This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Change docs display for PERL_UNUSED_foo
[perl5.git] / regen / mk_invlists.pl
CommitLineData
9d9177be
KW
1#!perl -w
2use 5.015;
3use strict;
4use warnings;
99f21fb9
KW
5use Unicode::UCD qw(prop_aliases
6 prop_values
7 prop_value_aliases
8 prop_invlist
9 prop_invmap search_invlist
463b4a67 10 charprop
a1c8344d 11 num
2cd613ec 12 charblock
99f21fb9 13 );
3d7c117d
MB
14require './regen/regen_lib.pl';
15require './regen/charset_translations.pl';
048bdb72 16require './lib/unicore/UCD.pl';
db95f459 17use re "/aa";
9d9177be
KW
18
19# This program outputs charclass_invlists.h, which contains various inversion
20# lists in the form of C arrays that are to be used as-is for inversion lists.
21# Thus, the lists it contains are essentially pre-compiled, and need only a
22# light-weight fast wrapper to make them usable at run-time.
23
24# As such, this code knows about the internal structure of these lists, and
25# any change made to that has to be done here as well. A random number stored
26# in the headers is used to minimize the possibility of things getting
27# out-of-sync, or the wrong data structure being passed. Currently that
28# random number is:
99f21fb9 29
1c7f0e60
KW
30my $VERSION_DATA_STRUCTURE_TYPE = 148565664;
31
b72e0f31
KW
32# charclass_invlists.h now also contains inversion maps and enum definitions
33# for those maps that have a finite number of possible values
99f21fb9 34
98a1b8f7
KW
35# integer or float (no exponent)
36my $integer_or_float_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x;
37
38# Also includes rationals
39my $numeric_re = qr! $integer_or_float_re | ^ -? \d+ / \d+ $ !x;
99f21fb9 40
cb2d98ed
KW
41# More than one code point may have the same code point as their fold. This
42# gives the maximum number in the current Unicode release. (The folded-to
43# code point is not included in this count.) Most folds are pairs of code
44# points, like 'B' and 'b', so this number is at least one.
45my $max_fold_froms = 1;
46
f4b10e8e 47my %keywords;
cef72199 48my $table_name_prefix = "UNI_";
4eea95a6 49
99f21fb9
KW
50# Matches valid C language enum names: begins with ASCII alphabetic, then any
51# ASCII \w
52my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;
53
9d9177be 54my $out_fh = open_new('charclass_invlists.h', '>',
74e28a4a 55 {style => '*', by => 'regen/mk_invlists.pl',
9d9177be
KW
56 from => "Unicode::UCD"});
57
0f8eed22 58my $in_file_pound_if = "";
43b443dd 59
289ce9cc
KW
60my $max_hdr_len = 3; # In headings, how wide a name is allowed?
61
9d9177be
KW
62print $out_fh "/* See the generating file for comments */\n\n";
63
a405530a
KW
64print $out_fh <<'EOF';
65/* This gives the number of code points that can be in the bitmap of an ANYOF
66 * node. The shift number must currently be one of: 8..12. It can't be less
67 * than 8 (256) because some code relies on it being at least that. Above 12
68 * (4096), and you start running into warnings that some data structure widths
69 * have been exceeded, though the test suite as of this writing still passes
70 * for up through 16, which is as high as anyone would ever want to go,
71 * encompassing all of the Unicode BMP, and thus including all the economically
72 * important world scripts. At 12 most of them are: including Arabic,
73 * Cyrillic, Greek, Hebrew, Indian subcontinent, Latin, and Thai; but not Han,
74 * Japanese, nor Korean. (The regarglen structure in regnodes.h is a U8, and
75 * the trie types TRIEC and AHOCORASICKC are larger than U8 for shift values
76 * above 12.) Be sure to benchmark before changing, as larger sizes do
77 * significantly slow down the test suite */
78
79EOF
80
81my $num_anyof_code_points = '(1 << 8)';
82
83print $out_fh "#define NUM_ANYOF_CODE_POINTS $num_anyof_code_points\n\n";
84
85$num_anyof_code_points = eval $num_anyof_code_points;
86
da477c7d
KW
87no warnings 'once';
88print $out_fh <<"EOF";
89/* The precision to use in "%.*e" formats */
90#define PL_E_FORMAT_PRECISION $Unicode::UCD::e_precision
91EOF
92
d74e7480
KW
93# enums that should be made public
94my %public_enums = (
f52cc976 95 _Perl_SCX => 1
d74e7480
KW
96 );
97
bffc0129
KW
98# The symbols generated by this program are all currently defined only in a
99# single dot c each. The code knows where most of them go, but this hash
100# gives overrides for the exceptions to the typical place
101my %exceptions_to_where_to_define =
7dddaf74 102 (
03d17b6e 103 #_Perl_IVCF => 'PERL_IN_REGCOMP_C',
bffc0129 104 );
4761f74a 105
c0221e16 106my %where_to_define_enums = ();
015bb97c 107
59fc10af
KW
108my $applies_to_all_charsets_text = "all charsets";
109
973a28ed
KW
110my %gcb_enums;
111my @gcb_short_enums;
289ce9cc 112my %gcb_abbreviations;
6b659339
KW
113my %lb_enums;
114my @lb_short_enums;
289ce9cc 115my %lb_abbreviations;
7e54b87f
KW
116my %wb_enums;
117my @wb_short_enums;
289ce9cc 118my %wb_abbreviations;
6b659339 119
99f21fb9
KW
120my @a2n;
121
394d2d3f
KW
122my %prop_name_aliases;
123# Invert this hash so that for each canonical name, we get a list of things
124# that map to it (excluding itself)
048bdb72
KW
125foreach my $name (sort keys %Unicode::UCD::loose_property_name_of) {
126 my $canonical = $Unicode::UCD::loose_property_name_of{$name};
394d2d3f
KW
127 push @{$prop_name_aliases{$canonical}}, $name if $canonical ne $name;
128}
129
2d74dcf2 130# Output these tables in the same vicinity as each other, so that will get
1aefa327
KW
131# paged in at about the same time. These are also assumed to be the exact
132# same list as those properties used internally by perl.
2d74dcf2
KW
133my %keep_together = (
134 assigned => 1,
135 ascii => 1,
7a6f6841
KW
136 upper => 1,
137 lower => 1,
138 title => 1,
2d74dcf2 139 cased => 1,
7a6f6841
KW
140 uppercaseletter => 1,
141 lowercaseletter => 1,
142 titlecaseletter => 1,
143 casedletter => 1,
2d74dcf2
KW
144 vertspace => 1,
145 xposixalnum => 1,
146 xposixalpha => 1,
147 xposixblank => 1,
148 xposixcntrl => 1,
149 xposixdigit => 1,
150 xposixgraph => 1,
151 xposixlower => 1,
152 xposixprint => 1,
153 xposixpunct => 1,
154 xposixspace => 1,
155 xposixupper => 1,
156 xposixword => 1,
157 xposixxdigit => 1,
158 posixalnum => 1,
159 posixalpha => 1,
160 posixblank => 1,
161 posixcntrl => 1,
162 posixdigit => 1,
163 posixgraph => 1,
164 posixlower => 1,
165 posixprint => 1,
166 posixpunct => 1,
167 posixspace => 1,
168 posixupper => 1,
169 posixword => 1,
170 posixxdigit => 1,
171 _perl_any_folds => 1,
172 _perl_folds_to_multi_char => 1,
441f4830
KW
173 _perl_is_in_multi_char_fold => 1,
174 _perl_non_final_folds => 1,
2d74dcf2
KW
175 _perl_idstart => 1,
176 _perl_idcont => 1,
177 _perl_charname_begin => 1,
178 _perl_charname_continue => 1,
179 _perl_problematic_locale_foldeds_start => 1,
180 _perl_problematic_locale_folds => 1,
181 _perl_quotemeta => 1,
182 );
1aefa327 183my %perl_tags; # So can find synonyms of the above properties
2d74dcf2 184
2027d365
KW
185my $unused_table_hdr = 'u'; # Heading for row or column for unused values
186
99f21fb9
KW
187sub uniques {
188 # Returns non-duplicated input values. From "Perl Best Practices:
189 # Encapsulated Cleverness". p. 455 in first edition.
190
191 my %seen;
192 return grep { ! $seen{$_}++ } @_;
193}
194
18072598
KW
195sub caselessly { lc $a cmp lc $b }
196
99f21fb9
KW
197sub a2n($) {
198 my $cp = shift;
199
200 # Returns the input Unicode code point translated to native.
201
98a1b8f7 202 return $cp if $cp !~ $integer_or_float_re || $cp > 255;
99f21fb9
KW
203 return $a2n[$cp];
204}
205
bffc0129
KW
206sub end_file_pound_if {
207 if ($in_file_pound_if) {
208 print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
0f8eed22 209 $in_file_pound_if = "";
bffc0129
KW
210 }
211}
212
48737b77
KW
213sub end_charset_pound_if {
214 print $out_fh "\n" . get_conditional_compile_line_end();
215}
216
8ec55631 217sub switch_pound_if ($$;$) {
bffc0129
KW
218 my $name = shift;
219 my $new_pound_if = shift;
8ec55631
KW
220 my $charset = shift;
221
62a54bb7 222 my @new_pound_if = ref ($new_pound_if)
0f8eed22 223 ? sort @$new_pound_if
62a54bb7 224 : $new_pound_if;
bffc0129
KW
225
226 # Switch to new #if given by the 2nd argument. If there is an override
227 # for this, it instead switches to that. The 1st argument is the
0f8eed22 228 # static's name, used only to check if there is an override for this
8ec55631
KW
229 #
230 # The 'charset' parmameter, if present, is used to first end the charset
231 # #if if we actually do a switch, and then restart it afterwards. This
232 # code, then assumes that the charset #if's are enclosed in the file ones.
bffc0129
KW
233
234 if (exists $exceptions_to_where_to_define{$name}) {
62a54bb7 235 @new_pound_if = $exceptions_to_where_to_define{$name};
bffc0129
KW
236 }
237
0f8eed22 238 foreach my $element (@new_pound_if) {
cef72199
KW
239
240 # regcomp.c is arranged so that the tables are not compiled in
b619f93d
KW
241 # re_comp.c, but general enums and defines (which take no space) are
242 # compiled */
243 my $no_xsub = 1 if $name !~ /enum|define/
244 && $element =~ / PERL_IN_ (?: REGCOMP ) _C /x;
0f8eed22 245 $element = "defined($element)";
cef72199 246 $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub;
bffc0129 247 }
0f8eed22 248 $new_pound_if = join " || ", @new_pound_if;
bffc0129 249
0f8eed22
KW
250 # Change to the new one if different from old
251 if ($in_file_pound_if ne $new_pound_if) {
252
8ec55631
KW
253 end_charset_pound_if() if defined $charset;
254
0f8eed22
KW
255 # Exit any current #if
256 if ($in_file_pound_if) {
257 end_file_pound_if;
62a54bb7 258 }
0f8eed22
KW
259
260 $in_file_pound_if = $new_pound_if;
bffc0129 261 print $out_fh "\n#if $in_file_pound_if\n";
8ec55631
KW
262
263 start_charset_pound_if ($charset, 1) if defined $charset;
43b443dd
KW
264 }
265}
266
48737b77
KW
267sub start_charset_pound_if ($;$) {
268 print $out_fh "\n" . get_conditional_compile_line_start(shift, shift);
269}
270
cef72199
KW
271{ # Closure
272 my $fh;
273 my $in_doinit = 0;
274
275 sub output_table_header($$$;$@) {
276
277 # Output to $fh the heading for a table given by the other inputs
278
279 $fh = shift;
280 my ($type, # typedef of table, like UV, UV*
281 $name, # name of table
282 $comment, # Optional comment to put on header line
283 @sizes # Optional sizes of each array index. If omitted,
284 # there is a single index whose size is computed by
285 # the C compiler.
286 ) = @_;
287
288 $type =~ s/ \s+ $ //x;
289
290 # If a the typedef is a ptr, add in an extra const
291 $type .= " const" if $type =~ / \* $ /x;
292
293 $comment = "" unless defined $comment;
294 $comment = " /* $comment */" if $comment;
295
296 my $array_declaration;
297 if (@sizes) {
298 $array_declaration = "";
299 $array_declaration .= "[$_]" for @sizes;
300 }
301 else {
302 $array_declaration = '[]';
303 }
304
305 my $declaration = "$type ${name}$array_declaration";
306
307 # Things not matching this are static. Otherwise, it is an external
308 # constant, initialized only under DOINIT.
309 #
310 # (Currently everything is static)
311 if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) {
312 $in_doinit = 0;
313 print $fh "\nstatic const $declaration = {$comment\n";
314 }
315 else {
316 $in_doinit = 1;
317 print $fh <<EOF;
318
319# ifndef DOINIT
320
321EXTCONST $declaration;
322
323# else
324
325EXTCONST $declaration = {$comment
326EOF
327 }
328 }
329
330 sub output_table_trailer() {
331
332 # Close out a table started by output_table_header()
333
334 print $fh "};\n";
335 if ($in_doinit) {
336 print $fh "\n# endif /* DOINIT */\n\n";
337 $in_doinit = 0;
338 }
339 }
340} # End closure
341
342
0c4ecf42 343sub output_invlist ($$;$) {
9d9177be
KW
344 my $name = shift;
345 my $invlist = shift; # Reference to inversion list array
0c4ecf42 346 my $charset = shift // ""; # name of character set for comment
9d9177be 347
76d3994c 348 die "No inversion list for $name" unless defined $invlist
ad85f59a 349 && ref $invlist eq 'ARRAY';
76d3994c 350
9d9177be
KW
351 # Output the inversion list $invlist using the name $name for it.
352 # It is output in the exact internal form for inversion lists.
353
a0316a6c
KW
354 # Is the last element of the header 0, or 1 ?
355 my $zero_or_one = 0;
ad85f59a 356 if (@$invlist && $invlist->[0] != 0) {
a0316a6c 357 unshift @$invlist, 0;
9d9177be
KW
358 $zero_or_one = 1;
359 }
360
cef72199
KW
361 $charset = "for $charset" if $charset;
362 output_table_header($out_fh, "UV", "${name}_invlist", $charset);
9d9177be 363
cef72199
KW
364 my $count = @$invlist;
365 print $out_fh <<EOF;
366\t$count,\t/* Number of elements */
367\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */
368\t$zero_or_one,\t/* 0 if the list starts at 0;
369\t\t 1 if it starts at the element beyond 0 */
370EOF
9d9177be
KW
371
372 # The main body are the UVs passed in to this routine. Do the final
373 # element separately
47d53124
KW
374 for my $i (0 .. @$invlist - 1) {
375 printf $out_fh "\t0x%X", $invlist->[$i];
376 print $out_fh "," if $i < @$invlist - 1;
377 print $out_fh "\n";
9d9177be
KW
378 }
379
cef72199 380 output_table_trailer();
9d9177be
KW
381}
382
99f21fb9
KW
383sub output_invmap ($$$$$$$) {
384 my $name = shift;
385 my $invmap = shift; # Reference to inversion map array
386 my $prop_name = shift;
387 my $input_format = shift; # The inversion map's format
388 my $default = shift; # The property value for code points who
389 # otherwise don't have a value specified.
390 my $extra_enums = shift; # comma-separated list of our additions to the
391 # property's standard possible values
392 my $charset = shift // ""; # name of character set for comment
393
394 # Output the inversion map $invmap for property $prop_name, but use $name
395 # as the actual data structure's name.
396
397 my $count = @$invmap;
398
399 my $output_format;
18230d9d
KW
400 my $invmap_declaration_type;
401 my $enum_declaration_type;
402 my $aux_declaration_type;
99f21fb9
KW
403 my %enums;
404 my $name_prefix;
405
18230d9d 406 if ($input_format =~ / ^ [as] l? $ /x) {
cf2cd619
KW
407 $prop_name = (prop_aliases($prop_name))[1]
408 // $prop_name =~ s/^_Perl_//r; # Get full name
02f811dd 409 my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
226b74db 410 my @input_enums;
f79a09fc 411
226b74db 412 # Find all the possible input values. These become the enum names
34623dbb
KW
413 # that comprise the inversion map. For inputs that don't have sub
414 # lists, we can just get the unique values. Otherwise, we have to
415 # expand the sublists first.
