This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Comply with the 0x80th commandment
[perl5.git] / lib / Math / BigInt.pm
index df7881c..758d7d8 100644 (file)
@@ -1,8 +1,9 @@
-#!/usr/bin/perl -w
+package Math::BigInt;
 
-# Qs: what exactly happens on numify of HUGE numbers? overflow?
-#     $a = -$a is much slower (making copy of $a) than $a->bneg(), hm!?
-#     (copy_on_write will help there, but that is not yet implemented)
+#
+# "Mike had an infinite amount to do and a negative amount of time in which
+# to do it." - Before and After
+#
 
 # The following hash values are used:
 #   value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
 #   _a   : accuracy
 #   _p   : precision
 #   _f   : flags, used by MBF to flag parts of a float as untouchable
-#   _cow : copy on write: number of objects that share the data (NRY)
 
 # Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
 # underlying lib might change the reference!
 
-package Math::BigInt;
 my $class = "Math::BigInt";
 require 5.005;
 
-$VERSION = '1.42';
-use Exporter;
-@ISA =       qw( Exporter );
-@EXPORT_OK = qw( bneg babs bcmp badd bmul bdiv bmod bnorm bsub
-                 bgcd blcm
-                bround 
-                 blsft brsft band bior bxor bnot bpow bnan bzero 
-                 bacmp bstr bsstr binc bdec binf bfloor bceil
-                 is_odd is_even is_zero is_one is_nan is_inf sign
-                is_positive is_negative
-                length as_number
-                objectify _swap
-               ); 
-#@EXPORT = qw( );
-use vars qw/$rnd_mode $accuracy $precision $div_scale/;
+$VERSION = '1.77';
+
+@ISA = qw(Exporter);
+@EXPORT_OK = qw(objectify bgcd blcm); 
+
+# _trap_inf and _trap_nan are internal and should never be accessed from the
+# outside
+use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode 
+           $upgrade $downgrade $_trap_nan $_trap_inf/;
 use strict;
 
 # Inside overload, the first arg is always an object. If the original code had
-# it reversed (like $x = 2 * $y), then the third paramater indicates this
-# swapping. To make it work, we use a helper routine which not only reswaps the
-# params, but also makes a new object in this case. See _swap() for details,
-# especially the cases of operators with different classes.
+# it reversed (like $x = 2 * $y), then the third paramater is true.
+# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
+# no difference, but in some cases it does.
 
 # For overloaded ops with only one argument we simple use $_[0]->copy() to
 # preserve the argument.
@@ -51,14 +43,6 @@ use strict;
 use overload
 '='     =>      sub { $_[0]->copy(); },
 
-# '+' and '-' do not use _swap, since it is a triffle slower. If you want to
-# override _swap (if ever), then override overload of '+' and '-', too!
-# for sub it is a bit tricky to keep b: b-a => -a+b
-'-'    =>      sub { my $c = $_[0]->copy; $_[2] ?
-                   $c->bneg()->badd($_[1]) :
-                   $c->bsub( $_[1]) },
-'+'    =>      sub { $_[0]->copy()->badd($_[1]); },
-
 # some shortcuts for speed (assumes that reversed order of arguments is routed
 # to normal '+' and we thus can always modify first arg. If this is changed,
 # this breaks and must be adjusted.)
@@ -66,137 +50,408 @@ use overload
 '-='   =>      sub { $_[0]->bsub($_[1]); },
 '*='   =>      sub { $_[0]->bmul($_[1]); },
 '/='   =>      sub { scalar $_[0]->bdiv($_[1]); },
+'%='   =>      sub { $_[0]->bmod($_[1]); },
+'^='   =>      sub { $_[0]->bxor($_[1]); },
+'&='   =>      sub { $_[0]->band($_[1]); },
+'|='   =>      sub { $_[0]->bior($_[1]); },
+
 '**='  =>      sub { $_[0]->bpow($_[1]); },
+'<<='  =>      sub { $_[0]->blsft($_[1]); },
+'>>='  =>      sub { $_[0]->brsft($_[1]); },
 
+# not supported by Perl yet
+'..'   =>      \&_pointpoint,
+
+# we might need '==' and '!=' to get things like "NaN == NaN" right
 '<=>'  =>      sub { $_[2] ?
                       ref($_[0])->bcmp($_[1],$_[0]) : 
-                      ref($_[0])->bcmp($_[0],$_[1])},
-'cmp'  =>      sub { 
+                      $_[0]->bcmp($_[1]); },
+'cmp'  =>      sub {
          $_[2] ? 
-               $_[1] cmp $_[0]->bstr() :
-               $_[0]->bstr() cmp $_[1] },
-
+               "$_[1]" cmp $_[0]->bstr() :
+               $_[0]->bstr() cmp "$_[1]" },
+
+# make cos()/sin()/exp() "work" with BigInt's or subclasses
+'cos'  =>      sub { cos($_[0]->numify()) }, 
+'sin'  =>      sub { sin($_[0]->numify()) }, 
+'exp'  =>      sub { exp($_[0]->numify()) }, 
+'atan2'        =>      sub { $_[2] ?
+                       atan2($_[1],$_[0]->numify()) :
+                       atan2($_[0]->numify(),$_[1]) },
+
+# are not yet overloadable
+#'hex' =>      sub { print "hex"; $_[0]; }, 
+#'oct' =>      sub { print "oct"; $_[0]; }, 
+
+'log'  =>      sub { $_[0]->copy()->blog($_[1]); }, 
 'int'  =>      sub { $_[0]->copy(); }, 
 'neg'  =>      sub { $_[0]->copy()->bneg(); }, 
 'abs'  =>      sub { $_[0]->copy()->babs(); },
+'sqrt'  =>     sub { $_[0]->copy()->bsqrt(); },
 '~'    =>      sub { $_[0]->copy()->bnot(); },
 
-'*'    =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->bmul($a[1]); },
-'/'    =>      sub { my @a = ref($_[0])->_swap(@_);scalar $a[0]->bdiv($a[1]);},
-'%'    =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->bmod($a[1]); },
-'**'   =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->bpow($a[1]); },
-'<<'   =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->blsft($a[1]); },
-'>>'   =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->brsft($a[1]); },
-
-'&'    =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->band($a[1]); },
-'|'    =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->bior($a[1]); },
-'^'    =>      sub { my @a = ref($_[0])->_swap(@_); $a[0]->bxor($a[1]); },
-
-# can modify arg of ++ and --, so avoid a new-copy for speed, but don't
-# use $_[0]->__one(), it modifies $_[0] to be 1!
+# for subtract it's a bit tricky to not modify b: b-a => -a+b
+'-'    =>      sub { my $c = $_[0]->copy; $_[2] ?
+                       $c->bneg()->badd( $_[1]) :
+                       $c->bsub( $_[1]) },
+'+'    =>      sub { $_[0]->copy()->badd($_[1]); },
+'*'    =>      sub { $_[0]->copy()->bmul($_[1]); },
+
+'/'    =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
+  }, 
+'%'    =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
+  }, 
+'**'   =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
+  }, 
+'<<'   =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
+  }, 
+'>>'   =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
+  }, 
+'&'    =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
+  }, 
+'|'    =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
+  }, 
+'^'    =>      sub { 
+   $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
+  }, 
+
+# can modify arg of ++ and --, so avoid a copy() for speed, but don't
+# use $_[0]->bone(), it would modify $_[0] to be 1!
 '++'   =>      sub { $_[0]->binc() },
 '--'   =>      sub { $_[0]->bdec() },
 
 # if overloaded, O(1) instead of O(N) and twice as fast for small numbers
 'bool'  =>     sub {
   # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
-  # v5.6.1 dumps on that: return !$_[0]->is_zero() || undef;               :-(
-  my $t = !$_[0]->is_zero();
-  undef $t if $t == 0;
-  return $t;
+  # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef;               :-(
+  my $t = undef;
+  $t = 1 if !$_[0]->is_zero();
+  $t;
   },
 
-qw(
-""     bstr
-0+     numify),                # Order of arguments unsignificant
+# the original qw() does not work with the TIESCALAR below, why?
+# Order of arguments unsignificant
+'""' => sub { $_[0]->bstr(); },
+'0+' => sub { $_[0]->numify(); }
 ;
 
 ##############################################################################
 # global constants, flags and accessory
 
