Commit | Line | Data |
---|---|---|
a0d0e21e LW |
1 | =head1 NAME |
2 | ||
3 | perlguts - Perl's Internal Functions | |
4 | ||
5 | =head1 DESCRIPTION | |
6 | ||
7 | This document attempts to describe some of the internal functions of the | |
8 | Perl executable. It is far from complete and probably contains many errors. | |
9 | Please refer any questions or comments to the author below. | |
10 | ||
0a753a76 | 11 | =head1 Variables |
12 | ||
5f05dabc | 13 | =head2 Datatypes |
a0d0e21e LW |
14 | |
15 | Perl has three typedefs that handle Perl's three main data types: | |
16 | ||
17 | SV Scalar Value | |
18 | AV Array Value | |
19 | HV Hash Value | |
20 | ||
d1b91892 | 21 | Each typedef has specific routines that manipulate the various data types. |
a0d0e21e LW |
22 | |
23 | =head2 What is an "IV"? | |
24 | ||
5f05dabc | 25 | Perl uses a special typedef IV which is a simple integer type that is |
26 | guaranteed to be large enough to hold a pointer (as well as an integer). | |
a0d0e21e | 27 | |
d1b91892 AD |
28 | Perl also uses two special typedefs, I32 and I16, which will always be at |
29 | least 32-bits and 16-bits long, respectively. | |
a0d0e21e | 30 | |
54310121 | 31 | =head2 Working with SVs |
a0d0e21e LW |
32 | |
33 | An SV can be created and loaded with one command. There are four types of | |
34 | values that can be loaded: an integer value (IV), a double (NV), a string, | |
35 | (PV), and another scalar (SV). | |
36 | ||
9da1e3b5 | 37 | The six routines are: |
a0d0e21e LW |
38 | |
39 | SV* newSViv(IV); | |
40 | SV* newSVnv(double); | |
41 | SV* newSVpv(char*, int); | |
9da1e3b5 | 42 | SV* newSVpvn(char*, int); |
46fc3d4c | 43 | SV* newSVpvf(const char*, ...); |
a0d0e21e LW |
44 | SV* newSVsv(SV*); |
45 | ||
deb3007b | 46 | To change the value of an *already-existing* SV, there are seven routines: |
a0d0e21e LW |
47 | |
48 | void sv_setiv(SV*, IV); | |
deb3007b | 49 | void sv_setuv(SV*, UV); |
a0d0e21e | 50 | void sv_setnv(SV*, double); |
a0d0e21e | 51 | void sv_setpv(SV*, char*); |
46fc3d4c | 52 | void sv_setpvn(SV*, char*, int) |
53 | void sv_setpvf(SV*, const char*, ...); | |
a0d0e21e LW |
54 | void sv_setsv(SV*, SV*); |
55 | ||
56 | Notice that you can choose to specify the length of the string to be | |
9da1e3b5 MUN |
57 | assigned by using C<sv_setpvn>, C<newSVpvn>, or C<newSVpv>, or you may |
58 | allow Perl to calculate the length by using C<sv_setpv> or by specifying | |
59 | 0 as the second argument to C<newSVpv>. Be warned, though, that Perl will | |
60 | determine the string's length by using C<strlen>, which depends on the | |
61 | string terminating with a NUL character. The arguments of C<sv_setpvf> | |
62 | are processed like C<sprintf>, and the formatted output becomes the value. | |
63 | The C<sv_set*()> functions are not generic enough to operate on values | |
64 | that have "magic". See L<Magic Virtual Tables> later in this document. | |
a0d0e21e | 65 | |
54310121 | 66 | All SVs that will contain strings should, but need not, be terminated |
5f05dabc | 67 | with a NUL character. If it is not NUL-terminated there is a risk of |
68 | core dumps and corruptions from code which passes the string to C | |
69 | functions or system calls which expect a NUL-terminated string. | |
70 | Perl's own functions typically add a trailing NUL for this reason. | |
71 | Nevertheless, you should be very careful when you pass a string stored | |
72 | in an SV to a C function or system call. | |
73 | ||
a0d0e21e LW |
74 | To access the actual value that an SV points to, you can use the macros: |
75 | ||
76 | SvIV(SV*) | |
77 | SvNV(SV*) | |
78 | SvPV(SV*, STRLEN len) | |
79 | ||
80 | which will automatically coerce the actual scalar type into an IV, double, | |
81 | or string. | |
82 | ||
83 | In the C<SvPV> macro, the length of the string returned is placed into the | |
84 | variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not | |
85 | care what the length of the data is, use the global variable C<na>. Remember, | |
86 | however, that Perl allows arbitrary strings of data that may both contain | |
54310121 | 87 | NULs and might not be terminated by a NUL. |
a0d0e21e | 88 | |
07fa94a1 | 89 | If you want to know if the scalar value is TRUE, you can use: |
a0d0e21e LW |
90 | |
91 | SvTRUE(SV*) | |
92 | ||
93 | Although Perl will automatically grow strings for you, if you need to force | |
94 | Perl to allocate more memory for your SV, you can use the macro | |
95 | ||
96 | SvGROW(SV*, STRLEN newlen) | |
97 | ||
98 | which will determine if more memory needs to be allocated. If so, it will | |
99 | call the function C<sv_grow>. Note that C<SvGROW> can only increase, not | |
5f05dabc | 100 | decrease, the allocated memory of an SV and that it does not automatically |
101 | add a byte for the a trailing NUL (perl's own string functions typically do | |
8ebc5c01 | 102 | C<SvGROW(sv, len + 1)>). |
a0d0e21e LW |
103 | |
104 | If you have an SV and want to know what kind of data Perl thinks is stored | |
105 | in it, you can use the following macros to check the type of SV you have. | |
106 | ||
107 | SvIOK(SV*) | |
108 | SvNOK(SV*) | |
109 | SvPOK(SV*) | |
110 | ||
111 | You can get and set the current length of the string stored in an SV with | |
112 | the following macros: | |
113 | ||
114 | SvCUR(SV*) | |
115 | SvCUR_set(SV*, I32 val) | |
116 | ||
cb1a09d0 AD |
117 | You can also get a pointer to the end of the string stored in the SV |
118 | with the macro: | |
119 | ||
120 | SvEND(SV*) | |
121 | ||
122 | But note that these last three macros are valid only if C<SvPOK()> is true. | |
a0d0e21e | 123 | |
d1b91892 AD |
124 | If you want to append something to the end of string stored in an C<SV*>, |
125 | you can use the following functions: | |
126 | ||
127 | void sv_catpv(SV*, char*); | |
128 | void sv_catpvn(SV*, char*, int); | |
46fc3d4c | 129 | void sv_catpvf(SV*, const char*, ...); |
d1b91892 AD |
130 | void sv_catsv(SV*, SV*); |
131 | ||
132 | The first function calculates the length of the string to be appended by | |
133 | using C<strlen>. In the second, you specify the length of the string | |
46fc3d4c | 134 | yourself. The third function processes its arguments like C<sprintf> and |
135 | appends the formatted output. The fourth function extends the string | |
136 | stored in the first SV with the string stored in the second SV. It also | |
189b2af5 GS |
137 | forces the second SV to be interpreted as a string. The C<sv_cat*()> |
138 | functions are not generic enough to operate on values that have "magic". | |
139 | See L<Magic Virtual Tables> later in this document. | |
d1b91892 | 140 | |
a0d0e21e LW |
141 | If you know the name of a scalar variable, you can get a pointer to its SV |
142 | by using the following: | |
143 | ||
5f05dabc | 144 | SV* perl_get_sv("package::varname", FALSE); |
a0d0e21e LW |
145 | |
146 | This returns NULL if the variable does not exist. | |
147 | ||
d1b91892 | 148 | If you want to know if this variable (or any other SV) is actually C<defined>, |
a0d0e21e LW |
149 | you can call: |
150 | ||
151 | SvOK(SV*) | |
152 | ||
153 | The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its | |
154 | address can be used whenever an C<SV*> is needed. | |
155 | ||
156 | There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean | |
157 | TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can | |
158 | be used whenever an C<SV*> is needed. | |
159 | ||
160 | Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>. | |
161 | Take this code: | |
162 | ||
163 | SV* sv = (SV*) 0; | |
164 | if (I-am-to-return-a-real-value) { | |
165 | sv = sv_2mortal(newSViv(42)); | |
166 | } | |
167 | sv_setsv(ST(0), sv); | |
168 | ||
169 | This code tries to return a new SV (which contains the value 42) if it should | |
04343c6d | 170 | return a real value, or undef otherwise. Instead it has returned a NULL |
a0d0e21e | 171 | pointer which, somewhere down the line, will cause a segmentation violation, |
5f05dabc | 172 | bus error, or just weird results. Change the zero to C<&sv_undef> in the first |
173 | line and all will be well. | |
a0d0e21e LW |
174 | |
175 | To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this | |
3fe9a6f1 | 176 | call is not necessary (see L<Reference Counts and Mortality>). |
a0d0e21e | 177 | |
d1b91892 | 178 | =head2 What's Really Stored in an SV? |
a0d0e21e LW |
179 | |
180 | Recall that the usual method of determining the type of scalar you have is | |
5f05dabc | 181 | to use C<Sv*OK> macros. Because a scalar can be both a number and a string, |
d1b91892 | 182 | usually these macros will always return TRUE and calling the C<Sv*V> |
a0d0e21e LW |
183 | macros will do the appropriate conversion of string to integer/double or |
184 | integer/double to string. | |
185 | ||
186 | If you I<really> need to know if you have an integer, double, or string | |
187 | pointer in an SV, you can use the following three macros instead: | |
188 | ||
189 | SvIOKp(SV*) | |
190 | SvNOKp(SV*) | |
191 | SvPOKp(SV*) | |
192 | ||
193 | These will tell you if you truly have an integer, double, or string pointer | |
d1b91892 | 194 | stored in your SV. The "p" stands for private. |
a0d0e21e | 195 | |
07fa94a1 | 196 | In general, though, it's best to use the C<Sv*V> macros. |
a0d0e21e | 197 | |
54310121 | 198 | =head2 Working with AVs |
a0d0e21e | 199 | |
07fa94a1 JO |
200 | There are two ways to create and load an AV. The first method creates an |
201 | empty AV: | |
a0d0e21e LW |
202 | |
203 | AV* newAV(); | |
204 | ||
54310121 | 205 | The second method both creates the AV and initially populates it with SVs: |
a0d0e21e LW |
206 | |
207 | AV* av_make(I32 num, SV **ptr); | |
208 | ||
5f05dabc | 209 | The second argument points to an array containing C<num> C<SV*>'s. Once the |
54310121 | 210 | AV has been created, the SVs can be destroyed, if so desired. |
a0d0e21e | 211 | |
54310121 | 212 | Once the AV has been created, the following operations are possible on AVs: |
a0d0e21e LW |
213 | |
214 | void av_push(AV*, SV*); | |
215 | SV* av_pop(AV*); | |
216 | SV* av_shift(AV*); | |
217 | void av_unshift(AV*, I32 num); | |
218 | ||
219 | These should be familiar operations, with the exception of C<av_unshift>. | |
220 | This routine adds C<num> elements at the front of the array with the C<undef> | |
221 | value. You must then use C<av_store> (described below) to assign values | |
222 | to these new elements. | |
223 | ||
224 | Here are some other functions: | |
225 | ||
5f05dabc | 226 | I32 av_len(AV*); |
a0d0e21e | 227 | SV** av_fetch(AV*, I32 key, I32 lval); |
a0d0e21e | 228 | SV** av_store(AV*, I32 key, SV* val); |
a0d0e21e | 229 | |
5f05dabc | 230 | The C<av_len> function returns the highest index value in array (just |
231 | like $#array in Perl). If the array is empty, -1 is returned. The | |
232 | C<av_fetch> function returns the value at index C<key>, but if C<lval> | |
233 | is non-zero, then C<av_fetch> will store an undef value at that index. | |
04343c6d GS |
234 | The C<av_store> function stores the value C<val> at index C<key>, and does |
235 | not increment the reference count of C<val>. Thus the caller is responsible | |
236 | for taking care of that, and if C<av_store> returns NULL, the caller will | |
237 | have to decrement the reference count to avoid a memory leak. Note that | |
238 | C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their | |
239 | return value. | |
d1b91892 | 240 | |
a0d0e21e | 241 | void av_clear(AV*); |
a0d0e21e | 242 | void av_undef(AV*); |
cb1a09d0 | 243 | void av_extend(AV*, I32 key); |
5f05dabc | 244 | |
245 | The C<av_clear> function deletes all the elements in the AV* array, but | |
246 | does not actually delete the array itself. The C<av_undef> function will | |
247 | delete all the elements in the array plus the array itself. The | |
248 | C<av_extend> function extends the array so that it contains C<key> | |
249 | elements. If C<key> is less than the current length of the array, then | |
250 | nothing is done. | |
a0d0e21e LW |
251 | |
252 | If you know the name of an array variable, you can get a pointer to its AV | |
253 | by using the following: | |
254 | ||
5f05dabc | 255 | AV* perl_get_av("package::varname", FALSE); |
a0d0e21e LW |
256 | |
257 | This returns NULL if the variable does not exist. | |
258 | ||
04343c6d GS |
259 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
260 | information on how to use the array access functions on tied arrays. | |
261 | ||
54310121 | 262 | =head2 Working with HVs |
a0d0e21e LW |
263 | |
264 | To create an HV, you use the following routine: | |
265 | ||
266 | HV* newHV(); | |
267 | ||
54310121 | 268 | Once the HV has been created, the following operations are possible on HVs: |
a0d0e21e LW |
269 | |
270 | SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash); | |
271 | SV** hv_fetch(HV*, char* key, U32 klen, I32 lval); | |
272 | ||
5f05dabc | 273 | The C<klen> parameter is the length of the key being passed in (Note that |
274 | you cannot pass 0 in as a value of C<klen> to tell Perl to measure the | |
275 | length of the key). The C<val> argument contains the SV pointer to the | |
54310121 | 276 | scalar being stored, and C<hash> is the precomputed hash value (zero if |
5f05dabc | 277 | you want C<hv_store> to calculate it for you). The C<lval> parameter |
278 | indicates whether this fetch is actually a part of a store operation, in | |
279 | which case a new undefined value will be added to the HV with the supplied | |
280 | key and C<hv_fetch> will return as if the value had already existed. | |
a0d0e21e | 281 | |
5f05dabc | 282 | Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just |
283 | C<SV*>. To access the scalar value, you must first dereference the return | |
284 | value. However, you should check to make sure that the return value is | |
285 | not NULL before dereferencing it. | |
a0d0e21e LW |
286 | |
287 | These two functions check if a hash table entry exists, and deletes it. | |
288 | ||
289 | bool hv_exists(HV*, char* key, U32 klen); | |
d1b91892 | 290 | SV* hv_delete(HV*, char* key, U32 klen, I32 flags); |
a0d0e21e | 291 | |
5f05dabc | 292 | If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will |
293 | create and return a mortal copy of the deleted value. | |
294 | ||
a0d0e21e LW |
295 | And more miscellaneous functions: |
296 | ||
297 | void hv_clear(HV*); | |
a0d0e21e | 298 | void hv_undef(HV*); |
5f05dabc | 299 | |
300 | Like their AV counterparts, C<hv_clear> deletes all the entries in the hash | |
301 | table but does not actually delete the hash table. The C<hv_undef> deletes | |
302 | both the entries and the hash table itself. | |
a0d0e21e | 303 | |
d1b91892 AD |
304 | Perl keeps the actual data in linked list of structures with a typedef of HE. |
305 | These contain the actual key and value pointers (plus extra administrative | |
306 | overhead). The key is a string pointer; the value is an C<SV*>. However, | |
307 | once you have an C<HE*>, to get the actual key and value, use the routines | |
308 | specified below. | |
309 | ||
a0d0e21e LW |
310 | I32 hv_iterinit(HV*); |
311 | /* Prepares starting point to traverse hash table */ | |
312 | HE* hv_iternext(HV*); | |
313 | /* Get the next entry, and return a pointer to a | |
314 | structure that has both the key and value */ | |
315 | char* hv_iterkey(HE* entry, I32* retlen); | |
316 | /* Get the key from an HE structure and also return | |
317 | the length of the key string */ | |
cb1a09d0 | 318 | SV* hv_iterval(HV*, HE* entry); |
a0d0e21e LW |
319 | /* Return a SV pointer to the value of the HE |
320 | structure */ | |
cb1a09d0 | 321 | SV* hv_iternextsv(HV*, char** key, I32* retlen); |
d1b91892 AD |
322 | /* This convenience routine combines hv_iternext, |
323 | hv_iterkey, and hv_iterval. The key and retlen | |
324 | arguments are return values for the key and its | |
325 | length. The value is returned in the SV* argument */ | |
a0d0e21e LW |
326 | |
327 | If you know the name of a hash variable, you can get a pointer to its HV | |
328 | by using the following: | |
329 | ||
5f05dabc | 330 | HV* perl_get_hv("package::varname", FALSE); |
a0d0e21e LW |
331 | |
332 | This returns NULL if the variable does not exist. | |
333 | ||
8ebc5c01 | 334 | The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro: |
a0d0e21e LW |
335 | |
336 | i = klen; | |
337 | hash = 0; | |
338 | s = key; | |
339 | while (i--) | |
340 | hash = hash * 33 + *s++; | |
341 | ||
04343c6d GS |
342 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
343 | information on how to use the hash access functions on tied hashes. | |
344 | ||
1e422769 | 345 | =head2 Hash API Extensions |
346 | ||
347 | Beginning with version 5.004, the following functions are also supported: | |
348 | ||
349 | HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash); | |
350 | HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash); | |
351 | ||
352 | bool hv_exists_ent (HV* tb, SV* key, U32 hash); | |
353 | SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash); | |
354 | ||
355 | SV* hv_iterkeysv (HE* entry); | |
356 | ||
357 | Note that these functions take C<SV*> keys, which simplifies writing | |
358 | of extension code that deals with hash structures. These functions | |
359 | also allow passing of C<SV*> keys to C<tie> functions without forcing | |
360 | you to stringify the keys (unlike the previous set of functions). | |
361 | ||
362 | They also return and accept whole hash entries (C<HE*>), making their | |
363 | use more efficient (since the hash number for a particular string | |
364 | doesn't have to be recomputed every time). See L<API LISTING> later in | |
365 | this document for detailed descriptions. | |
366 | ||
367 | The following macros must always be used to access the contents of hash | |
368 | entries. Note that the arguments to these macros must be simple | |
369 | variables, since they may get evaluated more than once. See | |
370 | L<API LISTING> later in this document for detailed descriptions of these | |
371 | macros. | |
372 | ||
373 | HePV(HE* he, STRLEN len) | |
374 | HeVAL(HE* he) | |
375 | HeHASH(HE* he) | |