18230d9d 416 if ($input_format !~ / ^ a /x) {
563f8b93 417 if ($input_format ne 'sl') {
18072598 418 @input_enums = sort caselessly uniques(@$invmap);
563f8b93
KW
419 }
420 else {
421 foreach my $element (@$invmap) {
422 if (ref $element) {
423 push @input_enums, @$element;
424 }
425 else {
426 push @input_enums, $element;
427 }
34623dbb 428 }
18072598 429 @input_enums = sort caselessly uniques(@input_enums);
34623dbb 430 }
18230d9d 431 }
6b659339 432
226b74db 433 # The internal enums come last, and in the order specified.
2027d365
KW
434 #
435 # The internal one named EDGE is also used a marker. Any ones that
436 # come after it are used in the algorithms below, and so must be
437 # defined, even if the release of Unicode this is being compiled for
438 # doesn't use them. But since no code points are assigned to them in
439 # such a release, those values will never be accessed. We collapse
440 # all of them into a single placholder row and a column. The
441 # algorithms below will fill in those cells with essentially garbage,
442 # but they are never read, so it doesn't matter. This allows the
443 # algorithm to remain the same from release to release.
444 #
445 # In one case, regexec.c also uses a placeholder which must be defined
446 # here, and we put it in the unused row and column as its value is
447 # never read.
448 #
226b74db 449 my @enums = @input_enums;
27a619f7 450 my @extras;
2027d365
KW
451 my @unused_enums;
452 my $unused_enum_value = @enums;
27a619f7
KW
453 if ($extra_enums ne "") {
454 @extras = split /,/, $extra_enums;
2027d365 455 my $seen_EDGE = 0;
226b74db
KW
456
457 # Don't add if already there.
458 foreach my $this_extra (@extras) {
459 next if grep { $_ eq $this_extra } @enums;
2027d365
KW
460 if ($this_extra eq 'EDGE') {
461 push @enums, $this_extra;
462 $seen_EDGE = 1;
463 }
464 elsif ($seen_EDGE) {
465 push @unused_enums, $this_extra;
466 }
467 else {
468 push @enums, $this_extra;
469 }
226b74db 470 }
2027d365 471
18072598 472 @unused_enums = sort caselessly @unused_enums;
2027d365
KW
473 $unused_enum_value = @enums; # All unused have the same value,
474 # one beyond the final used one
27a619f7 475 }
289ce9cc 476
2c490b6a
KW
477 # These properties have extra tables written out for them that we want
478 # to make as compact and legible as possible. So we find short names
479 # for their property values. For non-official ones we will need to
480 # add a legend at the top of the table to say what the abbreviation
481 # stands for.
482 my $property_needs_table_re = qr/ ^ _Perl_ (?: GCB | LB | WB ) $ /x;
483
484 my %short_enum_name;
485 my %need_explanation; # For non-official abbreviations, we will need
486 # to explain what the one we come up with
487 # stands for
488 my $type = lc $prop_name;
489 if ($name =~ $property_needs_table_re) {
490 my @short_names; # List of already used abbreviations, so we
491 # don't duplicate
492 for my $enum (@enums) {
493 my $short_enum;
494 my $is_official_name = 0;
495
496 # Special case this wb property value to make the
497 # name more clear
498 if ($enum eq 'Perl_Tailored_HSpace') {
499 $short_enum = 'hs';
500 }
501 else {
502
503 # Use the official short name, if found.
504 ($short_enum) = prop_value_aliases($type, $enum);
505 if ( defined $short_enum) {
506 $is_official_name = 1;
507 }
508 else {
509 # But if there is no official name, use the name that
510 # came from the data (if any). Otherwise, the name
511 # had to come from the extras list. There are two
512 # types of values in that list.
513 #
514 # First are those enums that are not part of the
515 # property, but are defined by the code in this file.
516 # By convention these have all-caps names. We use the
517 # lowercased name for these.
518 #
519 # Second are enums that are needed to get the
520 # algorithms below to work and/or to get regexec.c to
521 # compile, but don't exist in all Unicode releases.
522 # These are handled outside this loop as
523 # 'unused_enums' (as they are unused they all get
524 # collapsed into a single column, and their names
525 # don't matter)
526 if (grep { $_ eq $enum } @input_enums) {
527 $short_enum = $enum
528 }
529 else {
530 $short_enum = lc $enum;
531 }
532 }
533
534 # If our short name is too long, or we already know that
535 # the name is an abbreviation, truncate to make sure it's
536 # short enough, and remember that we did this so we can
537 # later add a comment in the generated file
538 if (length $short_enum > $max_hdr_len) {
539 # First try using just the uppercase letters of the name;
540 # if it is something like FooBar, FB is a better
541 # abbreviation than Foo. That's not the case if it is
542 # entirely lowercase.
543 my $uc = $short_enum;
544 $uc =~ s/[[:^upper:]]//g;
545 $short_enum = $uc if length $uc > 1
546 && length $uc < length $short_enum;
547
548 $short_enum = substr($short_enum, 0, $max_hdr_len);
549 $is_official_name = 0;
550 }
551 }
552
553 # If the name we are to display conflicts, try another.
554 if (grep { $_ eq $short_enum } @short_names) {
555 $is_official_name = 0;
556 do { # The increment operator on strings doesn't work on
557 # those containing an '_', so get rid of any final
558 # portion.
559 $short_enum =~ s/_//g;
560 $short_enum++;
561 } while grep { $_ eq $short_enum } @short_names;
562 }
563
564 push @short_names, $short_enum;
565 $short_enum_name{$enum} = $short_enum;
566 $need_explanation{$enum} = $short_enum unless $is_official_name;
567 }
568 } # End of calculating short enum names for certain properties
569
226b74db
KW
570 # Assign a value to each element of the enum type we are creating.
571 # The default value always gets 0; the others are arbitrarily
2c490b6a
KW
572 # assigned, but for the properties which have the extra table, it is
573 # in the order we have computed above so the rows and columns appear
574 # alphabetically by heading abbreviation.
27a619f7
KW
575 my $enum_val = 0;
576 my $canonical_default = prop_value_aliases($prop_name, $default);
577 $default = $canonical_default if defined $canonical_default;
578 $enums{$default} = $enum_val++;
226b74db 579
2c490b6a
KW
580 for my $enum (sort { ($name =~ $property_needs_table_re)
581 ? lc $short_enum_name{$a}
582 cmp lc $short_enum_name{$b}
583 : lc $a cmp lc $b
584 } @enums)
585 {
27a619f7
KW
586 $enums{$enum} = $enum_val++ unless exists $enums{$enum};
587 }
588
2c490b6a
KW
589 # Now calculate the data for the special tables output for these
590 # properties.
591 if ($name =~ $property_needs_table_re) {
27a619f7 592
226b74db
KW
593 # The data includes the hashes %gcb_enums, %lb_enums, etc.
594 # Similarly we calculate column headings for the tables.
595 #
27a619f7 596 # We use string evals to allow the same code to work on
226b74db 597 # all the tables
27a619f7 598
27a619f7
KW
599 # Skip if we've already done this code, which populated
600 # this hash
601 if (eval "! \%${type}_enums") {
602
226b74db 603 # For each enum in the type ...
2c490b6a 604 foreach my $enum (keys %enums) {
27a619f7 605 my $value = $enums{$enum};
2c490b6a 606 my $short_enum = $short_enum_name{$enum};
27a619f7
KW
607
608 # Remember the mapping from the property value
609 # (enum) name to its value.
610 eval "\$${type}_enums{$enum} = $value";
611 die $@ if $@;
612
613 # Remember the inverse mapping to the short name
614 # so that we can properly label the generated
615 # table's rows and columns
2c490b6a 616 eval "\$${type}_short_enums[$value] = '$short_enum'";
27a619f7 617 die $@ if $@;
2c490b6a
KW
618
619 # And note the abbreviations that need explanation
620 if ($need_explanation{$enum}) {
621 eval "\$${type}_abbreviations{$short_enum} = '$enum'";
622 die $@ if $@;
623 }
7e54b87f 624 }
2027d365
KW
625
626 # Each unused enum has the same value. They all are collapsed
627 # into one row and one column, named $unused_table_hdr.
628 if (@unused_enums) {
629 eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'";
630 die $@ if $@;
631
632 foreach my $enum (@unused_enums) {
633 eval "\$${type}_enums{$enum} = $unused_enum_value";
634 die $@ if $@;
635 }
636 }
99f21fb9 637 }
19a5f1d5 638 }
99f21fb9 639
cf2cd619
KW
640 # The short property names tend to be two lower case letters, but it
641 # looks better for those if they are upper. XXX
19a5f1d5 642 $short_name = uc($short_name) if length($short_name) < 3
cf2cd619 643 || substr($short_name, 0, 1) =~ /[[:lower:]]/;
19a5f1d5 644 $name_prefix = "${short_name}_";
cdc243dd 645
226b74db 646 # Start the enum definition for this map
f99e0590 647 my @enum_definition;
19a5f1d5
KW
648 my @enum_list;
649 foreach my $enum (keys %enums) {
650 $enum_list[$enums{$enum}] = $enum;
99f21fb9 651 }
19a5f1d5 652 foreach my $i (0 .. @enum_list - 1) {
f99e0590 653 push @enum_definition, ",\n" if $i > 0;
34623dbb 654
19a5f1d5 655 my $name = $enum_list[$i];
f99e0590 656 push @enum_definition, "\t${name_prefix}$name = $i";
19a5f1d5 657 }
2027d365
KW
658 if (@unused_enums) {
659 foreach my $unused (@unused_enums) {
660 push @enum_definition,
661 ",\n\t${name_prefix}$unused = $unused_enum_value";
662 }
663 }
34623dbb 664
18230d9d 665 # For an 'l' property, we need extra enums, because some of the
34623dbb
KW
666 # elements are lists. Each such distinct list is placed in its own
667 # auxiliary map table. Here, we go through the inversion map, and for
668 # each distinct list found, create an enum value for it, numbered -1,
669 # -2, ....
670 my %multiples;
671 my $aux_table_prefix = "AUX_TABLE_";
18230d9d 672 if ($input_format =~ /l/) {
34623dbb
KW
673 foreach my $element (@$invmap) {
674
675 # A regular scalar is not one of the lists we're looking for
676 # at this stage.
677 next unless ref $element;
678
18230d9d
KW
679 my $joined;
680 if ($input_format =~ /a/) { # These are already ordered
681 $joined = join ",", @$element;
682 }
683 else {
18072598 684 $joined = join ",", sort caselessly @$element;
18230d9d 685 }
34623dbb
KW
686 my $already_found = exists $multiples{$joined};
687
688 my $i;
689 if ($already_found) { # Use any existing one
690 $i = $multiples{$joined};
691 }
692 else { # Otherwise increment to get a new table number
693 $i = keys(%multiples) + 1;
694 $multiples{$joined} = $i;
695 }
696
697 # This changes the inversion map for this entry to not be the
698 # list
699 $element = "use_$aux_table_prefix$i";
700
701 # And add to the enum values
702 if (! $already_found) {
f99e0590 703 push @enum_definition, ",\n\t${name_prefix}$element = -$i";
34623dbb
KW
704 }
705 }
706 }
707
18230d9d 708 $enum_declaration_type = "${name_prefix}enum";
f99e0590 709
c454388e
KW
710 # Finished with the enum definition. Inversion map stuff is used only
711 # by regexec or utf-8 (if it is for code points) , unless it is in the
712 # enum exception list
713 my $where = (exists $where_to_define_enums{$name})
714 ? $where_to_define_enums{$name}
715 : ($input_format =~ /a/)
716 ? 'PERL_IN_UTF8_C'
717 : 'PERL_IN_REGEXEC_C';
718
8ec55631
KW
719 if (! exists $public_enums{$name}) {
720 switch_pound_if($name, $where, $charset);
721 }
722 else {
723 end_charset_pound_if;
724 end_file_pound_if;
725 start_charset_pound_if($charset, 1);
726 }
c454388e
KW
727
728 # If the enum only contains one element, that is a dummy, default one
f99e0590
KW
729 if (scalar @enum_definition > 1) {
730
731 # Currently unneeded
732 #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ",
733 # ..scalar keys %enums, "\n";
734
735 if ($input_format =~ /l/) {
736 print $out_fh
737 "\n",
738 "/* Negative enum values indicate the need to use an",
739 " auxiliary table\n",
740 " * consisting of the list of enums this one expands to.",
741 " The absolute\n",
742 " * values of the negative enums are indices into a table",
743 " of the auxiliary\n",
744 " * tables' addresses */";
745 }
746 print $out_fh "\ntypedef enum {\n";
747 print $out_fh join "", @enum_definition;
748 print $out_fh "\n";
18230d9d 749 print $out_fh "} $enum_declaration_type;\n";
f99e0590 750 }
19a5f1d5 751
8ec55631 752 switch_pound_if($name, $where, $charset);
d74e7480 753
40d2776f
KW
754 # The inversion lists here have to be UV because inversion lists are
755 # capable of storing any code point, and even though the the ones here
756 # are only Unicode ones, which need just 21 bits, they are linked to
757 # directly, rather than copied. The inversion map and aux tables also
758 # only need be 21 bits, and so we can get away with declaring them
759 # 32-bits to save a little space and memory (on some 64-bit
760 # platforms), as they are copied.
18230d9d
KW
761 $invmap_declaration_type = ($input_format =~ /s/)
762 ? $enum_declaration_type
40d2776f 763 : "I32";
18230d9d
KW
764 $aux_declaration_type = ($input_format =~ /s/)
765 ? $enum_declaration_type
40d2776f 766 : "U32";
18230d9d 767
19a5f1d5 768 $output_format = "${name_prefix}%s";
34623dbb
KW
769
770 # If there are auxiliary tables, output them.
771 if (%multiples) {
772
773 print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";
774
775 # Invert keys and values
776 my %inverted_mults;
777 while (my ($key, $value) = each %multiples) {
778 $inverted_mults{$value} = $key;
779 }
780
781 # Output them in sorted order
782 my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;
783
784 # Keep track of how big each aux table is
785 my @aux_counts;
786
787 # Output each aux table.
788 foreach my $table_number (@sorted_table_list) {
789 my $table = $inverted_mults{$table_number};
cef72199 790 output_table_header($out_fh,
cf2cd619
KW
791 $aux_declaration_type,
792 "$name_prefix$aux_table_prefix$table_number");
34623dbb 793
cf2cd619
KW
794 # Earlier, we joined the elements of this table together with
795 # a comma
34623dbb
KW
796 my @elements = split ",", $table;
797
798 $aux_counts[$table_number] = scalar @elements;
799 for my $i (0 .. @elements - 1) {
800 print $out_fh ",\n" if $i > 0;
18230d9d
KW
801 if ($input_format =~ /a/) {
802 printf $out_fh "\t0x%X", $elements[$i];
803 }
804 else {
805 print $out_fh "\t${name_prefix}$elements[$i]";
806 }
34623dbb 807 }
cef72199
KW
808
809 print $out_fh "\n";
810 output_table_trailer();
34623dbb
KW
811 }
812
813 # Output the table that is indexed by the absolute value of the
814 # aux table enum and contains pointers to the tables output just
815 # above
cef72199
KW
816 output_table_header($out_fh, "$aux_declaration_type *",
817 "${name_prefix}${aux_table_prefix}ptrs");
34623dbb
KW
818 print $out_fh "\tNULL,\t/* Placeholder */\n";
819 for my $i (1 .. @sorted_table_list) {
820 print $out_fh ",\n" if $i > 1;
821 print $out_fh "\t$name_prefix$aux_table_prefix$i";
822 }
cef72199
KW
823 print $out_fh "\n";
824 output_table_trailer();
34623dbb
KW
825
826 print $out_fh
827 "\n/* Parallel table to the above, giving the number of elements"
828 . " in each table\n * pointed to */\n";
cef72199
KW
829 output_table_header($out_fh, "U8",
830 "${name_prefix}${aux_table_prefix}lengths");
34623dbb
KW
831 print $out_fh "\t0,\t/* Placeholder */\n";
832 for my $i (1 .. @sorted_table_list) {
cf2cd619
KW
833 print $out_fh ",\n" if $i > 1;
834 print $out_fh
835 "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
34623dbb 836 }
cef72199
KW
837 print $out_fh "\n";
838 output_table_trailer();
34623dbb 839 } # End of outputting the auxiliary and associated tables
463b4a67
KW
840
841 # The scx property used in regexec.c needs a specialized table which
842 # is most convenient to output here, while the data structures set up
843 # above are still extant. This table contains the code point that is
844 # the zero digit of each script, indexed by script enum value.
845 if (lc $short_name eq 'scx') {
846 my @decimals_invlist = prop_invlist("Numeric_Type=Decimal");
847 my %script_zeros;
848
849 # Find all the decimal digits. The 0 of each range is always the
850 # 0th element, except in some early Unicode releases, so check for
851 # that.