-use constant MB_NEVER_ROUND => 0x0001;
+# These vars are public, but their direct usage is not recommended, use the
+# accessor methods instead
+
+$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
+$accuracy   = undef;
+$precision  = undef;
+$div_scale  = 40;
+
+$upgrade = undef;                      # default is no upgrade
+$downgrade = undef;                    # default is no downgrade
 
-my $NaNOK=1;                           # are NaNs ok?
+# These are internally, and not to be used from the outside at all
+
+$_trap_nan = 0;                                # are NaNs ok? set w/ config()
+$_trap_inf = 0;                                # are infs ok? set w/ config()
 my $nan = 'NaN';                       # constants for easier life
 
-my $CALC = 'Math::BigInt::Calc';       # module to do low level math
-sub _core_lib () { return $CALC; }     # for test suite
+my $CALC = 'Math::BigInt::FastCalc';   # module to do the low level math
+                                       # default is FastCalc.pm
+my $IMPORT = 0;                                # was import() called yet?
+                                       # used to make require work
+my %WARN;                              # warn only once for low-level libs
+my %CAN;                               # cache for $CALC->can(...)
+my %CALLBACKS;                         # callbacks to notify on lib loads
+my $EMU_LIB = 'Math/BigInt/CalcEmu.pm';        # emulate low-level math
+
+##############################################################################
+# the old code had $rnd_mode, so we need to support it, too
+
+$rnd_mode   = 'even';
+sub TIESCALAR  { my ($class) = @_; bless \$round_mode, $class; }
+sub FETCH      { return $round_mode; }
+sub STORE      { $rnd_mode = $_[0]->round_mode($_[1]); }
+
+BEGIN
+  { 
+  # tie to enable $rnd_mode to work transparently
+  tie $rnd_mode, 'Math::BigInt'; 
+
+  # set up some handy alias names
+  *as_int = \&as_number;
+  *is_pos = \&is_positive;
+  *is_neg = \&is_negative;
+  }
 
-# Rounding modes, one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
-$rnd_mode = 'even';
-$accuracy = undef;
-$precision = undef;
-$div_scale = 40;
+############################################################################## 
 
 sub round_mode
   {
+  no strict 'refs';
   # make Class->round_mode() work
-  my $self = shift || $class;
-  # shift @_ if defined $_[0] && $_[0] eq $class;
+  my $self = shift;
+  my $class = ref($self) || $self || __PACKAGE__;
   if (defined $_[0])
     {
     my $m = shift;
-    die "Unknown round mode $m"
-     if $m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/;
-    $rnd_mode = $m; return;
+    if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
+      {
+      require Carp; Carp::croak ("Unknown round mode '$m'");
+      }
+    return ${"${class}::round_mode"} = $m;
+    }
+  ${"${class}::round_mode"};
+  }
+
+sub upgrade
+  {
+  no strict 'refs';
+  # make Class->upgrade() work
+  my $self = shift;
+  my $class = ref($self) || $self || __PACKAGE__;
+  # need to set new value?
+  if (@_ > 0)
+    {
+    return ${"${class}::upgrade"} = $_[0];
+    }
+  ${"${class}::upgrade"};
+  }
+
+sub downgrade
+  {
+  no strict 'refs';
+  # make Class->downgrade() work
+  my $self = shift;
+  my $class = ref($self) || $self || __PACKAGE__;
+  # need to set new value?
+  if (@_ > 0)
+    {
+    return ${"${class}::downgrade"} = $_[0];
+    }
+  ${"${class}::downgrade"};
+  }
+
+sub div_scale
+  {
+  no strict 'refs';
+  # make Class->div_scale() work
+  my $self = shift;
+  my $class = ref($self) || $self || __PACKAGE__;
+  if (defined $_[0])
+    {
+    if ($_[0] < 0)
+      {
+      require Carp; Carp::croak ('div_scale must be greater than zero');
+      }
+    ${"${class}::div_scale"} = $_[0];
     }
-  return $rnd_mode;
+  ${"${class}::div_scale"};
   }
 
 sub accuracy
   {
-  # $x->accuracy($a);          ref($x) a
-  # $x->accuracy();            ref($x);
-  # Class::accuracy();         # not supported 
-  #print "MBI @_ ($class)\n";
-  my $x = shift;
+  # $x->accuracy($a);          ref($x) $a
+  # $x->accuracy();            ref($x)
+  # Class->accuracy();         class
+  # Class->accuracy($a);       class $a
 
-  die ("accuracy() needs reference to object as first parameter.")
-   if !ref $x;
+  my $x = shift;
+  my $class = ref($x) || $x || __PACKAGE__;
 
+  no strict 'refs';
+  # need to set new value?
   if (@_ > 0)
     {
-    $x->{_a} = shift;
-    $x->round() if defined $x->{_a};
+    my $a = shift;
+    # convert objects to scalars to avoid deep recursion. If object doesn't
+    # have numify(), then hopefully it will have overloading for int() and
+    # boolean test without wandering into a deep recursion path...
+    $a = $a->numify() if ref($a) && $a->can('numify');
+
+    if (defined $a)
+      {
+      # also croak on non-numerical
+      if (!$a || $a <= 0)
+        {
+        require Carp;
+        Carp::croak ('Argument to accuracy must be greater than zero');
+        }
+      if (int($a) != $a)
+        {
+        require Carp; Carp::croak ('Argument to accuracy must be an integer');
+        }
+      }
+    if (ref($x))
+      {
+      # $object->accuracy() or fallback to global
+      $x->bround($a) if $a;            # not for undef, 0
+      $x->{_a} = $a;                   # set/overwrite, even if not rounded
+      delete $x->{_p};                 # clear P
+      $a = ${"${class}::accuracy"} unless defined $a;   # proper return value
+      }
+    else
+      {
+      ${"${class}::accuracy"} = $a;    # set global A
+      ${"${class}::precision"} = undef;        # clear global P
+      }
+    return $a;                         # shortcut
     }
-  return $x->{_a};
-  } 
+
+  my $a;
+  # $object->accuracy() or fallback to global
+  $a = $x->{_a} if ref($x);
+  # but don't return global undef, when $x's accuracy is 0!
+  $a = ${"${class}::accuracy"} if !defined $a;
+  $a;
+  }
 
 sub precision
   {
+  # $x->precision($p);         ref($x) $p
+  # $x->precision();           ref($x)
+  # Class->precision();                class
+  # Class->precision($p);      class $p
+
   my $x = shift;
+  my $class = ref($x) || $x || __PACKAGE__;
+
+  no strict 'refs';
+  if (@_ > 0)
+    {
+    my $p = shift;
+    # convert objects to scalars to avoid deep recursion. If object doesn't
+    # have numify(), then hopefully it will have overloading for int() and
+    # boolean test without wandering into a deep recursion path...
+    $p = $p->numify() if ref($p) && $p->can('numify');
+    if ((defined $p) && (int($p) != $p))
+      {
+      require Carp; Carp::croak ('Argument to precision must be an integer');
+      }
+    if (ref($x))
+      {
+      # $object->precision() or fallback to global
+      $x->bfround($p) if $p;           # not for undef, 0
+      $x->{_p} = $p;                   # set/overwrite, even if not rounded
+      delete $x->{_a};                 # clear A
+      $p = ${"${class}::precision"} unless defined $p;  # proper return value
+      }
+    else
+      {
+      ${"${class}::precision"} = $p;   # set global P
+      ${"${class}::accuracy"} = undef; # clear global A
+      }
+    return $p;                         # shortcut
+    }
 
-  die ("precision() needs reference to object as first parameter.")
-   if !ref $x;
+  my $p;
+  # $object->precision() or fallback to global
+  $p = $x->{_p} if ref($x);
+  # but don't return global undef, when $x's precision is 0!
+  $p = ${"${class}::precision"} if !defined $p;
+  $p;
+  }
+
+sub config
+  {
+  # return (or set) configuration data as hash ref
+  my $class = shift || 'Math::BigInt';
 
