922defined for I<code>, then I<simple> is the empty string. Otherwise, it is an
923inferior, but still better-than-nothing alternative folding to I<full>.
924
925=item B<mapping>
926
927is the same as I<simple> if I<simple> is not empty, and it is the same as I<full>
928otherwise. It can be considered to be the simplest possible folding for
929I<code>. It is defined primarily for backwards compatibility.
930
931=item B<status>
b08cd201 932
a452d459
KW
933is C<C> (for C<common>) if the best possible fold is a single code point
934(I<simple> equals I<full> equals I<mapping>). It is C<S> if there are distinct
935folds, I<simple> and I<full> (I<mapping> equals I<simple>). And it is C<F> if
a18e976f
KW
936there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty).
937Note that this
a452d459
KW
938describes the contents of I<mapping>. It is defined primarily for backwards
939compatibility.
b08cd201 940
a452d459
KW
941On versions 3.1 and earlier of Unicode, I<status> can also be
942C<I> which is the same as C<C> but is a special case for dotted uppercase I and
943dotless lowercase i:
b08cd201 944
a452d459 945=over
b08cd201 946
a18e976f 947=item B<*> If you use this C<I> mapping
a452d459 948
a18e976f 949the result is case-insensitive,
a452d459
KW
950but dotless and dotted I's are not distinguished
951
a18e976f 952=item B<*> If you exclude this C<I> mapping
a452d459 953
a18e976f 954the result is not fully case-insensitive, but
a452d459
KW
955dotless and dotted I's are distinguished
956
957=back
958
959=item B<turkic>
960
961contains any special folding for Turkic languages. For versions of Unicode
962starting with 3.2, this field is empty unless I<code> has a different folding
963in Turkic languages, in which case it is one or more codes (separated by
a18e976f 964spaces) that, taken in order, give the code points for the case folding for
a452d459
KW
965I<code> in those languages.
966Each code has at least four hexdigits.
967Note that this folding does not maintain canonical equivalence without
968additional processing.
969
970For versions of Unicode 3.1 and earlier, this field is empty unless there is a
971special folding for Turkic languages, in which case I<status> is C<I>, and
972I<mapping>, I<full>, I<simple>, and I<turkic> are all equal.
973
974=back
975
976Programs that want complete generality and the best folding results should use
977the folding contained in the I<full> field. But note that the fold for some
978code points will be a sequence of multiple code points.
979
980Programs that can't cope with the fold mapping being multiple code points can
981use the folding contained in the I<simple> field, with the loss of some
982generality. In Unicode 5.1, about 7% of the defined foldings have no single
983code point folding.
984
985The I<mapping> and I<status> fields are provided for backwards compatibility for
986existing programs. They contain the same values as in previous versions of
987this function.
988
989Locale is not completely independent. The I<turkic> field contains results to
990use when the locale is a Turkic language.
b08cd201
JH
991
992For more information about case mappings see
a452d459 993L<http://www.unicode.org/unicode/reports/tr21>
b08cd201
JH
994
995=cut
996
997my %CASEFOLD;
998
999sub _casefold {
1000 unless (%CASEFOLD) {
551b6b6f 1001 if (openunicode(\$CASEFOLDFH, "CaseFolding.txt")) {
6c8d78fb 1002 local $_;
ce066323 1003 local $/ = "\n";
b08cd201 1004 while (<$CASEFOLDFH>) {
a452d459 1005 if (/^([0-9A-F]+); ([CFIST]); ([0-9A-F]+(?: [0-9A-F]+)*);/) {
b08cd201 1006 my $code = hex($1);
a452d459
KW
1007 $CASEFOLD{$code}{'code'} = $1;
1008 $CASEFOLD{$code}{'turkic'} = "" unless
1009 defined $CASEFOLD{$code}{'turkic'};
1010 if ($2 eq 'C' || $2 eq 'I') { # 'I' is only on 3.1 and
1011 # earlier Unicodes
1012 # Both entries there (I
1013 # only checked 3.1) are
1014 # the same as C, and
1015 # there are no other
1016 # entries for those
1017 # codepoints, so treat
1018 # as if C, but override
1019 # the turkic one for
1020 # 'I'.
1021 $CASEFOLD{$code}{'status'} = $2;
1022 $CASEFOLD{$code}{'full'} = $CASEFOLD{$code}{'simple'} =
1023 $CASEFOLD{$code}{'mapping'} = $3;
1024 $CASEFOLD{$code}{'turkic'} = $3 if $2 eq 'I';
1025 } elsif ($2 eq 'F') {
1026 $CASEFOLD{$code}{'full'} = $3;
1027 unless (defined $CASEFOLD{$code}{'simple'}) {
1028 $CASEFOLD{$code}{'simple'} = "";
1029 $CASEFOLD{$code}{'mapping'} = $3;
1030 $CASEFOLD{$code}{'status'} = $2;
1031 }
1032 } elsif ($2 eq 'S') {
1033
1034
1035 # There can't be a simple without a full, and simple
1036 # overrides all but full
1037
1038 $CASEFOLD{$code}{'simple'} = $3;
1039 $CASEFOLD{$code}{'mapping'} = $3;
1040 $CASEFOLD{$code}{'status'} = $2;
1041 } elsif ($2 eq 'T') {
1042 $CASEFOLD{$code}{'turkic'} = $3;
1043 } # else can't happen because only [CIFST] are possible
b08cd201
JH
1044 }
1045 }
1046 close($CASEFOLDFH);
1047 }
1048 }
1049}
1050
1051sub casefold {
1052 my $arg = shift;
1053 my $code = _getcode($arg);
74f8133e
JH
1054 croak __PACKAGE__, "::casefold: unknown code '$arg'"
1055 unless defined $code;
b08cd201
JH
1056
1057 _casefold() unless %CASEFOLD;
1058
1059 return $CASEFOLD{$code};
1060}
1061
a452d459 1062=head2 B<casespec()>
b08cd201 1063
55d7b906 1064 use Unicode::UCD 'casespec';
b08cd201 1065
a452d459 1066 my $casespec = casespec(0xFB00);
b08cd201 1067
a452d459
KW
1068This returns the potentially locale-dependent case mappings of the L</code point
1069argument>. The mappings may be longer than a single code point (which the basic
1070Unicode case mappings as returned by L</charinfo()> never are).
b08cd201 1071
a452d459
KW
1072If there are no case mappings for the L</code point argument>, or if all three
1073possible mappings (I<lower>, I<title> and I<upper>) result in single code
a18e976f 1074points and are locale independent and unconditional, C<undef> is returned
5d8e6e41
KW
1075(which means that the case mappings, if any, for the code point are those
1076returned by L</charinfo()>).
a452d459
KW
1077
1078Otherwise, a reference to a hash giving the mappings (or a reference to a hash
5d8e6e41
KW
1079of such hashes, explained below) is returned with the following keys and their
1080meanings:
a452d459
KW
1081
1082The keys in the bottom layer hash with the meanings of their values are:
1083
1084=over
1085
1086=item B<code>
1087
1088the input L</code point argument> expressed in hexadecimal, with leading zeros
1089added if necessary to make it contain at least four hexdigits
1090
1091=item B<lower>
1092
a18e976f 1093one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1094code points for the lower case of I<code>.
1095Each has at least four hexdigits.
1096
1097=item B<title>
b08cd201 1098
a18e976f 1099one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1100code points for the title case of I<code>.
1101Each has at least four hexdigits.
b08cd201 1102
d2da20e3 1103=item B<upper>
b08cd201 1104
a18e976f 1105one or more codes (separated by spaces) that, taken in order, give the
a452d459
KW
1106code points for the upper case of I<code>.
1107Each has at least four hexdigits.
1108
1109=item B<condition>
1110
1111the conditions for the mappings to be valid.
a18e976f 1112If C<undef>, the mappings are always valid.
a452d459
KW
1113When defined, this field is a list of conditions,
1114all of which must be true for the mappings to be valid.
1115The list consists of one or more
1116I<locales> (see below)
1117and/or I<contexts> (explained in the next paragraph),
1118separated by spaces.
1119(Other than as used to separate elements, spaces are to be ignored.)
1120Case distinctions in the condition list are not significant.
82c0b05b 1121Conditions preceded by "NON_" represent the negation of the condition.
b08cd201 1122
a452d459
KW
1123A I<context> is one of those defined in the Unicode standard.
1124For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations>
1125available at
5d8e6e41
KW
1126L<http://www.unicode.org/versions/Unicode5.1.0/>.
1127These are for context-sensitive casing.
f499c386 1128
a452d459
KW
1129=back
1130
5d8e6e41 1131The hash described above is returned for locale-independent casing, where
a18e976f 1132at least one of the mappings has length longer than one. If C<undef> is
5d8e6e41
KW
1133returned, the code point may have mappings, but if so, all are length one,
1134and are returned by L</charinfo()>.
1135Note that when this function does return a value, it will be for the complete
1136set of mappings for a code point, even those whose length is one.
1137
1138If there are additional casing rules that apply only in certain locales,
1139an additional key for each will be defined in the returned hash. Each such key
1140will be its locale name, defined as a 2-letter ISO 3166 country code, possibly
1141followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"
1142and a variant code). You can find the lists of all possible locales, see
1143L<Locale::Country> and L<Locale::Language>.
89e4a205 1144(In Unicode 6.0, the only locales returned by this function
a452d459 1145are C<lt>, C<tr>, and C<az>.)
b08cd201 1146
5d8e6e41
KW
1147Each locale key is a reference to a hash that has the form above, and gives
1148the casing rules for that particular locale, which take precedence over the
1149locale-independent ones when in that locale.
1150
1151If the only casing for a code point is locale-dependent, then the returned
1152hash will not have any of the base keys, like C<code>, C<upper>, etc., but
1153will contain only locale keys.