852 for (my $i = 0; $i < @decimals_invlist; $i += 2) {
853 my $code_point = $decimals_invlist[$i];
a1c8344d 854 next if num(chr($code_point)) ne '0';
463b4a67
KW
855
856 # Turn the scripts this zero is in into a list.
857 my @scripts = split ",",
858 charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok');
859 $code_point = sprintf("0x%x", $code_point);
860
861 foreach my $script (@scripts) {
862 if (! exists $script_zeros{$script}) {
863 $script_zeros{$script} = $code_point;
864 }
865 elsif (ref $script_zeros{$script}) {
866 push $script_zeros{$script}->@*, $code_point;
867 }
868 else { # Turn into a list if this is the 2nd zero of the
869 # script
870 my $existing = $script_zeros{$script};
871 undef $script_zeros{$script};
872 push $script_zeros{$script}->@*, $existing, $code_point;
873 }
874 }
875 }
876
877 # @script_zeros contains the zero, sorted by the script's enum
878 # value
879 my @script_zeros;
880 foreach my $script (keys %script_zeros) {
881 my $enum_value = $enums{$script};
882 $script_zeros[$enum_value] = $script_zeros{$script};
883 }
884
885 print $out_fh
886 "\n/* This table, indexed by the script enum, gives the zero"
887 . " code point for that\n * script; 0 if the script has multiple"
888 . " digit sequences. Scripts without a\n * digit sequence use"
889 . " ASCII [0-9], hence are marked '0' */\n";
cef72199 890 output_table_header($out_fh, "UV", "script_zeros");
463b4a67
KW
891 for my $i (0 .. @script_zeros - 1) {
892 my $code_point = $script_zeros[$i];
893 if (defined $code_point) {
894 $code_point = " 0" if ref $code_point;
895 print $out_fh "\t$code_point";
896 }
897 elsif (lc $enum_list[$i] eq 'inherited') {
898 print $out_fh "\t 0";
899 }
900 else { # The only digits a script without its own set accepts
901 # is [0-9]
902 print $out_fh "\t'0'";
903 }
904 print $out_fh "," if $i < @script_zeros - 1;
905 print $out_fh "\t/* $enum_list[$i] */";
906 print $out_fh "\n";
907 }
cef72199 908 output_table_trailer();
463b4a67 909 } # End of special handling of scx
99f21fb9
KW
910 }
911 else {
912 die "'$input_format' invmap() format for '$prop_name' unimplemented";
913 }
914
915 die "No inversion map for $prop_name" unless defined $invmap
916 && ref $invmap eq 'ARRAY'
917 && $count;
918
226b74db 919 # Now output the inversion map proper
cef72199
KW
920 $charset = "for $charset" if $charset;
921 output_table_header($out_fh, $invmap_declaration_type,
922 "${name}_invmap",
923 $charset);
99f21fb9
KW
924
925 # The main body are the scalars passed in to this routine.
926 for my $i (0 .. $count - 1) {
927 my $element = $invmap->[$i];
02f811dd 928 my $full_element_name = prop_value_aliases($prop_name, $element);
18230d9d
KW
929 if ($input_format =~ /a/ && $element !~ /\D/) {
930 $element = ($element == 0)
931 ? 0
932 : sprintf("0x%X", $element);
933 }
934 else {
02f811dd
KW
935 $element = $full_element_name if defined $full_element_name;
936 $element = $name_prefix . $element;
18230d9d 937 }
99f21fb9
KW
938 print $out_fh "\t$element";
939 print $out_fh "," if $i < $count - 1;
940 print $out_fh "\n";
941 }
cef72199 942 output_table_trailer();
99f21fb9
KW
943}
944
5a7e5385 945sub mk_invlist_from_sorted_cp_list {
a02047bf
KW
946
947 # Returns an inversion list constructed from the sorted input array of
948 # code points
949
950 my $list_ref = shift;
951
99f21fb9
KW
952 return unless @$list_ref;
953
a02047bf
KW
954 # Initialize to just the first element
955 my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);
956
957 # For each succeeding element, if it extends the previous range, adjust
958 # up, otherwise add it.
959 for my $i (1 .. @$list_ref - 1) {
960 if ($invlist[-1] == $list_ref->[$i]) {
961 $invlist[-1]++;
962 }
963 else {
964 push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
965 }
966 }
967 return @invlist;
968}
969
970# Read in the Case Folding rules, and construct arrays of code points for the
971# properties we need.
d2aadf62 972my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding");
a02047bf
KW
973die "Could not find inversion map for Case_Folding" unless defined $format;
974die "Incorrect format '$format' for Case_Folding inversion map"
347b9066
KW
975 unless $format eq 'al'
976 || $format eq 'a';
d2aadf62
KW
977sub _Perl_IVCF {
978
979 # This creates a map of the inversion of case folding. i.e., given a
980 # character, it gives all the other characters that fold to it.
981 #
982 # Inversion maps function kind of like a hash, with the inversion list
983 # specifying the buckets (keys) and the inversion maps specifying the
984 # contents of the corresponding bucket. Effectively this function just
985 # swaps the keys and values of the case fold hash. But there are
986 # complications. Most importantly, More than one character can each have
987 # the same fold. This is solved by having a list of characters that fold
988 # to a given one.
989
990 my %new;
991
992 # Go through the inversion list.
993 for (my $i = 0; $i < @$cp_ref; $i++) {
994
995 # Skip if nothing folds to this
996 next if $folds_ref->[$i] == 0;
997
998 # This entry which is valid from here to up (but not including) the
999 # next entry is for the next $count characters, so that, for example,
1000 # A-Z is represented by one entry.
1001 my $cur_list = $cp_ref->[$i];
1002 my $count = $cp_ref->[$i+1] - $cur_list;
1003
1004 # The fold of [$i] can be not just a single character, but a sequence
1005 # of multiple ones. We deal with those here by just creating a string
1006 # consisting of them. Otherwise, we use the single code point [$i]
1007 # folds to.
1008 my $cur_map = (ref $folds_ref->[$i])
1009 ? join "", map { chr } $folds_ref->[$i]->@*
1010 : $folds_ref->[$i];
1011
1012 # Expand out this range
1013 while ($count > 0) {
1014 push @{$new{$cur_map}}, $cur_list;
1015
1016 # A multiple-character fold is a string, and shouldn't need
1017 # incrementing anyway
1018 if (ref $folds_ref->[$i]) {
1019 die sprintf("Case fold for %x is multiple chars; should have"
1020 . " a count of 1, but instead it was $count", $count)
1021 unless $count == 1;
1022 }
1023 else {
1024 $cur_map++;
1025 $cur_list++;
1026 }
1027 $count--;
1028 }
1029 }
1030
1031 # Now go through and make some adjustments. We add synthetic entries for
1032 # two cases.
1033 # 1) Two or more code points can fold to the same multiple character,
1034 # sequence, as U+FB05 and U+FB06 both fold to 'st'. This code is only
1035 # for single character folds, but FB05 and FB06 are single characters
1036 # that are equivalent folded, so we add entries so that they are
1037 # considered to fold to each other
1038 # 2) If two or more above-Latin1 code points fold to the same Latin1 range
1039 # one, we also add entries so that they are considered to fold to each
1040 # other. This is so that under /aa or /l matching, where folding to
1041 # their Latin1 range code point is illegal, they still can fold to each
1042 # other. This situation happens in Unicode 3.0.1, but probably no
1043 # other version.
1044 foreach my $fold (keys %new) {
db95f459 1045 my $folds_to_string = $fold =~ /\D/;
d2aadf62
KW
1046
1047 # If the bucket contains only one element, convert from an array to a
1048 # scalar
1049 if (scalar $new{$fold}->@* == 1) {
1050 $new{$fold} = $new{$fold}[0];
1051 }
1052 else {
1053
1054 # Otherwise, sort numerically. This places the highest code point
1055 # in the list at the tail end. This is because Unicode keeps the
1056 # lowercase code points as higher ordinals than the uppercase, at
1057 # least for the ones that matter so far. These are synthetic
1058 # entries, and we want to predictably have the lowercase (which is
1059 # more likely to be what gets folded to) in the same corresponding
1060 # position, so that other code can rely on that. If some new
1061 # version of Unicode came along that violated this, we might have
1062 # to change so that the sort is based on upper vs lower instead.
1063 # (The lower-comes-after isn't true of native EBCDIC, but here we
1064 # are dealing strictly with Unicode values).
1065 @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@*
1066 unless $folds_to_string;
1067 # We will be working with a copy of this sorted entry.
1068 my @source_list = $new{$fold}->@*;
1069 if (! $folds_to_string) {
1070
1071 # This handles situation 2) listed above, which only arises if
1072 # what is being folded-to (the fold) is in the Latin1 range.
1073 if ($fold > 255 ) {
1074 undef @source_list;
1075 }
1076 else {
1077 # And it only arises if there are two or more folders that
1078 # fold to it above Latin1. We look at just those.
1079 @source_list = grep { $_ > 255 } @source_list;
1080 undef @source_list if @source_list == 1;
1081 }
1082 }
1083
1084 # Here, we've found the items we want to set up synthetic folds
1085 # for. Add entries so that each folds to each other.
1086 foreach my $cp (@source_list) {
1087 my @rest = grep { $cp != $_ } @source_list;
1088 if (@rest == 1) {
1089 $new{$cp} = $rest[0];
1090 }
1091 else {
1092 push @{$new{$cp}}, @rest;
1093 }
1094 }
1095 }
1096
1097 # We don't otherwise deal with multiple-character folds
1098 delete $new{$fold} if $folds_to_string;
1099 }
1100
1101
1102 # Now we have a hash that is the inversion of the case fold property.
cb2d98ed
KW
1103 # First find the maximum number of code points that fold to the same one.
1104 foreach my $fold_to (keys %new) {
1105 if (ref $new{$fold_to}) {
1106 my $folders_count = scalar @{$new{$fold_to}};
1107 $max_fold_froms = $folders_count if $folders_count > $max_fold_froms;
1108 }
1109 }
d2aadf62 1110
cb2d98ed 1111 # Then convert the hash to an inversion map.
d2aadf62
KW
1112 my @sorted_folds = sort { $a <=> $b } keys %new;
1113 my (@invlist, @invmap);
1114
1115 # We know that nothing folds to the controls (whose ordinals start at 0).
1116 # And the first real entries are the lowest in the hash.
1117 push @invlist, 0, $sorted_folds[0];
1118 push @invmap, 0, $new{$sorted_folds[0]};
1119
1120 # Go through the remainder of the hash keys (which are the folded code
1121 # points)
1122 for (my $i = 1; $i < @sorted_folds; $i++) {
1123
1124 # Get the current one, and the one prior to it.
1125 my $fold = $sorted_folds[$i];
1126 my $prev_fold = $sorted_folds[$i-1];
1127
1128 # If the current one is not just 1 away from the prior one, we close
1129 # out the range containing the previous fold, and know that the gap
1130 # doesn't have anything that folds.
1131 if ($fold - 1 != $prev_fold) {
1132 push @invlist, $prev_fold + 1;
1133 push @invmap, 0;
1134
1135 # And start a new range
1136 push @invlist, $fold;
1137 push @invmap, $new{$fold};
1138 }
1139 elsif ($new{$fold} - 1 != $new{$prev_fold}) {
1140
1141 # Here the current fold is just 1 greater than the previous, but
1142 # the new map isn't correspondingly 1 greater than the previous,
1143 # the old range is ended, but since there is no gap, we don't have
1144 # to insert anything else.
1145 push @invlist, $fold;
1146 push @invmap, $new{$fold};
1147
1148 } # else { Otherwise, this new entry just extends the previous }
1149
1150 die "In IVCF: $invlist[-1] <= $invlist[-2]"
1151 if $invlist[-1] <= $invlist[-2];
1152 }
1153
1154 # And add an entry that indicates that everything above this, to infinity,
1155 # does not have a case fold.
1156 push @invlist, $sorted_folds[-1] + 1;
1157 push @invmap, 0;
1158
9a9a3246
KW
1159 push @invlist, 0x110000;
1160 push @invmap, 0;
1161
d2aadf62
KW
1162 # All Unicode versions have some places where multiple code points map to
1163 # the same one, so the format always has an 'l'
1164 return \@invlist, \@invmap, 'al', $default;
1165}
1166
99f21fb9
KW
1167sub prop_name_for_cmp ($) { # Sort helper
1168 my $name = shift;
1169
1170 # Returns the input lowercased, with non-alphas removed, as well as
1171 # everything starting with a comma
1172
1173 $name =~ s/,.*//;
1174 $name =~ s/[[:^alpha:]]//g;
1175 return lc $name;
1176}
1177
892d8259 1178sub UpperLatin1 {
8843f0de
KW
1179 my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
1180 return \@return;
892d8259
KW
1181}
1182
a2aeff50
KW
1183sub _Perl_CCC_non0_non230 {
1184
1185 # Create an inversion list of code points with non-zero canonical
1186 # combining class that also don't have 230 as the class number. This is
1187 # part of a Unicode Standard rule
1188
1189 my @nonzeros = prop_invlist("ccc=0");
1190 shift @nonzeros; # Invert so is "ccc != 0"
1191
1192 my @return;
1193
1194 # Expand into list of code points, while excluding those with ccc == 230
1195 for (my $i = 0; $i < @nonzeros; $i += 2) {
1196 my $upper = ($i + 1) < @nonzeros
1197 ? $nonzeros[$i+1] - 1 # In range
1198 : $Unicode::UCD::MAX_CP; # To infinity.
1199 for my $j ($nonzeros[$i] .. $upper) {
1200 my @ccc_names = prop_value_aliases("ccc", charprop($j, "ccc"));
1201
1202 # Final element in @ccc_names will be all numeric
1203 push @return, $j if $ccc_names[-1] != 230;
1204 }
1205 }
1206
1207 @return = sort { $a <=> $b } @return;
1208 @return = mk_invlist_from_sorted_cp_list(\@return);
1209 return \@return;
1210}
1211
289ce9cc
KW
1212sub output_table_common {
1213
1214 # Common subroutine to actually output the generated rules table.
1215
1216 my ($property,
1217 $table_value_defines_ref,
1218 $table_ref,
1219 $names_ref,
1220 $abbreviations_ref) = @_;
1221 my $size = @$table_ref;
1222
1223 # Output the #define list, sorted by numeric value
1224 if ($table_value_defines_ref) {
1225 my $max_name_length = 0;
1226 my @defines;
1227
1228 # Put in order, and at the same time find the longest name
1229 while (my ($enum, $value) = each %$table_value_defines_ref) {
1230 $defines[$value] = $enum;
1231
1232 my $length = length $enum;
1233 $max_name_length = $length if $length > $max_name_length;
1234 }
1235
1236 print $out_fh "\n";
1237
1238 # Output, so that the values are vertically aligned in a column after
1239 # the longest name
1240 foreach my $i (0 .. @defines - 1) {
1241 next unless defined $defines[$i];
1242 printf $out_fh "#define %-*s %2d\n",
1243 $max_name_length,
1244 $defines[$i],
1245 $i;
1246 }
1247 }
1248
1249 my $column_width = 2; # We currently allow 2 digits for the number
1250
a57a2641
KW
1251 # Being above a U8 is not currently handled
1252 my $table_type = 'U8';
289ce9cc
KW
1253
1254 # If a name is longer than the width set aside for a column, its column
1255 # needs to have increased spacing so that the name doesn't get truncated
1256 # nor run into an adjacent column
1257 my @spacers;
1258
2027d365
KW
1259 # Is there a row and column for unused values in this release?
1260 my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr;
289ce9cc
KW
1261
1262 for my $i (0 .. $size - 1) {
1263 no warnings 'numeric';
289ce9cc
KW
1264 $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
1265 }
1266
cf2cd619
KW
1267 output_table_header($out_fh, $table_type, "${property}_table", undef,
1268 $size, $size);
289ce9cc
KW
1269
1270 # Calculate the column heading line
1271 my $header_line = "/* "
1272 . (" " x $max_hdr_len) # We let the row heading meld to
1273 # the '*/' for those that are at
1274 # the max
1275 . " " x 3; # Space for '*/ '
1276 # Now each column
1277 for my $i (0 .. $size - 1) {
1278 $header_line .= sprintf "%s%*s",
1279 $spacers[$i],
1280 $column_width + 1, # 1 for the ','
1281 $names_ref->[$i];
1282 }
1283 $header_line .= " */\n";
1284
1285 # If we have annotations, output it now.