+  no strict 'refs';
   if (@_ > 0)
     {
-    $x->{_p} = shift;
-    $x->round() if defined $x->{_p};
+    # try to set given options as arguments from hash
+
+    my $args = $_[0];
+    if (ref($args) ne 'HASH')
+      {
+      $args = { @_ };
+      }
+    # these values can be "set"
+    my $set_args = {};
+    foreach my $key (
+     qw/trap_inf trap_nan
+        upgrade downgrade precision accuracy round_mode div_scale/
+     )
+      {
+      $set_args->{$key} = $args->{$key} if exists $args->{$key};
+      delete $args->{$key};
+      }
+    if (keys %$args > 0)
+      {
+      require Carp;
+      Carp::croak ("Illegal key(s) '",
+       join("','",keys %$args),"' passed to $class\->config()");
+      }
+    foreach my $key (keys %$set_args)
+      {
+      if ($key =~ /^trap_(inf|nan)\z/)
+        {
+        ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
+        next;
+        }
+      # use a call instead of just setting the $variable to check argument
+      $class->$key($set_args->{$key});
+      }
     }
-  return $x->{_p};
-  } 
+
+  # now return actual configuration
+
+  my $cfg = {
+    lib => $CALC,
+    lib_version => ${"${CALC}::VERSION"},
+    class => $class,
+    trap_nan => ${"${class}::_trap_nan"},
+    trap_inf => ${"${class}::_trap_inf"},
+    version => ${"${class}::VERSION"},
+    };
+  foreach my $key (qw/
+     upgrade downgrade precision accuracy round_mode div_scale
+     /)
+    {
+    $cfg->{$key} = ${"${class}::$key"};
+    };
+  $cfg;
+  }
 
 sub _scale_a
   { 
   # select accuracy parameter based on precedence,
   # used by bround() and bfround(), may return undef for scale (means no op)
-  my ($x,$s,$m,$scale,$mode) = @_;
-  $scale = $x->{_a} if !defined $scale;
-  $scale = $s if (!defined $scale);
-  $mode = $m if !defined $mode;
-  return ($scale,$mode);
+  my ($x,$scale,$mode) = @_;
+
+  $scale = $x->{_a} unless defined $scale;
+
+  no strict 'refs';
+  my $class = ref($x);
+
+  $scale = ${ $class . '::accuracy' } unless defined $scale;
+  $mode = ${ $class . '::round_mode' } unless defined $mode;
+
+  ($scale,$mode);
   }
 
 sub _scale_p
   { 
   # select precision parameter based on precedence,
   # used by bround() and bfround(), may return undef for scale (means no op)
-  my ($x,$s,$m,$scale,$mode) = @_;
-  $scale = $x->{_p} if !defined $scale;
-  $scale = $s if (!defined $scale);
-  $mode = $m if !defined $mode;
-  return ($scale,$mode);
+  my ($x,$scale,$mode) = @_;
+  
+  $scale = $x->{_p} unless defined $scale;
+
+  no strict 'refs';
+  my $class = ref($x);
+
+  $scale = ${ $class . '::precision' } unless defined $scale;
+  $mode = ${ $class . '::round_mode' } unless defined $mode;
+
+  ($scale,$mode);
   }
 
 ##############################################################################
@@ -217,39 +472,12 @@ sub copy
     }
   return unless ref($x); # only for objects
 
-  my $self = {}; bless $self,$c;
-  foreach my $k (keys %$x)
-    {
-    if ($k eq 'value')
-      {
-      $self->{$k} = $CALC->_copy($x->{$k});
-      }
-    elsif (ref($x->{$k}) eq 'SCALAR')
-      {
-      $self->{$k} = \${$x->{$k}};
-      }
-    elsif (ref($x->{$k}) eq 'ARRAY')
-      {
-      $self->{$k} = [ @{$x->{$k}} ];
-      }
-    elsif (ref($x->{$k}) eq 'HASH')
-      {
-      # only one level deep!
-      foreach my $h (keys %{$x->{$k}})
-        {
-        $self->{$k}->{$h} = $x->{$k}->{$h};
-        }
-      }
-    elsif (ref($x->{$k}))
-      {
-      my $c = ref($x->{$k});
-      $self->{$k} = $c->new($x->{$k}); # no copy() due to deep rec
-      }
-    else
-      {
-      $self->{$k} = $x->{$k};
-      }
-    }
+  my $self = bless {}, $c;
+
+  $self->{sign} = $x->{sign};
+  $self->{value} = $CALC->_copy($x->{value});
+  $self->{_a} = $x->{_a} if defined $x->{_a};
+  $self->{_p} = $x->{_p} if defined $x->{_p};
   $self;
   }
 
@@ -262,26 +490,57 @@ sub new
   # cause costly overloaded code to be called. The only allowed ops are
   # ref() and defined.
 
-  my $class = shift;
+  my ($class,$wanted,$a,$p,$r) = @_;
  
-  my $wanted = shift; # avoid numify call by not using || here
-  return $class->bzero() if !defined $wanted;  # default to 0
-  return $class->copy($wanted) if ref($wanted);
+  # avoid numify-calls by not using || on $wanted!
+  return $class->bzero($a,$p) if !defined $wanted;     # default to 0
+  return $class->copy($wanted,$a,$p,$r)
+   if ref($wanted) && $wanted->isa($class);            # MBI or subclass
 
-  my $self = {}; bless $self, $class;
-  # handle '+inf', '-inf' first
-  if ($wanted =~ /^[+-]inf$/)
+  $class->import() if $IMPORT == 0;            # make require work
+  
+  my $self = bless {}, $class;
+
+  # shortcut for "normal" numbers
+  if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
     {
-    $self->{value} = $CALC->_zero();
-    $self->{sign} = $wanted;
+    $self->{sign} = $1 || '+';
+
+    if ($wanted =~ /^[+-]/)
+     {
+      # remove sign without touching wanted to make it work with constants
+      my $t = $wanted; $t =~ s/^[+-]//;
+      $self->{value} = $CALC->_new($t);
+      }
+    else
+      {
+      $self->{value} = $CALC->_new($wanted);
+      }
+    no strict 'refs';
+    if ( (defined $a) || (defined $p) 
+        || (defined ${"${class}::precision"})
+        || (defined ${"${class}::accuracy"}) 
+       )
+      {
+      $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
+      }
     return $self;
     }
+
+  # handle '+inf', '-inf' first
+  if ($wanted =~ /^[+-]?inf\z/)
+    {
+    $self->{sign} = $wanted;           # set a default sign for bstr()
+    return $self->binf($wanted);
+    }
   # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
-  my ($mis,$miv,$mfv,$es,$ev) = _split(\$wanted);
+  my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
   if (!ref $mis)
     {
-    die "$wanted is not a number initialized to $class" if !$NaNOK;
-    #print "NaN 1\n";
+    if ($_trap_nan)
+      {
+      require Carp; Carp::croak("$wanted is not a number in $class");
+      }
     $self->{value} = $CALC->_zero();
     $self->{sign} = $nan;
     return $self;
@@ -302,13 +561,18 @@ sub new
     my $diff = $e - CORE::length($$mfv);
     if ($diff < 0)                             # Not integer
       {
+      if ($_trap_nan)
+        {
+        require Carp; Carp::croak("$wanted not an integer in $class");
+        }
       #print "NOI 1\n";
+      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
       $self->{sign} = $nan;
       }
     else                                       # diff >= 0
       {
       # adjust fraction and add it to value
-      # print "diff > 0 $$miv\n";
+      #print "diff > 0 $$miv\n";
       $$miv = $$miv . ($$mfv . '0' x $diff);
       }
     }
@@ -317,7 +581,12 @@ sub new
     if ($$mfv ne '')                           # e <= 0
       {
       # fraction and negative/zero E => NOI
+      if ($_trap_nan)
+        {
+        require Carp; Carp::croak("$wanted not an integer in $class");
+        }
       #print "NOI 2 \$\$mfv '$$mfv'\n";
+      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
       $self->{sign} = $nan;
       }
     elsif ($e < 0)
@@ -327,18 +596,23 @@ sub new
       $e = abs($e);
       if ($$miv !~ s/0{$e}$//)         # can strip so many zero's?
         {
+        if ($_trap_nan)
+          {
+          require Carp; Carp::croak("$wanted not an integer in $class");
+          }
         #print "NOI 3\n";
+        return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
         $self->{sign} = $nan;
         }
       }
     }
   $self->{sign} = '+' if $$miv eq '0';                 # normalize -0 => +0
-  $self->{value} = $CALC->_new($miv) if $self->{sign} =~ /^[+-]$/;
-  #print "$wanted => $self->{sign}\n";
+  $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
   # if any of the globals is set, use them to round and store them inside $self
-  $self->round($accuracy,$precision,$rnd_mode)
-   if defined $accuracy || defined $precision;
-  return $self;
+  # do not round for new($x,undef,undef) since that is used by MBF to signal
+  # no rounding
+  $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
+  $self;
   }
 
