This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
plug strictly private function leaks in API listing
[perl5.git] / pod / perlguts.pod
CommitLineData
a0d0e21e
LW
1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e
LW
14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e
LW
22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892
AD
28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
54310121 31=head2 Working with SVs
a0d0e21e
LW
32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
9da1e3b5 37The six routines are:
a0d0e21e
LW
38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
9da1e3b5 42 SV* newSVpvn(char*, int);
46fc3d4c 43 SV* newSVpvf(const char*, ...);
a0d0e21e
LW
44 SV* newSVsv(SV*);
45
deb3007b 46To change the value of an *already-existing* SV, there are seven routines:
a0d0e21e
LW
47
48 void sv_setiv(SV*, IV);
deb3007b 49 void sv_setuv(SV*, UV);
a0d0e21e 50 void sv_setnv(SV*, double);
a0d0e21e 51 void sv_setpv(SV*, char*);
46fc3d4c 52 void sv_setpvn(SV*, char*, int)
53 void sv_setpvf(SV*, const char*, ...);
9abd00ed 54 void sv_setpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
a0d0e21e
LW
55 void sv_setsv(SV*, SV*);
56
57Notice that you can choose to specify the length of the string to be
9da1e3b5
MUN
58assigned by using C<sv_setpvn>, C<newSVpvn>, or C<newSVpv>, or you may
59allow Perl to calculate the length by using C<sv_setpv> or by specifying
600 as the second argument to C<newSVpv>. Be warned, though, that Perl will
61determine the string's length by using C<strlen>, which depends on the
9abd00ed
GS
62string terminating with a NUL character.
63
64The arguments of C<sv_setpvf> are processed like C<sprintf>, and the
65formatted output becomes the value.
66
67C<sv_setpvfn> is an analogue of C<vsprintf>, but it allows you to specify
68either a pointer to a variable argument list or the address and length of
69an array of SVs. The last argument points to a boolean; on return, if that
70boolean is true, then locale-specific information has been used to format
71the string, and the string's contents are therefore untrustworty (see
72L<perlsec>). This pointer may be NULL if that information is not
73important. Note that this function requires you to specify the length of
74the format.
75
9da1e3b5
MUN
76The C<sv_set*()> functions are not generic enough to operate on values
77that have "magic". See L<Magic Virtual Tables> later in this document.
a0d0e21e 78
a3cb178b
GS
79All SVs that contain strings should be terminated with a NUL character.
80If it is not NUL-terminated there is a risk of
5f05dabc 81core dumps and corruptions from code which passes the string to C
82functions or system calls which expect a NUL-terminated string.
83Perl's own functions typically add a trailing NUL for this reason.
84Nevertheless, you should be very careful when you pass a string stored
85in an SV to a C function or system call.
86
a0d0e21e
LW
87To access the actual value that an SV points to, you can use the macros:
88
89 SvIV(SV*)
90 SvNV(SV*)
91 SvPV(SV*, STRLEN len)
92
93which will automatically coerce the actual scalar type into an IV, double,
94or string.
95
96In the C<SvPV> macro, the length of the string returned is placed into the
97variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
9cde0e7f 98care what the length of the data is, use the global variable C<PL_na>. Remember,
a0d0e21e 99however, that Perl allows arbitrary strings of data that may both contain
54310121 100NULs and might not be terminated by a NUL.
a0d0e21e 101
07fa94a1 102If you want to know if the scalar value is TRUE, you can use:
a0d0e21e
LW
103
104 SvTRUE(SV*)
105
106Although Perl will automatically grow strings for you, if you need to force
107Perl to allocate more memory for your SV, you can use the macro
108
109 SvGROW(SV*, STRLEN newlen)
110
111which will determine if more memory needs to be allocated. If so, it will
112call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 113decrease, the allocated memory of an SV and that it does not automatically
114add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 115C<SvGROW(sv, len + 1)>).
a0d0e21e
LW
116
117If you have an SV and want to know what kind of data Perl thinks is stored
118in it, you can use the following macros to check the type of SV you have.
119
120 SvIOK(SV*)
121 SvNOK(SV*)
122 SvPOK(SV*)
123
124You can get and set the current length of the string stored in an SV with
125the following macros:
126
127 SvCUR(SV*)
128 SvCUR_set(SV*, I32 val)
129
cb1a09d0
AD
130You can also get a pointer to the end of the string stored in the SV
131with the macro:
132
133 SvEND(SV*)
134
135But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 136
d1b91892
AD
137If you want to append something to the end of string stored in an C<SV*>,
138you can use the following functions:
139
140 void sv_catpv(SV*, char*);
141 void sv_catpvn(SV*, char*, int);
46fc3d4c 142 void sv_catpvf(SV*, const char*, ...);
9abd00ed 143 void sv_catpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
d1b91892
AD
144 void sv_catsv(SV*, SV*);
145
146The first function calculates the length of the string to be appended by
147using C<strlen>. In the second, you specify the length of the string
46fc3d4c 148yourself. The third function processes its arguments like C<sprintf> and
9abd00ed
GS
149appends the formatted output. The fourth function works like C<vsprintf>.
150You can specify the address and length of an array of SVs instead of the
151va_list argument. The fifth function extends the string stored in the first
152SV with the string stored in the second SV. It also forces the second SV
153to be interpreted as a string.
154
155The C<sv_cat*()> functions are not generic enough to operate on values that
156have "magic". See L<Magic Virtual Tables> later in this document.
d1b91892 157
a0d0e21e
LW
158If you know the name of a scalar variable, you can get a pointer to its SV
159by using the following:
160
5f05dabc 161 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e
LW
162
163This returns NULL if the variable does not exist.
164
d1b91892 165If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e
LW
166you can call:
167
168 SvOK(SV*)
169
9cde0e7f 170The scalar C<undef> value is stored in an SV instance called C<PL_sv_undef>. Its
a0d0e21e
LW
171address can be used whenever an C<SV*> is needed.
172
9cde0e7f
GS
173There are also the two values C<PL_sv_yes> and C<PL_sv_no>, which contain Boolean
174TRUE and FALSE values, respectively. Like C<PL_sv_undef>, their addresses can
a0d0e21e
LW
175be used whenever an C<SV*> is needed.
176
9cde0e7f 177Do not be fooled into thinking that C<(SV *) 0> is the same as C<&PL_sv_undef>.
a0d0e21e
LW
178Take this code:
179
180 SV* sv = (SV*) 0;
181 if (I-am-to-return-a-real-value) {
182 sv = sv_2mortal(newSViv(42));
183 }
184 sv_setsv(ST(0), sv);
185
186This code tries to return a new SV (which contains the value 42) if it should
04343c6d 187return a real value, or undef otherwise. Instead it has returned a NULL
a0d0e21e 188pointer which, somewhere down the line, will cause a segmentation violation,
9cde0e7f 189bus error, or just weird results. Change the zero to C<&PL_sv_undef> in the first
5f05dabc 190line and all will be well.
a0d0e21e
LW
191
192To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
3fe9a6f1 193call is not necessary (see L<Reference Counts and Mortality>).
a0d0e21e 194
d1b91892 195=head2 What's Really Stored in an SV?
a0d0e21e
LW
196
197Recall that the usual method of determining the type of scalar you have is
5f05dabc 198to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 199usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e
LW
200macros will do the appropriate conversion of string to integer/double or
201integer/double to string.
202
203If you I<really> need to know if you have an integer, double, or string
204pointer in an SV, you can use the following three macros instead:
205
206 SvIOKp(SV*)
207 SvNOKp(SV*)
208 SvPOKp(SV*)
209
210These will tell you if you truly have an integer, double, or string pointer
d1b91892 211stored in your SV. The "p" stands for private.
a0d0e21e 212
07fa94a1 213In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 214
54310121 215=head2 Working with AVs
a0d0e21e 216
07fa94a1
JO
217There are two ways to create and load an AV. The first method creates an
218empty AV:
a0d0e21e
LW
219
220 AV* newAV();
221
54310121 222The second method both creates the AV and initially populates it with SVs:
a0d0e21e
LW
223
224 AV* av_make(I32 num, SV **ptr);
225
5f05dabc 226The second argument points to an array containing C<num> C<SV*>'s. Once the
54310121 227AV has been created, the SVs can be destroyed, if so desired.
a0d0e21e 228
54310121 229Once the AV has been created, the following operations are possible on AVs:
a0d0e21e
LW
230
231 void av_push(AV*, SV*);
232 SV* av_pop(AV*);
233 SV* av_shift(AV*);
234 void av_unshift(AV*, I32 num);
235
236These should be familiar operations, with the exception of C<av_unshift>.
237This routine adds C<num> elements at the front of the array with the C<undef>
238value. You must then use C<av_store> (described below) to assign values
239to these new elements.
240
241Here are some other functions:
242
5f05dabc 243 I32 av_len(AV*);
a0d0e21e 244 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 245 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 246
5f05dabc 247The C<av_len> function returns the highest index value in array (just
248like $#array in Perl). If the array is empty, -1 is returned. The
249C<av_fetch> function returns the value at index C<key>, but if C<lval>
250is non-zero, then C<av_fetch> will store an undef value at that index.
04343c6d
GS
251The C<av_store> function stores the value C<val> at index C<key>, and does
252not increment the reference count of C<val>. Thus the caller is responsible
253for taking care of that, and if C<av_store> returns NULL, the caller will
254have to decrement the reference count to avoid a memory leak. Note that
255C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their
256return value.
d1b91892 257
a0d0e21e 258 void av_clear(AV*);
a0d0e21e 259 void av_undef(AV*);
cb1a09d0 260 void av_extend(AV*, I32 key);
5f05dabc 261
262The C<av_clear> function deletes all the elements in the AV* array, but
263does not actually delete the array itself. The C<av_undef> function will
264delete all the elements in the array plus the array itself. The
265C<av_extend> function extends the array so that it contains C<key>
266elements. If C<key> is less than the current length of the array, then
267nothing is done.
a0d0e21e
LW
268
269If you know the name of an array variable, you can get a pointer to its AV
270by using the following:
271
5f05dabc 272 AV* perl_get_av("package::varname", FALSE);
a0d0e21e
LW
273
274This returns NULL if the variable does not exist.
275
04343c6d
GS
276See L<Understanding the Magic of Tied Hashes and Arrays> for more
277information on how to use the array access functions on tied arrays.
278
54310121 279=head2 Working with HVs
a0d0e21e
LW
280
281To create an HV, you use the following routine:
282
283 HV* newHV();
284
54310121 285Once the HV has been created, the following operations are possible on HVs:
a0d0e21e
LW
286
287 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
288 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
289
5f05dabc 290The C<klen> parameter is the length of the key being passed in (Note that
291you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
292length of the key). The C<val> argument contains the SV pointer to the
54310121 293scalar being stored, and C<hash> is the precomputed hash value (zero if
5f05dabc 294you want C<hv_store> to calculate it for you). The C<lval> parameter
295indicates whether this fetch is actually a part of a store operation, in
296which case a new undefined value will be added to the HV with the supplied
297key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 298
5f05dabc 299Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
300C<SV*>. To access the scalar value, you must first dereference the return
301value. However, you should check to make sure that the return value is
302not NULL before dereferencing it.
a0d0e21e
LW
303
304These two functions check if a hash table entry exists, and deletes it.
305
306 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 307 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 308
5f05dabc 309If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
310create and return a mortal copy of the deleted value.
311
a0d0e21e
LW
312And more miscellaneous functions:
313
314 void hv_clear(HV*);
a0d0e21e 315 void hv_undef(HV*);
5f05dabc 316
317Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
318table but does not actually delete the hash table. The C<hv_undef> deletes
319both the entries and the hash table itself.
a0d0e21e 320
d1b91892
AD
321Perl keeps the actual data in linked list of structures with a typedef of HE.
322These contain the actual key and value pointers (plus extra administrative
323overhead). The key is a string pointer; the value is an C<SV*>. However,
324once you have an C<HE*>, to get the actual key and value, use the routines
325specified below.
326
a0d0e21e
LW
327 I32 hv_iterinit(HV*);
328 /* Prepares starting point to traverse hash table */
329 HE* hv_iternext(HV*);
330 /* Get the next entry, and return a pointer to a
331 structure that has both the key and value */
332 char* hv_iterkey(HE* entry, I32* retlen);
333 /* Get the key from an HE structure and also return
334 the length of the key string */
cb1a09d0 335 SV* hv_iterval(HV*, HE* entry);
a0d0e21e
LW
336 /* Return a SV pointer to the value of the HE
337 structure */
cb1a09d0 338 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892
AD
339 /* This convenience routine combines hv_iternext,
340 hv_iterkey, and hv_iterval. The key and retlen
341 arguments are return values for the key and its
342 length. The value is returned in the SV* argument */
a0d0e21e
LW
343
344If you know the name of a hash variable, you can get a pointer to its HV
345by using the following:
346
5f05dabc 347 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e
LW
348
349This returns NULL if the variable does not exist.
350
8ebc5c01 351The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e
LW
352
353 i = klen;
354 hash = 0;
355 s = key;
356 while (i--)
357 hash = hash * 33 + *s++;
358
04343c6d
GS
359See L<Understanding the Magic of Tied Hashes and Arrays> for more
360information on how to use the hash access functions on tied hashes.
361
1e422769 362=head2 Hash API Extensions
363
364Beginning with version 5.004, the following functions are also supported:
365
366 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
367 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
368
369 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
370 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
371
372 SV* hv_iterkeysv (HE* entry);
373
374Note that these functions take C<SV*> keys, which simplifies writing
375of extension code that deals with hash structures. These functions
376also allow passing of C<SV*> keys to C<tie> functions without forcing
377you to stringify the keys (unlike the previous set of functions).
378
379They also return and accept whole hash entries (C<HE*>), making their
380use more efficient (since the hash number for a particular string
381doesn't have to be recomputed every time). See L<API LISTING> later in
382this document for detailed descriptions.
383
384The following macros must always be used to access the contents of hash
385entries. Note that the arguments to these macros must be simple
386variables, since they may get evaluated more than once. See
387L<API LISTING> later in this document for detailed descriptions of these
388macros.
389
390 HePV(HE* he, STRLEN len)
391 HeVAL(HE* he)
392 HeHASH(HE* he)
393 HeSVKEY(HE* he)
394 HeSVKEY_force(HE* he)
395 HeSVKEY_set(HE* he, SV* sv)
396
397These two lower level macros are defined, but must only be used when
398dealing with keys that are not C<SV*>s:
399
400 HeKEY(HE* he)
401 HeKLEN(HE* he)
402
04343c6d
GS
403Note that both C<hv_store> and C<hv_store_ent> do not increment the
404reference count of the stored C<val>, which is the caller's responsibility.
405If these functions return a NULL value, the caller will usually have to
406decrement the reference count of C<val> to avoid a memory leak.
1e422769 407
a0d0e21e
LW
408=head2 References
409
d1b91892
AD
410References are a special type of scalar that point to other data types
411(including references).
a0d0e21e 412
07fa94a1 413To create a reference, use either of the following functions:
a0d0e21e 414
5f05dabc 415 SV* newRV_inc((SV*) thing);
416 SV* newRV_noinc((SV*) thing);
a0d0e21e 417
5f05dabc 418The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1
JO
419functions are identical except that C<newRV_inc> increments the reference
420count of the C<thing>, while C<newRV_noinc> does not. For historical
421reasons, C<newRV> is a synonym for C<newRV_inc>.
422
423Once you have a reference, you can use the following macro to dereference
424the reference:
a0d0e21e
LW
425
426 SvRV(SV*)
427
428then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 429C<AV*> or C<HV*>, if required.
a0d0e21e 430
d1b91892 431To determine if an SV is a reference, you can use the following macro:
a0d0e21e
LW
432
433 SvROK(SV*)
434
07fa94a1
JO
435To discover what type of value the reference refers to, use the following
436macro and then check the return value.
d1b91892
AD
437
438 SvTYPE(SvRV(SV*))
439
440The most useful types that will be returned are:
441
442 SVt_IV Scalar
443 SVt_NV Scalar
444 SVt_PV Scalar
5f05dabc 445 SVt_RV Scalar
d1b91892
AD
446 SVt_PVAV Array
447 SVt_PVHV Hash
448 SVt_PVCV Code
5f05dabc 449 SVt_PVGV Glob (possible a file handle)
450 SVt_PVMG Blessed or Magical Scalar
451
452 See the sv.h header file for more details.
d1b91892 453
cb1a09d0
AD
454=head2 Blessed References and Class Objects
455
456References are also used to support object-oriented programming. In the
457OO lexicon, an object is simply a reference that has been blessed into a
458package (or class). Once blessed, the programmer may now use the reference
459to access the various methods in the class.
