This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
regcomp.c: don't include INTERN.h
[perl5.git] / regen / mk_invlists.pl
CommitLineData
9d9177be
KW
1#!perl -w
2use 5.015;
3use strict;
4use warnings;
99f21fb9
KW
5use Unicode::UCD qw(prop_aliases
6 prop_values
7 prop_value_aliases
8 prop_invlist
9 prop_invmap search_invlist
463b4a67 10 charprop
a1c8344d 11 num
99f21fb9 12 );
3d7c117d
MB
13require './regen/regen_lib.pl';
14require './regen/charset_translations.pl';
4eea95a6 15require './lib/unicore/Heavy.pl';
db95f459 16use re "/aa";
9d9177be
KW
17
18# This program outputs charclass_invlists.h, which contains various inversion
19# lists in the form of C arrays that are to be used as-is for inversion lists.
20# Thus, the lists it contains are essentially pre-compiled, and need only a
21# light-weight fast wrapper to make them usable at run-time.
22
23# As such, this code knows about the internal structure of these lists, and
24# any change made to that has to be done here as well. A random number stored
25# in the headers is used to minimize the possibility of things getting
26# out-of-sync, or the wrong data structure being passed. Currently that
27# random number is:
99f21fb9 28
1c7f0e60
KW
29my $VERSION_DATA_STRUCTURE_TYPE = 148565664;
30
b72e0f31
KW
31# charclass_invlists.h now also contains inversion maps and enum definitions
32# for those maps that have a finite number of possible values
99f21fb9 33
99f21fb9 34# integer or float
db95f459 35my $numeric_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x;
99f21fb9 36
cb2d98ed
KW
37# More than one code point may have the same code point as their fold. This
38# gives the maximum number in the current Unicode release. (The folded-to
39# code point is not included in this count.) Most folds are pairs of code
40# points, like 'B' and 'b', so this number is at least one.
41my $max_fold_froms = 1;
42
f4b10e8e 43my %keywords;
cef72199 44my $table_name_prefix = "UNI_";
4eea95a6 45
99f21fb9
KW
46# Matches valid C language enum names: begins with ASCII alphabetic, then any
47# ASCII \w
48my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;
49
9d9177be 50my $out_fh = open_new('charclass_invlists.h', '>',
74e28a4a 51 {style => '*', by => 'regen/mk_invlists.pl',
9d9177be
KW
52 from => "Unicode::UCD"});
53
0f8eed22 54my $in_file_pound_if = "";
43b443dd 55
289ce9cc
KW
56my $max_hdr_len = 3; # In headings, how wide a name is allowed?
57
9d9177be
KW
58print $out_fh "/* See the generating file for comments */\n\n";
59
d74e7480
KW
60# enums that should be made public
61my %public_enums = (
f52cc976 62 _Perl_SCX => 1
d74e7480
KW
63 );
64
bffc0129
KW
65# The symbols generated by this program are all currently defined only in a
66# single dot c each. The code knows where most of them go, but this hash
67# gives overrides for the exceptions to the typical place
68my %exceptions_to_where_to_define =
7dddaf74 69 (
03d17b6e 70 #_Perl_IVCF => 'PERL_IN_REGCOMP_C',
bffc0129 71 );
4761f74a 72
c0221e16 73my %where_to_define_enums = ();
015bb97c 74
59fc10af
KW
75my $applies_to_all_charsets_text = "all charsets";
76
973a28ed
KW
77my %gcb_enums;
78my @gcb_short_enums;
289ce9cc 79my %gcb_abbreviations;
6b659339
KW
80my %lb_enums;
81my @lb_short_enums;
289ce9cc 82my %lb_abbreviations;
7e54b87f
KW
83my %wb_enums;
84my @wb_short_enums;
289ce9cc 85my %wb_abbreviations;
6b659339 86
99f21fb9
KW
87my @a2n;
88
394d2d3f
KW
89my %prop_name_aliases;
90# Invert this hash so that for each canonical name, we get a list of things
91# that map to it (excluding itself)
92foreach my $name (sort keys %utf8::loose_property_name_of) {
93 my $canonical = $utf8::loose_property_name_of{$name};
94 push @{$prop_name_aliases{$canonical}}, $name if $canonical ne $name;
95}
96
2d74dcf2 97# Output these tables in the same vicinity as each other, so that will get
1aefa327
KW
98# paged in at about the same time. These are also assumed to be the exact
99# same list as those properties used internally by perl.
2d74dcf2
KW
100my %keep_together = (
101 assigned => 1,
102 ascii => 1,
7a6f6841
KW
103 upper => 1,
104 lower => 1,
105 title => 1,
2d74dcf2 106 cased => 1,
7a6f6841
KW
107 uppercaseletter => 1,
108 lowercaseletter => 1,
109 titlecaseletter => 1,
110 casedletter => 1,
2d74dcf2
KW
111 vertspace => 1,
112 xposixalnum => 1,
113 xposixalpha => 1,
114 xposixblank => 1,
115 xposixcntrl => 1,
116 xposixdigit => 1,
117 xposixgraph => 1,
118 xposixlower => 1,
119 xposixprint => 1,
120 xposixpunct => 1,
121 xposixspace => 1,
122 xposixupper => 1,
123 xposixword => 1,
124 xposixxdigit => 1,
125 posixalnum => 1,
126 posixalpha => 1,
127 posixblank => 1,
128 posixcntrl => 1,
129 posixdigit => 1,
130 posixgraph => 1,
131 posixlower => 1,
132 posixprint => 1,
133 posixpunct => 1,
134 posixspace => 1,
135 posixupper => 1,
136 posixword => 1,
137 posixxdigit => 1,
138 _perl_any_folds => 1,
139 _perl_folds_to_multi_char => 1,
441f4830
KW
140 _perl_is_in_multi_char_fold => 1,
141 _perl_non_final_folds => 1,
2d74dcf2
KW
142 _perl_idstart => 1,
143 _perl_idcont => 1,
144 _perl_charname_begin => 1,
145 _perl_charname_continue => 1,
146 _perl_problematic_locale_foldeds_start => 1,
147 _perl_problematic_locale_folds => 1,
148 _perl_quotemeta => 1,
149 );
1aefa327 150my %perl_tags; # So can find synonyms of the above properties
2d74dcf2 151
2027d365
KW
152my $unused_table_hdr = 'u'; # Heading for row or column for unused values
153
99f21fb9
KW
154sub uniques {
155 # Returns non-duplicated input values. From "Perl Best Practices:
156 # Encapsulated Cleverness". p. 455 in first edition.
157
158 my %seen;
159 return grep { ! $seen{$_}++ } @_;
160}
161
162sub a2n($) {
163 my $cp = shift;
164
165 # Returns the input Unicode code point translated to native.
166
167 return $cp if $cp !~ $numeric_re || $cp > 255;
168 return $a2n[$cp];
169}
170
bffc0129
KW
171sub end_file_pound_if {
172 if ($in_file_pound_if) {
173 print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
0f8eed22 174 $in_file_pound_if = "";
bffc0129
KW
175 }
176}
177
48737b77
KW
178sub end_charset_pound_if {
179 print $out_fh "\n" . get_conditional_compile_line_end();
180}
181
8ec55631 182sub switch_pound_if ($$;$) {
bffc0129
KW
183 my $name = shift;
184 my $new_pound_if = shift;
8ec55631
KW
185 my $charset = shift;
186
62a54bb7 187 my @new_pound_if = ref ($new_pound_if)
0f8eed22 188 ? sort @$new_pound_if
62a54bb7 189 : $new_pound_if;
bffc0129
KW
190
191 # Switch to new #if given by the 2nd argument. If there is an override
192 # for this, it instead switches to that. The 1st argument is the
0f8eed22 193 # static's name, used only to check if there is an override for this
8ec55631
KW
194 #
195 # The 'charset' parmameter, if present, is used to first end the charset
196 # #if if we actually do a switch, and then restart it afterwards. This
197 # code, then assumes that the charset #if's are enclosed in the file ones.
bffc0129
KW
198
199 if (exists $exceptions_to_where_to_define{$name}) {
62a54bb7 200 @new_pound_if = $exceptions_to_where_to_define{$name};
bffc0129
KW
201 }
202
0f8eed22 203 foreach my $element (@new_pound_if) {
cef72199
KW
204
205 # regcomp.c is arranged so that the tables are not compiled in
206 # re_comp.c */
207 my $no_xsub = 1 if $element =~ / PERL_IN_ (?: REGCOMP ) _C /x;
0f8eed22 208 $element = "defined($element)";
cef72199 209 $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub;
bffc0129 210 }
0f8eed22 211 $new_pound_if = join " || ", @new_pound_if;
bffc0129 212
0f8eed22
KW
213 # Change to the new one if different from old
214 if ($in_file_pound_if ne $new_pound_if) {
215
8ec55631
KW
216 end_charset_pound_if() if defined $charset;
217
0f8eed22
KW
218 # Exit any current #if
219 if ($in_file_pound_if) {
220 end_file_pound_if;
62a54bb7 221 }
0f8eed22
KW
222
223 $in_file_pound_if = $new_pound_if;
bffc0129 224 print $out_fh "\n#if $in_file_pound_if\n";
8ec55631
KW
225
226 start_charset_pound_if ($charset, 1) if defined $charset;
43b443dd
KW
227 }
228}
229
48737b77
KW
230sub start_charset_pound_if ($;$) {
231 print $out_fh "\n" . get_conditional_compile_line_start(shift, shift);
232}
233
cef72199
KW
234{ # Closure
235 my $fh;
236 my $in_doinit = 0;
237
238 sub output_table_header($$$;$@) {
239
240 # Output to $fh the heading for a table given by the other inputs
241
242 $fh = shift;
243 my ($type, # typedef of table, like UV, UV*
244 $name, # name of table
245 $comment, # Optional comment to put on header line
246 @sizes # Optional sizes of each array index. If omitted,
247 # there is a single index whose size is computed by
248 # the C compiler.
249 ) = @_;
250
251 $type =~ s/ \s+ $ //x;
252
253 # If a the typedef is a ptr, add in an extra const
254 $type .= " const" if $type =~ / \* $ /x;
255
256 $comment = "" unless defined $comment;
257 $comment = " /* $comment */" if $comment;
258
259 my $array_declaration;
260 if (@sizes) {
261 $array_declaration = "";
262 $array_declaration .= "[$_]" for @sizes;
263 }
264 else {
265 $array_declaration = '[]';
266 }
267
268 my $declaration = "$type ${name}$array_declaration";
269
270 # Things not matching this are static. Otherwise, it is an external
271 # constant, initialized only under DOINIT.
272 #
273 # (Currently everything is static)
274 if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) {
275 $in_doinit = 0;
276 print $fh "\nstatic const $declaration = {$comment\n";
277 }
278 else {
279 $in_doinit = 1;
280 print $fh <<EOF;
281
282# ifndef DOINIT
283
284EXTCONST $declaration;
285
286# else
287
288EXTCONST $declaration = {$comment
289EOF
290 }
291 }
292
293 sub output_table_trailer() {
294
295 # Close out a table started by output_table_header()
296
297 print $fh "};\n";
298 if ($in_doinit) {
299 print $fh "\n# endif /* DOINIT */\n\n";
300 $in_doinit = 0;
301 }
302 }
303} # End closure
304
305
0c4ecf42 306sub output_invlist ($$;$) {
9d9177be
KW
307 my $name = shift;
308 my $invlist = shift; # Reference to inversion list array
0c4ecf42 309 my $charset = shift // ""; # name of character set for comment
9d9177be 310
76d3994c 311 die "No inversion list for $name" unless defined $invlist
ad85f59a 312 && ref $invlist eq 'ARRAY';
76d3994c 313
9d9177be
KW
314 # Output the inversion list $invlist using the name $name for it.
315 # It is output in the exact internal form for inversion lists.
316
a0316a6c
KW
317 # Is the last element of the header 0, or 1 ?
318 my $zero_or_one = 0;
ad85f59a 319 if (@$invlist && $invlist->[0] != 0) {
a0316a6c 320 unshift @$invlist, 0;
9d9177be
KW
321 $zero_or_one = 1;
322 }
323
cef72199
KW
324 $charset = "for $charset" if $charset;
325 output_table_header($out_fh, "UV", "${name}_invlist", $charset);
9d9177be 326
cef72199
KW
327 my $count = @$invlist;
328 print $out_fh <<EOF;
329\t$count,\t/* Number of elements */
330\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */
331\t$zero_or_one,\t/* 0 if the list starts at 0;
332\t\t 1 if it starts at the element beyond 0 */
333EOF
9d9177be
KW
334
335 # The main body are the UVs passed in to this routine. Do the final
336 # element separately
47d53124
KW
337 for my $i (0 .. @$invlist - 1) {
338 printf $out_fh "\t0x%X", $invlist->[$i];
339 print $out_fh "," if $i < @$invlist - 1;
340 print $out_fh "\n";
9d9177be
KW
341 }
342
cef72199 343 output_table_trailer();
9d9177be
KW
344}
345
99f21fb9
KW
346sub output_invmap ($$$$$$$) {
347 my $name = shift;
348 my $invmap = shift; # Reference to inversion map array
349 my $prop_name = shift;
350 my $input_format = shift; # The inversion map's format
351 my $default = shift; # The property value for code points who
352 # otherwise don't have a value specified.
353 my $extra_enums = shift; # comma-separated list of our additions to the
354 # property's standard possible values
355 my $charset = shift // ""; # name of character set for comment
356
357 # Output the inversion map $invmap for property $prop_name, but use $name
358 # as the actual data structure's name.
359
360 my $count = @$invmap;
361
362 my $output_format;
18230d9d
KW
363 my $invmap_declaration_type;
364 my $enum_declaration_type;
365 my $aux_declaration_type;
99f21fb9
KW
366 my %enums;
367 my $name_prefix;
368
18230d9d 369 if ($input_format =~ / ^ [as] l? $ /x) {
02f811dd
KW
370 $prop_name = (prop_aliases($prop_name))[1] // $prop_name =~ s/^_Perl_//r; # Get full name
371 my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
226b74db 372 my @input_enums;
f79a09fc 373
226b74db 374 # Find all the possible input values. These become the enum names
34623dbb
KW
375 # that comprise the inversion map. For inputs that don't have sub
376 # lists, we can just get the unique values. Otherwise, we have to
377 # expand the sublists first.
18230d9d 378 if ($input_format !~ / ^ a /x) {
563f8b93
KW
379 if ($input_format ne 'sl') {
380 @input_enums = sort(uniques(@$invmap));
381 }
382 else {
383 foreach my $element (@$invmap) {
384 if (ref $element) {
385 push @input_enums, @$element;
386 }
387 else {
388 push @input_enums, $element;
389 }
34623dbb 390 }
563f8b93 391 @input_enums = sort(uniques(@input_enums));
34623dbb 392 }
18230d9d 393 }
6b659339 394
226b74db 395 # The internal enums come last, and in the order specified.