 sub bnan
@@ -350,10 +624,27 @@ sub bnan
     {
     my $c = $self; $self = {}; bless $self, $c;
     }
+  no strict 'refs';
+  if (${"${class}::_trap_nan"})
+    {
+    require Carp;
+    Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
+    }
+  $self->import() if $IMPORT == 0;             # make require work
   return if $self->modify('bnan');
-  $self->{value} = $CALC->_zero();
+  if ($self->can('_bnan'))
+    {
+    # use subclass to initialize
+    $self->_bnan();
+    }
+  else
+    {
+    # otherwise do our own thing
+    $self->{value} = $CALC->_zero();
+    }
   $self->{sign} = $nan;
-  return $self;
+  delete $self->{_a}; delete $self->{_p};      # rounding NaN is silly
+  $self;
   }
 
 sub binf
@@ -361,53 +652,121 @@ sub binf
   # create a bigint '+-inf', if given a BigInt, set it to '+-inf'
   # the sign is either '+', or if given, used from there
   my $self = shift;
-  my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
+  my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
   $self = $class if !defined $self;
   if (!ref($self))
     {
     my $c = $self; $self = {}; bless $self, $c;
     }
+  no strict 'refs';
+  if (${"${class}::_trap_inf"})
+    {
+    require Carp;
+    Carp::croak ("Tried to set $self to +-inf in $class\::binf()");
+    }
+  $self->import() if $IMPORT == 0;             # make require work
   return if $self->modify('binf');
-  $self->{value} = $CALC->_zero();
-  $self->{sign} = $sign.'inf';
-  return $self;
+  if ($self->can('_binf'))
+    {
+    # use subclass to initialize
+    $self->_binf();
+    }
+  else
+    {
+    # otherwise do our own thing
+    $self->{value} = $CALC->_zero();
+    }
+  $sign = $sign . 'inf' if $sign !~ /inf$/;    # - => -inf
+  $self->{sign} = $sign;
+  ($self->{_a},$self->{_p}) = @_;              # take over requested rounding
+  $self;
   }
 
 sub bzero
   {
   # create a bigint '+0', if given a BigInt, set it to 0
   my $self = shift;
-  $self = $class if !defined $self;
+  $self = __PACKAGE__ if !defined $self;
  
   if (!ref($self))
     {
     my $c = $self; $self = {}; bless $self, $c;
     }
+  $self->import() if $IMPORT == 0;             # make require work
   return if $self->modify('bzero');
-  $self->{value} = $CALC->_zero();
+  
+  if ($self->can('_bzero'))
+    {
+    # use subclass to initialize
+    $self->_bzero();
+    }
+  else
+    {
+    # otherwise do our own thing
+    $self->{value} = $CALC->_zero();
+    }
   $self->{sign} = '+';
-  #print "result: $self\n";
-  return $self;
+  if (@_ > 0)
+    {
+    if (@_ > 3)
+      {
+      # call like: $x->bzero($a,$p,$r,$y);
+      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
+      }
+    else
+      {
+      $self->{_a} = $_[0]
+       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
+      $self->{_p} = $_[1]
+       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
+      }
+    }
+  $self;
   }
 
 sub bone
   {
   # create a bigint '+1' (or -1 if given sign '-'),
-  # if given a BigInt, set it to +1 or -1, respecively
+  # if given a BigInt, set it to +1 or -1, respectively
   my $self = shift;
   my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
   $self = $class if !defined $self;
-  #print "bone $self\n";
+
   if (!ref($self))
     {
     my $c = $self; $self = {}; bless $self, $c;
     }
+  $self->import() if $IMPORT == 0;             # make require work
   return if $self->modify('bone');
-  $self->{value} = $CALC->_one();
+
+  if ($self->can('_bone'))
+    {
+    # use subclass to initialize
+    $self->_bone();
+    }
+  else
+    {
+    # otherwise do our own thing
+    $self->{value} = $CALC->_one();
+    }
   $self->{sign} = $sign;
-  #print "result: $self\n";
-  return $self;
+  if (@_ > 0)
+    {
+    if (@_ > 3)
+      {
+      # call like: $x->bone($sign,$a,$p,$r,$y);
+      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
+      }
+    else
+      {
+      # call like: $x->bone($sign,$a,$p,$r);
+      $self->{_a} = $_[0]
+       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
+      $self->{_p} = $_[1]
+       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
+      }
+    }
+  $self;
   }
 
 ##############################################################################
@@ -418,7 +777,7 @@ sub bsstr
   # (ref to BFLOAT or num_str ) return num_str
   # Convert number from internal format to scientific string format.
   # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
-  my ($self,$x) = objectify(1,@_);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 
 
   if ($x->{sign} !~ /^[+-]$/)
     {
@@ -426,33 +785,34 @@ sub bsstr
     return 'inf';                                      # +inf
     }
   my ($m,$e) = $x->parts();
-  # e can only be positive
-  my $sign = 'e+';     
-  # MBF: my $s = $e->{sign}; $s = '' if $s eq '-'; my $sep = 'e'.$s;
-  return $m->bstr().$sign.$e->bstr();
+  #$m->bstr() . 'e+' . $e->bstr();     # e can only be positive in BigInt
+  # 'e+' because E can only be positive in BigInt
+  $m->bstr() . 'e+' . $CALC->_str($e->{value}); 
   }
 
 sub bstr 
   {
   # make a string from bigint object
-  my $x = shift; $x = $class->new($x) unless ref $x;
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 
+
   if ($x->{sign} !~ /^[+-]$/)
     {
     return $x->{sign} unless $x->{sign} eq '+inf';     # -inf, NaN
     return 'inf';                                      # +inf
     }
   my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
-  return $es.${$CALC->_str($x->{value})};
+  $es.$CALC->_str($x->{value});
   }
 
 sub numify 
   {
-  # Make a number from a BigInt object
+  # Make a "normal" scalar from a BigInt object
   my $x = shift; $x = $class->new($x) unless ref $x;
-  return $x->{sign} if $x->{sign} !~ /^[+-]$/;
+
+  return $x->bstr() if $x->{sign} !~ /^[+-]$/;
   my $num = $CALC->_num($x->{value});
   return -$num if $x->{sign} eq '-';
-  return $num;
+  $num;
   }
 
 ##############################################################################
@@ -460,111 +820,192 @@ sub numify
 
 sub sign
   {
-  # return the sign of the number: +/-/NaN
-  my ($self,$x) = objectify(1,@_);
-  return $x->{sign};
+  # return the sign of the number: +/-/-inf/+inf/NaN
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 
+  
+  $x->{sign};
   }
 
-sub round
+sub _find_round_parameters
   {
   # After any operation or when calling round(), the result is rounded by
   # regarding the A & P from arguments, local parameters, or globals.
-  # The result's A or P are set by the rounding, but not inspected beforehand
-  # (aka only the arguments enter into it). This works because the given
-  # 'first' argument is both the result and true first argument with unchanged
-  # A and P settings.
-  # This does not yet handle $x with A, and $y with P (which should be an
-  # error).
-  my $self = shift;
-  my $a    = shift;    # accuracy, if given by caller
-  my $p    = shift;    # precision, if given by caller
-  my $r    = shift;    # round_mode, if given by caller
-  my @args = @_;       # all 'other' arguments (0 for unary, 1 for binary ops)
-
-  $self = new($self) unless ref($self);        # if not object, make one
-  my $c = ref($args[0]);                       # find out class of argument
-  unshift @args,$self;                         # add 'first' argument
-        
-  # leave bigfloat parts alone
-  return $self if exists $self->{_f} && $self->{_f} & MB_NEVER_ROUND != 0;
 
+  # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
+
+  # This procedure finds the round parameters, but it is for speed reasons
+  # duplicated in round. Otherwise, it is tested by the testsuite and used
+  # by fdiv().
+  # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
+  # were requested/defined (locally or globally or both)
+  
+  my ($self,$a,$p,$r,@args) = @_;
+  # $a accuracy, if given by caller
+  # $p precision, if given by caller
+  # $r round_mode, if given by caller
+  # @args all 'other' arguments (0 for unary, 1 for binary ops)
+
+  my $c = ref($self);                          # find out class of argument(s)
   no strict 'refs';
-  my $z = "$c\::accuracy"; my $aa = $$z; my $ap = undef;
-  if (!defined $aa)
-    {
-    $z = "$c\::precision"; $ap = $$z;
-    }
 