1154
b08cd201 1155For more information about case mappings see
a452d459 1156L<http://www.unicode.org/unicode/reports/tr21/>
b08cd201
JH
1157
1158=cut
1159
1160my %CASESPEC;
1161
1162sub _casespec {
1163 unless (%CASESPEC) {
551b6b6f 1164 if (openunicode(\$CASESPECFH, "SpecialCasing.txt")) {
6c8d78fb 1165 local $_;
ce066323 1166 local $/ = "\n";
b08cd201
JH
1167 while (<$CASESPECFH>) {
1168 if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) {
f499c386
JH
1169 my ($hexcode, $lower, $title, $upper, $condition) =
1170 ($1, $2, $3, $4, $5);
1171 my $code = hex($hexcode);
1172 if (exists $CASESPEC{$code}) {
1173 if (exists $CASESPEC{$code}->{code}) {
1174 my ($oldlower,
1175 $oldtitle,
1176 $oldupper,
1177 $oldcondition) =
1178 @{$CASESPEC{$code}}{qw(lower
1179 title
1180 upper
1181 condition)};
822ebcc8
JH
1182 if (defined $oldcondition) {
1183 my ($oldlocale) =
f499c386 1184 ($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/);
f499c386
JH
1185 delete $CASESPEC{$code};
1186 $CASESPEC{$code}->{$oldlocale} =
1187 { code => $hexcode,
1188 lower => $oldlower,
1189 title => $oldtitle,
1190 upper => $oldupper,
1191 condition => $oldcondition };
f499c386
JH
1192 }
1193 }
1194 my ($locale) =
1195 ($condition =~ /^([a-z][a-z](?:_\S+)?)/);
1196 $CASESPEC{$code}->{$locale} =
1197 { code => $hexcode,
1198 lower => $lower,
1199 title => $title,
1200 upper => $upper,
1201 condition => $condition };
1202 } else {
1203 $CASESPEC{$code} =
1204 { code => $hexcode,
1205 lower => $lower,
1206 title => $title,
1207 upper => $upper,
1208 condition => $condition };
1209 }
b08cd201
JH
1210 }
1211 }
1212 close($CASESPECFH);
1213 }
1214 }
1215}
1216
1217sub casespec {
1218 my $arg = shift;
1219 my $code = _getcode($arg);
74f8133e
JH
1220 croak __PACKAGE__, "::casespec: unknown code '$arg'"
1221 unless defined $code;
b08cd201
JH
1222
1223 _casespec() unless %CASESPEC;
1224
741297c1 1225 return ref $CASESPEC{$code} ? dclone $CASESPEC{$code} : $CASESPEC{$code};
b08cd201
JH
1226}
1227
a452d459 1228=head2 B<namedseq()>
a2bd7410
JH
1229
1230 use Unicode::UCD 'namedseq';
1231
1232 my $namedseq = namedseq("KATAKANA LETTER AINU P");
1233 my @namedseq = namedseq("KATAKANA LETTER AINU P");
1234 my %namedseq = namedseq();
1235
1236If used with a single argument in a scalar context, returns the string
a18e976f 1237consisting of the code points of the named sequence, or C<undef> if no
a2bd7410 1238named sequence by that name exists. If used with a single argument in
956cae9a
KW
1239a list context, it returns the list of the ordinals of the code points. If used
1240with no
a2bd7410
JH
1241arguments in a list context, returns a hash with the names of the
1242named sequences as the keys and the named sequences as strings as
a18e976f 1243the values. Otherwise, it returns C<undef> or an empty list depending
a2bd7410
JH
1244on the context.
1245
a452d459
KW
1246This function only operates on officially approved (not provisional) named
1247sequences.
a2bd7410 1248
27f853a0
KW
1249Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named
1250sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA
1251LETTER AINU P")> will return the same string this function does, but will also
1252operate on character names that aren't named sequences, without you having to
1253know which are which. See L<charnames>.
1254
a2bd7410
JH
1255=cut
1256
1257my %NAMEDSEQ;
1258
1259sub _namedseq {
1260 unless (%NAMEDSEQ) {
98ef7649 1261 if (openunicode(\$NAMEDSEQFH, "Name.pl")) {
a2bd7410 1262 local $_;
ce066323 1263 local $/ = "\n";
a2bd7410 1264 while (<$NAMEDSEQFH>) {
98ef7649
KW
1265 if (/^ [0-9A-F]+ \ /x) {
1266 chomp;
1267 my ($sequence, $name) = split /\t/;
1268 my @s = map { chr(hex($_)) } split(' ', $sequence);
1269 $NAMEDSEQ{$name} = join("", @s);
a2bd7410
JH
1270 }
1271 }
1272 close($NAMEDSEQFH);
1273 }
1274 }
1275}
1276
1277sub namedseq {
98ef7649
KW
1278
1279 # Use charnames::string_vianame() which now returns this information,
1280 # unless the caller wants the hash returned, in which case we read it in,
1281 # and thereafter use it instead of calling charnames, as it is faster.
1282
a2bd7410
JH
1283 my $wantarray = wantarray();
1284 if (defined $wantarray) {
1285 if ($wantarray) {
1286 if (@_ == 0) {
98ef7649 1287 _namedseq() unless %NAMEDSEQ;
a2bd7410
JH
1288 return %NAMEDSEQ;
1289 } elsif (@_ == 1) {
98ef7649
KW
1290 my $s;
1291 if (%NAMEDSEQ) {
1292 $s = $NAMEDSEQ{ $_[0] };
1293 }
1294 else {
1295 $s = charnames::string_vianame($_[0]);
1296 }
a2bd7410
JH
1297 return defined $s ? map { ord($_) } split('', $s) : ();
1298 }
1299 } elsif (@_ == 1) {
98ef7649
KW
1300 return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ;
1301 return charnames::string_vianame($_[0]);
a2bd7410
JH
1302 }
1303 }
1304 return;
1305}
1306
7319f91d
KW
1307my %NUMERIC;
1308
1309sub _numeric {
1310
1311 # Unicode 6.0 instituted the rule that only digits in a consecutive
1312 # block of 10 would be considered decimal digits. Before that, the only
1313 # problematic code point that I'm (khw) aware of is U+019DA, NEW TAI LUE
1314 # THAM DIGIT ONE, which is an alternate form of U+019D1, NEW TAI LUE DIGIT
1315 # ONE. The code could be modified to handle that, but not bothering, as
1316 # in TUS 6.0, U+19DA was changed to Nt=Di.
1317 if ((pack "C*", split /\./, UnicodeVersion()) lt 6.0.0) {
1318 croak __PACKAGE__, "::num requires Unicode 6.0 or greater"
1319 }
98025745
KW
1320 my @numbers = _read_table("unicore/To/Nv.pl");
1321 foreach my $entry (@numbers) {
1322 my ($start, $end, $value) = @$entry;
1323
05dbc6f8
KW
1324 # If value contains a slash, convert to decimal, add a reverse hash
1325 # used by charinfo.
98025745
KW
1326 if ((my @rational = split /\//, $value) == 2) {
1327 my $real = $rational[0] / $rational[1];
05dbc6f8 1328 $real_to_rational{$real} = $value;
98025745
KW
1329 $value = $real;
1330 }
1331
1332 for my $i ($start .. $end) {
1333 $NUMERIC{$i} = $value;
7319f91d 1334 }
7319f91d 1335 }
2dc5eb26
KW
1336
1337 # Decided unsafe to use these that aren't officially part of the Unicode
1338 # standard.
1339 #use Math::Trig;
1340 #my $pi = acos(-1.0);
98025745 1341 #$NUMERIC{0x03C0} = $pi;
7319f91d
KW
1342
1343 # Euler's constant, not to be confused with Euler's number
98025745 1344 #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992;
7319f91d
KW
1345
1346 # Euler's number
98025745 1347 #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572;
2dc5eb26 1348
7319f91d
KW
1349 return;
1350}
1351
1352=pod
1353
67592e11 1354=head2 B<num()>
7319f91d 1355
eefd7bc2
KW
1356 use Unicode::UCD 'num';
1357
1358 my $val = num("123");
1359 my $one_quarter = num("\N{VULGAR FRACTION 1/4}");
1360
7319f91d
KW
1361C<num> returns the numeric value of the input Unicode string; or C<undef> if it
1362doesn't think the entire string has a completely valid, safe numeric value.
1363
1364If the string is just one character in length, the Unicode numeric value
1365is returned if it has one, or C<undef> otherwise. Note that this need
1366not be a whole number. C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for
2dc5eb26
KW
1367example returns -0.5.
1368
1369=cut
7319f91d 1370
2dc5eb26
KW
1371#A few characters to which Unicode doesn't officially
1372#assign a numeric value are considered numeric by C<num>.
1373#These are:
1374
1375# EULER CONSTANT 0.5772... (this is NOT Euler's number)
1376# SCRIPT SMALL E 2.71828... (this IS Euler's number)
1377# GREEK SMALL LETTER PI 3.14159...
1378
1379=pod
7319f91d
KW
1380
1381If the string is more than one character, C<undef> is returned unless
8bb4c8e2 1382all its characters are decimal digits (that is, they would match C<\d+>),
7319f91d
KW
1383from the same script. For example if you have an ASCII '0' and a Bengali
1384'3', mixed together, they aren't considered a valid number, and C<undef>
1385is returned. A further restriction is that the digits all have to be of
1386the same form. A half-width digit mixed with a full-width one will
1387return C<undef>. The Arabic script has two sets of digits; C<num> will
1388return C<undef> unless all the digits in the string come from the same
1389set.
1390
1391C<num> errs on the side of safety, and there may be valid strings of
1392decimal digits that it doesn't recognize. Note that Unicode defines
1393a number of "digit" characters that aren't "decimal digit" characters.
a278d14b 1394"Decimal digits" have the property that they have a positional value, i.e.,
7319f91d
KW
1395there is a units position, a 10's position, a 100's, etc, AND they are
1396arranged in Unicode in blocks of 10 contiguous code points. The Chinese
1397digits, for example, are not in such a contiguous block, and so Unicode
1398doesn't view them as decimal digits, but merely digits, and so C<\d> will not
1399match them. A single-character string containing one of these digits will
1400have its decimal value returned by C<num>, but any longer string containing
1401only these digits will return C<undef>.
1402
a278d14b
KW
1403Strings of multiple sub- and superscripts are not recognized as numbers. You
1404can use either of the compatibility decompositions in Unicode::Normalize to
7319f91d
KW
1405change these into digits, and then call C<num> on the result.
1406
1407=cut
1408
1409# To handle sub, superscripts, this could if called in list context,
1410# consider those, and return the <decomposition> type in the second
1411# array element.
1412
1413sub num {
1414 my $string = $_[0];
1415
1416 _numeric unless %NUMERIC;
1417
1418 my $length = length($string);
98025745 1419 return $NUMERIC{ord($string)} if $length == 1;
7319f91d
KW
1420 return if $string =~ /\D/;
1421 my $first_ord = ord(substr($string, 0, 1));
98025745 1422 my $value = $NUMERIC{$first_ord};
7319f91d
KW
1423 my $zero_ord = $first_ord - $value;
1424
1425 for my $i (1 .. $length -1) {
1426 my $ord = ord(substr($string, $i, 1));
1427 my $digit = $ord - $zero_ord;
1428 return unless $digit >= 0 && $digit <= 9;
1429 $value = $value * 10 + $digit;
1430 }
1431 return $value;
1432}
1433
7ef25837
KW
1434=pod
1435
1436=head2 B<prop_aliases()>
1437
1438 use Unicode::UCD 'prop_aliases';
1439
1440 my ($short_name, $full_name, @other_names) = prop_aliases("space");
1441 my $same_full_name = prop_aliases("Space"); # Scalar context
1442 my ($same_short_name) = prop_aliases("Space"); # gets 0th element
1443 print "The full name is $full_name\n";
1444 print "The short name is $short_name\n";
1445 print "The other aliases are: ", join(", ", @other_names), "\n";
1446
1447 prints:
1448 The full name is White_Space
1449 The short name is WSpace
1450 The other aliases are: Space
1451
1452Most Unicode properties have several synonymous names. Typically, there is at
1453least a short name, convenient to type, and a long name that more fully
1454describes the property, and hence is more easily understood.