2027d365
KW
396 #
397 # The internal one named EDGE is also used a marker. Any ones that
398 # come after it are used in the algorithms below, and so must be
399 # defined, even if the release of Unicode this is being compiled for
400 # doesn't use them. But since no code points are assigned to them in
401 # such a release, those values will never be accessed. We collapse
402 # all of them into a single placholder row and a column. The
403 # algorithms below will fill in those cells with essentially garbage,
404 # but they are never read, so it doesn't matter. This allows the
405 # algorithm to remain the same from release to release.
406 #
407 # In one case, regexec.c also uses a placeholder which must be defined
408 # here, and we put it in the unused row and column as its value is
409 # never read.
410 #
226b74db 411 my @enums = @input_enums;
27a619f7 412 my @extras;
2027d365
KW
413 my @unused_enums;
414 my $unused_enum_value = @enums;
27a619f7
KW
415 if ($extra_enums ne "") {
416 @extras = split /,/, $extra_enums;
2027d365 417 my $seen_EDGE = 0;
226b74db
KW
418
419 # Don't add if already there.
420 foreach my $this_extra (@extras) {
421 next if grep { $_ eq $this_extra } @enums;
2027d365
KW
422 if ($this_extra eq 'EDGE') {
423 push @enums, $this_extra;
424 $seen_EDGE = 1;
425 }
426 elsif ($seen_EDGE) {
427 push @unused_enums, $this_extra;
428 }
429 else {
430 push @enums, $this_extra;
431 }
226b74db 432 }
2027d365
KW
433
434 @unused_enums = sort @unused_enums;
435 $unused_enum_value = @enums; # All unused have the same value,
436 # one beyond the final used one
27a619f7 437 }
289ce9cc 438
226b74db
KW
439 # Assign a value to each element of the enum type we are creating.
440 # The default value always gets 0; the others are arbitrarily
441 # assigned.
27a619f7
KW
442 my $enum_val = 0;
443 my $canonical_default = prop_value_aliases($prop_name, $default);
444 $default = $canonical_default if defined $canonical_default;
445 $enums{$default} = $enum_val++;
226b74db 446
27a619f7
KW
447 for my $enum (@enums) {
448 $enums{$enum} = $enum_val++ unless exists $enums{$enum};
449 }
450
226b74db 451 # Calculate the data for the special tables output for these properties.
27a619f7
KW
452 if ($name =~ / ^ _Perl_ (?: GCB | LB | WB ) $ /x) {
453
226b74db
KW
454 # The data includes the hashes %gcb_enums, %lb_enums, etc.
455 # Similarly we calculate column headings for the tables.
456 #
27a619f7 457 # We use string evals to allow the same code to work on
226b74db 458 # all the tables
27a619f7
KW
459 my $type = lc $prop_name;
460
27a619f7
KW
461 # Skip if we've already done this code, which populated
462 # this hash
463 if (eval "! \%${type}_enums") {
464
226b74db 465 # For each enum in the type ...
27a619f7
KW
466 foreach my $enum (sort keys %enums) {
467 my $value = $enums{$enum};
468 my $short;
469 my $abbreviated_from;
470
471 # Special case this wb property value to make the
472 # name more clear
473 if ($enum eq 'Perl_Tailored_HSpace') {
474 $short = 'hs';
475 $abbreviated_from = $enum;
476 }
27a619f7 477 else {
226b74db
KW
478
479 # Use the official short name, if found.
27a619f7
KW
480 ($short) = prop_value_aliases($type, $enum);
481
226b74db
KW
482 if (! defined $short) {
483
484 # But if there is no official name, use the name
485 # that came from the data (if any). Otherwise,
486 # the name had to come from the extras list.
487 # There are two types of values in that list.
488 #
489 # First are those enums that are not part of the
490 # property, but are defined by this code. By
2027d365
KW
491 # convention these have all-caps names. We use
492 # the lowercased name for these.
226b74db 493 #
2027d365
KW
494 # Second are enums that are needed to get the
495 # algorithms below to work and/or to get regexec.c
496 # to compile, but don't exist in all Unicode
497 # releases. These are handled outside this loop
498 # as 'unused_enums'
226b74db
KW
499 if (grep { $_ eq $enum } @input_enums) {
500 $short = $enum
501 }
226b74db
KW
502 else {
503 $short = lc $enum;
504 }
505 }
27a619f7
KW
506 }
507
508 # If our short name is too long, or we already
509 # know that the name is an abbreviation, truncate
510 # to make sure it's short enough, and remember
226b74db
KW
511 # that we did this so we can later add a comment in the
512 # generated file
27a619f7
KW
513 if ( $abbreviated_from
514 || length $short > $max_hdr_len)
515 {
516 $short = substr($short, 0, $max_hdr_len);
517 $abbreviated_from = $enum
518 unless $abbreviated_from;
519 # If the name we are to display conflicts, try
520 # another.
521 while (eval "exists
522 \$${type}_abbreviations{$short}")
523 {
289ce9cc 524 die $@ if $@;
256fceb3
KW
525
526 # The increment operator on strings doesn't work
527 # on those containing an '_', so just use the
528 # final portion.
529 my @short = split '_', $short;
530 $short[-1]++;
531 $short = join "_", @short;
289ce9cc 532 }
19a5f1d5 533
27a619f7 534 eval "\$${type}_abbreviations{$short} = '$enum'";
19a5f1d5 535 die $@ if $@;
7e54b87f 536 }
27a619f7
KW
537
538 # Remember the mapping from the property value
539 # (enum) name to its value.
540 eval "\$${type}_enums{$enum} = $value";
541 die $@ if $@;
542
543 # Remember the inverse mapping to the short name
544 # so that we can properly label the generated
545 # table's rows and columns
546 eval "\$${type}_short_enums[$value] = '$short'";
547 die $@ if $@;
7e54b87f 548 }
2027d365
KW
549
550 # Each unused enum has the same value. They all are collapsed
551 # into one row and one column, named $unused_table_hdr.
552 if (@unused_enums) {
553 eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'";
554 die $@ if $@;
555
556 foreach my $enum (@unused_enums) {
557 eval "\$${type}_enums{$enum} = $unused_enum_value";
558 die $@ if $@;
559 }
560 }
99f21fb9 561 }
19a5f1d5 562 }
99f21fb9 563
19a5f1d5
KW
564 # The short names tend to be two lower case letters, but it looks
565 # better for those if they are upper. XXX
566 $short_name = uc($short_name) if length($short_name) < 3
226b74db 567 || substr($short_name, 0, 1) =~ /[[:lower:]]/;
19a5f1d5 568 $name_prefix = "${short_name}_";
cdc243dd 569
226b74db 570 # Start the enum definition for this map
f99e0590 571 my @enum_definition;
19a5f1d5
KW
572 my @enum_list;
573 foreach my $enum (keys %enums) {
574 $enum_list[$enums{$enum}] = $enum;
99f21fb9 575 }
19a5f1d5 576 foreach my $i (0 .. @enum_list - 1) {
f99e0590 577 push @enum_definition, ",\n" if $i > 0;
34623dbb 578
19a5f1d5 579 my $name = $enum_list[$i];
f99e0590 580 push @enum_definition, "\t${name_prefix}$name = $i";
19a5f1d5 581 }
2027d365
KW
582 if (@unused_enums) {
583 foreach my $unused (@unused_enums) {
584 push @enum_definition,
585 ",\n\t${name_prefix}$unused = $unused_enum_value";
586 }
587 }
34623dbb 588
18230d9d 589 # For an 'l' property, we need extra enums, because some of the
34623dbb
KW
590 # elements are lists. Each such distinct list is placed in its own
591 # auxiliary map table. Here, we go through the inversion map, and for
592 # each distinct list found, create an enum value for it, numbered -1,
593 # -2, ....
594 my %multiples;
595 my $aux_table_prefix = "AUX_TABLE_";
18230d9d 596 if ($input_format =~ /l/) {
34623dbb
KW
597 foreach my $element (@$invmap) {
598
599 # A regular scalar is not one of the lists we're looking for
600 # at this stage.
601 next unless ref $element;
602
18230d9d
KW
603 my $joined;
604 if ($input_format =~ /a/) { # These are already ordered
605 $joined = join ",", @$element;
606 }
607 else {
608 $joined = join ",", sort @$element;
609 }
34623dbb
KW
610 my $already_found = exists $multiples{$joined};
611
612 my $i;
613 if ($already_found) { # Use any existing one
614 $i = $multiples{$joined};
615 }
616 else { # Otherwise increment to get a new table number
617 $i = keys(%multiples) + 1;
618 $multiples{$joined} = $i;
619 }
620
621 # This changes the inversion map for this entry to not be the
622 # list
623 $element = "use_$aux_table_prefix$i";
624
625 # And add to the enum values
626 if (! $already_found) {
f99e0590 627 push @enum_definition, ",\n\t${name_prefix}$element = -$i";
34623dbb
KW
628 }
629 }
630 }
631
18230d9d 632 $enum_declaration_type = "${name_prefix}enum";
f99e0590 633
c454388e
KW
634 # Finished with the enum definition. Inversion map stuff is used only
635 # by regexec or utf-8 (if it is for code points) , unless it is in the
636 # enum exception list
637 my $where = (exists $where_to_define_enums{$name})
638 ? $where_to_define_enums{$name}
639 : ($input_format =~ /a/)
640 ? 'PERL_IN_UTF8_C'
641 : 'PERL_IN_REGEXEC_C';
642
8ec55631
KW
643 if (! exists $public_enums{$name}) {
644 switch_pound_if($name, $where, $charset);
645 }
646 else {
647 end_charset_pound_if;
648 end_file_pound_if;
649 start_charset_pound_if($charset, 1);
650 }
c454388e
KW
651
652 # If the enum only contains one element, that is a dummy, default one
f99e0590
KW
653 if (scalar @enum_definition > 1) {
654
655 # Currently unneeded
656 #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ",
657 # ..scalar keys %enums, "\n";
658
659 if ($input_format =~ /l/) {
660 print $out_fh
661 "\n",
662 "/* Negative enum values indicate the need to use an",
663 " auxiliary table\n",
664 " * consisting of the list of enums this one expands to.",
665 " The absolute\n",
666 " * values of the negative enums are indices into a table",
667 " of the auxiliary\n",
668 " * tables' addresses */";
669 }
670 print $out_fh "\ntypedef enum {\n";
671 print $out_fh join "", @enum_definition;
672 print $out_fh "\n";
18230d9d 673 print $out_fh "} $enum_declaration_type;\n";
f99e0590 674 }
19a5f1d5 675
8ec55631 676 switch_pound_if($name, $where, $charset);
d74e7480 677
18230d9d
KW
678 $invmap_declaration_type = ($input_format =~ /s/)
679 ? $enum_declaration_type
341bb5b7 680 : "int";
18230d9d
KW
681 $aux_declaration_type = ($input_format =~ /s/)
682 ? $enum_declaration_type
e39a4130 683 : "unsigned int";
18230d9d 684
19a5f1d5 685 $output_format = "${name_prefix}%s";
34623dbb
KW
686
687 # If there are auxiliary tables, output them.
688 if (%multiples) {
689
690 print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";
691
692 # Invert keys and values
693 my %inverted_mults;
694 while (my ($key, $value) = each %multiples) {
695 $inverted_mults{$value} = $key;
696 }
697
698 # Output them in sorted order
699 my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;
700
701 # Keep track of how big each aux table is
702 my @aux_counts;
703
704 # Output each aux table.
705 foreach my $table_number (@sorted_table_list) {
706 my $table = $inverted_mults{$table_number};
cef72199
KW
707 output_table_header($out_fh,
708 $aux_declaration_type,
709 "$name_prefix$aux_table_prefix$table_number");
34623dbb
KW
710
711 # Earlier, we joined the elements of this table together with a comma
712 my @elements = split ",", $table;
713
714 $aux_counts[$table_number] = scalar @elements;
715 for my $i (0 .. @elements - 1) {
716 print $out_fh ",\n" if $i > 0;
18230d9d
KW
717 if ($input_format =~ /a/) {
718 printf $out_fh "\t0x%X", $elements[$i];
719 }
720 else {
721 print $out_fh "\t${name_prefix}$elements[$i]";
722 }
34623dbb 723 }
cef72199
KW
724
725 print $out_fh "\n";
726 output_table_trailer();
34623dbb
KW
727 }
728
729 # Output the table that is indexed by the absolute value of the
730 # aux table enum and contains pointers to the tables output just
731 # above
cef72199
KW
732 output_table_header($out_fh, "$aux_declaration_type *",
733 "${name_prefix}${aux_table_prefix}ptrs");
34623dbb
KW
734 print $out_fh "\tNULL,\t/* Placeholder */\n";
735 for my $i (1 .. @sorted_table_list) {
736 print $out_fh ",\n" if $i > 1;
737 print $out_fh "\t$name_prefix$aux_table_prefix$i";
738 }
cef72199
KW
739 print $out_fh "\n";
740 output_table_trailer();
34623dbb
KW
741
742 print $out_fh
743 "\n/* Parallel table to the above, giving the number of elements"
744 . " in each table\n * pointed to */\n";
cef72199
KW
745 output_table_header($out_fh, "U8",
746 "${name_prefix}${aux_table_prefix}lengths");
34623dbb
KW
747 print $out_fh "\t0,\t/* Placeholder */\n";
748 for my $i (1 .. @sorted_table_list) {
749 print $out_fh ",\n" if $i > 1;
750 print $out_fh "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
751 }
cef72199
KW
752 print $out_fh "\n";
753 output_table_trailer();
34623dbb 754 } # End of outputting the auxiliary and associated tables
463b4a67
KW
755
756 # The scx property used in regexec.c needs a specialized table which
757 # is most convenient to output here, while the data structures set up
758 # above are still extant. This table contains the code point that is
759 # the zero digit of each script, indexed by script enum value.
760 if (lc $short_name eq 'scx') {
761 my @decimals_invlist = prop_invlist("Numeric_Type=Decimal");
762 my %script_zeros;
763
764 # Find all the decimal digits. The 0 of each range is always the
765 # 0th element, except in some early Unicode releases, so check for
766 # that.
767 for (my $i = 0; $i < @decimals_invlist; $i += 2) {
768 my $code_point = $decimals_invlist[$i];
a1c8344d 769 next if num(chr($code_point)) ne '0';
463b4a67
KW
770
771 # Turn the scripts this zero is in into a list.