2027d365 1286 if ($has_unused || scalar %$abbreviations_ref) {
289ce9cc 1287 my $text = "";
18072598 1288 foreach my $abbr (sort caselessly keys %$abbreviations_ref) {
289ce9cc
KW
1289 $text .= "; " if $text;
1290 $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
1291 }
2027d365
KW
1292 if ($has_unused) {
1293 $text .= "; $unused_table_hdr stands for 'unused in this Unicode"
0ebd57bb 1294 . " release (and the data in its row and column are garbage)"
289ce9cc
KW
1295 }
1296
1297 my $indent = " " x 3;
1298 $text = $indent . "/* $text */";
1299
1300 # Wrap the text so that it is no wider than the table, which the
1301 # header line gives.
1302 my $output_width = length $header_line;
1303 while (length $text > $output_width) {
1304 my $cur_line = substr($text, 0, $output_width);
1305
1306 # Find the first blank back from the right end to wrap at.
1307 for (my $i = $output_width -1; $i > 0; $i--) {
1308 if (substr($text, $i, 1) eq " ") {
1309 print $out_fh substr($text, 0, $i), "\n";
1310
1311 # Set so will look at just the remaining tail (which will
1312 # be indented and have a '*' after the indent
1313 $text = $indent . " * " . substr($text, $i + 1);
1314 last;
1315 }
1316 }
1317 }
1318
1319 # And any remaining
1320 print $out_fh $text, "\n" if $text;
1321 }
1322
1323 # We calculated the header line earlier just to get its width so that we
1324 # could make sure the annotations fit into that.
1325 print $out_fh $header_line;
1326
1327 # Now output the bulk of the table.
1328 for my $i (0 .. $size - 1) {
1329
1330 # First the row heading.
1331 printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
1332 print $out_fh "{"; # Then the brace for this row
1333
1334 # Then each column
1335 for my $j (0 .. $size -1) {
1336 print $out_fh $spacers[$j];
1337 printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
1338 print $out_fh "," if $j < $size - 1;
1339 }
1340 print $out_fh " }";
1341 print $out_fh "," if $i < $size - 1;
1342 print $out_fh "\n";
1343 }
1344
cef72199 1345 output_table_trailer();
289ce9cc
KW
1346}
1347
973a28ed
KW
1348sub output_GCB_table() {
1349
1350 # Create and output the pair table for use in determining Grapheme Cluster
1351 # Breaks, given in http://www.unicode.org/reports/tr29/.
b0e24409
KW
1352 my %gcb_actions = (
1353 GCB_NOBREAK => 0,
1354 GCB_BREAKABLE => 1,
1355 GCB_RI_then_RI => 2, # Rules 12 and 13
1356 GCB_EX_then_EM => 3, # Rule 10
c0734505 1357 GCB_Maybe_Emoji_NonBreak => 4,
b0e24409 1358 );
973a28ed
KW
1359
1360 # The table is constructed in reverse order of the rules, to make the
1361 # lower-numbered, higher priority ones override the later ones, as the
1362 # algorithm stops at the earliest matching rule
1363
1364 my @gcb_table;
1365 my $table_size = @gcb_short_enums;
1366
1367 # Otherwise, break everywhere.
b0e24409 1368 # GB99 Any ÷ Any
973a28ed
KW
1369 for my $i (0 .. $table_size - 1) {
1370 for my $j (0 .. $table_size - 1) {
1371 $gcb_table[$i][$j] = 1;
1372 }
1373 }
1374
b0e24409
KW
1375 # Do not break within emoji flag sequences. That is, do not break between
1376 # regional indicator (RI) symbols if there is an odd number of RI
1377 # characters before the break point. Must be resolved in runtime code.
1378 #
c492f156 1379 # GB12 sot (RI RI)* RI × RI
b0e24409
KW
1380 # GB13 [^RI] (RI RI)* RI × RI
1381 $gcb_table[$gcb_enums{'Regional_Indicator'}]
1382 [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};
1383
c0734505
KW
1384 # Post 11.0: GB11 \p{Extended_Pictographic} Extend* ZWJ
1385 # × \p{Extended_Pictographic}
a9256a75 1386 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'ExtPict_XX'}] =
c0734505
KW
1387 $gcb_actions{GCB_Maybe_Emoji_NonBreak};
1388
1389 # This and the rule GB10 obsolete starting with Unicode 11.0, can be left
1390 # in as there are no code points that match, so the code won't ever get
1391 # executed.
b0e24409 1392 # Do not break within emoji modifier sequences or emoji zwj sequences.
c0734505 1393 # Pre 11.0: GB11 ZWJ × ( Glue_After_Zwj | E_Base_GAZ )
b0e24409
KW
1394 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
1395 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;
1396
1397 # GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier
1398 $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
1399 = $gcb_actions{GCB_EX_then_EM};
1400 $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
1401 $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;
1402
1403 # Do not break before extending characters or ZWJ.
973a28ed 1404 # Do not break before SpacingMarks, or after Prepend characters.
973a28ed 1405 # GB9b Prepend ×
b0e24409
KW
1406 # GB9a × SpacingMark
1407 # GB9 × ( Extend | ZWJ )
973a28ed 1408 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1409 $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
b0e24409
KW
1410 $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
1411 $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
1412 $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
973a28ed
KW
1413 }
1414
973a28ed
KW
1415 # Do not break Hangul syllable sequences.
1416 # GB8 ( LVT | T) × T
1417 $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
1418 $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;
1419
1420 # GB7 ( LV | V ) × ( V | T )
1421 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
1422 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
1423 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
1424 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;
1425
1426 # GB6 L × ( L | V | LV | LVT )
1427 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
1428 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
1429 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
1430 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;
1431
289ce9cc
KW
1432 # Do not break between a CR and LF. Otherwise, break before and after
1433 # controls.
973a28ed
KW
1434 # GB5 ÷ ( Control | CR | LF )
1435 # GB4 ( Control | CR | LF ) ÷
1436 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1437 $gcb_table[$i][$gcb_enums{'Control'}] = 1;
973a28ed
KW
1438 $gcb_table[$i][$gcb_enums{'CR'}] = 1;
1439 $gcb_table[$i][$gcb_enums{'LF'}] = 1;
289ce9cc 1440 $gcb_table[$gcb_enums{'Control'}][$i] = 1;
973a28ed
KW
1441 $gcb_table[$gcb_enums{'CR'}][$i] = 1;
1442 $gcb_table[$gcb_enums{'LF'}][$i] = 1;
1443 }
1444
1445 # GB3 CR × LF
1446 $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;
1447
b0e24409 1448 # Break at the start and end of text, unless the text is empty
973a28ed
KW
1449 # GB1 sot ÷
1450 # GB2 ÷ eot
1451 for my $i (0 .. @gcb_table - 1) {
289ce9cc
KW
1452 $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
1453 $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
973a28ed 1454 }
289ce9cc 1455 $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;
973a28ed 1456
b0e24409 1457 output_table_common('GCB', \%gcb_actions,
289ce9cc 1458 \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
973a28ed
KW
1459}
1460
6b659339
KW
1461sub output_LB_table() {
1462
1463 # Create and output the enums, #defines, and pair table for use in
1464 # determining Line Breaks. This uses the default line break algorithm,
1465 # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
1466 # in that page, as the Unicode-furnished tests assume that tailoring.
1467
6b659339
KW
1468 # The result is really just true or false. But we follow along with tr14,
1469 # creating a rule which is false for something like X SP* X. That gets
1470 # encoding 2. The rest of the actions are synthetic ones that indicate
1471 # some context handling is required. These each are added to the
1472 # underlying 0, 1, or 2, instead of replacing them, so that the underlying
1473 # value can be retrieved. Actually only rules from 7 through 18 (which
1474 # are the ones where space matter) are possible to have 2 added to them.
1475 # The others below add just 0 or 1. It might be possible for one
1476 # synthetic rule to be added to another, yielding a larger value. This
1477 # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
1478 # names of the middle grouping below, it is impossible for that to occur
1479 # for them because they all start with mutually exclusive classes. That
1480 # the final rule can't be added to any of the others isn't obvious from
1481 # its name, so it is assigned a power of 2 higher than the others can get
1482 # to so any addition would preserve all data. (And the code will reach an
1483 # assert(0) on debugging builds should this happen.)
1484 my %lb_actions = (
1485 LB_NOBREAK => 0,
1486 LB_BREAKABLE => 1,
1487 LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,
1488
b0e24409 1489 LB_CM_ZWJ_foo => 3, # Rule 9
6b659339
KW
1490 LB_SP_foo => 6, # Rule 18
1491 LB_PR_or_PO_then_OP_or_HY => 9, # Rule 25
1492 LB_SY_or_IS_then_various => 11, # Rule 25
1493 LB_HY_or_BA_then_foo => 13, # Rule 21
b0e24409 1494 LB_RI_then_RI => 15, # Rule 30a
6b659339 1495
b0e24409 1496 LB_various_then_PO_or_PR => (1<<5), # Rule 25
6b659339
KW
1497 );
1498
6b659339
KW
1499 # Construct the LB pair table. This is based on the rules in
1500 # http://www.unicode.org/reports/tr14/, but modified as those rules are
1501 # designed for someone taking a string of text and sequentially going
1502 # through it to find the break opportunities, whereas, Perl requires
1503 # determining if a given random spot is a break opportunity, without
1504 # knowing all the entire string before it.
1505 #
1506 # The table is constructed in reverse order of the rules, to make the
1507 # lower-numbered, higher priority ones override the later ones, as the
1508 # algorithm stops at the earliest matching rule
1509
1510 my @lb_table;
1511 my $table_size = @lb_short_enums;
1512
1513 # LB31. Break everywhere else
1514 for my $i (0 .. $table_size - 1) {
1515 for my $j (0 .. $table_size - 1) {
1516 $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
1517 }
1518 }
1519
b0e24409
KW
1520 # LB30b Do not break between an emoji base and an emoji modifier.
1521 # EB × EM
1522 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
1523 = $lb_actions{'LB_NOBREAK'};
1524
1525 # LB30a Break between two regional indicator symbols if and only if there
1526 # are an even number of regional indicators preceding the position of the
1527 # break.
1528 # sot (RI RI)* RI × RI
1529 # [^RI] (RI RI)* RI × RI
289ce9cc 1530 $lb_table[$lb_enums{'Regional_Indicator'}]
b0e24409 1531 [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};
6b659339
KW
1532
1533 # LB30 Do not break between letters, numbers, or ordinary symbols and
b6dbf1d3
UC
1534 # non-East-Asian opening punctuation nor non-East-Asian closing
1535 # parentheses.
1536
1537 # (AL | HL | NU) × [OP-[\p{ea=F}\p{ea=W}\p{ea=H}]]
289ce9cc
KW
1538 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
1539 = $lb_actions{'LB_NOBREAK'};
1540 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
1541 = $lb_actions{'LB_NOBREAK'};
1542 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
1543 = $lb_actions{'LB_NOBREAK'};
6b659339 1544
b6dbf1d3 1545 # [CP-[\p{ea=F}\p{ea=W}\p{ea=H}]] × (AL | HL | NU)
289ce9cc
KW
1546 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
1547 = $lb_actions{'LB_NOBREAK'};
1548 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
1549 = $lb_actions{'LB_NOBREAK'};
1550 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
1551 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1552
1553 # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
1554 # IS × (AL | HL)
289ce9cc
KW
1555 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
1556 = $lb_actions{'LB_NOBREAK'};
1557 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1558 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1559
1560 # LB28 Do not break between alphabetics (“at”).
1561 # (AL | HL) × (AL | HL)
289ce9cc
KW
1562 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
1563 = $lb_actions{'LB_NOBREAK'};
1564 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
1565 = $lb_actions{'LB_NOBREAK'};
1566 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
1567 = $lb_actions{'LB_NOBREAK'};
1568 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
1569 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1570
1571 # LB27 Treat a Korean Syllable Block the same as ID.
1572 # (JL | JV | JT | H2 | H3) × IN
289ce9cc
KW
1573 $lb_table[$lb_enums{'JL'}][$lb_enums{'Inseparable'}]
1574 = $lb_actions{'LB_NOBREAK'};
1575 $lb_table[$lb_enums{'JV'}][$lb_enums{'Inseparable'}]
1576 = $lb_actions{'LB_NOBREAK'};
1577 $lb_table[$lb_enums{'JT'}][$lb_enums{'Inseparable'}]
1578 = $lb_actions{'LB_NOBREAK'};
1579 $lb_table[$lb_enums{'H2'}][$lb_enums{'Inseparable'}]
1580 = $lb_actions{'LB_NOBREAK'};
1581 $lb_table[$lb_enums{'H3'}][$lb_enums{'Inseparable'}]
1582 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1583
1584 # (JL | JV | JT | H2 | H3) × PO
289ce9cc
KW
1585 $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
1586 = $lb_actions{'LB_NOBREAK'};
1587 $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
1588 = $lb_actions{'LB_NOBREAK'};
1589 $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
1590 = $lb_actions{'LB_NOBREAK'};
1591 $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
1592 = $lb_actions{'LB_NOBREAK'};
1593 $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
1594 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1595
1596 # PR × (JL | JV | JT | H2 | H3)
289ce9cc
KW
1597 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
1598 = $lb_actions{'LB_NOBREAK'};
1599 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
1600 = $lb_actions{'LB_NOBREAK'};
1601 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
1602 = $lb_actions{'LB_NOBREAK'};
1603 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
1604 = $lb_actions{'LB_NOBREAK'};
1605 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
1606 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1607
1608 # LB26 Do not break a Korean syllable.
1609 # JL × (JL | JV | H2 | H3)
1610 $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
1611 $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1612 $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
1613 $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};
1614
1615 # (JV | H2) × (JV | JT)
1616 $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1617 $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1618 $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1619 $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1620
1621 # (JT | H3) × JT
1622 $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1623 $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1624
1625 # LB25 Do not break between the following pairs of classes relevant to
1626 # numbers, as tailored by example 7 in
1627 # http://www.unicode.org/reports/tr14/#Examples
1628 # We follow that tailoring because Unicode's test cases expect it
1629 # (PR | PO) × ( OP | HY )? NU
289ce9cc
KW
1630 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
1631 = $lb_actions{'LB_NOBREAK'};
1632 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
1633 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1634
1635 # Given that (OP | HY )? is optional, we have to test for it in code.
1636 # We add in the action (instead of overriding) for this, so that in
1637 # the code we can recover the underlying break value.
289ce9cc 1638 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1639 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
b6dbf1d3
UC
1640 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'East_Asian_OP'}]
1641 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1642 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1643 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1644 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339 1645 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1646 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339
KW
1647 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1648
1649 # ( OP | HY ) × NU
289ce9cc
KW
1650 $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
1651 = $lb_actions{'LB_NOBREAK'};
b6dbf1d3
UC
1652 $lb_table[$lb_enums{'East_Asian_OP'}][$lb_enums{'Numeric'}]
1653 = $lb_actions{'LB_NOBREAK'};
289ce9cc
KW
1654 $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
1655 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1656
1657 # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
1658 # which can be rewritten as:
1659 # NU (SY | IS)* × (NU | SY | IS | CL | CP )
289ce9cc
KW
1660 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
1661 = $lb_actions{'LB_NOBREAK'};
1662 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
1663 = $lb_actions{'LB_NOBREAK'};
1664 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
1665 = $lb_actions{'LB_NOBREAK'};
1666 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
1667 = $lb_actions{'LB_NOBREAK'};
1668 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
1669 = $lb_actions{'LB_NOBREAK'};
b6dbf1d3
UC
1670 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'East_Asian_CP'}]
1671 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1672
1673 # Like earlier where we have to test in code, we add in the action so
1674 # that we can recover the underlying values. This is done in rules
1675 # below, as well. The code assumes that we haven't added 2 actions.
1676 # Shoul a later Unicode release break that assumption, then tests
1677 # should start failing.