460
461A reference can be blessed into a package with the following function:
462
463 SV* sv_bless(SV* sv, HV* stash);
464
465The C<sv> argument must be a reference. The C<stash> argument specifies
3fe9a6f1 466which class the reference will belong to. See
2ae324a7 467L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0
AD
468
469/* Still under construction */
470
471Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 472point to. If C<classname> is non-null, the SV is blessed into the specified
473class. SV is returned.
cb1a09d0
AD
474
475 SV* newSVrv(SV* rv, char* classname);
476
8ebc5c01 477Copies integer or double into an SV whose reference is C<rv>. SV is blessed
478if C<classname> is non-null.
cb1a09d0
AD
479
480 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
481 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
482
5f05dabc 483Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 484reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0
AD
485
486 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
487
8ebc5c01 488Copies string into an SV whose reference is C<rv>. Set length to 0 to let
489Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0
AD
490
491 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
492
9abd00ed
GS
493Tests whether the SV is blessed into the specified class. It does not
494check inheritance relationships.
495
496 int sv_isa(SV* sv, char* name);
497
498Tests whether the SV is a reference to a blessed object.
499
500 int sv_isobject(SV* sv);
501
502Tests whether the SV is derived from the specified class. SV can be either
503a reference to a blessed object or a string containing a class name. This
504is the function implementing the C<UNIVERSAL::isa> functionality.
505
506 bool sv_derived_from(SV* sv, char* name);
507
508To check if you've got an object derived from a specific class you have
509to write:
510
511 if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }
cb1a09d0 512
5f05dabc 513=head2 Creating New Variables
cb1a09d0 514
5f05dabc 515To create a new Perl variable with an undef value which can be accessed from
516your Perl script, use the following routines, depending on the variable type.
cb1a09d0 517
5f05dabc 518 SV* perl_get_sv("package::varname", TRUE);
519 AV* perl_get_av("package::varname", TRUE);
520 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0
AD
521
522Notice the use of TRUE as the second parameter. The new variable can now
523be set, using the routines appropriate to the data type.
524
5f05dabc 525There are additional macros whose values may be bitwise OR'ed with the
526C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 527
5f05dabc 528 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
54310121 529 "Name <varname> used only once: possible typo" warning.
07fa94a1
JO
530 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
531 the variable did not exist before the function was called.
cb1a09d0 532
07fa94a1
JO
533If you do not specify a package name, the variable is created in the current
534package.
cb1a09d0 535
5f05dabc 536=head2 Reference Counts and Mortality
a0d0e21e 537
54310121 538Perl uses an reference count-driven garbage collection mechanism. SVs,
539AVs, or HVs (xV for short in the following) start their life with a
55497cff 540reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 541then it will be destroyed and its memory made available for reuse.
55497cff 542
543This normally doesn't happen at the Perl level unless a variable is
5f05dabc 544undef'ed or the last variable holding a reference to it is changed or
545overwritten. At the internal level, however, reference counts can be
55497cff 546manipulated with the following macros:
547
548 int SvREFCNT(SV* sv);
5f05dabc 549 SV* SvREFCNT_inc(SV* sv);
55497cff 550 void SvREFCNT_dec(SV* sv);
551
552However, there is one other function which manipulates the reference
07fa94a1
JO
553count of its argument. The C<newRV_inc> function, you will recall,
554creates a reference to the specified argument. As a side effect,
555it increments the argument's reference count. If this is not what
556you want, use C<newRV_noinc> instead.
557
558For example, imagine you want to return a reference from an XSUB function.
559Inside the XSUB routine, you create an SV which initially has a reference
560count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 561This returns the reference as a new SV, but the reference count of the
562SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1
JO
563return the reference from the XSUB routine and forget about the SV.
564But Perl hasn't! Whenever the returned reference is destroyed, the
565reference count of the original SV is decreased to one and nothing happens.
566The SV will hang around without any way to access it until Perl itself
567terminates. This is a memory leak.
5f05dabc 568
569The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253
JO
570C<newRV_inc>. Then, if and when the last reference is destroyed,
571the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 572stopping any memory leak.
55497cff 573
5f05dabc 574There are some convenience functions available that can help with the
54310121 575destruction of xVs. These functions introduce the concept of "mortality".
07fa94a1
JO
576An xV that is mortal has had its reference count marked to be decremented,
577but not actually decremented, until "a short time later". Generally the
578term "short time later" means a single Perl statement, such as a call to
54310121 579an XSUB function. The actual determinant for when mortal xVs have their
07fa94a1
JO
580reference count decremented depends on two macros, SAVETMPS and FREETMPS.
581See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 582
583"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
584However, if you mortalize a variable twice, the reference count will
585later be decremented twice.
586
587You should be careful about creating mortal variables. Strange things
588can happen if you make the same value mortal within multiple contexts,
5f05dabc 589or if you make a variable mortal multiple times.
a0d0e21e
LW
590
591To create a mortal variable, use the functions:
592
593 SV* sv_newmortal()
594 SV* sv_2mortal(SV*)
595 SV* sv_mortalcopy(SV*)
596
5f05dabc 597The first call creates a mortal SV, the second converts an existing
598SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
599third creates a mortal copy of an existing SV.
a0d0e21e 600
54310121 601The mortal routines are not just for SVs -- AVs and HVs can be
faed5253 602made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 603C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 604
5f05dabc 605=head2 Stashes and Globs
a0d0e21e 606
aa689395 607A "stash" is a hash that contains all of the different objects that
608are contained within a package. Each key of the stash is a symbol
609name (shared by all the different types of objects that have the same
610name), and each value in the hash table is a GV (Glob Value). This GV
611in turn contains references to the various objects of that name,
612including (but not limited to) the following:
cb1a09d0 613
a0d0e21e
LW
614 Scalar Value
615 Array Value
616 Hash Value
a3cb178b 617 I/O Handle
a0d0e21e
LW
618 Format
619 Subroutine
620
9cde0e7f 621There is a single stash called "PL_defstash" that holds the items that exist
5f05dabc 622in the "main" package. To get at the items in other packages, append the
623string "::" to the package name. The items in the "Foo" package are in
9cde0e7f 624the stash "Foo::" in PL_defstash. The items in the "Bar::Baz" package are
5f05dabc 625in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 626
d1b91892 627To get the stash pointer for a particular package, use the function:
a0d0e21e
LW
628
629 HV* gv_stashpv(char* name, I32 create)
630 HV* gv_stashsv(SV*, I32 create)
631
632The first function takes a literal string, the second uses the string stored
d1b91892 633in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 634C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e
LW
635
636The name that C<gv_stash*v> wants is the name of the package whose symbol table
637you want. The default package is called C<main>. If you have multiply nested
d1b91892
AD
638packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
639language itself.
a0d0e21e
LW
640
641Alternately, if you have an SV that is a blessed reference, you can find
642out the stash pointer by using:
643
644 HV* SvSTASH(SvRV(SV*));
645
646then use the following to get the package name itself:
647
648 char* HvNAME(HV* stash);
649
5f05dabc 650If you need to bless or re-bless an object you can use the following
651function:
a0d0e21e
LW
652
653 SV* sv_bless(SV*, HV* stash)
654
655where the first argument, an C<SV*>, must be a reference, and the second
656argument is a stash. The returned C<SV*> can now be used in the same way
657as any other SV.
658
d1b91892
AD
659For more information on references and blessings, consult L<perlref>.
660
54310121 661=head2 Double-Typed SVs
0a753a76 662
663Scalar variables normally contain only one type of value, an integer,
664double, pointer, or reference. Perl will automatically convert the
665actual scalar data from the stored type into the requested type.
666
667Some scalar variables contain more than one type of scalar data. For
668example, the variable C<$!> contains either the numeric value of C<errno>
669or its string equivalent from either C<strerror> or C<sys_errlist[]>.
670
671To force multiple data values into an SV, you must do two things: use the
672C<sv_set*v> routines to add the additional scalar type, then set a flag
673so that Perl will believe it contains more than one type of data. The
674four macros to set the flags are:
675
676 SvIOK_on
677 SvNOK_on
678 SvPOK_on
679 SvROK_on
680
681The particular macro you must use depends on which C<sv_set*v> routine
682you called first. This is because every C<sv_set*v> routine turns on
683only the bit for the particular type of data being set, and turns off
684all the rest.
685
686For example, to create a new Perl variable called "dberror" that contains
687both the numeric and descriptive string error values, you could use the
688following code:
689
690 extern int dberror;
691 extern char *dberror_list;
692
693 SV* sv = perl_get_sv("dberror", TRUE);
694 sv_setiv(sv, (IV) dberror);
695 sv_setpv(sv, dberror_list[dberror]);
696 SvIOK_on(sv);
697
698If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
699macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
700
701=head2 Magic Variables
a0d0e21e 702
d1b91892
AD
703[This section still under construction. Ignore everything here. Post no
704bills. Everything not permitted is forbidden.]
705
d1b91892
AD
706Any SV may be magical, that is, it has special features that a normal
707SV does not have. These features are stored in the SV structure in a
5f05dabc 708linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892
AD
709
710 struct magic {
711 MAGIC* mg_moremagic;
712 MGVTBL* mg_virtual;
713 U16 mg_private;
714 char mg_type;
715 U8 mg_flags;
716 SV* mg_obj;
717 char* mg_ptr;
718 I32 mg_len;
719 };
720
721Note this is current as of patchlevel 0, and could change at any time.
722
723=head2 Assigning Magic
724
725Perl adds magic to an SV using the sv_magic function:
726
727 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
728
729The C<sv> argument is a pointer to the SV that is to acquire a new magical
730feature.
731
732If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
733set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
734it to the beginning of the linked list of magical features. Any prior
735entry of the same type of magic is deleted. Note that this can be
5fb8527f 736overridden, and multiple instances of the same type of magic can be
d1b91892
AD
737associated with an SV.
738
54310121 739The C<name> and C<namlen> arguments are used to associate a string with
740the magic, typically the name of a variable. C<namlen> is stored in the
741C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd
d1b91892
AD
742copy of the name is stored in C<mg_ptr> field.
743
744The sv_magic function uses C<how> to determine which, if any, predefined
745"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0
AD
746See the "Magic Virtual Table" section below. The C<how> argument is also
747stored in the C<mg_type> field.
d1b91892
AD
748
749The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
750structure. If it is not the same as the C<sv> argument, the reference
751count of the C<obj> object is incremented. If it is the same, or if
04343c6d 752the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is
d1b91892
AD
753merely stored, without the reference count being incremented.
754
cb1a09d0
AD
755There is also a function to add magic to an C<HV>:
756
757 void hv_magic(HV *hv, GV *gv, int how);
758
759This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
760
761To remove the magic from an SV, call the function sv_unmagic:
762
763 void sv_unmagic(SV *sv, int type);
764
765The C<type> argument should be equal to the C<how> value when the C<SV>
766was initially made magical.
767
d1b91892
AD
768=head2 Magic Virtual Tables
769
770The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
771C<MGVTBL>, which is a structure of function pointers and stands for
772"Magic Virtual Table" to handle the various operations that might be
773applied to that variable.
774
775The C<MGVTBL> has five pointers to the following routine types:
776
777 int (*svt_get)(SV* sv, MAGIC* mg);
778 int (*svt_set)(SV* sv, MAGIC* mg);
779 U32 (*svt_len)(SV* sv, MAGIC* mg);
780 int (*svt_clear)(SV* sv, MAGIC* mg);
781 int (*svt_free)(SV* sv, MAGIC* mg);
782
783This MGVTBL structure is set at compile-time in C<perl.h> and there are
784currently 19 types (or 21 with overloading turned on). These different
785structures contain pointers to various routines that perform additional
786actions depending on which function is being called.
787
788 Function pointer Action taken
789 ---------------- ------------
790 svt_get Do something after the value of the SV is retrieved.
791 svt_set Do something after the SV is assigned a value.
792 svt_len Report on the SV's length.
793 svt_clear Clear something the SV represents.
794 svt_free Free any extra storage associated with the SV.
795
796For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
797to an C<mg_type> of '\0') contains:
798
799 { magic_get, magic_set, magic_len, 0, 0 }
800
801Thus, when an SV is determined to be magical and of type '\0', if a get
802operation is being performed, the routine C<magic_get> is called. All
803the various routines for the various magical types begin with C<magic_>.
804
805The current kinds of Magic Virtual Tables are:
806
bdbeb323 807 mg_type MGVTBL Type of magic
5f05dabc 808 ------- ------ ----------------------------
bdbeb323
SM
809 \0 vtbl_sv Special scalar variable
810 A vtbl_amagic %OVERLOAD hash
811 a vtbl_amagicelem %OVERLOAD hash element
812 c (none) Holds overload table (AMT) on stash
813 B vtbl_bm Boyer-Moore (fast string search)
d1b91892
AD
814 E vtbl_env %ENV hash
815 e vtbl_envelem %ENV hash element
bdbeb323
SM
816 f vtbl_fm Formline ('compiled' format)
817 g vtbl_mglob m//g target / study()ed string
d1b91892
AD
818 I vtbl_isa @ISA array
819 i vtbl_isaelem @ISA array element
bdbeb323
SM
820 k vtbl_nkeys scalar(keys()) lvalue
821 L (none) Debugger %_<filename
822 l vtbl_dbline Debugger %_<filename element
44a8e56a 823 o vtbl_collxfrm Locale transformation
bdbeb323
SM
824 P vtbl_pack Tied array or hash
825 p vtbl_packelem Tied array or hash element
826 q vtbl_packelem Tied scalar or handle
827 S vtbl_sig %SIG hash
828 s vtbl_sigelem %SIG hash element
d1b91892 829 t vtbl_taint Taintedness
bdbeb323
SM
830 U vtbl_uvar Available for use by extensions
831 v vtbl_vec vec() lvalue
832 x vtbl_substr substr() lvalue
833 y vtbl_defelem Shadow "foreach" iterator variable /
834 smart parameter vivification
835 * vtbl_glob GV (typeglob)
836 # vtbl_arylen Array length ($#ary)
837 . vtbl_pos pos() lvalue
838 ~ (none) Available for use by extensions
d1b91892 839
68dc0745 840When an uppercase and lowercase letter both exist in the table, then the
841uppercase letter is used to represent some kind of composite type (a list
842or a hash), and the lowercase letter is used to represent an element of
d1b91892
AD
843that composite type.
844
bdbeb323
SM
845The '~' and 'U' magic types are defined specifically for use by
846extensions and will not be used by perl itself. Extensions can use
847'~' magic to 'attach' private information to variables (typically
848objects). This is especially useful because there is no way for
849normal perl code to corrupt this private information (unlike using
850extra elements of a hash object).
851
852Similarly, 'U' magic can be used much like tie() to call a C function
853any time a scalar's value is used or changed. The C<MAGIC>'s
854C<mg_ptr> field points to a C<ufuncs> structure:
855
856 struct ufuncs {
857 I32 (*uf_val)(IV, SV*);
858 I32 (*uf_set)(IV, SV*);
859 IV uf_index;
860 };
861
862When the SV is read from or written to, the C<uf_val> or C<uf_set>
863function will be called with C<uf_index> as the first arg and a
1526ead6
AB
864pointer to the SV as the second. A simple example of how to add 'U'
865magic is shown below. Note that the ufuncs structure is copied by
866sv_magic, so you can safely allocate it on the stack.
867
868 void
869 Umagic(sv)
870 SV *sv;
871 PREINIT:
872 struct ufuncs uf;
873 CODE:
874 uf.uf_val = &my_get_fn;
875 uf.uf_set = &my_set_fn;
876 uf.uf_index = 0;
877 sv_magic(sv, 0, 'U', (char*)&uf, sizeof(uf));
5f05dabc 878
bdbeb323
SM
879Note that because multiple extensions may be using '~' or 'U' magic,
880it is important for extensions to take extra care to avoid conflict.
881Typically only using the magic on objects blessed into the same class
882as the extension is sufficient. For '~' magic, it may also be
883appropriate to add an I32 'signature' at the top of the private data
884area and check that.