772 my @scripts = split ",",
773 charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok');
774 $code_point = sprintf("0x%x", $code_point);
775
776 foreach my $script (@scripts) {
777 if (! exists $script_zeros{$script}) {
778 $script_zeros{$script} = $code_point;
779 }
780 elsif (ref $script_zeros{$script}) {
781 push $script_zeros{$script}->@*, $code_point;
782 }
783 else { # Turn into a list if this is the 2nd zero of the
784 # script
785 my $existing = $script_zeros{$script};
786 undef $script_zeros{$script};
787 push $script_zeros{$script}->@*, $existing, $code_point;
788 }
789 }
790 }
791
792 # @script_zeros contains the zero, sorted by the script's enum
793 # value
794 my @script_zeros;
795 foreach my $script (keys %script_zeros) {
796 my $enum_value = $enums{$script};
797 $script_zeros[$enum_value] = $script_zeros{$script};
798 }
799
800 print $out_fh
801 "\n/* This table, indexed by the script enum, gives the zero"
802 . " code point for that\n * script; 0 if the script has multiple"
803 . " digit sequences. Scripts without a\n * digit sequence use"
804 . " ASCII [0-9], hence are marked '0' */\n";
cef72199 805 output_table_header($out_fh, "UV", "script_zeros");
463b4a67
KW
806 for my $i (0 .. @script_zeros - 1) {
807 my $code_point = $script_zeros[$i];
808 if (defined $code_point) {
809 $code_point = " 0" if ref $code_point;
810 print $out_fh "\t$code_point";
811 }
812 elsif (lc $enum_list[$i] eq 'inherited') {
813 print $out_fh "\t 0";
814 }
815 else { # The only digits a script without its own set accepts
816 # is [0-9]
817 print $out_fh "\t'0'";
818 }
819 print $out_fh "," if $i < @script_zeros - 1;
820 print $out_fh "\t/* $enum_list[$i] */";
821 print $out_fh "\n";
822 }
cef72199 823 output_table_trailer();
463b4a67 824 } # End of special handling of scx
99f21fb9
KW
825 }
826 else {
827 die "'$input_format' invmap() format for '$prop_name' unimplemented";
828 }
829
830 die "No inversion map for $prop_name" unless defined $invmap
831 && ref $invmap eq 'ARRAY'
832 && $count;
833
226b74db 834 # Now output the inversion map proper
cef72199
KW
835 $charset = "for $charset" if $charset;
836 output_table_header($out_fh, $invmap_declaration_type,
837 "${name}_invmap",
838 $charset);
99f21fb9
KW
839
840 # The main body are the scalars passed in to this routine.
841 for my $i (0 .. $count - 1) {
842 my $element = $invmap->[$i];
02f811dd 843 my $full_element_name = prop_value_aliases($prop_name, $element);
18230d9d
KW
844 if ($input_format =~ /a/ && $element !~ /\D/) {
845 $element = ($element == 0)
846 ? 0
847 : sprintf("0x%X", $element);
848 }
849 else {
02f811dd
KW
850 $element = $full_element_name if defined $full_element_name;
851 $element = $name_prefix . $element;
18230d9d 852 }
99f21fb9
KW
853 print $out_fh "\t$element";
854 print $out_fh "," if $i < $count - 1;
855 print $out_fh "\n";
856 }
cef72199 857 output_table_trailer();
99f21fb9
KW
858}
859
5a7e5385 860sub mk_invlist_from_sorted_cp_list {
a02047bf
KW
861
862 # Returns an inversion list constructed from the sorted input array of
863 # code points
864
865 my $list_ref = shift;
866
99f21fb9
KW
867 return unless @$list_ref;
868
a02047bf
KW
869 # Initialize to just the first element
870 my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);
871
872 # For each succeeding element, if it extends the previous range, adjust
873 # up, otherwise add it.
874 for my $i (1 .. @$list_ref - 1) {
875 if ($invlist[-1] == $list_ref->[$i]) {
876 $invlist[-1]++;
877 }
878 else {
879 push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
880 }
881 }
882 return @invlist;
883}
884
885# Read in the Case Folding rules, and construct arrays of code points for the
886# properties we need.
d2aadf62 887my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding");
a02047bf
KW
888die "Could not find inversion map for Case_Folding" unless defined $format;
889die "Incorrect format '$format' for Case_Folding inversion map"
347b9066
KW
890 unless $format eq 'al'
891 || $format eq 'a';
d2aadf62
KW
892sub _Perl_IVCF {
893
894 # This creates a map of the inversion of case folding. i.e., given a
895 # character, it gives all the other characters that fold to it.
896 #
897 # Inversion maps function kind of like a hash, with the inversion list
898 # specifying the buckets (keys) and the inversion maps specifying the
899 # contents of the corresponding bucket. Effectively this function just
900 # swaps the keys and values of the case fold hash. But there are
901 # complications. Most importantly, More than one character can each have
902 # the same fold. This is solved by having a list of characters that fold
903 # to a given one.
904
905 my %new;
906
907 # Go through the inversion list.
908 for (my $i = 0; $i < @$cp_ref; $i++) {
909
910 # Skip if nothing folds to this
911 next if $folds_ref->[$i] == 0;
912
913 # This entry which is valid from here to up (but not including) the
914 # next entry is for the next $count characters, so that, for example,
915 # A-Z is represented by one entry.
916 my $cur_list = $cp_ref->[$i];
917 my $count = $cp_ref->[$i+1] - $cur_list;
918
919 # The fold of [$i] can be not just a single character, but a sequence
920 # of multiple ones. We deal with those here by just creating a string
921 # consisting of them. Otherwise, we use the single code point [$i]
922 # folds to.
923 my $cur_map = (ref $folds_ref->[$i])
924 ? join "", map { chr } $folds_ref->[$i]->@*
925 : $folds_ref->[$i];
926
927 # Expand out this range
928 while ($count > 0) {
929 push @{$new{$cur_map}}, $cur_list;
930
931 # A multiple-character fold is a string, and shouldn't need
932 # incrementing anyway
933 if (ref $folds_ref->[$i]) {
934 die sprintf("Case fold for %x is multiple chars; should have"
935 . " a count of 1, but instead it was $count", $count)
936 unless $count == 1;
937 }
938 else {
939 $cur_map++;
940 $cur_list++;
941 }
942 $count--;
943 }
944 }
945
946 # Now go through and make some adjustments. We add synthetic entries for
947 # two cases.
948 # 1) Two or more code points can fold to the same multiple character,
949 # sequence, as U+FB05 and U+FB06 both fold to 'st'. This code is only
950 # for single character folds, but FB05 and FB06 are single characters
951 # that are equivalent folded, so we add entries so that they are
952 # considered to fold to each other
953 # 2) If two or more above-Latin1 code points fold to the same Latin1 range
954 # one, we also add entries so that they are considered to fold to each
955 # other. This is so that under /aa or /l matching, where folding to
956 # their Latin1 range code point is illegal, they still can fold to each
957 # other. This situation happens in Unicode 3.0.1, but probably no
958 # other version.
959 foreach my $fold (keys %new) {
db95f459 960 my $folds_to_string = $fold =~ /\D/;
d2aadf62
KW
961
962 # If the bucket contains only one element, convert from an array to a
963 # scalar
964 if (scalar $new{$fold}->@* == 1) {
965 $new{$fold} = $new{$fold}[0];
966 }
967 else {
968
969 # Otherwise, sort numerically. This places the highest code point
970 # in the list at the tail end. This is because Unicode keeps the
971 # lowercase code points as higher ordinals than the uppercase, at
972 # least for the ones that matter so far. These are synthetic
973 # entries, and we want to predictably have the lowercase (which is
974 # more likely to be what gets folded to) in the same corresponding
975 # position, so that other code can rely on that. If some new
976 # version of Unicode came along that violated this, we might have
977 # to change so that the sort is based on upper vs lower instead.
978 # (The lower-comes-after isn't true of native EBCDIC, but here we
979 # are dealing strictly with Unicode values).
980 @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@*
981 unless $folds_to_string;
982 # We will be working with a copy of this sorted entry.
983 my @source_list = $new{$fold}->@*;
984 if (! $folds_to_string) {
985
986 # This handles situation 2) listed above, which only arises if
987 # what is being folded-to (the fold) is in the Latin1 range.
988 if ($fold > 255 ) {
989 undef @source_list;
990 }
991 else {
992 # And it only arises if there are two or more folders that
993 # fold to it above Latin1. We look at just those.
994 @source_list = grep { $_ > 255 } @source_list;
995 undef @source_list if @source_list == 1;
996 }
997 }
998
999 # Here, we've found the items we want to set up synthetic folds
1000 # for. Add entries so that each folds to each other.
1001 foreach my $cp (@source_list) {
1002 my @rest = grep { $cp != $_ } @source_list;
1003 if (@rest == 1) {
1004 $new{$cp} = $rest[0];
1005 }
1006 else {
1007 push @{$new{$cp}}, @rest;
1008 }
1009 }
1010 }
1011
1012 # We don't otherwise deal with multiple-character folds
1013 delete $new{$fold} if $folds_to_string;
1014 }
1015
1016
1017 # Now we have a hash that is the inversion of the case fold property.
cb2d98ed
KW
1018 # First find the maximum number of code points that fold to the same one.
1019 foreach my $fold_to (keys %new) {
1020 if (ref $new{$fold_to}) {
1021 my $folders_count = scalar @{$new{$fold_to}};
1022 $max_fold_froms = $folders_count if $folders_count > $max_fold_froms;
1023 }
1024 }
d2aadf62 1025
cb2d98ed 1026 # Then convert the hash to an inversion map.
d2aadf62
KW
1027 my @sorted_folds = sort { $a <=> $b } keys %new;
1028 my (@invlist, @invmap);
1029
1030 # We know that nothing folds to the controls (whose ordinals start at 0).
1031 # And the first real entries are the lowest in the hash.
1032 push @invlist, 0, $sorted_folds[0];
1033 push @invmap, 0, $new{$sorted_folds[0]};
1034
1035 # Go through the remainder of the hash keys (which are the folded code
1036 # points)
1037 for (my $i = 1; $i < @sorted_folds; $i++) {
1038
1039 # Get the current one, and the one prior to it.
1040 my $fold = $sorted_folds[$i];
1041 my $prev_fold = $sorted_folds[$i-1];
1042
1043 # If the current one is not just 1 away from the prior one, we close
1044 # out the range containing the previous fold, and know that the gap
1045 # doesn't have anything that folds.
1046 if ($fold - 1 != $prev_fold) {
1047 push @invlist, $prev_fold + 1;
1048 push @invmap, 0;
1049
1050 # And start a new range
1051 push @invlist, $fold;
1052 push @invmap, $new{$fold};
1053 }
1054 elsif ($new{$fold} - 1 != $new{$prev_fold}) {
1055
1056 # Here the current fold is just 1 greater than the previous, but
1057 # the new map isn't correspondingly 1 greater than the previous,
1058 # the old range is ended, but since there is no gap, we don't have
1059 # to insert anything else.
1060 push @invlist, $fold;
1061 push @invmap, $new{$fold};
1062
1063 } # else { Otherwise, this new entry just extends the previous }
1064
1065 die "In IVCF: $invlist[-1] <= $invlist[-2]"
1066 if $invlist[-1] <= $invlist[-2];
1067 }
1068
1069 # And add an entry that indicates that everything above this, to infinity,
1070 # does not have a case fold.
1071 push @invlist, $sorted_folds[-1] + 1;
1072 push @invmap, 0;
1073
1074 # All Unicode versions have some places where multiple code points map to
1075 # the same one, so the format always has an 'l'
1076 return \@invlist, \@invmap, 'al', $default;
1077}
1078
99f21fb9
KW
1079sub prop_name_for_cmp ($) { # Sort helper
1080 my $name = shift;
1081
1082 # Returns the input lowercased, with non-alphas removed, as well as
1083 # everything starting with a comma
1084
1085 $name =~ s/,.*//;
1086 $name =~ s/[[:^alpha:]]//g;
1087 return lc $name;
1088}
1089
892d8259 1090sub UpperLatin1 {
8843f0de
KW
1091 my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
1092 return \@return;
892d8259
KW
1093}
1094
a2aeff50
KW
1095sub _Perl_CCC_non0_non230 {
1096
1097 # Create an inversion list of code points with non-zero canonical
1098 # combining class that also don't have 230 as the class number. This is
1099 # part of a Unicode Standard rule
1100
1101 my @nonzeros = prop_invlist("ccc=0");
1102 shift @nonzeros; # Invert so is "ccc != 0"
1103
1104 my @return;
1105
1106 # Expand into list of code points, while excluding those with ccc == 230
1107 for (my $i = 0; $i < @nonzeros; $i += 2) {
1108 my $upper = ($i + 1) < @nonzeros
1109 ? $nonzeros[$i+1] - 1 # In range
1110 : $Unicode::UCD::MAX_CP; # To infinity.
1111 for my $j ($nonzeros[$i] .. $upper) {
1112 my @ccc_names = prop_value_aliases("ccc", charprop($j, "ccc"));
1113
1114 # Final element in @ccc_names will be all numeric
1115 push @return, $j if $ccc_names[-1] != 230;
1116 }
1117 }
1118
1119 @return = sort { $a <=> $b } @return;
1120 @return = mk_invlist_from_sorted_cp_list(\@return);
1121 return \@return;
1122}
1123
289ce9cc
KW
1124sub output_table_common {
1125
1126 # Common subroutine to actually output the generated rules table.
1127
1128 my ($property,
1129 $table_value_defines_ref,
1130 $table_ref,
1131 $names_ref,
1132 $abbreviations_ref) = @_;
1133 my $size = @$table_ref;
1134
1135 # Output the #define list, sorted by numeric value
1136 if ($table_value_defines_ref) {
1137 my $max_name_length = 0;
1138 my @defines;
1139
1140 # Put in order, and at the same time find the longest name
1141 while (my ($enum, $value) = each %$table_value_defines_ref) {
1142 $defines[$value] = $enum;
1143
1144 my $length = length $enum;
1145 $max_name_length = $length if $length > $max_name_length;
1146 }
1147
1148 print $out_fh "\n";
1149
1150 # Output, so that the values are vertically aligned in a column after
1151 # the longest name
1152 foreach my $i (0 .. @defines - 1) {
1153 next unless defined $defines[$i];
1154 printf $out_fh "#define %-*s %2d\n",
1155 $max_name_length,
1156 $defines[$i],
1157 $i;
1158 }
1159 }
1160
1161 my $column_width = 2; # We currently allow 2 digits for the number
1162
a57a2641
KW
1163 # Being above a U8 is not currently handled
1164 my $table_type = 'U8';
289ce9cc
KW
1165
1166 # If a name is longer than the width set aside for a column, its column
1167 # needs to have increased spacing so that the name doesn't get truncated
1168 # nor run into an adjacent column
1169 my @spacers;
1170
2027d365
KW
1171 # Is there a row and column for unused values in this release?