289ce9cc 1678 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
6b659339 1679 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1680 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
6b659339 1681 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1682 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
6b659339 1683 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1684 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
6b659339 1685 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1686 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
6b659339 1687 += $lb_actions{'LB_SY_or_IS_then_various'};
b6dbf1d3
UC
1688 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'East_Asian_CP'}]
1689 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1690 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
6b659339 1691 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1692 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
6b659339 1693 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1694 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
6b659339 1695 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1696 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
6b659339 1697 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1698 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
6b659339 1699 += $lb_actions{'LB_SY_or_IS_then_various'};
b6dbf1d3
UC
1700 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'East_Asian_CP'}]
1701 += $lb_actions{'LB_SY_or_IS_then_various'};
6b659339
KW
1702
1703 # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
1704 # which can be rewritten as:
1705 # NU (SY | IS)* (CL | CP)? × (PO | PR)
289ce9cc
KW
1706 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
1707 = $lb_actions{'LB_NOBREAK'};
1708 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
1709 = $lb_actions{'LB_NOBREAK'};
6b659339 1710
289ce9cc 1711 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1712 += $lb_actions{'LB_various_then_PO_or_PR'};
b6dbf1d3
UC
1713 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Postfix_Numeric'}]
1714 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1715 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1716 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1717 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1718 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1719 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
6b659339
KW
1720 += $lb_actions{'LB_various_then_PO_or_PR'};
1721
289ce9cc 1722 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1723 += $lb_actions{'LB_various_then_PO_or_PR'};
b6dbf1d3
UC
1724 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Prefix_Numeric'}]
1725 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1726 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1727 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1728 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1729 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1730 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
6b659339
KW
1731 += $lb_actions{'LB_various_then_PO_or_PR'};
1732
b0e24409
KW
1733 # LB24 Do not break between numeric prefix/postfix and letters, or between
1734 # letters and prefix/postfix.
1735 # (PR | PO) × (AL | HL)
289ce9cc
KW
1736 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
1737 = $lb_actions{'LB_NOBREAK'};
1738 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1739 = $lb_actions{'LB_NOBREAK'};
289ce9cc
KW
1740 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
1741 = $lb_actions{'LB_NOBREAK'};
1742 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1743 = $lb_actions{'LB_NOBREAK'};
6b659339 1744
b0e24409
KW
1745 # (AL | HL) × (PR | PO)
1746 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
1747 = $lb_actions{'LB_NOBREAK'};
1748 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
1749 = $lb_actions{'LB_NOBREAK'};
1750 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
1751 = $lb_actions{'LB_NOBREAK'};
1752 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
1753 = $lb_actions{'LB_NOBREAK'};
1754
1755 # LB23a Do not break between numeric prefixes and ideographs, or between
1756 # ideographs and numeric postfixes.
1757 # PR × (ID | EB | EM)
1758 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
1759 = $lb_actions{'LB_NOBREAK'};
1760 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
1761 = $lb_actions{'LB_NOBREAK'};
1762 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
1763 = $lb_actions{'LB_NOBREAK'};
1764
1765 # (ID | EB | EM) × PO
289ce9cc
KW
1766 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
1767 = $lb_actions{'LB_NOBREAK'};
b0e24409
KW
1768 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
1769 = $lb_actions{'LB_NOBREAK'};
1770 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
1771 = $lb_actions{'LB_NOBREAK'};
6b659339 1772
b0e24409 1773 # LB23 Do not break between digits and letters
6b659339 1774 # (AL | HL) × NU
289ce9cc
KW
1775 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
1776 = $lb_actions{'LB_NOBREAK'};
1777 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
1778 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1779
1780 # NU × (AL | HL)
289ce9cc
KW
1781 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
1782 = $lb_actions{'LB_NOBREAK'};
1783 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
1784 = $lb_actions{'LB_NOBREAK'};
6b659339 1785
b6dbf1d3
UC
1786 # LB22 Do not break before ellipses
1787 for my $i (0 .. @lb_table - 1) {
1788 $lb_table[$i][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'};
1789 }
6b659339
KW
1790
1791 # LB21b Don’t break between Solidus and Hebrew letters.
1792 # SY × HL
289ce9cc
KW
1793 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
1794 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1795
1796 # LB21a Don't break after Hebrew + Hyphen.
1797 # HL (HY | BA) ×
1798 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1799 $lb_table[$lb_enums{'Hyphen'}][$i]
1800 += $lb_actions{'LB_HY_or_BA_then_foo'};
1801 $lb_table[$lb_enums{'Break_After'}][$i]
1802 += $lb_actions{'LB_HY_or_BA_then_foo'};
6b659339
KW
1803 }
1804
1805 # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
1806 # spaces, small kana, and other non-starters, or after acute accents.
1807 # × BA
1808 # × HY
1809 # × NS
1810 # BB ×
1811 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1812 $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
1813 $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
1814 $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
1815 $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1816 }
1817
1818 # LB20 Break before and after unresolved CB.
1819 # ÷ CB
1820 # CB ÷
1821 # Conditional breaks should be resolved external to the line breaking
1822 # rules. However, the default action is to treat unresolved CB as breaking
1823 # before and after.
1824 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1825 $lb_table[$i][$lb_enums{'Contingent_Break'}]
1826 = $lb_actions{'LB_BREAKABLE'};
1827 $lb_table[$lb_enums{'Contingent_Break'}][$i]
1828 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1829 }
1830
1831 # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
1832 # × QU
1833 # QU ×
1834 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1835 $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
1836 $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1837 }
1838
1839 # LB18 Break after spaces
1840 # SP ÷
1841 for my $i (0 .. @lb_table - 1) {
289ce9cc 1842 $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1843 }
1844
1845 # LB17 Do not break within ‘——’, even with intervening spaces.
1846 # B2 SP* × B2
289ce9cc 1847 $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
6b659339
KW
1848 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1849
1850 # LB16 Do not break between closing punctuation and a nonstarter even with
1851 # intervening spaces.
1852 # (CL | CP) SP* × NS
289ce9cc 1853 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
6b659339 1854 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1855 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
6b659339 1856 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
b6dbf1d3
UC
1857 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Nonstarter'}]
1858 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
6b659339
KW
1859
1860
1861 # LB15 Do not break within ‘”[’, even with intervening spaces.
1862 # QU SP* × OP
289ce9cc 1863 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
6b659339 1864 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
b6dbf1d3
UC
1865 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'East_Asian_OP'}]
1866 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
6b659339
KW
1867
1868 # LB14 Do not break after ‘[’, even after spaces.
1869 # OP SP* ×
1870 for my $i (0 .. @lb_table - 1) {
289ce9cc 1871 $lb_table[$lb_enums{'Open_Punctuation'}][$i]
6b659339 1872 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
b6dbf1d3
UC
1873 $lb_table[$lb_enums{'East_Asian_OP'}][$i]
1874 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
6b659339
KW
1875 }
1876
1877 # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
1878 # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
1879 # [^NU] × CL
1880 # [^NU] × CP
1881 # × EX
1882 # [^NU] × IS
1883 # [^NU] × SY
1884 for my $i (0 .. @lb_table - 1) {
289ce9cc 1885 $lb_table[$i][$lb_enums{'Exclamation'}]
6b659339
KW
1886 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1887
289ce9cc 1888 next if $i == $lb_enums{'Numeric'};
6b659339 1889
289ce9cc 1890 $lb_table[$i][$lb_enums{'Close_Punctuation'}]
6b659339 1891 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1892 $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
6b659339 1893 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
b6dbf1d3
UC
1894 $lb_table[$i][$lb_enums{'East_Asian_CP'}]
1895 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1896 $lb_table[$i][$lb_enums{'Infix_Numeric'}]
6b659339 1897 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1898 $lb_table[$i][$lb_enums{'Break_Symbols'}]
6b659339
KW
1899 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1900 }
1901
1902 # LB12a Do not break before NBSP and related characters, except after
1903 # spaces and hyphens.
1904 # [^SP BA HY] × GL
1905 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1906 next if $i == $lb_enums{'Space'}
1907 || $i == $lb_enums{'Break_After'}
1908 || $i == $lb_enums{'Hyphen'};
6b659339
KW
1909
1910 # We don't break, but if a property above has said don't break even
1911 # with space between, don't override that (also in the next few rules)
289ce9cc 1912 next if $lb_table[$i][$lb_enums{'Glue'}]
6b659339 1913 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1914 $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1915 }
1916
1917 # LB12 Do not break after NBSP and related characters.
1918 # GL ×
1919 for my $i (0 .. @lb_table - 1) {
289ce9cc 1920 next if $lb_table[$lb_enums{'Glue'}][$i]
6b659339 1921 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1922 $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1923 }
1924
1925 # LB11 Do not break before or after Word joiner and related characters.
1926 # × WJ
1927 # WJ ×
1928 for my $i (0 .. @lb_table - 1) {
289ce9cc 1929 if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
6b659339
KW
1930 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1931 {
289ce9cc 1932 $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
6b659339 1933 }
289ce9cc 1934 if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
6b659339
KW
1935 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1936 {
289ce9cc 1937 $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1938 }
1939 }
1940
1941 # Special case this here to avoid having to do a special case in the code,
1942 # by making this the same as other things with a SP in front of them that
1943 # don't break, we avoid an extra test
289ce9cc 1944 $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
6b659339
KW
1945 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1946
1947 # LB9 and LB10 are done in the same loop
1948 #
1949 # LB9 Do not break a combining character sequence; treat it as if it has
1950 # the line breaking class of the base character in all of the
b0e24409
KW
1951 # higher-numbered rules. Treat ZWJ as if it were CM
1952 # Treat X (CM|ZWJ)* as if it were X.
6b659339
KW
1953 # where X is any line break class except BK, CR, LF, NL, SP, or ZW.
1954
b0e24409
KW
1955 # LB10 Treat any remaining combining mark or ZWJ as AL. This catches the
1956 # case where a CM or ZWJ is the first character on the line or follows SP,
1957 # BK, CR, LF, NL, or ZW.
6b659339
KW
1958 for my $i (0 .. @lb_table - 1) {
1959
b0e24409
KW
1960 # When the CM or ZWJ is the first in the pair, we don't know without
1961 # looking behind whether the CM or ZWJ is going to attach to an
1962 # earlier character, or not. So have to figure this out at runtime in
1963 # the code
1964 $lb_table[$lb_enums{'Combining_Mark'}][$i]
1965 = $lb_actions{'LB_CM_ZWJ_foo'};
1966 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};
289ce9cc
KW
1967
1968 if ( $i == $lb_enums{'Mandatory_Break'}
1969 || $i == $lb_enums{'EDGE'}
1970 || $i == $lb_enums{'Carriage_Return'}
1971 || $i == $lb_enums{'Line_Feed'}
1972 || $i == $lb_enums{'Next_Line'}
1973 || $i == $lb_enums{'Space'}
1974 || $i == $lb_enums{'ZWSpace'})
6b659339
KW
1975 {
1976 # For these classes, a following CM doesn't combine, and should do
289ce9cc
KW
1977 # whatever 'Alphabetic' would do.
1978 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1979 = $lb_table[$i][$lb_enums{'Alphabetic'}];
b0e24409
KW
1980 $lb_table[$i][$lb_enums{'ZWJ'}]
1981 = $lb_table[$i][$lb_enums{'Alphabetic'}];
6b659339
KW
1982 }
1983 else {
b0e24409
KW
1984 # For these classes, the CM or ZWJ combines, so doesn't break,
1985 # inheriting the type of nobreak from the master character.
289ce9cc 1986 if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
6b659339
KW
1987 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1988 {
289ce9cc
KW
1989 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1990 = $lb_actions{'LB_NOBREAK'};
6b659339 1991 }
b0e24409
KW
1992 if ($lb_table[$i][$lb_enums{'ZWJ'}]
1993 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1994 {
1995 $lb_table[$i][$lb_enums{'ZWJ'}]
1996 = $lb_actions{'LB_NOBREAK'};
1997 }
6b659339
KW
1998 }
1999 }
2000
8a6698d7
UC
2001 # LB8a Do not break after a zero width joiner
2002 # ZWJ ×
2003 for my $i (0 .. @lb_table - 1) {
2004 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'};
2005 }
b0e24409 2006
6b659339
KW
2007 # LB8 Break before any character following a zero-width space, even if one
2008 # or more spaces intervene.
2009 # ZW SP* ÷
2010 for my $i (0 .. @lb_table - 1) {
289ce9cc 2011 $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
2012 }
2013
2014 # Because of LB8-10, we need to look at context for "SP x", and this must
2015 # be done in the code. So override the existing rules for that, by adding
2016 # a constant to get new rules that tell the code it needs to look at
2017 # context. By adding this action instead of replacing the existing one,
2018 # we can get back to the original rule if necessary.
2019 for my $i (0 .. @lb_table - 1) {
289ce9cc 2020 $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
6b659339
KW
2021 }
2022
2023 # LB7 Do not break before spaces or zero width space.
2024 # × SP
2025 # × ZW
2026 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
2027 $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
2028 $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
2029 }
2030
2031 # LB6 Do not break before hard line breaks.
2032 # × ( BK | CR | LF | NL )
2033 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
2034 $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
2035 $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
2036 $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
2037 $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
2038 }
2039
2040 # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
2041 # CR × LF
2042 # CR !
2043 # LF !
2044 # NL !
2045 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
2046 $lb_table[$lb_enums{'Carriage_Return'}][$i]
2047 = $lb_actions{'LB_BREAKABLE'};
2048 $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
2049 $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339 2050 }
289ce9cc
KW
2051 $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
2052 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
2053
2054 # LB4 Always break after hard line breaks.
2055 # BK !
2056 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
2057 $lb_table[$lb_enums{'Mandatory_Break'}][$i]
2058 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
2059 }
2060
6b659339
KW
2061 # LB3 Always break at the end of text.
2062 # ! eot
b0e24409
KW
2063 # LB2 Never break at the start of text.
2064 # sot ×
6b659339 2065 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
2066 $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
2067 $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
2068 }
2069
2070 # LB1 Assign a line breaking class to each code point of the input.
2071 # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
2072 # depending on criteria outside the scope of this algorithm.
2073 #
2074 # In the absence of such criteria all characters with a specific
2075 # combination of original class and General_Category property value are
2076 # resolved as follows:
2077 # Original Resolved General_Category
2078 # AI, SG, XX AL Any
2079 # SA CM Only Mn or Mc
2080 # SA AL Any except Mn and Mc
2081 # CJ NS Any
2082 #
2083 # This is done in mktables, so we never see any of the remapped-from
2084 # classes.
2085
289ce9cc
KW
2086 output_table_common('LB', \%lb_actions,
2087 \@lb_table, \@lb_short_enums, \%lb_abbreviations);
6b659339
KW
2088}
2089
7e54b87f
KW
2090sub output_WB_table() {
2091
2092 # Create and output the enums, #defines, and pair table for use in
2093 # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.
2094
2095 # This uses the same mechanism in the other bounds tables generated by
2096 # this file. The actions that could override a 0 or 1 are added to those
2097 # numbers; the actions that clearly don't depend on the underlying rule
2098 # simply overwrite
2099 my %wb_actions = (
2100 WB_NOBREAK => 0,
2101 WB_BREAKABLE => 1,
2102 WB_hs_then_hs => 2,
b0e24409 2103 WB_Ex_or_FO_or_ZWJ_then_foo => 3,
7e54b87f
KW
2104 WB_DQ_then_HL => 4,
2105 WB_HL_then_DQ => 6,
2106 WB_LE_or_HL_then_MB_or_ML_or_SQ => 8,
2107 WB_MB_or_ML_or_SQ_then_LE_or_HL => 10,
2108 WB_MB_or_MN_or_SQ_then_NU => 12,
2109 WB_NU_then_MB_or_MN_or_SQ => 14,
b0e24409 2110 WB_RI_then_RI => 16,
7e54b87f
KW
2111 );
2112
7e54b87f
KW
2113 # Construct the WB pair table.
2114 # The table is constructed in reverse order of the rules, to make the
2115 # lower-numbered, higher priority ones override the later ones, as the
2116 # algorithm stops at the earliest matching rule
2117
2118 my @wb_table;
2027d365 2119 my $table_size = @wb_short_enums;
7e54b87f
KW
2120
2121 # Otherwise, break everywhere (including around ideographs).
b0e24409 2122 # WB99 Any ÷ Any
7e54b87f
KW
2123 for my $i (0 .. $table_size - 1) {
2124 for my $j (0 .. $table_size - 1) {
2125 $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
2126 }
2127 }
2128
b0e24409
KW
2129 # Do not break within emoji flag sequences. That is, do not break between
2130 # regional indicator (RI) symbols if there is an odd number of RI
2131 # characters before the break point.
2132 # WB16 [^RI] (RI RI)* RI × RI
c492f156 2133 # WB15 sot (RI RI)* RI × RI
289ce9cc 2134 $wb_table[$wb_enums{'Regional_Indicator'}]
b0e24409
KW
2135 [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};
2136
2137 # Do not break within emoji modifier sequences.
2138 # WB14 ( E_Base | EBG ) × E_Modifier
2139 $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
2140 = $wb_actions{'WB_NOBREAK'};
2141 $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
2142 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2143
2144 # Do not break from extenders.