   # now pick $a or $p, but only if we have got "arguments"
-  if ((!defined $a) && (!defined $p) && (@args > 0))
+  if (!defined $a)
     {
-    foreach (@args)
+    foreach ($self,@args)
       {
       # take the defined one, or if both defined, the one that is smaller
       $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
       }
-    if (!defined $a)           # if it still is not defined, take p
-      {
-      foreach (@args)
-        {
-        # take the defined one, or if both defined, the one that is smaller
-        $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} < $p);
-        }
-      # if none defined, use globals (#2)
-      if (!defined $p) 
-        {
-        $a = $aa; $p = $ap; # save the check: if !defined $a;
-        }
-      } # endif !$a
-    } # endif !$a || !$P && args > 0
-  # for clearity, this is not merged at place (#2)
-  # now round, by calling fround or ffround:
-  if (defined $a)
+    }
+  if (!defined $p)
     {
-    $self->{_a} = $a; $self->bround($a,$r);
+    # even if $a is defined, take $p, to signal error for both defined
+    foreach ($self,@args)
+      {
+      # take the defined one, or if both defined, the one that is bigger
+      # -2 > -3, and 3 > 2
+      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
+      }
     }
-  elsif (defined $p)
+  # if still none defined, use globals (#2)
+  $a = ${"$c\::accuracy"} unless defined $a;
+  $p = ${"$c\::precision"} unless defined $p;
+
+  # A == 0 is useless, so undef it to signal no rounding
+  $a = undef if defined $a && $a == 0;
+  # no rounding today? 
+  return ($self) unless defined $a || defined $p;              # early out
+
+  # set A and set P is an fatal error
+  return ($self->bnan()) if defined $a && defined $p;          # error
+
+  $r = ${"$c\::round_mode"} unless defined $r;
+  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
     {
-    $self->{_p} = $p; $self->bfround($p,$r);
+    require Carp; Carp::croak ("Unknown round mode '$r'");
     }
-  return $self->bnorm();
-  }
 
-sub bnorm
-  { 
-  # (num_str or BINT) return BINT
-  # Normalize number -- no-op here
-  return $_[0];
+  ($self,$a,$p,$r);
   }
 
-sub babs 
+sub round
   {
-  # (BINT or num_str) return BINT
-  # make number absolute, or return absolute BINT from string
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  return $x if $x->modify('babs');
-  # post-normalized abs for internal use (does nothing for NaN)
-  $x->{sign} =~ s/^-/+/;
-  $x;
-  }
+  # Round $self according to given parameters, or given second argument's
+  # parameters or global defaults 
 
-sub bneg 
-  { 
-  # (BINT or num_str) return BINT
-  # negate number or make a negated number from string
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  return $x if $x->modify('bneg');
-  # for +0 dont negate (to have always normalized)
-  return $x if $x->is_zero();
-  $x->{sign} =~ tr/+\-/-+/; # does nothing for NaN
-  $x;
-  }
+  # for speed reasons, _find_round_parameters is embeded here:
+
+  my ($self,$a,$p,$r,@args) = @_;
+  # $a accuracy, if given by caller
+  # $p precision, if given by caller
+  # $r round_mode, if given by caller
+  # @args all 'other' arguments (0 for unary, 1 for binary ops)
+
+  my $c = ref($self);                          # find out class of argument(s)
+  no strict 'refs';
+
+  # now pick $a or $p, but only if we have got "arguments"
+  if (!defined $a)
+    {
+    foreach ($self,@args)
+      {
+      # take the defined one, or if both defined, the one that is smaller
+      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
+      }
+    }
+  if (!defined $p)
+    {
+    # even if $a is defined, take $p, to signal error for both defined
+    foreach ($self,@args)
+      {
+      # take the defined one, or if both defined, the one that is bigger
+      # -2 > -3, and 3 > 2
+      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
+      }
+    }
+  # if still none defined, use globals (#2)
+  $a = ${"$c\::accuracy"} unless defined $a;
+  $p = ${"$c\::precision"} unless defined $p;
+  # A == 0 is useless, so undef it to signal no rounding
+  $a = undef if defined $a && $a == 0;
+  
+  # no rounding today? 
+  return $self unless defined $a || defined $p;                # early out
+
+  # set A and set P is an fatal error
+  return $self->bnan() if defined $a && defined $p;
+
+  $r = ${"$c\::round_mode"} unless defined $r;
+  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
+    {
+    require Carp; Carp::croak ("Unknown round mode '$r'");
+    }
+
+  # now round, by calling either fround or ffround:
+  if (defined $a)
+    {
+    $self->bround($a,$r) if !defined $self->{_a} || $self->{_a} >= $a;
+    }
+  else # both can't be undefined due to early out
+    {
+    $self->bfround($p,$r) if !defined $self->{_p} || $self->{_p} <= $p;
+    }
+  # bround() or bfround() already callled bnorm() if necc.
+  $self;
+  }
+
+sub bnorm
+  { 
+  # (numstr or BINT) return BINT
+  # Normalize number -- no-op here
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+  $x;
+  }
+
+sub babs 
+  {
+  # (BINT or num_str) return BINT
+  # make number absolute, or return absolute BINT from string
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+  return $x if $x->modify('babs');
+  # post-normalized abs for internal use (does nothing for NaN)
+  $x->{sign} =~ s/^-/+/;
+  $x;
+  }
+
+sub bneg 
+  { 
+  # (BINT or num_str) return BINT
+  # negate number or make a negated number from string
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+  
+  return $x if $x->modify('bneg');
+
+  # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
+  $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
+  $x;
+  }
 
 sub bcmp 
   {
   # Compares 2 values.  Returns one of undef, <0, =0, >0. (suitable for sort)
   # (BINT or num_str, BINT or num_str) return cond_code
-  my ($self,$x,$y) = objectify(2,@_);
+  
+  # set up parameters
+  my ($self,$x,$y) = (ref($_[0]),@_);
+
+  # objectify is costly, so avoid it 
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y) = objectify(2,@_);
+    }
+
+  return $upgrade->bcmp($x,$y) if defined $upgrade &&
+    ((!$x->isa($self)) || (!$y->isa($self)));
 
   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
     {
@@ -574,20 +1015,24 @@ sub bcmp
     return +1 if $x->{sign} eq '+inf';
     return -1 if $x->{sign} eq '-inf';
     return -1 if $y->{sign} eq '+inf';
-    return +1 if $y->{sign} eq '-inf';
+    return +1;
     }
   # check sign for speed first
   return 1 if $x->{sign} eq '+' && $y->{sign} eq '-';  # does also 0 <=> -y
   return -1 if $x->{sign} eq '-' && $y->{sign} eq '+';  # does also -x <=> 0 
 
-  # shortcut
-  my $xz = $x->is_zero();
-  my $yz = $y->is_zero();
-  return 0 if $xz && $yz;                               # 0 <=> 0
-  return -1 if $xz && $y->{sign} eq '+';                # 0 <=> +y
-  return 1 if $yz && $x->{sign} eq '+';                 # +x <=> 0
-  # normal compare now
-  &cmp($x->{value},$y->{value},$x->{sign},$y->{sign}) <=> 0;
+  # have same sign, so compare absolute values. Don't make tests for zero here
+  # because it's actually slower than testin in Calc (especially w/ Pari et al)
+
+  # post-normalized compare for internal use (honors signs)
+  if ($x->{sign} eq '+') 
+    {
+    # $x and $y both > 0
+    return $CALC->_acmp($x->{value},$y->{value});
+    }
+
+  # $x && $y both < 0
+  $CALC->_acmp($y->{value},$x->{value});       # swaped acmp (lib returns 0,1,-1)
   }
 
 sub bacmp 
@@ -595,37 +1040,58 @@ sub bacmp
   # Compares 2 values, ignoring their signs. 
   # Returns one of undef, <0, =0, >0. (suitable for sort)
   # (BINT, BINT) return cond_code
-  my ($self,$x,$y) = objectify(2,@_);
   
+  # set up parameters
+  my ($self,$x,$y) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it 
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y) = objectify(2,@_);
+    }
+
+  return $upgrade->bacmp($x,$y) if defined $upgrade &&
+    ((!$x->isa($self)) || (!$y->isa($self)));
+
   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
     {
     # handle +-inf and NaN
     return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
     return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
-    return +1; # inf is always bigger
+    return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
+    return -1;
     }
-  $CALC->_acmp($x->{value},$y->{value}) <=> 0;
+  $CALC->_acmp($x->{value},$y->{value});       # lib does only 0,1,-1
   }
 
 sub badd 
   {
   # add second arg (BINT or string) to first (BINT) (modifies first)
   # return result as BINT
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it 
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
 
   return $x if $x->modify('badd');
+  return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
+    ((!$x->isa($self)) || (!$y->isa($self)));
 