376 | HeSVKEY(HE* he) | |
377 | HeSVKEY_force(HE* he) | |
378 | HeSVKEY_set(HE* he, SV* sv) | |
379 | ||
380 | These two lower level macros are defined, but must only be used when | |
381 | dealing with keys that are not C<SV*>s: | |
382 | ||
383 | HeKEY(HE* he) | |
384 | HeKLEN(HE* he) | |
385 | ||
04343c6d GS |
386 | Note that both C<hv_store> and C<hv_store_ent> do not increment the |
387 | reference count of the stored C<val>, which is the caller's responsibility. | |
388 | If these functions return a NULL value, the caller will usually have to | |
389 | decrement the reference count of C<val> to avoid a memory leak. | |
1e422769 | 390 | |
a0d0e21e LW |
391 | =head2 References |
392 | ||
d1b91892 AD |
393 | References are a special type of scalar that point to other data types |
394 | (including references). | |
a0d0e21e | 395 | |
07fa94a1 | 396 | To create a reference, use either of the following functions: |
a0d0e21e | 397 | |
5f05dabc | 398 | SV* newRV_inc((SV*) thing); |
399 | SV* newRV_noinc((SV*) thing); | |
a0d0e21e | 400 | |
5f05dabc | 401 | The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The |
07fa94a1 JO |
402 | functions are identical except that C<newRV_inc> increments the reference |
403 | count of the C<thing>, while C<newRV_noinc> does not. For historical | |
404 | reasons, C<newRV> is a synonym for C<newRV_inc>. | |
405 | ||
406 | Once you have a reference, you can use the following macro to dereference | |
407 | the reference: | |
a0d0e21e LW |
408 | |
409 | SvRV(SV*) | |
410 | ||
411 | then call the appropriate routines, casting the returned C<SV*> to either an | |
d1b91892 | 412 | C<AV*> or C<HV*>, if required. |
a0d0e21e | 413 | |
d1b91892 | 414 | To determine if an SV is a reference, you can use the following macro: |
a0d0e21e LW |
415 | |
416 | SvROK(SV*) | |
417 | ||
07fa94a1 JO |
418 | To discover what type of value the reference refers to, use the following |
419 | macro and then check the return value. | |
d1b91892 AD |
420 | |
421 | SvTYPE(SvRV(SV*)) | |
422 | ||
423 | The most useful types that will be returned are: | |
424 | ||
425 | SVt_IV Scalar | |
426 | SVt_NV Scalar | |
427 | SVt_PV Scalar | |
5f05dabc | 428 | SVt_RV Scalar |
d1b91892 AD |
429 | SVt_PVAV Array |
430 | SVt_PVHV Hash | |
431 | SVt_PVCV Code | |
5f05dabc | 432 | SVt_PVGV Glob (possible a file handle) |
433 | SVt_PVMG Blessed or Magical Scalar | |
434 | ||
435 | See the sv.h header file for more details. | |
d1b91892 | 436 | |
cb1a09d0 AD |
437 | =head2 Blessed References and Class Objects |
438 | ||
439 | References are also used to support object-oriented programming. In the | |
440 | OO lexicon, an object is simply a reference that has been blessed into a | |
441 | package (or class). Once blessed, the programmer may now use the reference | |
442 | to access the various methods in the class. | |
443 | ||
444 | A reference can be blessed into a package with the following function: | |
445 | ||
446 | SV* sv_bless(SV* sv, HV* stash); | |
447 | ||
448 | The C<sv> argument must be a reference. The C<stash> argument specifies | |
3fe9a6f1 | 449 | which class the reference will belong to. See |
2ae324a7 | 450 | L<Stashes and Globs> for information on converting class names into stashes. |
cb1a09d0 AD |
451 | |
452 | /* Still under construction */ | |
453 | ||
454 | Upgrades rv to reference if not already one. Creates new SV for rv to | |
8ebc5c01 | 455 | point to. If C<classname> is non-null, the SV is blessed into the specified |
456 | class. SV is returned. | |
cb1a09d0 AD |
457 | |
458 | SV* newSVrv(SV* rv, char* classname); | |
459 | ||
8ebc5c01 | 460 | Copies integer or double into an SV whose reference is C<rv>. SV is blessed |
461 | if C<classname> is non-null. | |
cb1a09d0 AD |
462 | |
463 | SV* sv_setref_iv(SV* rv, char* classname, IV iv); | |
464 | SV* sv_setref_nv(SV* rv, char* classname, NV iv); | |
465 | ||
5f05dabc | 466 | Copies the pointer value (I<the address, not the string!>) into an SV whose |
8ebc5c01 | 467 | reference is rv. SV is blessed if C<classname> is non-null. |
cb1a09d0 AD |
468 | |
469 | SV* sv_setref_pv(SV* rv, char* classname, PV iv); | |
470 | ||
8ebc5c01 | 471 | Copies string into an SV whose reference is C<rv>. Set length to 0 to let |
472 | Perl calculate the string length. SV is blessed if C<classname> is non-null. | |
cb1a09d0 AD |
473 | |
474 | SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length); | |
475 | ||
476 | int sv_isa(SV* sv, char* name); | |
477 | int sv_isobject(SV* sv); | |
478 | ||
5f05dabc | 479 | =head2 Creating New Variables |
cb1a09d0 | 480 | |
5f05dabc | 481 | To create a new Perl variable with an undef value which can be accessed from |
482 | your Perl script, use the following routines, depending on the variable type. | |
cb1a09d0 | 483 | |
5f05dabc | 484 | SV* perl_get_sv("package::varname", TRUE); |
485 | AV* perl_get_av("package::varname", TRUE); | |
486 | HV* perl_get_hv("package::varname", TRUE); | |
cb1a09d0 AD |
487 | |
488 | Notice the use of TRUE as the second parameter. The new variable can now | |
489 | be set, using the routines appropriate to the data type. | |
490 | ||
5f05dabc | 491 | There are additional macros whose values may be bitwise OR'ed with the |
492 | C<TRUE> argument to enable certain extra features. Those bits are: | |
cb1a09d0 | 493 | |
5f05dabc | 494 | GV_ADDMULTI Marks the variable as multiply defined, thus preventing the |
54310121 | 495 | "Name <varname> used only once: possible typo" warning. |
07fa94a1 JO |
496 | GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if |
497 | the variable did not exist before the function was called. | |
cb1a09d0 | 498 | |
07fa94a1 JO |
499 | If you do not specify a package name, the variable is created in the current |
500 | package. | |
cb1a09d0 | 501 | |
5f05dabc | 502 | =head2 Reference Counts and Mortality |
a0d0e21e | 503 | |
54310121 | 504 | Perl uses an reference count-driven garbage collection mechanism. SVs, |
505 | AVs, or HVs (xV for short in the following) start their life with a | |
55497cff | 506 | reference count of 1. If the reference count of an xV ever drops to 0, |
07fa94a1 | 507 | then it will be destroyed and its memory made available for reuse. |
55497cff | 508 | |
509 | This normally doesn't happen at the Perl level unless a variable is | |
5f05dabc | 510 | undef'ed or the last variable holding a reference to it is changed or |
511 | overwritten. At the internal level, however, reference counts can be | |
55497cff | 512 | manipulated with the following macros: |
513 | ||
514 | int SvREFCNT(SV* sv); | |
5f05dabc | 515 | SV* SvREFCNT_inc(SV* sv); |
55497cff | 516 | void SvREFCNT_dec(SV* sv); |
517 | ||
518 | However, there is one other function which manipulates the reference | |
07fa94a1 JO |
519 | count of its argument. The C<newRV_inc> function, you will recall, |
520 | creates a reference to the specified argument. As a side effect, | |
521 | it increments the argument's reference count. If this is not what | |
522 | you want, use C<newRV_noinc> instead. | |
523 | ||
524 | For example, imagine you want to return a reference from an XSUB function. | |
525 | Inside the XSUB routine, you create an SV which initially has a reference | |
526 | count of one. Then you call C<newRV_inc>, passing it the just-created SV. | |
5f05dabc | 527 | This returns the reference as a new SV, but the reference count of the |
528 | SV you passed to C<newRV_inc> has been incremented to two. Now you | |
07fa94a1 JO |
529 | return the reference from the XSUB routine and forget about the SV. |
530 | But Perl hasn't! Whenever the returned reference is destroyed, the | |
531 | reference count of the original SV is decreased to one and nothing happens. | |
532 | The SV will hang around without any way to access it until Perl itself | |
533 | terminates. This is a memory leak. | |
5f05dabc | 534 | |
535 | The correct procedure, then, is to use C<newRV_noinc> instead of | |
faed5253 JO |
536 | C<newRV_inc>. Then, if and when the last reference is destroyed, |
537 | the reference count of the SV will go to zero and it will be destroyed, | |
07fa94a1 | 538 | stopping any memory leak. |
55497cff | 539 | |
5f05dabc | 540 | There are some convenience functions available that can help with the |
54310121 | 541 | destruction of xVs. These functions introduce the concept of "mortality". |
07fa94a1 JO |
542 | An xV that is mortal has had its reference count marked to be decremented, |
543 | but not actually decremented, until "a short time later". Generally the | |
544 | term "short time later" means a single Perl statement, such as a call to | |
54310121 | 545 | an XSUB function. The actual determinant for when mortal xVs have their |
07fa94a1 JO |
546 | reference count decremented depends on two macros, SAVETMPS and FREETMPS. |
547 | See L<perlcall> and L<perlxs> for more details on these macros. | |
55497cff | 548 | |
549 | "Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>. | |
550 | However, if you mortalize a variable twice, the reference count will | |
551 | later be decremented twice. | |
552 | ||
553 | You should be careful about creating mortal variables. Strange things | |
554 | can happen if you make the same value mortal within multiple contexts, | |
5f05dabc | 555 | or if you make a variable mortal multiple times. |
a0d0e21e LW |
556 | |
557 | To create a mortal variable, use the functions: | |
558 | ||
559 | SV* sv_newmortal() | |
560 | SV* sv_2mortal(SV*) | |
561 | SV* sv_mortalcopy(SV*) | |
562 | ||
5f05dabc | 563 | The first call creates a mortal SV, the second converts an existing |
564 | SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the | |
565 | third creates a mortal copy of an existing SV. | |
a0d0e21e | 566 | |
54310121 | 567 | The mortal routines are not just for SVs -- AVs and HVs can be |
faed5253 | 568 | made mortal by passing their address (type-casted to C<SV*>) to the |
07fa94a1 | 569 | C<sv_2mortal> or C<sv_mortalcopy> routines. |
a0d0e21e | 570 | |
5f05dabc | 571 | =head2 Stashes and Globs |
a0d0e21e | 572 | |
aa689395 | 573 | A "stash" is a hash that contains all of the different objects that |
574 | are contained within a package. Each key of the stash is a symbol | |
575 | name (shared by all the different types of objects that have the same | |
576 | name), and each value in the hash table is a GV (Glob Value). This GV | |
577 | in turn contains references to the various objects of that name, | |
578 | including (but not limited to) the following: | |
cb1a09d0 | 579 | |
a0d0e21e LW |
580 | Scalar Value |
581 | Array Value | |
582 | Hash Value | |
583 | File Handle | |
584 | Directory Handle | |
585 | Format | |
586 | Subroutine | |
587 | ||
5f05dabc | 588 | There is a single stash called "defstash" that holds the items that exist |
589 | in the "main" package. To get at the items in other packages, append the | |
590 | string "::" to the package name. The items in the "Foo" package are in | |
591 | the stash "Foo::" in defstash. The items in the "Bar::Baz" package are | |
592 | in the stash "Baz::" in "Bar::"'s stash. | |
a0d0e21e | 593 | |
d1b91892 | 594 | To get the stash pointer for a particular package, use the function: |
a0d0e21e LW |
595 | |
596 | HV* gv_stashpv(char* name, I32 create) | |
597 | HV* gv_stashsv(SV*, I32 create) | |
598 | ||
599 | The first function takes a literal string, the second uses the string stored | |
d1b91892 | 600 | in the SV. Remember that a stash is just a hash table, so you get back an |
cb1a09d0 | 601 | C<HV*>. The C<create> flag will create a new package if it is set. |
a0d0e21e LW |
602 | |
603 | The name that C<gv_stash*v> wants is the name of the package whose symbol table | |
604 | you want. The default package is called C<main>. If you have multiply nested | |
d1b91892 AD |
605 | packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl |
606 | language itself. | |
a0d0e21e LW |
607 | |
608 | Alternately, if you have an SV that is a blessed reference, you can find | |
609 | out the stash pointer by using: | |
610 | ||
611 | HV* SvSTASH(SvRV(SV*)); | |
612 | ||
613 | then use the following to get the package name itself: | |
614 | ||
615 | char* HvNAME(HV* stash); | |
616 | ||
5f05dabc | 617 | If you need to bless or re-bless an object you can use the following |
618 | function: | |
a0d0e21e LW |
619 | |
620 | SV* sv_bless(SV*, HV* stash) | |
621 | ||
622 | where the first argument, an C<SV*>, must be a reference, and the second | |
623 | argument is a stash. The returned C<SV*> can now be used in the same way | |
624 | as any other SV. | |
625 | ||
d1b91892 AD |
626 | For more information on references and blessings, consult L<perlref>. |
627 | ||
54310121 | 628 | =head2 Double-Typed SVs |
0a753a76 | 629 | |
630 | Scalar variables normally contain only one type of value, an integer, | |
631 | double, pointer, or reference. Perl will automatically convert the | |
632 | actual scalar data from the stored type into the requested type. | |
633 | ||
634 | Some scalar variables contain more than one type of scalar data. For | |
635 | example, the variable C<$!> contains either the numeric value of C<errno> | |
636 | or its string equivalent from either C<strerror> or C<sys_errlist[]>. | |
637 | ||
638 | To force multiple data values into an SV, you must do two things: use the | |
639 | C<sv_set*v> routines to add the additional scalar type, then set a flag | |
640 | so that Perl will believe it contains more than one type of data. The | |
641 | four macros to set the flags are: | |
642 | ||
643 | SvIOK_on | |
644 | SvNOK_on | |
645 | SvPOK_on | |
646 | SvROK_on | |
647 | ||
648 | The particular macro you must use depends on which C<sv_set*v> routine | |
649 | you called first. This is because every C<sv_set*v> routine turns on | |
650 | only the bit for the particular type of data being set, and turns off | |
651 | all the rest. | |
652 | ||
653 | For example, to create a new Perl variable called "dberror" that contains | |
654 | both the numeric and descriptive string error values, you could use the | |
655 | following code: | |
656 | ||
657 | extern int dberror; | |
658 | extern char *dberror_list; | |
659 | ||
660 | SV* sv = perl_get_sv("dberror", TRUE); | |
661 | sv_setiv(sv, (IV) dberror); | |
662 | sv_setpv(sv, dberror_list[dberror]); | |
663 | SvIOK_on(sv); | |
664 | ||
665 | If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the | |
666 | macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>. | |
667 | ||
668 | =head2 Magic Variables | |
a0d0e21e | 669 | |
d1b91892 AD |
670 | [This section still under construction. Ignore everything here. Post no |
671 | bills. Everything not permitted is forbidden.] | |
672 | ||
d1b91892 AD |
673 | Any SV may be magical, that is, it has special features that a normal |
674 | SV does not have. These features are stored in the SV structure in a | |
5f05dabc | 675 | linked list of C<struct magic>'s, typedef'ed to C<MAGIC>. |
d1b91892 AD |
676 | |
677 | struct magic { | |
678 | MAGIC* mg_moremagic; | |
679 | MGVTBL* mg_virtual; | |
680 | U16 mg_private; | |
681 | char mg_type; | |
682 | U8 mg_flags; | |
683 | SV* mg_obj; | |
684 | char* mg_ptr; | |
685 | I32 mg_len; | |
686 | }; | |
687 | ||
688 | Note this is current as of patchlevel 0, and could change at any time. | |
689 | ||
690 | =head2 Assigning Magic | |
691 | ||
692 | Perl adds magic to an SV using the sv_magic function: | |
693 | ||
694 | void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen); | |
695 | ||
696 | The C<sv> argument is a pointer to the SV that is to acquire a new magical | |
697 | feature. | |
698 | ||
699 | If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to | |
700 | set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding | |
701 | it to the beginning of the linked list of magical features. Any prior | |
702 | entry of the same type of magic is deleted. Note that this can be | |
5fb8527f | 703 | overridden, and multiple instances of the same type of magic can be |
d1b91892 AD |
704 | associated with an SV. |
705 | ||
54310121 | 706 | The C<name> and C<namlen> arguments are used to associate a string with |
707 | the magic, typically the name of a variable. C<namlen> is stored in the | |
708 | C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd | |
d1b91892 AD |
709 | copy of the name is stored in C<mg_ptr> field. |
710 | ||
711 | The sv_magic function uses C<how> to determine which, if any, predefined | |
712 | "Magic Virtual Table" should be assigned to the C<mg_virtual> field. | |
cb1a09d0 AD |
713 | See the "Magic Virtual Table" section below. The C<how> argument is also |
714 | stored in the C<mg_type> field. | |
d1b91892 AD |
715 | |
716 | The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC> | |
717 | structure. If it is not the same as the C<sv> argument, the reference | |
718 | count of the C<obj> object is incremented. If it is the same, or if | |
04343c6d | 719 | the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is |
d1b91892 AD |
720 | merely stored, without the reference count being incremented. |
721 | ||
cb1a09d0 AD |
722 | There is also a function to add magic to an C<HV>: |
723 | ||
724 | void hv_magic(HV *hv, GV *gv, int how); | |
725 | ||
726 | This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>. | |
727 | ||
728 | To remove the magic from an SV, call the function sv_unmagic: | |
729 | ||
730 | void sv_unmagic(SV *sv, int type); | |
731 | ||
732 | The C<type> argument should be equal to the C<how> value when the C<SV> | |
733 | was initially made magical. | |
734 | ||
d1b91892 AD |
735 | =head2 Magic Virtual Tables |
736 | ||
737 | The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a | |
738 | C<MGVTBL>, which is a structure of function pointers and stands for | |
739 | "Magic Virtual Table" to handle the various operations that might be | |
740 | applied to that variable. | |
741 | ||
742 | The C<MGVTBL> has five pointers to the following routine types: | |
743 | ||
744 | int (*svt_get)(SV* sv, MAGIC* mg); | |
745 | int (*svt_set)(SV* sv, MAGIC* mg); | |
746 | U32 (*svt_len)(SV* sv, MAGIC* mg); | |
747 | int (*svt_clear)(SV* sv, MAGIC* mg); | |