2145 # WB13b ExtendNumLet × (ALetter | Hebrew_Letter | Numeric | Katakana)
289ce9cc
KW
2146 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
2147 = $wb_actions{'WB_NOBREAK'};
a9256a75 2148 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtPict_LE'}]
c0734505 2149 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2150 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
2151 = $wb_actions{'WB_NOBREAK'};
2152 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
2153 = $wb_actions{'WB_NOBREAK'};
2154 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
2155 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2156
2157 # WB13a (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
d21ae9f6 2158 # × ExtendNumLet
289ce9cc
KW
2159 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
2160 = $wb_actions{'WB_NOBREAK'};
a9256a75 2161 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtendNumLet'}]
c0734505 2162 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2163 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
2164 = $wb_actions{'WB_NOBREAK'};
2165 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
2166 = $wb_actions{'WB_NOBREAK'};
2167 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
2168 = $wb_actions{'WB_NOBREAK'};
2169 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
2170 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2171
2172 # Do not break between Katakana.
2173 # WB13 Katakana × Katakana
289ce9cc
KW
2174 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
2175 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2176
2177 # Do not break within sequences, such as “3.2” or “3,456.789”.
2178 # WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
289ce9cc 2179 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
7e54b87f 2180 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2181 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
7e54b87f 2182 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2183 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2184 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2185
2186 # WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric
289ce9cc 2187 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
7e54b87f 2188 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2189 $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
7e54b87f 2190 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2191 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
7e54b87f
KW
2192 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2193
2194 # Do not break within sequences of digits, or digits adjacent to letters
2195 # (“3a”, or “A3”).
2196 # WB10 Numeric × (ALetter | Hebrew_Letter)
289ce9cc
KW
2197 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
2198 = $wb_actions{'WB_NOBREAK'};
a9256a75 2199 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtPict_LE'}]
c0734505 2200 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2201 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
2202 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2203
2204 # WB9 (ALetter | Hebrew_Letter) × Numeric
289ce9cc
KW
2205 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
2206 = $wb_actions{'WB_NOBREAK'};
a9256a75 2207 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Numeric'}]
c0734505 2208 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2209 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
2210 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2211
2212 # WB8 Numeric × Numeric
289ce9cc
KW
2213 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
2214 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2215
2216 # Do not break letters across certain punctuation.
2217 # WB7c Hebrew_Letter Double_Quote × Hebrew_Letter
289ce9cc
KW
2218 $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
2219 += $wb_actions{'WB_DQ_then_HL'};
7e54b87f
KW
2220
2221 # WB7b Hebrew_Letter × Double_Quote Hebrew_Letter
289ce9cc
KW
2222 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
2223 += $wb_actions{'WB_HL_then_DQ'};
7e54b87f
KW
2224
2225 # WB7a Hebrew_Letter × Single_Quote
289ce9cc
KW
2226 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2227 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2228
2229 # WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
2230 # × (ALetter | Hebrew_Letter)
289ce9cc 2231 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
7e54b87f 2232 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
a9256a75 2233 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ExtPict_LE'}]
c0734505 2234 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2235 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2236 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2237 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
7e54b87f 2238 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
a9256a75 2239 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ExtPict_LE'}]
c0734505 2240 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2241 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2242 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2243 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
7e54b87f 2244 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
a9256a75 2245 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ExtPict_LE'}]
c0734505 2246 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2247 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f
KW
2248 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2249
2250 # WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet
2251 # | Single_Quote) (ALetter | Hebrew_Letter)
289ce9cc 2252 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2253 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
a9256a75 2254 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidNumLet'}]
c0734505 2255 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2256 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2257 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2258 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
7e54b87f 2259 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
a9256a75 2260 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidLetter'}]
c0734505 2261 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2262 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
7e54b87f 2263 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2264 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
7e54b87f 2265 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
a9256a75 2266 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Single_Quote'}]
c0734505 2267 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2268 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2269 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2270
2271 # Do not break between most letters.
2272 # WB5 (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter)
289ce9cc
KW
2273 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
2274 = $wb_actions{'WB_NOBREAK'};
a9256a75 2275 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ALetter'}]
c0734505 2276 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2277 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
2278 = $wb_actions{'WB_NOBREAK'};
a9256a75 2279 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Hebrew_Letter'}]
c0734505 2280 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2281 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
2282 = $wb_actions{'WB_NOBREAK'};
a9256a75 2283 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtPict_LE'}]
c0734505 2284 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2285 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
2286 = $wb_actions{'WB_NOBREAK'};
a9256a75 2287 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtPict_LE'}]
c0734505 2288 = $wb_actions{'WB_NOBREAK'};
7e54b87f 2289
b0e24409
KW
2290 # Ignore Format and Extend characters, except after sot, CR, LF, and
2291 # Newline. This also has the effect of: Any × (Format | Extend | ZWJ)
2292 # WB4 X (Extend | Format | ZWJ)* → X
7e54b87f 2293 for my $i (0 .. @wb_table - 1) {
289ce9cc 2294 $wb_table[$wb_enums{'Extend'}][$i]
b0e24409 2295 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
289ce9cc 2296 $wb_table[$wb_enums{'Format'}][$i]
b0e24409
KW
2297 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2298 $wb_table[$wb_enums{'ZWJ'}][$i]
2299 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2300 }
2301 for my $i (0 .. @wb_table - 1) {
2302 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2303 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2304 $wb_table[$i][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2305 }
2306
2307 # Implied is that these attach to the character before them, except for
2308 # the characters that mark the end of a region of text. The rules below
2309 # override the ones set up here, for all the characters that need
2310 # overriding.
2311 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2312 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2313 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2314 }
2315
c0734505
KW
2316 # Keep horizontal whitespace together
2317 # Use perl's tailoring instead
2318 # WB3d WSegSpace × WSegSpace
2319 #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}]
2320 # = $wb_actions{'WB_NOBREAK'};
2321
b0e24409
KW
2322 # Do not break within emoji zwj sequences.
2323 # WB3c ZWJ × ( Glue_After_Zwj | EBG )
2324 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
2325 = $wb_actions{'WB_NOBREAK'};
2326 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
2327 = $wb_actions{'WB_NOBREAK'};
a9256a75 2328 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_XX'}]
c0734505 2329 = $wb_actions{'WB_NOBREAK'};
a9256a75 2330 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_LE'}]
c0734505 2331 = $wb_actions{'WB_NOBREAK'};
b0e24409 2332
d21ae9f6 2333 # Break before and after newlines
7e54b87f
KW
2334 # WB3b ÷ (Newline | CR | LF)
2335 # WB3a (Newline | CR | LF) ÷
2336 # et. al.
289ce9cc 2337 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2338 for my $j (0 .. @wb_table - 1) {
2339 $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
2340 $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
2341 }
2342 }
2343
2344 # But do not break within white space.
2345 # WB3 CR × LF
2346 # et.al.
289ce9cc
KW
2347 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2348 for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2349 $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
2350 }
2351 }
2352
b0e24409 2353 # And do not break horizontal space followed by Extend or Format or ZWJ
289ce9cc
KW
2354 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
2355 = $wb_actions{'WB_NOBREAK'};
2356 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
2357 = $wb_actions{'WB_NOBREAK'};
b0e24409
KW
2358 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
2359 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2360 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
2361 [$wb_enums{'Perl_Tailored_HSpace'}]
2362 = $wb_actions{'WB_hs_then_hs'};
7e54b87f 2363
b0e24409
KW
2364 # Break at the start and end of text, unless the text is empty
2365 # WB2 Any ÷ eot
2366 # WB1 sot ÷ Any
7e54b87f 2367 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2368 $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
2369 $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
7e54b87f 2370 }
289ce9cc 2371 $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;
7e54b87f 2372
289ce9cc
KW
2373 output_table_common('WB', \%wb_actions,
2374 \@wb_table, \@wb_short_enums, \%wb_abbreviations);
7e54b87f
KW
2375}
2376
4eea95a6
KW
2377sub sanitize_name ($) {
2378 # Change the non-word characters in the input string to standardized word
2379 # equivalents
2380 #
2381 my $sanitized = shift;
2382 $sanitized =~ s/=/__/;
2383 $sanitized =~ s/&/_AMP_/;
2384 $sanitized =~ s/\./_DOT_/;
2385 $sanitized =~ s/-/_MINUS_/;
2386 $sanitized =~ s!/!_SLASH_!;
2387
2388 return $sanitized;
2389}
2390
cef72199 2391switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C');
4eea95a6 2392
9d9177be
KW
2393output_invlist("Latin1", [ 0, 256 ]);
2394output_invlist("AboveLatin1", [ 256 ]);
2395
c11f14f3
KW
2396if ($num_anyof_code_points == 256) { # Same as Latin1
2397 print $out_fh
2398 "\nstatic const UV * const InBitmap_invlist = Latin1_invlist;\n";
2399}
2400else {
2401 output_invlist("InBitmap", [ 0, $num_anyof_code_points ]);
2402}
2403
bffc0129 2404end_file_pound_if;
43b443dd 2405
3f427fd9
KW
2406# We construct lists for all the POSIX and backslash sequence character
2407# classes in two forms:
2408# 1) ones which match only in the ASCII range
2409# 2) ones which match either in the Latin1 range, or the entire Unicode range
2410#
2411# These get compiled in, and hence affect the memory footprint of every Perl
2412# program, even those not using Unicode. To minimize the size, currently
2413# the Latin1 version is generated for the beyond ASCII range except for those
2414# lists that are quite small for the entire range, such as for \s, which is 22
2415# UVs long plus 4 UVs (currently) for the header.
2416#
2417# To save even more memory, the ASCII versions could be derived from the
2418# larger ones at runtime, saving some memory (minus the expense of the machine
2419# instructions to do so), but these are all small anyway, so their total is
2420# about 100 UVs.
2421#
2422# In the list of properties below that get generated, the L1 prefix is a fake
2423# property that means just the Latin1 range of the full property (whose name
2424# has an X prefix instead of L1).
a02047bf
KW
2425#
2426# An initial & means to use the subroutine from this file instead of an
2427# official inversion list.
3f427fd9 2428
53146480
KW
2429# Below is the list of property names to generate. '&' means to use the
2430# subroutine to generate the inversion list instead of the generic code
2431# below. Some properties have a comma-separated list after the name,
2432# These are extra enums to add to those found in the Unicode tables.
2433no warnings 'qw';
2434 # Ignore non-alpha in sort
4eea95a6
KW
2435my @props;
2436push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
4eea95a6 2437 &UpperLatin1
a9256a75 2438 _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,ExtPict_XX
b6dbf1d3 2439 _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner,East_Asian_CP,East_Asian_OP
2027d365 2440 _Perl_SB,EDGE,SContinue,CR,Extend,LF
a9256a75 2441 _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,ExtPict_XX,ExtPict_LE
4eea95a6
KW
2442 _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID
2443 Lowercase_Mapping
2444 Titlecase_Mapping
2445 Uppercase_Mapping
2446 Simple_Case_Folding
2447 Case_Folding
2448 &_Perl_IVCF
a2aeff50 2449 &_Perl_CCC_non0_non230
4eea95a6
KW
2450 );
2451 # NOTE that the convention is that extra enum values come
2452 # after the property name, separated by commas, with the enums
cf2cd619
KW
2453 # that aren't ever defined by Unicode (with some exceptions)
2454 # containing at least 4 all-uppercase characters.
2455
2456 # Some of the enums are current official property values that
2457 # are needed for the rules in constructing certain tables in
2458 # this file, and perhaps in regexec.c as well. They are here
2459 # so that things don't crash when compiled on earlier Unicode
2460 # releases where they don't exist. Thus the rules that use
2461 # them still get compiled, but no code point actually uses
2462 # them, hence they won't get exercized on such Unicode
2463 # versions, but the code will still compile and run, though
2464 # may not give the precise results that those versions would
2465 # expect, but reasonable results nonetheless.
2466 #
2467 # Other enums are due to the fact that Unicode has in more
2468 # recent versions added criteria to the rules in these extra
2469 # tables that are based on factors outside the property
2470 # values. And those have to be accounted for, essentially by
2471 # here splitting certain enum equivalence classes based on
2472 # those extra rules.
2473 #
2474 # EDGE is supposed to be a boundary between some types of
2475 # enums, but khw thinks that isn't valid any more.
4eea95a6
KW
2476
2477my @bin_props;
1aefa327 2478my @perl_prop_synonyms;
4eea95a6 2479my %enums;
2d74dcf2
KW
2480my @deprecated_messages = ""; # Element [0] is a placeholder
2481my %deprecated_tags;
4eea95a6 2482
27097618
KW
2483my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x;
2484
2485# Create another hash that maps floating point x.yyEzz representation to what
2486# %stricter_to_file_of does for the equivalent rational. A typical entry in
2487# the latter hash is
2488#
2489# 'nv=1/2' => 'Nv/1_2',
2490#
2491# From that, this loop creates an entry
2492#
2493# 'nv=5.00e-01' => 'Nv/1_2',
2494#
2495# %stricter_to_file_of contains far more than just the rationals. Instead we
048bdb72 2496# use %Unicode::UCD::nv_floating_to_rational which should have an entry for each
27097618
KW
2497# nv in the former hash.
2498my %floating_to_file_of;
048bdb72
KW
2499foreach my $key (keys %Unicode::UCD::nv_floating_to_rational) {
2500 my $value = $Unicode::UCD::nv_floating_to_rational{$key};
2501 $floating_to_file_of{$key} = $Unicode::UCD::stricter_to_file_of{"nv=$value"};
27097618
KW
2502}
2503
2cd613ec
KW
2504# Properties that are specified with a prop=value syntax
2505my @equals_properties;
2506
4eea95a6
KW
2507# Collect all the binary properties from data in lib/unicore
2508# Sort so that complements come after the main table, and the shortest
8091afe3 2509# names first, finally alphabetically. Also, sort together the tables we want
f81c4731
KW
2510# to be kept together, and prefer those with 'posix' in their names, which is
2511# what the C code is expecting their names to be.
4eea95a6 2512foreach my $property (sort
2d74dcf2 2513 { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
f81c4731
KW
2514 or $b =~ /posix/i <=> $a =~ /posix/i
2515 or $b =~ /perl/i <=> $a =~ /perl/i
27097618 2516 or $a =~ $float_e_format <=> $b =~ $float_e_format
2d74dcf2 2517 or $a =~ /!/ <=> $b =~ /!/
4eea95a6
KW
2518 or length $a <=> length $b
2519 or $a cmp $b
048bdb72
KW
2520 } keys %Unicode::UCD::loose_to_file_of,
2521 keys %Unicode::UCD::stricter_to_file_of,
27097618 2522 keys %floating_to_file_of
53146480 2523) {
0f5e3c71 2524
4eea95a6
KW
2525 # These two hashes map properties to values that can be considered to
2526 # be checksums. If two properties have the same checksum, they have
2527 # identical entries. Otherwise they differ in some way.
048bdb72
KW
2528 my $tag = $Unicode::UCD::loose_to_file_of{$property};
2529 $tag = $Unicode::UCD::stricter_to_file_of{$property} unless defined $tag;
27097618 2530 $tag = $floating_to_file_of{$property} unless defined $tag;
4eea95a6
KW
2531
2532 # The tag may contain an '!' meaning it is identical to the one formed
394d2d3f
KW
2533 # by removing the !, except that it is inverted.
2534 my $inverted = $tag =~ s/!//;
4eea95a6 2535
27097618
KW
2536 # This hash is lacking the property name
2537 $property = "nv=$property" if $property =~ $float_e_format;
2538
4eea95a6
KW
2539 # The list of 'prop=value' entries that this single entry expands to
2540 my @this_entries;
2541
2542 # Split 'property=value' on the equals sign, with $lhs being the whole
2543 # thing if there is no '='
2544 my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x;
2545
62e88327 2546 # $lhs then becomes the property name.
2cd613ec
KW
2547 my $prop_value = $rhs =~ s/ ^ = //rx;
2548
2549 push @equals_properties, $lhs if $prop_value ne "";
62e88327
KW
2550
2551 # See if there are any synonyms for this property.
394d2d3f
KW
2552 if (exists $prop_name_aliases{$lhs}) {
2553
2554 # If so, do the combinatorics so that a new entry is added for
2555 # each legal property combined with the property value (which is
2556 # $rhs)
2557 foreach my $alias (@{$prop_name_aliases{$lhs}}) {
2558
2559 # But, there are some ambiguities, like 'script' is a synonym
2560 # for 'sc', and 'sc' can stand alone, meaning something
2561 # entirely different than 'script'. 'script' cannot stand
2562 # alone. Don't add if the potential new lhs is in the hash of
2563 # stand-alone properties.