+  $r[3] = $y;                          # no push!
   # inf and NaN handling
   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
     {
     # NaN first
     return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
-    # inf handline
-   if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+    # inf handling
+    if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
       {
-      # + and + => +, - and - => -, + and - => 0, - and + => 0
-      return $x->bzero() if $x->{sign} ne $y->{sign};
-      return $x;
+      # +inf++inf or -inf+-inf => same, rest is NaN
+      return $x if $x->{sign} eq $y->{sign};
+      return $x->bnan();
       }
     # +-inf + something => +inf
     # something +-inf => +-inf
@@ -633,78 +1099,147 @@ sub badd
     return $x;
     }
     
-  my @bn = ($a,$p,$r,$y);                      # make array for round calls
-  # speed: no add for 0+y or x+0
-  return $x->round(@bn) if $y->is_zero();                      # x+0
-  if ($x->is_zero())                                           # 0+y
-    {
-    # make copy, clobbering up x
-    $x->{value} = $CALC->_copy($y->{value});
-    $x->{sign} = $y->{sign} || $nan;
-    return $x->round(@bn);
-    }
-
-  my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
+  my ($sx, $sy) = ( $x->{sign}, $y->{sign} );          # get signs
 
   if ($sx eq $sy)  
     {
     $x->{value} = $CALC->_add($x->{value},$y->{value});        # same sign, abs add
-    $x->{sign} = $sx;
     }
   else 
     {
     my $a = $CALC->_acmp ($y->{value},$x->{value});    # absolute compare
     if ($a > 0)                           
       {
-      #print "swapped sub (a=$a)\n";
       $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
       $x->{sign} = $sy;
       } 
     elsif ($a == 0)
       {
       # speedup, if equal, set result to 0
-      #print "equal sub, result = 0\n";
       $x->{value} = $CALC->_zero();
       $x->{sign} = '+';
       }
     else # a < 0
       {
-      #print "unswapped sub (a=$a)\n";
       $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
-      $x->{sign} = $sx;
       }
     }
-  return $x->round(@bn);
+  $x->round(@r);
   }
 
 sub bsub 
   {
-  # (BINT or num_str, BINT or num_str) return num_str
+  # (BINT or num_str, BINT or num_str) return BINT
   # subtract second arg from first, modify first
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+  
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
 
   return $x if $x->modify('bsub');
-  $x->badd($y->bneg()); # badd does not leave internal zeros
-  $y->bneg();           # refix y, assumes no one reads $y in between
-  return $x->round($a,$p,$r,$y);
+
+  return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
+   ((!$x->isa($self)) || (!$y->isa($self)));
+
+  return $x->round(@r) if $y->is_zero();
+
+  # To correctly handle the lone special case $x->bsub($x), we note the sign
+  # of $x, then flip the sign from $y, and if the sign of $x did change, too,
+  # then we caught the special case:
+  my $xsign = $x->{sign};
+  $y->{sign} =~ tr/+\-/-+/;    # does nothing for NaN
+  if ($xsign ne $x->{sign})
+    {
+    # special case of $x->bsub($x) results in 0
+    return $x->bzero(@r) if $xsign =~ /^[+-]$/;
+    return $x->bnan();          # NaN, -inf, +inf
+    }
+  $x->badd($y,@r);             # badd does not leave internal zeros
+  $y->{sign} =~ tr/+\-/-+/;    # refix $y (does nothing for NaN)
+  $x;                          # already rounded by badd() or no round necc.
   }
 
 sub binc
   {
   # increment arg by one
-  my ($self,$x,$a,$p,$r) = objectify(1,@_);
-  # my $x = shift; $x = $class->new($x) unless ref $x; my $self = ref($x);
+  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
   return $x if $x->modify('binc');
-  $x->badd($self->__one())->round($a,$p,$r);
+
+  if ($x->{sign} eq '+')
+    {
+    $x->{value} = $CALC->_inc($x->{value});
+    return $x->round($a,$p,$r);
+    }
+  elsif ($x->{sign} eq '-')
+    {
+    $x->{value} = $CALC->_dec($x->{value});
+    $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
+    return $x->round($a,$p,$r);
+    }
+  # inf, nan handling etc
+  $x->badd($self->bone(),$a,$p,$r);            # badd does round
   }
 
 sub bdec
   {
   # decrement arg by one
-  my ($self,$x,$a,$p,$r) = objectify(1,@_);
+  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
   return $x if $x->modify('bdec');
-  $x->badd($self->__one('-'))->round($a,$p,$r);
-  } 
+  
+  if ($x->{sign} eq '-')
+    {
+    # x already < 0
+    $x->{value} = $CALC->_inc($x->{value});
+    } 
+  else
+    {
+    return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+';     # inf or NaN
+    # >= 0
+    if ($CALC->_is_zero($x->{value}))
+      {
+      # == 0
+      $x->{value} = $CALC->_one(); $x->{sign} = '-';           # 0 => -1
+      }
+    else
+      {
+      # > 0
+      $x->{value} = $CALC->_dec($x->{value});
+      }
+    }
+  $x->round(@r);
+  }
+
+sub blog
+  {
+  # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
+  # $base of $x)
+
+  # set up parameters
+  my ($self,$x,$base,@r) = (undef,@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$base,@r) = objectify(1,ref($x),@_);
+    }
+  
+  return $x if $x->modify('blog');
+
+  # inf, -inf, NaN, <0 => NaN
+  return $x->bnan()
+   if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
+
+  return $upgrade->blog($upgrade->new($x),$base,@r) if 
+    defined $upgrade;
+
+  my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
+  return $x->bnan() unless defined $rc;                # not possible to take log?
+  $x->{value} = $rc;
+  $x->round(@r);
+  }
 
 sub blcm 
   { 
@@ -721,7 +1256,12 @@ sub blcm
     {
     $x = $class->new($y);
     }
-  while (@_) { $x = _lcm($x,shift); } 
+  my $self = ref($x);
+  while (@_) 
+    {
+    my $y = shift; $y = $self->new($y) if !ref ($y);
+    $x = __lcm($x,$y);
+    } 
   $x;
   }
 
@@ -731,130 +1271,123 @@ sub bgcd
   # does not modify arguments, but returns new object
   # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)
 
-  my $y = shift; my ($x);
-  if (ref($y))
-    {
-    $x = $y->copy();
-    }
-  else
-    {
-    $x = $class->new($y);
-    }
+  my $y = shift;
+  $y = $class->new($y) if !ref($y);
+  my $self = ref($y);
+  my $x = $y->copy()->babs();                  # keep arguments
+  return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
 
-  if ($CALC->can('_gcd'))
-    {
-    while (@_)
-      {
-      $y = shift; $y = $class->new($y) if !ref($y);
-      next if $y->is_zero();
-      return $x->bnan() if $y->{sign} !~ /^[+-]$/;     # y NaN?
-      $x->{value} = $CALC->_gcd($x->{value},$y->{value}); last if $x->is_one();
-      }
-    }
-  else
+  while (@_)
     {
-    while (@_)
-      {
-      $x = __gcd($x,shift); last if $x->is_one();      # _gcd handles NaN
-      } 
+    $y = shift; $y = $self->new($y) if !ref($y);
+    return $x->bnan() if $y->{sign} !~ /^[+-]$/;       # y NaN?
+    $x->{value} = $CALC->_gcd($x->{value},$y->{value});
+    last if $CALC->_is_one($x->{value});
     }
-  $x->babs();
-  }
-
-sub bmod 
-  {
-  # modulus
-  # (BINT or num_str, BINT or num_str) return BINT
-  my ($self,$x,$y) = objectify(2,@_);
-  
-  return $x if $x->modify('bmod');
-  (&bdiv($self,$x,$y))[1];
+  $x;
   }
 
 sub bnot 
   {
   # (num_str or BINT) return BINT
   # represent ~x as twos-complement number
-  my ($self,$x) = objectify(1,@_);
+  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
+  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
   return $x if $x->modify('bnot');
-  $x->bneg(); $x->bdec(); # was: bsub(-1,$x);, time it someday
-  $x;
+  $x->binc()->bneg();                  # binc already does round
   }
 