5f05dabc 885
ef50df4b
GS
886Also note that the C<sv_set*()> and C<sv_cat*()> functions described
887earlier do B<not> invoke 'set' magic on their targets. This must
888be done by the user either by calling the C<SvSETMAGIC()> macro after
889calling these functions, or by using one of the C<sv_set*_mg()> or
890C<sv_cat*_mg()> functions. Similarly, generic C code must call the
891C<SvGETMAGIC()> macro to invoke any 'get' magic if they use an SV
892obtained from external sources in functions that don't handle magic.
893L<API LISTING> later in this document identifies such functions.
189b2af5
GS
894For example, calls to the C<sv_cat*()> functions typically need to be
895followed by C<SvSETMAGIC()>, but they don't need a prior C<SvGETMAGIC()>
896since their implementation handles 'get' magic.
897
d1b91892
AD
898=head2 Finding Magic
899
900 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
901
902This routine returns a pointer to the C<MAGIC> structure stored in the SV.
903If the SV does not have that magical feature, C<NULL> is returned. Also,
54310121 904if the SV is not of type SVt_PVMG, Perl may core dump.
d1b91892
AD
905
906 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
907
908This routine checks to see what types of magic C<sv> has. If the mg_type
68dc0745 909field is an uppercase letter, then the mg_obj is copied to C<nsv>, but
910the mg_type field is changed to be the lowercase letter.
a0d0e21e 911
04343c6d
GS
912=head2 Understanding the Magic of Tied Hashes and Arrays
913
914Tied hashes and arrays are magical beasts of the 'P' magic type.
9edb2b46
GS
915
916WARNING: As of the 5.004 release, proper usage of the array and hash
917access functions requires understanding a few caveats. Some
918of these caveats are actually considered bugs in the API, to be fixed
919in later releases, and are bracketed with [MAYCHANGE] below. If
920you find yourself actually applying such information in this section, be
921aware that the behavior may change in the future, umm, without warning.
04343c6d 922
1526ead6
AB
923The perl tie function associates a variable with an object that implements
924the various GET, SET etc methods. To perform the equivalent of the perl
925tie function from an XSUB, you must mimic this behaviour. The code below
926carries out the necessary steps - firstly it creates a new hash, and then
927creates a second hash which it blesses into the class which will implement
928the tie methods. Lastly it ties the two hashes together, and returns a
929reference to the new tied hash. Note that the code below does NOT call the
930TIEHASH method in the MyTie class -
931see L<Calling Perl Routines from within C Programs> for details on how
932to do this.
933
934 SV*
935 mytie()
936 PREINIT:
937 HV *hash;
938 HV *stash;
939 SV *tie;
940 CODE:
941 hash = newHV();
942 tie = newRV_noinc((SV*)newHV());
943 stash = gv_stashpv("MyTie", TRUE);
944 sv_bless(tie, stash);
945 hv_magic(hash, tie, 'P');
946 RETVAL = newRV_noinc(hash);
947 OUTPUT:
948 RETVAL
949
04343c6d
GS
950The C<av_store> function, when given a tied array argument, merely
951copies the magic of the array onto the value to be "stored", using
952C<mg_copy>. It may also return NULL, indicating that the value did not
9edb2b46
GS
953actually need to be stored in the array. [MAYCHANGE] After a call to
954C<av_store> on a tied array, the caller will usually need to call
955C<mg_set(val)> to actually invoke the perl level "STORE" method on the
956TIEARRAY object. If C<av_store> did return NULL, a call to
957C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory
958leak. [/MAYCHANGE]
04343c6d
GS
959
960The previous paragraph is applicable verbatim to tied hash access using the
961C<hv_store> and C<hv_store_ent> functions as well.
962
963C<av_fetch> and the corresponding hash functions C<hv_fetch> and
964C<hv_fetch_ent> actually return an undefined mortal value whose magic
965has been initialized using C<mg_copy>. Note the value so returned does not
9edb2b46
GS
966need to be deallocated, as it is already mortal. [MAYCHANGE] But you will
967need to call C<mg_get()> on the returned value in order to actually invoke
968the perl level "FETCH" method on the underlying TIE object. Similarly,
04343c6d
GS
969you may also call C<mg_set()> on the return value after possibly assigning
970a suitable value to it using C<sv_setsv>, which will invoke the "STORE"
9edb2b46 971method on the TIE object. [/MAYCHANGE]
04343c6d 972
9edb2b46 973[MAYCHANGE]
04343c6d
GS
974In other words, the array or hash fetch/store functions don't really
975fetch and store actual values in the case of tied arrays and hashes. They
976merely call C<mg_copy> to attach magic to the values that were meant to be
977"stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually
978do the job of invoking the TIE methods on the underlying objects. Thus
9edb2b46 979the magic mechanism currently implements a kind of lazy access to arrays
04343c6d
GS
980and hashes.
981
982Currently (as of perl version 5.004), use of the hash and array access
983functions requires the user to be aware of whether they are operating on
9edb2b46
GS
984"normal" hashes and arrays, or on their tied variants. The API may be
985changed to provide more transparent access to both tied and normal data
986types in future versions.
987[/MAYCHANGE]
04343c6d
GS
988
989You would do well to understand that the TIEARRAY and TIEHASH interfaces
990are mere sugar to invoke some perl method calls while using the uniform hash
991and array syntax. The use of this sugar imposes some overhead (typically
992about two to four extra opcodes per FETCH/STORE operation, in addition to
993the creation of all the mortal variables required to invoke the methods).
994This overhead will be comparatively small if the TIE methods are themselves
995substantial, but if they are only a few statements long, the overhead
996will not be insignificant.
997
d1c897a1
IZ
998=head2 Localizing changes
999
1000Perl has a very handy construction
1001
1002 {
1003 local $var = 2;
1004 ...
1005 }
1006
1007This construction is I<approximately> equivalent to
1008
1009 {
1010 my $oldvar = $var;
1011 $var = 2;
1012 ...
1013 $var = $oldvar;
1014 }
1015
1016The biggest difference is that the first construction would
1017reinstate the initial value of $var, irrespective of how control exits
1018the block: C<goto>, C<return>, C<die>/C<eval> etc. It is a little bit
1019more efficient as well.
1020
1021There is a way to achieve a similar task from C via Perl API: create a
1022I<pseudo-block>, and arrange for some changes to be automatically
1023undone at the end of it, either explicit, or via a non-local exit (via
1024die()). A I<block>-like construct is created by a pair of
1025C<ENTER>/C<LEAVE> macros (see L<perlcall/EXAMPLE/"Returning a
1026Scalar">). Such a construct may be created specially for some
1027important localized task, or an existing one (like boundaries of
1028enclosing Perl subroutine/block, or an existing pair for freeing TMPs)
1029may be used. (In the second case the overhead of additional
1030localization must be almost negligible.) Note that any XSUB is
1031automatically enclosed in an C<ENTER>/C<LEAVE> pair.
1032
1033Inside such a I<pseudo-block> the following service is available:
1034
1035=over
1036
1037=item C<SAVEINT(int i)>
1038
1039=item C<SAVEIV(IV i)>
1040
1041=item C<SAVEI32(I32 i)>
1042
1043=item C<SAVELONG(long i)>
1044
1045These macros arrange things to restore the value of integer variable
1046C<i> at the end of enclosing I<pseudo-block>.
1047
1048=item C<SAVESPTR(s)>
1049
1050=item C<SAVEPPTR(p)>
1051
1052These macros arrange things to restore the value of pointers C<s> and
1053C<p>. C<s> must be a pointer of a type which survives conversion to
1054C<SV*> and back, C<p> should be able to survive conversion to C<char*>
1055and back.
1056
1057=item C<SAVEFREESV(SV *sv)>
1058
1059The refcount of C<sv> would be decremented at the end of
1060I<pseudo-block>. This is similar to C<sv_2mortal>, which should (?) be
1061used instead.
1062
1063=item C<SAVEFREEOP(OP *op)>
1064
1065The C<OP *> is op_free()ed at the end of I<pseudo-block>.
1066
1067=item C<SAVEFREEPV(p)>
1068
1069The chunk of memory which is pointed to by C<p> is Safefree()ed at the
1070end of I<pseudo-block>.
1071
1072=item C<SAVECLEARSV(SV *sv)>
1073
1074Clears a slot in the current scratchpad which corresponds to C<sv> at
1075the end of I<pseudo-block>.
1076
1077=item C<SAVEDELETE(HV *hv, char *key, I32 length)>
1078
1079The key C<key> of C<hv> is deleted at the end of I<pseudo-block>. The
1080string pointed to by C<key> is Safefree()ed. If one has a I<key> in
1081short-lived storage, the corresponding string may be reallocated like
1082this:
1083
9cde0e7f 1084 SAVEDELETE(PL_defstash, savepv(tmpbuf), strlen(tmpbuf));
d1c897a1
IZ
1085
1086=item C<SAVEDESTRUCTOR(f,p)>
1087
1088At the end of I<pseudo-block> the function C<f> is called with the
1089only argument (of type C<void*>) C<p>.
1090
1091=item C<SAVESTACK_POS()>
1092
1093The current offset on the Perl internal stack (cf. C<SP>) is restored
1094at the end of I<pseudo-block>.
1095
1096=back
1097
1098The following API list contains functions, thus one needs to
1099provide pointers to the modifiable data explicitly (either C pointers,
1100or Perlish C<GV *>s). Where the above macros take C<int>, a similar
1101function takes C<int *>.
1102
1103=over
1104
1105=item C<SV* save_scalar(GV *gv)>
1106
1107Equivalent to Perl code C<local $gv>.
1108
1109=item C<AV* save_ary(GV *gv)>
1110
1111=item C<HV* save_hash(GV *gv)>
1112
1113Similar to C<save_scalar>, but localize C<@gv> and C<%gv>.
1114
1115=item C<void save_item(SV *item)>
1116
1117Duplicates the current value of C<SV>, on the exit from the current
1118C<ENTER>/C<LEAVE> I<pseudo-block> will restore the value of C<SV>
1119using the stored value.
1120
1121=item C<void save_list(SV **sarg, I32 maxsarg)>
1122
1123A variant of C<save_item> which takes multiple arguments via an array
1124C<sarg> of C<SV*> of length C<maxsarg>.
1125
1126=item C<SV* save_svref(SV **sptr)>
1127
1128Similar to C<save_scalar>, but will reinstate a C<SV *>.
1129
1130=item C<void save_aptr(AV **aptr)>
1131
1132=item C<void save_hptr(HV **hptr)>
1133
1134Similar to C<save_svref>, but localize C<AV *> and C<HV *>.
1135
1136=back
1137
1138The C<Alias> module implements localization of the basic types within the
1139I<caller's scope>. People who are interested in how to localize things in
1140the containing scope should take a look there too.
1141
0a753a76 1142=head1 Subroutines
a0d0e21e 1143
68dc0745 1144=head2 XSUBs and the Argument Stack
5f05dabc 1145
1146The XSUB mechanism is a simple way for Perl programs to access C subroutines.
1147An XSUB routine will have a stack that contains the arguments from the Perl
1148program, and a way to map from the Perl data structures to a C equivalent.
1149
1150The stack arguments are accessible through the C<ST(n)> macro, which returns
1151the C<n>'th stack argument. Argument 0 is the first argument passed in the
1152Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
1153an C<SV*> is used.
1154
1155Most of the time, output from the C routine can be handled through use of
1156the RETVAL and OUTPUT directives. However, there are some cases where the
1157argument stack is not already long enough to handle all the return values.
1158An example is the POSIX tzname() call, which takes no arguments, but returns
1159two, the local time zone's standard and summer time abbreviations.
1160
1161To handle this situation, the PPCODE directive is used and the stack is
1162extended using the macro:
1163
924508f0 1164 EXTEND(SP, num);
5f05dabc 1165
924508f0
GS
1166where C<SP> is the macro that represents the local copy of the stack pointer,
1167and C<num> is the number of elements the stack should be extended by.
5f05dabc 1168
1169Now that there is room on the stack, values can be pushed on it using the
54310121 1170macros to push IVs, doubles, strings, and SV pointers respectively:
5f05dabc 1171
1172 PUSHi(IV)
1173 PUSHn(double)
1174 PUSHp(char*, I32)
1175 PUSHs(SV*)
1176
1177And now the Perl program calling C<tzname>, the two values will be assigned
1178as in:
1179
1180 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
1181
1182An alternate (and possibly simpler) method to pushing values on the stack is
1183to use the macros:
1184
1185 XPUSHi(IV)
1186 XPUSHn(double)
1187 XPUSHp(char*, I32)
1188 XPUSHs(SV*)
1189
1190These macros automatically adjust the stack for you, if needed. Thus, you
1191do not need to call C<EXTEND> to extend the stack.
1192
1193For more information, consult L<perlxs> and L<perlxstut>.
1194
1195=head2 Calling Perl Routines from within C Programs
a0d0e21e
LW
1196
1197There are four routines that can be used to call a Perl subroutine from
1198within a C program. These four are:
1199
1200 I32 perl_call_sv(SV*, I32);
1201 I32 perl_call_pv(char*, I32);
1202 I32 perl_call_method(char*, I32);
1203 I32 perl_call_argv(char*, I32, register char**);
1204
d1b91892
AD
1205The routine most often used is C<perl_call_sv>. The C<SV*> argument
1206contains either the name of the Perl subroutine to be called, or a
1207reference to the subroutine. The second argument consists of flags
1208that control the context in which the subroutine is called, whether
1209or not the subroutine is being passed arguments, how errors should be
1210trapped, and how to treat return values.
a0d0e21e
LW
1211
1212All four routines return the number of arguments that the subroutine returned
1213on the Perl stack.
1214
d1b91892
AD
1215When using any of these routines (except C<perl_call_argv>), the programmer
1216must manipulate the Perl stack. These include the following macros and
1217functions:
a0d0e21e
LW
1218
1219 dSP
924508f0 1220 SP
a0d0e21e
LW
1221 PUSHMARK()
1222 PUTBACK
1223 SPAGAIN
1224 ENTER
1225 SAVETMPS
1226 FREETMPS
1227 LEAVE
1228 XPUSH*()
cb1a09d0 1229 POP*()
a0d0e21e 1230
5f05dabc 1231For a detailed description of calling conventions from C to Perl,
1232consult L<perlcall>.
a0d0e21e 1233
5f05dabc 1234=head2 Memory Allocation
a0d0e21e 1235
5f05dabc 1236It is suggested that you use the version of malloc that is distributed
1237with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1
JO
1238order to satisfy allocation requests more quickly. However, on some
1239platforms, it may cause spurious malloc or free errors.
d1b91892
AD
1240
1241 New(x, pointer, number, type);
1242 Newc(x, pointer, number, type, cast);
1243 Newz(x, pointer, number, type);
1244
07fa94a1 1245These three macros are used to initially allocate memory.
5f05dabc 1246
1247The first argument C<x> was a "magic cookie" that was used to keep track
1248of who called the macro, to help when debugging memory problems. However,
07fa94a1
JO
1249the current code makes no use of this feature (most Perl developers now
1250use run-time memory checkers), so this argument can be any number.
5f05dabc 1251
1252The second argument C<pointer> should be the name of a variable that will
1253point to the newly allocated memory.
d1b91892 1254
d1b91892
AD
1255The third and fourth arguments C<number> and C<type> specify how many of
1256the specified type of data structure should be allocated. The argument
1257C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
1258should be used if the C<pointer> argument is different from the C<type>
1259argument.
1260
1261Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
1262to zero out all the newly allocated memory.
1263
1264 Renew(pointer, number, type);
1265 Renewc(pointer, number, type, cast);
1266 Safefree(pointer)
1267
1268These three macros are used to change a memory buffer size or to free a
1269piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
1270match those of C<New> and C<Newc> with the exception of not needing the
1271"magic cookie" argument.
1272
1273 Move(source, dest, number, type);
1274 Copy(source, dest, number, type);
1275 Zero(dest, number, type);
1276
1277These three macros are used to move, copy, or zero out previously allocated
1278memory. The C<source> and C<dest> arguments point to the source and
1279destination starting points. Perl will move, copy, or zero out C<number>
1280instances of the size of the C<type> data structure (using the C<sizeof>
1281function).
a0d0e21e 1282
5f05dabc 1283=head2 PerlIO
ce3d39e2 1284
5f05dabc 1285The most recent development releases of Perl has been experimenting with
1286removing Perl's dependency on the "normal" standard I/O suite and allowing
1287other stdio implementations to be used. This involves creating a new
1288abstraction layer that then calls whichever implementation of stdio Perl
68dc0745 1289was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 1290abstraction layer and not make any assumptions about what kind of stdio
1291is being used.