748 | int (*svt_free)(SV* sv, MAGIC* mg); | |
749 | ||
750 | This MGVTBL structure is set at compile-time in C<perl.h> and there are | |
751 | currently 19 types (or 21 with overloading turned on). These different | |
752 | structures contain pointers to various routines that perform additional | |
753 | actions depending on which function is being called. | |
754 | ||
755 | Function pointer Action taken | |
756 | ---------------- ------------ | |
757 | svt_get Do something after the value of the SV is retrieved. | |
758 | svt_set Do something after the SV is assigned a value. | |
759 | svt_len Report on the SV's length. | |
760 | svt_clear Clear something the SV represents. | |
761 | svt_free Free any extra storage associated with the SV. | |
762 | ||
763 | For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds | |
764 | to an C<mg_type> of '\0') contains: | |
765 | ||
766 | { magic_get, magic_set, magic_len, 0, 0 } | |
767 | ||
768 | Thus, when an SV is determined to be magical and of type '\0', if a get | |
769 | operation is being performed, the routine C<magic_get> is called. All | |
770 | the various routines for the various magical types begin with C<magic_>. | |
771 | ||
772 | The current kinds of Magic Virtual Tables are: | |
773 | ||
bdbeb323 | 774 | mg_type MGVTBL Type of magic |
5f05dabc | 775 | ------- ------ ---------------------------- |
bdbeb323 SM |
776 | \0 vtbl_sv Special scalar variable |
777 | A vtbl_amagic %OVERLOAD hash | |
778 | a vtbl_amagicelem %OVERLOAD hash element | |
779 | c (none) Holds overload table (AMT) on stash | |
780 | B vtbl_bm Boyer-Moore (fast string search) | |
d1b91892 AD |
781 | E vtbl_env %ENV hash |
782 | e vtbl_envelem %ENV hash element | |
bdbeb323 SM |
783 | f vtbl_fm Formline ('compiled' format) |
784 | g vtbl_mglob m//g target / study()ed string | |
d1b91892 AD |
785 | I vtbl_isa @ISA array |
786 | i vtbl_isaelem @ISA array element | |
bdbeb323 SM |
787 | k vtbl_nkeys scalar(keys()) lvalue |
788 | L (none) Debugger %_<filename | |
789 | l vtbl_dbline Debugger %_<filename element | |
44a8e56a | 790 | o vtbl_collxfrm Locale transformation |
bdbeb323 SM |
791 | P vtbl_pack Tied array or hash |
792 | p vtbl_packelem Tied array or hash element | |
793 | q vtbl_packelem Tied scalar or handle | |
794 | S vtbl_sig %SIG hash | |
795 | s vtbl_sigelem %SIG hash element | |
d1b91892 | 796 | t vtbl_taint Taintedness |
bdbeb323 SM |
797 | U vtbl_uvar Available for use by extensions |
798 | v vtbl_vec vec() lvalue | |
799 | x vtbl_substr substr() lvalue | |
800 | y vtbl_defelem Shadow "foreach" iterator variable / | |
801 | smart parameter vivification | |
802 | * vtbl_glob GV (typeglob) | |
803 | # vtbl_arylen Array length ($#ary) | |
804 | . vtbl_pos pos() lvalue | |
805 | ~ (none) Available for use by extensions | |
d1b91892 | 806 | |
68dc0745 | 807 | When an uppercase and lowercase letter both exist in the table, then the |
808 | uppercase letter is used to represent some kind of composite type (a list | |
809 | or a hash), and the lowercase letter is used to represent an element of | |
d1b91892 AD |
810 | that composite type. |
811 | ||
bdbeb323 SM |
812 | The '~' and 'U' magic types are defined specifically for use by |
813 | extensions and will not be used by perl itself. Extensions can use | |
814 | '~' magic to 'attach' private information to variables (typically | |
815 | objects). This is especially useful because there is no way for | |
816 | normal perl code to corrupt this private information (unlike using | |
817 | extra elements of a hash object). | |
818 | ||
819 | Similarly, 'U' magic can be used much like tie() to call a C function | |
820 | any time a scalar's value is used or changed. The C<MAGIC>'s | |
821 | C<mg_ptr> field points to a C<ufuncs> structure: | |
822 | ||
823 | struct ufuncs { | |
824 | I32 (*uf_val)(IV, SV*); | |
825 | I32 (*uf_set)(IV, SV*); | |
826 | IV uf_index; | |
827 | }; | |
828 | ||
829 | When the SV is read from or written to, the C<uf_val> or C<uf_set> | |
830 | function will be called with C<uf_index> as the first arg and a | |
831 | pointer to the SV as the second. | |
5f05dabc | 832 | |
bdbeb323 SM |
833 | Note that because multiple extensions may be using '~' or 'U' magic, |
834 | it is important for extensions to take extra care to avoid conflict. | |
835 | Typically only using the magic on objects blessed into the same class | |
836 | as the extension is sufficient. For '~' magic, it may also be | |
837 | appropriate to add an I32 'signature' at the top of the private data | |
838 | area and check that. | |
5f05dabc | 839 | |
ef50df4b GS |
840 | Also note that the C<sv_set*()> and C<sv_cat*()> functions described |
841 | earlier do B<not> invoke 'set' magic on their targets. This must | |
842 | be done by the user either by calling the C<SvSETMAGIC()> macro after | |
843 | calling these functions, or by using one of the C<sv_set*_mg()> or | |
844 | C<sv_cat*_mg()> functions. Similarly, generic C code must call the | |
845 | C<SvGETMAGIC()> macro to invoke any 'get' magic if they use an SV | |
846 | obtained from external sources in functions that don't handle magic. | |
847 | L<API LISTING> later in this document identifies such functions. | |
189b2af5 GS |
848 | For example, calls to the C<sv_cat*()> functions typically need to be |
849 | followed by C<SvSETMAGIC()>, but they don't need a prior C<SvGETMAGIC()> | |
850 | since their implementation handles 'get' magic. | |
851 | ||
d1b91892 AD |
852 | =head2 Finding Magic |
853 | ||
854 | MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */ | |
855 | ||
856 | This routine returns a pointer to the C<MAGIC> structure stored in the SV. | |
857 | If the SV does not have that magical feature, C<NULL> is returned. Also, | |
54310121 | 858 | if the SV is not of type SVt_PVMG, Perl may core dump. |
d1b91892 AD |
859 | |
860 | int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen); | |
861 | ||
862 | This routine checks to see what types of magic C<sv> has. If the mg_type | |
68dc0745 | 863 | field is an uppercase letter, then the mg_obj is copied to C<nsv>, but |
864 | the mg_type field is changed to be the lowercase letter. | |
a0d0e21e | 865 | |
04343c6d GS |
866 | =head2 Understanding the Magic of Tied Hashes and Arrays |
867 | ||
868 | Tied hashes and arrays are magical beasts of the 'P' magic type. | |
9edb2b46 GS |
869 | |
870 | WARNING: As of the 5.004 release, proper usage of the array and hash | |
871 | access functions requires understanding a few caveats. Some | |
872 | of these caveats are actually considered bugs in the API, to be fixed | |
873 | in later releases, and are bracketed with [MAYCHANGE] below. If | |
874 | you find yourself actually applying such information in this section, be | |
875 | aware that the behavior may change in the future, umm, without warning. | |
04343c6d GS |
876 | |
877 | The C<av_store> function, when given a tied array argument, merely | |
878 | copies the magic of the array onto the value to be "stored", using | |
879 | C<mg_copy>. It may also return NULL, indicating that the value did not | |
9edb2b46 GS |
880 | actually need to be stored in the array. [MAYCHANGE] After a call to |
881 | C<av_store> on a tied array, the caller will usually need to call | |
882 | C<mg_set(val)> to actually invoke the perl level "STORE" method on the | |
883 | TIEARRAY object. If C<av_store> did return NULL, a call to | |
884 | C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory | |
885 | leak. [/MAYCHANGE] | |
04343c6d GS |
886 | |
887 | The previous paragraph is applicable verbatim to tied hash access using the | |
888 | C<hv_store> and C<hv_store_ent> functions as well. | |
889 | ||
890 | C<av_fetch> and the corresponding hash functions C<hv_fetch> and | |
891 | C<hv_fetch_ent> actually return an undefined mortal value whose magic | |
892 | has been initialized using C<mg_copy>. Note the value so returned does not | |
9edb2b46 GS |
893 | need to be deallocated, as it is already mortal. [MAYCHANGE] But you will |
894 | need to call C<mg_get()> on the returned value in order to actually invoke | |
895 | the perl level "FETCH" method on the underlying TIE object. Similarly, | |
04343c6d GS |
896 | you may also call C<mg_set()> on the return value after possibly assigning |
897 | a suitable value to it using C<sv_setsv>, which will invoke the "STORE" | |
9edb2b46 | 898 | method on the TIE object. [/MAYCHANGE] |
04343c6d | 899 | |
9edb2b46 | 900 | [MAYCHANGE] |
04343c6d GS |
901 | In other words, the array or hash fetch/store functions don't really |
902 | fetch and store actual values in the case of tied arrays and hashes. They | |
903 | merely call C<mg_copy> to attach magic to the values that were meant to be | |
904 | "stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually | |
905 | do the job of invoking the TIE methods on the underlying objects. Thus | |
9edb2b46 | 906 | the magic mechanism currently implements a kind of lazy access to arrays |
04343c6d GS |
907 | and hashes. |
908 | ||
909 | Currently (as of perl version 5.004), use of the hash and array access | |
910 | functions requires the user to be aware of whether they are operating on | |
9edb2b46 GS |
911 | "normal" hashes and arrays, or on their tied variants. The API may be |
912 | changed to provide more transparent access to both tied and normal data | |
913 | types in future versions. | |
914 | [/MAYCHANGE] | |
04343c6d GS |
915 | |
916 | You would do well to understand that the TIEARRAY and TIEHASH interfaces | |
917 | are mere sugar to invoke some perl method calls while using the uniform hash | |
918 | and array syntax. The use of this sugar imposes some overhead (typically | |
919 | about two to four extra opcodes per FETCH/STORE operation, in addition to | |
920 | the creation of all the mortal variables required to invoke the methods). | |
921 | This overhead will be comparatively small if the TIE methods are themselves | |
922 | substantial, but if they are only a few statements long, the overhead | |
923 | will not be insignificant. | |
924 | ||
d1c897a1 IZ |
925 | =head2 Localizing changes |
926 | ||
927 | Perl has a very handy construction | |
928 | ||
929 | { | |
930 | local $var = 2; | |
931 | ... | |
932 | } | |
933 | ||
934 | This construction is I<approximately> equivalent to | |
935 | ||
936 | { | |
937 | my $oldvar = $var; | |
938 | $var = 2; | |
939 | ... | |
940 | $var = $oldvar; | |
941 | } | |
942 | ||
943 | The biggest difference is that the first construction would | |
944 | reinstate the initial value of $var, irrespective of how control exits | |
945 | the block: C<goto>, C<return>, C<die>/C<eval> etc. It is a little bit | |
946 | more efficient as well. | |
947 | ||
948 | There is a way to achieve a similar task from C via Perl API: create a | |
949 | I<pseudo-block>, and arrange for some changes to be automatically | |
950 | undone at the end of it, either explicit, or via a non-local exit (via | |
951 | die()). A I<block>-like construct is created by a pair of | |
952 | C<ENTER>/C<LEAVE> macros (see L<perlcall/EXAMPLE/"Returning a | |
953 | Scalar">). Such a construct may be created specially for some | |
954 | important localized task, or an existing one (like boundaries of | |
955 | enclosing Perl subroutine/block, or an existing pair for freeing TMPs) | |
956 | may be used. (In the second case the overhead of additional | |
957 | localization must be almost negligible.) Note that any XSUB is | |
958 | automatically enclosed in an C<ENTER>/C<LEAVE> pair. | |
959 | ||
960 | Inside such a I<pseudo-block> the following service is available: | |
961 | ||
962 | =over | |
963 | ||
964 | =item C<SAVEINT(int i)> | |
965 | ||
966 | =item C<SAVEIV(IV i)> | |
967 | ||
968 | =item C<SAVEI32(I32 i)> | |
969 | ||
970 | =item C<SAVELONG(long i)> | |
971 | ||
972 | These macros arrange things to restore the value of integer variable | |
973 | C<i> at the end of enclosing I<pseudo-block>. | |
974 | ||
975 | =item C<SAVESPTR(s)> | |
976 | ||
977 | =item C<SAVEPPTR(p)> | |
978 | ||
979 | These macros arrange things to restore the value of pointers C<s> and | |
980 | C<p>. C<s> must be a pointer of a type which survives conversion to | |
981 | C<SV*> and back, C<p> should be able to survive conversion to C<char*> | |
982 | and back. | |
983 | ||
984 | =item C<SAVEFREESV(SV *sv)> | |
985 | ||
986 | The refcount of C<sv> would be decremented at the end of | |
987 | I<pseudo-block>. This is similar to C<sv_2mortal>, which should (?) be | |
988 | used instead. | |
989 | ||
990 | =item C<SAVEFREEOP(OP *op)> | |
991 | ||
992 | The C<OP *> is op_free()ed at the end of I<pseudo-block>. | |
993 | ||
994 | =item C<SAVEFREEPV(p)> | |
995 | ||
996 | The chunk of memory which is pointed to by C<p> is Safefree()ed at the | |
997 | end of I<pseudo-block>. | |
998 | ||
999 | =item C<SAVECLEARSV(SV *sv)> | |
1000 | ||
1001 | Clears a slot in the current scratchpad which corresponds to C<sv> at | |
1002 | the end of I<pseudo-block>. | |
1003 | ||
1004 | =item C<SAVEDELETE(HV *hv, char *key, I32 length)> | |
1005 | ||
1006 | The key C<key> of C<hv> is deleted at the end of I<pseudo-block>. The | |
1007 | string pointed to by C<key> is Safefree()ed. If one has a I<key> in | |
1008 | short-lived storage, the corresponding string may be reallocated like | |
1009 | this: | |
1010 | ||
1011 | SAVEDELETE(defstash, savepv(tmpbuf), strlen(tmpbuf)); | |
1012 | ||
1013 | =item C<SAVEDESTRUCTOR(f,p)> | |
1014 | ||
1015 | At the end of I<pseudo-block> the function C<f> is called with the | |
1016 | only argument (of type C<void*>) C<p>. | |
1017 | ||
1018 | =item C<SAVESTACK_POS()> | |
1019 | ||
1020 | The current offset on the Perl internal stack (cf. C<SP>) is restored | |
1021 | at the end of I<pseudo-block>. | |
1022 | ||
1023 | =back | |
1024 | ||
1025 | The following API list contains functions, thus one needs to | |
1026 | provide pointers to the modifiable data explicitly (either C pointers, | |
1027 | or Perlish C<GV *>s). Where the above macros take C<int>, a similar | |
1028 | function takes C<int *>. | |
1029 | ||
1030 | =over | |
1031 | ||
1032 | =item C<SV* save_scalar(GV *gv)> | |
1033 | ||
1034 | Equivalent to Perl code C<local $gv>. | |
1035 | ||
1036 | =item C<AV* save_ary(GV *gv)> | |
1037 | ||
1038 | =item C<HV* save_hash(GV *gv)> | |
1039 | ||
1040 | Similar to C<save_scalar>, but localize C<@gv> and C<%gv>. | |
1041 | ||
1042 | =item C<void save_item(SV *item)> | |
1043 | ||
1044 | Duplicates the current value of C<SV>, on the exit from the current | |
1045 | C<ENTER>/C<LEAVE> I<pseudo-block> will restore the value of C<SV> | |
1046 | using the stored value. | |
1047 | ||
1048 | =item C<void save_list(SV **sarg, I32 maxsarg)> | |
1049 | ||
1050 | A variant of C<save_item> which takes multiple arguments via an array | |
1051 | C<sarg> of C<SV*> of length C<maxsarg>. | |
1052 | ||
1053 | =item C<SV* save_svref(SV **sptr)> | |
1054 | ||
1055 | Similar to C<save_scalar>, but will reinstate a C<SV *>. | |
1056 | ||
1057 | =item C<void save_aptr(AV **aptr)> | |
1058 | ||
1059 | =item C<void save_hptr(HV **hptr)> | |
1060 | ||
1061 | Similar to C<save_svref>, but localize C<AV *> and C<HV *>. | |
1062 | ||
1063 | =back | |
1064 | ||
1065 | The C<Alias> module implements localization of the basic types within the | |
1066 | I<caller's scope>. People who are interested in how to localize things in | |
1067 | the containing scope should take a look there too. | |
1068 | ||
0a753a76 | 1069 | =head1 Subroutines |
a0d0e21e | 1070 | |
68dc0745 | 1071 | =head2 XSUBs and the Argument Stack |
5f05dabc | 1072 | |
1073 | The XSUB mechanism is a simple way for Perl programs to access C subroutines. | |
1074 | An XSUB routine will have a stack that contains the arguments from the Perl | |
1075 | program, and a way to map from the Perl data structures to a C equivalent. | |
1076 | ||
1077 | The stack arguments are accessible through the C<ST(n)> macro, which returns | |
1078 | the C<n>'th stack argument. Argument 0 is the first argument passed in the | |
1079 | Perl subroutine call. These arguments are C<SV*>, and can be used anywhere | |
1080 | an C<SV*> is used. | |
1081 | ||
1082 | Most of the time, output from the C routine can be handled through use of | |
1083 | the RETVAL and OUTPUT directives. However, there are some cases where the | |
1084 | argument stack is not already long enough to handle all the return values. | |
1085 | An example is the POSIX tzname() call, which takes no arguments, but returns | |
1086 | two, the local time zone's standard and summer time abbreviations. | |
1087 | ||
1088 | To handle this situation, the PPCODE directive is used and the stack is | |
1089 | extended using the macro: | |
1090 | ||
924508f0 | 1091 | EXTEND(SP, num); |
5f05dabc | 1092 | |
924508f0 GS |
1093 | where C<SP> is the macro that represents the local copy of the stack pointer, |
1094 | and C<num> is the number of elements the stack should be extended by. | |
5f05dabc | 1095 | |
1096 | Now that there is room on the stack, values can be pushed on it using the | |
54310121 | 1097 | macros to push IVs, doubles, strings, and SV pointers respectively: |
5f05dabc | 1098 | |
1099 | PUSHi(IV) | |
1100 | PUSHn(double) | |
1101 | PUSHp(char*, I32) | |
1102 | PUSHs(SV*) | |
1103 | ||
1104 | And now the Perl program calling C<tzname>, the two values will be assigned | |
1105 | as in: | |
1106 | ||
1107 | ($standard_abbrev, $summer_abbrev) = POSIX::tzname; | |
1108 | ||
1109 | An alternate (and possibly simpler) method to pushing values on the stack is | |
1110 | to use the macros: | |
1111 | ||
1112 | XPUSHi(IV) | |
1113 | XPUSHn(double) | |
1114 | XPUSHp(char*, I32) | |
1115 | XPUSHs(SV*) | |
1116 | ||
1117 | These macros automatically adjust the stack for you, if needed. Thus, you | |
1118 | do not need to call C<EXTEND> to extend the stack. | |
1119 | ||
1120 | For more information, consult L<perlxs> and L<perlxstut>. | |
1121 | ||
1122 | =head2 Calling Perl Routines from within C Programs | |
a0d0e21e LW |
1123 | |
1124 | There are four routines that can be used to call a Perl subroutine from | |