1172 my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr;
289ce9cc
KW
1173
1174 for my $i (0 .. $size - 1) {
1175 no warnings 'numeric';
289ce9cc
KW
1176 $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
1177 }
1178
cef72199 1179 output_table_header($out_fh, $table_type, "${property}_table", undef, $size, $size);
289ce9cc
KW
1180
1181 # Calculate the column heading line
1182 my $header_line = "/* "
1183 . (" " x $max_hdr_len) # We let the row heading meld to
1184 # the '*/' for those that are at
1185 # the max
1186 . " " x 3; # Space for '*/ '
1187 # Now each column
1188 for my $i (0 .. $size - 1) {
1189 $header_line .= sprintf "%s%*s",
1190 $spacers[$i],
1191 $column_width + 1, # 1 for the ','
1192 $names_ref->[$i];
1193 }
1194 $header_line .= " */\n";
1195
1196 # If we have annotations, output it now.
2027d365 1197 if ($has_unused || scalar %$abbreviations_ref) {
289ce9cc
KW
1198 my $text = "";
1199 foreach my $abbr (sort keys %$abbreviations_ref) {
1200 $text .= "; " if $text;
1201 $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
1202 }
2027d365
KW
1203 if ($has_unused) {
1204 $text .= "; $unused_table_hdr stands for 'unused in this Unicode"
1205 . " release (and the data in the row or column are garbage)"
289ce9cc
KW
1206 }
1207
1208 my $indent = " " x 3;
1209 $text = $indent . "/* $text */";
1210
1211 # Wrap the text so that it is no wider than the table, which the
1212 # header line gives.
1213 my $output_width = length $header_line;
1214 while (length $text > $output_width) {
1215 my $cur_line = substr($text, 0, $output_width);
1216
1217 # Find the first blank back from the right end to wrap at.
1218 for (my $i = $output_width -1; $i > 0; $i--) {
1219 if (substr($text, $i, 1) eq " ") {
1220 print $out_fh substr($text, 0, $i), "\n";
1221
1222 # Set so will look at just the remaining tail (which will
1223 # be indented and have a '*' after the indent
1224 $text = $indent . " * " . substr($text, $i + 1);
1225 last;
1226 }
1227 }
1228 }
1229
1230 # And any remaining
1231 print $out_fh $text, "\n" if $text;
1232 }
1233
1234 # We calculated the header line earlier just to get its width so that we
1235 # could make sure the annotations fit into that.
1236 print $out_fh $header_line;
1237
1238 # Now output the bulk of the table.
1239 for my $i (0 .. $size - 1) {
1240
1241 # First the row heading.
1242 printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
1243 print $out_fh "{"; # Then the brace for this row
1244
1245 # Then each column
1246 for my $j (0 .. $size -1) {
1247 print $out_fh $spacers[$j];
1248 printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
1249 print $out_fh "," if $j < $size - 1;
1250 }
1251 print $out_fh " }";
1252 print $out_fh "," if $i < $size - 1;
1253 print $out_fh "\n";
1254 }
1255
cef72199 1256 output_table_trailer();
289ce9cc
KW
1257}
1258
973a28ed
KW
1259sub output_GCB_table() {
1260
1261 # Create and output the pair table for use in determining Grapheme Cluster
1262 # Breaks, given in http://www.unicode.org/reports/tr29/.
b0e24409
KW
1263 my %gcb_actions = (
1264 GCB_NOBREAK => 0,
1265 GCB_BREAKABLE => 1,
1266 GCB_RI_then_RI => 2, # Rules 12 and 13
1267 GCB_EX_then_EM => 3, # Rule 10
c0734505 1268 GCB_Maybe_Emoji_NonBreak => 4,
b0e24409 1269 );
973a28ed
KW
1270
1271 # The table is constructed in reverse order of the rules, to make the
1272 # lower-numbered, higher priority ones override the later ones, as the
1273 # algorithm stops at the earliest matching rule
1274
1275 my @gcb_table;
1276 my $table_size = @gcb_short_enums;
1277
1278 # Otherwise, break everywhere.
b0e24409 1279 # GB99 Any ÷ Any
973a28ed
KW
1280 for my $i (0 .. $table_size - 1) {
1281 for my $j (0 .. $table_size - 1) {
1282 $gcb_table[$i][$j] = 1;
1283 }
1284 }
1285
b0e24409
KW
1286 # Do not break within emoji flag sequences. That is, do not break between
1287 # regional indicator (RI) symbols if there is an odd number of RI
1288 # characters before the break point. Must be resolved in runtime code.
1289 #
c492f156 1290 # GB12 sot (RI RI)* RI × RI
b0e24409
KW
1291 # GB13 [^RI] (RI RI)* RI × RI
1292 $gcb_table[$gcb_enums{'Regional_Indicator'}]
1293 [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};
1294
c0734505
KW
1295 # Post 11.0: GB11 \p{Extended_Pictographic} Extend* ZWJ
1296 # × \p{Extended_Pictographic}
1297 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'XPG_XX'}] =
1298 $gcb_actions{GCB_Maybe_Emoji_NonBreak};
1299
1300 # This and the rule GB10 obsolete starting with Unicode 11.0, can be left
1301 # in as there are no code points that match, so the code won't ever get
1302 # executed.
b0e24409 1303 # Do not break within emoji modifier sequences or emoji zwj sequences.
c0734505 1304 # Pre 11.0: GB11 ZWJ × ( Glue_After_Zwj | E_Base_GAZ )
b0e24409
KW
1305 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
1306 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;
1307
1308 # GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier
1309 $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
1310 = $gcb_actions{GCB_EX_then_EM};
1311 $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
1312 $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;
1313
1314 # Do not break before extending characters or ZWJ.
973a28ed 1315 # Do not break before SpacingMarks, or after Prepend characters.
973a28ed 1316 # GB9b Prepend ×
b0e24409
KW
1317 # GB9a × SpacingMark
1318 # GB9 × ( Extend | ZWJ )
973a28ed 1319 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1320 $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
b0e24409
KW
1321 $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
1322 $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
1323 $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
973a28ed
KW
1324 }
1325
973a28ed
KW
1326 # Do not break Hangul syllable sequences.
1327 # GB8 ( LVT | T) × T
1328 $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
1329 $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;
1330
1331 # GB7 ( LV | V ) × ( V | T )
1332 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
1333 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
1334 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
1335 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;
1336
1337 # GB6 L × ( L | V | LV | LVT )
1338 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
1339 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
1340 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
1341 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;
1342
289ce9cc
KW
1343 # Do not break between a CR and LF. Otherwise, break before and after
1344 # controls.
973a28ed
KW
1345 # GB5 ÷ ( Control | CR | LF )
1346 # GB4 ( Control | CR | LF ) ÷
1347 for my $i (0 .. @gcb_table - 1) {
289ce9cc 1348 $gcb_table[$i][$gcb_enums{'Control'}] = 1;
973a28ed
KW
1349 $gcb_table[$i][$gcb_enums{'CR'}] = 1;
1350 $gcb_table[$i][$gcb_enums{'LF'}] = 1;
289ce9cc 1351 $gcb_table[$gcb_enums{'Control'}][$i] = 1;
973a28ed
KW
1352 $gcb_table[$gcb_enums{'CR'}][$i] = 1;
1353 $gcb_table[$gcb_enums{'LF'}][$i] = 1;
1354 }
1355
1356 # GB3 CR × LF
1357 $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;
1358
b0e24409 1359 # Break at the start and end of text, unless the text is empty
973a28ed
KW
1360 # GB1 sot ÷
1361 # GB2 ÷ eot
1362 for my $i (0 .. @gcb_table - 1) {
289ce9cc
KW
1363 $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
1364 $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
973a28ed 1365 }
289ce9cc 1366 $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;
973a28ed 1367
b0e24409 1368 output_table_common('GCB', \%gcb_actions,
289ce9cc 1369 \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
973a28ed
KW
1370}
1371
6b659339
KW
1372sub output_LB_table() {
1373
1374 # Create and output the enums, #defines, and pair table for use in
1375 # determining Line Breaks. This uses the default line break algorithm,
1376 # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
1377 # in that page, as the Unicode-furnished tests assume that tailoring.
1378
6b659339
KW
1379 # The result is really just true or false. But we follow along with tr14,
1380 # creating a rule which is false for something like X SP* X. That gets
1381 # encoding 2. The rest of the actions are synthetic ones that indicate
1382 # some context handling is required. These each are added to the
1383 # underlying 0, 1, or 2, instead of replacing them, so that the underlying
1384 # value can be retrieved. Actually only rules from 7 through 18 (which
1385 # are the ones where space matter) are possible to have 2 added to them.
1386 # The others below add just 0 or 1. It might be possible for one
1387 # synthetic rule to be added to another, yielding a larger value. This
1388 # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
1389 # names of the middle grouping below, it is impossible for that to occur
1390 # for them because they all start with mutually exclusive classes. That
1391 # the final rule can't be added to any of the others isn't obvious from
1392 # its name, so it is assigned a power of 2 higher than the others can get
1393 # to so any addition would preserve all data. (And the code will reach an
1394 # assert(0) on debugging builds should this happen.)
1395 my %lb_actions = (
1396 LB_NOBREAK => 0,
1397 LB_BREAKABLE => 1,
1398 LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,
1399
b0e24409 1400 LB_CM_ZWJ_foo => 3, # Rule 9
6b659339
KW
1401 LB_SP_foo => 6, # Rule 18
1402 LB_PR_or_PO_then_OP_or_HY => 9, # Rule 25
1403 LB_SY_or_IS_then_various => 11, # Rule 25
1404 LB_HY_or_BA_then_foo => 13, # Rule 21
b0e24409 1405 LB_RI_then_RI => 15, # Rule 30a
6b659339 1406
b0e24409 1407 LB_various_then_PO_or_PR => (1<<5), # Rule 25
6b659339
KW
1408 );
1409
6b659339
KW
1410 # Construct the LB pair table. This is based on the rules in
1411 # http://www.unicode.org/reports/tr14/, but modified as those rules are
1412 # designed for someone taking a string of text and sequentially going
1413 # through it to find the break opportunities, whereas, Perl requires
1414 # determining if a given random spot is a break opportunity, without
1415 # knowing all the entire string before it.
1416 #
1417 # The table is constructed in reverse order of the rules, to make the
1418 # lower-numbered, higher priority ones override the later ones, as the
1419 # algorithm stops at the earliest matching rule
1420
1421 my @lb_table;
1422 my $table_size = @lb_short_enums;
1423
1424 # LB31. Break everywhere else
1425 for my $i (0 .. $table_size - 1) {
1426 for my $j (0 .. $table_size - 1) {
1427 $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
1428 }
1429 }
1430
b0e24409
KW
1431 # LB30b Do not break between an emoji base and an emoji modifier.
1432 # EB × EM
1433 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
1434 = $lb_actions{'LB_NOBREAK'};
1435
1436 # LB30a Break between two regional indicator symbols if and only if there
1437 # are an even number of regional indicators preceding the position of the
1438 # break.
1439 # sot (RI RI)* RI × RI
1440 # [^RI] (RI RI)* RI × RI
289ce9cc 1441 $lb_table[$lb_enums{'Regional_Indicator'}]
b0e24409 1442 [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};
6b659339
KW
1443
1444 # LB30 Do not break between letters, numbers, or ordinary symbols and
1445 # opening or closing parentheses.
1446 # (AL | HL | NU) × OP
289ce9cc
KW
1447 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
1448 = $lb_actions{'LB_NOBREAK'};
1449 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
1450 = $lb_actions{'LB_NOBREAK'};
1451 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
1452 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1453
1454 # CP × (AL | HL | NU)
289ce9cc
KW
1455 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
1456 = $lb_actions{'LB_NOBREAK'};
1457 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
1458 = $lb_actions{'LB_NOBREAK'};
1459 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
1460 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1461
1462 # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
1463 # IS × (AL | HL)
289ce9cc
KW
1464 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
1465 = $lb_actions{'LB_NOBREAK'};
1466 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1467 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1468
1469 # LB28 Do not break between alphabetics (“at”).
1470 # (AL | HL) × (AL | HL)
289ce9cc
KW
1471 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
1472 = $lb_actions{'LB_NOBREAK'};
1473 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
1474 = $lb_actions{'LB_NOBREAK'};
1475 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
1476 = $lb_actions{'LB_NOBREAK'};
1477 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
1478 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1479
1480 # LB27 Treat a Korean Syllable Block the same as ID.
1481 # (JL | JV | JT | H2 | H3) × IN
289ce9cc
KW
1482 $lb_table[$lb_enums{'JL'}][$lb_enums{'Inseparable'}]
1483 = $lb_actions{'LB_NOBREAK'};
1484 $lb_table[$lb_enums{'JV'}][$lb_enums{'Inseparable'}]
1485 = $lb_actions{'LB_NOBREAK'};
1486 $lb_table[$lb_enums{'JT'}][$lb_enums{'Inseparable'}]
1487 = $lb_actions{'LB_NOBREAK'};
1488 $lb_table[$lb_enums{'H2'}][$lb_enums{'Inseparable'}]
1489 = $lb_actions{'LB_NOBREAK'};
1490 $lb_table[$lb_enums{'H3'}][$lb_enums{'Inseparable'}]
1491 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1492
1493 # (JL | JV | JT | H2 | H3) × PO
289ce9cc
KW
1494 $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
1495 = $lb_actions{'LB_NOBREAK'};
1496 $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
1497 = $lb_actions{'LB_NOBREAK'};
1498 $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
1499 = $lb_actions{'LB_NOBREAK'};
1500 $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
1501 = $lb_actions{'LB_NOBREAK'};
1502 $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
1503 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1504
1505 # PR × (JL | JV | JT | H2 | H3)
289ce9cc
KW
1506 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
1507 = $lb_actions{'LB_NOBREAK'};
1508 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
1509 = $lb_actions{'LB_NOBREAK'};
1510 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
1511 = $lb_actions{'LB_NOBREAK'};
1512 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
1513 = $lb_actions{'LB_NOBREAK'};
1514 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
1515 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1516
1517 # LB26 Do not break a Korean syllable.
1518 # JL × (JL | JV | H2 | H3)
1519 $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
1520 $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1521 $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
1522 $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};
1523
1524 # (JV | H2) × (JV | JT)
1525 $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1526 $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1527 $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1528 $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1529
1530 # (JT | H3) × JT
1531 $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1532 $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1533
1534 # LB25 Do not break between the following pairs of classes relevant to
1535 # numbers, as tailored by example 7 in
1536 # http://www.unicode.org/reports/tr14/#Examples
1537 # We follow that tailoring because Unicode's test cases expect it
1538 # (PR | PO) × ( OP | HY )? NU
289ce9cc
KW
1539 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
1540 = $lb_actions{'LB_NOBREAK'};
1541 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
1542 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1543
1544 # Given that (OP | HY )? is optional, we have to test for it in code.