1292
1293For a complete description of the PerlIO abstraction, consult L<perlapio>.
1294
8ebc5c01 1295=head2 Putting a C value on Perl stack
ce3d39e2
IZ
1296
1297A lot of opcodes (this is an elementary operation in the internal perl
1298stack machine) put an SV* on the stack. However, as an optimization
1299the corresponding SV is (usually) not recreated each time. The opcodes
1300reuse specially assigned SVs (I<target>s) which are (as a corollary)
1301not constantly freed/created.
1302
0a753a76 1303Each of the targets is created only once (but see
ce3d39e2
IZ
1304L<Scratchpads and recursion> below), and when an opcode needs to put
1305an integer, a double, or a string on stack, it just sets the
1306corresponding parts of its I<target> and puts the I<target> on stack.
1307
1308The macro to put this target on stack is C<PUSHTARG>, and it is
1309directly used in some opcodes, as well as indirectly in zillions of
1310others, which use it via C<(X)PUSH[pni]>.
1311
8ebc5c01 1312=head2 Scratchpads
ce3d39e2 1313
54310121 1314The question remains on when the SVs which are I<target>s for opcodes
5f05dabc 1315are created. The answer is that they are created when the current unit --
1316a subroutine or a file (for opcodes for statements outside of
1317subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2
IZ
1318array is created, which is called a scratchpad for the current
1319unit.
1320
54310121 1321A scratchpad keeps SVs which are lexicals for the current unit and are
ce3d39e2
IZ
1322targets for opcodes. One can deduce that an SV lives on a scratchpad
1323by looking on its flags: lexicals have C<SVs_PADMY> set, and
1324I<target>s have C<SVs_PADTMP> set.
1325
54310121 1326The correspondence between OPs and I<target>s is not 1-to-1. Different
1327OPs in the compile tree of the unit can use the same target, if this
ce3d39e2
IZ
1328would not conflict with the expected life of the temporary.
1329
2ae324a7 1330=head2 Scratchpads and recursion
ce3d39e2
IZ
1331
1332In fact it is not 100% true that a compiled unit contains a pointer to
1333the scratchpad AV. In fact it contains a pointer to an AV of
1334(initially) one element, and this element is the scratchpad AV. Why do
1335we need an extra level of indirection?
1336
1337The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1338these can create several execution pointers going into the same
1339subroutine. For the subroutine-child not write over the temporaries
1340for the subroutine-parent (lifespan of which covers the call to the
1341child), the parent and the child should have different
1342scratchpads. (I<And> the lexicals should be separate anyway!)
1343
5f05dabc 1344So each subroutine is born with an array of scratchpads (of length 1).
1345On each entry to the subroutine it is checked that the current
ce3d39e2
IZ
1346depth of the recursion is not more than the length of this array, and
1347if it is, new scratchpad is created and pushed into the array.
1348
1349The I<target>s on this scratchpad are C<undef>s, but they are already
1350marked with correct flags.
1351
0a753a76 1352=head1 Compiled code
1353
1354=head2 Code tree
1355
1356Here we describe the internal form your code is converted to by
1357Perl. Start with a simple example:
1358
1359 $a = $b + $c;
1360
1361This is converted to a tree similar to this one:
1362
1363 assign-to
1364 / \
1365 + $a
1366 / \
1367 $b $c
1368
7b8d334a 1369(but slightly more complicated). This tree reflects the way Perl
0a753a76 1370parsed your code, but has nothing to do with the execution order.
1371There is an additional "thread" going through the nodes of the tree
1372which shows the order of execution of the nodes. In our simplified
1373example above it looks like:
1374
1375 $b ---> $c ---> + ---> $a ---> assign-to
1376
1377But with the actual compile tree for C<$a = $b + $c> it is different:
1378some nodes I<optimized away>. As a corollary, though the actual tree
1379contains more nodes than our simplified example, the execution order
1380is the same as in our example.
1381
1382=head2 Examining the tree
1383
1384If you have your perl compiled for debugging (usually done with C<-D
1385optimize=-g> on C<Configure> command line), you may examine the
1386compiled tree by specifying C<-Dx> on the Perl command line. The
1387output takes several lines per node, and for C<$b+$c> it looks like
1388this:
1389
1390 5 TYPE = add ===> 6
1391 TARG = 1
1392 FLAGS = (SCALAR,KIDS)
1393 {
1394 TYPE = null ===> (4)
1395 (was rv2sv)
1396 FLAGS = (SCALAR,KIDS)
1397 {
1398 3 TYPE = gvsv ===> 4
1399 FLAGS = (SCALAR)
1400 GV = main::b
1401 }
1402 }
1403 {
1404 TYPE = null ===> (5)
1405 (was rv2sv)
1406 FLAGS = (SCALAR,KIDS)
1407 {
1408 4 TYPE = gvsv ===> 5
1409 FLAGS = (SCALAR)
1410 GV = main::c
1411 }
1412 }
1413
1414This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1415not optimized away (one per number in the left column). The immediate
1416children of the given node correspond to C<{}> pairs on the same level
1417of indentation, thus this listing corresponds to the tree:
1418
1419 add
1420 / \
1421 null null
1422 | |
1423 gvsv gvsv
1424
1425The execution order is indicated by C<===E<gt>> marks, thus it is C<3
14264 5 6> (node C<6> is not included into above listing), i.e.,
1427C<gvsv gvsv add whatever>.
1428
1429=head2 Compile pass 1: check routines
1430
1431The tree is created by the I<pseudo-compiler> while yacc code feeds it
1432the constructions it recognizes. Since yacc works bottom-up, so does
1433the first pass of perl compilation.
1434
1435What makes this pass interesting for perl developers is that some
1436optimization may be performed on this pass. This is optimization by
1437so-called I<check routines>. The correspondence between node names
1438and corresponding check routines is described in F<opcode.pl> (do not
1439forget to run C<make regen_headers> if you modify this file).
1440
1441A check routine is called when the node is fully constructed except
7b8d334a 1442for the execution-order thread. Since at this time there are no
0a753a76 1443back-links to the currently constructed node, one can do most any
1444operation to the top-level node, including freeing it and/or creating
1445new nodes above/below it.
1446
1447The check routine returns the node which should be inserted into the
1448tree (if the top-level node was not modified, check routine returns
1449its argument).
1450
1451By convention, check routines have names C<ck_*>. They are usually
1452called from C<new*OP> subroutines (or C<convert>) (which in turn are
1453called from F<perly.y>).
1454
1455=head2 Compile pass 1a: constant folding
1456
1457Immediately after the check routine is called the returned node is
1458checked for being compile-time executable. If it is (the value is
1459judged to be constant) it is immediately executed, and a I<constant>
1460node with the "return value" of the corresponding subtree is
1461substituted instead. The subtree is deleted.
1462
1463If constant folding was not performed, the execution-order thread is
1464created.
1465
1466=head2 Compile pass 2: context propagation
1467
1468When a context for a part of compile tree is known, it is propagated
a3cb178b 1469down through the tree. At this time the context can have 5 values
0a753a76 1470(instead of 2 for runtime context): void, boolean, scalar, list, and
1471lvalue. In contrast with the pass 1 this pass is processed from top
1472to bottom: a node's context determines the context for its children.
1473
1474Additional context-dependent optimizations are performed at this time.
1475Since at this moment the compile tree contains back-references (via
1476"thread" pointers), nodes cannot be free()d now. To allow
1477optimized-away nodes at this stage, such nodes are null()ified instead
1478of free()ing (i.e. their type is changed to OP_NULL).
1479
1480=head2 Compile pass 3: peephole optimization
1481
1482After the compile tree for a subroutine (or for an C<eval> or a file)
1483is created, an additional pass over the code is performed. This pass
1484is neither top-down or bottom-up, but in the execution order (with
7b8d334a 1485additional complications for conditionals). These optimizations are
0a753a76 1486done in the subroutine peep(). Optimizations performed at this stage
1487are subject to the same restrictions as in the pass 2.
1488
1489=head1 API LISTING
a0d0e21e 1490
cb1a09d0
AD
1491This is a listing of functions, macros, flags, and variables that may be
1492useful to extension writers or that may be found while reading other
1493extensions.
9cde0e7f
GS
1494
1495Note that all Perl API global variables must be referenced with the C<PL_>
1496prefix. Some macros are provided for compatibility with the older,
1497unadorned names, but this support will be removed in a future release.
1498
1499It is strongly recommended that all Perl API functions that don't begin
1500with C<perl> be referenced with an explicit C<Perl_> prefix.
1501
e89caa19
GA
1502The sort order of the listing is case insensitive, with any
1503occurrences of '_' ignored for the the purpose of sorting.
a0d0e21e 1504
cb1a09d0 1505=over 8
a0d0e21e 1506
cb1a09d0
AD
1507=item av_clear
1508
0146554f
GA
1509Clears an array, making it empty. Does not free the memory used by the
1510array itself.
cb1a09d0 1511
ef50df4b 1512 void av_clear (AV* ar)
cb1a09d0
AD
1513
1514=item av_extend
1515
1516Pre-extend an array. The C<key> is the index to which the array should be
1517extended.
1518
ef50df4b 1519 void av_extend (AV* ar, I32 key)
cb1a09d0
AD
1520
1521=item av_fetch
1522
1523Returns the SV at the specified index in the array. The C<key> is the
1524index. If C<lval> is set then the fetch will be part of a store. Check
1525that the return value is non-null before dereferencing it to a C<SV*>.
1526
04343c6d
GS
1527See L<Understanding the Magic of Tied Hashes and Arrays> for more
1528information on how to use this function on tied arrays.
1529
ef50df4b 1530 SV** av_fetch (AV* ar, I32 key, I32 lval)
cb1a09d0 1531
e89caa19
GA
1532=item AvFILL
1533
95906810 1534Same as C<av_len()>. Deprecated, use C<av_len()> instead.
e89caa19 1535
cb1a09d0
AD
1536=item av_len
1537
1538Returns the highest index in the array. Returns -1 if the array is empty.
1539
ef50df4b 1540 I32 av_len (AV* ar)
cb1a09d0
AD
1541
1542=item av_make
1543
5fb8527f 1544Creates a new AV and populates it with a list of SVs. The SVs are copied
1545into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1546will have a reference count of 1.
cb1a09d0 1547
ef50df4b 1548 AV* av_make (I32 size, SV** svp)
cb1a09d0
AD
1549
1550=item av_pop
1551
9cde0e7f 1552Pops an SV off the end of the array. Returns C<&PL_sv_undef> if the array is
cb1a09d0
AD
1553empty.
1554
ef50df4b 1555 SV* av_pop (AV* ar)
cb1a09d0
AD
1556
1557=item av_push
1558
5fb8527f 1559Pushes an SV onto the end of the array. The array will grow automatically
1560to accommodate the addition.
cb1a09d0 1561
ef50df4b 1562 void av_push (AV* ar, SV* val)
cb1a09d0
AD
1563
1564=item av_shift
1565
1566Shifts an SV off the beginning of the array.
1567
ef50df4b 1568 SV* av_shift (AV* ar)
cb1a09d0
AD
1569
1570=item av_store
1571
1572Stores an SV in an array. The array index is specified as C<key>. The
04343c6d
GS
1573return value will be NULL if the operation failed or if the value did not
1574need to be actually stored within the array (as in the case of tied arrays).
1575Otherwise it can be dereferenced to get the original C<SV*>. Note that the
1576caller is responsible for suitably incrementing the reference count of C<val>
1577before the call, and decrementing it if the function returned NULL.
1578
1579See L<Understanding the Magic of Tied Hashes and Arrays> for more
1580information on how to use this function on tied arrays.
cb1a09d0 1581
ef50df4b 1582 SV** av_store (AV* ar, I32 key, SV* val)
cb1a09d0
AD
1583
1584=item av_undef
1585
0146554f 1586Undefines the array. Frees the memory used by the array itself.
cb1a09d0 1587
ef50df4b 1588 void av_undef (AV* ar)
cb1a09d0
AD
1589
1590=item av_unshift
1591
0146554f
GA
1592Unshift the given number of C<undef> values onto the beginning of the
1593array. The array will grow automatically to accommodate the addition.
1594You must then use C<av_store> to assign values to these new elements.
cb1a09d0 1595
ef50df4b 1596 void av_unshift (AV* ar, I32 num)
cb1a09d0
AD
1597
1598=item CLASS
1599
1600Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1601constructor. This is always a C<char*>. See C<THIS> and
1602L<perlxs/"Using XS With C++">.
cb1a09d0
AD
1603
1604=item Copy
1605
1606The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1607source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 1608the type. May fail on overlapping copies. See also C<Move>.
cb1a09d0 1609
e89caa19 1610 void Copy( s, d, n, t )
cb1a09d0
AD
1611
1612=item croak
1613
1614This is the XSUB-writer's interface to Perl's C<die> function. Use this
1615function the same way you use the C C<printf> function. See C<warn>.
1616
1617=item CvSTASH
1618
1619Returns the stash of the CV.
1620
e89caa19 1621 HV* CvSTASH( SV* sv )
cb1a09d0 1622
9cde0e7f 1623=item PL_DBsingle
cb1a09d0
AD
1624
1625When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1626boolean which indicates whether subs are being single-stepped.
5fb8527f 1627Single-stepping is automatically turned on after every step. This is the C
9cde0e7f 1628variable which corresponds to Perl's $DB::single variable. See C<PL_DBsub>.
cb1a09d0 1629
9cde0e7f 1630=item PL_DBsub
cb1a09d0
AD
1631
1632When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1633the SV which holds the name of the sub being debugged. This is the C
9cde0e7f 1634variable which corresponds to Perl's $DB::sub variable. See C<PL_DBsingle>.
cb1a09d0
AD
1635The sub name can be found by
1636
9cde0e7f 1637 SvPV( GvSV( PL_DBsub ), PL_na )
cb1a09d0 1638
9cde0e7f 1639=item PL_DBtrace
5fb8527f 1640
1641Trace variable used when Perl is run in debugging mode, with the B<-d>
1642switch. This is the C variable which corresponds to Perl's $DB::trace
9cde0e7f 1643variable. See C<PL_DBsingle>.
5fb8527f 1644
cb1a09d0
AD
1645=item dMARK
1646
5fb8527f 1647Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1648C<dORIGMARK>.
cb1a09d0
AD
1649
1650=item dORIGMARK
1651
1652Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1653
9cde0e7f 1654=item PL_dowarn
5fb8527f 1655
1656The C variable which corresponds to Perl's $^W warning variable.
1657
cb1a09d0
AD
1658=item dSP
1659
924508f0
GS
1660Declares a local copy of perl's stack pointer for the XSUB, available via
1661the C<SP> macro. See C<SP>.
cb1a09d0
AD
1662
1663=item dXSARGS
1664
1665Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1666usually handled automatically by C<xsubpp>. Declares the C<items> variable
1667to indicate the number of items on the stack.
1668
5fb8527f 1669=item dXSI32
1670
1671Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1672handled automatically by C<xsubpp>.
1673
491527d0
GS
1674=item do_binmode
1675
1676Switches filehandle to binmode. C<iotype> is what C<IoTYPE(io)> would
1677contain.
1678
1679 do_binmode(fp, iotype, TRUE);
1680
cb1a09d0
AD
1681=item ENTER
1682
1683Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1684
1685 ENTER;
1686
1687=item EXTEND
1688
1689Used to extend the argument stack for an XSUB's return values.
1690
ef50df4b 1691 EXTEND( sp, int x )
cb1a09d0 1692
e89caa19
GA
1693=item fbm_compile
1694
1695Analyses the string in order to make fast searches on it using fbm_instr() --
1696the Boyer-Moore algorithm.
1697
411d5715 1698 void fbm_compile(SV* sv, U32 flags)
e89caa19
GA
1699
1700=item fbm_instr
1701
1702Returns the location of the SV in the string delimited by C<str> and
1703C<strend>. It returns C<Nullch> if the string can't be found. The
1704C<sv> does not have to be fbm_compiled, but the search will not be as
1705fast then.
1706
411d5715 1707 char* fbm_instr(char *str, char *strend, SV *sv, U32 flags)
e89caa19 1708
cb1a09d0
AD
1709=item FREETMPS
1710
1711Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1712L<perlcall>.