1455
1456If you know one name for a Unicode property, you can use C<prop_aliases> to find
1457either the long name (when called in scalar context), or a list of all of the
1458names, somewhat ordered so that the short name is in the 0th element, the long
1459name in the next element, and any other synonyms are in the remaining
1460elements, in no particular order.
1461
1462The long name is returned in a form nicely capitalized, suitable for printing.
1463
1464The input parameter name is loosely matched, which means that white space,
1465hyphens, and underscores are ignored (except for the trailing underscore in
1466the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and
1467both of which mean C<General_Category=Cased Letter>).
1468
1469If the name is unknown, C<undef> is returned (or an empty list in list
1470context). Note that Perl typically recognizes property names in regular
1471expressions with an optional C<"Is_>" (with or without the underscore)
1472prefixed to them, such as C<\p{isgc=punct}>. This function does not recognize
1473those in the input, returning C<undef>. Nor are they included in the output
1474as possible synonyms.
1475
1476C<prop_aliases> does know about the Perl extensions to Unicode properties,
1477such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode
1478properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>. The
1479final example demonstrates that the C<"Is_"> prefix is recognized for these
1480extensions; it is needed to resolve ambiguities. For example,
1481C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but
1482C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>. This is
1483because C<islc> is a Perl extension which is short for
1484C<General_Category=Cased Letter>. The lists returned for the Perl extensions
1485will not include the C<"Is_"> prefix (whether or not the input had it) unless
1486needed to resolve ambiguities, as shown in the C<"islc"> example, where the
1487returned list had one element containing C<"Is_">, and the other without.
1488
1489It is also possible for the reverse to happen: C<prop_aliases('isc')> returns
1490the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns
1491C<(C, Other)> (the latter being a Perl extension meaning
ee94c7d1
KW
1492C<General_Category=Other>.
1493L<perluniprops/Properties accessible through Unicode::UCD> lists the available
1494forms, including which ones are discouraged from use.
7ef25837
KW
1495
1496Those discouraged forms are accepted as input to C<prop_aliases>, but are not
1497returned in the lists. C<prop_aliases('isL&')> and C<prop_aliases('isL_')>,
1498which are old synonyms for C<"Is_LC"> and should not be used in new code, are
1499examples of this. These both return C<(Is_LC, Cased_Letter)>. Thus this
1500function allows you to take a discourarged form, and find its acceptable
1501alternatives. The same goes with single-form Block property equivalences.
1502Only the forms that begin with C<"In_"> are not discouraged; if you pass
1503C<prop_aliases> a discouraged form, you will get back the equivalent ones that
1504begin with C<"In_">. It will otherwise look like a new-style block name (see.
1505L</Old-style versus new-style block names>).
1506
1507C<prop_aliases> does not know about any user-defined properties, and will
1508return C<undef> if called with one of those. Likewise for Perl internal
1509properties, with the exception of "Perl_Decimal_Digit" which it does know
1510about (and which is documented below in L</prop_invmap()>).
1511
1512=cut
1513
1514# It may be that there are use cases where the discouraged forms should be
1515# returned. If that comes up, an optional boolean second parameter to the
1516# function could be created, for example.
1517
1518# These are created by mktables for this routine and stored in unicore/UCD.pl
1519# where their structures are described.
1520our %string_property_loose_to_name;
1521our %ambiguous_names;
1522our %loose_perlprop_to_name;
1523our %prop_aliases;
1524
1525sub prop_aliases ($) {
1526 my $prop = $_[0];
1527 return unless defined $prop;
1528
1529 require "unicore/UCD.pl";
1530 require "unicore/Heavy.pl";
1531 require "utf8_heavy.pl";
1532
1533 # The property name may be loosely or strictly matched; we don't know yet.
1534 # But both types use lower-case.
1535 $prop = lc $prop;
1536
1537 # It is loosely matched if its lower case isn't known to be strict.
1538 my $list_ref;
1539 if (! exists $utf8::stricter_to_file_of{$prop}) {
1540 my $loose = utf8::_loose_name($prop);
1541
1542 # There is a hash that converts from any loose name to its standard
1543 # form, mapping all synonyms for a name to one name that can be used
1544 # as a key into another hash. The whole concept is for memory
1545 # savings, as the second hash doesn't have to have all the
1546 # combinations. Actually, there are two hashes that do the
1547 # converstion. One is used in utf8_heavy.pl (stored in Heavy.pl) for
1548 # looking up properties matchable in regexes. This function needs to
1549 # access string properties, which aren't available in regexes, so a
1550 # second conversion hash is made for them (stored in UCD.pl). Look in
1551 # the string one now, as the rest can have an optional 'is' prefix,
1552 # which these don't.
1553 if (exists $string_property_loose_to_name{$loose}) {
1554
1555 # Convert to its standard loose name.
1556 $prop = $string_property_loose_to_name{$loose};
1557 }
1558 else {
1559 my $retrying = 0; # bool. ? Has an initial 'is' been stripped
1560 RETRY:
1561 if (exists $utf8::loose_property_name_of{$loose}
1562 && (! $retrying
1563 || ! exists $ambiguous_names{$loose}))
1564 {
1565 # Found an entry giving the standard form. We don't get here
1566 # (in the test above) when we've stripped off an
1567 # 'is' and the result is an ambiguous name. That is because
1568 # these are official Unicode properties (though Perl can have
1569 # an optional 'is' prefix meaning the official property), and
1570 # all ambiguous cases involve a Perl single-form extension
1571 # for the gc, script, or block properties, and the stripped
1572 # 'is' means that they mean one of those, and not one of
1573 # these
1574 $prop = $utf8::loose_property_name_of{$loose};
1575 }
1576 elsif (exists $loose_perlprop_to_name{$loose}) {
1577
1578 # This hash is specifically for this function to list Perl
1579 # extensions that aren't in the earlier hashes. If there is
1580 # only one element, the short and long names are identical.
1581 # Otherwise the form is already in the same form as
1582 # %prop_aliases, which is handled at the end of the function.
1583 $list_ref = $loose_perlprop_to_name{$loose};
1584 if (@$list_ref == 1) {
1585 my @list = ($list_ref->[0], $list_ref->[0]);
1586 $list_ref = \@list;
1587 }
1588 }
1589 elsif (! exists $utf8::loose_to_file_of{$loose}) {
1590
1591 # loose_to_file_of is a complete list of loose names. If not
1592 # there, the input is unknown.
1593 return;
1594 }
1595 else {
1596
1597 # Here we found the name but not its aliases, so it has to
1598 # exist. This means it must be one of the Perl single-form
1599 # extensions. First see if it is for a property-value
1600 # combination in one of the following properties.
1601 my @list;
1602 foreach my $property ("gc", "script") {
1603 @list = prop_value_aliases($property, $loose);
1604 last if @list;
1605 }
1606 if (@list) {
1607
1608 # Here, it is one of those property-value combination
1609 # single-form synonyms. There are ambiguities with some
1610 # of these. Check against the list for these, and adjust
1611 # if necessary.
1612 for my $i (0 .. @list -1) {
1613 if (exists $ambiguous_names
1614 {utf8::_loose_name(lc $list[$i])})
1615 {
1616 # The ambiguity is resolved by toggling whether or
1617 # not it has an 'is' prefix
1618 $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/;
1619 }
1620 }
1621 return @list;
1622 }
1623
1624 # Here, it wasn't one of the gc or script single-form
1625 # extensions. It could be a block property single-form
1626 # extension. An 'in' prefix definitely means that, and should
2a4f2769
KW
1627 # be looked up without the prefix. However, starting in
1628 # Unicode 6.1, we have to special case 'indic...', as there
1629 # is a property that begins with that name. We shouldn't
1630 # strip the 'in' from that. I'm (khw) generalizing this to
1631 # 'indic' instead of the single property, because I suspect
1632 # that others of this class may come along in the future.
1633 # However, this could backfire and a block created whose name
1634 # begins with 'dic...', and we would want to strip the 'in'.
1635 # At which point this would have to be tweaked.
1636 my $began_with_in = $loose =~ s/^in(?!dic)//;
7ef25837
KW
1637 @list = prop_value_aliases("block", $loose);
1638 if (@list) {
1639 map { $_ =~ s/^/In_/ } @list;
1640 return @list;
1641 }
1642
1643 # Here still haven't found it. The last opportunity for it
1644 # being valid is only if it began with 'is'. We retry without
1645 # the 'is', setting a flag to that effect so that we don't
1646 # accept things that begin with 'isis...'
1647 if (! $retrying && ! $began_with_in && $loose =~ s/^is//) {
1648 $retrying = 1;
1649 goto RETRY;
1650 }
1651
1652 # Here, didn't find it. Since it was in %loose_to_file_of, we
1653 # should have been able to find it.
1654 carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'. Send bug report to perlbug\@perl.org";
1655 return;
1656 }
1657 }
1658 }
1659
1660 if (! $list_ref) {
1661 # Here, we have set $prop to a standard form name of the input. Look
1662 # it up in the structure created by mktables for this purpose, which
1663 # contains both strict and loosely matched properties. Avoid
1664 # autovivifying.
1665 $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop};
1666 return unless $list_ref;
1667 }
1668
1669 # The full name is in element 1.
1670 return $list_ref->[1] unless wantarray;
1671
1672 return @{dclone $list_ref};
1673}
1674
1675=pod
1676
1677=head2 B<prop_value_aliases()>
1678
1679 use Unicode::UCD 'prop_value_aliases';
1680
1681 my ($short_name, $full_name, @other_names)
1682 = prop_value_aliases("Gc", "Punct");
1683 my $same_full_name = prop_value_aliases("Gc", "P"); # Scalar cntxt
1684 my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th
1685 # element
1686 print "The full name is $full_name\n";
1687 print "The short name is $short_name\n";
1688 print "The other aliases are: ", join(", ", @other_names), "\n";
1689
1690 prints:
1691 The full name is Punctuation
1692 The short name is P
1693 The other aliases are: Punct
1694
1695Some Unicode properties have a restricted set of legal values. For example,
1696all binary properties are restricted to just C<true> or C<false>; and there
1697are only a few dozen possible General Categories.
1698
1699For such properties, there are usually several synonyms for each possible
1700value. For example, in binary properties, I<truth> can be represented by any of
1701the strings "Y", "Yes", "T", or "True"; and the General Category
1702"Punctuation" by that string, or "Punct", or simply "P".
1703
1704Like property names, there is typically at least a short name for each such
1705property-value, and a long name. If you know any name of the property-value,
1706you can use C<prop_value_aliases>() to get the long name (when called in
1707scalar context), or a list of all the names, with the short name in the 0th
1708element, the long name in the next element, and any other synonyms in the
1709remaining elements, in no particular order, except that any all-numeric
1710synonyms will be last.
1711
1712The long name is returned in a form nicely capitalized, suitable for printing.
1713
1714Case, white space, hyphens, and underscores are ignored in the input parameters
1715(except for the trailing underscore in the old-form grandfathered-in general
1716category property value C<"L_">, which is better written as C<"LC">).