1545 # We add in the action (instead of overriding) for this, so that in
1546 # the code we can recover the underlying break value.
289ce9cc 1547 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1548 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1549 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
6b659339 1550 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1551 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339 1552 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
289ce9cc 1553 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
6b659339
KW
1554 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1555
1556 # ( OP | HY ) × NU
289ce9cc
KW
1557 $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
1558 = $lb_actions{'LB_NOBREAK'};
1559 $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
1560 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1561
1562 # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
1563 # which can be rewritten as:
1564 # NU (SY | IS)* × (NU | SY | IS | CL | CP )
289ce9cc
KW
1565 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
1566 = $lb_actions{'LB_NOBREAK'};
1567 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
1568 = $lb_actions{'LB_NOBREAK'};
1569 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
1570 = $lb_actions{'LB_NOBREAK'};
1571 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
1572 = $lb_actions{'LB_NOBREAK'};
1573 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
1574 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1575
1576 # Like earlier where we have to test in code, we add in the action so
1577 # that we can recover the underlying values. This is done in rules
1578 # below, as well. The code assumes that we haven't added 2 actions.
1579 # Shoul a later Unicode release break that assumption, then tests
1580 # should start failing.
289ce9cc 1581 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
6b659339 1582 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1583 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
6b659339 1584 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1585 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
6b659339 1586 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1587 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
6b659339 1588 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1589 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
6b659339 1590 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1591 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
6b659339 1592 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1593 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
6b659339 1594 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1595 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
6b659339 1596 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1597 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
6b659339 1598 += $lb_actions{'LB_SY_or_IS_then_various'};
289ce9cc 1599 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
6b659339
KW
1600 += $lb_actions{'LB_SY_or_IS_then_various'};
1601
1602 # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
1603 # which can be rewritten as:
1604 # NU (SY | IS)* (CL | CP)? × (PO | PR)
289ce9cc
KW
1605 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
1606 = $lb_actions{'LB_NOBREAK'};
1607 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
1608 = $lb_actions{'LB_NOBREAK'};
6b659339 1609
289ce9cc 1610 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1611 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1612 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1613 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1614 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
6b659339 1615 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1616 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
6b659339
KW
1617 += $lb_actions{'LB_various_then_PO_or_PR'};
1618
289ce9cc 1619 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1620 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1621 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1622 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1623 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
6b659339 1624 += $lb_actions{'LB_various_then_PO_or_PR'};
289ce9cc 1625 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
6b659339
KW
1626 += $lb_actions{'LB_various_then_PO_or_PR'};
1627
b0e24409
KW
1628 # LB24 Do not break between numeric prefix/postfix and letters, or between
1629 # letters and prefix/postfix.
1630 # (PR | PO) × (AL | HL)
289ce9cc
KW
1631 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
1632 = $lb_actions{'LB_NOBREAK'};
1633 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1634 = $lb_actions{'LB_NOBREAK'};
289ce9cc
KW
1635 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
1636 = $lb_actions{'LB_NOBREAK'};
1637 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1638 = $lb_actions{'LB_NOBREAK'};
6b659339 1639
b0e24409
KW
1640 # (AL | HL) × (PR | PO)
1641 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
1642 = $lb_actions{'LB_NOBREAK'};
1643 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
1644 = $lb_actions{'LB_NOBREAK'};
1645 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
1646 = $lb_actions{'LB_NOBREAK'};
1647 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
1648 = $lb_actions{'LB_NOBREAK'};
1649
1650 # LB23a Do not break between numeric prefixes and ideographs, or between
1651 # ideographs and numeric postfixes.
1652 # PR × (ID | EB | EM)
1653 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
1654 = $lb_actions{'LB_NOBREAK'};
1655 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
1656 = $lb_actions{'LB_NOBREAK'};
1657 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
1658 = $lb_actions{'LB_NOBREAK'};
1659
1660 # (ID | EB | EM) × PO
289ce9cc
KW
1661 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
1662 = $lb_actions{'LB_NOBREAK'};
b0e24409
KW
1663 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
1664 = $lb_actions{'LB_NOBREAK'};
1665 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
1666 = $lb_actions{'LB_NOBREAK'};
6b659339 1667
b0e24409 1668 # LB23 Do not break between digits and letters
6b659339 1669 # (AL | HL) × NU
289ce9cc
KW
1670 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
1671 = $lb_actions{'LB_NOBREAK'};
1672 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
1673 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1674
1675 # NU × (AL | HL)
289ce9cc
KW
1676 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
1677 = $lb_actions{'LB_NOBREAK'};
1678 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
1679 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1680
1681 # LB22 Do not break between two ellipses, or between letters, numbers or
1682 # exclamations and ellipsis.
1683 # (AL | HL) × IN
289ce9cc
KW
1684 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Inseparable'}]
1685 = $lb_actions{'LB_NOBREAK'};
1686 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Inseparable'}]
1687 = $lb_actions{'LB_NOBREAK'};
6b659339 1688
289ce9cc
KW
1689 # Exclamation × IN
1690 $lb_table[$lb_enums{'Exclamation'}][$lb_enums{'Inseparable'}]
1691 = $lb_actions{'LB_NOBREAK'};
6b659339 1692
b0e24409 1693 # (ID | EB | EM) × IN
289ce9cc
KW
1694 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Inseparable'}]
1695 = $lb_actions{'LB_NOBREAK'};
b0e24409
KW
1696 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Inseparable'}]
1697 = $lb_actions{'LB_NOBREAK'};
1698 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Inseparable'}]
1699 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1700
1701 # IN × IN
289ce9cc
KW
1702 $lb_table[$lb_enums{'Inseparable'}][$lb_enums{'Inseparable'}]
1703 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1704
1705 # NU × IN
289ce9cc
KW
1706 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Inseparable'}]
1707 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1708
1709 # LB21b Don’t break between Solidus and Hebrew letters.
1710 # SY × HL
289ce9cc
KW
1711 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
1712 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1713
1714 # LB21a Don't break after Hebrew + Hyphen.
1715 # HL (HY | BA) ×
1716 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1717 $lb_table[$lb_enums{'Hyphen'}][$i]
1718 += $lb_actions{'LB_HY_or_BA_then_foo'};
1719 $lb_table[$lb_enums{'Break_After'}][$i]
1720 += $lb_actions{'LB_HY_or_BA_then_foo'};
6b659339
KW
1721 }
1722
1723 # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
1724 # spaces, small kana, and other non-starters, or after acute accents.
1725 # × BA
1726 # × HY
1727 # × NS
1728 # BB ×
1729 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1730 $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
1731 $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
1732 $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
1733 $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1734 }
1735
1736 # LB20 Break before and after unresolved CB.
1737 # ÷ CB
1738 # CB ÷
1739 # Conditional breaks should be resolved external to the line breaking
1740 # rules. However, the default action is to treat unresolved CB as breaking
1741 # before and after.
1742 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1743 $lb_table[$i][$lb_enums{'Contingent_Break'}]
1744 = $lb_actions{'LB_BREAKABLE'};
1745 $lb_table[$lb_enums{'Contingent_Break'}][$i]
1746 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1747 }
1748
1749 # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
1750 # × QU
1751 # QU ×
1752 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1753 $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
1754 $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1755 }
1756
1757 # LB18 Break after spaces
1758 # SP ÷
1759 for my $i (0 .. @lb_table - 1) {
289ce9cc 1760 $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1761 }
1762
1763 # LB17 Do not break within ‘——’, even with intervening spaces.
1764 # B2 SP* × B2
289ce9cc 1765 $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
6b659339
KW
1766 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1767
1768 # LB16 Do not break between closing punctuation and a nonstarter even with
1769 # intervening spaces.
1770 # (CL | CP) SP* × NS
289ce9cc 1771 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
6b659339 1772 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1773 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
6b659339
KW
1774 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1775
1776
1777 # LB15 Do not break within ‘”[’, even with intervening spaces.
1778 # QU SP* × OP
289ce9cc 1779 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
6b659339
KW
1780 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1781
1782 # LB14 Do not break after ‘[’, even after spaces.
1783 # OP SP* ×
1784 for my $i (0 .. @lb_table - 1) {
289ce9cc 1785 $lb_table[$lb_enums{'Open_Punctuation'}][$i]
6b659339
KW
1786 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1787 }
1788
1789 # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
1790 # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
1791 # [^NU] × CL
1792 # [^NU] × CP
1793 # × EX
1794 # [^NU] × IS
1795 # [^NU] × SY
1796 for my $i (0 .. @lb_table - 1) {
289ce9cc 1797 $lb_table[$i][$lb_enums{'Exclamation'}]
6b659339
KW
1798 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1799
289ce9cc 1800 next if $i == $lb_enums{'Numeric'};
6b659339 1801
289ce9cc 1802 $lb_table[$i][$lb_enums{'Close_Punctuation'}]
6b659339 1803 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1804 $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
6b659339 1805 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1806 $lb_table[$i][$lb_enums{'Infix_Numeric'}]
6b659339 1807 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1808 $lb_table[$i][$lb_enums{'Break_Symbols'}]
6b659339
KW
1809 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1810 }
1811
1812 # LB12a Do not break before NBSP and related characters, except after
1813 # spaces and hyphens.
1814 # [^SP BA HY] × GL
1815 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1816 next if $i == $lb_enums{'Space'}
1817 || $i == $lb_enums{'Break_After'}
1818 || $i == $lb_enums{'Hyphen'};
6b659339
KW
1819
1820 # We don't break, but if a property above has said don't break even
1821 # with space between, don't override that (also in the next few rules)
289ce9cc 1822 next if $lb_table[$i][$lb_enums{'Glue'}]
6b659339 1823 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1824 $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1825 }
1826
1827 # LB12 Do not break after NBSP and related characters.
1828 # GL ×
1829 for my $i (0 .. @lb_table - 1) {
289ce9cc 1830 next if $lb_table[$lb_enums{'Glue'}][$i]
6b659339 1831 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
289ce9cc 1832 $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1833 }
1834
1835 # LB11 Do not break before or after Word joiner and related characters.
1836 # × WJ
1837 # WJ ×
1838 for my $i (0 .. @lb_table - 1) {
289ce9cc 1839 if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
6b659339
KW
1840 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1841 {
289ce9cc 1842 $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
6b659339 1843 }
289ce9cc 1844 if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
6b659339
KW
1845 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1846 {
289ce9cc 1847 $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1848 }
1849 }
1850
1851 # Special case this here to avoid having to do a special case in the code,
1852 # by making this the same as other things with a SP in front of them that
1853 # don't break, we avoid an extra test
289ce9cc 1854 $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
6b659339
KW
1855 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1856
1857 # LB9 and LB10 are done in the same loop
1858 #
1859 # LB9 Do not break a combining character sequence; treat it as if it has
1860 # the line breaking class of the base character in all of the
b0e24409
KW
1861 # higher-numbered rules. Treat ZWJ as if it were CM
1862 # Treat X (CM|ZWJ)* as if it were X.
6b659339
KW
1863 # where X is any line break class except BK, CR, LF, NL, SP, or ZW.
1864
b0e24409
KW
1865 # LB10 Treat any remaining combining mark or ZWJ as AL. This catches the
1866 # case where a CM or ZWJ is the first character on the line or follows SP,
1867 # BK, CR, LF, NL, or ZW.
6b659339
KW
1868 for my $i (0 .. @lb_table - 1) {
1869
b0e24409
KW
1870 # When the CM or ZWJ is the first in the pair, we don't know without
1871 # looking behind whether the CM or ZWJ is going to attach to an
1872 # earlier character, or not. So have to figure this out at runtime in
1873 # the code
1874 $lb_table[$lb_enums{'Combining_Mark'}][$i]
1875 = $lb_actions{'LB_CM_ZWJ_foo'};
1876 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};
289ce9cc
KW
1877
1878 if ( $i == $lb_enums{'Mandatory_Break'}
1879 || $i == $lb_enums{'EDGE'}
1880 || $i == $lb_enums{'Carriage_Return'}
1881 || $i == $lb_enums{'Line_Feed'}
1882 || $i == $lb_enums{'Next_Line'}
1883 || $i == $lb_enums{'Space'}
1884 || $i == $lb_enums{'ZWSpace'})
6b659339
KW
1885 {
1886 # For these classes, a following CM doesn't combine, and should do
289ce9cc
KW
1887 # whatever 'Alphabetic' would do.
1888 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1889 = $lb_table[$i][$lb_enums{'Alphabetic'}];
b0e24409
KW
1890 $lb_table[$i][$lb_enums{'ZWJ'}]
1891 = $lb_table[$i][$lb_enums{'Alphabetic'}];
6b659339
KW
1892 }
1893 else {
b0e24409
KW
1894 # For these classes, the CM or ZWJ combines, so doesn't break,
1895 # inheriting the type of nobreak from the master character.
289ce9cc 1896 if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
6b659339
KW
1897 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1898 {
289ce9cc
KW
1899 $lb_table[$i][$lb_enums{'Combining_Mark'}]
1900 = $lb_actions{'LB_NOBREAK'};
6b659339 1901 }
b0e24409
KW
1902 if ($lb_table[$i][$lb_enums{'ZWJ'}]
1903 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1904 {
1905 $lb_table[$i][$lb_enums{'ZWJ'}]
1906 = $lb_actions{'LB_NOBREAK'};
1907 }
6b659339
KW
1908 }
1909 }
1910
8a6698d7
UC
1911 # LB8a Do not break after a zero width joiner
1912 # ZWJ ×
1913 for my $i (0 .. @lb_table - 1) {
1914 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'};
1915 }
b0e24409 1916
6b659339
KW
1917 # LB8 Break before any character following a zero-width space, even if one
1918 # or more spaces intervene.
1919 # ZW SP* ÷
1920 for my $i (0 .. @lb_table - 1) {
289ce9cc 1921 $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1922 }
1923
1924 # Because of LB8-10, we need to look at context for "SP x", and this must
1925 # be done in the code. So override the existing rules for that, by adding
1926 # a constant to get new rules that tell the code it needs to look at
1927 # context. By adding this action instead of replacing the existing one,
1928 # we can get back to the original rule if necessary.
1929 for my $i (0 .. @lb_table - 1) {
289ce9cc 1930 $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
6b659339
KW
1931 }
1932
1933 # LB7 Do not break before spaces or zero width space.
1934 # × SP
1935 # × ZW
1936 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1937 $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
1938 $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1939 }
1940
1941 # LB6 Do not break before hard line breaks.
1942 # × ( BK | CR | LF | NL )
1943 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1944 $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
1945 $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
1946 $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
1947 $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1948 }
1949
1950 # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
1951 # CR × LF
1952 # CR !
1953 # LF !
1954 # NL !