+##############################################################################
+# is_foo test routines
+# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
+
 sub is_zero
   {
   # return true if arg (BINT or num_str) is zero (array '+', '0')
-  #my ($self,$x) = objectify(1,@_);
-  my $x = shift; $x = $class->new($x) unless ref $x;
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
   
   return 0 if $x->{sign} !~ /^\+$/;                    # -, NaN & +-inf aren't
   $CALC->_is_zero($x->{value});
-  #return $CALC->_is_zero($x->{value});
   }
 
 sub is_nan
   {
   # return true if arg (BINT or num_str) is NaN
-  #my ($self,$x) = objectify(1,@_);
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  return ($x->{sign} eq $nan); 
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+  $x->{sign} eq $nan ? 1 : 0;
   }
 
 sub is_inf
   {
   # return true if arg (BINT or num_str) is +-inf
-  #my ($self,$x) = objectify(1,@_);
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  my $sign = shift || '';
+  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
-  return $x->{sign} =~ /^[+-]inf$/ if $sign eq '';
-  return $x->{sign} =~ /^[$sign]inf$/;
+  if (defined $sign)
+    {
+    $sign = '[+-]inf' if $sign eq '';  # +- doesn't matter, only that's inf
+    $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/;    # extract '+' or '-'
+    return $x->{sign} =~ /^$sign$/ ? 1 : 0;
+    }
+  $x->{sign} =~ /^[+-]inf$/ ? 1 : 0;           # only +-inf is infinity
   }
 
 sub is_one
   {
-  # return true if arg (BINT or num_str) is +1
-  # or -1 if sign is given
-  #my ($self,$x) = objectify(1,@_); 
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  my $sign = shift || ''; $sign = '+' if $sign ne '-';
+  # return true if arg (BINT or num_str) is +1, or -1 if sign is given
+  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+    
+  $sign = '+' if !defined $sign || $sign ne '-';
  
-  return 0 if $x->{sign} ne $sign; 
-  return $CALC->_is_one($x->{value});
+  return 0 if $x->{sign} ne $sign;     # -1 != +1, NaN, +-inf aren't either
+  $CALC->_is_one($x->{value});
   }
 
 sub is_odd
   {
   # return true when arg (BINT or num_str) is odd, false for even
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  #my ($self,$x) = objectify(1,@_);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
 
   return 0 if $x->{sign} !~ /^[+-]$/;                  # NaN & +-inf aren't
-  return $CALC->_is_odd($x->{value});
+  $CALC->_is_odd($x->{value});
   }
 
 sub is_even
   {
   # return true when arg (BINT or num_str) is even, false for odd
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  #my ($self,$x) = objectify(1,@_);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
 
   return 0 if $x->{sign} !~ /^[+-]$/;                  # NaN & +-inf aren't
-  return $CALC->_is_even($x->{value});
+  $CALC->_is_even($x->{value});
   }
 
 sub is_positive
   {
   # return true when arg (BINT or num_str) is positive (>= 0)
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  return ($x->{sign} =~ /^\+/);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+  return 1 if $x->{sign} eq '+inf';                    # +inf is positive
+  # 0+ is neither positive nor negative
+  ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;       
   }
 
 sub is_negative
   {
   # return true when arg (BINT or num_str) is negative (< 0)
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  return ($x->{sign} =~ /^-/);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+  
+  $x->{sign} =~ /^-/ ? 1 : 0;          # -inf is negative, but NaN is not
+  }
+
+sub is_int
+  {
+  # return true when arg (BINT or num_str) is an integer
+  # always true for BigInt, but different for BigFloats
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+  
+  $x->{sign} =~ /^[+-]$/ ? 1 : 0;              # inf/-inf/NaN aren't
   }
 
 ###############################################################################
@@ -863,16 +1396,23 @@ sub bmul
   { 
   # multiply two numbers -- stolen from Knuth Vol 2 pg 233
   # (BINT or num_str, BINT or num_str) return BINT
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
   
   return $x if $x->modify('bmul');
+
   return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
-  # handle result = 0
-  return $x if $x->is_zero();
-  return $x->bzero() if $y->is_zero();
+
   # inf handling
   if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
     {
+    return $x->bnan() if $x->is_zero() || $y->is_zero();
     # result will always be +-inf:
     # +inf * +/+inf => +inf, -inf * -/-inf => +inf
     # +inf * -/-inf => -inf, -inf * +/+inf => -inf
@@ -881,420 +1421,643 @@ sub bmul
     return $x->binf('-');
     }
 
+  return $upgrade->bmul($x,$upgrade->new($y),@r)
+   if defined $upgrade && !$y->isa($self);
+  
+  $r[3] = $y;                          # no push here
+
   $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
-  $x->{value} = $CALC->_mul($x->{value},$y->{value});  # do actual math
-  return $x->round($a,$p,$r,$y);
+
+  $x->{value} = $CALC->_mul($x->{value},$y->{value});  # do actual math
+  $x->{sign} = '+' if $CALC->_is_zero($x->{value});    # no -0
+
+  $x->round(@r);
   }
 
-sub bdiv 
+sub _div_inf
   {
-  # (dividend: BINT or num_str, divisor: BINT or num_str) return 
-  # (BINT,BINT) (quo,rem) or BINT (only rem)
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
-
-  return $x if $x->modify('bdiv');
+  # helper function that handles +-inf cases for bdiv()/bmod() to reuse code
+  my ($self,$x,$y) = @_;
 
-  # x / +-inf => 0, reminder x
-  return wantarray ? ($x->bzero(),$x->copy()) : $x->bzero()
-   if $y->{sign} =~ /^[+-]inf$/;
-  
   # NaN if x == NaN or y == NaN or x==y==0
-  return wantarray ? ($x->bnan(),bnan()) : $x->bnan()
-   if (($x->is_nan() || $y->is_nan()) ||
-      ($x->is_zero() && $y->is_zero()));
-  
-  # 5 / 0 => +inf, -6 / 0 => -inf
-  return wantarray 
-   ? ($x->binf($x->{sign}),$self->bnan()) : $x->binf($x->{sign})
-   if ($x->{sign} =~ /^[+-]$/ && $y->is_zero());
-  
-  # old code: always NaN if /0
-  #return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
-  # if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/ || $y->is_zero());
-
-  # 0 / something
-  return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
+  return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
+   if (($x->is_nan() || $y->is_nan())   ||
+       ($x->is_zero() && $y->is_zero()));
  
-  # Is $x in the interval [0, $y) ?
-  my $cmp = $CALC->_acmp($x->{value},$y->{value});
-  if (($cmp < 0) and ($x->{sign} eq $y->{sign}))
+  # +-inf / +-inf == NaN, reminder also NaN
+  if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
     {
-    return $x->bzero() unless wantarray;
-    my $t = $x->copy();      # make copy first, because $x->bzero() clobbers $x
-    return ($x->bzero(),$t);
+    return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
     }
-  elsif ($cmp == 0)
+  # x / +-inf => 0, remainder x (works even if x == 0)
+  if ($y->{sign} =~ /^[+-]inf$/)
     {
-    # shortcut, both are the same, so set to +/- 1
-    $x->__one( ($x->{sign} ne $y->{sign} ? '-' : '+') ); 
-    return $x unless wantarray;
-    return ($x,$self->bzero());
+    my $t = $x->copy();                # bzero clobbers up $x
+    return wantarray ? ($x->bzero(),$t) : $x->bzero()
     }
-   
-  # calc new sign and in case $y == +/- 1, return $x
-  $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); 
-  # check for / +-1 (cant use $y->is_one due to '-'
-  if (($y == 1) || ($y == -1)) # slow!
-  #if ((@{$y->{value}} == 1) && ($y->{value}->[0] == 1))
+  
+  # 5 / 0 => +inf, -6 / 0 => -inf
+  # +inf / 0 = inf, inf,  and -inf / 0 => -inf, -inf 
+  # exception:   -8 / 0 has remainder -8, not 8
+  # exception: -inf / 0 has remainder -inf, not inf
+  if ($y->is_zero())
     {
-    return wantarray ? ($x,$self->bzero()) : $x; 
+    # +-inf / 0 => special case for -inf
+    return wantarray ?  ($x,$x->copy()) : $x if $x->is_inf();
+    if (!$x->is_zero() && !$x->is_inf())
+      {
+      my $t = $x->copy();              # binf clobbers up $x
+      return wantarray ?
+       ($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
+      }
     }
+  
+  # last case: +-inf / ordinary number
+  my $sign = '+inf';
+  $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
+  $x->{sign} = $sign;
+  return wantarray ? ($x,$self->bzero()) : $x;
+  }
 