1717
1718If either name is unknown, C<undef> is returned. Note that Perl typically
1719recognizes property names in regular expressions with an optional C<"Is_>"
1720(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>.
1721This function does not recognize those in the property parameter, returning
1722C<undef>.
1723
1724If called with a property that doesn't have synonyms for its values, it
1725returns the input value, possibly normalized with capitalization and
1726underscores.
1727
1728For the block property, new-style block names are returned (see
1729L</Old-style versus new-style block names>).
1730
1731To find the synonyms for single-forms, such as C<\p{Any}>, use
1732L</prop_aliases()> instead.
1733
1734C<prop_value_aliases> does not know about any user-defined properties, and
1735will return C<undef> if called with one of those.
1736
1737=cut
1738
1739# These are created by mktables for this routine and stored in unicore/UCD.pl
1740# where their structures are described.
1741our %loose_to_standard_value;
1742our %prop_value_aliases;
1743
1744sub prop_value_aliases ($$) {
1745 my ($prop, $value) = @_;
1746 return unless defined $prop && defined $value;
1747
1748 require "unicore/UCD.pl";
1749 require "utf8_heavy.pl";
1750
1751 # Find the property name synonym that's used as the key in other hashes,
1752 # which is element 0 in the returned list.
1753 ($prop) = prop_aliases($prop);
1754 return if ! $prop;
1755 $prop = utf8::_loose_name(lc $prop);
1756
1757 # Here is a legal property, but the hash below (created by mktables for
1758 # this purpose) only knows about the properties that have a very finite
1759 # number of potential values, that is not ones whose value could be
1760 # anything, like most (if not all) string properties. These don't have
1761 # synonyms anyway. Simply return the input. For example, there is no
1762 # synonym for ('Uppercase_Mapping', A').
1763 return $value if ! exists $prop_value_aliases{$prop};
1764
1765 # The value name may be loosely or strictly matched; we don't know yet.
1766 # But both types use lower-case.
1767 $value = lc $value;
1768
1769 # If the name isn't found under loose matching, it certainly won't be
1770 # found under strict
1771 my $loose_value = utf8::_loose_name($value);
1772 return unless exists $loose_to_standard_value{"$prop=$loose_value"};
1773
1774 # Similarly if the combination under loose matching doesn't exist, it
1775 # won't exist under strict.
1776 my $standard_value = $loose_to_standard_value{"$prop=$loose_value"};
1777 return unless exists $prop_value_aliases{$prop}{$standard_value};
1778
1779 # Here we did find a combination under loose matching rules. But it could
1780 # be that is a strict property match that shouldn't have matched.
1781 # %prop_value_aliases is set up so that the strict matches will appear as
1782 # if they were in loose form. Thus, if the non-loose version is legal,
1783 # we're ok, can skip the further check.
1784 if (! exists $utf8::stricter_to_file_of{"$prop=$value"}
1785
1786 # We're also ok and skip the further check if value loosely matches.
1787 # mktables has verified that no strict name under loose rules maps to
1788 # an existing loose name. This code relies on the very limited
1789 # circumstances that strict names can be here. Strict name matching
1790 # happens under two conditions:
1791 # 1) when the name begins with an underscore. But this function
1792 # doesn't accept those, and %prop_value_aliases doesn't have
1793 # them.
1794 # 2) When the values are numeric, in which case we need to look
1795 # further, but their squeezed-out loose values will be in
1796 # %stricter_to_file_of
1797 && exists $utf8::stricter_to_file_of{"$prop=$loose_value"})
1798 {
1799 # The only thing that's legal loosely under strict is that can have an
1800 # underscore between digit pairs XXX
1801 while ($value =~ s/(\d)_(\d)/$1$2/g) {}
1802 return unless exists $utf8::stricter_to_file_of{"$prop=$value"};
1803 }
1804
1805 # Here, we know that the combination exists. Return it.
1806 my $list_ref = $prop_value_aliases{$prop}{$standard_value};
1807 if (@$list_ref > 1) {
1808 # The full name is in element 1.
1809 return $list_ref->[1] unless wantarray;
1810
1811 return @{dclone $list_ref};
1812 }
1813
1814 return $list_ref->[0] unless wantarray;
1815
1816 # Only 1 element means that it repeats
1817 return ( $list_ref->[0], $list_ref->[0] );
1818}
7319f91d 1819
681d705c
KW
1820# All 1 bits is the largest possible UV.
1821$Unicode::UCD::MAX_CP = ~0;
1822
1823=pod
1824
1825=head2 B<prop_invlist()>
1826
1827C<prop_invlist> returns an inversion list (described below) that defines all the
1828code points for the binary Unicode property (or "property=value" pair) given
1829by the input parameter string:
1830
1831 use feature 'say';
1832 use Unicode::UCD 'prop_invlist';
1833 say join ", ", prop_invlist("Any");
1834
1835 prints:
1836 0, 1114112
1837
1838An empty list is returned if the input is unknown; the number of elements in
1839the list is returned if called in scalar context.
1840
1841L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives
1842the list of properties that this function accepts, as well as all the possible
1843forms for them (including with the optional "Is_" prefixes). (Except this
1844function doesn't accept any Perl-internal properties, some of which are listed
1845there.) This function uses the same loose or tighter matching rules for
1846resolving the input property's name as is done for regular expressions. These
1847are also specified in L<perluniprops|perluniprops/Properties accessible
1848through \p{} and \P{}>. Examples of using the "property=value" form are:
1849
1850 say join ", ", prop_invlist("Script=Shavian");
1851
1852 prints:
1853 66640, 66688
1854
1855 say join ", ", prop_invlist("ASCII_Hex_Digit=No");
1856
1857 prints:
1858 0, 48, 58, 65, 71, 97, 103
1859
1860 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes");
1861
1862 prints:
1863 48, 58, 65, 71, 97, 103
1864
1865Inversion lists are a compact way of specifying Unicode property-value
1866definitions. The 0th item in the list is the lowest code point that has the
1867property-value. The next item (item [1]) is the lowest code point beyond that
1868one that does NOT have the property-value. And the next item beyond that
1869([2]) is the lowest code point beyond that one that does have the
1870property-value, and so on. Put another way, each element in the list gives
1871the beginning of a range that has the property-value (for even numbered
1872elements), or doesn't have the property-value (for odd numbered elements).
1873The name for this data structure stems from the fact that each element in the
1874list toggles (or inverts) whether the corresponding range is or isn't on the
1875list.
1876
1877In the final example above, the first ASCII Hex digit is code point 48, the
1878character "0", and all code points from it through 57 (a "9") are ASCII hex
1879digits. Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F")
1880are, as are 97 ("a") through 102 ("f"). 103 starts a range of code points
1881that aren't ASCII hex digits. That range extends to infinity, which on your
1882computer can be found in the variable C<$Unicode::UCD::MAX_CP>. (This
1883variable is as close to infinity as Perl can get on your platform, and may be
1884too high for some operations to work; you may wish to use a smaller number for
1885your purposes.)
1886
1887Note that the inversion lists returned by this function can possibly include
1888non-Unicode code points, that is anything above 0x10FFFF. This is in
1889contrast to Perl regular expression matches on those code points, in which a
1890non-Unicode code point always fails to match. For example, both of these have
1891the same result:
1892
1893 chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails.
1894 chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Fails!
1895
1896And both raise a warning that a Unicode property is being used on a
1897non-Unicode code point. It is arguable as to which is the correct thing to do
1898here. This function has chosen the way opposite to the Perl regular
1899expression behavior. This allows you to easily flip to to the Perl regular
1900expression way (for you to go in the other direction would be far harder).
1901Simply add 0x110000 at the end of the non-empty returned list if it isn't
1902already that value; and pop that value if it is; like:
1903
1904 my @list = prop_invlist("foo");
1905 if (@list) {
1906 if ($list[-1] == 0x110000) {
1907 pop @list; # Defeat the turning on for above Unicode
1908 }
1909 else {
1910 push @list, 0x110000; # Turn off for above Unicode
1911 }
1912 }
1913
1914It is a simple matter to expand out an inversion list to a full list of all
1915code points that have the property-value:
1916
1917 my @invlist = prop_invlist($property_name);
1918 die "empty" unless @invlist;
1919 my @full_list;
1920 for (my $i = 0; $i < @invlist; $i += 2) {
1921 my $upper = ($i + 1) < @invlist
1922 ? $invlist[$i+1] - 1 # In range
1923 : $Unicode::UCD::MAX_CP; # To infinity. You may want
1924 # to stop much much earlier;
1925 # going this high may expose
1926 # perl deficiencies with very
1927 # large numbers.
1928 for my $j ($invlist[$i] .. $upper) {
1929 push @full_list, $j;
1930 }
1931 }
1932
1933C<prop_invlist> does not know about any user-defined nor Perl internal-only
1934properties, and will return C<undef> if called with one of those.
1935
1936=cut
1937
1938# User-defined properties could be handled with some changes to utf8_heavy.pl;
1939# and implementing here of dealing with EXTRAS. If done, consideration should
1940# be given to the fact that the user subroutine could return different results
1941# with each call; security issues need to be thought about.
1942
1943# These are created by mktables for this routine and stored in unicore/UCD.pl
1944# where their structures are described.
1945our %loose_defaults;
1946our $MAX_UNICODE_CODEPOINT;
1947
1948sub prop_invlist ($) {
1949 my $prop = $_[0];
1950 return if ! defined $prop;
1951
1952 require "utf8_heavy.pl";
1953
1954 # Warnings for these are only for regexes, so not applicable to us
1955 no warnings 'deprecated';
1956
1957 # Get the swash definition of the property-value.
1958 my $swash = utf8::SWASHNEW(__PACKAGE__, $prop, undef, 1, 0);
1959
1960 # Fail if not found, or isn't a boolean property-value, or is a
1961 # user-defined property, or is internal-only.
1962 return if ! $swash
1963 || ref $swash eq ""
1964 || $swash->{'BITS'} != 1
1965 || $swash->{'USER_DEFINED'}
1966 || $prop =~ /^\s*_/;
1967
1968 if ($swash->{'EXTRAS'}) {
1969 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic";
1970 return;
1971 }
1972 if ($swash->{'SPECIALS'}) {
1973 carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic";
1974 return;
1975 }
1976
1977 my @invlist;
1978
1979 # The input lines look like:
1980 # 0041\t005A # [26]
1981 # 005F
1982
1983 # Split into lines, stripped of trailing comments
1984 foreach my $range (split "\n",
1985 $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr)
1986 {
1987 # And find the beginning and end of the range on the line
1988 my ($hex_begin, $hex_end) = split "\t", $range;
1989 my $begin = hex $hex_begin;
1990
a39cc031
KW
1991 # If the new range merely extends the old, we remove the marker
1992 # created the last time through the loop for the old's end, which
1993 # causes the new one's end to be used instead.