1955 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1956 $lb_table[$lb_enums{'Carriage_Return'}][$i]
1957 = $lb_actions{'LB_BREAKABLE'};
1958 $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
1959 $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
6b659339 1960 }
289ce9cc
KW
1961 $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
1962 = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1963
1964 # LB4 Always break after hard line breaks.
1965 # BK !
1966 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1967 $lb_table[$lb_enums{'Mandatory_Break'}][$i]
1968 = $lb_actions{'LB_BREAKABLE'};
6b659339
KW
1969 }
1970
6b659339
KW
1971 # LB3 Always break at the end of text.
1972 # ! eot
b0e24409
KW
1973 # LB2 Never break at the start of text.
1974 # sot ×
6b659339 1975 for my $i (0 .. @lb_table - 1) {
289ce9cc
KW
1976 $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
1977 $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
6b659339
KW
1978 }
1979
1980 # LB1 Assign a line breaking class to each code point of the input.
1981 # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
1982 # depending on criteria outside the scope of this algorithm.
1983 #
1984 # In the absence of such criteria all characters with a specific
1985 # combination of original class and General_Category property value are
1986 # resolved as follows:
1987 # Original Resolved General_Category
1988 # AI, SG, XX AL Any
1989 # SA CM Only Mn or Mc
1990 # SA AL Any except Mn and Mc
1991 # CJ NS Any
1992 #
1993 # This is done in mktables, so we never see any of the remapped-from
1994 # classes.
1995
289ce9cc
KW
1996 output_table_common('LB', \%lb_actions,
1997 \@lb_table, \@lb_short_enums, \%lb_abbreviations);
6b659339
KW
1998}
1999
7e54b87f
KW
2000sub output_WB_table() {
2001
2002 # Create and output the enums, #defines, and pair table for use in
2003 # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.
2004
2005 # This uses the same mechanism in the other bounds tables generated by
2006 # this file. The actions that could override a 0 or 1 are added to those
2007 # numbers; the actions that clearly don't depend on the underlying rule
2008 # simply overwrite
2009 my %wb_actions = (
2010 WB_NOBREAK => 0,
2011 WB_BREAKABLE => 1,
2012 WB_hs_then_hs => 2,
b0e24409 2013 WB_Ex_or_FO_or_ZWJ_then_foo => 3,
7e54b87f
KW
2014 WB_DQ_then_HL => 4,
2015 WB_HL_then_DQ => 6,
2016 WB_LE_or_HL_then_MB_or_ML_or_SQ => 8,
2017 WB_MB_or_ML_or_SQ_then_LE_or_HL => 10,
2018 WB_MB_or_MN_or_SQ_then_NU => 12,
2019 WB_NU_then_MB_or_MN_or_SQ => 14,
b0e24409 2020 WB_RI_then_RI => 16,
7e54b87f
KW
2021 );
2022
7e54b87f
KW
2023 # Construct the WB pair table.
2024 # The table is constructed in reverse order of the rules, to make the
2025 # lower-numbered, higher priority ones override the later ones, as the
2026 # algorithm stops at the earliest matching rule
2027
2028 my @wb_table;
2027d365 2029 my $table_size = @wb_short_enums;
7e54b87f
KW
2030
2031 # Otherwise, break everywhere (including around ideographs).
b0e24409 2032 # WB99 Any ÷ Any
7e54b87f
KW
2033 for my $i (0 .. $table_size - 1) {
2034 for my $j (0 .. $table_size - 1) {
2035 $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
2036 }
2037 }
2038
b0e24409
KW
2039 # Do not break within emoji flag sequences. That is, do not break between
2040 # regional indicator (RI) symbols if there is an odd number of RI
2041 # characters before the break point.
2042 # WB16 [^RI] (RI RI)* RI × RI
c492f156 2043 # WB15 sot (RI RI)* RI × RI
289ce9cc 2044 $wb_table[$wb_enums{'Regional_Indicator'}]
b0e24409
KW
2045 [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};
2046
2047 # Do not break within emoji modifier sequences.
2048 # WB14 ( E_Base | EBG ) × E_Modifier
2049 $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
2050 = $wb_actions{'WB_NOBREAK'};
2051 $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
2052 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2053
2054 # Do not break from extenders.
2055 # WB13b ExtendNumLet × (ALetter | Hebrew_Letter | Numeric | Katakana)
289ce9cc
KW
2056 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
2057 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2058 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'XPG_LE'}]
2059 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2060 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
2061 = $wb_actions{'WB_NOBREAK'};
2062 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
2063 = $wb_actions{'WB_NOBREAK'};
2064 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
2065 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2066
2067 # WB13a (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
d21ae9f6 2068 # × ExtendNumLet
289ce9cc
KW
2069 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
2070 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2071 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'ExtendNumLet'}]
2072 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2073 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
2074 = $wb_actions{'WB_NOBREAK'};
2075 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
2076 = $wb_actions{'WB_NOBREAK'};
2077 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
2078 = $wb_actions{'WB_NOBREAK'};
2079 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
2080 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2081
2082 # Do not break between Katakana.
2083 # WB13 Katakana × Katakana
289ce9cc
KW
2084 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
2085 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2086
2087 # Do not break within sequences, such as “3.2” or “3,456.789”.
2088 # WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
289ce9cc 2089 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
7e54b87f 2090 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2091 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
7e54b87f 2092 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
289ce9cc 2093 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2094 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2095
2096 # WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric
289ce9cc 2097 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
7e54b87f 2098 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2099 $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
7e54b87f 2100 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
289ce9cc 2101 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
7e54b87f
KW
2102 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2103
2104 # Do not break within sequences of digits, or digits adjacent to letters
2105 # (“3a”, or “A3”).
2106 # WB10 Numeric × (ALetter | Hebrew_Letter)
289ce9cc
KW
2107 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
2108 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2109 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'XPG_LE'}]
2110 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2111 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
2112 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2113
2114 # WB9 (ALetter | Hebrew_Letter) × Numeric
289ce9cc
KW
2115 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
2116 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2117 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Numeric'}]
2118 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2119 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
2120 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2121
2122 # WB8 Numeric × Numeric
289ce9cc
KW
2123 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
2124 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2125
2126 # Do not break letters across certain punctuation.
2127 # WB7c Hebrew_Letter Double_Quote × Hebrew_Letter
289ce9cc
KW
2128 $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
2129 += $wb_actions{'WB_DQ_then_HL'};
7e54b87f
KW
2130
2131 # WB7b Hebrew_Letter × Double_Quote Hebrew_Letter
289ce9cc
KW
2132 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
2133 += $wb_actions{'WB_HL_then_DQ'};
7e54b87f
KW
2134
2135 # WB7a Hebrew_Letter × Single_Quote
289ce9cc
KW
2136 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2137 = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2138
2139 # WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
2140 # × (ALetter | Hebrew_Letter)
289ce9cc 2141 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
7e54b87f 2142 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2143 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'XPG_LE'}]
2144 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2145 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2146 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2147 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
7e54b87f 2148 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2149 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'XPG_LE'}]
2150 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2151 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f 2152 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2153 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
7e54b87f 2154 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
c0734505
KW
2155 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'XPG_LE'}]
2156 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
289ce9cc 2157 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
7e54b87f
KW
2158 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2159
2160 # WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet
2161 # | Single_Quote) (ALetter | Hebrew_Letter)
289ce9cc 2162 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2163 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2164 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'MidNumLet'}]
2165 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2166 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
7e54b87f 2167 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2168 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
7e54b87f 2169 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2170 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'MidLetter'}]
2171 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2172 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
7e54b87f 2173 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2174 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
7e54b87f 2175 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
c0734505
KW
2176 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Single_Quote'}]
2177 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
289ce9cc 2178 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
7e54b87f
KW
2179 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2180
2181 # Do not break between most letters.
2182 # WB5 (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter)
289ce9cc
KW
2183 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
2184 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2185 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'ALetter'}]
2186 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2187 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
2188 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2189 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'Hebrew_Letter'}]
2190 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2191 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
2192 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2193 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'XPG_LE'}]
2194 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2195 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
2196 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2197 $wb_table[$wb_enums{'XPG_LE'}][$wb_enums{'XPG_LE'}]
2198 = $wb_actions{'WB_NOBREAK'};
7e54b87f 2199
b0e24409
KW
2200 # Ignore Format and Extend characters, except after sot, CR, LF, and
2201 # Newline. This also has the effect of: Any × (Format | Extend | ZWJ)
2202 # WB4 X (Extend | Format | ZWJ)* → X
7e54b87f 2203 for my $i (0 .. @wb_table - 1) {
289ce9cc 2204 $wb_table[$wb_enums{'Extend'}][$i]
b0e24409 2205 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
289ce9cc 2206 $wb_table[$wb_enums{'Format'}][$i]
b0e24409
KW
2207 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2208 $wb_table[$wb_enums{'ZWJ'}][$i]
2209 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2210 }
2211 for my $i (0 .. @wb_table - 1) {
2212 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2213 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2214 $wb_table[$i][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2215 }
2216
2217 # Implied is that these attach to the character before them, except for
2218 # the characters that mark the end of a region of text. The rules below
2219 # override the ones set up here, for all the characters that need
2220 # overriding.
2221 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2222 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2223 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
7e54b87f
KW
2224 }
2225
c0734505
KW
2226 # Keep horizontal whitespace together
2227 # Use perl's tailoring instead
2228 # WB3d WSegSpace × WSegSpace
2229 #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}]
2230 # = $wb_actions{'WB_NOBREAK'};
2231
b0e24409
KW
2232 # Do not break within emoji zwj sequences.
2233 # WB3c ZWJ × ( Glue_After_Zwj | EBG )
2234 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
2235 = $wb_actions{'WB_NOBREAK'};
2236 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
2237 = $wb_actions{'WB_NOBREAK'};
c0734505
KW
2238 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'XPG_XX'}]
2239 = $wb_actions{'WB_NOBREAK'};
2240 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'XPG_LE'}]
2241 = $wb_actions{'WB_NOBREAK'};
b0e24409 2242
d21ae9f6 2243 # Break before and after newlines
7e54b87f
KW
2244 # WB3b ÷ (Newline | CR | LF)
2245 # WB3a (Newline | CR | LF) ÷
2246 # et. al.
289ce9cc 2247 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2248 for my $j (0 .. @wb_table - 1) {
2249 $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
2250 $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
2251 }
2252 }
2253
2254 # But do not break within white space.
2255 # WB3 CR × LF
2256 # et.al.
289ce9cc
KW
2257 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2258 for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
7e54b87f
KW
2259 $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
2260 }
2261 }
2262
b0e24409 2263 # And do not break horizontal space followed by Extend or Format or ZWJ
289ce9cc
KW
2264 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
2265 = $wb_actions{'WB_NOBREAK'};
2266 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
2267 = $wb_actions{'WB_NOBREAK'};
b0e24409
KW
2268 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
2269 = $wb_actions{'WB_NOBREAK'};
289ce9cc
KW
2270 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
2271 [$wb_enums{'Perl_Tailored_HSpace'}]
2272 = $wb_actions{'WB_hs_then_hs'};
7e54b87f 2273
b0e24409
KW
2274 # Break at the start and end of text, unless the text is empty
2275 # WB2 Any ÷ eot
2276 # WB1 sot ÷ Any
7e54b87f 2277 for my $i (0 .. @wb_table - 1) {
289ce9cc
KW
2278 $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
2279 $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
7e54b87f 2280 }
289ce9cc 2281 $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;
7e54b87f 2282
289ce9cc
KW
2283 output_table_common('WB', \%wb_actions,
2284 \@wb_table, \@wb_short_enums, \%wb_abbreviations);
7e54b87f
KW
2285}
2286
4eea95a6
KW
2287sub sanitize_name ($) {
2288 # Change the non-word characters in the input string to standardized word
2289 # equivalents
2290 #
2291 my $sanitized = shift;
2292 $sanitized =~ s/=/__/;
2293 $sanitized =~ s/&/_AMP_/;
2294 $sanitized =~ s/\./_DOT_/;
2295 $sanitized =~ s/-/_MINUS_/;
2296 $sanitized =~ s!/!_SLASH_!;
2297
2298 return $sanitized;
2299}
2300
cef72199 2301switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C');
4eea95a6 2302
9d9177be
KW
2303output_invlist("Latin1", [ 0, 256 ]);
2304output_invlist("AboveLatin1", [ 256 ]);
2305
bffc0129 2306end_file_pound_if;
43b443dd 2307
3f427fd9
KW
2308# We construct lists for all the POSIX and backslash sequence character
2309# classes in two forms:
2310# 1) ones which match only in the ASCII range
2311# 2) ones which match either in the Latin1 range, or the entire Unicode range
2312#
2313# These get compiled in, and hence affect the memory footprint of every Perl
2314# program, even those not using Unicode. To minimize the size, currently
2315# the Latin1 version is generated for the beyond ASCII range except for those
2316# lists that are quite small for the entire range, such as for \s, which is 22
2317# UVs long plus 4 UVs (currently) for the header.
2318#
2319# To save even more memory, the ASCII versions could be derived from the
2320# larger ones at runtime, saving some memory (minus the expense of the machine
2321# instructions to do so), but these are all small anyway, so their total is
2322# about 100 UVs.
2323#
2324# In the list of properties below that get generated, the L1 prefix is a fake
2325# property that means just the Latin1 range of the full property (whose name
2326# has an X prefix instead of L1).
a02047bf
KW
2327#
2328# An initial & means to use the subroutine from this file instead of an
2329# official inversion list.
3f427fd9 2330
53146480
KW
2331# Below is the list of property names to generate. '&' means to use the
2332# subroutine to generate the inversion list instead of the generic code
2333# below. Some properties have a comma-separated list after the name,
2334# These are extra enums to add to those found in the Unicode tables.
2335no warnings 'qw';
2336 # Ignore non-alpha in sort
4eea95a6
KW
2337my @props;
2338push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
4eea95a6 2339 &UpperLatin1
2027d365
KW
2340 _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,XPG_XX
2341 _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner
2342 _Perl_SB,EDGE,SContinue,CR,Extend,LF
2343 _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,XPG_XX,XPG_LE
4eea95a6
KW
2344 _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID
2345 Lowercase_Mapping
2346 Titlecase_Mapping
2347 Uppercase_Mapping
2348 Simple_Case_Folding
2349 Case_Folding
2350 &_Perl_IVCF
a2aeff50 2351 &_Perl_CCC_non0_non230
4eea95a6
KW
2352 );
2353 # NOTE that the convention is that extra enum values come
2354 # after the property name, separated by commas, with the enums
2355 # that aren't ever defined by Unicode coming last, at least 4
2356 # all-uppercase characters. The others are enum names that
2357 # are needed by perl, but aren't in all Unicode releases.