2564 no warnings 'once';
2565 next if $rhs eq "" && grep { $alias eq $_ }
048bdb72 2566 keys %Unicode::UCD::loose_property_to_file_of;
394d2d3f
KW
2567
2568 my $new_entry = $alias . $rhs;
e498c235 2569 push @this_entries, $new_entry;
394d2d3f
KW
2570 }
2571 }
2572
2573 # Above, we added the synonyms for the base entry we're now
2574 # processing. But we haven't dealt with it yet. If we already have a
2575 # property with the identical characteristics, this becomes just a
2576 # synonym for it.
62e88327 2577
394d2d3f
KW
2578 if (exists $enums{$tag}) {
2579 push @this_entries, $property;
2580 }
2581 else { # Otherwise, create a new entry.
2582
4eea95a6
KW
2583 # Add to the list of properties to generate inversion lists for.
2584 push @bin_props, uc $property;
2585
394d2d3f 2586 # Create a rule for the parser
f4b10e8e
KW
2587 if (! exists $keywords{$property}) {
2588 $keywords{$property} = token_name($property);
2589 }
394d2d3f 2590
4eea95a6
KW
2591 # And create an enum for it.
2592 $enums{$tag} = $table_name_prefix . uc sanitize_name($property);
394d2d3f 2593
1aefa327
KW
2594 $perl_tags{$tag} = 1 if exists $keep_together{lc $property};
2595
394d2d3f
KW
2596 # Some properties are deprecated. This hash tells us so, and the
2597 # warning message to raise if they are used.
048bdb72 2598 if (exists $Unicode::UCD::why_deprecated{$tag}) {
394d2d3f 2599 $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages;
048bdb72 2600 push @deprecated_messages, $Unicode::UCD::why_deprecated{$tag};
394d2d3f
KW
2601 }
2602
2603 # Our sort above should have made sure that we see the
2604 # non-inverted version first, but this makes sure.
2605 warn "$property is inverted!!!" if $inverted;
2606 }
2607
2608 # Everything else is #defined to be the base enum, inversion is
2609 # indicated by negating the value.
2610 my $defined_to = "";
2611 $defined_to .= "-" if $inverted;
2612 $defined_to .= $enums{$tag};
2613
2614 # Go through the entries that evaluate to this.
e498c235 2615 @this_entries = uniques @this_entries;
394d2d3f
KW
2616 foreach my $define (@this_entries) {
2617
2618 # There is a rule for the parser for each.
f4b10e8e 2619 $keywords{$define} = $defined_to;
1aefa327
KW
2620
2621 # And a #define for all simple names equivalent to a perl property,
2622 # except those that begin with 'is' or 'in';
2623 if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) {
7e9b4fe4 2624 push @perl_prop_synonyms, "#define "
e5360b12
KW
2625 . $table_name_prefix
2626 . uc(sanitize_name($define))
2627 . " $defined_to";
1aefa327 2628 }
4eea95a6
KW
2629 }
2630}
2631
cf2cd619 2632@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2d74dcf2 2633 or $a cmp $b
4eea95a6 2634 } @bin_props;
1aefa327 2635@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms));
4eea95a6
KW
2636push @props, @bin_props;
2637
2638foreach my $prop (@props) {
2639
2640 # For the Latin1 properties, we change to use the eXtended version of the
2641 # base property, then go through the result and get rid of everything not
2642 # in Latin1 (above 255). Actually, we retain the element for the range
2643 # that crosses the 255/256 boundary if it is one that matches the
2644 # property. For example, in the Word property, there is a range of code
2645 # points that start at U+00F8 and goes through U+02C1. Instead of
2646 # artificially cutting that off at 256 because 256 is the first code point
2647 # above Latin1, we let the range go to its natural ending. That gives us
2648 # extra information with no added space taken. But if the range that
2649 # crosses the boundary is one that doesn't match the property, we don't
2650 # start a new range above 255, as that could be construed as going to
2651 # infinity. For example, the Upper property doesn't include the character
2652 # at 255, but does include the one at 256. We don't include the 256 one.
2653 my $prop_name = $prop;
2654 my $is_local_sub = $prop_name =~ s/^&//;
2655 my $extra_enums = "";
2656 $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
2657 my $lookup_prop = $prop_name;
2658 $prop_name = sanitize_name($prop_name);
cf2cd619
KW
2659 $prop_name = $table_name_prefix . $prop_name
2660 if grep { lc $lookup_prop eq lc $_ } @bin_props;
4eea95a6
KW
2661 my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
2662 or $lookup_prop =~ s/^L1//);
2663 my $nonl1_only = 0;
2664 $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
2665 ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;
2666
4761f74a
KW
2667 for my $charset (get_supported_code_pages()) {
2668 @a2n = @{get_a2n($charset)};
2669
0f5e3c71 2670 my @invlist;
99f21fb9 2671 my @invmap;
5c0563e7 2672 my $map_format = 0;;
99f21fb9 2673 my $map_default;
5c0563e7
KW
2674 my $maps_to_code_point = 0;
2675 my $to_adjust = 0;
59fc10af 2676 my $same_in_all_code_pages;
0f5e3c71 2677 if ($is_local_sub) {
8843f0de 2678 my @return = eval $lookup_prop;
289ce9cc 2679 die $@ if $@;
8843f0de
KW
2680 my $invlist_ref = shift @return;
2681 @invlist = @$invlist_ref;
d2aadf62
KW
2682 if (@return) { # If has other values returned , must be an
2683 # inversion map
2684 my $invmap_ref = shift @return;
2685 @invmap = @$invmap_ref;
2686 $map_format = shift @return;
2687 $map_default = shift @return;
2688 }
0f5e3c71
KW
2689 }
2690 else {
2691 @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
99f21fb9 2692 if (! @invlist) {
99f21fb9 2693
ad85f59a
KW
2694 # If couldn't find a non-empty inversion list, see if it is
2695 # instead an inversion map
2696 my ($list_ref, $map_ref, $format, $default)
99f21fb9 2697 = prop_invmap($lookup_prop, '_perl_core_internal_ok');
ad85f59a
KW
2698 if (! $list_ref) {
2699 # An empty return here could mean an unknown property, or
2700 # merely that the original inversion list is empty. Call
2701 # in scalar context to differentiate
2702 my $count = prop_invlist($lookup_prop,
2703 '_perl_core_internal_ok');
d99e65da
KW
2704 if (defined $count) {
2705 # Short-circuit an empty inversion list.
2706 output_invlist($prop_name, \@invlist, $charset);
59fc10af 2707 last;
d99e65da 2708 }
ad85f59a 2709 die "Could not find inversion list for '$lookup_prop'"
ad85f59a
KW
2710 }
2711 else {
18b852b3
KW
2712 @invlist = @$list_ref;
2713 @invmap = @$map_ref;
2714 $map_format = $format;
2715 $map_default = $default;
ad85f59a 2716 }
99f21fb9 2717 }
0f5e3c71 2718 }
ad85f59a 2719
5c0563e7
KW
2720 if ($map_format) {
2721 $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x;
2722 $to_adjust = $map_format =~ /a/;
2723 }
2724
99f21fb9
KW
2725 # Re-order the Unicode code points to native ones for this platform.
2726 # This is only needed for code points below 256, because native code
2727 # points are only in that range. For inversion maps of properties
2728 # where the mappings are adjusted (format =~ /a/), this reordering
2729 # could mess up the adjustment pattern that was in the input, so that
2730 # has to be dealt with.
2731 #
2732 # And inversion maps that map to code points need to eventually have
2733 # all those code points remapped to native, and it's better to do that
2734 # here, going through the whole list not just those below 256. This
2735 # is because some inversion maps have adjustments (format =~ /a/)
2736 # which may be affected by the reordering. This code needs to be done
2737 # both for when we are translating the inversion lists for < 256, and
2738 # for the inversion maps for everything. By doing both in this loop,
2739 # we can share that code.
2740 #
2741 # So, we go through everything for an inversion map to code points;
2742 # otherwise, we can skip any remapping at all if we are going to
2743 # output only the above-Latin1 values, or if the range spans the whole
2744 # of 0..256, as the remap will also include all of 0..256 (256 not
2745 # 255 because a re-ordering could cause 256 to need to be in the same
2746 # range as 255.)
2b3e8a91 2747 if ( (@invmap && $maps_to_code_point)
e4e80abb
KW
2748 || ( @invlist
2749 && $invlist[0] < 256
2b3e8a91 2750 && ( $invlist[0] != 0
e4e80abb 2751 || (scalar @invlist != 1 && $invlist[1] < 256))))
ceb1de32 2752 {
59fc10af 2753 $same_in_all_code_pages = 0;
99f21fb9 2754 if (! @invmap) { # Straight inversion list
563f8b93
KW
2755 # Look at all the ranges that start before 257.
2756 my @latin1_list;
2757 while (@invlist) {
2758 last if $invlist[0] > 256;
2759 my $upper = @invlist > 1
2760 ? $invlist[1] - 1 # In range
2761
2762 # To infinity. You may want to stop much much
2763 # earlier; going this high may expose perl
2764 # deficiencies with very large numbers.
7d2c6c24 2765 : 256;
563f8b93
KW
2766 for my $j ($invlist[0] .. $upper) {
2767 push @latin1_list, a2n($j);
2768 }
fb4554ea 2769
563f8b93
KW
2770 shift @invlist; # Shift off the range that's in the list
2771 shift @invlist; # Shift off the range not in the list
2772 }
fb4554ea 2773
563f8b93
KW
2774 # Here @invlist contains all the ranges in the original that
2775 # start at code points above 256, and @latin1_list contains
2776 # all the native code points for ranges that start with a
2777 # Unicode code point below 257. We sort the latter and
2778 # convert it to inversion list format. Then simply prepend it
2779 # to the list of the higher code points.
2780 @latin1_list = sort { $a <=> $b } @latin1_list;
2781 @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
2782 unshift @invlist, @latin1_list;
99f21fb9
KW
2783 }
2784 else { # Is an inversion map
2785
2786 # This is a similar procedure as plain inversion list, but has
2787 # multiple buckets. A plain inversion list just has two
2788 # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
2789 # pretty much can ignore the 2nd bucket, as it is completely
2790 # defined by the 1st. But here, what we do is create buckets
2791 # which contain the code points that map to each, translated
2792 # to native and turned into an inversion list. Thus each
2793 # bucket is an inversion list of native code points that map
2794 # to it or don't map to it. We use these to create an
2795 # inversion map for the whole property.
2796
2797 # As mentioned earlier, we use this procedure to not just
2798 # remap the inversion list to native values, but also the maps
2799 # of code points to native ones. In the latter case we have
2800 # to look at the whole of the inversion map (or at least to
2801 # above Unicode; as the maps of code points above that should
2802 # all be to the default).
c125794e
KW
2803 my $upper_limit = (! $maps_to_code_point)
2804 ? 256
2805 : (Unicode::UCD::UnicodeVersion() eq '1.1.5')
2806 ? 0xFFFF
2807 : 0x10FFFF;
99f21fb9
KW
2808
2809 my %mapped_lists; # A hash whose keys are the buckets.
2810 while (@invlist) {
2811 last if $invlist[0] > $upper_limit;
2812
2813 # This shouldn't actually happen, as prop_invmap() returns
2814 # an extra element at the end that is beyond $upper_limit
cf2cd619
KW
2815 die "inversion map (for $prop_name) that extends to"
2816 . " infinity is unimplemented" unless @invlist > 1;
99f21fb9
KW
2817
2818 my $bucket;
2819
2820 # A hash key can't be a ref (we are only expecting arrays
2821 # of scalars here), so convert any such to a string that
2822 # will be converted back later (using a vertical tab as
b148e8b1 2823 # the separator).
99f21fb9 2824 if (ref $invmap[0]) {
b148e8b1 2825 $bucket = join "\cK", map { a2n($_) } @{$invmap[0]};
99f21fb9 2826 }
98a1b8f7
KW
2827 elsif ( $maps_to_code_point
2828 && $invmap[0] =~ $integer_or_float_re)
2829 {
99f21fb9
KW
2830
2831 # Do convert to native for maps to single code points.
2832 # There are some properties that have a few outlier
2833 # maps that aren't code points, so the above test
f4d6df29
KW
2834 # skips those. 0 is never remapped.
2835 $bucket = $invmap[0] == 0 ? 0 : a2n($invmap[0]);
99f21fb9
KW
2836 } else {
2837 $bucket = $invmap[0];
2838 }
2839
2840 # We now have the bucket that all code points in the range
2841 # map to, though possibly they need to be adjusted. Go
2842 # through the range and put each translated code point in
2843 # it into its bucket.
2844 my $base_map = $invmap[0];
2845 for my $j ($invlist[0] .. $invlist[1] - 1) {
2846 if ($to_adjust
2847 # The 1st code point doesn't need adjusting
2848 && $j > $invlist[0]
2849
2850 # Skip any non-numeric maps: these are outliers
2851 # that aren't code points.
98a1b8f7 2852 && $base_map =~ $integer_or_float_re
99f21fb9
KW
2853
2854 # 'ne' because the default can be a string
2855 && $base_map ne $map_default)
2856 {
2857 # We adjust, by incrementing each the bucket and
2858 # the map. For code point maps, translate to
2859 # native
2860 $base_map++;
2861 $bucket = ($maps_to_code_point)
2862 ? a2n($base_map)
2863 : $base_map;
2864 }
2865
2866 # Add the native code point to the bucket for the
2867 # current map
2868 push @{$mapped_lists{$bucket}}, a2n($j);
2869 } # End of loop through all code points in the range
2870
2871 # Get ready for the next range
2872 shift @invlist;
2873 shift @invmap;
2874 } # End of loop through all ranges in the map.
2875
2876 # Here, @invlist and @invmap retain all the ranges from the
2877 # originals that start with code points above $upper_limit.
2878 # Each bucket in %mapped_lists contains all the code points
2879 # that map to that bucket. If the bucket is for a map to a
5174a821
KW
2880 # single code point, the bucket has been converted to native.
2881 # If something else (including multiple code points), no
2882 # conversion is done.
99f21fb9
KW
2883 #
2884 # Now we recreate the inversion map into %xlated, but this
2885 # time for the native character set.
2886 my %xlated;
2887 foreach my $bucket (keys %mapped_lists) {
2888
2889 # Sort and convert this bucket to an inversion list. The
2890 # result will be that ranges that start with even-numbered
2891 # indexes will be for code points that map to this bucket;
2892 # odd ones map to some other bucket, and are discarded
2893 # below.
2894 @{$mapped_lists{$bucket}}
2895 = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
2896 @{$mapped_lists{$bucket}}
cf2cd619
KW
2897 = mk_invlist_from_sorted_cp_list(
2898 \@{$mapped_lists{$bucket}});
99f21fb9
KW
2899
2900 # Add each even-numbered range in the bucket to %xlated;
2901 # so that the keys of %xlated become the range start code
2902 # points, and the values are their corresponding maps.
2903 while (@{$mapped_lists{$bucket}}) {
2904 my $range_start = $mapped_lists{$bucket}->[0];
2905 if ($bucket =~ /\cK/) {
2906 @{$xlated{$range_start}} = split /\cK/, $bucket;
2907 }
2908 else {
e113b1b3
KW
2909 # If adjusting, and there is more than one thing
2910 # that maps to the same thing, they must be split
2911 # so that later the adjusting doesn't think the
2912 # subsequent items can go away because of the
2913 # adjusting.
cf2cd619
KW
2914 my $range_end = ( $to_adjust
2915 && $bucket != $map_default)
2916 ? $mapped_lists{$bucket}->[1] - 1
2917 : $range_start;
e113b1b3
KW
2918 for my $i ($range_start .. $range_end) {
2919 $xlated{$i} = $bucket;
2920 }
99f21fb9
KW
2921 }
2922 shift @{$mapped_lists{$bucket}}; # Discard odd ranges
2923 shift @{$mapped_lists{$bucket}}; # Get ready for next
2924 # iteration
2925 }
2926 } # End of loop through all the buckets.
2927
2928 # Here %xlated's keys are the range starts of all the code
2929 # points in the inversion map. Construct an inversion list
2930 # from them.
2931 my @new_invlist = sort { $a <=> $b } keys %xlated;
2932
2933 # If the list is adjusted, we want to munge this list so that
2934 # we only have one entry for where consecutive code points map
2935 # to consecutive values. We just skip the subsequent entries
2936 # where this is the case.