1125 | within a C program. These four are: | |
1126 | ||
1127 | I32 perl_call_sv(SV*, I32); | |
1128 | I32 perl_call_pv(char*, I32); | |
1129 | I32 perl_call_method(char*, I32); | |
1130 | I32 perl_call_argv(char*, I32, register char**); | |
1131 | ||
d1b91892 AD |
1132 | The routine most often used is C<perl_call_sv>. The C<SV*> argument |
1133 | contains either the name of the Perl subroutine to be called, or a | |
1134 | reference to the subroutine. The second argument consists of flags | |
1135 | that control the context in which the subroutine is called, whether | |
1136 | or not the subroutine is being passed arguments, how errors should be | |
1137 | trapped, and how to treat return values. | |
a0d0e21e LW |
1138 | |
1139 | All four routines return the number of arguments that the subroutine returned | |
1140 | on the Perl stack. | |
1141 | ||
d1b91892 AD |
1142 | When using any of these routines (except C<perl_call_argv>), the programmer |
1143 | must manipulate the Perl stack. These include the following macros and | |
1144 | functions: | |
a0d0e21e LW |
1145 | |
1146 | dSP | |
924508f0 | 1147 | SP |
a0d0e21e LW |
1148 | PUSHMARK() |
1149 | PUTBACK | |
1150 | SPAGAIN | |
1151 | ENTER | |
1152 | SAVETMPS | |
1153 | FREETMPS | |
1154 | LEAVE | |
1155 | XPUSH*() | |
cb1a09d0 | 1156 | POP*() |
a0d0e21e | 1157 | |
5f05dabc | 1158 | For a detailed description of calling conventions from C to Perl, |
1159 | consult L<perlcall>. | |
a0d0e21e | 1160 | |
5f05dabc | 1161 | =head2 Memory Allocation |
a0d0e21e | 1162 | |
5f05dabc | 1163 | It is suggested that you use the version of malloc that is distributed |
1164 | with Perl. It keeps pools of various sizes of unallocated memory in | |
07fa94a1 JO |
1165 | order to satisfy allocation requests more quickly. However, on some |
1166 | platforms, it may cause spurious malloc or free errors. | |
d1b91892 AD |
1167 | |
1168 | New(x, pointer, number, type); | |
1169 | Newc(x, pointer, number, type, cast); | |
1170 | Newz(x, pointer, number, type); | |
1171 | ||
07fa94a1 | 1172 | These three macros are used to initially allocate memory. |
5f05dabc | 1173 | |
1174 | The first argument C<x> was a "magic cookie" that was used to keep track | |
1175 | of who called the macro, to help when debugging memory problems. However, | |
07fa94a1 JO |
1176 | the current code makes no use of this feature (most Perl developers now |
1177 | use run-time memory checkers), so this argument can be any number. | |
5f05dabc | 1178 | |
1179 | The second argument C<pointer> should be the name of a variable that will | |
1180 | point to the newly allocated memory. | |
d1b91892 | 1181 | |
d1b91892 AD |
1182 | The third and fourth arguments C<number> and C<type> specify how many of |
1183 | the specified type of data structure should be allocated. The argument | |
1184 | C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>, | |
1185 | should be used if the C<pointer> argument is different from the C<type> | |
1186 | argument. | |
1187 | ||
1188 | Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero> | |
1189 | to zero out all the newly allocated memory. | |
1190 | ||
1191 | Renew(pointer, number, type); | |
1192 | Renewc(pointer, number, type, cast); | |
1193 | Safefree(pointer) | |
1194 | ||
1195 | These three macros are used to change a memory buffer size or to free a | |
1196 | piece of memory no longer needed. The arguments to C<Renew> and C<Renewc> | |
1197 | match those of C<New> and C<Newc> with the exception of not needing the | |
1198 | "magic cookie" argument. | |
1199 | ||
1200 | Move(source, dest, number, type); | |
1201 | Copy(source, dest, number, type); | |
1202 | Zero(dest, number, type); | |
1203 | ||
1204 | These three macros are used to move, copy, or zero out previously allocated | |
1205 | memory. The C<source> and C<dest> arguments point to the source and | |
1206 | destination starting points. Perl will move, copy, or zero out C<number> | |
1207 | instances of the size of the C<type> data structure (using the C<sizeof> | |
1208 | function). | |
a0d0e21e | 1209 | |
5f05dabc | 1210 | =head2 PerlIO |
ce3d39e2 | 1211 | |
5f05dabc | 1212 | The most recent development releases of Perl has been experimenting with |
1213 | removing Perl's dependency on the "normal" standard I/O suite and allowing | |
1214 | other stdio implementations to be used. This involves creating a new | |
1215 | abstraction layer that then calls whichever implementation of stdio Perl | |
68dc0745 | 1216 | was compiled with. All XSUBs should now use the functions in the PerlIO |
5f05dabc | 1217 | abstraction layer and not make any assumptions about what kind of stdio |
1218 | is being used. | |
1219 | ||
1220 | For a complete description of the PerlIO abstraction, consult L<perlapio>. | |
1221 | ||
8ebc5c01 | 1222 | =head2 Putting a C value on Perl stack |
ce3d39e2 IZ |
1223 | |
1224 | A lot of opcodes (this is an elementary operation in the internal perl | |
1225 | stack machine) put an SV* on the stack. However, as an optimization | |
1226 | the corresponding SV is (usually) not recreated each time. The opcodes | |
1227 | reuse specially assigned SVs (I<target>s) which are (as a corollary) | |
1228 | not constantly freed/created. | |
1229 | ||
0a753a76 | 1230 | Each of the targets is created only once (but see |
ce3d39e2 IZ |
1231 | L<Scratchpads and recursion> below), and when an opcode needs to put |
1232 | an integer, a double, or a string on stack, it just sets the | |
1233 | corresponding parts of its I<target> and puts the I<target> on stack. | |
1234 | ||
1235 | The macro to put this target on stack is C<PUSHTARG>, and it is | |
1236 | directly used in some opcodes, as well as indirectly in zillions of | |
1237 | others, which use it via C<(X)PUSH[pni]>. | |
1238 | ||
8ebc5c01 | 1239 | =head2 Scratchpads |
ce3d39e2 | 1240 | |
54310121 | 1241 | The question remains on when the SVs which are I<target>s for opcodes |
5f05dabc | 1242 | are created. The answer is that they are created when the current unit -- |
1243 | a subroutine or a file (for opcodes for statements outside of | |
1244 | subroutines) -- is compiled. During this time a special anonymous Perl | |
ce3d39e2 IZ |
1245 | array is created, which is called a scratchpad for the current |
1246 | unit. | |
1247 | ||
54310121 | 1248 | A scratchpad keeps SVs which are lexicals for the current unit and are |
ce3d39e2 IZ |
1249 | targets for opcodes. One can deduce that an SV lives on a scratchpad |
1250 | by looking on its flags: lexicals have C<SVs_PADMY> set, and | |
1251 | I<target>s have C<SVs_PADTMP> set. | |
1252 | ||
54310121 | 1253 | The correspondence between OPs and I<target>s is not 1-to-1. Different |
1254 | OPs in the compile tree of the unit can use the same target, if this | |
ce3d39e2 IZ |
1255 | would not conflict with the expected life of the temporary. |
1256 | ||
2ae324a7 | 1257 | =head2 Scratchpads and recursion |
ce3d39e2 IZ |
1258 | |
1259 | In fact it is not 100% true that a compiled unit contains a pointer to | |
1260 | the scratchpad AV. In fact it contains a pointer to an AV of | |
1261 | (initially) one element, and this element is the scratchpad AV. Why do | |
1262 | we need an extra level of indirection? | |
1263 | ||
1264 | The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both | |
1265 | these can create several execution pointers going into the same | |
1266 | subroutine. For the subroutine-child not write over the temporaries | |
1267 | for the subroutine-parent (lifespan of which covers the call to the | |
1268 | child), the parent and the child should have different | |
1269 | scratchpads. (I<And> the lexicals should be separate anyway!) | |
1270 | ||
5f05dabc | 1271 | So each subroutine is born with an array of scratchpads (of length 1). |
1272 | On each entry to the subroutine it is checked that the current | |
ce3d39e2 IZ |
1273 | depth of the recursion is not more than the length of this array, and |
1274 | if it is, new scratchpad is created and pushed into the array. | |
1275 | ||
1276 | The I<target>s on this scratchpad are C<undef>s, but they are already | |
1277 | marked with correct flags. | |
1278 | ||
0a753a76 | 1279 | =head1 Compiled code |
1280 | ||
1281 | =head2 Code tree | |
1282 | ||
1283 | Here we describe the internal form your code is converted to by | |
1284 | Perl. Start with a simple example: | |
1285 | ||
1286 | $a = $b + $c; | |
1287 | ||
1288 | This is converted to a tree similar to this one: | |
1289 | ||
1290 | assign-to | |
1291 | / \ | |
1292 | + $a | |
1293 | / \ | |
1294 | $b $c | |
1295 | ||
1296 | (but slightly more complicated). This tree reflect the way Perl | |
1297 | parsed your code, but has nothing to do with the execution order. | |
1298 | There is an additional "thread" going through the nodes of the tree | |
1299 | which shows the order of execution of the nodes. In our simplified | |
1300 | example above it looks like: | |
1301 | ||
1302 | $b ---> $c ---> + ---> $a ---> assign-to | |
1303 | ||
1304 | But with the actual compile tree for C<$a = $b + $c> it is different: | |
1305 | some nodes I<optimized away>. As a corollary, though the actual tree | |
1306 | contains more nodes than our simplified example, the execution order | |
1307 | is the same as in our example. | |
1308 | ||
1309 | =head2 Examining the tree | |
1310 | ||
1311 | If you have your perl compiled for debugging (usually done with C<-D | |
1312 | optimize=-g> on C<Configure> command line), you may examine the | |
1313 | compiled tree by specifying C<-Dx> on the Perl command line. The | |
1314 | output takes several lines per node, and for C<$b+$c> it looks like | |
1315 | this: | |
1316 | ||
1317 | 5 TYPE = add ===> 6 | |
1318 | TARG = 1 | |
1319 | FLAGS = (SCALAR,KIDS) | |
1320 | { | |
1321 | TYPE = null ===> (4) | |
1322 | (was rv2sv) | |
1323 | FLAGS = (SCALAR,KIDS) | |
1324 | { | |
1325 | 3 TYPE = gvsv ===> 4 | |
1326 | FLAGS = (SCALAR) | |
1327 | GV = main::b | |
1328 | } | |
1329 | } | |
1330 | { | |
1331 | TYPE = null ===> (5) | |
1332 | (was rv2sv) | |
1333 | FLAGS = (SCALAR,KIDS) | |
1334 | { | |
1335 | 4 TYPE = gvsv ===> 5 | |
1336 | FLAGS = (SCALAR) | |
1337 | GV = main::c | |
1338 | } | |
1339 | } | |
1340 | ||
1341 | This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are | |
1342 | not optimized away (one per number in the left column). The immediate | |
1343 | children of the given node correspond to C<{}> pairs on the same level | |
1344 | of indentation, thus this listing corresponds to the tree: | |
1345 | ||
1346 | add | |
1347 | / \ | |
1348 | null null | |
1349 | | | | |
1350 | gvsv gvsv | |
1351 | ||
1352 | The execution order is indicated by C<===E<gt>> marks, thus it is C<3 | |
1353 | 4 5 6> (node C<6> is not included into above listing), i.e., | |
1354 | C<gvsv gvsv add whatever>. | |
1355 | ||
1356 | =head2 Compile pass 1: check routines | |
1357 | ||
1358 | The tree is created by the I<pseudo-compiler> while yacc code feeds it | |
1359 | the constructions it recognizes. Since yacc works bottom-up, so does | |
1360 | the first pass of perl compilation. | |
1361 | ||
1362 | What makes this pass interesting for perl developers is that some | |
1363 | optimization may be performed on this pass. This is optimization by | |
1364 | so-called I<check routines>. The correspondence between node names | |
1365 | and corresponding check routines is described in F<opcode.pl> (do not | |
1366 | forget to run C<make regen_headers> if you modify this file). | |
1367 | ||
1368 | A check routine is called when the node is fully constructed except | |
1369 | for the execution-order thread. Since at this time there is no | |
1370 | back-links to the currently constructed node, one can do most any | |
1371 | operation to the top-level node, including freeing it and/or creating | |
1372 | new nodes above/below it. | |
1373 | ||
1374 | The check routine returns the node which should be inserted into the | |
1375 | tree (if the top-level node was not modified, check routine returns | |
1376 | its argument). | |
1377 | ||
1378 | By convention, check routines have names C<ck_*>. They are usually | |
1379 | called from C<new*OP> subroutines (or C<convert>) (which in turn are | |
1380 | called from F<perly.y>). | |
1381 | ||
1382 | =head2 Compile pass 1a: constant folding | |
1383 | ||
1384 | Immediately after the check routine is called the returned node is | |
1385 | checked for being compile-time executable. If it is (the value is | |
1386 | judged to be constant) it is immediately executed, and a I<constant> | |
1387 | node with the "return value" of the corresponding subtree is | |
1388 | substituted instead. The subtree is deleted. | |
1389 | ||
1390 | If constant folding was not performed, the execution-order thread is | |
1391 | created. | |
1392 | ||
1393 | =head2 Compile pass 2: context propagation | |
1394 | ||
1395 | When a context for a part of compile tree is known, it is propagated | |
1396 | down through the tree. Aat this time the context can have 5 values | |
1397 | (instead of 2 for runtime context): void, boolean, scalar, list, and | |
1398 | lvalue. In contrast with the pass 1 this pass is processed from top | |
1399 | to bottom: a node's context determines the context for its children. | |
1400 | ||
1401 | Additional context-dependent optimizations are performed at this time. | |
1402 | Since at this moment the compile tree contains back-references (via | |
1403 | "thread" pointers), nodes cannot be free()d now. To allow | |
1404 | optimized-away nodes at this stage, such nodes are null()ified instead | |
1405 | of free()ing (i.e. their type is changed to OP_NULL). | |
1406 | ||
1407 | =head2 Compile pass 3: peephole optimization | |
1408 | ||
1409 | After the compile tree for a subroutine (or for an C<eval> or a file) | |
1410 | is created, an additional pass over the code is performed. This pass | |
1411 | is neither top-down or bottom-up, but in the execution order (with | |
1412 | additional compilications for conditionals). These optimizations are | |
1413 | done in the subroutine peep(). Optimizations performed at this stage | |
1414 | are subject to the same restrictions as in the pass 2. | |
1415 | ||
1416 | =head1 API LISTING | |
a0d0e21e | 1417 | |
cb1a09d0 AD |
1418 | This is a listing of functions, macros, flags, and variables that may be |
1419 | useful to extension writers or that may be found while reading other | |
1420 | extensions. | |
e89caa19 GA |
1421 | The sort order of the listing is case insensitive, with any |
1422 | occurrences of '_' ignored for the the purpose of sorting. | |
a0d0e21e | 1423 | |
cb1a09d0 | 1424 | =over 8 |
a0d0e21e | 1425 | |
cb1a09d0 AD |
1426 | =item av_clear |
1427 | ||
0146554f GA |
1428 | Clears an array, making it empty. Does not free the memory used by the |
1429 | array itself. | |
cb1a09d0 | 1430 | |
ef50df4b | 1431 | void av_clear (AV* ar) |
cb1a09d0 AD |
1432 | |
1433 | =item av_extend | |
1434 | ||
1435 | Pre-extend an array. The C<key> is the index to which the array should be | |
1436 | extended. | |
1437 | ||
ef50df4b | 1438 | void av_extend (AV* ar, I32 key) |
cb1a09d0 AD |
1439 | |
1440 | =item av_fetch | |
1441 | ||
1442 | Returns the SV at the specified index in the array. The C<key> is the | |
1443 | index. If C<lval> is set then the fetch will be part of a store. Check | |
1444 | that the return value is non-null before dereferencing it to a C<SV*>. | |
1445 | ||
04343c6d GS |
1446 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1447 | information on how to use this function on tied arrays. | |
1448 | ||
ef50df4b | 1449 | SV** av_fetch (AV* ar, I32 key, I32 lval) |
cb1a09d0 | 1450 | |
e89caa19 GA |
1451 | =item AvFILL |
1452 | ||
1453 | Same as C<av_len>. | |
1454 | ||
cb1a09d0 AD |
1455 | =item av_len |
1456 | ||
1457 | Returns the highest index in the array. Returns -1 if the array is empty. | |
1458 | ||
ef50df4b | 1459 | I32 av_len (AV* ar) |
cb1a09d0 AD |
1460 | |
1461 | =item av_make | |
1462 | ||
5fb8527f | 1463 | Creates a new AV and populates it with a list of SVs. The SVs are copied |
1464 | into the array, so they may be freed after the call to av_make. The new AV | |
5f05dabc | 1465 | will have a reference count of 1. |
cb1a09d0 | 1466 | |
ef50df4b | 1467 | AV* av_make (I32 size, SV** svp) |
cb1a09d0 AD |
1468 | |
1469 | =item av_pop | |
1470 | ||
1471 | Pops an SV off the end of the array. Returns C<&sv_undef> if the array is | |
1472 | empty. | |
1473 | ||
ef50df4b | 1474 | SV* av_pop (AV* ar) |
cb1a09d0 AD |
1475 | |
1476 | =item av_push | |
1477 | ||
5fb8527f | 1478 | Pushes an SV onto the end of the array. The array will grow automatically |
1479 | to accommodate the addition. | |
cb1a09d0 | 1480 | |
ef50df4b | 1481 | void av_push (AV* ar, SV* val) |
cb1a09d0 AD |
1482 | |
1483 | =item av_shift | |
1484 | ||
1485 | Shifts an SV off the beginning of the array. | |
1486 | ||
ef50df4b | 1487 | SV* av_shift (AV* ar) |
cb1a09d0 AD |
1488 | |
1489 | =item av_store | |
1490 | ||
1491 | Stores an SV in an array. The array index is specified as C<key>. The | |
04343c6d GS |
1492 | return value will be NULL if the operation failed or if the value did not |
1493 | need to be actually stored within the array (as in the case of tied arrays). | |
1494 | Otherwise it can be dereferenced to get the original C<SV*>. Note that the | |
1495 | caller is responsible for suitably incrementing the reference count of C<val> | |
1496 | before the call, and decrementing it if the function returned NULL. | |
1497 | ||
1498 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
1499 | information on how to use this function on tied arrays. | |
cb1a09d0 | 1500 | |
ef50df4b | 1501 | SV** av_store (AV* ar, I32 key, SV* val) |
cb1a09d0 AD |
1502 | |
1503 | =item av_undef | |
1504 | ||
0146554f | 1505 | Undefines the array. Frees the memory used by the array itself. |
cb1a09d0 | 1506 | |
ef50df4b | 1507 | void av_undef (AV* ar) |
cb1a09d0 AD |
1508 | |
1509 | =item av_unshift | |
1510 | ||
0146554f GA |
1511 | Unshift the given number of C<undef> values onto the beginning of the |