2358
2359my @bin_props;
1aefa327 2360my @perl_prop_synonyms;
4eea95a6 2361my %enums;
2d74dcf2
KW
2362my @deprecated_messages = ""; # Element [0] is a placeholder
2363my %deprecated_tags;
4eea95a6 2364
27097618
KW
2365my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x;
2366
2367# Create another hash that maps floating point x.yyEzz representation to what
2368# %stricter_to_file_of does for the equivalent rational. A typical entry in
2369# the latter hash is
2370#
2371# 'nv=1/2' => 'Nv/1_2',
2372#
2373# From that, this loop creates an entry
2374#
2375# 'nv=5.00e-01' => 'Nv/1_2',
2376#
2377# %stricter_to_file_of contains far more than just the rationals. Instead we
2378# use %utf8::nv_floating_to_rational which should have an entry for each
2379# nv in the former hash.
2380my %floating_to_file_of;
2381foreach my $key (keys %utf8::nv_floating_to_rational) {
2382 my $value = $utf8::nv_floating_to_rational{$key};
2383 $floating_to_file_of{$key} = $utf8::stricter_to_file_of{"nv=$value"};
2384}
2385
4eea95a6
KW
2386# Collect all the binary properties from data in lib/unicore
2387# Sort so that complements come after the main table, and the shortest
8091afe3 2388# names first, finally alphabetically. Also, sort together the tables we want
f81c4731
KW
2389# to be kept together, and prefer those with 'posix' in their names, which is
2390# what the C code is expecting their names to be.
4eea95a6 2391foreach my $property (sort
2d74dcf2 2392 { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
f81c4731
KW
2393 or $b =~ /posix/i <=> $a =~ /posix/i
2394 or $b =~ /perl/i <=> $a =~ /perl/i
27097618 2395 or $a =~ $float_e_format <=> $b =~ $float_e_format
2d74dcf2 2396 or $a =~ /!/ <=> $b =~ /!/
4eea95a6
KW
2397 or length $a <=> length $b
2398 or $a cmp $b
2399 } keys %utf8::loose_to_file_of,
27097618
KW
2400 keys %utf8::stricter_to_file_of,
2401 keys %floating_to_file_of
53146480 2402) {
0f5e3c71 2403
4eea95a6
KW
2404 # These two hashes map properties to values that can be considered to
2405 # be checksums. If two properties have the same checksum, they have
2406 # identical entries. Otherwise they differ in some way.
2407 my $tag = $utf8::loose_to_file_of{$property};
2408 $tag = $utf8::stricter_to_file_of{$property} unless defined $tag;
27097618 2409 $tag = $floating_to_file_of{$property} unless defined $tag;
4eea95a6
KW
2410
2411 # The tag may contain an '!' meaning it is identical to the one formed
394d2d3f
KW
2412 # by removing the !, except that it is inverted.
2413 my $inverted = $tag =~ s/!//;
4eea95a6 2414
27097618
KW
2415 # This hash is lacking the property name
2416 $property = "nv=$property" if $property =~ $float_e_format;
2417
4eea95a6
KW
2418 # The list of 'prop=value' entries that this single entry expands to
2419 my @this_entries;
2420
2421 # Split 'property=value' on the equals sign, with $lhs being the whole
2422 # thing if there is no '='
2423 my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x;
2424
394d2d3f
KW
2425 # $lhs then becomes the property name. See if there are any synonyms
2426 # for this property.
2427 if (exists $prop_name_aliases{$lhs}) {
2428
2429 # If so, do the combinatorics so that a new entry is added for
2430 # each legal property combined with the property value (which is
2431 # $rhs)
2432 foreach my $alias (@{$prop_name_aliases{$lhs}}) {
2433
2434 # But, there are some ambiguities, like 'script' is a synonym
2435 # for 'sc', and 'sc' can stand alone, meaning something
2436 # entirely different than 'script'. 'script' cannot stand
2437 # alone. Don't add if the potential new lhs is in the hash of
2438 # stand-alone properties.
2439 no warnings 'once';
2440 next if $rhs eq "" && grep { $alias eq $_ }
2441 keys %utf8::loose_property_to_file_of;
2442
2443 my $new_entry = $alias . $rhs;
e498c235 2444 push @this_entries, $new_entry;
394d2d3f
KW
2445 }
2446 }
2447
2448 # Above, we added the synonyms for the base entry we're now
2449 # processing. But we haven't dealt with it yet. If we already have a
2450 # property with the identical characteristics, this becomes just a
2451 # synonym for it.
2452 if (exists $enums{$tag}) {
2453 push @this_entries, $property;
2454 }
2455 else { # Otherwise, create a new entry.
2456
4eea95a6
KW
2457 # Add to the list of properties to generate inversion lists for.
2458 push @bin_props, uc $property;
2459
394d2d3f 2460 # Create a rule for the parser
f4b10e8e
KW
2461 if (! exists $keywords{$property}) {
2462 $keywords{$property} = token_name($property);
2463 }
394d2d3f 2464
4eea95a6
KW
2465 # And create an enum for it.
2466 $enums{$tag} = $table_name_prefix . uc sanitize_name($property);
394d2d3f 2467
1aefa327
KW
2468 $perl_tags{$tag} = 1 if exists $keep_together{lc $property};
2469
394d2d3f
KW
2470 # Some properties are deprecated. This hash tells us so, and the
2471 # warning message to raise if they are used.
2472 if (exists $utf8::why_deprecated{$tag}) {
2473 $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages;
2474 push @deprecated_messages, $utf8::why_deprecated{$tag};
2475 }
2476
2477 # Our sort above should have made sure that we see the
2478 # non-inverted version first, but this makes sure.
2479 warn "$property is inverted!!!" if $inverted;
2480 }
2481
2482 # Everything else is #defined to be the base enum, inversion is
2483 # indicated by negating the value.
2484 my $defined_to = "";
2485 $defined_to .= "-" if $inverted;
2486 $defined_to .= $enums{$tag};
2487
2488 # Go through the entries that evaluate to this.
e498c235 2489 @this_entries = uniques @this_entries;
394d2d3f
KW
2490 foreach my $define (@this_entries) {
2491
2492 # There is a rule for the parser for each.
f4b10e8e 2493 $keywords{$define} = $defined_to;
1aefa327
KW
2494
2495 # And a #define for all simple names equivalent to a perl property,
2496 # except those that begin with 'is' or 'in';
2497 if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) {
7e9b4fe4 2498 push @perl_prop_synonyms, "#define "
e5360b12
KW
2499 . $table_name_prefix
2500 . uc(sanitize_name($define))
2501 . " $defined_to";
1aefa327 2502 }
4eea95a6
KW
2503 }
2504}
2505
2d74dcf2
KW
2506@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2507 or $a cmp $b
4eea95a6 2508 } @bin_props;
1aefa327 2509@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms));
4eea95a6
KW
2510push @props, @bin_props;
2511
2512foreach my $prop (@props) {
2513
2514 # For the Latin1 properties, we change to use the eXtended version of the
2515 # base property, then go through the result and get rid of everything not
2516 # in Latin1 (above 255). Actually, we retain the element for the range
2517 # that crosses the 255/256 boundary if it is one that matches the
2518 # property. For example, in the Word property, there is a range of code
2519 # points that start at U+00F8 and goes through U+02C1. Instead of
2520 # artificially cutting that off at 256 because 256 is the first code point
2521 # above Latin1, we let the range go to its natural ending. That gives us
2522 # extra information with no added space taken. But if the range that
2523 # crosses the boundary is one that doesn't match the property, we don't
2524 # start a new range above 255, as that could be construed as going to
2525 # infinity. For example, the Upper property doesn't include the character
2526 # at 255, but does include the one at 256. We don't include the 256 one.
2527 my $prop_name = $prop;
2528 my $is_local_sub = $prop_name =~ s/^&//;
2529 my $extra_enums = "";
2530 $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
2531 my $lookup_prop = $prop_name;
2532 $prop_name = sanitize_name($prop_name);
2533 $prop_name = $table_name_prefix . $prop_name if grep { lc $lookup_prop eq lc $_ } @bin_props;
2534 my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
2535 or $lookup_prop =~ s/^L1//);
2536 my $nonl1_only = 0;
2537 $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
2538 ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;
2539
4761f74a
KW
2540 for my $charset (get_supported_code_pages()) {
2541 @a2n = @{get_a2n($charset)};
2542
0f5e3c71 2543 my @invlist;
99f21fb9
KW
2544 my @invmap;
2545 my $map_format;
2546 my $map_default;
2547 my $maps_to_code_point;
2548 my $to_adjust;
59fc10af 2549 my $same_in_all_code_pages;
0f5e3c71 2550 if ($is_local_sub) {
8843f0de 2551 my @return = eval $lookup_prop;
289ce9cc 2552 die $@ if $@;
8843f0de
KW
2553 my $invlist_ref = shift @return;
2554 @invlist = @$invlist_ref;
d2aadf62
KW
2555 if (@return) { # If has other values returned , must be an
2556 # inversion map
2557 my $invmap_ref = shift @return;
2558 @invmap = @$invmap_ref;
2559 $map_format = shift @return;
2560 $map_default = shift @return;
2561 }
0f5e3c71
KW
2562 }
2563 else {
2564 @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
99f21fb9 2565 if (! @invlist) {
99f21fb9 2566
ad85f59a
KW
2567 # If couldn't find a non-empty inversion list, see if it is
2568 # instead an inversion map
2569 my ($list_ref, $map_ref, $format, $default)
99f21fb9 2570 = prop_invmap($lookup_prop, '_perl_core_internal_ok');
ad85f59a
KW
2571 if (! $list_ref) {
2572 # An empty return here could mean an unknown property, or
2573 # merely that the original inversion list is empty. Call
2574 # in scalar context to differentiate
2575 my $count = prop_invlist($lookup_prop,
2576 '_perl_core_internal_ok');
d99e65da
KW
2577 if (defined $count) {
2578 # Short-circuit an empty inversion list.
2579 output_invlist($prop_name, \@invlist, $charset);
59fc10af 2580 last;
d99e65da 2581 }
ad85f59a 2582 die "Could not find inversion list for '$lookup_prop'"
ad85f59a
KW
2583 }
2584 else {
18b852b3
KW
2585 @invlist = @$list_ref;
2586 @invmap = @$map_ref;
2587 $map_format = $format;
2588 $map_default = $default;
b148e8b1 2589 $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x;
18b852b3 2590 $to_adjust = $map_format =~ /a/;
ad85f59a 2591 }
99f21fb9 2592 }
0f5e3c71 2593 }
ad85f59a 2594
99f21fb9
KW
2595 # Re-order the Unicode code points to native ones for this platform.
2596 # This is only needed for code points below 256, because native code
2597 # points are only in that range. For inversion maps of properties
2598 # where the mappings are adjusted (format =~ /a/), this reordering
2599 # could mess up the adjustment pattern that was in the input, so that
2600 # has to be dealt with.
2601 #
2602 # And inversion maps that map to code points need to eventually have
2603 # all those code points remapped to native, and it's better to do that
2604 # here, going through the whole list not just those below 256. This
2605 # is because some inversion maps have adjustments (format =~ /a/)
2606 # which may be affected by the reordering. This code needs to be done
2607 # both for when we are translating the inversion lists for < 256, and
2608 # for the inversion maps for everything. By doing both in this loop,
2609 # we can share that code.
2610 #
2611 # So, we go through everything for an inversion map to code points;
2612 # otherwise, we can skip any remapping at all if we are going to
2613 # output only the above-Latin1 values, or if the range spans the whole
2614 # of 0..256, as the remap will also include all of 0..256 (256 not
2615 # 255 because a re-ordering could cause 256 to need to be in the same
2616 # range as 255.)
2b3e8a91 2617 if ( (@invmap && $maps_to_code_point)
e4e80abb
KW
2618 || ( @invlist
2619 && $invlist[0] < 256
2b3e8a91 2620 && ( $invlist[0] != 0
e4e80abb 2621 || (scalar @invlist != 1 && $invlist[1] < 256))))
ceb1de32 2622 {
59fc10af 2623 $same_in_all_code_pages = 0;
99f21fb9 2624 if (! @invmap) { # Straight inversion list
563f8b93
KW
2625 # Look at all the ranges that start before 257.
2626 my @latin1_list;
2627 while (@invlist) {
2628 last if $invlist[0] > 256;
2629 my $upper = @invlist > 1
2630 ? $invlist[1] - 1 # In range
2631
2632 # To infinity. You may want to stop much much
2633 # earlier; going this high may expose perl
2634 # deficiencies with very large numbers.
7d2c6c24 2635 : 256;
563f8b93
KW
2636 for my $j ($invlist[0] .. $upper) {
2637 push @latin1_list, a2n($j);
2638 }
fb4554ea 2639
563f8b93
KW
2640 shift @invlist; # Shift off the range that's in the list
2641 shift @invlist; # Shift off the range not in the list
2642 }
fb4554ea 2643
563f8b93
KW
2644 # Here @invlist contains all the ranges in the original that
2645 # start at code points above 256, and @latin1_list contains
2646 # all the native code points for ranges that start with a
2647 # Unicode code point below 257. We sort the latter and
2648 # convert it to inversion list format. Then simply prepend it
2649 # to the list of the higher code points.
2650 @latin1_list = sort { $a <=> $b } @latin1_list;
2651 @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
2652 unshift @invlist, @latin1_list;
99f21fb9
KW
2653 }
2654 else { # Is an inversion map
2655
2656 # This is a similar procedure as plain inversion list, but has
2657 # multiple buckets. A plain inversion list just has two
2658 # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
2659 # pretty much can ignore the 2nd bucket, as it is completely
2660 # defined by the 1st. But here, what we do is create buckets
2661 # which contain the code points that map to each, translated
2662 # to native and turned into an inversion list. Thus each
2663 # bucket is an inversion list of native code points that map
2664 # to it or don't map to it. We use these to create an
2665 # inversion map for the whole property.
2666
2667 # As mentioned earlier, we use this procedure to not just
2668 # remap the inversion list to native values, but also the maps
2669 # of code points to native ones. In the latter case we have
2670 # to look at the whole of the inversion map (or at least to
2671 # above Unicode; as the maps of code points above that should
2672 # all be to the default).
c125794e
KW
2673 my $upper_limit = (! $maps_to_code_point)
2674 ? 256
2675 : (Unicode::UCD::UnicodeVersion() eq '1.1.5')
2676 ? 0xFFFF
2677 : 0x10FFFF;
99f21fb9
KW
2678
2679 my %mapped_lists; # A hash whose keys are the buckets.