2937 if ($to_adjust) {
2938 my @temp;
2939 for my $i (0 .. @new_invlist - 1) {
2940 next if $i > 0
2941 && $new_invlist[$i-1] + 1 == $new_invlist[$i]
98a1b8f7
KW
2942 && $xlated{$new_invlist[$i-1]}
2943 =~ $integer_or_float_re
2944 && $xlated{$new_invlist[$i]}
2945 =~ $integer_or_float_re
62e88327
KW
2946 && $xlated{$new_invlist[$i-1]} + 1
2947 == $xlated{$new_invlist[$i]};
99f21fb9
KW
2948 push @temp, $new_invlist[$i];
2949 }
2950 @new_invlist = @temp;
2951 }
2952
2953 # The inversion map comes from %xlated's values. We can
2954 # unshift each onto the front of the untouched portion, in
2955 # reverse order of the portion we did process.
2956 foreach my $start (reverse @new_invlist) {
2957 unshift @invmap, $xlated{$start};
2958 }
2959
cf2cd619
KW
2960 # Finally prepend the inversion list we have just constructed
2961 # to the one that contains anything we didn't process.
99f21fb9
KW
2962 unshift @invlist, @new_invlist;
2963 }
2964 }
e4e80abb
KW
2965 elsif (@invmap) { # inversion maps can't cope with this variable
2966 # being true, even if it could be true
2967 $same_in_all_code_pages = 0;
2968 }
59fc10af
KW
2969 else {
2970 $same_in_all_code_pages = 1;
2971 }
99f21fb9
KW
2972
2973 # prop_invmap() returns an extra final entry, which we can now
2974 # discard.
2975 if (@invmap) {
2976 pop @invlist;
2977 pop @invmap;
ceb1de32 2978 }
0f5e3c71
KW
2979
2980 if ($l1_only) {
99f21fb9 2981 die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
0f5e3c71
KW
2982 for my $i (0 .. @invlist - 1 - 1) {
2983 if ($invlist[$i] > 255) {
2984
2985 # In an inversion list, even-numbered elements give the code
2986 # points that begin ranges that match the property;
2987 # odd-numbered give ones that begin ranges that don't match.
2988 # If $i is odd, we are at the first code point above 255 that
2989 # doesn't match, which means the range it is ending does
cf2cd619
KW
2990 # match, and crosses the 255/256 boundary. We want to
2991 # include this ending point, so increment $i, so the
2992 # splice below includes it. Conversely, if $i is even, it
2993 # is the first code point above 255 that matches, which
2994 # means there was no matching range that crossed the
2995 # boundary, and we don't want to include this code point,
2996 # so splice before it.
0f5e3c71
KW
2997 $i++ if $i % 2 != 0;
2998
2999 # Remove everything past this.
3000 splice @invlist, $i;
99f21fb9 3001 splice @invmap, $i if @invmap;
0f5e3c71
KW
3002 last;
3003 }
0c4ecf42
KW
3004 }
3005 }
0f5e3c71
KW
3006 elsif ($nonl1_only) {
3007 my $found_nonl1 = 0;
3008 for my $i (0 .. @invlist - 1 - 1) {
3009 next if $invlist[$i] < 256;
3010
3011 # Here, we have the first element in the array that indicates an
3012 # element above Latin1. Get rid of all previous ones.
3013 splice @invlist, 0, $i;
99f21fb9 3014 splice @invmap, 0, $i if @invmap;
0f5e3c71
KW
3015
3016 # If this one's index is not divisible by 2, it means that this
3017 # element is inverting away from being in the list, which means
99f21fb9
KW
3018 # all code points from 256 to this one are in this list (or
3019 # map to the default for inversion maps)
3020 if ($i % 2 != 0) {
3021 unshift @invlist, 256;
3022 unshift @invmap, $map_default if @invmap;
3023 }
0f5e3c71 3024 $found_nonl1 = 1;
3f427fd9
KW
3025 last;
3026 }
0f0b3751
KW
3027 if (! $found_nonl1) {
3028 warn "No non-Latin1 code points in $prop_name";
3029 output_invlist($prop_name, []);
3030 last;
3031 }
3f427fd9 3032 }
3f427fd9 3033
cef72199 3034 switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C');
59fc10af 3035 start_charset_pound_if($charset, 1) unless $same_in_all_code_pages;
4761f74a 3036
59fc10af
KW
3037 output_invlist($prop_name, \@invlist, ($same_in_all_code_pages)
3038 ? $applies_to_all_charsets_text
3039 : $charset);
4761f74a
KW
3040
3041 if (@invmap) {
3042 output_invmap($prop_name, \@invmap, $lookup_prop, $map_format,
3043 $map_default, $extra_enums, $charset);
3044 }
59fc10af
KW
3045
3046 last if $same_in_all_code_pages;
4761f74a 3047 end_charset_pound_if;
0f5e3c71 3048 }
9d9177be
KW
3049}
3050
4ef8bdf9 3051print $out_fh "\nconst char * const deprecated_property_msgs[] = {\n\t";
394d2d3f
KW
3052print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages;
3053print $out_fh "\n};\n";
3054
7a15fa9e
KW
3055switch_pound_if ('binary_invlist_enum', 'PERL_IN_REGCOMP_C');
3056
394d2d3f
KW
3057my @enums = sort values %enums;
3058
3059# Save a copy of these before modification
3060my @invlist_names = map { "${_}_invlist" } @enums;
3061
3062# Post-process the enums for deprecated properties.
3063if (scalar keys %deprecated_tags) {
3064 my $seen_deprecated = 0;
3065 foreach my $enum (@enums) {
3066 if (grep { $_ eq $enum } keys %deprecated_tags) {
3067
3068 # Change the enum name for this deprecated property to a
3069 # munged one to act as a placeholder in the typedef. Then
3070 # make the real name be a #define whose value is such that
3071 # its modulus with the number of enums yields the index into
3072 # the table occupied by the placeholder. And so that dividing
3073 # the #define value by the table length gives an index into
3074 # the table of deprecation messages for the corresponding
3075 # warning.
3076 my $revised_enum = "${enum}_perl_aux";
3077 if (! $seen_deprecated) {
3078 $seen_deprecated = 1;
3079 print $out_fh "\n";
3080 }
3081 print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n";
3082 $enum = $revised_enum;
3083 }
3084 }
3085}
3086
cf2cd619
KW
3087print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,",
3088 " /* So no real value is zero */\n\t";
394d2d3f
KW
3089print $out_fh join ",\n\t", @enums;
3090print $out_fh "\n";
3091print $out_fh "} binary_invlist_enum;\n";
3092print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n";
394d2d3f 3093
7a15fa9e
KW
3094switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C');
3095
cef72199 3096output_table_header($out_fh, "UV *", "uni_prop_ptrs");
a3d5e31b 3097print $out_fh "\tNULL,\t/* Placeholder */\n";
cef72199 3098print $out_fh "\t";
394d2d3f
KW
3099print $out_fh join ",\n\t", @invlist_names;
3100print $out_fh "\n";
cef72199
KW
3101
3102output_table_trailer();
3103
7a15fa9e
KW
3104switch_pound_if ('synonym defines', 'PERL_IN_REGCOMP_C');
3105
cef72199
KW
3106print $out_fh join "\n", "\n",
3107 #'# ifdef DOINIT',
3108 #"\n",
e5360b12 3109 "/* Synonyms for perl properties */",
cef72199
KW
3110 @perl_prop_synonyms,
3111 #"\n",
3112 #"# endif /* DOINIT */",
3113 "\n";
394d2d3f 3114
2cd613ec
KW
3115switch_pound_if ('Valid property_values', 'PERL_IN_REGCOMP_C');
3116
3117# Each entry is a pointer to a table of property values for some property.
3118# (Other properties may share this table. The next two data structures allow
3119# this sharing to be implemented.)
3120my @values_tables = "NULL /* Placeholder so zero index is an error */";
3121
3122# Keys are all the values of a property, strung together. The value of each
3123# key is its index in @values_tables. This is because many properties have
3124# the same values, and this allows the data to appear just once.
3125my %joined_values;
3126
3127# #defines for indices into @values_tables, so can have synonyms resolved by
3128# the C compiler.
3129my @values_indices;
3130
3131# Go through each property which is specifiable by \p{prop=value}, and create
3132# a hash with the keys being the canonicalized short property names, and the
3133# values for each property being all possible values that it can take on.
3134# Both the full value and its short, canonicalized into lc, sans punctuation
3135# version are included.
3136my %all_values;
3137for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) }
3138 uniques @equals_properties)
3139{
3140 # Get and canonicalize the short name for this property.
3141 my ($short_name) = prop_aliases($property);
3142 $short_name = lc $short_name;
3143 $short_name =~ s/[ _-]//g;
3144
3145 # Now look at each value this property can take on
3146 foreach my $value (prop_values($short_name)) {
3147
3148 # And for each value, look at each synonym for it
3149 foreach my $alias (prop_value_aliases($short_name, $value)) {
3150
3151 # Add each synonym
3152 push @{$all_values{$short_name}}, $alias;
3153
3154 # As well as its canonicalized name. khw made the decision to not
3155 # support the grandfathered L_ Gc property value
3156 $alias = lc $alias;
3157 $alias =~ s/[ _-]//g unless $alias =~ $numeric_re;
3158 push @{$all_values{$short_name}}, $alias;
3159 }
3160 }
3161}
3162
3163# Also include the old style block names, using the recipe given in
3164# Unicode::UCD
3165foreach my $block (prop_values('block')) {
3166 push @{$all_values{'blk'}}, charblock((prop_invlist("block=$block"))[0]);
3167}
3168
3169# Now create output tables for each property in @equals_properties (the keys
3170# in %all_values) each containing that property's possible values as computed
3171# just above.
3172PROPERTY:
3173for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3174 or $a cmp $b } keys %all_values)
3175{
3176 @{$all_values{$property}} = uniques(@{$all_values{$property}});
3177
3178 # String together the values for this property, sorted. This string forms
3179 # a list definition, with each value as an entry in it, indented on a new
3180 # line. The sorting is used to find properties that take on the exact
3181 # same values to share this string.
3182 my $joined = "\t\"";
3183 $joined .= join "\",\n\t\"",
3184 sort { ($a =~ $numeric_re && $b =~ $numeric_re)
3185 ? eval $a <=> eval $b
3186 : prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3187 or $a cmp $b
3188 } @{$all_values{$property}};
3189 # And add a trailing marker
3190 $joined .= "\",\n\tNULL\n";
3191
3192 my $table_name = $table_name_prefix . $property . "_values";
3193 my $index_name = "${table_name}_index";
3194
3195 # Add a rule for the parser that is just an empty value. It will need to
3196 # know to look up empty things in the prop_value_ptrs[] table.
3197
3198 $keywords{"$property="} = $index_name;
3199 if (exists $prop_name_aliases{$property}) {
3200 foreach my $alias (@{$prop_name_aliases{$property}}) {
3201 $keywords{"$alias="} = $index_name;
3202 }
3203 }
3204
3205 # Also create rules for the synonyms of this property to point to the same
3206 # thing
3207
3208 # If this property's values are the same as one we've already computed,
3209 # use that instead of creating a duplicate. But we add a #define to point
3210 # to the proper one.
3211 if (exists $joined_values{$joined}) {
3212 push @values_indices, "#define $index_name $joined_values{$joined}\n";
3213 next PROPERTY;
3214 }
3215
3216 # And this property, now known to have unique values from any other seen
3217 # so far is about to be pushed onto @values_tables. Its index is the
3218 # current count.
3219 push @values_indices, "#define $index_name "
3220 . scalar @values_tables . "\n";
3221 $joined_values{$joined} = $index_name;
3222 push @values_tables, $table_name;
3223
3224 # Create the table for this set of values.
3225 output_table_header($out_fh, "char *", $table_name);
3226 print $out_fh $joined;
3227 output_table_trailer();
3228} # End of loop through the properties, and their values
3229
3230# We have completely determined the table of the unique property values
3231output_table_header($out_fh, "char * const *",
3232 "${table_name_prefix}prop_value_ptrs");
3233print $out_fh join ",\n", @values_tables;
3234print $out_fh "\n";
3235output_table_trailer();
3236
3237# And the #defines for the indices in it
3238print $out_fh "\n\n", join "", @values_indices;
3239
973a28ed
KW
3240switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');
3241
3242output_GCB_table();
6b659339 3243output_LB_table();
7e54b87f 3244output_WB_table();
6b659339 3245
973a28ed
KW
3246end_file_pound_if;
3247
cb2d98ed
KW
3248print $out_fh <<"EOF";
3249
3250/* More than one code point may have the same code point as their fold. This
3251 * gives the maximum number in the current Unicode release. (The folded-to
3252 * code point is not included in this count.) For example, both 'S' and
3253 * \\x{17F} fold to 's', so the number for that fold is 2. Another way to
3254 * look at it is the maximum length of all the IVCF_AUX_TABLE's */
3255#define MAX_FOLD_FROMS $max_fold_froms
3256EOF
3257
2308ab83 3258my $sources_list = "lib/unicore/mktables.lst";
74e28a4a
TC
3259my @sources = qw(regen/mk_invlists.pl
3260 lib/unicore/mktables
3261 lib/Unicode/UCD.pm
3262 regen/charset_translations.pl
f7b69ff8 3263 regen/mk_PL_charclass.pl
74e28a4a 3264 );
9a3da3ad
FC
3265{
3266 # Depend on mktables’ own sources. It’s a shorter list of files than
3267 # those that Unicode::UCD uses.
1ae6ead9 3268 if (! open my $mktables_list, '<', $sources_list) {
2308ab83
KW
3269
3270 # This should force a rebuild once $sources_list exists
3271 push @sources, $sources_list;
3272 }
3273 else {
3274 while(<$mktables_list>) {
3275 last if /===/;
3276 chomp;
3277 push @sources, "lib/unicore/$_" if /^[^#]/;
3278 }
9a3da3ad
FC
3279 }
3280}
6b659339
KW
3281
3282read_only_bottom_close_and_rename($out_fh, \@sources);
394d2d3f 3283
21c34e97
KW
3284my %name_to_index;
3285for my $i (0 .. @enums - 1) {
3286 my $loose_name = $enums[$i] =~ s/^$table_name_prefix//r;
3287 $loose_name = lc $loose_name;
3288 $loose_name =~ s/__/=/;
3289 $loose_name =~ s/_dot_/./;
3290 $loose_name =~ s/_slash_/\//g;
3291 $name_to_index{$loose_name} = $i + 1;
3292}
3293# unsanitize, exclude &, maybe add these before sanitize
3294for my $i (0 .. @perl_prop_synonyms - 1) {
3295 my $loose_name_pair = $perl_prop_synonyms[$i] =~ s/#\s*define\s*//r;
3296 $loose_name_pair =~ s/\b$table_name_prefix//g;
3297 $loose_name_pair = lc $loose_name_pair;
3298 $loose_name_pair =~ s/__/=/g;
3299 $loose_name_pair =~ s/_dot_/./g;
3300 $loose_name_pair =~ s/_slash_/\//g;
3301 my ($synonym, $primary) = split / +/, $loose_name_pair;
3302 $name_to_index{$synonym} = $name_to_index{$primary};
3303}
3304
3305my $uni_pl = open_new('lib/unicore/uni_keywords.pl', '>',
3306 {style => '*', by => 'regen/mk_invlists.pl',
3307 from => "Unicode::UCD"});
3308{
048bdb72 3309 print $uni_pl "\%Unicode::UCD::uni_prop_ptrs_indices = (\n";
21c34e97 3310 for my $name (sort keys %name_to_index) {
21c34e97
KW
3311 print $uni_pl " '$name' => $name_to_index{$name},\n";
3312 }
3313 print $uni_pl ");\n\n1;\n";
3314}
3315
3316read_only_bottom_close_and_rename($uni_pl, \@sources);
3317
afde5508 3318require './regen/mph.pl';
394d2d3f
KW
3319
3320sub token_name
3321{
3322 my $name = sanitize_name(shift);
db95f459 3323 warn "$name contains non-word" if $name =~ /\W/;
394d2d3f 3324
afde5508 3325 return "$table_name_prefix\U$name"
394d2d3f
KW
3326}
3327
afde5508 3328my $keywords_fh = open_new('uni_keywords.h', '>',
394d2d3f 3329 {style => '*', by => 'regen/mk_invlists.pl',
afde5508 3330 from => "mph.pl"});
394d2d3f 3331
cf2cd619
KW
3332my ($second_level, $seed1, $length_all_keys, $smart_blob, $rows)
3333 = MinimalPerfectHash::make_mph_from_hash(\%keywords);
3334print $keywords_fh MinimalPerfectHash::make_algo($second_level, $seed1,
3335 $length_all_keys, $smart_blob,
3336 $rows, undef, undef, undef,
3337 'match_uniprop' );
afde5508
KW
3338
3339push @sources, 'regen/mph.pl';
394d2d3f 3340read_only_bottom_close_and_rename($keywords_fh, \@sources);