1512 | array. The array will grow automatically to accommodate the addition. | |
1513 | You must then use C<av_store> to assign values to these new elements. | |
cb1a09d0 | 1514 | |
ef50df4b | 1515 | void av_unshift (AV* ar, I32 num) |
cb1a09d0 AD |
1516 | |
1517 | =item CLASS | |
1518 | ||
1519 | Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS | |
5fb8527f | 1520 | constructor. This is always a C<char*>. See C<THIS> and |
1521 | L<perlxs/"Using XS With C++">. | |
cb1a09d0 AD |
1522 | |
1523 | =item Copy | |
1524 | ||
1525 | The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the | |
1526 | source, C<d> is the destination, C<n> is the number of items, and C<t> is | |
0146554f | 1527 | the type. May fail on overlapping copies. See also C<Move>. |
cb1a09d0 | 1528 | |
e89caa19 | 1529 | void Copy( s, d, n, t ) |
cb1a09d0 AD |
1530 | |
1531 | =item croak | |
1532 | ||
1533 | This is the XSUB-writer's interface to Perl's C<die> function. Use this | |
1534 | function the same way you use the C C<printf> function. See C<warn>. | |
1535 | ||
1536 | =item CvSTASH | |
1537 | ||
1538 | Returns the stash of the CV. | |
1539 | ||
e89caa19 | 1540 | HV* CvSTASH( SV* sv ) |
cb1a09d0 AD |
1541 | |
1542 | =item DBsingle | |
1543 | ||
1544 | When Perl is run in debugging mode, with the B<-d> switch, this SV is a | |
1545 | boolean which indicates whether subs are being single-stepped. | |
5fb8527f | 1546 | Single-stepping is automatically turned on after every step. This is the C |
1547 | variable which corresponds to Perl's $DB::single variable. See C<DBsub>. | |
cb1a09d0 AD |
1548 | |
1549 | =item DBsub | |
1550 | ||
1551 | When Perl is run in debugging mode, with the B<-d> switch, this GV contains | |
5fb8527f | 1552 | the SV which holds the name of the sub being debugged. This is the C |
1553 | variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>. | |
cb1a09d0 AD |
1554 | The sub name can be found by |
1555 | ||
1556 | SvPV( GvSV( DBsub ), na ) | |
1557 | ||
5fb8527f | 1558 | =item DBtrace |
1559 | ||
1560 | Trace variable used when Perl is run in debugging mode, with the B<-d> | |
1561 | switch. This is the C variable which corresponds to Perl's $DB::trace | |
1562 | variable. See C<DBsingle>. | |
1563 | ||
cb1a09d0 AD |
1564 | =item dMARK |
1565 | ||
5fb8527f | 1566 | Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and |
1567 | C<dORIGMARK>. | |
cb1a09d0 AD |
1568 | |
1569 | =item dORIGMARK | |
1570 | ||
1571 | Saves the original stack mark for the XSUB. See C<ORIGMARK>. | |
1572 | ||
5fb8527f | 1573 | =item dowarn |
1574 | ||
1575 | The C variable which corresponds to Perl's $^W warning variable. | |
1576 | ||
cb1a09d0 AD |
1577 | =item dSP |
1578 | ||
924508f0 GS |
1579 | Declares a local copy of perl's stack pointer for the XSUB, available via |
1580 | the C<SP> macro. See C<SP>. | |
cb1a09d0 AD |
1581 | |
1582 | =item dXSARGS | |
1583 | ||
1584 | Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is | |
1585 | usually handled automatically by C<xsubpp>. Declares the C<items> variable | |
1586 | to indicate the number of items on the stack. | |
1587 | ||
5fb8527f | 1588 | =item dXSI32 |
1589 | ||
1590 | Sets up the C<ix> variable for an XSUB which has aliases. This is usually | |
1591 | handled automatically by C<xsubpp>. | |
1592 | ||
cb1a09d0 AD |
1593 | =item ENTER |
1594 | ||
1595 | Opening bracket on a callback. See C<LEAVE> and L<perlcall>. | |
1596 | ||
1597 | ENTER; | |
1598 | ||
1599 | =item EXTEND | |
1600 | ||
1601 | Used to extend the argument stack for an XSUB's return values. | |
1602 | ||
ef50df4b | 1603 | EXTEND( sp, int x ) |
cb1a09d0 | 1604 | |
e89caa19 GA |
1605 | =item fbm_compile |
1606 | ||
1607 | Analyses the string in order to make fast searches on it using fbm_instr() -- | |
1608 | the Boyer-Moore algorithm. | |
1609 | ||
1610 | void fbm_compile(SV* sv) | |
1611 | ||
1612 | =item fbm_instr | |
1613 | ||
1614 | Returns the location of the SV in the string delimited by C<str> and | |
1615 | C<strend>. It returns C<Nullch> if the string can't be found. The | |
1616 | C<sv> does not have to be fbm_compiled, but the search will not be as | |
1617 | fast then. | |
1618 | ||
1619 | char* fbm_instr(char *str, char *strend, SV *sv) | |
1620 | ||
cb1a09d0 AD |
1621 | =item FREETMPS |
1622 | ||
1623 | Closing bracket for temporaries on a callback. See C<SAVETMPS> and | |
1624 | L<perlcall>. | |
1625 | ||
1626 | FREETMPS; | |
1627 | ||
1628 | =item G_ARRAY | |
1629 | ||
54310121 | 1630 | Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>. |
cb1a09d0 AD |
1631 | |
1632 | =item G_DISCARD | |
1633 | ||
1634 | Indicates that arguments returned from a callback should be discarded. See | |
1635 | L<perlcall>. | |
1636 | ||
1637 | =item G_EVAL | |
1638 | ||
1639 | Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>. | |
1640 | ||
1641 | =item GIMME | |
1642 | ||
54310121 | 1643 | A backward-compatible version of C<GIMME_V> which can only return |
1644 | C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>. | |
1645 | ||
1646 | =item GIMME_V | |
1647 | ||
1648 | The XSUB-writer's equivalent to Perl's C<wantarray>. Returns | |
1649 | C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array | |
1650 | context, respectively. | |
cb1a09d0 AD |
1651 | |
1652 | =item G_NOARGS | |
1653 | ||
1654 | Indicates that no arguments are being sent to a callback. See L<perlcall>. | |
1655 | ||
1656 | =item G_SCALAR | |
1657 | ||
54310121 | 1658 | Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>. |
1659 | ||
faed5253 JO |
1660 | =item gv_fetchmeth |
1661 | ||
1662 | Returns the glob with the given C<name> and a defined subroutine or | |
9607fc9c | 1663 | C<NULL>. The glob lives in the given C<stash>, or in the stashes |
1664 | accessable via @ISA and @<UNIVERSAL>. | |
faed5253 | 1665 | |
9607fc9c | 1666 | The argument C<level> should be either 0 or -1. If C<level==0>, as a |
0a753a76 | 1667 | side-effect creates a glob with the given C<name> in the given |
1668 | C<stash> which in the case of success contains an alias for the | |
1669 | subroutine, and sets up caching info for this glob. Similarly for all | |
1670 | the searched stashes. | |
1671 | ||
9607fc9c | 1672 | This function grants C<"SUPER"> token as a postfix of the stash name. |
1673 | ||
0a753a76 | 1674 | The GV returned from C<gv_fetchmeth> may be a method cache entry, |
1675 | which is not visible to Perl code. So when calling C<perl_call_sv>, | |
1676 | you should not use the GV directly; instead, you should use the | |
1677 | method's CV, which can be obtained from the GV with the C<GvCV> macro. | |
faed5253 | 1678 | |
ef50df4b | 1679 | GV* gv_fetchmeth (HV* stash, char* name, STRLEN len, I32 level) |
faed5253 JO |
1680 | |
1681 | =item gv_fetchmethod | |
1682 | ||
dc848c6f | 1683 | =item gv_fetchmethod_autoload |
1684 | ||
faed5253 | 1685 | Returns the glob which contains the subroutine to call to invoke the |
dc848c6f | 1686 | method on the C<stash>. In fact in the presense of autoloading this may |
1687 | be the glob for "AUTOLOAD". In this case the corresponding variable | |
faed5253 JO |
1688 | $AUTOLOAD is already setup. |
1689 | ||
dc848c6f | 1690 | The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD |
1691 | lookup is performed if the given method is not present: non-zero means | |
1692 | yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling | |
1693 | C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a | |
1694 | non-zero C<autoload> parameter. | |
1695 | ||
1696 | These functions grant C<"SUPER"> token as a prefix of the method name. | |
1697 | ||
1698 | Note that if you want to keep the returned glob for a long time, you | |
1699 | need to check for it being "AUTOLOAD", since at the later time the call | |
faed5253 JO |
1700 | may load a different subroutine due to $AUTOLOAD changing its value. |
1701 | Use the glob created via a side effect to do this. | |
1702 | ||
dc848c6f | 1703 | These functions have the same side-effects and as C<gv_fetchmeth> with |
1704 | C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>. | |
0a753a76 | 1705 | The warning against passing the GV returned by C<gv_fetchmeth> to |
dc848c6f | 1706 | C<perl_call_sv> apply equally to these functions. |
faed5253 | 1707 | |
ef50df4b GS |
1708 | GV* gv_fetchmethod (HV* stash, char* name) |
1709 | GV* gv_fetchmethod_autoload (HV* stash, char* name, I32 autoload) | |
faed5253 | 1710 | |
e89caa19 GA |
1711 | =item G_VOID |
1712 | ||
1713 | Used to indicate void context. See C<GIMME_V> and L<perlcall>. | |
1714 | ||
cb1a09d0 AD |
1715 | =item gv_stashpv |
1716 | ||
1717 | Returns a pointer to the stash for a specified package. If C<create> is set | |
1718 | then the package will be created if it does not already exist. If C<create> | |
1719 | is not set and the package does not exist then NULL is returned. | |
1720 | ||
ef50df4b | 1721 | HV* gv_stashpv (char* name, I32 create) |
cb1a09d0 AD |
1722 | |
1723 | =item gv_stashsv | |
1724 | ||
1725 | Returns a pointer to the stash for a specified package. See C<gv_stashpv>. | |
1726 | ||
ef50df4b | 1727 | HV* gv_stashsv (SV* sv, I32 create) |
cb1a09d0 | 1728 | |
e5581bf4 | 1729 | =item GvSV |
cb1a09d0 | 1730 | |
e5581bf4 | 1731 | Return the SV from the GV. |
44a8e56a | 1732 | |
1e422769 | 1733 | =item HEf_SVKEY |
1734 | ||
1735 | This flag, used in the length slot of hash entries and magic | |
1736 | structures, specifies the structure contains a C<SV*> pointer where a | |
1737 | C<char*> pointer is to be expected. (For information only--not to be used). | |
1738 | ||
1e422769 | 1739 | =item HeHASH |
1740 | ||
e89caa19 | 1741 | Returns the computed hash stored in the hash entry. |
1e422769 | 1742 | |
e89caa19 | 1743 | U32 HeHASH(HE* he) |
1e422769 | 1744 | |
1745 | =item HeKEY | |
1746 | ||
1747 | Returns the actual pointer stored in the key slot of the hash entry. | |
1748 | The pointer may be either C<char*> or C<SV*>, depending on the value of | |
1749 | C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros | |
1750 | are usually preferable for finding the value of a key. | |
1751 | ||
e89caa19 | 1752 | char* HeKEY(HE* he) |
1e422769 | 1753 | |
1754 | =item HeKLEN | |
1755 | ||
1756 | If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry | |
1757 | holds an C<SV*> key. Otherwise, holds the actual length of the key. | |
1758 | Can be assigned to. The C<HePV()> macro is usually preferable for finding | |
1759 | key lengths. | |
1760 | ||
e89caa19 | 1761 | int HeKLEN(HE* he) |
1e422769 | 1762 | |
1763 | =item HePV | |
1764 | ||
1765 | Returns the key slot of the hash entry as a C<char*> value, doing any | |
1766 | necessary dereferencing of possibly C<SV*> keys. The length of | |
1767 | the string is placed in C<len> (this is a macro, so do I<not> use | |
1768 | C<&len>). If you do not care about what the length of the key is, | |
1769 | you may use the global variable C<na>. Remember though, that hash | |
1770 | keys in perl are free to contain embedded nulls, so using C<strlen()> | |
1771 | or similar is not a good way to find the length of hash keys. | |
1772 | This is very similar to the C<SvPV()> macro described elsewhere in | |
1773 | this document. | |
1774 | ||
e89caa19 | 1775 | char* HePV(HE* he, STRLEN len) |
1e422769 | 1776 | |
1777 | =item HeSVKEY | |
1778 | ||
1779 | Returns the key as an C<SV*>, or C<Nullsv> if the hash entry | |
1780 | does not contain an C<SV*> key. | |
1781 | ||
1782 | HeSVKEY(HE* he) | |
1783 | ||
1784 | =item HeSVKEY_force | |
1785 | ||
1786 | Returns the key as an C<SV*>. Will create and return a temporary | |
1787 | mortal C<SV*> if the hash entry contains only a C<char*> key. | |
1788 | ||
1789 | HeSVKEY_force(HE* he) | |
1790 | ||
1791 | =item HeSVKEY_set | |
1792 | ||
1793 | Sets the key to a given C<SV*>, taking care to set the appropriate flags | |
1794 | to indicate the presence of an C<SV*> key, and returns the same C<SV*>. | |
1795 | ||
1796 | HeSVKEY_set(HE* he, SV* sv) | |
1797 | ||
1798 | =item HeVAL | |
1799 | ||
1800 | Returns the value slot (type C<SV*>) stored in the hash entry. | |
1801 | ||
1802 | HeVAL(HE* he) | |
1803 | ||
cb1a09d0 AD |
1804 | =item hv_clear |
1805 | ||
1806 | Clears a hash, making it empty. | |
1807 | ||
ef50df4b | 1808 | void hv_clear (HV* tb) |
cb1a09d0 | 1809 | |
68dc0745 | 1810 | =item hv_delayfree_ent |
1811 | ||
1812 | Releases a hash entry, such as while iterating though the hash, but | |
1813 | delays actual freeing of key and value until the end of the current | |
1814 | statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext> | |
1815 | and C<hv_free_ent>. | |
1816 | ||
ef50df4b | 1817 | void hv_delayfree_ent (HV* hv, HE* entry) |
68dc0745 | 1818 | |
cb1a09d0 AD |
1819 | =item hv_delete |
1820 | ||
1821 | Deletes a key/value pair in the hash. The value SV is removed from the hash | |
5fb8527f | 1822 | and returned to the caller. The C<klen> is the length of the key. The |
04343c6d | 1823 | C<flags> value will normally be zero; if set to G_DISCARD then NULL will be |
cb1a09d0 AD |
1824 | returned. |
1825 | ||
ef50df4b | 1826 | SV* hv_delete (HV* tb, char* key, U32 klen, I32 flags) |
cb1a09d0 | 1827 | |
1e422769 | 1828 | =item hv_delete_ent |
1829 | ||
1830 | Deletes a key/value pair in the hash. The value SV is removed from the hash | |
1831 | and returned to the caller. The C<flags> value will normally be zero; if set | |
04343c6d | 1832 | to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed |
1e422769 | 1833 | hash value, or 0 to ask for it to be computed. |
1834 | ||
ef50df4b | 1835 | SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash) |
1e422769 | 1836 | |
cb1a09d0 AD |
1837 | =item hv_exists |
1838 | ||
1839 | Returns a boolean indicating whether the specified hash key exists. The | |
5fb8527f | 1840 | C<klen> is the length of the key. |
cb1a09d0 | 1841 | |
ef50df4b | 1842 | bool hv_exists (HV* tb, char* key, U32 klen) |
cb1a09d0 | 1843 | |
1e422769 | 1844 | =item hv_exists_ent |
1845 | ||
1846 | Returns a boolean indicating whether the specified hash key exists. C<hash> | |
54310121 | 1847 | can be a valid precomputed hash value, or 0 to ask for it to be computed. |
1e422769 | 1848 | |
ef50df4b | 1849 | bool hv_exists_ent (HV* tb, SV* key, U32 hash) |
1e422769 | 1850 | |
cb1a09d0 AD |
1851 | =item hv_fetch |
1852 | ||
1853 | Returns the SV which corresponds to the specified key in the hash. The | |
5fb8527f | 1854 | C<klen> is the length of the key. If C<lval> is set then the fetch will be |
cb1a09d0 AD |
1855 | part of a store. Check that the return value is non-null before |
1856 | dereferencing it to a C<SV*>. | |
1857 | ||
04343c6d GS |
1858 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1859 | information on how to use this function on tied hashes. | |
1860 | ||
ef50df4b | 1861 | SV** hv_fetch (HV* tb, char* key, U32 klen, I32 lval) |
cb1a09d0 | 1862 | |
1e422769 | 1863 | =item hv_fetch_ent |
1864 | ||
1865 | Returns the hash entry which corresponds to the specified key in the hash. | |
54310121 | 1866 | C<hash> must be a valid precomputed hash number for the given C<key>, or |
1e422769 | 1867 | 0 if you want the function to compute it. IF C<lval> is set then the |
1868 | fetch will be part of a store. Make sure the return value is non-null | |
1869 | before accessing it. The return value when C<tb> is a tied hash | |
1870 | is a pointer to a static location, so be sure to make a copy of the | |
1871 | structure if you need to store it somewhere. | |
1872 | ||
04343c6d GS |
1873 | See L<Understanding the Magic of Tied Hashes and Arrays> for more |
1874 | information on how to use this function on tied hashes. | |
1875 | ||
ef50df4b | 1876 | HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash) |
1e422769 | 1877 | |
68dc0745 | 1878 | =item hv_free_ent |
1879 | ||
1880 | Releases a hash entry, such as while iterating though the hash. See | |
1881 | C<hv_iternext> and C<hv_delayfree_ent>. | |
1882 | ||
ef50df4b | 1883 | void hv_free_ent (HV* hv, HE* entry) |
68dc0745 | 1884 | |
cb1a09d0 AD |
1885 | =item hv_iterinit |
1886 | ||
1887 | Prepares a starting point to traverse a hash table. | |
1888 | ||
ef50df4b | 1889 | I32 hv_iterinit (HV* tb) |
cb1a09d0 | 1890 | |
c6601927 SI |
1891 | Returns the number of keys in the hash (i.e. the same as C<HvKEYS(tb)>). |
1892 | The return value is currently only meaningful for hashes without tie | |
1893 | magic. | |
1894 | ||
1895 | NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number | |
1896 | of hash buckets that happen to be in use. If you still need that | |
1897 | esoteric value, you can get it through the macro C<HvFILL(tb)>. | |
fb73857a | 1898 | |
cb1a09d0 AD |
1899 | =item hv_iterkey |
1900 | ||
1901 | Returns the key from the current position of the hash iterator. See | |
1902 | C<hv_iterinit>. | |
1903 | ||
ef50df4b | 1904 | char* hv_iterkey (HE* entry, I32* retlen) |
cb1a09d0 | 1905 | |
1e422769 | 1906 | =item hv_iterkeysv |
3fe9a6f1 | 1907 | |
1e422769 | 1908 | Returns the key as an C<SV*> from the current position of the hash |
1909 | iterator. The return value will always be a mortal copy of the | |
1910 | key. Also see C<hv_iterinit>. | |
1911 | ||
ef50df4b | 1912 | SV* hv_iterkeysv (HE* entry) |
1e422769 | 1913 | |
cb1a09d0 AD |
1914 | =item hv_iternext |
1915 | ||
1916 | Returns entries from a hash iterator. See C<hv_iterinit>. | |
1917 | ||
ef50df4b | 1918 | HE* hv_iternext (HV* tb) |
cb1a09d0 AD |
1919 | |
1920 | =item hv_iternextsv | |
1921 | ||
1922 | Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one | |
1923 | operation. | |
1924 | ||
e89caa19 | 1925 | SV* hv_iternextsv (HV* hv, char** key, I32* retlen) |
cb1a09d0 AD |
1926 | |
1927 | =item hv_iterval | |
1928 | ||
1929 | Returns the value from the current position of the hash iterator. See | |
1930 | C<hv_iterkey>. | |
1931 | ||
ef50df4b | 1932 | SV* hv_iterval (HV* tb, HE* entry) |
cb1a09d0 AD |
1933 | |
1934 | =item hv_magic | |
1935 | ||
1936 | Adds magic to a hash. See C<sv_magic>. | |
1937 | ||
ef50df4b | 1938 | void hv_magic (HV* hv, GV* gv, int how) |
cb1a09d0 AD |
1939 | |
1940 | =item HvNAME | |
1941 | ||
1942 | Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>. | |