1994 if (@invlist && $begin == $invlist[-1]) {
1995 pop @invlist;
1996 }
1997 else {
2f3f243e
KW
1998 # Add the beginning of the range
1999 push @invlist, $begin;
a39cc031 2000 }
681d705c
KW
2001
2002 if (defined $hex_end) { # The next item starts with the code point 1
2003 # beyond the end of the range.
2004 push @invlist, hex($hex_end) + 1;
2005 }
2006 else { # No end of range, is a single code point.
2007 push @invlist, $begin + 1;
2008 }
2009 }
2010
2011 require "unicore/UCD.pl";
2012 my $FIRST_NON_UNICODE = $MAX_UNICODE_CODEPOINT + 1;
2013
2014 # Could need to be inverted: add or subtract a 0 at the beginning of the
2015 # list. And to keep it from matching non-Unicode, add or subtract the
2016 # first non-unicode code point.
2017 if ($swash->{'INVERT_IT'}) {
2018 if (@invlist && $invlist[0] == 0) {
2019 shift @invlist;
2020 }
2021 else {
2022 unshift @invlist, 0;
2023 }
2024 if (@invlist && $invlist[-1] == $FIRST_NON_UNICODE) {
2025 pop @invlist;
2026 }
2027 else {
2028 push @invlist, $FIRST_NON_UNICODE;
2029 }
2030 }
2031
2032 # Here, the list is set up to include only Unicode code points. But, if
2033 # the table is the default one for the property, it should contain all
2034 # non-Unicode code points. First calculate the loose name for the
2035 # property. This is done even for strict-name properties, as the data
2036 # structure that mktables generates for us is set up so that we don't have
2037 # to worry about that. The property-value needs to be split if compound,
2038 # as the loose rules need to be independently calculated on each part. We
2039 # know that it is syntactically valid, or SWASHNEW would have failed.
2040
2041 $prop = lc $prop;
2042 my ($prop_only, $table) = split /\s*[:=]\s*/, $prop;
2043 if ($table) {
2044
2045 # May have optional prefixed 'is'
2046 $prop = utf8::_loose_name($prop_only) =~ s/^is//r;
2047 $prop = $utf8::loose_property_name_of{$prop};
2048 $prop .= "=" . utf8::_loose_name($table);
2049 }
2050 else {
2051 $prop = utf8::_loose_name($prop);
2052 }
2053 if (exists $loose_defaults{$prop}) {
2054
2055 # Here, is the default table. If a range ended with 10ffff, instead
2056 # continue that range to infinity, by popping the 110000; otherwise,
2057 # add the range from 11000 to infinity
2058 if (! @invlist || $invlist[-1] != $FIRST_NON_UNICODE) {
2059 push @invlist, $FIRST_NON_UNICODE;
2060 }
2061 else {
2062 pop @invlist;
2063 }
2064 }
2065
2066 return @invlist;
2067}
7319f91d 2068
62b3b855
KW
2069sub _search_invlist {
2070 # Find the range in the inversion list which contains a code point; that
2071 # is, find i such that l[i] <= code_point < l[i+1]
2072
2073 # If this is ever made public, could use to speed up .t specials. Would
2074 # need to use code point argument, as in other functions in this pm
2075
2076 my $list_ref = shift;
2077 my $code_point = shift;
2078 # Verify non-neg numeric XXX
2079
2080 my $max_element = @$list_ref - 1;
2081 return if ! $max_element < 0; # Undef if list is empty.
2082
2083 # Short cut something at the far-end of the table. This also allows us to
2084 # refer to element [$i+1] without fear of being out-of-bounds in the loop
2085 # below.
2086 return $max_element if $code_point >= $list_ref->[$max_element];
2087
2088 use integer; # want integer division
2089
2090 my $i = $max_element / 2;
2091
2092 my $lower = 0;
2093 my $upper = $max_element;
2094 while (1) {
2095
2096 if ($code_point >= $list_ref->[$i]) {
2097
2098 # Here we have met the lower constraint. We can quit if we
2099 # also meet the upper one.
2100 last if $code_point < $list_ref->[$i+1];
2101
2102 $lower = $i; # Still too low.
2103
2104 }
2105 else {
2106
2107 # Here, $code_point < $list_ref[$i], so look lower down.
2108 $upper = $i;
2109 }
2110
2111 # Split search domain in half to try again.
2112 my $temp = ($upper + $lower) / 2;
2113
2114 # No point in continuing unless $i changes for next time
2115 # in the loop.
2116 return $i if $temp == $i;
2117 $i = $temp;
2118 } # End of while loop
2119
2120 # Here we have found the offset
2121 return $i;
2122}
2123
2124=pod
2125
2126=head2 B<prop_invmap()>
2127
2128 use Unicode::UCD 'prop_invmap';
2129 my ($list_ref, $map_ref, $format, $missing)
2130 = prop_invmap("General Category");
2131
2132C<prop_invmap> is used to get the complete mapping definition for a property,
2133in the form of an inversion map. An inversion map consists of two parallel
2134arrays. One is an ordered list of code points that mark range beginnings, and
2135the other gives the value (or mapping) that all code points in the
2136corresponding range have.
2137
2138C<prop_invmap> is called with the name of the desired property. The name is
2139loosely matched, meaning that differences in case, white-space, hyphens, and
2140underscores are not meaningful (except for the trailing underscore in the
2141old-form grandfathered-in property C<"L_">, which is better written as C<"LC">,
2142or even better, C<"Gc=LC">).
2143
2144Many Unicode properties have more than one name (or alias). C<prop_invmap>
2145understands all of these, including Perl extensions to them. Ambiguities are
2146resolved as described above for L</prop_aliases()>. The Perl internal
2147property "Perl_Decimal_Digit, described below, is also accepted. C<undef> is
2148returned if the property name is unknown.
ee94c7d1
KW
2149See L<perluniprops/Properties accessible through Unicode::UCD> for the
2150properties acceptable as inputs to this function.
62b3b855
KW
2151
2152It is a fatal error to call this function except in list context.
2153
2154In addition to the the two arrays that form the inversion map, C<prop_invmap>
2155returns two other values; one is a scalar that gives some details as to the
2156format of the entries of the map array; the other is used for specialized
2157purposes, described at the end of this section.
2158
2159This means that C<prop_invmap> returns a 4 element list. For example,
2160
2161 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default)
2162 = prop_invmap("Block");
2163
2164In this call, the two arrays will be populated as shown below (for Unicode
21656.0):
2166
2167 Index @blocks_ranges @blocks_maps
2168 0 0x0000 Basic Latin
2169 1 0x0080 Latin-1 Supplement
2170 2 0x0100 Latin Extended-A
2171 3 0x0180 Latin Extended-B
2172 4 0x0250 IPA Extensions
2173 5 0x02B0 Spacing Modifier Letters
2174 6 0x0300 Combining Diacritical Marks
2175 7 0x0370 Greek and Coptic
2176 8 0x0400 Cyrillic
2177 ...
2178 233 0x2B820 No_Block
2179 234 0x2F800 CJK Compatibility Ideographs Supplement
2180 235 0x2FA20 No_Block
2181 236 0xE0000 Tags
2182 237 0xE0080 No_Block
2183 238 0xE0100 Variation Selectors Supplement
2184 239 0xE01F0 No_Block
2185 240 0xF0000 Supplementary Private Use Area-A
2186 241 0x100000 Supplementary Private Use Area-B
2187 242 0x110000 No_Block
2188
2189The first line (with Index [0]) means that the value for code point 0 is "Basic
2190Latin". The entry "0x0080" in the @blocks_ranges column in the second line
2191means that the value from the first line, "Basic Latin", extends to all code
2192points in the range from 0 up to but not including 0x0080, that is, through
2193255. In other words, the code points from 0 to 255 are all in the "Basic
2194Latin" block. Similarly, all code points in the range from 0x0080 up to (but
2195not including) 0x0100 are in the block named "Latin-1 Supplement", etc.
2196(Notice that the return is the old-style block names; see L</Old-style versus
2197new-style block names>).
2198
2199The final line (with Index [242]) means that the value for all code points above
2200the legal Unicode maximum code point have the value "No_Block", which is the
2201term Unicode uses for a non-existing block.
2202
2203The arrays completely specify the mappings for all possible code points.
2204The final element in an inversion map returned by this function will always be
2205for the range that consists of all the code points that aren't legal Unicode,
2206but that are expressible on the platform. (That is, it starts with code point
22070x110000, the first code point above the legal Unicode maximum, and extends to
2208infinity.) The value for that range will be the same that any typical
2209unassigned code point has for the specified property. (Certain unassigned
2210code points are not "typical"; for example the non-character code points, or
2211those in blocks that are to be written right-to-left. The above-Unicode
2212range's value is not based on these atypical code points.) It could be argued
2213that, instead of treating these as unassigned Unicode code points, the value
2214for this range should be C<undef>. If you wish, you can change the returned
2215arrays accordingly.
2216
2217The maps are almost always simple scalars that should be interpreted as-is.
2218These values are those given in the Unicode-supplied data files, which may be
2219inconsistent as to capitalization and as to which synonym for a property-value
2220is given. The results may be normalized by using the L</prop_value_aliases()>
2221function.
2222
2223There are exceptions to the simple scalar maps. Some properties have some
2224elements in their map list that are themselves lists of scalars; and some
2225special strings are returned that are not to be interpreted as-is. Element
2226[2] (placed into C<$format> in the example above) of the returned four element
2227list tells you if the map has any of these special elements, as follows:
2228
2229=over
2230
2231=item C<s>
2232
2233means all the elements of the map array are simple scalars, with no special
2234elements. Almost all properties are like this, like the C<block> example
2235above.
2236
2237=item C<sl>
2238
2239means that some of the map array elements have the form given by C<s>, and
2240the rest are lists of scalars. For example, here is a portion of the output
2241of calling C<prop_invmap>() with the "Script Extensions" property:
2242
2243 @scripts_ranges @scripts_maps
2244 ...
c2ca0207
KW
2245 0x0953 Devanagari
2246 0x0964 [ Bengali, Devanagari, Gurumukhi, Oriya ]
2247 0x0966 Devanagari
62b3b855
KW
2248 0x0970 Common
2249
2250Here, the code points 0x964 and 0x965 are used in the Bengali,
2251Devanagari, Gurmukhi, and Oriya scripts.
2252
58b75e36
KW
2253The Name_Alias property is of this form. But each scalar consists of two
2254components: 1) the name, and 2) the type of alias this is. They are
2255separated by a colon and a space. In Unicode 6.0, there are two alias types:
2256C<"correction">, which indicates that the name is a corrected form for the
2257original name (which remains valid) for the same code point; and C<"control">,
2258which adds a new name for a control character.
2259
2260For example,
2261
2262 @aliases_ranges @alias_maps
2263 ...
2264 0x01A2 LATIN CAPITAL LETTER GHA: correction
2265 0x01A3 LATIN SMALL LETTER GHA: correction
2266
2267Unicode 6.1 will introduce other types, and some map entries will be lists of
2268multiple name-alias pairs for a single code point.