1713
1714 FREETMPS;
1715
1716=item G_ARRAY
1717
54310121 1718Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>.
cb1a09d0
AD
1719
1720=item G_DISCARD
1721
1722Indicates that arguments returned from a callback should be discarded. See
1723L<perlcall>.
1724
1725=item G_EVAL
1726
1727Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1728
1729=item GIMME
1730
54310121 1731A backward-compatible version of C<GIMME_V> which can only return
1732C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>.
1733
1734=item GIMME_V
1735
1736The XSUB-writer's equivalent to Perl's C<wantarray>. Returns
1737C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array
1738context, respectively.
cb1a09d0
AD
1739
1740=item G_NOARGS
1741
1742Indicates that no arguments are being sent to a callback. See L<perlcall>.
1743
1744=item G_SCALAR
1745
54310121 1746Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>.
1747
faed5253
JO
1748=item gv_fetchmeth
1749
1750Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1751C<NULL>. The glob lives in the given C<stash>, or in the stashes
f86cebdf 1752accessible via @ISA and @UNIVERSAL.
faed5253 1753
9607fc9c 1754The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1755side-effect creates a glob with the given C<name> in the given
1756C<stash> which in the case of success contains an alias for the
1757subroutine, and sets up caching info for this glob. Similarly for all
1758the searched stashes.
1759
9607fc9c 1760This function grants C<"SUPER"> token as a postfix of the stash name.
1761
0a753a76 1762The GV returned from C<gv_fetchmeth> may be a method cache entry,
1763which is not visible to Perl code. So when calling C<perl_call_sv>,
1764you should not use the GV directly; instead, you should use the
1765method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1766
ef50df4b 1767 GV* gv_fetchmeth (HV* stash, char* name, STRLEN len, I32 level)
faed5253
JO
1768
1769=item gv_fetchmethod
1770
dc848c6f 1771=item gv_fetchmethod_autoload
1772
faed5253 1773Returns the glob which contains the subroutine to call to invoke the
dc848c6f 1774method on the C<stash>. In fact in the presense of autoloading this may
1775be the glob for "AUTOLOAD". In this case the corresponding variable
faed5253
JO
1776$AUTOLOAD is already setup.
1777
dc848c6f 1778The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD
1779lookup is performed if the given method is not present: non-zero means
1780yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
1781C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a
1782non-zero C<autoload> parameter.
1783
1784These functions grant C<"SUPER"> token as a prefix of the method name.
1785
1786Note that if you want to keep the returned glob for a long time, you
1787need to check for it being "AUTOLOAD", since at the later time the call
faed5253
JO
1788may load a different subroutine due to $AUTOLOAD changing its value.
1789Use the glob created via a side effect to do this.
1790
dc848c6f 1791These functions have the same side-effects and as C<gv_fetchmeth> with
1792C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>.
0a753a76 1793The warning against passing the GV returned by C<gv_fetchmeth> to
dc848c6f 1794C<perl_call_sv> apply equally to these functions.
faed5253 1795
ef50df4b
GS
1796 GV* gv_fetchmethod (HV* stash, char* name)
1797 GV* gv_fetchmethod_autoload (HV* stash, char* name, I32 autoload)
faed5253 1798
e89caa19
GA
1799=item G_VOID
1800
1801Used to indicate void context. See C<GIMME_V> and L<perlcall>.
1802
cb1a09d0
AD
1803=item gv_stashpv
1804
1805Returns a pointer to the stash for a specified package. If C<create> is set
1806then the package will be created if it does not already exist. If C<create>
1807is not set and the package does not exist then NULL is returned.
1808
ef50df4b 1809 HV* gv_stashpv (char* name, I32 create)
cb1a09d0
AD
1810
1811=item gv_stashsv
1812
1813Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1814
ef50df4b 1815 HV* gv_stashsv (SV* sv, I32 create)
cb1a09d0 1816
e5581bf4 1817=item GvSV
cb1a09d0 1818
e5581bf4 1819Return the SV from the GV.
44a8e56a 1820
1e422769 1821=item HEf_SVKEY
1822
1823This flag, used in the length slot of hash entries and magic
1824structures, specifies the structure contains a C<SV*> pointer where a
1825C<char*> pointer is to be expected. (For information only--not to be used).
1826
1e422769 1827=item HeHASH
1828
e89caa19 1829Returns the computed hash stored in the hash entry.
1e422769 1830
e89caa19 1831 U32 HeHASH(HE* he)
1e422769 1832
1833=item HeKEY
1834
1835Returns the actual pointer stored in the key slot of the hash entry.
1836The pointer may be either C<char*> or C<SV*>, depending on the value of
1837C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1838are usually preferable for finding the value of a key.
1839
e89caa19 1840 char* HeKEY(HE* he)
1e422769 1841
1842=item HeKLEN
1843
1844If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1845holds an C<SV*> key. Otherwise, holds the actual length of the key.
1846Can be assigned to. The C<HePV()> macro is usually preferable for finding
1847key lengths.
1848
e89caa19 1849 int HeKLEN(HE* he)
1e422769 1850
1851=item HePV
1852
1853Returns the key slot of the hash entry as a C<char*> value, doing any
1854necessary dereferencing of possibly C<SV*> keys. The length of
1855the string is placed in C<len> (this is a macro, so do I<not> use
1856C<&len>). If you do not care about what the length of the key is,
9cde0e7f 1857you may use the global variable C<PL_na>. Remember though, that hash
1e422769 1858keys in perl are free to contain embedded nulls, so using C<strlen()>
1859or similar is not a good way to find the length of hash keys.
1860This is very similar to the C<SvPV()> macro described elsewhere in
1861this document.
1862
e89caa19 1863 char* HePV(HE* he, STRLEN len)
1e422769 1864
1865=item HeSVKEY
1866
1867Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1868does not contain an C<SV*> key.
1869
1870 HeSVKEY(HE* he)
1871
1872=item HeSVKEY_force
1873
1874Returns the key as an C<SV*>. Will create and return a temporary
1875mortal C<SV*> if the hash entry contains only a C<char*> key.
1876
1877 HeSVKEY_force(HE* he)
1878
1879=item HeSVKEY_set
1880
1881Sets the key to a given C<SV*>, taking care to set the appropriate flags
1882to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1883
1884 HeSVKEY_set(HE* he, SV* sv)
1885
1886=item HeVAL
1887
1888Returns the value slot (type C<SV*>) stored in the hash entry.
1889
1890 HeVAL(HE* he)
1891
cb1a09d0
AD
1892=item hv_clear
1893
1894Clears a hash, making it empty.
1895
ef50df4b 1896 void hv_clear (HV* tb)
cb1a09d0
AD
1897
1898=item hv_delete
1899
1900Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1901and returned to the caller. The C<klen> is the length of the key. The
04343c6d 1902C<flags> value will normally be zero; if set to G_DISCARD then NULL will be
cb1a09d0
AD
1903returned.
1904
ef50df4b 1905 SV* hv_delete (HV* tb, char* key, U32 klen, I32 flags)
cb1a09d0 1906
1e422769 1907=item hv_delete_ent
1908
1909Deletes a key/value pair in the hash. The value SV is removed from the hash
1910and returned to the caller. The C<flags> value will normally be zero; if set
04343c6d 1911to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed
1e422769 1912hash value, or 0 to ask for it to be computed.
1913
ef50df4b 1914 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash)
1e422769 1915
cb1a09d0
AD
1916=item hv_exists
1917
1918Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1919C<klen> is the length of the key.
cb1a09d0 1920
ef50df4b 1921 bool hv_exists (HV* tb, char* key, U32 klen)
cb1a09d0 1922
1e422769 1923=item hv_exists_ent
1924
1925Returns a boolean indicating whether the specified hash key exists. C<hash>
54310121 1926can be a valid precomputed hash value, or 0 to ask for it to be computed.
1e422769 1927
ef50df4b 1928 bool hv_exists_ent (HV* tb, SV* key, U32 hash)
1e422769 1929
cb1a09d0
AD
1930=item hv_fetch
1931
1932Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1933C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0
AD
1934part of a store. Check that the return value is non-null before
1935dereferencing it to a C<SV*>.
1936
04343c6d
GS
1937See L<Understanding the Magic of Tied Hashes and Arrays> for more
1938information on how to use this function on tied hashes.
1939
ef50df4b 1940 SV** hv_fetch (HV* tb, char* key, U32 klen, I32 lval)
cb1a09d0 1941
1e422769 1942=item hv_fetch_ent
1943
1944Returns the hash entry which corresponds to the specified key in the hash.
54310121 1945C<hash> must be a valid precomputed hash number for the given C<key>, or
1e422769 19460 if you want the function to compute it. IF C<lval> is set then the
1947fetch will be part of a store. Make sure the return value is non-null
1948before accessing it. The return value when C<tb> is a tied hash
1949is a pointer to a static location, so be sure to make a copy of the
1950structure if you need to store it somewhere.
1951
04343c6d
GS
1952See L<Understanding the Magic of Tied Hashes and Arrays> for more
1953information on how to use this function on tied hashes.
1954
ef50df4b 1955 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash)
1e422769 1956
cb1a09d0
AD
1957=item hv_iterinit
1958
1959Prepares a starting point to traverse a hash table.
1960
ef50df4b 1961 I32 hv_iterinit (HV* tb)
cb1a09d0 1962
c6601927
SI
1963Returns the number of keys in the hash (i.e. the same as C<HvKEYS(tb)>).
1964The return value is currently only meaningful for hashes without tie
1965magic.
1966
1967NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number
1968of hash buckets that happen to be in use. If you still need that
1969esoteric value, you can get it through the macro C<HvFILL(tb)>.
fb73857a 1970
cb1a09d0
AD
1971=item hv_iterkey
1972
1973Returns the key from the current position of the hash iterator. See
1974C<hv_iterinit>.
1975
ef50df4b 1976 char* hv_iterkey (HE* entry, I32* retlen)
cb1a09d0 1977
1e422769 1978=item hv_iterkeysv
3fe9a6f1 1979
1e422769 1980Returns the key as an C<SV*> from the current position of the hash
1981iterator. The return value will always be a mortal copy of the
1982key. Also see C<hv_iterinit>.
1983
ef50df4b 1984 SV* hv_iterkeysv (HE* entry)
1e422769 1985
cb1a09d0
AD
1986=item hv_iternext
1987
1988Returns entries from a hash iterator. See C<hv_iterinit>.
1989
ef50df4b 1990 HE* hv_iternext (HV* tb)
cb1a09d0
AD
1991
1992=item hv_iternextsv
1993
1994Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1995operation.
1996
e89caa19 1997 SV* hv_iternextsv (HV* hv, char** key, I32* retlen)
cb1a09d0
AD
1998
1999=item hv_iterval
2000
2001Returns the value from the current position of the hash iterator. See
2002C<hv_iterkey>.
2003
ef50df4b 2004 SV* hv_iterval (HV* tb, HE* entry)
cb1a09d0
AD
2005
2006=item hv_magic
2007
2008Adds magic to a hash. See C<sv_magic>.
2009
ef50df4b 2010 void hv_magic (HV* hv, GV* gv, int how)
cb1a09d0
AD
2011
2012=item HvNAME
2013
2014Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
2015
e89caa19 2016 char* HvNAME (HV* stash)
cb1a09d0
AD
2017
2018=item hv_store
2019
2020Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
54310121 2021the length of the key. The C<hash> parameter is the precomputed hash
cb1a09d0 2022value; if it is zero then Perl will compute it. The return value will be
04343c6d
GS
2023NULL if the operation failed or if the value did not need to be actually
2024stored within the hash (as in the case of tied hashes). Otherwise it can
2025be dereferenced to get the original C<SV*>. Note that the caller is
2026responsible for suitably incrementing the reference count of C<val>
2027before the call, and decrementing it if the function returned NULL.
2028
2029See L<Understanding the Magic of Tied Hashes and Arrays> for more
2030information on how to use this function on tied hashes.
cb1a09d0 2031
ef50df4b 2032 SV** hv_store (HV* tb, char* key, U32 klen, SV* val, U32 hash)
cb1a09d0 2033
1e422769 2034=item hv_store_ent
2035
2036Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
54310121 2037parameter is the precomputed hash value; if it is zero then Perl will
1e422769 2038compute it. The return value is the new hash entry so created. It will be
04343c6d
GS
2039NULL if the operation failed or if the value did not need to be actually
2040stored within the hash (as in the case of tied hashes). Otherwise the
2041contents of the return value can be accessed using the C<He???> macros
2042described here. Note that the caller is responsible for suitably
2043incrementing the reference count of C<val> before the call, and decrementing
2044it if the function returned NULL.
2045
2046See L<Understanding the Magic of Tied Hashes and Arrays> for more
2047information on how to use this function on tied hashes.
1e422769 2048
ef50df4b 2049 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash)
1e422769 2050
cb1a09d0
AD
2051=item hv_undef
2052
2053Undefines the hash.
2054
ef50df4b 2055 void hv_undef (HV* tb)
cb1a09d0
AD
2056
2057=item isALNUM
2058
2059Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 2060character or digit.
cb1a09d0 2061
e89caa19 2062 int isALNUM (char c)
cb1a09d0
AD
2063
2064=item isALPHA
2065
5fb8527f 2066Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0
AD
2067character.
2068
e89caa19 2069 int isALPHA (char c)
cb1a09d0
AD
2070
2071=item isDIGIT
2072
2073Returns a boolean indicating whether the C C<char> is an ascii digit.
2074
e89caa19 2075 int isDIGIT (char c)
cb1a09d0
AD
2076
2077=item isLOWER
2078
2079Returns a boolean indicating whether the C C<char> is a lowercase character.
2080
e89caa19 2081 int isLOWER (char c)
cb1a09d0
AD
2082
2083=item isSPACE
2084
2085Returns a boolean indicating whether the C C<char> is whitespace.
2086
e89caa19 2087 int isSPACE (char c)
cb1a09d0
AD
2088
2089=item isUPPER
2090
2091Returns a boolean indicating whether the C C<char> is an uppercase character.
2092
e89caa19 2093 int isUPPER (char c)
cb1a09d0
AD
2094
2095=item items
2096
2097Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 2098stack. See L<perlxs/"Variable-length Parameter Lists">.
2099
2100=item ix
2101
2102Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
2103was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0
AD
2104
2105=item LEAVE
2106
2107Closing bracket on a callback. See C<ENTER> and L<perlcall>.
2108
2109 LEAVE;
2110
e89caa19
GA
2111=item looks_like_number
2112
2113Test if an the content of an SV looks like a number (or is a number).
2114
2115 int looks_like_number(SV*)
2116
2117
cb1a09d0
AD
2118=item MARK
2119
5fb8527f 2120Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0
AD
2121
2122=item mg_clear
2123
2124Clear something magical that the SV represents. See C<sv_magic>.
2125
ef50df4b 2126 int mg_clear (SV* sv)
cb1a09d0
AD
2127
2128=item mg_copy
2129
2130Copies the magic from one SV to another. See C<sv_magic>.
2131
ef50df4b 2132 int mg_copy (SV *, SV *, char *, STRLEN)
cb1a09d0
AD
2133
2134=item mg_find
2135
2136Finds the magic pointer for type matching the SV. See C<sv_magic>.
2137
ef50df4b 2138 MAGIC* mg_find (SV* sv, int type)
cb1a09d0
AD
2139
2140=item mg_free
2141
2142Free any magic storage used by the SV. See C<sv_magic>.
2143
ef50df4b 2144 int mg_free (SV* sv)
cb1a09d0
AD
2145
2146=item mg_get
2147
2148Do magic after a value is retrieved from the SV. See C<sv_magic>.
2149
ef50df4b 2150 int mg_get (SV* sv)
cb1a09d0
AD
2151
2152=item mg_len
2153
2154Report on the SV's length. See C<sv_magic>.
2155
ef50df4b 2156 U32 mg_len (SV* sv)
cb1a09d0
AD
2157
2158=item mg_magical
2159
2160Turns on the magical status of an SV. See C<sv_magic>.
2161
ef50df4b 2162 void mg_magical (SV* sv)
cb1a09d0
AD
2163
2164=item mg_set
2165
2166Do magic after a value is assigned to the SV. See C<sv_magic>.