1943 | ||
e89caa19 | 1944 | char* HvNAME (HV* stash) |
cb1a09d0 AD |
1945 | |
1946 | =item hv_store | |
1947 | ||
1948 | Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is | |
54310121 | 1949 | the length of the key. The C<hash> parameter is the precomputed hash |
cb1a09d0 | 1950 | value; if it is zero then Perl will compute it. The return value will be |
04343c6d GS |
1951 | NULL if the operation failed or if the value did not need to be actually |
1952 | stored within the hash (as in the case of tied hashes). Otherwise it can | |
1953 | be dereferenced to get the original C<SV*>. Note that the caller is | |
1954 | responsible for suitably incrementing the reference count of C<val> | |
1955 | before the call, and decrementing it if the function returned NULL. | |
1956 | ||
1957 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
1958 | information on how to use this function on tied hashes. | |
cb1a09d0 | 1959 | |
ef50df4b | 1960 | SV** hv_store (HV* tb, char* key, U32 klen, SV* val, U32 hash) |
cb1a09d0 | 1961 | |
1e422769 | 1962 | =item hv_store_ent |
1963 | ||
1964 | Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash> | |
54310121 | 1965 | parameter is the precomputed hash value; if it is zero then Perl will |
1e422769 | 1966 | compute it. The return value is the new hash entry so created. It will be |
04343c6d GS |
1967 | NULL if the operation failed or if the value did not need to be actually |
1968 | stored within the hash (as in the case of tied hashes). Otherwise the | |
1969 | contents of the return value can be accessed using the C<He???> macros | |
1970 | described here. Note that the caller is responsible for suitably | |
1971 | incrementing the reference count of C<val> before the call, and decrementing | |
1972 | it if the function returned NULL. | |
1973 | ||
1974 | See L<Understanding the Magic of Tied Hashes and Arrays> for more | |
1975 | information on how to use this function on tied hashes. | |
1e422769 | 1976 | |
ef50df4b | 1977 | HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash) |
1e422769 | 1978 | |
cb1a09d0 AD |
1979 | =item hv_undef |
1980 | ||
1981 | Undefines the hash. | |
1982 | ||
ef50df4b | 1983 | void hv_undef (HV* tb) |
cb1a09d0 AD |
1984 | |
1985 | =item isALNUM | |
1986 | ||
1987 | Returns a boolean indicating whether the C C<char> is an ascii alphanumeric | |
5f05dabc | 1988 | character or digit. |
cb1a09d0 | 1989 | |
e89caa19 | 1990 | int isALNUM (char c) |
cb1a09d0 AD |
1991 | |
1992 | =item isALPHA | |
1993 | ||
5fb8527f | 1994 | Returns a boolean indicating whether the C C<char> is an ascii alphabetic |
cb1a09d0 AD |
1995 | character. |
1996 | ||
e89caa19 | 1997 | int isALPHA (char c) |
cb1a09d0 AD |
1998 | |
1999 | =item isDIGIT | |
2000 | ||
2001 | Returns a boolean indicating whether the C C<char> is an ascii digit. | |
2002 | ||
e89caa19 | 2003 | int isDIGIT (char c) |
cb1a09d0 AD |
2004 | |
2005 | =item isLOWER | |
2006 | ||
2007 | Returns a boolean indicating whether the C C<char> is a lowercase character. | |
2008 | ||
e89caa19 | 2009 | int isLOWER (char c) |
cb1a09d0 AD |
2010 | |
2011 | =item isSPACE | |
2012 | ||
2013 | Returns a boolean indicating whether the C C<char> is whitespace. | |
2014 | ||
e89caa19 | 2015 | int isSPACE (char c) |
cb1a09d0 AD |
2016 | |
2017 | =item isUPPER | |
2018 | ||
2019 | Returns a boolean indicating whether the C C<char> is an uppercase character. | |
2020 | ||
e89caa19 | 2021 | int isUPPER (char c) |
cb1a09d0 AD |
2022 | |
2023 | =item items | |
2024 | ||
2025 | Variable which is setup by C<xsubpp> to indicate the number of items on the | |
5fb8527f | 2026 | stack. See L<perlxs/"Variable-length Parameter Lists">. |
2027 | ||
2028 | =item ix | |
2029 | ||
2030 | Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases | |
2031 | was used to invoke it. See L<perlxs/"The ALIAS: Keyword">. | |
cb1a09d0 AD |
2032 | |
2033 | =item LEAVE | |
2034 | ||
2035 | Closing bracket on a callback. See C<ENTER> and L<perlcall>. | |
2036 | ||
2037 | LEAVE; | |
2038 | ||
e89caa19 GA |
2039 | =item looks_like_number |
2040 | ||
2041 | Test if an the content of an SV looks like a number (or is a number). | |
2042 | ||
2043 | int looks_like_number(SV*) | |
2044 | ||
2045 | ||
cb1a09d0 AD |
2046 | =item MARK |
2047 | ||
5fb8527f | 2048 | Stack marker variable for the XSUB. See C<dMARK>. |
cb1a09d0 AD |
2049 | |
2050 | =item mg_clear | |
2051 | ||
2052 | Clear something magical that the SV represents. See C<sv_magic>. | |
2053 | ||
ef50df4b | 2054 | int mg_clear (SV* sv) |
cb1a09d0 AD |
2055 | |
2056 | =item mg_copy | |
2057 | ||
2058 | Copies the magic from one SV to another. See C<sv_magic>. | |
2059 | ||
ef50df4b | 2060 | int mg_copy (SV *, SV *, char *, STRLEN) |
cb1a09d0 AD |
2061 | |
2062 | =item mg_find | |
2063 | ||
2064 | Finds the magic pointer for type matching the SV. See C<sv_magic>. | |
2065 | ||
ef50df4b | 2066 | MAGIC* mg_find (SV* sv, int type) |
cb1a09d0 AD |
2067 | |
2068 | =item mg_free | |
2069 | ||
2070 | Free any magic storage used by the SV. See C<sv_magic>. | |
2071 | ||
ef50df4b | 2072 | int mg_free (SV* sv) |
cb1a09d0 AD |
2073 | |
2074 | =item mg_get | |
2075 | ||
2076 | Do magic after a value is retrieved from the SV. See C<sv_magic>. | |
2077 | ||
ef50df4b | 2078 | int mg_get (SV* sv) |
cb1a09d0 AD |
2079 | |
2080 | =item mg_len | |
2081 | ||
2082 | Report on the SV's length. See C<sv_magic>. | |
2083 | ||
ef50df4b | 2084 | U32 mg_len (SV* sv) |
cb1a09d0 AD |
2085 | |
2086 | =item mg_magical | |
2087 | ||
2088 | Turns on the magical status of an SV. See C<sv_magic>. | |
2089 | ||
ef50df4b | 2090 | void mg_magical (SV* sv) |
cb1a09d0 AD |
2091 | |
2092 | =item mg_set | |
2093 | ||
2094 | Do magic after a value is assigned to the SV. See C<sv_magic>. | |
2095 | ||
ef50df4b | 2096 | int mg_set (SV* sv) |
cb1a09d0 AD |
2097 | |
2098 | =item Move | |
2099 | ||
2100 | The XSUB-writer's interface to the C C<memmove> function. The C<s> is the | |
2101 | source, C<d> is the destination, C<n> is the number of items, and C<t> is | |
0146554f | 2102 | the type. Can do overlapping moves. See also C<Copy>. |
cb1a09d0 | 2103 | |
e89caa19 | 2104 | void Move( s, d, n, t ) |
cb1a09d0 AD |
2105 | |
2106 | =item na | |
2107 | ||
2108 | A variable which may be used with C<SvPV> to tell Perl to calculate the | |
2109 | string length. | |
2110 | ||
2111 | =item New | |
2112 | ||
2113 | The XSUB-writer's interface to the C C<malloc> function. | |
2114 | ||
e89caa19 | 2115 | void* New( x, void *ptr, int size, type ) |
cb1a09d0 AD |
2116 | |
2117 | =item newAV | |
2118 | ||
5f05dabc | 2119 | Creates a new AV. The reference count is set to 1. |
cb1a09d0 | 2120 | |
ef50df4b | 2121 | AV* newAV (void) |
cb1a09d0 | 2122 | |
e89caa19 GA |
2123 | =item Newc |
2124 | ||
2125 | The XSUB-writer's interface to the C C<malloc> function, with cast. | |
2126 | ||
2127 | void* Newc( x, void *ptr, int size, type, cast ) | |
2128 | ||
5476c433 JD |
2129 | =item newCONSTSUB |
2130 | ||
2131 | Creates a constant sub equivalent to Perl C<sub FOO () { 123 }> | |
2132 | which is eligible for inlining at compile-time. | |
2133 | ||
2134 | void newCONSTSUB(HV* stash, char* name, SV* sv) | |
2135 | ||
cb1a09d0 AD |
2136 | =item newHV |
2137 | ||
5f05dabc | 2138 | Creates a new HV. The reference count is set to 1. |
cb1a09d0 | 2139 | |
ef50df4b | 2140 | HV* newHV (void) |
cb1a09d0 | 2141 | |
5f05dabc | 2142 | =item newRV_inc |
cb1a09d0 | 2143 | |
5f05dabc | 2144 | Creates an RV wrapper for an SV. The reference count for the original SV is |
cb1a09d0 AD |
2145 | incremented. |
2146 | ||
ef50df4b | 2147 | SV* newRV_inc (SV* ref) |
5f05dabc | 2148 | |
2149 | For historical reasons, "newRV" is a synonym for "newRV_inc". | |
2150 | ||
2151 | =item newRV_noinc | |
2152 | ||
2153 | Creates an RV wrapper for an SV. The reference count for the original | |
2154 | SV is B<not> incremented. | |
2155 | ||
ef50df4b | 2156 | SV* newRV_noinc (SV* ref) |
cb1a09d0 | 2157 | |
8c52afec | 2158 | =item NEWSV |
cb1a09d0 | 2159 | |
e89caa19 GA |
2160 | Creates a new SV. A non-zero C<len> parameter indicates the number of |
2161 | bytes of preallocated string space the SV should have. An extra byte | |
2162 | for a tailing NUL is also reserved. (SvPOK is not set for the SV even | |
2163 | if string space is allocated.) The reference count for the new SV is | |
2164 | set to 1. C<id> is an integer id between 0 and 1299 (used to identify | |
2165 | leaks). | |
cb1a09d0 | 2166 | |
ef50df4b | 2167 | SV* NEWSV (int id, STRLEN len) |
cb1a09d0 AD |
2168 | |
2169 | =item newSViv | |
2170 | ||
07fa94a1 JO |
2171 | Creates a new SV and copies an integer into it. The reference count for the |
2172 | SV is set to 1. | |
cb1a09d0 | 2173 | |
ef50df4b | 2174 | SV* newSViv (IV i) |
cb1a09d0 AD |
2175 | |
2176 | =item newSVnv | |
2177 | ||
07fa94a1 JO |
2178 | Creates a new SV and copies a double into it. The reference count for the |
2179 | SV is set to 1. | |
cb1a09d0 | 2180 | |
ef50df4b | 2181 | SV* newSVnv (NV i) |
cb1a09d0 AD |
2182 | |
2183 | =item newSVpv | |
2184 | ||
07fa94a1 JO |
2185 | Creates a new SV and copies a string into it. The reference count for the |
2186 | SV is set to 1. If C<len> is zero then Perl will compute the length. | |
cb1a09d0 | 2187 | |
ef50df4b | 2188 | SV* newSVpv (char* s, STRLEN len) |
cb1a09d0 | 2189 | |
e89caa19 GA |
2190 | =item newSVpvf |
2191 | ||
2192 | Creates a new SV an initialize it with the string formatted like | |
2193 | C<sprintf>. | |
2194 | ||
2195 | SV* newSVpvf(const char* pat, ...); | |
2196 | ||
9da1e3b5 MUN |
2197 | =item newSVpvn |
2198 | ||
2199 | Creates a new SV and copies a string into it. The reference count for the | |
2200 | SV is set to 1. If C<len> is zero then Perl will create a zero length | |
2201 | string. | |
2202 | ||
ef50df4b | 2203 | SV* newSVpvn (char* s, STRLEN len) |
9da1e3b5 | 2204 | |
cb1a09d0 AD |
2205 | =item newSVrv |
2206 | ||
2207 | Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then | |
5fb8527f | 2208 | it will be upgraded to one. If C<classname> is non-null then the new SV will |
cb1a09d0 | 2209 | be blessed in the specified package. The new SV is returned and its |
5f05dabc | 2210 | reference count is 1. |
8ebc5c01 | 2211 | |
ef50df4b | 2212 | SV* newSVrv (SV* rv, char* classname) |
cb1a09d0 AD |
2213 | |
2214 | =item newSVsv | |
2215 | ||
5fb8527f | 2216 | Creates a new SV which is an exact duplicate of the original SV. |
cb1a09d0 | 2217 | |
ef50df4b | 2218 | SV* newSVsv (SV* old) |
cb1a09d0 AD |
2219 | |
2220 | =item newXS | |
2221 | ||
2222 | Used by C<xsubpp> to hook up XSUBs as Perl subs. | |
2223 | ||
2224 | =item newXSproto | |
2225 | ||
2226 | Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to | |
2227 | the subs. | |
2228 | ||
e89caa19 GA |
2229 | =item Newz |
2230 | ||
2231 | The XSUB-writer's interface to the C C<malloc> function. The allocated | |
2232 | memory is zeroed with C<memzero>. | |
2233 | ||
2234 | void* Newz( x, void *ptr, int size, type ) | |
2235 | ||
cb1a09d0 AD |
2236 | =item Nullav |
2237 | ||
2238 | Null AV pointer. | |
2239 | ||
2240 | =item Nullch | |
2241 | ||
2242 | Null character pointer. | |
2243 | ||
2244 | =item Nullcv | |
2245 | ||
2246 | Null CV pointer. | |
2247 | ||
2248 | =item Nullhv | |
2249 | ||
2250 | Null HV pointer. | |
2251 | ||
2252 | =item Nullsv | |
2253 | ||
2254 | Null SV pointer. | |
2255 | ||
2256 | =item ORIGMARK | |
2257 | ||
2258 | The original stack mark for the XSUB. See C<dORIGMARK>. | |
2259 | ||
2260 | =item perl_alloc | |
2261 | ||
2262 | Allocates a new Perl interpreter. See L<perlembed>. | |
2263 | ||
2264 | =item perl_call_argv | |
2265 | ||
2266 | Performs a callback to the specified Perl sub. See L<perlcall>. | |
2267 | ||
ef50df4b | 2268 | I32 perl_call_argv (char* subname, I32 flags, char** argv) |
cb1a09d0 AD |
2269 | |
2270 | =item perl_call_method | |
2271 | ||
2272 | Performs a callback to the specified Perl method. The blessed object must | |
2273 | be on the stack. See L<perlcall>. | |
2274 | ||
ef50df4b | 2275 | I32 perl_call_method (char* methname, I32 flags) |
cb1a09d0 AD |
2276 | |
2277 | =item perl_call_pv | |
2278 | ||
2279 | Performs a callback to the specified Perl sub. See L<perlcall>. | |
2280 | ||
ef50df4b | 2281 | I32 perl_call_pv (char* subname, I32 flags) |
cb1a09d0 AD |
2282 | |
2283 | =item perl_call_sv | |
2284 | ||
2285 | Performs a callback to the Perl sub whose name is in the SV. See | |
2286 | L<perlcall>. | |
2287 | ||
ef50df4b | 2288 | I32 perl_call_sv (SV* sv, I32 flags) |
cb1a09d0 AD |
2289 | |
2290 | =item perl_construct | |
2291 | ||
2292 | Initializes a new Perl interpreter. See L<perlembed>. | |
2293 | ||
2294 | =item perl_destruct | |
2295 | ||
2296 | Shuts down a Perl interpreter. See L<perlembed>. | |
2297 | ||
2298 | =item perl_eval_sv | |
2299 | ||
2300 | Tells Perl to C<eval> the string in the SV. | |
2301 | ||
ef50df4b | 2302 | I32 perl_eval_sv (SV* sv, I32 flags) |
cb1a09d0 | 2303 | |
137443ea | 2304 | =item perl_eval_pv |
2305 | ||
2306 | Tells Perl to C<eval> the given string and return an SV* result. | |
2307 | ||
ef50df4b | 2308 | SV* perl_eval_pv (char* p, I32 croak_on_error) |
137443ea | 2309 | |
cb1a09d0 AD |
2310 | =item perl_free |
2311 | ||
2312 | Releases a Perl interpreter. See L<perlembed>. | |
2313 | ||
2314 | =item perl_get_av | |
2315 | ||
2316 | Returns the AV of the specified Perl array. If C<create> is set and the | |
2317 | Perl variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2318 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2319 | |
ef50df4b | 2320 | AV* perl_get_av (char* name, I32 create) |
cb1a09d0 AD |
2321 | |
2322 | =item perl_get_cv | |
2323 | ||
2324 | Returns the CV of the specified Perl sub. If C<create> is set and the Perl | |
2325 | variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2326 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2327 | |
ef50df4b | 2328 | CV* perl_get_cv (char* name, I32 create) |
cb1a09d0 AD |
2329 | |
2330 | =item perl_get_hv | |
2331 | ||
2332 | Returns the HV of the specified Perl hash. If C<create> is set and the Perl | |
2333 | variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2334 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2335 | |
ef50df4b | 2336 | HV* perl_get_hv (char* name, I32 create) |
cb1a09d0 AD |
2337 | |
2338 | =item perl_get_sv | |
2339 | ||
2340 | Returns the SV of the specified Perl scalar. If C<create> is set and the | |
2341 | Perl variable does not exist then it will be created. If C<create> is not | |
04343c6d | 2342 | set and the variable does not exist then NULL is returned. |
cb1a09d0 | 2343 | |
ef50df4b | 2344 | SV* perl_get_sv (char* name, I32 create) |
cb1a09d0 AD |
2345 | |
2346 | =item perl_parse | |
2347 | ||
2348 | Tells a Perl interpreter to parse a Perl script. See L<perlembed>. | |
2349 | ||
2350 | =item perl_require_pv | |
2351 | ||
2352 | Tells Perl to C<require> a module. | |
2353 | ||
ef50df4b | 2354 | void perl_require_pv (char* pv) |
cb1a09d0 AD |
2355 | |
2356 | =item perl_run | |
2357 | ||
2358 | Tells a Perl interpreter to run. See L<perlembed>. | |
2359 | ||
2360 | =item POPi | |
2361 | ||
2362 | Pops an integer off the stack. | |
2363 | ||
e89caa19 | 2364 | int POPi() |
cb1a09d0 AD |
2365 | |
2366 | =item POPl | |
2367 | ||
2368 | Pops a long off the stack. | |
2369 | ||
e89caa19 | 2370 | long POPl() |
cb1a09d0 AD |
2371 | |
2372 | =item POPp | |
2373 | ||
2374 | Pops a string off the stack. | |
2375 | ||
e89caa19 | 2376 | char* POPp() |
cb1a09d0 AD |
2377 | |
2378 | =item POPn | |
2379 | ||
2380 | Pops a double off the stack. | |
2381 | ||
e89caa19 | 2382 | double POPn() |
cb1a09d0 AD |
2383 | |
2384 | =item POPs | |
2385 | ||
2386 | Pops an SV off the stack. | |
2387 | ||
e89caa19 | 2388 | SV* POPs() |
cb1a09d0 AD |
2389 | |
2390 | =item PUSHMARK | |
2391 | ||
2392 | Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>. | |
2393 | ||
2394 | PUSHMARK(p) | |
2395 | ||
2396 | =item PUSHi | |
2397 | ||
2398 | Push an integer onto the stack. The stack must have room for this element. | |
189b2af5 | 2399 | Handles 'set' magic. See C<XPUSHi>. |
cb1a09d0 | 2400 | |
e89caa19 | 2401 | void PUSHi(int d) |
cb1a09d0 AD |
2402 | |
2403 | =item PUSHn | |
2404 | ||
2405 | Push a double onto the stack. The stack must have room for this element. | |
189b2af5 | 2406 | Handles 'set' magic. See C<XPUSHn>. |
cb1a09d0 | 2407 | |
e89caa19 | 2408 | void PUSHn(double d) |
cb1a09d0 AD |
2409 | |
2410 | =item PUSHp | |
2411 | ||
2412 | Push a string onto the stack. The stack must have room for this element. | |
189b2af5 GS |
2413 | The C<len> indicates the length of the string. Handles 'set' magic. See |
2414 | C<XPUSHp>. | |
cb1a09d0 | 2415 | |
e89caa19 | 2416 | void PUSHp(char *c, int len ) |
cb1a09d0 AD |
2417 | |
2418 | =item PUSHs | |
2419 | ||
189b2af5 GS |
2420 | Push an SV onto the stack. The stack must have room for this element. Does |
2421 | not handle 'set' magic. See C<XPUSHs>. | |
cb1a09d0 | 2422 | |
e89caa19 GA |
2423 | void PUSHs(sv) |
2424 | ||
2425 | =item PUSHu | |
2426 | ||
2427 | Push an unsigned integer onto the stack. The stack must have room for | |
2428 | this element. See C<XPUSHu>. | |
2429 | ||
2430 | void PUSHu(unsigned int d) | |
2431 | ||
cb1a09d0 AD |
2432 | |
2433 | =item PUTBACK | |
2434 | ||
2435 | Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>. | |
2436 | See C<PUSHMARK> and L<perlcall> for other uses. | |
2437 | ||
2438 | PUTBACK; | |
2439 | ||
2440 | =item Renew | |
2441 | ||
2442 | The XSUB-writer's interface to the C C<realloc> function. | |
2443 | ||
e89caa19 | 2444 | void* Renew( void *ptr, int size, type ) |
cb1a09d0 AD |
2445 | |
2446 | =item Renewc | |
2447 | ||
2448 | The XSUB-writer's interface to the C C<realloc> function, with cast. | |
2449 | ||
e89caa19 | 2450 | void* Renewc( void *ptr, int size, type, cast ) |
cb1a09d0 AD |
2451 | |
2452 | =item RETVAL | |
2453 | ||
2454 | Variable which is setup by C<xsubpp> to hold the return value for an XSUB. | |
5fb8527f | 2455 | This is always the proper type for the XSUB. |
2456 | See L<perlxs/"The RETVAL Variable">. | |
cb1a09d0 AD |
2457 | |
2458 | =item safefree | |
2459 | ||