2269
62b3b855
KW
2270=item C<r>
2271
2272means that all the elements of the map array are either rational numbers or
2273the string C<"NaN">, meaning "Not a Number". A rational number is either an
2274integer, or two integers separated by a solidus (C<"/">). The second integer
2275represents the denominator of the division implied by the solidus, and is
2276guaranteed not to be 0. If you want to convert them to scalar numbers, you
2277can use something like this:
2278
2279 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property);
2280 if ($format && $format eq "r") {
2281 map { $_ = eval $_ } @$invmap_ref;
2282 }
2283
2284Here's some entries from the output of the property "Nv", which has format
2285C<"r">.
2286
2287 @numerics_ranges @numerics_maps Note
2288 0x00 "NaN"
2289 0x30 0 DIGIT 0
2290 0x31 1
2291 0x32 2
2292 ...
2293 0x37 7
2294 0x38 8
2295 0x39 9 DIGIT 9
2296 0x3A "NaN"
2297 0xB2 2 SUPERSCRIPT 2
2298 0xB3 3 SUPERSCRIPT 2
2299 0xB4 "NaN"
2300 0xB9 1 SUPERSCRIPT 1
2301 0xBA "NaN"
2302 0xBC 1/4 VULGAR FRACTION 1/4
2303 0xBD 1/2 VULGAR FRACTION 1/2
2304 0xBE 3/4 VULGAR FRACTION 3/4
2305 0xBF "NaN"
2306 0x660 0 ARABIC-INDIC DIGIT ZERO
2307
2308=item C<c>
2309
2310is like C<s> in that all the map array elements are scalars, but some of them
2311are the special string S<C<"E<lt>code pointE<gt>">>, meaning that the map of
2312each code point in the corresponding range in the inversion list is the code
2313point itself. For example, in:
2314
2315 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
2316 = prop_invmap("Simple_Uppercase_Mapping");
2317
2318the returned arrays look like this:
2319
2320 @$uppers_ranges_ref @$uppers_maps_ref Note
2321 0 "<code point>"
2322 97 65 'a' maps to 'A'
2323 98 66 'b' => 'B'
2324 99 67 'c' => 'C'
2325 ...
2326 120 88 'x' => 'X'
2327 121 89 'y' => 'Y'
2328 122 90 'z' => 'Z'
2329 123 "<code point>"
2330 181 924 MICRO SIGN => Greek Cap MU
2331 182 "<code point>"
2332 ...
2333
2334The first line means that the uppercase of code point 0 is 0;
2335the uppercase of code point 1 is 1; ... of code point 96 is 96. Without the
2336C<"E<lt>code_pointE<gt>"> notation, every code point would have to have an
2337entry. This would mean that the arrays would each have more than a million
2338entries to list just the legal Unicode code points!
2339
2340=item C<cl>
2341
2342means that some of the map array elements have the form given by C<c>, and
2343the rest are ordered lists of code points.
2344For example, in:
2345
2346 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
2347 = prop_invmap("Uppercase_Mapping");
2348
2349the returned arrays look like this:
2350
2351 @$uppers_ranges_ref @$uppers_maps_ref
2352 0 "<code point>"
2353 97 65
2354 ...
2355 122 90
2356 123 "<code point>"
2357 181 924
2358 182 "<code point>"
2359 ...
2360 0x0149 [ 0x02BC 0x004E ]
2361 0x014A "<code point>"
2362 0x014B 0x014A
2363 ...
2364
2365This is the full Uppercase_Mapping property (as opposed to the
2366Simple_Uppercase_Mapping given in the example for format C<"c">). The only
2367difference between the two in the ranges shown is that the code point at
23680x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two
2369characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN
2370CAPITAL LETTER N).
2371
2372=item C<cle>
2373
2374means that some of the map array elements have the forms given by C<cl>, and
2375the rest are the empty string. The property C<NFKC_Casefold> has this form.
2376An example slice is:
2377
2378 @$ranges_ref @$maps_ref Note
2379 ...
2380 0x00AA 0x0061 FEMININE ORDINAL INDICATOR => 'a'
2381 0x00AB <code point>
2382 0x00AD SOFT HYPHEN => ""
2383 0x00AE <code point>
2384 0x00AF [ 0x0020, 0x0304 ] MACRON => SPACE . COMBINING MACRON
2385 0x00B0 <code point>
2386 ...
2387
2388=item C<n>
2389
2390means the Name property. All the elements of the map array are simple
2391scalars, but some of them contain special strings that require more work to
2392get the actual name.
2393
2394Entries such as:
2395
2396 CJK UNIFIED IDEOGRAPH-<code point>
2397
2398mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-"
2399with the code point (expressed in hexadecimal) appended to it, like "CJK
2400UNIFIED IDEOGRAPH-3403" (similarly for C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code
2401pointE<gt>>).
2402
2403Also, entries like
2404
2405 <hangul syllable>
2406
2407means that the name is algorithmically calculated. This is easily done by
2408the function L<charnames/charnames::viacode(code)>.
2409
2410Note that for control characters (C<Gc=cc>), Unicode's data files have the
2411string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty
2412string. This function returns that real name, the empty string.
2413
2414=item C<d>
2415
2416means the Decomposition_Mapping property. This property is like C<cl>
2417properties, except it has an additional entry type:
2418
2419 <hangul syllable>
2420
2421for those code points whose decomposition is algorithmically calculated. (The
2422C<n> format has this same entry.) These can be generated via the function
2423L<Unicode::Normalize::NFD()|Unicode::Normalize>.
2424
2425
2426Note that the mapping is the one that is specified in the Unicode data files,
2427and to get the final decomposition, it may need to be applied recursively.
2428
2429=back
2430
2431A binary search can be used to quickly find a code point in the inversion
2432list, and hence its corresponding mapping.
2433
2434The final element (index [3], assigned to C<$default> in the "block" example) in
2435the four element list returned by this function may be useful for applications
2436that wish to convert the returned inversion map data structure into some
2437other, such as a hash. It gives the mapping that most code points map to
2438under the property. If you establish the convention that any code point not
2439explicitly listed in your data structure maps to this value, you can
2440potentially make your data structure much smaller. As you construct your data
2441structure from the one returned by this function, simply ignore those ranges
2442that map to this value, generally called the "default" value. For example, to
2443convert to the data structure searchable by L</charinrange()>, you can follow
2444this recipe:
2445
2446 my ($list_ref, $map_ref, $format, $missing) = prop_invmap($property);
2447 my @range_list;
2448 for my $i (0 .. @$list_ref - 2) {
2449 next if $map_ref->[$i] eq $missing;
2450 push @range_list, [ $list_ref->[$i],
2451 $list_ref->[$i+1],
2452 $map_ref->[$i]
2453 ];
2454 }
2455
2456 print charinrange(\@range_list, $code_point), "\n";
2457
2458
2459With this, C<charinrange()> will return C<undef> if its input code point maps
2460to C<$missing>. You can avoid this by omitting the C<next> statement, and adding
2461a line after the loop to handle the final element of the inversion map.
2462
2463One internal Perl property is accessible by this function.
2464"Perl_Decimal_Digit" returns an inversion map in which all the Unicode decimal
2465digits map to their numeric values, and everything else to the empty string,
2466like so:
2467
2468 @digits @values
2469 0x0000 ""
2470 0x0030 0
2471 0x0031 1
2472 0x0032 2
2473 0x0033 3
2474 0x0034 4
2475 0x0035 5
2476 0x0036 6
2477 0x0037 7
2478 0x0038 8
2479 0x0039 9
2480 0x003A ""
2481 0x0660 0
2482 0x0661 1
2483 ...
2484
2485Note that the inversion maps returned for the C<Case_Folding> and
2486C<Simple_Case_Folding> properties do not include the Turkic-locale mappings.
2487Use L</casefold()> for these.
2488
62b3b855
KW
2489C<prop_invmap> does not know about any user-defined properties, and will
2490return C<undef> if called with one of those.
2491
2492=cut
2493
2494# User-defined properties could be handled with some changes to utf8_heavy.pl;
2495# if done, consideration should be given to the fact that the user subroutine
2496# could return different results with each call, which could lead to some
2497# security issues.
2498
2499# One could store things in memory so they don't have to be recalculated, but
2500# it is unlikely this will be called often, and some properties would take up
2501# significant memory.
2502
2503# These are created by mktables for this routine and stored in unicore/UCD.pl
2504# where their structures are described.
2505our @algorithmic_named_code_points;
2506our $HANGUL_BEGIN;
2507our $HANGUL_COUNT;
2508
2509sub prop_invmap ($) {
2510
2511 croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray;
2512
2513 my $prop = $_[0];
2514 return unless defined $prop;
2515
2516 # Fail internal properties
2517 return if $prop =~ /^_/;
2518
2519 # The values returned by this function.
2520 my (@invlist, @invmap, $format, $missing);
2521
2522 # The swash has two components we look at, the base list, and a hash,
2523 # named 'SPECIALS', containing any additional members whose mappings don't
2524 # fit into the the base list scheme of things. These generally 'override'
2525 # any value in the base list for the same code point.
2526 my $overrides;
2527
2528 require "utf8_heavy.pl";
2529 require "unicore/UCD.pl";
2530
2531RETRY:
2532
2533 # Try to get the map swash for the property. They have 'To' prepended to
2534 # the property name, and 32 means we will accept 32 bit return values.
2535 my $swash = utf8::SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0);
2536
e35c6019
KW
2537 # If there are multiple entries for a single code point;
2538 my $has_multiples = 0;
2539
62b3b855
KW
2540 # If didn't find it, could be because needs a proxy. And if was the
2541 # 'Block' or 'Name' property, use a proxy even if did find it. Finding it
2542 # would be the result of the installation changing mktables to output the
2543 # Block or Name tables. The Block table gives block names in the
2544 # new-style, and this routine is supposed to return old-style block names.
2545 # The Name table is valid, but we need to execute the special code below
2546 # to add in the algorithmic-defined name entries.
2547 if (ref $swash eq ""
2548 || $swash->{'TYPE'} eq 'ToBlk'
2549 || $swash->{'TYPE'} eq 'ToNa')
2550 {
2551
2552 # Get the short name of the input property, in standard form
2553 my ($second_try) = prop_aliases($prop);
2554 return unless $second_try;
2555 $second_try = utf8::_loose_name(lc $second_try);
2556
2557 if ($second_try eq "in") {
2558
2559 # This property is identical to age for inversion map purposes
2560 $prop = "age";
2561 goto RETRY;
2562 }
2563 elsif ($second_try eq 'scf') {
2564
2565 # This property uses just the LIST part of cf which includes the
2566 # simple folds that are otherwise overridden by the SPECIALS. So
2567 # all we need do is to not look at the SPECIALS; set $overrides to
2568 # indicate that
2569 $overrides = -1;
2570 $prop = "cf";
2571 goto RETRY;
2572 }
2573 elsif ($second_try =~ / ^ s[ltu]c $ /x) {
2574
2575 # Because some applications may be reading the full mapping
2576 # equivalent files directly, they haven't been changed to include
2577 # the simple mappings as well, as was done with the cf file (which
2578 # doesn't have those backward compatibility issues) in 5.14.