2167
ef50df4b 2168 int mg_set (SV* sv)
cb1a09d0
AD
2169
2170=item Move
2171
2172The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
2173source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 2174the type. Can do overlapping moves. See also C<Copy>.
cb1a09d0 2175
e89caa19 2176 void Move( s, d, n, t )
cb1a09d0 2177
9cde0e7f 2178=item PL_na
cb1a09d0
AD
2179
2180A variable which may be used with C<SvPV> to tell Perl to calculate the
2181string length.
2182
2183=item New
2184
2185The XSUB-writer's interface to the C C<malloc> function.
2186
e89caa19 2187 void* New( x, void *ptr, int size, type )
cb1a09d0
AD
2188
2189=item newAV
2190
5f05dabc 2191Creates a new AV. The reference count is set to 1.
cb1a09d0 2192
ef50df4b 2193 AV* newAV (void)
cb1a09d0 2194
e89caa19
GA
2195=item Newc
2196
2197The XSUB-writer's interface to the C C<malloc> function, with cast.
2198
2199 void* Newc( x, void *ptr, int size, type, cast )
2200
5476c433
JD
2201=item newCONSTSUB
2202
2203Creates a constant sub equivalent to Perl C<sub FOO () { 123 }>
2204which is eligible for inlining at compile-time.
2205
2206 void newCONSTSUB(HV* stash, char* name, SV* sv)
2207
cb1a09d0
AD
2208=item newHV
2209
5f05dabc 2210Creates a new HV. The reference count is set to 1.
cb1a09d0 2211
ef50df4b 2212 HV* newHV (void)
cb1a09d0 2213
5f05dabc 2214=item newRV_inc
cb1a09d0 2215
5f05dabc 2216Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0
AD
2217incremented.
2218
ef50df4b 2219 SV* newRV_inc (SV* ref)
5f05dabc 2220
2221For historical reasons, "newRV" is a synonym for "newRV_inc".
2222
2223=item newRV_noinc
2224
2225Creates an RV wrapper for an SV. The reference count for the original
2226SV is B<not> incremented.
2227
ef50df4b 2228 SV* newRV_noinc (SV* ref)
cb1a09d0 2229
8c52afec 2230=item NEWSV
cb1a09d0 2231
e89caa19
GA
2232Creates a new SV. A non-zero C<len> parameter indicates the number of
2233bytes of preallocated string space the SV should have. An extra byte
2234for a tailing NUL is also reserved. (SvPOK is not set for the SV even
2235if string space is allocated.) The reference count for the new SV is
2236set to 1. C<id> is an integer id between 0 and 1299 (used to identify
2237leaks).
cb1a09d0 2238
ef50df4b 2239 SV* NEWSV (int id, STRLEN len)
cb1a09d0
AD
2240
2241=item newSViv
2242
07fa94a1
JO
2243Creates a new SV and copies an integer into it. The reference count for the
2244SV is set to 1.
cb1a09d0 2245
ef50df4b 2246 SV* newSViv (IV i)
cb1a09d0
AD
2247
2248=item newSVnv
2249
07fa94a1
JO
2250Creates a new SV and copies a double into it. The reference count for the
2251SV is set to 1.
cb1a09d0 2252
ef50df4b 2253 SV* newSVnv (NV i)
cb1a09d0
AD
2254
2255=item newSVpv
2256
07fa94a1
JO
2257Creates a new SV and copies a string into it. The reference count for the
2258SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 2259
ef50df4b 2260 SV* newSVpv (char* s, STRLEN len)
cb1a09d0 2261
e89caa19
GA
2262=item newSVpvf
2263
2264Creates a new SV an initialize it with the string formatted like
2265C<sprintf>.
2266
2267 SV* newSVpvf(const char* pat, ...);
2268
9da1e3b5
MUN
2269=item newSVpvn
2270
2271Creates a new SV and copies a string into it. The reference count for the
2272SV is set to 1. If C<len> is zero then Perl will create a zero length
2273string.
2274
ef50df4b 2275 SV* newSVpvn (char* s, STRLEN len)
9da1e3b5 2276
cb1a09d0
AD
2277=item newSVrv
2278
2279Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 2280it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 2281be blessed in the specified package. The new SV is returned and its
5f05dabc 2282reference count is 1.
8ebc5c01 2283
ef50df4b 2284 SV* newSVrv (SV* rv, char* classname)
cb1a09d0
AD
2285
2286=item newSVsv
2287
5fb8527f 2288Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 2289
ef50df4b 2290 SV* newSVsv (SV* old)
cb1a09d0
AD
2291
2292=item newXS
2293
2294Used by C<xsubpp> to hook up XSUBs as Perl subs.
2295
2296=item newXSproto
2297
2298Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
2299the subs.
2300
e89caa19
GA
2301=item Newz
2302
2303The XSUB-writer's interface to the C C<malloc> function. The allocated
2304memory is zeroed with C<memzero>.
2305
2306 void* Newz( x, void *ptr, int size, type )
2307
cb1a09d0
AD
2308=item Nullav
2309
2310Null AV pointer.
2311
2312=item Nullch
2313
2314Null character pointer.
2315
2316=item Nullcv
2317
2318Null CV pointer.
2319
2320=item Nullhv
2321
2322Null HV pointer.
2323
2324=item Nullsv
2325
2326Null SV pointer.
2327
2328=item ORIGMARK
2329
2330The original stack mark for the XSUB. See C<dORIGMARK>.
2331
2332=item perl_alloc
2333
2334Allocates a new Perl interpreter. See L<perlembed>.
2335
2336=item perl_call_argv
2337
2338Performs a callback to the specified Perl sub. See L<perlcall>.
2339
ef50df4b 2340 I32 perl_call_argv (char* subname, I32 flags, char** argv)
cb1a09d0
AD
2341
2342=item perl_call_method
2343
2344Performs a callback to the specified Perl method. The blessed object must
2345be on the stack. See L<perlcall>.
2346
ef50df4b 2347 I32 perl_call_method (char* methname, I32 flags)
cb1a09d0
AD
2348
2349=item perl_call_pv
2350
2351Performs a callback to the specified Perl sub. See L<perlcall>.
2352
ef50df4b 2353 I32 perl_call_pv (char* subname, I32 flags)
cb1a09d0
AD
2354
2355=item perl_call_sv
2356
2357Performs a callback to the Perl sub whose name is in the SV. See
2358L<perlcall>.
2359
ef50df4b 2360 I32 perl_call_sv (SV* sv, I32 flags)
cb1a09d0
AD
2361
2362=item perl_construct
2363
2364Initializes a new Perl interpreter. See L<perlembed>.
2365
2366=item perl_destruct
2367
2368Shuts down a Perl interpreter. See L<perlembed>.
2369
2370=item perl_eval_sv
2371
2372Tells Perl to C<eval> the string in the SV.
2373
ef50df4b 2374 I32 perl_eval_sv (SV* sv, I32 flags)
cb1a09d0 2375
137443ea 2376=item perl_eval_pv
2377
2378Tells Perl to C<eval> the given string and return an SV* result.
2379
ef50df4b 2380 SV* perl_eval_pv (char* p, I32 croak_on_error)
137443ea 2381
cb1a09d0
AD
2382=item perl_free
2383
2384Releases a Perl interpreter. See L<perlembed>.
2385
2386=item perl_get_av
2387
2388Returns the AV of the specified Perl array. If C<create> is set and the
2389Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2390set and the variable does not exist then NULL is returned.
cb1a09d0 2391
ef50df4b 2392 AV* perl_get_av (char* name, I32 create)
cb1a09d0
AD
2393
2394=item perl_get_cv
2395
2396Returns the CV of the specified Perl sub. If C<create> is set and the Perl
2397variable does not exist then it will be created. If C<create> is not
04343c6d 2398set and the variable does not exist then NULL is returned.
cb1a09d0 2399
ef50df4b 2400 CV* perl_get_cv (char* name, I32 create)
cb1a09d0
AD
2401
2402=item perl_get_hv
2403
2404Returns the HV of the specified Perl hash. If C<create> is set and the Perl
2405variable does not exist then it will be created. If C<create> is not
04343c6d 2406set and the variable does not exist then NULL is returned.
cb1a09d0 2407
ef50df4b 2408 HV* perl_get_hv (char* name, I32 create)
cb1a09d0
AD
2409
2410=item perl_get_sv
2411
2412Returns the SV of the specified Perl scalar. If C<create> is set and the
2413Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2414set and the variable does not exist then NULL is returned.
cb1a09d0 2415
ef50df4b 2416 SV* perl_get_sv (char* name, I32 create)
cb1a09d0
AD
2417
2418=item perl_parse
2419
2420Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
2421
2422=item perl_require_pv
2423
2424Tells Perl to C<require> a module.
2425
ef50df4b 2426 void perl_require_pv (char* pv)
cb1a09d0
AD
2427
2428=item perl_run
2429
2430Tells a Perl interpreter to run. See L<perlembed>.
2431
2432=item POPi
2433
2434Pops an integer off the stack.
2435
e89caa19 2436 int POPi()
cb1a09d0
AD
2437
2438=item POPl
2439
2440Pops a long off the stack.
2441
e89caa19 2442 long POPl()
cb1a09d0
AD
2443
2444=item POPp
2445
2446Pops a string off the stack.
2447
e89caa19 2448 char* POPp()
cb1a09d0
AD
2449
2450=item POPn
2451
2452Pops a double off the stack.
2453
e89caa19 2454 double POPn()
cb1a09d0
AD
2455
2456=item POPs
2457
2458Pops an SV off the stack.
2459
e89caa19 2460 SV* POPs()
cb1a09d0
AD
2461
2462=item PUSHMARK
2463
2464Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2465
2466 PUSHMARK(p)
2467
2468=item PUSHi
2469
2470Push an integer onto the stack. The stack must have room for this element.
189b2af5 2471Handles 'set' magic. See C<XPUSHi>.
cb1a09d0 2472
e89caa19 2473 void PUSHi(int d)
cb1a09d0
AD
2474
2475=item PUSHn
2476
2477Push a double onto the stack. The stack must have room for this element.
189b2af5 2478Handles 'set' magic. See C<XPUSHn>.
cb1a09d0 2479
e89caa19 2480 void PUSHn(double d)
cb1a09d0
AD
2481
2482=item PUSHp
2483
2484Push a string onto the stack. The stack must have room for this element.
189b2af5
GS
2485The C<len> indicates the length of the string. Handles 'set' magic. See
2486C<XPUSHp>.
cb1a09d0 2487
e89caa19 2488 void PUSHp(char *c, int len )
cb1a09d0
AD
2489
2490=item PUSHs
2491
189b2af5
GS
2492Push an SV onto the stack. The stack must have room for this element. Does
2493not handle 'set' magic. See C<XPUSHs>.
cb1a09d0 2494
e89caa19
GA
2495 void PUSHs(sv)
2496
2497=item PUSHu
2498
2499Push an unsigned integer onto the stack. The stack must have room for
2500this element. See C<XPUSHu>.
2501
2502 void PUSHu(unsigned int d)
2503
cb1a09d0
AD
2504
2505=item PUTBACK
2506
2507Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2508See C<PUSHMARK> and L<perlcall> for other uses.
2509
2510 PUTBACK;
2511
2512=item Renew
2513
2514The XSUB-writer's interface to the C C<realloc> function.
2515
e89caa19 2516 void* Renew( void *ptr, int size, type )
cb1a09d0
AD
2517
2518=item Renewc
2519
2520The XSUB-writer's interface to the C C<realloc> function, with cast.
2521
e89caa19 2522 void* Renewc( void *ptr, int size, type, cast )
cb1a09d0
AD
2523
2524=item RETVAL
2525
2526Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2527This is always the proper type for the XSUB.
2528See L<perlxs/"The RETVAL Variable">.
cb1a09d0
AD
2529
2530=item safefree
2531
2532The XSUB-writer's interface to the C C<free> function.
2533
2534=item safemalloc
2535
2536The XSUB-writer's interface to the C C<malloc> function.
2537
2538=item saferealloc
2539
2540The XSUB-writer's interface to the C C<realloc> function.
2541
2542=item savepv
2543
2544Copy a string to a safe spot. This does not use an SV.
2545
ef50df4b 2546 char* savepv (char* sv)
cb1a09d0
AD
2547
2548=item savepvn
2549
2550Copy a string to a safe spot. The C<len> indicates number of bytes to
2551copy. This does not use an SV.
2552
ef50df4b 2553 char* savepvn (char* sv, I32 len)
cb1a09d0
AD
2554
2555=item SAVETMPS
2556
2557Opening bracket for temporaries on a callback. See C<FREETMPS> and
2558L<perlcall>.
2559
2560 SAVETMPS;
2561
2562=item SP
2563
2564Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2565C<SPAGAIN>.
2566
2567=item SPAGAIN
2568
54310121 2569Refetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0
AD
2570
2571 SPAGAIN;
2572
2573=item ST
2574
2575Used to access elements on the XSUB's stack.
2576
e89caa19 2577 SV* ST(int x)
cb1a09d0
AD
2578
2579=item strEQ
2580
2581Test two strings to see if they are equal. Returns true or false.
2582
e89caa19 2583 int strEQ( char *s1, char *s2 )
cb1a09d0
AD
2584
2585=item strGE
2586
2587Test two strings to see if the first, C<s1>, is greater than or equal to the
2588second, C<s2>. Returns true or false.
2589
e89caa19 2590 int strGE( char *s1, char *s2 )
cb1a09d0
AD
2591
2592=item strGT
2593
2594Test two strings to see if the first, C<s1>, is greater than the second,
2595C<s2>. Returns true or false.
2596
e89caa19 2597 int strGT( char *s1, char *s2 )
cb1a09d0
AD
2598
2599=item strLE
2600
2601Test two strings to see if the first, C<s1>, is less than or equal to the
2602second, C<s2>. Returns true or false.
2603
e89caa19 2604 int strLE( char *s1, char *s2 )
cb1a09d0
AD
2605
2606=item strLT
2607
2608Test two strings to see if the first, C<s1>, is less than the second,
2609C<s2>. Returns true or false.
2610
e89caa19 2611 int strLT( char *s1, char *s2 )
cb1a09d0
AD
2612
2613=item strNE
2614
2615Test two strings to see if they are different. Returns true or false.
2616
e89caa19 2617 int strNE( char *s1, char *s2 )
cb1a09d0
AD
2618
2619=item strnEQ
2620
2621Test two strings to see if they are equal. The C<len> parameter indicates
2622the number of bytes to compare. Returns true or false.
2623
e89caa19 2624 int strnEQ( char *s1, char *s2 )
cb1a09d0
AD
2625
2626=item strnNE
2627
2628Test two strings to see if they are different. The C<len> parameter
2629indicates the number of bytes to compare. Returns true or false.
2630
e89caa19 2631 int strnNE( char *s1, char *s2, int len )
cb1a09d0
AD
2632
2633=item sv_2mortal
2634
2635Marks an SV as mortal. The SV will be destroyed when the current context
2636ends.
2637
ef50df4b 2638 SV* sv_2mortal (SV* sv)
cb1a09d0
AD
2639
2640=item sv_bless
2641
2642Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1
JO
2643must be designated by its stash (see C<gv_stashpv()>). The reference count
2644of the SV is unaffected.
cb1a09d0 2645
ef50df4b 2646 SV* sv_bless (SV* sv, HV* stash)
cb1a09d0 2647
ef50df4b 2648=item sv_catpv
189b2af5 2649
ef50df4b
GS
2650Concatenates the string onto the end of the string which is in the SV.
2651Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
189b2af5 2652
ef50df4b 2653 void sv_catpv (SV* sv, char* ptr)
189b2af5 2654
ef50df4b 2655=item sv_catpv_mg
cb1a09d0 2656
ef50df4b 2657Like C<sv_catpv>, but also handles 'set' magic.
cb1a09d0 2658
ef50df4b 2659 void sv_catpvn (SV* sv, char* ptr)
cb1a09d0
AD
2660
2661=item sv_catpvn
2662
2663Concatenates the string onto the end of the string which is in the SV. The
189b2af5 2664C<len> indicates number of bytes to copy. Handles 'get' magic, but not
ef50df4b 2665'set' magic. See C<sv_catpvn_mg>.
cb1a09d0 2666
ef50df4b
GS
2667 void sv_catpvn (SV* sv, char* ptr, STRLEN len)
2668
2669=item sv_catpvn_mg
2670
2671Like C<sv_catpvn>, but also handles 'set' magic.