2460 | The XSUB-writer's interface to the C C<free> function. | |
2461 | ||
2462 | =item safemalloc | |
2463 | ||
2464 | The XSUB-writer's interface to the C C<malloc> function. | |
2465 | ||
2466 | =item saferealloc | |
2467 | ||
2468 | The XSUB-writer's interface to the C C<realloc> function. | |
2469 | ||
2470 | =item savepv | |
2471 | ||
2472 | Copy a string to a safe spot. This does not use an SV. | |
2473 | ||
ef50df4b | 2474 | char* savepv (char* sv) |
cb1a09d0 AD |
2475 | |
2476 | =item savepvn | |
2477 | ||
2478 | Copy a string to a safe spot. The C<len> indicates number of bytes to | |
2479 | copy. This does not use an SV. | |
2480 | ||
ef50df4b | 2481 | char* savepvn (char* sv, I32 len) |
cb1a09d0 AD |
2482 | |
2483 | =item SAVETMPS | |
2484 | ||
2485 | Opening bracket for temporaries on a callback. See C<FREETMPS> and | |
2486 | L<perlcall>. | |
2487 | ||
2488 | SAVETMPS; | |
2489 | ||
2490 | =item SP | |
2491 | ||
2492 | Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and | |
2493 | C<SPAGAIN>. | |
2494 | ||
2495 | =item SPAGAIN | |
2496 | ||
54310121 | 2497 | Refetch the stack pointer. Used after a callback. See L<perlcall>. |
cb1a09d0 AD |
2498 | |
2499 | SPAGAIN; | |
2500 | ||
2501 | =item ST | |
2502 | ||
2503 | Used to access elements on the XSUB's stack. | |
2504 | ||
e89caa19 | 2505 | SV* ST(int x) |
cb1a09d0 AD |
2506 | |
2507 | =item strEQ | |
2508 | ||
2509 | Test two strings to see if they are equal. Returns true or false. | |
2510 | ||
e89caa19 | 2511 | int strEQ( char *s1, char *s2 ) |
cb1a09d0 AD |
2512 | |
2513 | =item strGE | |
2514 | ||
2515 | Test two strings to see if the first, C<s1>, is greater than or equal to the | |
2516 | second, C<s2>. Returns true or false. | |
2517 | ||
e89caa19 | 2518 | int strGE( char *s1, char *s2 ) |
cb1a09d0 AD |
2519 | |
2520 | =item strGT | |
2521 | ||
2522 | Test two strings to see if the first, C<s1>, is greater than the second, | |
2523 | C<s2>. Returns true or false. | |
2524 | ||
e89caa19 | 2525 | int strGT( char *s1, char *s2 ) |
cb1a09d0 AD |
2526 | |
2527 | =item strLE | |
2528 | ||
2529 | Test two strings to see if the first, C<s1>, is less than or equal to the | |
2530 | second, C<s2>. Returns true or false. | |
2531 | ||
e89caa19 | 2532 | int strLE( char *s1, char *s2 ) |
cb1a09d0 AD |
2533 | |
2534 | =item strLT | |
2535 | ||
2536 | Test two strings to see if the first, C<s1>, is less than the second, | |
2537 | C<s2>. Returns true or false. | |
2538 | ||
e89caa19 | 2539 | int strLT( char *s1, char *s2 ) |
cb1a09d0 AD |
2540 | |
2541 | =item strNE | |
2542 | ||
2543 | Test two strings to see if they are different. Returns true or false. | |
2544 | ||
e89caa19 | 2545 | int strNE( char *s1, char *s2 ) |
cb1a09d0 AD |
2546 | |
2547 | =item strnEQ | |
2548 | ||
2549 | Test two strings to see if they are equal. The C<len> parameter indicates | |
2550 | the number of bytes to compare. Returns true or false. | |
2551 | ||
e89caa19 | 2552 | int strnEQ( char *s1, char *s2 ) |
cb1a09d0 AD |
2553 | |
2554 | =item strnNE | |
2555 | ||
2556 | Test two strings to see if they are different. The C<len> parameter | |
2557 | indicates the number of bytes to compare. Returns true or false. | |
2558 | ||
e89caa19 | 2559 | int strnNE( char *s1, char *s2, int len ) |
cb1a09d0 AD |
2560 | |
2561 | =item sv_2mortal | |
2562 | ||
2563 | Marks an SV as mortal. The SV will be destroyed when the current context | |
2564 | ends. | |
2565 | ||
ef50df4b | 2566 | SV* sv_2mortal (SV* sv) |
cb1a09d0 AD |
2567 | |
2568 | =item sv_bless | |
2569 | ||
2570 | Blesses an SV into a specified package. The SV must be an RV. The package | |
07fa94a1 JO |
2571 | must be designated by its stash (see C<gv_stashpv()>). The reference count |
2572 | of the SV is unaffected. | |
cb1a09d0 | 2573 | |
ef50df4b | 2574 | SV* sv_bless (SV* sv, HV* stash) |
cb1a09d0 | 2575 | |
ef50df4b | 2576 | =item sv_catpv |
189b2af5 | 2577 | |
ef50df4b GS |
2578 | Concatenates the string onto the end of the string which is in the SV. |
2579 | Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>. | |
189b2af5 | 2580 | |
ef50df4b | 2581 | void sv_catpv (SV* sv, char* ptr) |
189b2af5 | 2582 | |
ef50df4b | 2583 | =item sv_catpv_mg |
cb1a09d0 | 2584 | |
ef50df4b | 2585 | Like C<sv_catpv>, but also handles 'set' magic. |
cb1a09d0 | 2586 | |
ef50df4b | 2587 | void sv_catpvn (SV* sv, char* ptr) |
cb1a09d0 AD |
2588 | |
2589 | =item sv_catpvn | |
2590 | ||
2591 | Concatenates the string onto the end of the string which is in the SV. The | |
189b2af5 | 2592 | C<len> indicates number of bytes to copy. Handles 'get' magic, but not |
ef50df4b | 2593 | 'set' magic. See C<sv_catpvn_mg>. |
cb1a09d0 | 2594 | |
ef50df4b GS |
2595 | void sv_catpvn (SV* sv, char* ptr, STRLEN len) |
2596 | ||
2597 | =item sv_catpvn_mg | |
2598 | ||
2599 | Like C<sv_catpvn>, but also handles 'set' magic. | |
2600 | ||
2601 | void sv_catpvn_mg (SV* sv, char* ptr, STRLEN len) | |
cb1a09d0 | 2602 | |
46fc3d4c | 2603 | =item sv_catpvf |
2604 | ||
2605 | Processes its arguments like C<sprintf> and appends the formatted output | |
189b2af5 GS |
2606 | to an SV. Handles 'get' magic, but not 'set' magic. C<SvSETMAGIC()> must |
2607 | typically be called after calling this function to handle 'set' magic. | |
46fc3d4c | 2608 | |
ef50df4b GS |
2609 | void sv_catpvf (SV* sv, const char* pat, ...) |
2610 | ||
2611 | =item sv_catpvf_mg | |
2612 | ||
2613 | Like C<sv_catpvf>, but also handles 'set' magic. | |
2614 | ||
2615 | void sv_catpvf_mg (SV* sv, const char* pat, ...) | |
46fc3d4c | 2616 | |
cb1a09d0 AD |
2617 | =item sv_catsv |
2618 | ||
5fb8527f | 2619 | Concatenates the string from SV C<ssv> onto the end of the string in SV |
ef50df4b GS |
2620 | C<dsv>. Handles 'get' magic, but not 'set' magic. See C<sv_catsv_mg>. |
2621 | ||
2622 | void sv_catsv (SV* dsv, SV* ssv) | |
2623 | ||
2624 | =item sv_catsv_mg | |
cb1a09d0 | 2625 | |
ef50df4b GS |
2626 | Like C<sv_catsv>, but also handles 'set' magic. |
2627 | ||
2628 | void sv_catsv_mg (SV* dsv, SV* ssv) | |
cb1a09d0 | 2629 | |
e89caa19 GA |
2630 | =item sv_chop |
2631 | ||
2632 | Efficient removal of characters from the beginning of the string | |
2633 | buffer. SvPOK(sv) must be true and the C<ptr> must be a pointer to | |
2634 | somewhere inside the string buffer. The C<ptr> becomes the first | |
2635 | character of the adjusted string. | |
2636 | ||
2637 | void sv_chop(SV* sv, char *ptr) | |
2638 | ||
2639 | ||
5fb8527f | 2640 | =item sv_cmp |
2641 | ||
2642 | Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the | |
2643 | string in C<sv1> is less than, equal to, or greater than the string in | |
2644 | C<sv2>. | |
2645 | ||
ef50df4b | 2646 | I32 sv_cmp (SV* sv1, SV* sv2) |
5fb8527f | 2647 | |
cb1a09d0 AD |
2648 | =item SvCUR |
2649 | ||
2650 | Returns the length of the string which is in the SV. See C<SvLEN>. | |
2651 | ||
e89caa19 | 2652 | int SvCUR (SV* sv) |
cb1a09d0 AD |
2653 | |
2654 | =item SvCUR_set | |
2655 | ||
2656 | Set the length of the string which is in the SV. See C<SvCUR>. | |
2657 | ||
e89caa19 | 2658 | void SvCUR_set (SV* sv, int val ) |
cb1a09d0 | 2659 | |
5fb8527f | 2660 | =item sv_dec |
2661 | ||
5f05dabc | 2662 | Auto-decrement of the value in the SV. |
5fb8527f | 2663 | |
ef50df4b | 2664 | void sv_dec (SV* sv) |
5fb8527f | 2665 | |
e89caa19 GA |
2666 | =item sv_derived_from |
2667 | ||
2668 | Returns a boolean indicating whether the SV is a subclass of the | |
2669 | specified class. | |
2670 | ||
2671 | int sv_derived_from(SV* sv, char* class) | |
2672 | ||
cb1a09d0 AD |
2673 | =item SvEND |
2674 | ||
2675 | Returns a pointer to the last character in the string which is in the SV. | |
2676 | See C<SvCUR>. Access the character as | |
2677 | ||
e89caa19 | 2678 | char* SvEND(sv) |
cb1a09d0 | 2679 | |
5fb8527f | 2680 | =item sv_eq |
2681 | ||
2682 | Returns a boolean indicating whether the strings in the two SVs are | |
2683 | identical. | |
2684 | ||
ef50df4b | 2685 | I32 sv_eq (SV* sv1, SV* sv2) |
5fb8527f | 2686 | |
189b2af5 GS |
2687 | =item SvGETMAGIC |
2688 | ||
2689 | Invokes C<mg_get> on an SV if it has 'get' magic. This macro evaluates | |
2690 | its argument more than once. | |
2691 | ||
2692 | void SvGETMAGIC( SV *sv ) | |
2693 | ||
cb1a09d0 AD |
2694 | =item SvGROW |
2695 | ||
e89caa19 GA |
2696 | Expands the character buffer in the SV so that it has room for the |
2697 | indicated number of bytes (remember to reserve space for an extra | |
2698 | trailing NUL character). Calls C<sv_grow> to perform the expansion if | |
2699 | necessary. Returns a pointer to the character buffer. | |
cb1a09d0 | 2700 | |
e89caa19 | 2701 | char* SvGROW( SV* sv, int len ) |
cb1a09d0 | 2702 | |
5fb8527f | 2703 | =item sv_grow |
2704 | ||
2705 | Expands the character buffer in the SV. This will use C<sv_unref> and will | |
2706 | upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer. | |
2707 | Use C<SvGROW>. | |
2708 | ||
2709 | =item sv_inc | |
2710 | ||
07fa94a1 | 2711 | Auto-increment of the value in the SV. |
5fb8527f | 2712 | |
ef50df4b | 2713 | void sv_inc (SV* sv) |
5fb8527f | 2714 | |
e89caa19 GA |
2715 | =item sv_insert |
2716 | ||
2717 | Inserts a string at the specified offset/length within the SV. | |
2718 | Similar to the Perl substr() function. | |
2719 | ||
2720 | void sv_insert(SV *sv, STRLEN offset, STRLEN len, | |
2721 | char *str, STRLEN strlen) | |
2722 | ||
cb1a09d0 AD |
2723 | =item SvIOK |
2724 | ||
2725 | Returns a boolean indicating whether the SV contains an integer. | |
2726 | ||
e89caa19 | 2727 | int SvIOK (SV* SV) |
cb1a09d0 AD |
2728 | |
2729 | =item SvIOK_off | |
2730 | ||
2731 | Unsets the IV status of an SV. | |
2732 | ||
e89caa19 | 2733 | void SvIOK_off (SV* sv) |
cb1a09d0 AD |
2734 | |
2735 | =item SvIOK_on | |
2736 | ||
2737 | Tells an SV that it is an integer. | |
2738 | ||
e89caa19 | 2739 | void SvIOK_on (SV* sv) |
cb1a09d0 | 2740 | |
5fb8527f | 2741 | =item SvIOK_only |
2742 | ||
2743 | Tells an SV that it is an integer and disables all other OK bits. | |
2744 | ||
e89caa19 | 2745 | void SvIOK_only (SV* sv) |
5fb8527f | 2746 | |
cb1a09d0 AD |
2747 | =item SvIOKp |
2748 | ||
2749 | Returns a boolean indicating whether the SV contains an integer. Checks the | |
2750 | B<private> setting. Use C<SvIOK>. | |
2751 | ||
e89caa19 | 2752 | int SvIOKp (SV* SV) |
cb1a09d0 AD |
2753 | |
2754 | =item sv_isa | |
2755 | ||
2756 | Returns a boolean indicating whether the SV is blessed into the specified | |
2757 | class. This does not know how to check for subtype, so it doesn't work in | |
2758 | an inheritance relationship. | |
2759 | ||
ef50df4b | 2760 | int sv_isa (SV* sv, char* name) |
cb1a09d0 | 2761 | |
cb1a09d0 AD |
2762 | =item sv_isobject |
2763 | ||
2764 | Returns a boolean indicating whether the SV is an RV pointing to a blessed | |
2765 | object. If the SV is not an RV, or if the object is not blessed, then this | |
2766 | will return false. | |
2767 | ||
ef50df4b | 2768 | int sv_isobject (SV* sv) |
cb1a09d0 | 2769 | |
e89caa19 GA |
2770 | =item SvIV |
2771 | ||
2772 | Returns the integer which is in the SV. | |
2773 | ||
2774 | int SvIV (SV* sv) | |
2775 | ||
cb1a09d0 AD |
2776 | =item SvIVX |
2777 | ||
2778 | Returns the integer which is stored in the SV. | |
2779 | ||
e89caa19 | 2780 | int SvIVX (SV* sv) |
cb1a09d0 AD |
2781 | |
2782 | =item SvLEN | |
2783 | ||
2784 | Returns the size of the string buffer in the SV. See C<SvCUR>. | |
2785 | ||
e89caa19 | 2786 | int SvLEN (SV* sv) |
cb1a09d0 | 2787 | |
5fb8527f | 2788 | =item sv_len |
2789 | ||
2790 | Returns the length of the string in the SV. Use C<SvCUR>. | |
2791 | ||
ef50df4b | 2792 | STRLEN sv_len (SV* sv) |
5fb8527f | 2793 | |
cb1a09d0 AD |
2794 | =item sv_magic |
2795 | ||
2796 | Adds magic to an SV. | |
2797 | ||
ef50df4b | 2798 | void sv_magic (SV* sv, SV* obj, int how, char* name, I32 namlen) |
cb1a09d0 AD |
2799 | |
2800 | =item sv_mortalcopy | |
2801 | ||
2802 | Creates a new SV which is a copy of the original SV. The new SV is marked | |
5f05dabc | 2803 | as mortal. |
cb1a09d0 | 2804 | |
ef50df4b | 2805 | SV* sv_mortalcopy (SV* oldsv) |
cb1a09d0 | 2806 | |
cb1a09d0 AD |
2807 | =item sv_newmortal |
2808 | ||
5f05dabc | 2809 | Creates a new SV which is mortal. The reference count of the SV is set to 1. |
cb1a09d0 | 2810 | |
ef50df4b | 2811 | SV* sv_newmortal (void) |
cb1a09d0 | 2812 | |
cb1a09d0 AD |
2813 | =item SvNIOK |
2814 | ||
2815 | Returns a boolean indicating whether the SV contains a number, integer or | |
2816 | double. | |
2817 | ||
e89caa19 | 2818 | int SvNIOK (SV* SV) |
cb1a09d0 AD |
2819 | |
2820 | =item SvNIOK_off | |
2821 | ||
2822 | Unsets the NV/IV status of an SV. | |
2823 | ||
e89caa19 | 2824 | void SvNIOK_off (SV* sv) |
cb1a09d0 AD |
2825 | |
2826 | =item SvNIOKp | |
2827 | ||
2828 | Returns a boolean indicating whether the SV contains a number, integer or | |
2829 | double. Checks the B<private> setting. Use C<SvNIOK>. | |
2830 | ||
e89caa19 GA |
2831 | int SvNIOKp (SV* SV) |
2832 | ||
2833 | =item sv_no | |
2834 | ||
2835 | This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>. | |
cb1a09d0 AD |
2836 | |
2837 | =item SvNOK | |
2838 | ||
2839 | Returns a boolean indicating whether the SV contains a double. | |
2840 | ||
e89caa19 | 2841 | int SvNOK (SV* SV) |
cb1a09d0 AD |
2842 | |
2843 | =item SvNOK_off | |
2844 | ||
2845 | Unsets the NV status of an SV. | |
2846 | ||
e89caa19 | 2847 | void SvNOK_off (SV* sv) |
cb1a09d0 AD |
2848 | |
2849 | =item SvNOK_on | |
2850 | ||
2851 | Tells an SV that it is a double. | |
2852 | ||
e89caa19 | 2853 | void SvNOK_on (SV* sv) |
cb1a09d0 | 2854 | |
5fb8527f | 2855 | =item SvNOK_only |
2856 | ||
2857 | Tells an SV that it is a double and disables all other OK bits. | |
2858 | ||
e89caa19 | 2859 | void SvNOK_only (SV* sv) |
5fb8527f | 2860 | |
cb1a09d0 AD |
2861 | =item SvNOKp |
2862 | ||
2863 | Returns a boolean indicating whether the SV contains a double. Checks the | |
2864 | B<private> setting. Use C<SvNOK>. | |
2865 | ||
e89caa19 | 2866 | int SvNOKp (SV* SV) |
cb1a09d0 AD |
2867 | |
2868 | =item SvNV | |
2869 | ||
2870 | Returns the double which is stored in the SV. | |
2871 | ||
e89caa19 | 2872 | double SvNV (SV* sv) |
cb1a09d0 AD |
2873 | |
2874 | =item SvNVX | |
2875 | ||
2876 | Returns the double which is stored in the SV. | |
2877 | ||
e89caa19 GA |
2878 | double SvNVX (SV* sv) |
2879 | ||
2880 | =item SvOK | |
2881 | ||
2882 | Returns a boolean indicating whether the value is an SV. | |
2883 | ||
2884 | int SvOK (SV* sv) | |
2885 | ||
2886 | =item SvOOK | |
2887 | ||
2888 | Returns a boolean indicating whether the SvIVX is a valid offset value | |
2889 | for the SvPVX. This hack is used internally to speed up removal of | |
2890 | characters from the beginning of a SvPV. When SvOOK is true, then the | |
2891 | start of the allocated string buffer is really (SvPVX - SvIVX). | |
2892 | ||
2893 | int SvOOK(Sv* sv) | |
cb1a09d0 AD |
2894 | |
2895 | =item SvPOK | |
2896 | ||
2897 | Returns a boolean indicating whether the SV contains a character string. | |
2898 | ||
e89caa19 | 2899 | int SvPOK (SV* SV) |
cb1a09d0 AD |
2900 | |
2901 | =item SvPOK_off | |
2902 | ||
2903 | Unsets the PV status of an SV. | |
2904 | ||
e89caa19 | 2905 | void SvPOK_off (SV* sv) |
cb1a09d0 AD |
2906 | |
2907 | =item SvPOK_on | |
2908 | ||
2909 | Tells an SV that it is a string. | |
2910 | ||
e89caa19 | 2911 | void SvPOK_on (SV* sv) |
cb1a09d0 | 2912 | |
5fb8527f | 2913 | =item SvPOK_only |
2914 | ||
2915 | Tells an SV that it is a string and disables all other OK bits. | |
2916 | ||
e89caa19 | 2917 | void SvPOK_only (SV* sv) |
5fb8527f | 2918 | |
cb1a09d0 AD |
2919 | =item SvPOKp |
2920 | ||
2921 | Returns a boolean indicating whether the SV contains a character string. | |
2922 | Checks the B<private> setting. Use C<SvPOK>. | |
2923 | ||
e89caa19 | 2924 | int SvPOKp (SV* SV) |
cb1a09d0 AD |
2925 | |
2926 | =item SvPV | |
2927 | ||
2928 | Returns a pointer to the string in the SV, or a stringified form of the SV | |
2929 | if the SV does not contain a string. If C<len> is C<na> then Perl will | |
189b2af5 | 2930 | handle the length on its own. Handles 'get' magic. |
cb1a09d0 | 2931 | |
e89caa19 GA |
2932 | char* SvPV (SV* sv, int len ) |
2933 | ||
2934 | =item SvPV_force | |
2935 | ||
2936 | Like <SvPV> but will force the SV into becoming a string (SvPOK). You | |
2937 | want force if you are going to update the SvPVX directly. | |
2938 | ||
2939 | char* SvPV_force(SV* sv, int len) | |
2940 | ||
cb1a09d0 AD |
2941 | |
2942 | =item SvPVX | |
2943 | ||
2944 | Returns a pointer to the string in the SV. The SV must contain a string. | |
2945 | ||
e89caa19 | 2946 | char* SvPVX (SV* sv) |
cb1a09d0 AD |
2947 | |
2948 | =item SvREFCNT | |
2949 | ||
5f05dabc | 2950 | Returns the value of the object's reference count. |
cb1a09d0 | 2951 | |
e89caa19 | 2952 | int SvREFCNT (SV* sv) |
cb1a09d0 AD |
2953 | |
2954 | =item SvREFCNT_dec | |
2955 | ||
5f05dabc | 2956 | Decrements the reference count of the given SV. |
cb1a09d0 | 2957 | |
e89caa19 | 2958 | void SvREFCNT_dec (SV* sv) |
cb1a09d0 AD |
2959 | |
2960 | =item SvREFCNT_inc | |
2961 | ||
5f05dabc | 2962 | Increments the reference count of the given SV. |
cb1a09d0 | 2963 | |
e89caa19 | 2964 | void SvREFCNT_inc (SV* sv) |
cb1a09d0 AD |
2965 | |
2966 | =item SvROK | |
2967 | ||
2968 | Tests if the SV is an RV. | |
2969 | ||
e89caa19 | 2970 | int SvROK (SV* sv) |
cb1a09d0 AD |
2971 | |
2972 | =item SvROK_off | |
2973 | ||
2974 | Unsets the RV status of an SV. | |
2975 | ||
e89caa19 | 2976 | void SvROK_off (SV* sv) |
cb1a09d0 AD |
2977 | |
2978 | =item SvROK_on | |
2979 | ||
2980 | Tells an SV that it is an RV. | |
2981 | ||
e89caa19 | 2982 | void SvROK_on (SV* sv) |
cb1a09d0 AD |
2983 | |
2984 | =item SvRV | |
2985 | ||
2986 | Dereferences an RV to return the SV. | |
2987 | ||
ef50df4b | 2988 | SV* SvRV (SV* sv) |
cb1a09d0 | 2989 | |
189b2af5 GS |
2990 | =item SvSETMAGIC |
2991 | ||
2992 | Invokes C<mg_set> on an SV if it has 'set' magic. This macro evaluates | |
2993 | its argument more than once. | |
2994 | ||
2995 | void SvSETMAGIC( SV *sv ) | |
2996 | ||
ef50df4b | 2997 | =item sv_setiv |
189b2af5 | 2998 | |