2579 # Instead, separate internal-only files were created that
2580 # contain just the simple mappings that get overridden by the
2581 # SPECIALS. Thus, these simple case mappings use the LIST part of
2582 # their full mapping equivalents; plus the ones that are in those
2583 # additional files. These special files are used by other
2584 # functions in this module, so use the same hashes that those
2585 # functions use.
2586 my $file;
2587 if ($second_try eq "suc") {
2588 $file = '_suc.pl';
2589 $overrides = \%SIMPLE_UPPER;
2590 }
2591 elsif ($second_try eq "slc") {
2592 $file = '_slc.pl';
2593 $overrides = \%SIMPLE_LOWER;
2594 }
2595 else {
2596 $file = '_stc.pl';
2597 $overrides = \%SIMPLE_TITLE;
2598 }
2599
2600 # The files are already handled by the _read_table() function.
2601 # Don't read them in if already done.
2602 %$overrides =_read_table("unicore/To/$file", 'use_hash')
2603 unless %$overrides;
2604
2605 # Convert to the full mapping name, and go handle that; e.g.,
2606 # suc => uc.
2607 $prop = $second_try =~ s/^s//r;
2608 goto RETRY;
2609 }
2610 elsif ($second_try eq "blk") {
2611
2612 # We use the old block names. Just create a fake swash from its
2613 # data.
2614 _charblocks();
2615 my %blocks;
2616 $blocks{'LIST'} = "";
2617 $blocks{'TYPE'} = "ToBlk";
2618 $utf8::SwashInfo{ToBlk}{'missing'} = "No_Block";
2619 $utf8::SwashInfo{ToBlk}{'format'} = "s";
2620
2621 foreach my $block (@BLOCKS) {
2622 $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n",
2623 $block->[0],
2624 $block->[1],
2625 $block->[2];
2626 }
2627 $swash = \%blocks;
2628 }
2629 elsif ($second_try eq "na") {
2630
2631 # Use the combo file that has all the Name-type properties in it,
2632 # extracting just the ones that are for the actual 'Name'
2633 # property. And create a fake swash from it.
2634 my %names;
2635 $names{'LIST'} = "";
2636 my $original = do "unicore/Name.pl";
2637 my $previous_hex_code_point = "";
2638 my $algorithm_names = \@algorithmic_named_code_points;
2639
2640 # We hold off on adding the next entry to the list until we know,
2641 # that the next line isn't for the same code point. We only
2642 # output the final line. That one is the original Name property
2643 # value. The others are the Name_Alias corrections, which are
2644 # listed first in the file.
2645 my $staging = "";
2646
2647 my $i = 0;
2648 foreach my $line (split "\n", $original) {
2649 my ($hex_code_point, $name) = split "\t", $line;
2650
2651 # Weeds out all comments, blank lines, and named sequences
2652 next if $hex_code_point =~ /\P{ASCII_HEX_DIGIT}/;
2653
2654 my $code_point = hex $hex_code_point;
2655
2656 # The name of all controls is the default: the empty string.
2657 # The set of controls is immutable, so these hard-coded
2658 # constants work.
2659 next if $code_point <= 0x9F
2660 && ($code_point <= 0x1F || $code_point >= 0x7F);
2661
2662 # Output the last iteration's result, but only output the
2663 # final name if a code point has more than one.
2664 $names{'LIST'} .= $staging
2665 if $hex_code_point ne $previous_hex_code_point;
2666
2667 # If we are beyond where one of the special lines needs to
2668 # be inserted ...
2669 if ($i < @$algorithm_names
2670 && $code_point > $algorithm_names->[$i]->{'low'})
2671 {
2672
2673 # ... then insert it, ahead of what we were about to
2674 # output
2675 $staging = sprintf "%x\t%x\t%s\n",
2676 $algorithm_names->[$i]->{'low'},
2677 $algorithm_names->[$i]->{'high'},
2678 $algorithm_names->[$i]->{'name'};
2679
2680 # And pretend that what we last saw was the final code
2681 # point of the inserted range.
2682 $previous_hex_code_point = sprintf "%04X",
2683 $algorithm_names->[$i]->{'high'};
2684
2685 # Done with this range.
2686 $i++;
2687
2688 # Except we actually need to output the inserted line.
2689 redo;
2690 }
2691
2692 # Normal name.
2693 $staging = sprintf "%x\t\t%s\n", $code_point, $name;
2694 $previous_hex_code_point = $hex_code_point;
2695 }
2696
2697 # Add the name from the final iteration
2698 $names{'LIST'} .= $staging;
2699
2700 $names{'TYPE'} = "ToNa";
2701 $utf8::SwashInfo{ToNa}{'missing'} = "";
2702 $utf8::SwashInfo{ToNa}{'format'} = "n";
2703 $swash = \%names;
2704 }
2705 elsif ($second_try =~ / ^ ( d [mt] ) $ /x) {
2706
2707 # The file is a combination of dt and dm properties. Create a
2708 # fake swash from the portion that we want.
2709 my $original = do "unicore/Decomposition.pl";
2710 my %decomps;
2711
2712 if ($second_try eq 'dt') {
2713 $decomps{'TYPE'} = "ToDt";
2714 $utf8::SwashInfo{'ToDt'}{'missing'} = "None";
2715 $utf8::SwashInfo{'ToDt'}{'format'} = "s";
2716 }
2717 else {
2718 $decomps{'TYPE'} = "ToDm";
2719 $utf8::SwashInfo{'ToDm'}{'missing'} = "<code point>";
2720
2721 # Use a special internal-to-this_routine format, 'dm', to
2722 # distinguish from 'd', meaning decimal.
2723 $utf8::SwashInfo{'ToDm'}{'format'} = "dm";
2724 }
2725
2726 $decomps{'LIST'} = "";
2727
2728 # This property has one special range not in the file: for the
2729 # hangul syllables
2730 my $done_hangul = 0; # Have we done the hangul range.
2731 foreach my $line (split "\n", $original) {
2732 my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line;
2733 my $code_point = hex $hex_lower;
2734 my $value;
2735
2736 # The type, enclosed in <...>, precedes the mapping separated
2737 # by blanks
2738 if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) {
2739 $value = ($second_try eq 'dt') ? $1 : $2
2740 }
2741 else { # If there is no type specified, it's canonical
2742 $value = ($second_try eq 'dt')
2743 ? "Canonical" :
2744 $type_and_map;
2745 }
2746
2747 # Insert the hangul range at the appropriate spot.
2748 if (! $done_hangul && $code_point > $HANGUL_BEGIN) {
2749 $done_hangul = 1;
2750 $decomps{'LIST'} .=
2751 sprintf "%x\t%x\t%s\n",
2752 $HANGUL_BEGIN,
2753 $HANGUL_BEGIN + $HANGUL_COUNT - 1,
2754 ($second_try eq 'dt')
2755 ? "Canonical"
2756 : "<hangul syllable>";
2757 }
2758
2759 # And append this to our constructed LIST.
2760 $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n";
2761 }
2762 $swash = \%decomps;
2763 }
2764 else { # Don't know this property. Fail.
2765 return;
2766 }
2767 }
2768
2769 if ($swash->{'EXTRAS'}) {
2770 carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic";
2771 return;
2772 }
2773
2774 # Here, have a valid swash return. Examine it.
2775 my $returned_prop = $swash->{TYPE};
2776
2777 # All properties but binary ones should have 'missing' and 'format'
2778 # entries
2779 $missing = $utf8::SwashInfo{$returned_prop}{'missing'};
2780 $missing = 'N' unless defined $missing;
2781
2782 $format = $utf8::SwashInfo{$returned_prop}{'format'};
2783 $format = 'b' unless defined $format;
2784
2785 # The LIST input lines look like:
2786 # ...
2787 # 0374\t\tCommon
2788 # 0375\t0377\tGreek # [3]
2789 # 037A\t037D\tGreek # [4]
2790 # 037E\t\tCommon
2791 # 0384\t\tGreek
2792 # ...
2793 #
2794 # Convert them to like
2795 # 0374 => Common
2796 # 0375 => Greek
2797 # 0378 => $missing
2798 # 037A => Greek
2799 # 037E => Common
2800 # 037F => $missing
2801 # 0384 => Greek
2802 #
2803 # For binary properties, the final non-comment column is absent, and
2804 # assumed to be 'Y'.
2805
2806 foreach my $range (split "\n", $swash->{'LIST'}) {
2807 $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments
2808
2809 # Find the beginning and end of the range on the line
2810 my ($hex_begin, $hex_end, $map) = split "\t", $range;
2811 my $begin = hex $hex_begin;
2812 my $end = (defined $hex_end && $hex_end ne "")
2813 ? hex $hex_end
2814 : $begin;
2815
92bcf67b
KW
2816 # Each time through the loop (after the first):
2817 # $invlist[-2] contains the beginning of the previous range processed
2818 # $invlist[-1] contains the end+1 of the previous range processed
2819 # $invmap[-2] contains the value of the previous range processed
2820 # $invmap[-1] contains the default value for missing ranges ($missing)
2821 #
2822 # Thus, things are set up for the typical case of a new non-adjacent
2823 # range of non-missings to be added. But, if the new range is
2824 # adjacent, it needs to replace the [-1] elements; and if the new
2825 # range is a multiple value of the previous one, it needs to be added
2826 # to the [-2] map element.
2827
2828 # The first time through, everything will be empty. If the property
2829 # doesn't have a range that begins at 0, add one that maps to $missing
62b3b855
KW
2830 if (! @invlist) {
2831 if ($begin != 0) {
2832 push @invlist, 0;
2833 push @invmap, $missing;
2834 }
2835 }
e35c6019
KW
2836 elsif (@invlist > 1 && $invlist[-2] == $begin) {
2837
2838 # Here we handle the case where the input has multiple entries for
2839 # each code point. mktables should have made sure that each such
2840 # range contains only one code point. At this point, $invlist[-1]
2841 # is the $missing that was added at the end of the last loop
2842 # iteration, and [-2] is the last real input code point, and that
2843 # code point is the same as the one we are adding now, making the
2844 # new one a multiple entry. Add it to the existing entry, either
2845 # by pushing it to the existing list of multiple entries, or
2846 # converting the single current entry into a list with both on it.
2847 # This is all we need do for this iteration.
2848
2849 if ($end != $begin) {
2850 croak __PACKAGE__, "Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map";
2851 }
2852 if (! ref $invmap[-2]) {
2853 $invmap[-2] = [ $invmap[-2], $map ];
2854 }
2855 else {
2856 push @{$invmap[-2]}, $map;
2857 }
2858 $has_multiples = 1;
2859 next;
2860 }
62b3b855
KW
2861 elsif ($invlist[-1] == $begin) {
2862
2863 # If the input isn't in the most compact form, so that there are
2864 # two adjacent ranges that map to the same thing, they should be
2865 # combined. This happens in our constructed dt mapping, as
2866 # Element [-2] is the map for the latest range so far processed.