2672
2673 void sv_catpvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 2674
46fc3d4c 2675=item sv_catpvf
2676
2677Processes its arguments like C<sprintf> and appends the formatted output
189b2af5
GS
2678to an SV. Handles 'get' magic, but not 'set' magic. C<SvSETMAGIC()> must
2679typically be called after calling this function to handle 'set' magic.
46fc3d4c 2680
ef50df4b
GS
2681 void sv_catpvf (SV* sv, const char* pat, ...)
2682
2683=item sv_catpvf_mg
2684
2685Like C<sv_catpvf>, but also handles 'set' magic.
2686
2687 void sv_catpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 2688
cb1a09d0
AD
2689=item sv_catsv
2690
5fb8527f 2691Concatenates the string from SV C<ssv> onto the end of the string in SV
ef50df4b
GS
2692C<dsv>. Handles 'get' magic, but not 'set' magic. See C<sv_catsv_mg>.
2693
2694 void sv_catsv (SV* dsv, SV* ssv)
2695
2696=item sv_catsv_mg
cb1a09d0 2697
ef50df4b
GS
2698Like C<sv_catsv>, but also handles 'set' magic.
2699
2700 void sv_catsv_mg (SV* dsv, SV* ssv)
cb1a09d0 2701
e89caa19
GA
2702=item sv_chop
2703
2704Efficient removal of characters from the beginning of the string
2705buffer. SvPOK(sv) must be true and the C<ptr> must be a pointer to
2706somewhere inside the string buffer. The C<ptr> becomes the first
2707character of the adjusted string.
2708
2709 void sv_chop(SV* sv, char *ptr)
2710
2711
5fb8527f 2712=item sv_cmp
2713
2714Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2715string in C<sv1> is less than, equal to, or greater than the string in
2716C<sv2>.
2717
ef50df4b 2718 I32 sv_cmp (SV* sv1, SV* sv2)
5fb8527f 2719
cb1a09d0
AD
2720=item SvCUR
2721
2722Returns the length of the string which is in the SV. See C<SvLEN>.
2723
e89caa19 2724 int SvCUR (SV* sv)
cb1a09d0
AD
2725
2726=item SvCUR_set
2727
2728Set the length of the string which is in the SV. See C<SvCUR>.
2729
e89caa19 2730 void SvCUR_set (SV* sv, int val )
cb1a09d0 2731
5fb8527f 2732=item sv_dec
2733
5f05dabc 2734Auto-decrement of the value in the SV.
5fb8527f 2735
ef50df4b 2736 void sv_dec (SV* sv)
5fb8527f 2737
e89caa19
GA
2738=item sv_derived_from
2739
2740Returns a boolean indicating whether the SV is a subclass of the
2741specified class.
2742
2743 int sv_derived_from(SV* sv, char* class)
2744
9abd00ed
GS
2745=item sv_derived_from
2746
2747Returns a boolean indicating whether the SV is derived from the specified
2748class. This is the function that implements C<UNIVERSAL::isa>. It works
2749for class names as well as for objects.
2750
2751 bool sv_derived_from _((SV* sv, char* name));
2752
cb1a09d0
AD
2753=item SvEND
2754
2755Returns a pointer to the last character in the string which is in the SV.
2756See C<SvCUR>. Access the character as
2757
e89caa19 2758 char* SvEND(sv)
cb1a09d0 2759
5fb8527f 2760=item sv_eq
2761
2762Returns a boolean indicating whether the strings in the two SVs are
2763identical.
2764
ef50df4b 2765 I32 sv_eq (SV* sv1, SV* sv2)
5fb8527f 2766
189b2af5
GS
2767=item SvGETMAGIC
2768
2769Invokes C<mg_get> on an SV if it has 'get' magic. This macro evaluates
2770its argument more than once.
2771
2772 void SvGETMAGIC( SV *sv )
2773
cb1a09d0
AD
2774=item SvGROW
2775
e89caa19
GA
2776Expands the character buffer in the SV so that it has room for the
2777indicated number of bytes (remember to reserve space for an extra
2778trailing NUL character). Calls C<sv_grow> to perform the expansion if
2779necessary. Returns a pointer to the character buffer.
cb1a09d0 2780
e89caa19 2781 char* SvGROW( SV* sv, int len )
cb1a09d0 2782
5fb8527f 2783=item sv_grow
2784
2785Expands the character buffer in the SV. This will use C<sv_unref> and will
2786upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2787Use C<SvGROW>.
2788
2789=item sv_inc
2790
07fa94a1 2791Auto-increment of the value in the SV.
5fb8527f 2792
ef50df4b 2793 void sv_inc (SV* sv)
5fb8527f 2794
e89caa19
GA
2795=item sv_insert
2796
2797Inserts a string at the specified offset/length within the SV.
2798Similar to the Perl substr() function.
2799
2800 void sv_insert(SV *sv, STRLEN offset, STRLEN len,
2801 char *str, STRLEN strlen)
2802
cb1a09d0
AD
2803=item SvIOK
2804
2805Returns a boolean indicating whether the SV contains an integer.
2806
e89caa19 2807 int SvIOK (SV* SV)
cb1a09d0
AD
2808
2809=item SvIOK_off
2810
2811Unsets the IV status of an SV.
2812
e89caa19 2813 void SvIOK_off (SV* sv)
cb1a09d0
AD
2814
2815=item SvIOK_on
2816
2817Tells an SV that it is an integer.
2818
e89caa19 2819 void SvIOK_on (SV* sv)
cb1a09d0 2820
5fb8527f 2821=item SvIOK_only
2822
2823Tells an SV that it is an integer and disables all other OK bits.
2824
e89caa19 2825 void SvIOK_only (SV* sv)
5fb8527f 2826
cb1a09d0
AD
2827=item SvIOKp
2828
2829Returns a boolean indicating whether the SV contains an integer. Checks the
2830B<private> setting. Use C<SvIOK>.
2831
e89caa19 2832 int SvIOKp (SV* SV)
cb1a09d0
AD
2833
2834=item sv_isa
2835
2836Returns a boolean indicating whether the SV is blessed into the specified
9abd00ed 2837class. This does not check for subtypes; use C<sv_derived_from> to verify
cb1a09d0
AD
2838an inheritance relationship.
2839
ef50df4b 2840 int sv_isa (SV* sv, char* name)
cb1a09d0 2841
cb1a09d0
AD
2842=item sv_isobject
2843
2844Returns a boolean indicating whether the SV is an RV pointing to a blessed
2845object. If the SV is not an RV, or if the object is not blessed, then this
2846will return false.
2847
ef50df4b 2848 int sv_isobject (SV* sv)
cb1a09d0 2849
e89caa19
GA
2850=item SvIV
2851
2852Returns the integer which is in the SV.
2853
9abd00ed 2854 int SvIV (SV* sv)
a59f3522 2855
cb1a09d0
AD
2856=item SvIVX
2857
2858Returns the integer which is stored in the SV.
2859
e89caa19 2860 int SvIVX (SV* sv)
cb1a09d0
AD
2861
2862=item SvLEN
2863
2864Returns the size of the string buffer in the SV. See C<SvCUR>.
2865
e89caa19 2866 int SvLEN (SV* sv)
cb1a09d0 2867
5fb8527f 2868=item sv_len
2869
2870Returns the length of the string in the SV. Use C<SvCUR>.
2871
ef50df4b 2872 STRLEN sv_len (SV* sv)
5fb8527f 2873
cb1a09d0
AD
2874=item sv_magic
2875
2876Adds magic to an SV.
2877
ef50df4b 2878 void sv_magic (SV* sv, SV* obj, int how, char* name, I32 namlen)
cb1a09d0
AD
2879
2880=item sv_mortalcopy
2881
2882Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2883as mortal.
cb1a09d0 2884
ef50df4b 2885 SV* sv_mortalcopy (SV* oldsv)
cb1a09d0 2886
cb1a09d0
AD
2887=item sv_newmortal
2888
5f05dabc 2889Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2890
ef50df4b 2891 SV* sv_newmortal (void)
cb1a09d0 2892
cb1a09d0
AD
2893=item SvNIOK
2894
2895Returns a boolean indicating whether the SV contains a number, integer or
2896double.
2897
e89caa19 2898 int SvNIOK (SV* SV)
cb1a09d0
AD
2899
2900=item SvNIOK_off
2901
2902Unsets the NV/IV status of an SV.
2903
e89caa19 2904 void SvNIOK_off (SV* sv)
cb1a09d0
AD
2905
2906=item SvNIOKp
2907
2908Returns a boolean indicating whether the SV contains a number, integer or
2909double. Checks the B<private> setting. Use C<SvNIOK>.
2910
e89caa19
GA
2911 int SvNIOKp (SV* SV)
2912
9cde0e7f 2913=item PL_sv_no
e89caa19 2914
9cde0e7f 2915This is the C<false> SV. See C<PL_sv_yes>. Always refer to this as C<&PL_sv_no>.
cb1a09d0
AD
2916
2917=item SvNOK
2918
2919Returns a boolean indicating whether the SV contains a double.
2920
e89caa19 2921 int SvNOK (SV* SV)
cb1a09d0
AD
2922
2923=item SvNOK_off
2924
2925Unsets the NV status of an SV.
2926
e89caa19 2927 void SvNOK_off (SV* sv)
cb1a09d0
AD
2928
2929=item SvNOK_on
2930
2931Tells an SV that it is a double.
2932
e89caa19 2933 void SvNOK_on (SV* sv)
cb1a09d0 2934
5fb8527f 2935=item SvNOK_only
2936
2937Tells an SV that it is a double and disables all other OK bits.
2938
e89caa19 2939 void SvNOK_only (SV* sv)
5fb8527f 2940
cb1a09d0
AD
2941=item SvNOKp
2942
2943Returns a boolean indicating whether the SV contains a double. Checks the
2944B<private> setting. Use C<SvNOK>.
2945
e89caa19 2946 int SvNOKp (SV* SV)
cb1a09d0
AD
2947
2948=item SvNV
2949
2950Returns the double which is stored in the SV.
2951
e89caa19 2952 double SvNV (SV* sv)
cb1a09d0
AD
2953
2954=item SvNVX
2955
2956Returns the double which is stored in the SV.
2957
e89caa19
GA
2958 double SvNVX (SV* sv)
2959
2960=item SvOK
2961
2962Returns a boolean indicating whether the value is an SV.
2963
2964 int SvOK (SV* sv)
2965
2966=item SvOOK
2967
2968Returns a boolean indicating whether the SvIVX is a valid offset value
2969for the SvPVX. This hack is used internally to speed up removal of
2970characters from the beginning of a SvPV. When SvOOK is true, then the
2971start of the allocated string buffer is really (SvPVX - SvIVX).
2972
9cde0e7f 2973 int SvOOK(SV* sv)
cb1a09d0
AD
2974
2975=item SvPOK
2976
2977Returns a boolean indicating whether the SV contains a character string.
2978
e89caa19 2979 int SvPOK (SV* SV)
cb1a09d0
AD
2980
2981=item SvPOK_off
2982
2983Unsets the PV status of an SV.
2984
e89caa19 2985 void SvPOK_off (SV* sv)
cb1a09d0
AD
2986
2987=item SvPOK_on
2988
2989Tells an SV that it is a string.
2990
e89caa19 2991 void SvPOK_on (SV* sv)
cb1a09d0 2992
5fb8527f 2993=item SvPOK_only
2994
2995Tells an SV that it is a string and disables all other OK bits.
2996
e89caa19 2997 void SvPOK_only (SV* sv)
5fb8527f 2998
cb1a09d0
AD
2999=item SvPOKp
3000
3001Returns a boolean indicating whether the SV contains a character string.
3002Checks the B<private> setting. Use C<SvPOK>.
3003
e89caa19 3004 int SvPOKp (SV* SV)
cb1a09d0
AD
3005
3006=item SvPV
3007
3008Returns a pointer to the string in the SV, or a stringified form of the SV
9cde0e7f 3009if the SV does not contain a string. If C<len> is C<PL_na> then Perl will
189b2af5 3010handle the length on its own. Handles 'get' magic.
cb1a09d0 3011
e89caa19
GA
3012 char* SvPV (SV* sv, int len )
3013
3014=item SvPV_force
3015
3016Like <SvPV> but will force the SV into becoming a string (SvPOK). You
3017want force if you are going to update the SvPVX directly.
3018
3019 char* SvPV_force(SV* sv, int len)
3020
cb1a09d0
AD
3021
3022=item SvPVX
3023
3024Returns a pointer to the string in the SV. The SV must contain a string.
3025
e89caa19 3026 char* SvPVX (SV* sv)
cb1a09d0
AD
3027
3028=item SvREFCNT
3029
5f05dabc 3030Returns the value of the object's reference count.
cb1a09d0 3031
e89caa19 3032 int SvREFCNT (SV* sv)
cb1a09d0
AD
3033
3034=item SvREFCNT_dec
3035
5f05dabc 3036Decrements the reference count of the given SV.
cb1a09d0 3037
e89caa19 3038 void SvREFCNT_dec (SV* sv)
cb1a09d0
AD
3039
3040=item SvREFCNT_inc
3041
5f05dabc 3042Increments the reference count of the given SV.
cb1a09d0 3043
e89caa19 3044 void SvREFCNT_inc (SV* sv)
cb1a09d0
AD
3045
3046=item SvROK
3047
3048Tests if the SV is an RV.
3049
e89caa19 3050 int SvROK (SV* sv)
cb1a09d0
AD
3051
3052=item SvROK_off
3053
3054Unsets the RV status of an SV.
3055
e89caa19 3056 void SvROK_off (SV* sv)
cb1a09d0
AD
3057
3058=item SvROK_on
3059
3060Tells an SV that it is an RV.
3061
e89caa19 3062 void SvROK_on (SV* sv)
cb1a09d0
AD
3063
3064=item SvRV
3065
3066Dereferences an RV to return the SV.
3067
ef50df4b 3068 SV* SvRV (SV* sv)
cb1a09d0 3069
189b2af5
GS
3070=item SvSETMAGIC
3071
3072Invokes C<mg_set> on an SV if it has 'set' magic. This macro evaluates
3073its argument more than once.
3074
3075 void SvSETMAGIC( SV *sv )
3076
ef50df4b 3077=item sv_setiv
189b2af5 3078
ef50df4b
GS
3079Copies an integer into the given SV. Does not handle 'set' magic.
3080See C<sv_setiv_mg>.
189b2af5 3081
ef50df4b 3082 void sv_setiv (SV* sv, IV num)
189b2af5 3083
ef50df4b 3084=item sv_setiv_mg
189b2af5 3085
ef50df4b 3086Like C<sv_setiv>, but also handles 'set' magic.
189b2af5 3087
ef50df4b 3088 void sv_setiv_mg (SV* sv, IV num)
189b2af5 3089
ef50df4b 3090=item sv_setnv
189b2af5 3091
ef50df4b
GS
3092Copies a double into the given SV. Does not handle 'set' magic.
3093See C<sv_setnv_mg>.
189b2af5 3094
ef50df4b 3095 void sv_setnv (SV* sv, double num)
189b2af5 3096
ef50df4b 3097=item sv_setnv_mg
189b2af5 3098
ef50df4b 3099Like C<sv_setnv>, but also handles 'set' magic.
189b2af5 3100
ef50df4b 3101 void sv_setnv_mg (SV* sv, double num)
189b2af5 3102
ef50df4b 3103=item sv_setpv
189b2af5 3104
ef50df4b
GS
3105Copies a string into an SV. The string must be null-terminated.
3106Does not handle 'set' magic. See C<sv_setpv_mg>.
189b2af5 3107
ef50df4b 3108 void sv_setpv (SV* sv, char* ptr)
189b2af5 3109
ef50df4b 3110=item sv_setpv_mg
189b2af5 3111
ef50df4b 3112Like C<sv_setpv>, but also handles 'set' magic.
189b2af5 3113
ef50df4b 3114 void sv_setpv_mg (SV* sv, char* ptr)
189b2af5 3115
ef50df4b 3116=item sv_setpviv
cb1a09d0 3117
ef50df4b
GS
3118Copies an integer into the given SV, also updating its string value.