ef50df4b GS |
2999 | Copies an integer into the given SV. Does not handle 'set' magic. |
3000 | See C<sv_setiv_mg>. | |
189b2af5 | 3001 | |
ef50df4b | 3002 | void sv_setiv (SV* sv, IV num) |
189b2af5 | 3003 | |
ef50df4b | 3004 | =item sv_setiv_mg |
189b2af5 | 3005 | |
ef50df4b | 3006 | Like C<sv_setiv>, but also handles 'set' magic. |
189b2af5 | 3007 | |
ef50df4b | 3008 | void sv_setiv_mg (SV* sv, IV num) |
189b2af5 | 3009 | |
ef50df4b | 3010 | =item sv_setnv |
189b2af5 | 3011 | |
ef50df4b GS |
3012 | Copies a double into the given SV. Does not handle 'set' magic. |
3013 | See C<sv_setnv_mg>. | |
189b2af5 | 3014 | |
ef50df4b | 3015 | void sv_setnv (SV* sv, double num) |
189b2af5 | 3016 | |
ef50df4b | 3017 | =item sv_setnv_mg |
189b2af5 | 3018 | |
ef50df4b | 3019 | Like C<sv_setnv>, but also handles 'set' magic. |
189b2af5 | 3020 | |
ef50df4b | 3021 | void sv_setnv_mg (SV* sv, double num) |
189b2af5 | 3022 | |
ef50df4b | 3023 | =item sv_setpv |
189b2af5 | 3024 | |
ef50df4b GS |
3025 | Copies a string into an SV. The string must be null-terminated. |
3026 | Does not handle 'set' magic. See C<sv_setpv_mg>. | |
189b2af5 | 3027 | |
ef50df4b | 3028 | void sv_setpv (SV* sv, char* ptr) |
189b2af5 | 3029 | |
ef50df4b | 3030 | =item sv_setpv_mg |
189b2af5 | 3031 | |
ef50df4b | 3032 | Like C<sv_setpv>, but also handles 'set' magic. |
189b2af5 | 3033 | |
ef50df4b | 3034 | void sv_setpv_mg (SV* sv, char* ptr) |
189b2af5 | 3035 | |
ef50df4b | 3036 | =item sv_setpviv |
cb1a09d0 | 3037 | |
ef50df4b GS |
3038 | Copies an integer into the given SV, also updating its string value. |
3039 | Does not handle 'set' magic. See C<sv_setpviv_mg>. | |
cb1a09d0 | 3040 | |
ef50df4b | 3041 | void sv_setpviv (SV* sv, IV num) |
cb1a09d0 | 3042 | |
ef50df4b | 3043 | =item sv_setpviv_mg |
cb1a09d0 | 3044 | |
ef50df4b | 3045 | Like C<sv_setpviv>, but also handles 'set' magic. |
cb1a09d0 | 3046 | |
ef50df4b | 3047 | void sv_setpviv_mg (SV* sv, IV num) |
cb1a09d0 | 3048 | |
ef50df4b | 3049 | =item sv_setpvn |
cb1a09d0 | 3050 | |
ef50df4b GS |
3051 | Copies a string into an SV. The C<len> parameter indicates the number of |
3052 | bytes to be copied. Does not handle 'set' magic. See C<sv_setpvn_mg>. | |
cb1a09d0 | 3053 | |
ef50df4b | 3054 | void sv_setpvn (SV* sv, char* ptr, STRLEN len) |
cb1a09d0 | 3055 | |
ef50df4b | 3056 | =item sv_setpvn_mg |
189b2af5 | 3057 | |
ef50df4b | 3058 | Like C<sv_setpvn>, but also handles 'set' magic. |
189b2af5 | 3059 | |
ef50df4b | 3060 | void sv_setpvn_mg (SV* sv, char* ptr, STRLEN len) |
189b2af5 | 3061 | |
ef50df4b | 3062 | =item sv_setpvf |
cb1a09d0 | 3063 | |
ef50df4b GS |
3064 | Processes its arguments like C<sprintf> and sets an SV to the formatted |
3065 | output. Does not handle 'set' magic. See C<sv_setpvf_mg>. | |
cb1a09d0 | 3066 | |
ef50df4b | 3067 | void sv_setpvf (SV* sv, const char* pat, ...) |
cb1a09d0 | 3068 | |
ef50df4b | 3069 | =item sv_setpvf_mg |
46fc3d4c | 3070 | |
ef50df4b | 3071 | Like C<sv_setpvf>, but also handles 'set' magic. |
46fc3d4c | 3072 | |
ef50df4b | 3073 | void sv_setpvf_mg (SV* sv, const char* pat, ...) |
46fc3d4c | 3074 | |
cb1a09d0 AD |
3075 | =item sv_setref_iv |
3076 | ||
5fb8527f | 3077 | Copies an integer into a new SV, optionally blessing the SV. The C<rv> |
3078 | argument will be upgraded to an RV. That RV will be modified to point to | |
3079 | the new SV. The C<classname> argument indicates the package for the | |
3080 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3081 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3082 | |
ef50df4b | 3083 | SV* sv_setref_iv (SV *rv, char *classname, IV iv) |
cb1a09d0 AD |
3084 | |
3085 | =item sv_setref_nv | |
3086 | ||
5fb8527f | 3087 | Copies a double into a new SV, optionally blessing the SV. The C<rv> |
3088 | argument will be upgraded to an RV. That RV will be modified to point to | |
3089 | the new SV. The C<classname> argument indicates the package for the | |
3090 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3091 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3092 | |
ef50df4b | 3093 | SV* sv_setref_nv (SV *rv, char *classname, double nv) |
cb1a09d0 AD |
3094 | |
3095 | =item sv_setref_pv | |
3096 | ||
5fb8527f | 3097 | Copies a pointer into a new SV, optionally blessing the SV. The C<rv> |
3098 | argument will be upgraded to an RV. That RV will be modified to point to | |
3099 | the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed | |
3100 | into the SV. The C<classname> argument indicates the package for the | |
3101 | blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV | |
5f05dabc | 3102 | will be returned and will have a reference count of 1. |
cb1a09d0 | 3103 | |
ef50df4b | 3104 | SV* sv_setref_pv (SV *rv, char *classname, void* pv) |
cb1a09d0 AD |
3105 | |
3106 | Do not use with integral Perl types such as HV, AV, SV, CV, because those | |
3107 | objects will become corrupted by the pointer copy process. | |
3108 | ||
3109 | Note that C<sv_setref_pvn> copies the string while this copies the pointer. | |
3110 | ||
3111 | =item sv_setref_pvn | |
3112 | ||
5fb8527f | 3113 | Copies a string into a new SV, optionally blessing the SV. The length of the |
3114 | string must be specified with C<n>. The C<rv> argument will be upgraded to | |
3115 | an RV. That RV will be modified to point to the new SV. The C<classname> | |
cb1a09d0 AD |
3116 | argument indicates the package for the blessing. Set C<classname> to |
3117 | C<Nullch> to avoid the blessing. The new SV will be returned and will have | |
5f05dabc | 3118 | a reference count of 1. |
cb1a09d0 | 3119 | |
ef50df4b | 3120 | SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n) |
cb1a09d0 AD |
3121 | |
3122 | Note that C<sv_setref_pv> copies the pointer while this copies the string. | |
3123 | ||
189b2af5 GS |
3124 | =item SvSetSV |
3125 | ||
3126 | Calls C<sv_setsv> if dsv is not the same as ssv. May evaluate arguments | |
3127 | more than once. | |
3128 | ||
3129 | void SvSetSV (SV* dsv, SV* ssv) | |
3130 | ||
3131 | =item SvSetSV_nosteal | |
3132 | ||
3133 | Calls a non-destructive version of C<sv_setsv> if dsv is not the same as ssv. | |
3134 | May evaluate arguments more than once. | |
3135 | ||
3136 | void SvSetSV_nosteal (SV* dsv, SV* ssv) | |
3137 | ||
cb1a09d0 AD |
3138 | =item sv_setsv |
3139 | ||
3140 | Copies the contents of the source SV C<ssv> into the destination SV C<dsv>. | |
189b2af5 | 3141 | The source SV may be destroyed if it is mortal. Does not handle 'set' magic. |
ef50df4b GS |
3142 | See the macro forms C<SvSetSV>, C<SvSetSV_nosteal> and C<sv_setsv_mg>. |
3143 | ||
3144 | void sv_setsv (SV* dsv, SV* ssv) | |
3145 | ||
3146 | =item sv_setsv_mg | |
3147 | ||
3148 | Like C<sv_setsv>, but also handles 'set' magic. | |
cb1a09d0 | 3149 | |
ef50df4b | 3150 | void sv_setsv_mg (SV* dsv, SV* ssv) |
cb1a09d0 | 3151 | |
189b2af5 GS |
3152 | =item sv_setuv |
3153 | ||
3154 | Copies an unsigned integer into the given SV. Does not handle 'set' magic. | |
ef50df4b | 3155 | See C<sv_setuv_mg>. |
189b2af5 | 3156 | |
ef50df4b GS |
3157 | void sv_setuv (SV* sv, UV num) |
3158 | ||
3159 | =item sv_setuv_mg | |
3160 | ||
3161 | Like C<sv_setuv>, but also handles 'set' magic. | |
3162 | ||
3163 | void sv_setuv_mg (SV* sv, UV num) | |
189b2af5 | 3164 | |
cb1a09d0 AD |
3165 | =item SvSTASH |
3166 | ||
3167 | Returns the stash of the SV. | |
3168 | ||
e89caa19 GA |
3169 | HV* SvSTASH (SV* sv) |
3170 | ||
3171 | =item SvTAINT | |
3172 | ||
3173 | Taints an SV if tainting is enabled | |
3174 | ||
3175 | void SvTAINT (SV* sv) | |
3176 | ||
3177 | =item SvTAINTED | |
3178 | ||
3179 | Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not. | |
3180 | ||
3181 | int SvTAINTED (SV* sv) | |
3182 | ||
3183 | =item SvTAINTED_off | |
3184 | ||
3185 | Untaints an SV. Be I<very> careful with this routine, as it short-circuits | |
3186 | some of Perl's fundamental security features. XS module authors should | |
3187 | not use this function unless they fully understand all the implications | |
3188 | of unconditionally untainting the value. Untainting should be done in | |
3189 | the standard perl fashion, via a carefully crafted regexp, rather than | |
3190 | directly untainting variables. | |
3191 | ||
3192 | void SvTAINTED_off (SV* sv) | |
3193 | ||
3194 | =item SvTAINTED_on | |
3195 | ||
3196 | Marks an SV as tainted. | |
3197 | ||
3198 | void SvTAINTED_on (SV* sv) | |
cb1a09d0 AD |
3199 | |
3200 | =item SVt_IV | |
3201 | ||
3202 | Integer type flag for scalars. See C<svtype>. | |
3203 | ||
3204 | =item SVt_PV | |
3205 | ||
3206 | Pointer type flag for scalars. See C<svtype>. | |
3207 | ||
3208 | =item SVt_PVAV | |
3209 | ||
3210 | Type flag for arrays. See C<svtype>. | |
3211 | ||
3212 | =item SVt_PVCV | |
3213 | ||
3214 | Type flag for code refs. See C<svtype>. | |
3215 | ||
3216 | =item SVt_PVHV | |
3217 | ||
3218 | Type flag for hashes. See C<svtype>. | |
3219 | ||
3220 | =item SVt_PVMG | |
3221 | ||
3222 | Type flag for blessed scalars. See C<svtype>. | |
3223 | ||
3224 | =item SVt_NV | |
3225 | ||
3226 | Double type flag for scalars. See C<svtype>. | |
3227 | ||
3228 | =item SvTRUE | |
3229 | ||
3230 | Returns a boolean indicating whether Perl would evaluate the SV as true or | |
189b2af5 | 3231 | false, defined or undefined. Does not handle 'get' magic. |
cb1a09d0 | 3232 | |
e89caa19 | 3233 | int SvTRUE (SV* sv) |
cb1a09d0 AD |
3234 | |
3235 | =item SvTYPE | |
3236 | ||
3237 | Returns the type of the SV. See C<svtype>. | |
3238 | ||
3239 | svtype SvTYPE (SV* sv) | |
3240 | ||
3241 | =item svtype | |
3242 | ||
3243 | An enum of flags for Perl types. These are found in the file B<sv.h> in the | |
3244 | C<svtype> enum. Test these flags with the C<SvTYPE> macro. | |
3245 | ||
cb1a09d0 AD |
3246 | =item sv_undef |
3247 | ||
3248 | This is the C<undef> SV. Always refer to this as C<&sv_undef>. | |
3249 | ||
5fb8527f | 3250 | =item sv_unref |
3251 | ||
07fa94a1 JO |
3252 | Unsets the RV status of the SV, and decrements the reference count of |
3253 | whatever was being referenced by the RV. This can almost be thought of | |
3254 | as a reversal of C<newSVrv>. See C<SvROK_off>. | |
5fb8527f | 3255 | |
ef50df4b | 3256 | void sv_unref (SV* sv) |
189b2af5 | 3257 | |
e89caa19 GA |
3258 | =item SvUPGRADE |
3259 | ||
3260 | Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform | |
3261 | the upgrade if necessary. See C<svtype>. | |
3262 | ||
3263 | bool SvUPGRADE (SV* sv, svtype mt) | |
3264 | ||
3265 | =item sv_upgrade | |
3266 | ||
3267 | Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>. | |
3268 | ||
cb1a09d0 AD |
3269 | =item sv_usepvn |
3270 | ||
3271 | Tells an SV to use C<ptr> to find its string value. Normally the string is | |
5fb8527f | 3272 | stored inside the SV but sv_usepvn allows the SV to use an outside string. |
3273 | The C<ptr> should point to memory that was allocated by C<malloc>. The | |
cb1a09d0 AD |
3274 | string length, C<len>, must be supplied. This function will realloc the |
3275 | memory pointed to by C<ptr>, so that pointer should not be freed or used by | |
189b2af5 | 3276 | the programmer after giving it to sv_usepvn. Does not handle 'set' magic. |
ef50df4b GS |
3277 | See C<sv_usepvn_mg>. |
3278 | ||
3279 | void sv_usepvn (SV* sv, char* ptr, STRLEN len) | |
3280 | ||
3281 | =item sv_usepvn_mg | |
3282 | ||
3283 | Like C<sv_usepvn>, but also handles 'set' magic. | |
cb1a09d0 | 3284 | |
ef50df4b | 3285 | void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len) |
cb1a09d0 | 3286 | |
e89caa19 GA |
3287 | =item SvUV |
3288 | ||
3289 | Returns the unsigned integer which is in the SV. | |
3290 | ||
3291 | UV SvUV(SV* sv) | |
3292 | ||
3293 | =item SvUVX | |
3294 | ||
3295 | Returns the unsigned integer which is stored in the SV. | |
3296 | ||
3297 | UV SvUVX(SV* sv) | |
3298 | ||
cb1a09d0 AD |
3299 | =item sv_yes |
3300 | ||
3301 | This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>. | |
3302 | ||
3303 | =item THIS | |
3304 | ||
3305 | Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB. | |
3306 | This is always the proper type for the C++ object. See C<CLASS> and | |
5fb8527f | 3307 | L<perlxs/"Using XS With C++">. |
cb1a09d0 AD |
3308 | |
3309 | =item toLOWER | |
3310 | ||
3311 | Converts the specified character to lowercase. | |
3312 | ||
e89caa19 | 3313 | int toLOWER (char c) |
cb1a09d0 AD |
3314 | |
3315 | =item toUPPER | |
3316 | ||
3317 | Converts the specified character to uppercase. | |
3318 | ||
e89caa19 | 3319 | int toUPPER (char c) |
cb1a09d0 AD |
3320 | |
3321 | =item warn | |
3322 | ||
3323 | This is the XSUB-writer's interface to Perl's C<warn> function. Use this | |
3324 | function the same way you use the C C<printf> function. See C<croak()>. | |
3325 | ||
3326 | =item XPUSHi | |
3327 | ||
189b2af5 GS |
3328 | Push an integer onto the stack, extending the stack if necessary. Handles |
3329 | 'set' magic. See C<PUSHi>. | |
cb1a09d0 AD |
3330 | |
3331 | XPUSHi(int d) | |
3332 | ||
3333 | =item XPUSHn | |
3334 | ||
189b2af5 GS |
3335 | Push a double onto the stack, extending the stack if necessary. Handles 'set' |
3336 | magic. See C<PUSHn>. | |
cb1a09d0 AD |
3337 | |
3338 | XPUSHn(double d) | |
3339 | ||
3340 | =item XPUSHp | |
3341 | ||
3342 | Push a string onto the stack, extending the stack if necessary. The C<len> | |
189b2af5 | 3343 | indicates the length of the string. Handles 'set' magic. See C<PUSHp>. |
cb1a09d0 AD |
3344 | |
3345 | XPUSHp(char *c, int len) | |
3346 | ||
3347 | =item XPUSHs | |
3348 | ||
189b2af5 GS |
3349 | Push an SV onto the stack, extending the stack if necessary. Does not |
3350 | handle 'set' magic. See C<PUSHs>. | |
cb1a09d0 AD |
3351 | |
3352 | XPUSHs(sv) | |
3353 | ||
e89caa19 GA |
3354 | =item XPUSHu |
3355 | ||
3356 | Push an unsigned integer onto the stack, extending the stack if | |
3357 | necessary. See C<PUSHu>. | |
3358 | ||
5fb8527f | 3359 | =item XS |
3360 | ||
3361 | Macro to declare an XSUB and its C parameter list. This is handled by | |
3362 | C<xsubpp>. | |
3363 | ||
cb1a09d0 AD |
3364 | =item XSRETURN |
3365 | ||
3366 | Return from XSUB, indicating number of items on the stack. This is usually | |
3367 | handled by C<xsubpp>. | |
3368 | ||
ef50df4b | 3369 | XSRETURN(int x) |
cb1a09d0 AD |
3370 | |
3371 | =item XSRETURN_EMPTY | |
3372 | ||
5fb8527f | 3373 | Return an empty list from an XSUB immediately. |
cb1a09d0 AD |
3374 | |
3375 | XSRETURN_EMPTY; | |
3376 | ||
5fb8527f | 3377 | =item XSRETURN_IV |
3378 | ||
3379 | Return an integer from an XSUB immediately. Uses C<XST_mIV>. | |
3380 | ||
ef50df4b | 3381 | XSRETURN_IV(IV v) |
5fb8527f | 3382 | |
cb1a09d0 AD |
3383 | =item XSRETURN_NO |
3384 | ||
5fb8527f | 3385 | Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>. |
cb1a09d0 AD |
3386 | |
3387 | XSRETURN_NO; | |
3388 | ||
5fb8527f | 3389 | =item XSRETURN_NV |
3390 | ||
3391 | Return an double from an XSUB immediately. Uses C<XST_mNV>. | |
3392 | ||
ef50df4b | 3393 | XSRETURN_NV(NV v) |
5fb8527f | 3394 | |
3395 | =item XSRETURN_PV | |
3396 | ||
3397 | Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>. | |
3398 | ||
ef50df4b | 3399 | XSRETURN_PV(char *v) |
5fb8527f | 3400 | |
cb1a09d0 AD |
3401 | =item XSRETURN_UNDEF |
3402 | ||
5fb8527f | 3403 | Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>. |
cb1a09d0 AD |
3404 | |
3405 | XSRETURN_UNDEF; | |
3406 | ||
3407 | =item XSRETURN_YES | |
3408 | ||
5fb8527f | 3409 | Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>. |
cb1a09d0 AD |
3410 | |
3411 | XSRETURN_YES; | |
3412 | ||
5fb8527f | 3413 | =item XST_mIV |
3414 | ||
3415 | Place an integer into the specified position C<i> on the stack. The value is | |
3416 | stored in a new mortal SV. | |
3417 | ||
ef50df4b | 3418 | XST_mIV( int i, IV v ) |
5fb8527f | 3419 | |
3420 | =item XST_mNV | |
3421 | ||
3422 | Place a double into the specified position C<i> on the stack. The value is | |
3423 | stored in a new mortal SV. | |
3424 | ||
ef50df4b | 3425 | XST_mNV( int i, NV v ) |
5fb8527f | 3426 | |
3427 | =item XST_mNO | |
3428 | ||
3429 | Place C<&sv_no> into the specified position C<i> on the stack. | |
3430 | ||
ef50df4b | 3431 | XST_mNO( int i ) |
5fb8527f | 3432 | |
3433 | =item XST_mPV | |
3434 | ||
3435 | Place a copy of a string into the specified position C<i> on the stack. The | |
3436 | value is stored in a new mortal SV. | |
3437 | ||
ef50df4b | 3438 | XST_mPV( int i, char *v ) |
5fb8527f | 3439 | |
3440 | =item XST_mUNDEF | |
3441 | ||
3442 | Place C<&sv_undef> into the specified position C<i> on the stack. | |
3443 | ||
ef50df4b | 3444 | XST_mUNDEF( int i ) |
5fb8527f | 3445 | |
3446 | =item XST_mYES | |
3447 | ||
3448 | Place C<&sv_yes> into the specified position C<i> on the stack. | |
3449 | ||
ef50df4b | 3450 | XST_mYES( int i ) |
5fb8527f | 3451 | |
3452 | =item XS_VERSION | |
3453 | ||
3454 | The version identifier for an XS module. This is usually handled | |
3455 | automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>. | |
3456 | ||
3457 | =item XS_VERSION_BOOTCHECK | |
3458 | ||
3459 | Macro to verify that a PM module's $VERSION variable matches the XS module's | |
3460 | C<XS_VERSION> variable. This is usually handled automatically by | |
3461 | C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">. | |
3462 | ||
cb1a09d0 AD |
3463 | =item Zero |
3464 | ||
3465 | The XSUB-writer's interface to the C C<memzero> function. The C<d> is the | |
3466 | destination, C<n> is the number of items, and C<t> is the type. | |
3467 | ||
e89caa19 | 3468 | void Zero( d, n, t ) |
cb1a09d0 AD |
3469 | |
3470 | =back | |
3471 | ||
9cecd9f2 | 3472 | =head1 AUTHORS |
cb1a09d0 | 3473 | |
9cecd9f2 GA |
3474 | Until May 1997, this document was maintained by Jeff Okamoto |
3475 | <okamoto@corp.hp.com>. It is now maintained as part of Perl itself. | |
cb1a09d0 AD |
3476 | |
3477 | With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, | |
3478 | Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil | |
189b2af5 GS |
3479 | Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer, |
3480 | Stephen McCamant, and Gurusamy Sarathy. | |
cb1a09d0 | 3481 | |
9cecd9f2 | 3482 | API Listing originally by Dean Roehrich <roehrich@cray.com>. |