2867 # Just set the beginning point of the map to $missing (in
2868 # invlist[-1]) to 1 beyond where this range ends. For example, in
2869 # 12\t13\tXYZ
2870 # 14\t17\tXYZ
2871 # we have set it up so that it looks like
2872 # 12 => XYZ
2873 # 14 => $missing
2874 #
2875 # We now see that it should be
2876 # 12 => XYZ
2877 # 18 => $missing
c887f93f
KW
2878 if (@invlist > 1 && ( (defined $map)
2879 ? $invmap[-2] eq $map
2880 : $invmap[-2] eq 'Y'))
2881 {
62b3b855
KW
2882 $invlist[-1] = $end + 1;
2883 next;
2884 }
2885
2886 # Here, the range started in the previous iteration that maps to
2887 # $missing starts at the same code point as this range. That
2888 # means there is no gap to fill that that range was intended for,
2889 # so we just pop it off the parallel arrays.
2890 pop @invlist;
2891 pop @invmap;
2892 }
2893
2894 # Add the range beginning, and the range's map.
2895 push @invlist, $begin;
2896 if ($format eq 'dm') {
2897
2898 # The decomposition maps are either a line like <hangul syllable>
2899 # which are to be taken as is; or a sequence of code points in hex
2900 # and separated by blanks. Convert them to decimal, and if there
2901 # is more than one, use an anonymous array as the map.
2902 if ($map =~ /^ < /x) {
2903 push @invmap, $map;
2904 }
2905 else {
2906 my @map = map { hex } split " ", $map;
2907 if (@map == 1) {
2908 push @invmap, $map[0];
2909 }
2910 else {
2911 push @invmap, \@map;
2912 }
2913 }
2914 }
2915 else {
2916
2917 # Otherwise, convert hex formatted list entries to decimal; add a
2918 # 'Y' map for the missing value in binary properties, or
2919 # otherwise, use the input map unchanged.
2920 $map = ($format eq 'x')
2921 ? hex $map
2922 : $format eq 'b'
2923 ? 'Y'
2924 : $map;
2925 push @invmap, $map;
2926 }
2927
2928 # We just started a range. It ends with $end. The gap between it and
2929 # the next element in the list must be filled with a range that maps
2930 # to the default value. If there is no gap, the next iteration will
2931 # pop this, unless there is no next iteration, and we have filled all
2932 # of the Unicode code space, so check for that and skip.
2933 if ($end < $MAX_UNICODE_CODEPOINT) {
2934 push @invlist, $end + 1;
2935 push @invmap, $missing;
2936 }
2937 }
2938
2939 # If the property is empty, make all code points use the value for missing
2940 # ones.
2941 if (! @invlist) {
2942 push @invlist, 0;
2943 push @invmap, $missing;
2944 }
2945
2946 # And add in standard element that all non-Unicode code points map to
2947 # $missing
2948 push @invlist, $MAX_UNICODE_CODEPOINT + 1;
2949 push @invmap, $missing;
2950
2951 # The second component of the map are those values that require
2952 # non-standard specification, stored in SPECIALS. These override any
2953 # duplicate code points in LIST. If we are using a proxy, we may have
2954 # already set $overrides based on the proxy.
2955 $overrides = $swash->{'SPECIALS'} unless defined $overrides;
2956 if ($overrides) {
2957
2958 # A negative $overrides implies that the SPECIALS should be ignored,
2959 # and a simple 'c' list is the value.
2960 if ($overrides < 0) {
2961 $format = 'c';
2962 }
2963 else {
2964
2965 # Currently, all overrides are for properties that normally map to
2966 # single code points, but now some will map to lists of code
2967 # points (but there is an exception case handled below).
2968 $format = 'cl';
2969
2970 # Look through the overrides.
2971 foreach my $cp_maybe_utf8 (keys %$overrides) {
2972 my $cp;
2973 my @map;
2974
2975 # If the overrides came from SPECIALS, the code point keys are
2976 # packed UTF-8.
2977 if ($overrides == $swash->{'SPECIALS'}) {
2978 $cp = unpack("C0U", $cp_maybe_utf8);
2979 @map = unpack "U0U*", $swash->{'SPECIALS'}{$cp_maybe_utf8};
2980
2981 # The empty string will show up unpacked as an empty
2982 # array.
2983 $format = 'cle' if @map == 0;
2984 }
2985 else {
2986
2987 # But if we generated the overrides, we didn't bother to
2988 # pack them, and we, so far, do this only for properties
2989 # that are 'c' ones.
2990 $cp = $cp_maybe_utf8;
2991 @map = hex $overrides->{$cp};
2992 $format = 'c';
2993 }
2994
2995 # Find the range that the override applies to.
2996 my $i = _search_invlist(\@invlist, $cp);
2997 if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) {
2998 croak __PACKAGE__, "wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]"
2999 }
3000
3001 # And what that range currently maps to
3002 my $cur_map = $invmap[$i];
3003
3004 # If there is a gap between the next range and the code point
3005 # we are overriding, we have to add elements to both arrays to
3006 # fill that gap, using the map that applies to it, which is
3007 # $cur_map, since it is part of the current range.
3008 if ($invlist[$i + 1] > $cp + 1) {
3009 #use feature 'say';
3010 #say "Before splice:";
3011 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3012 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3013 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3014 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3015 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3016
3017 splice @invlist, $i + 1, 0, $cp + 1;
3018 splice @invmap, $i + 1, 0, $cur_map;
3019
3020 #say "After splice:";
3021 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3022 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3023 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3024 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3025 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3026 }
3027
3028 # If the remaining portion of the range is multiple code
3029 # points (ending with the one we are replacing, guaranteed by
3030 # the earlier splice). We must split it into two
3031 if ($invlist[$i] < $cp) {
3032 $i++; # Compensate for the new element
3033
3034 #use feature 'say';
3035 #say "Before splice:";
3036 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3037 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3038 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3039 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3040 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3041
3042 splice @invlist, $i, 0, $cp;
3043 splice @invmap, $i, 0, 'dummy';
3044
3045 #say "After splice:";
3046 #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3047 #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3048 #say 'i =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3049 #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3050 #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3051 }
3052
3053 # Here, the range we are overriding contains a single code
3054 # point. The result could be the empty string, a single
3055 # value, or a list. If the last case, we use an anonymous
3056 # array.
3057 $invmap[$i] = (scalar @map == 0)
3058 ? ""
3059 : (scalar @map > 1)
3060 ? \@map
3061 : $map[0];
3062 }
3063 }
3064 }
3065 elsif ($format eq 'x') {
3066
3067 # All hex-valued properties are really to code points
3068 $format = 'c';
3069 }
3070 elsif ($format eq 'dm') {
3071 $format = 'd';
3072 }
3073 elsif ($format eq 'sw') { # blank-separated elements to form a list.
3074 map { $_ = [ split " ", $_ ] if $_ =~ / / } @invmap;
3075 $format = 'sl';
3076 }
3077 elsif ($returned_prop eq 'ToNameAlias') {
3078
3079 # This property currently doesn't have any lists, but theoretically
3080 # could
3081 $format = 'sl';
3082 }
3083 elsif ($format ne 'n' && $format ne 'r') {
3084
3085 # All others are simple scalars
3086 $format = 's';
3087 }
e35c6019
KW
3088 if ($has_multiples && $format !~ /l/) {
3089 croak __PACKAGE__, "Wrong format '$format' for prop_invmap('$prop'); should indicate has lists";
3090 }
62b3b855
KW
3091
3092 return (\@invlist, \@invmap, $format, $missing);
3093}
3094
55d7b906 3095=head2 Unicode::UCD::UnicodeVersion
10a6ecd2 3096
a452d459
KW
3097This returns the version of the Unicode Character Database, in other words, the
3098version of the Unicode standard the database implements. The version is a
3099string of numbers delimited by dots (C<'.'>).
10a6ecd2
JH
3100
3101=cut
3102
3103my $UNICODEVERSION;
3104
3105sub UnicodeVersion {
3106 unless (defined $UNICODEVERSION) {
3107 openunicode(\$VERSIONFH, "version");
ce066323 3108 local $/ = "\n";
10a6ecd2
JH
3109 chomp($UNICODEVERSION = <$VERSIONFH>);
3110 close($VERSIONFH);
3111 croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'"
3112 unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/;
3113 }
3114 return $UNICODEVERSION;
3115}
3aa957f9 3116
a452d459
KW
3117=head2 B<Blocks versus Scripts>
3118
3119The difference between a block and a script is that scripts are closer
3120to the linguistic notion of a set of code points required to present
3121languages, while block is more of an artifact of the Unicode code point
3122numbering and separation into blocks of (mostly) 256 code points.
3123
3124For example the Latin B<script> is spread over several B<blocks>, such
3125as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and
3126C<Latin Extended-B>. On the other hand, the Latin script does not
3127contain all the characters of the C<Basic Latin> block (also known as
3128ASCII): it includes only the letters, and not, for example, the digits
3129or the punctuation.
3130
3131For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt>
3132
3133For scripts see UTR #24: L<http://www.unicode.org/unicode/reports/tr24/>
3134
3135=head2 B<Matching Scripts and Blocks>
3136
3137Scripts are matched with the regular-expression construct
3138C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script),
f200dd12 3139while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches
a452d459
KW
3140any of the 256 code points in the Tibetan block).
3141
430fe03d
KW
3142=head2 Old-style versus new-style block names
3143
3144Unicode publishes the names of blocks in two different styles, though the two
3145are equivalent under Unicode's loose matching rules.
3146
3147The original style uses blanks and hyphens in the block names (except for
3148C<No_Block>), like so:
3149
3150 Miscellaneous Mathematical Symbols-B
3151
3152The newer style replaces these with underscores, like this:
3153
3154 Miscellaneous_Mathematical_Symbols_B
3155
3156This newer style is consistent with the values of other Unicode properties.
3157To preserve backward compatibility, all the functions in Unicode::UCD that
3158return block names (except one) return the old-style ones. That one function,
3159L</prop_value_aliases()> can be used to convert from old-style to new-style:
3160
3161 my $new_style = prop_values_aliases("block", $old_style);
3162
3163Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>,
3164meaning C<Block=Cyrillic>. These have always been written in the new style.
3165
3166To convert from new-style to old-style, follow this recipe:
3167
3168 $old_style = charblock((prop_invlist("block=$new_style"))[0]);
3169
3170(which finds the range of code points in the block using C<prop_invlist>,
3171gets the lower end of the range (0th element) and then looks up the old name
3172for its block using C<charblock>).
3173
8b731da2
JH
3174=head1 BUGS
3175
3176Does not yet support EBCDIC platforms.
3177
561c79ed
JH
3178=head1 AUTHOR
3179
a18e976f 3180Jarkko Hietaniemi. Now maintained by perl5 porters.
561c79ed
JH
3181
3182=cut
3183
31841;