3119Does not handle 'set' magic. See C<sv_setpviv_mg>.
cb1a09d0 3120
ef50df4b 3121 void sv_setpviv (SV* sv, IV num)
cb1a09d0 3122
ef50df4b 3123=item sv_setpviv_mg
cb1a09d0 3124
ef50df4b 3125Like C<sv_setpviv>, but also handles 'set' magic.
cb1a09d0 3126
ef50df4b 3127 void sv_setpviv_mg (SV* sv, IV num)
cb1a09d0 3128
ef50df4b 3129=item sv_setpvn
cb1a09d0 3130
ef50df4b
GS
3131Copies a string into an SV. The C<len> parameter indicates the number of
3132bytes to be copied. Does not handle 'set' magic. See C<sv_setpvn_mg>.
cb1a09d0 3133
ef50df4b 3134 void sv_setpvn (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3135
ef50df4b 3136=item sv_setpvn_mg
189b2af5 3137
ef50df4b 3138Like C<sv_setpvn>, but also handles 'set' magic.
189b2af5 3139
ef50df4b 3140 void sv_setpvn_mg (SV* sv, char* ptr, STRLEN len)
189b2af5 3141
ef50df4b 3142=item sv_setpvf
cb1a09d0 3143
ef50df4b
GS
3144Processes its arguments like C<sprintf> and sets an SV to the formatted
3145output. Does not handle 'set' magic. See C<sv_setpvf_mg>.
cb1a09d0 3146
ef50df4b 3147 void sv_setpvf (SV* sv, const char* pat, ...)
cb1a09d0 3148
ef50df4b 3149=item sv_setpvf_mg
46fc3d4c 3150
ef50df4b 3151Like C<sv_setpvf>, but also handles 'set' magic.
46fc3d4c 3152
ef50df4b 3153 void sv_setpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 3154
cb1a09d0
AD
3155=item sv_setref_iv
3156
5fb8527f 3157Copies an integer into a new SV, optionally blessing the SV. The C<rv>
3158argument will be upgraded to an RV. That RV will be modified to point to
3159the new SV. The C<classname> argument indicates the package for the
3160blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3161will be returned and will have a reference count of 1.
cb1a09d0 3162
ef50df4b 3163 SV* sv_setref_iv (SV *rv, char *classname, IV iv)
cb1a09d0
AD
3164
3165=item sv_setref_nv
3166
5fb8527f 3167Copies a double into a new SV, optionally blessing the SV. The C<rv>
3168argument will be upgraded to an RV. That RV will be modified to point to
3169the new SV. The C<classname> argument indicates the package for the
3170blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3171will be returned and will have a reference count of 1.
cb1a09d0 3172
ef50df4b 3173 SV* sv_setref_nv (SV *rv, char *classname, double nv)
cb1a09d0
AD
3174
3175=item sv_setref_pv
3176
5fb8527f 3177Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
3178argument will be upgraded to an RV. That RV will be modified to point to
9cde0e7f 3179the new SV. If the C<pv> argument is NULL then C<PL_sv_undef> will be placed
5fb8527f 3180into the SV. The C<classname> argument indicates the package for the
3181blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3182will be returned and will have a reference count of 1.
cb1a09d0 3183
ef50df4b 3184 SV* sv_setref_pv (SV *rv, char *classname, void* pv)
cb1a09d0
AD
3185
3186Do not use with integral Perl types such as HV, AV, SV, CV, because those
3187objects will become corrupted by the pointer copy process.
3188
3189Note that C<sv_setref_pvn> copies the string while this copies the pointer.
3190
3191=item sv_setref_pvn
3192
5fb8527f 3193Copies a string into a new SV, optionally blessing the SV. The length of the
3194string must be specified with C<n>. The C<rv> argument will be upgraded to
3195an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0
AD
3196argument indicates the package for the blessing. Set C<classname> to
3197C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 3198a reference count of 1.
cb1a09d0 3199
ef50df4b 3200 SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n)
cb1a09d0
AD
3201
3202Note that C<sv_setref_pv> copies the pointer while this copies the string.
3203
189b2af5
GS
3204=item SvSetSV
3205
3206Calls C<sv_setsv> if dsv is not the same as ssv. May evaluate arguments
3207more than once.
3208
3209 void SvSetSV (SV* dsv, SV* ssv)
3210
3211=item SvSetSV_nosteal
3212
3213Calls a non-destructive version of C<sv_setsv> if dsv is not the same as ssv.
3214May evaluate arguments more than once.
3215
3216 void SvSetSV_nosteal (SV* dsv, SV* ssv)
3217
cb1a09d0
AD
3218=item sv_setsv
3219
3220Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
189b2af5 3221The source SV may be destroyed if it is mortal. Does not handle 'set' magic.
ef50df4b
GS
3222See the macro forms C<SvSetSV>, C<SvSetSV_nosteal> and C<sv_setsv_mg>.
3223
3224 void sv_setsv (SV* dsv, SV* ssv)
3225
3226=item sv_setsv_mg
3227
3228Like C<sv_setsv>, but also handles 'set' magic.
cb1a09d0 3229
ef50df4b 3230 void sv_setsv_mg (SV* dsv, SV* ssv)
cb1a09d0 3231
189b2af5
GS
3232=item sv_setuv
3233
3234Copies an unsigned integer into the given SV. Does not handle 'set' magic.
ef50df4b 3235See C<sv_setuv_mg>.
189b2af5 3236
ef50df4b
GS
3237 void sv_setuv (SV* sv, UV num)
3238
3239=item sv_setuv_mg
3240
3241Like C<sv_setuv>, but also handles 'set' magic.
3242
3243 void sv_setuv_mg (SV* sv, UV num)
189b2af5 3244
cb1a09d0
AD
3245=item SvSTASH
3246
3247Returns the stash of the SV.
3248
e89caa19
GA
3249 HV* SvSTASH (SV* sv)
3250
3251=item SvTAINT
3252
3253Taints an SV if tainting is enabled
3254
3255 void SvTAINT (SV* sv)
3256
3257=item SvTAINTED
3258
3259Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
3260
3261 int SvTAINTED (SV* sv)
3262
3263=item SvTAINTED_off
3264
3265Untaints an SV. Be I<very> careful with this routine, as it short-circuits
3266some of Perl's fundamental security features. XS module authors should
3267not use this function unless they fully understand all the implications
3268of unconditionally untainting the value. Untainting should be done in
3269the standard perl fashion, via a carefully crafted regexp, rather than
3270directly untainting variables.
3271
3272 void SvTAINTED_off (SV* sv)
3273
3274=item SvTAINTED_on
3275
3276Marks an SV as tainted.
3277
3278 void SvTAINTED_on (SV* sv)
cb1a09d0
AD
3279
3280=item SVt_IV
3281
3282Integer type flag for scalars. See C<svtype>.
3283
3284=item SVt_PV
3285
3286Pointer type flag for scalars. See C<svtype>.
3287
3288=item SVt_PVAV
3289
3290Type flag for arrays. See C<svtype>.
3291
3292=item SVt_PVCV
3293
3294Type flag for code refs. See C<svtype>.
3295
3296=item SVt_PVHV
3297
3298Type flag for hashes. See C<svtype>.
3299
3300=item SVt_PVMG
3301
3302Type flag for blessed scalars. See C<svtype>.
3303
3304=item SVt_NV
3305
3306Double type flag for scalars. See C<svtype>.
3307
3308=item SvTRUE
3309
3310Returns a boolean indicating whether Perl would evaluate the SV as true or
189b2af5 3311false, defined or undefined. Does not handle 'get' magic.
cb1a09d0 3312
e89caa19 3313 int SvTRUE (SV* sv)
cb1a09d0
AD
3314
3315=item SvTYPE
3316
3317Returns the type of the SV. See C<svtype>.
3318
3319 svtype SvTYPE (SV* sv)
3320
3321=item svtype
3322
3323An enum of flags for Perl types. These are found in the file B<sv.h> in the
3324C<svtype> enum. Test these flags with the C<SvTYPE> macro.
3325
9cde0e7f 3326=item PL_sv_undef
cb1a09d0 3327
9cde0e7f 3328This is the C<undef> SV. Always refer to this as C<&PL_sv_undef>.
cb1a09d0 3329
5fb8527f 3330=item sv_unref
3331
07fa94a1
JO
3332Unsets the RV status of the SV, and decrements the reference count of
3333whatever was being referenced by the RV. This can almost be thought of
3334as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 3335
ef50df4b 3336 void sv_unref (SV* sv)
189b2af5 3337
e89caa19
GA
3338=item SvUPGRADE
3339
3340Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
3341the upgrade if necessary. See C<svtype>.
3342
3343 bool SvUPGRADE (SV* sv, svtype mt)
3344
3345=item sv_upgrade
3346
3347Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
3348
cb1a09d0
AD
3349=item sv_usepvn
3350
3351Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 3352stored inside the SV but sv_usepvn allows the SV to use an outside string.
3353The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0
AD
3354string length, C<len>, must be supplied. This function will realloc the
3355memory pointed to by C<ptr>, so that pointer should not be freed or used by
189b2af5 3356the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
ef50df4b
GS
3357See C<sv_usepvn_mg>.
3358
3359 void sv_usepvn (SV* sv, char* ptr, STRLEN len)
3360
3361=item sv_usepvn_mg
3362
3363Like C<sv_usepvn>, but also handles 'set' magic.
cb1a09d0 3364
ef50df4b 3365 void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3366
9abd00ed
GS
3367=item sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
3368
3369Processes its arguments like C<vsprintf> and appends the formatted output
3370to an SV. Uses an array of SVs if the C style variable argument list is
3371missing (NULL). Indicates if locale information has been used for formatting.
3372
3373 void sv_catpvfn _((SV* sv, const char* pat, STRLEN patlen,
3374 va_list *args, SV **svargs, I32 svmax,
3375 bool *used_locale));
3376
3377=item sv_vsetpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
3378
3379Works like C<vcatpvfn> but copies the text into the SV instead of
3380appending it.
3381
3382 void sv_setpvfn _((SV* sv, const char* pat, STRLEN patlen,
3383 va_list *args, SV **svargs, I32 svmax,
3384 bool *used_locale));
3385
e89caa19
GA
3386=item SvUV
3387
3388Returns the unsigned integer which is in the SV.
3389
3390 UV SvUV(SV* sv)
3391
3392=item SvUVX
3393
3394Returns the unsigned integer which is stored in the SV.
3395
3396 UV SvUVX(SV* sv)
3397
9cde0e7f 3398=item PL_sv_yes
cb1a09d0 3399
9cde0e7f 3400This is the C<true> SV. See C<PL_sv_no>. Always refer to this as C<&PL_sv_yes>.
cb1a09d0
AD
3401
3402=item THIS
3403
3404Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
3405This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 3406L<perlxs/"Using XS With C++">.
cb1a09d0
AD
3407
3408=item toLOWER
3409
3410Converts the specified character to lowercase.
3411
e89caa19 3412 int toLOWER (char c)
cb1a09d0
AD
3413
3414=item toUPPER
3415
3416Converts the specified character to uppercase.
3417
e89caa19 3418 int toUPPER (char c)
cb1a09d0
AD
3419
3420=item warn
3421
3422This is the XSUB-writer's interface to Perl's C<warn> function. Use this
3423function the same way you use the C C<printf> function. See C<croak()>.
3424
3425=item XPUSHi
3426
189b2af5
GS
3427Push an integer onto the stack, extending the stack if necessary. Handles
3428'set' magic. See C<PUSHi>.
cb1a09d0
AD
3429
3430 XPUSHi(int d)
3431
3432=item XPUSHn
3433
189b2af5
GS
3434Push a double onto the stack, extending the stack if necessary. Handles 'set'
3435magic. See C<PUSHn>.
cb1a09d0
AD
3436
3437 XPUSHn(double d)
3438
3439=item XPUSHp
3440
3441Push a string onto the stack, extending the stack if necessary. The C<len>
189b2af5 3442indicates the length of the string. Handles 'set' magic. See C<PUSHp>.
cb1a09d0
AD
3443
3444 XPUSHp(char *c, int len)
3445
3446=item XPUSHs
3447
189b2af5
GS
3448Push an SV onto the stack, extending the stack if necessary. Does not
3449handle 'set' magic. See C<PUSHs>.
cb1a09d0
AD
3450
3451 XPUSHs(sv)
3452
e89caa19
GA
3453=item XPUSHu
3454
3455Push an unsigned integer onto the stack, extending the stack if
3456necessary. See C<PUSHu>.
3457
5fb8527f 3458=item XS
3459
3460Macro to declare an XSUB and its C parameter list. This is handled by
3461C<xsubpp>.
3462
cb1a09d0
AD
3463=item XSRETURN
3464
3465Return from XSUB, indicating number of items on the stack. This is usually
3466handled by C<xsubpp>.
3467
ef50df4b 3468 XSRETURN(int x)
cb1a09d0
AD
3469
3470=item XSRETURN_EMPTY
3471
5fb8527f 3472Return an empty list from an XSUB immediately.
cb1a09d0
AD
3473
3474 XSRETURN_EMPTY;
3475
5fb8527f 3476=item XSRETURN_IV
3477
3478Return an integer from an XSUB immediately. Uses C<XST_mIV>.
3479
ef50df4b 3480 XSRETURN_IV(IV v)
5fb8527f 3481
cb1a09d0
AD
3482=item XSRETURN_NO
3483
9cde0e7f 3484Return C<&PL_sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0
AD
3485
3486 XSRETURN_NO;
3487
5fb8527f 3488=item XSRETURN_NV
3489
3490Return an double from an XSUB immediately. Uses C<XST_mNV>.
3491
ef50df4b 3492 XSRETURN_NV(NV v)
5fb8527f 3493
3494=item XSRETURN_PV
3495
3496Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
3497
ef50df4b 3498 XSRETURN_PV(char *v)
5fb8527f 3499
cb1a09d0
AD
3500=item XSRETURN_UNDEF
3501
9cde0e7f 3502Return C<&PL_sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0
AD
3503
3504 XSRETURN_UNDEF;
3505
3506=item XSRETURN_YES
3507
9cde0e7f 3508Return C<&PL_sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0
AD
3509
3510 XSRETURN_YES;
3511
5fb8527f 3512=item XST_mIV
3513
3514Place an integer into the specified position C<i> on the stack. The value is
3515stored in a new mortal SV.
3516
ef50df4b 3517 XST_mIV( int i, IV v )
5fb8527f 3518
3519=item XST_mNV
3520
3521Place a double into the specified position C<i> on the stack. The value is
3522stored in a new mortal SV.
3523
ef50df4b 3524 XST_mNV( int i, NV v )
5fb8527f 3525
3526=item XST_mNO
3527
9cde0e7f 3528Place C<&PL_sv_no> into the specified position C<i> on the stack.
5fb8527f 3529
ef50df4b 3530 XST_mNO( int i )
5fb8527f 3531
3532=item XST_mPV
3533
3534Place a copy of a string into the specified position C<i> on the stack. The
3535value is stored in a new mortal SV.
3536
ef50df4b 3537 XST_mPV( int i, char *v )
5fb8527f 3538
3539=item XST_mUNDEF
3540
9cde0e7f 3541Place C<&PL_sv_undef> into the specified position C<i> on the stack.
5fb8527f 3542
ef50df4b 3543 XST_mUNDEF( int i )
5fb8527f 3544
3545=item XST_mYES
3546
9cde0e7f 3547Place C<&PL_sv_yes> into the specified position C<i> on the stack.
5fb8527f 3548
ef50df4b 3549 XST_mYES( int i )
5fb8527f 3550
3551=item XS_VERSION
3552
3553The version identifier for an XS module. This is usually handled
3554automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
3555
3556=item XS_VERSION_BOOTCHECK
3557
3558Macro to verify that a PM module's $VERSION variable matches the XS module's
3559C<XS_VERSION> variable. This is usually handled automatically by
3560C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
3561
cb1a09d0
AD
3562=item Zero
3563
3564The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
3565destination, C<n> is the number of items, and C<t> is the type.
3566
e89caa19 3567 void Zero( d, n, t )
cb1a09d0
AD
3568
3569=back
3570
9cecd9f2 3571=head1 AUTHORS
cb1a09d0 3572
9cecd9f2
GA
3573Until May 1997, this document was maintained by Jeff Okamoto
3574<okamoto@corp.hp.com>. It is now maintained as part of Perl itself.
cb1a09d0
AD
3575
3576With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
3577Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
189b2af5
GS
3578Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer,
3579Stephen McCamant, and Gurusamy Sarathy.
cb1a09d0 3580
9cecd9f2 3581API Listing originally by Dean Roehrich <roehrich@cray.com>.