2680 while (@invlist) {
2681 last if $invlist[0] > $upper_limit;
2682
2683 # This shouldn't actually happen, as prop_invmap() returns
2684 # an extra element at the end that is beyond $upper_limit
7e2c536f 2685 die "inversion map (for $prop_name) that extends to infinity is unimplemented" unless @invlist > 1;
99f21fb9
KW
2686
2687 my $bucket;
2688
2689 # A hash key can't be a ref (we are only expecting arrays
2690 # of scalars here), so convert any such to a string that
2691 # will be converted back later (using a vertical tab as
b148e8b1 2692 # the separator).
99f21fb9 2693 if (ref $invmap[0]) {
b148e8b1 2694 $bucket = join "\cK", map { a2n($_) } @{$invmap[0]};
99f21fb9
KW
2695 }
2696 elsif ($maps_to_code_point && $invmap[0] =~ $numeric_re) {
2697
2698 # Do convert to native for maps to single code points.
2699 # There are some properties that have a few outlier
2700 # maps that aren't code points, so the above test
2701 # skips those.
2702 $bucket = a2n($invmap[0]);
2703 } else {
2704 $bucket = $invmap[0];
2705 }
2706
2707 # We now have the bucket that all code points in the range
2708 # map to, though possibly they need to be adjusted. Go
2709 # through the range and put each translated code point in
2710 # it into its bucket.
2711 my $base_map = $invmap[0];
2712 for my $j ($invlist[0] .. $invlist[1] - 1) {
2713 if ($to_adjust
2714 # The 1st code point doesn't need adjusting
2715 && $j > $invlist[0]
2716
2717 # Skip any non-numeric maps: these are outliers
2718 # that aren't code points.
2719 && $base_map =~ $numeric_re
2720
2721 # 'ne' because the default can be a string
2722 && $base_map ne $map_default)
2723 {
2724 # We adjust, by incrementing each the bucket and
2725 # the map. For code point maps, translate to
2726 # native
2727 $base_map++;
2728 $bucket = ($maps_to_code_point)
2729 ? a2n($base_map)
2730 : $base_map;
2731 }
2732
2733 # Add the native code point to the bucket for the
2734 # current map
2735 push @{$mapped_lists{$bucket}}, a2n($j);
2736 } # End of loop through all code points in the range
2737
2738 # Get ready for the next range
2739 shift @invlist;
2740 shift @invmap;
2741 } # End of loop through all ranges in the map.
2742
2743 # Here, @invlist and @invmap retain all the ranges from the
2744 # originals that start with code points above $upper_limit.
2745 # Each bucket in %mapped_lists contains all the code points
2746 # that map to that bucket. If the bucket is for a map to a
5174a821
KW
2747 # single code point, the bucket has been converted to native.
2748 # If something else (including multiple code points), no
2749 # conversion is done.
99f21fb9
KW
2750 #
2751 # Now we recreate the inversion map into %xlated, but this
2752 # time for the native character set.
2753 my %xlated;
2754 foreach my $bucket (keys %mapped_lists) {
2755
2756 # Sort and convert this bucket to an inversion list. The
2757 # result will be that ranges that start with even-numbered
2758 # indexes will be for code points that map to this bucket;
2759 # odd ones map to some other bucket, and are discarded
2760 # below.
2761 @{$mapped_lists{$bucket}}
2762 = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
2763 @{$mapped_lists{$bucket}}
2764 = mk_invlist_from_sorted_cp_list(\@{$mapped_lists{$bucket}});
2765
2766 # Add each even-numbered range in the bucket to %xlated;
2767 # so that the keys of %xlated become the range start code
2768 # points, and the values are their corresponding maps.
2769 while (@{$mapped_lists{$bucket}}) {
2770 my $range_start = $mapped_lists{$bucket}->[0];
2771 if ($bucket =~ /\cK/) {
2772 @{$xlated{$range_start}} = split /\cK/, $bucket;
2773 }
2774 else {
e113b1b3
KW
2775 # If adjusting, and there is more than one thing
2776 # that maps to the same thing, they must be split
2777 # so that later the adjusting doesn't think the
2778 # subsequent items can go away because of the
2779 # adjusting.
2780 my $range_end = ($to_adjust && $bucket != $map_default)
2781 ? $mapped_lists{$bucket}->[1] - 1
2782 : $range_start;
2783 for my $i ($range_start .. $range_end) {
2784 $xlated{$i} = $bucket;
2785 }
99f21fb9
KW
2786 }
2787 shift @{$mapped_lists{$bucket}}; # Discard odd ranges
2788 shift @{$mapped_lists{$bucket}}; # Get ready for next
2789 # iteration
2790 }
2791 } # End of loop through all the buckets.
2792
2793 # Here %xlated's keys are the range starts of all the code
2794 # points in the inversion map. Construct an inversion list
2795 # from them.
2796 my @new_invlist = sort { $a <=> $b } keys %xlated;
2797
2798 # If the list is adjusted, we want to munge this list so that
2799 # we only have one entry for where consecutive code points map
2800 # to consecutive values. We just skip the subsequent entries
2801 # where this is the case.
2802 if ($to_adjust) {
2803 my @temp;
2804 for my $i (0 .. @new_invlist - 1) {
2805 next if $i > 0
2806 && $new_invlist[$i-1] + 1 == $new_invlist[$i]
2807 && $xlated{$new_invlist[$i-1]} =~ $numeric_re
2808 && $xlated{$new_invlist[$i]} =~ $numeric_re
2809 && $xlated{$new_invlist[$i-1]} + 1 == $xlated{$new_invlist[$i]};
2810 push @temp, $new_invlist[$i];
2811 }
2812 @new_invlist = @temp;
2813 }
2814
2815 # The inversion map comes from %xlated's values. We can
2816 # unshift each onto the front of the untouched portion, in
2817 # reverse order of the portion we did process.
2818 foreach my $start (reverse @new_invlist) {
2819 unshift @invmap, $xlated{$start};
2820 }
2821
2822 # Finally prepend the inversion list we have just constructed to the
2823 # one that contains anything we didn't process.
2824 unshift @invlist, @new_invlist;
2825 }
2826 }
e4e80abb
KW
2827 elsif (@invmap) { # inversion maps can't cope with this variable
2828 # being true, even if it could be true
2829 $same_in_all_code_pages = 0;
2830 }
59fc10af
KW
2831 else {
2832 $same_in_all_code_pages = 1;
2833 }
99f21fb9
KW
2834
2835 # prop_invmap() returns an extra final entry, which we can now
2836 # discard.
2837 if (@invmap) {
2838 pop @invlist;
2839 pop @invmap;
ceb1de32 2840 }
0f5e3c71
KW
2841
2842 if ($l1_only) {
99f21fb9 2843 die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
0f5e3c71
KW
2844 for my $i (0 .. @invlist - 1 - 1) {
2845 if ($invlist[$i] > 255) {
2846
2847 # In an inversion list, even-numbered elements give the code
2848 # points that begin ranges that match the property;
2849 # odd-numbered give ones that begin ranges that don't match.
2850 # If $i is odd, we are at the first code point above 255 that
2851 # doesn't match, which means the range it is ending does
2852 # match, and crosses the 255/256 boundary. We want to include
2853 # this ending point, so increment $i, so the splice below
2854 # includes it. Conversely, if $i is even, it is the first
2855 # code point above 255 that matches, which means there was no
2856 # matching range that crossed the boundary, and we don't want
2857 # to include this code point, so splice before it.
2858 $i++ if $i % 2 != 0;
2859
2860 # Remove everything past this.
2861 splice @invlist, $i;
99f21fb9 2862 splice @invmap, $i if @invmap;
0f5e3c71
KW
2863 last;
2864 }
0c4ecf42
KW
2865 }
2866 }
0f5e3c71
KW
2867 elsif ($nonl1_only) {
2868 my $found_nonl1 = 0;
2869 for my $i (0 .. @invlist - 1 - 1) {
2870 next if $invlist[$i] < 256;
2871
2872 # Here, we have the first element in the array that indicates an
2873 # element above Latin1. Get rid of all previous ones.
2874 splice @invlist, 0, $i;
99f21fb9 2875 splice @invmap, 0, $i if @invmap;
0f5e3c71
KW
2876
2877 # If this one's index is not divisible by 2, it means that this
2878 # element is inverting away from being in the list, which means
99f21fb9
KW
2879 # all code points from 256 to this one are in this list (or
2880 # map to the default for inversion maps)
2881 if ($i % 2 != 0) {
2882 unshift @invlist, 256;
2883 unshift @invmap, $map_default if @invmap;
2884 }
0f5e3c71 2885 $found_nonl1 = 1;
3f427fd9
KW
2886 last;
2887 }
0f0b3751
KW
2888 if (! $found_nonl1) {
2889 warn "No non-Latin1 code points in $prop_name";
2890 output_invlist($prop_name, []);
2891 last;
2892 }
3f427fd9 2893 }
3f427fd9 2894
cef72199 2895 switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C');
59fc10af 2896 start_charset_pound_if($charset, 1) unless $same_in_all_code_pages;
4761f74a 2897
59fc10af
KW
2898 output_invlist($prop_name, \@invlist, ($same_in_all_code_pages)
2899 ? $applies_to_all_charsets_text
2900 : $charset);
4761f74a
KW
2901
2902 if (@invmap) {
2903 output_invmap($prop_name, \@invmap, $lookup_prop, $map_format,
2904 $map_default, $extra_enums, $charset);
2905 }
59fc10af
KW
2906
2907 last if $same_in_all_code_pages;
4761f74a 2908 end_charset_pound_if;
0f5e3c71 2909 }
9d9177be
KW
2910}
2911
cef72199 2912switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C');
394d2d3f
KW
2913
2914print $out_fh "\nconst char * deprecated_property_msgs[] = {\n\t";
2915print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages;
2916print $out_fh "\n};\n";
2917
394d2d3f
KW
2918my @enums = sort values %enums;
2919
2920# Save a copy of these before modification
2921my @invlist_names = map { "${_}_invlist" } @enums;
2922
2923# Post-process the enums for deprecated properties.
2924if (scalar keys %deprecated_tags) {
2925 my $seen_deprecated = 0;
2926 foreach my $enum (@enums) {
2927 if (grep { $_ eq $enum } keys %deprecated_tags) {
2928
2929 # Change the enum name for this deprecated property to a
2930 # munged one to act as a placeholder in the typedef. Then
2931 # make the real name be a #define whose value is such that
2932 # its modulus with the number of enums yields the index into
2933 # the table occupied by the placeholder. And so that dividing
2934 # the #define value by the table length gives an index into
2935 # the table of deprecation messages for the corresponding
2936 # warning.
2937 my $revised_enum = "${enum}_perl_aux";
2938 if (! $seen_deprecated) {
2939 $seen_deprecated = 1;
2940 print $out_fh "\n";
2941 }
2942 print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n";
2943 $enum = $revised_enum;
2944 }
2945 }
2946}
2947
2948print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,\n\t";
2949print $out_fh join ",\n\t", @enums;
2950print $out_fh "\n";
2951print $out_fh "} binary_invlist_enum;\n";
2952print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n";
394d2d3f 2953
cef72199 2954output_table_header($out_fh, "UV *", "uni_prop_ptrs");
a3d5e31b 2955print $out_fh "\tNULL,\t/* Placeholder */\n";
cef72199 2956print $out_fh "\t";
394d2d3f
KW
2957print $out_fh join ",\n\t", @invlist_names;
2958print $out_fh "\n";
cef72199
KW
2959
2960output_table_trailer();
2961
2962print $out_fh join "\n", "\n",
2963 #'# ifdef DOINIT',
2964 #"\n",
e5360b12 2965 "/* Synonyms for perl properties */",
cef72199
KW
2966 @perl_prop_synonyms,
2967 #"\n",
2968 #"# endif /* DOINIT */",
2969 "\n";
394d2d3f 2970
973a28ed
KW
2971switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');
2972
2973output_GCB_table();
6b659339 2974output_LB_table();
7e54b87f 2975output_WB_table();
6b659339 2976
973a28ed
KW
2977end_file_pound_if;
2978
cb2d98ed
KW
2979print $out_fh <<"EOF";
2980
2981/* More than one code point may have the same code point as their fold. This
2982 * gives the maximum number in the current Unicode release. (The folded-to
2983 * code point is not included in this count.) For example, both 'S' and
2984 * \\x{17F} fold to 's', so the number for that fold is 2. Another way to
2985 * look at it is the maximum length of all the IVCF_AUX_TABLE's */
2986#define MAX_FOLD_FROMS $max_fold_froms
2987EOF
2988
2308ab83 2989my $sources_list = "lib/unicore/mktables.lst";
74e28a4a
TC
2990my @sources = qw(regen/mk_invlists.pl
2991 lib/unicore/mktables
2992 lib/Unicode/UCD.pm
2993 regen/charset_translations.pl
f7b69ff8 2994 regen/mk_PL_charclass.pl
74e28a4a 2995 );
9a3da3ad
FC
2996{
2997 # Depend on mktables’ own sources. It’s a shorter list of files than
2998 # those that Unicode::UCD uses.
1ae6ead9 2999 if (! open my $mktables_list, '<', $sources_list) {
2308ab83
KW
3000
3001 # This should force a rebuild once $sources_list exists
3002 push @sources, $sources_list;
3003 }
3004 else {
3005 while(<$mktables_list>) {
3006 last if /===/;
3007 chomp;
3008 push @sources, "lib/unicore/$_" if /^[^#]/;
3009 }
9a3da3ad
FC
3010 }
3011}
6b659339
KW
3012
3013read_only_bottom_close_and_rename($out_fh, \@sources);
394d2d3f 3014
afde5508 3015require './regen/mph.pl';
394d2d3f
KW
3016
3017sub token_name
3018{
3019 my $name = sanitize_name(shift);
db95f459 3020 warn "$name contains non-word" if $name =~ /\W/;
394d2d3f 3021
afde5508 3022 return "$table_name_prefix\U$name"
394d2d3f
KW
3023}
3024
afde5508 3025my $keywords_fh = open_new('uni_keywords.h', '>',
394d2d3f 3026 {style => '*', by => 'regen/mk_invlists.pl',
afde5508 3027 from => "mph.pl"});
394d2d3f 3028
27097618
KW
3029no warnings 'once';
3030print $keywords_fh <<"EOF";
5ae55d32 3031/* The precision to use in "%.*e" formats */
27097618
KW
3032#define PL_E_FORMAT_PRECISION $utf8::e_precision
3033
3034EOF
3035
f4b10e8e 3036my ($second_level, $seed1, $length_all_keys, $smart_blob, $rows) = MinimalPerfectHash::make_mph_from_hash(\%keywords);
afde5508
KW
3037print $keywords_fh MinimalPerfectHash::make_algo($second_level, $seed1, $length_all_keys, $smart_blob, $rows, undef, undef, undef, 'match_uniprop' );
3038
3039push @sources, 'regen/mph.pl';
394d2d3f 3040read_only_bottom_close_and_rename($keywords_fh, \@sources);