-  # call div here 
-  my $rem = $self->bzero(); 
-  $rem->{sign} = $y->{sign};
-  #($x->{value},$rem->{value}) = div($x->{value},$y->{value});
-  ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
-  # do not leave rest "-0";
-  # $rem->{sign} = '+' if (@{$rem->{value}} == 1) && ($rem->{value}->[0] == 0);
-  $rem->{sign} = '+' if $CALC->_is_zero($rem->{value});
-  if (($x->{sign} eq '-') and (!$rem->is_zero()))
+sub bdiv 
+  {
+  # (dividend: BINT or num_str, divisor: BINT or num_str) return 
+  # (BINT,BINT) (quo,rem) or BINT (only rem)
+  
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it 
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
     {
-    $x->bdec();
-    }
-  $x->round($a,$p,$r,$y); 
+    ($self,$x,$y,@r) = objectify(2,@_);
+    } 
+
+  return $x if $x->modify('bdiv');
+
+  return $self->_div_inf($x,$y)
+   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
+
+  return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
+   if defined $upgrade;
+   
+  $r[3] = $y;                                  # no push!
+
+  # calc new sign and in case $y == +/- 1, return $x
+  my $xsign = $x->{sign};                              # keep
+  $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); 
+
   if (wantarray)
     {
-    $rem->round($a,$p,$r,$x,$y); 
-    return ($x,$y-$rem) if $x->{sign} eq '-';  # was $x,$rem
+    my $rem = $self->bzero(); 
+    ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
+    $x->{sign} = '+' if $CALC->_is_zero($x->{value});
+    $rem->{_a} = $x->{_a};
+    $rem->{_p} = $x->{_p};
+    $x->round(@r);
+    if (! $CALC->_is_zero($rem->{value}))
+      {
+      $rem->{sign} = $y->{sign};
+      $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
+      }
+    else
+      {
+      $rem->{sign} = '+';                      # dont leave -0
+      }
+    $rem->round(@r);
     return ($x,$rem);
     }
-  return $x; 
+
+  $x->{value} = $CALC->_div($x->{value},$y->{value});
+  $x->{sign} = '+' if $CALC->_is_zero($x->{value});
+
+  $x->round(@r);
   }
 
-sub bpow 
+###############################################################################
+# modulus functions
+
+sub bmod 
   {
+  # modulus (or remainder)
   # (BINT or num_str, BINT or num_str) return BINT
-  # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
-  # modifies first argument
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+  
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
 
-  return $x if $x->modify('bpow');
-  return $x if $x->{sign} =~ /^[+-]inf$/;      # -inf/+inf ** x
-  return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
-  return $x->__one() if $y->is_zero();
-  return $x         if $x->is_one() || $y->is_one();
-  #if ($x->{sign} eq '-' && @{$x->{value}} == 1 && $x->{value}->[0] == 1)
-  if ($x->{sign} eq '-' && $CALC->_is_one($x->{value}))
+  return $x if $x->modify('bmod');
+  $r[3] = $y;                                  # no push!
+  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
     {
-    # if $x == -1 and odd/even y => +1/-1
-    return $y->is_odd() ? $x : $x->babs();
-    # my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
+    my ($d,$r) = $self->_div_inf($x,$y);
+    $x->{sign} = $r->{sign};
+    $x->{value} = $r->{value};
+    return $x->round(@r);
     }
-  # 1 ** -y => 1 / (1 ** |y|)
-  # so do test for negative $y after above's clause
-  return $x->bnan() if $y->{sign} eq '-';
-  return $x         if $x->is_zero();  # 0**y => 0 (if not y <= 0)
 
-  if ($CALC->can('_pow'))
+  # calc new sign and in case $y == +/- 1, return $x
+  $x->{value} = $CALC->_mod($x->{value},$y->{value});
+  if (!$CALC->_is_zero($x->{value}))
     {
-    $x->{value} = $CALC->_pow($x->{value},$y->{value});
-    return $x->round($a,$p,$r);
+    $x->{value} = $CALC->_sub($y->{value},$x->{value},1)       # $y-$x
+      if ($x->{sign} ne $y->{sign});
+    $x->{sign} = $y->{sign};
+    }
+   else
+    {
+    $x->{sign} = '+';                          # dont leave -0
     }
-  # based on the assumption that shifting in base 10 is fast, and that mul
-  # works faster if numbers are small: we count trailing zeros (this step is
-  # O(1)..O(N), but in case of O(N) we save much more time due to this),
-  # stripping them out of the multiplication, and add $count * $y zeros
-  # afterwards like this:
-  # 300 ** 3 == 300*300*300 == 3*3*3 . '0' x 2 * 3 == 27 . '0' x 6
-  # creates deep recursion?
-#  my $zeros = $x->_trailing_zeros();
-#  if ($zeros > 0)
-#    {
-#    $x->brsft($zeros,10);     # remove zeros
-#    $x->bpow($y);             # recursion (will not branch into here again)
-#    $zeros = $y * $zeros;     # real number of zeros to add
-#    $x->blsft($zeros,10);
-#    return $x->round($a,$p,$r);
-#    }
-
-  my $pow2 = $self->__one();
-  my $y1 = $class->new($y);
-  my ($res);
-  while (!$y1->is_one())
-    {
-    #print "bpow: p2: $pow2 x: $x y: $y1 r: $res\n";
-    #print "len ",$x->length(),"\n";
-    ($y1,$res)=&bdiv($y1,2);
-    if (!$res->is_zero()) { &bmul($pow2,$x); }
-    if (!$y1->is_zero())  { &bmul($x,$x); }
-    #print "$x $y\n";
-    }
-  #print "bpow: e p2: $pow2 x: $x y: $y1 r: $res\n";
-  &bmul($x,$pow2) if (!$pow2->is_one());
-  #print "bpow: e p2: $pow2 x: $x y: $y1 r: $res\n";
-  return $x->round($a,$p,$r);
+  $x->round(@r);
   }
 
-sub blsft 
+sub bmodinv
   {
-  # (BINT or num_str, BINT or num_str) return BINT
-  # compute x << y, base n, y >= 0
-  my ($self,$x,$y,$n) = objectify(2,@_);
-  
-  return $x if $x->modify('blsft');
-  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
-
-  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
-
-  my $t = $CALC->_lsft($x->{value},$y->{value},$n) if $CALC->can('_lsft');
-  if (defined $t)
+  # Modular inverse.  given a number which is (hopefully) relatively
+  # prime to the modulus, calculate its inverse using Euclid's
+  # alogrithm.  If the number is not relatively prime to the modulus
+  # (i.e. their gcd is not one) then NaN is returned.
+
+  # set up parameters
+  my ($self,$x,$y,@r) = (undef,@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
     {
-    $x->{value} = $t; return $x;
+    ($self,$x,$y,@r) = objectify(2,@_);
     }
-  # fallback
-  return $x->bmul( $self->bpow($n, $y) );
+
+  return $x if $x->modify('bmodinv');
+
+  return $x->bnan()
+        if ($y->{sign} ne '+'                           # -, NaN, +inf, -inf
+         || $x->is_zero()                               # or num == 0
+         || $x->{sign} !~ /^[+-]$/                      # or num NaN, inf, -inf
+        );
+
+  # put least residue into $x if $x was negative, and thus make it positive
+  $x->bmod($y) if $x->{sign} eq '-';
+
+  my $sign;
+  ($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value});
+  return $x->bnan() if !defined $x->{value};           # in case no GCD found
+  return $x if !defined $sign;                 # already real result
+  $x->{sign} = $sign;                          # flip/flop see below
+  $x->bmod($y);                                        # calc real result
+  $x;
   }
 
-sub brsft 
+sub bmodpow
   {
-  # (BINT or num_str, BINT or num_str) return BINT
-  # compute x >> y, base n, y >= 0
-  my ($self,$x,$y,$n) = objectify(2,@_);
+  # takes a very large number to a very large exponent in a given very
+  # large modulus, quickly, thanks to binary exponentation.  supports
+  # negative exponents.
+  my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
 
-  return $x if $x->modify('brsft');
-  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+  return $num if $num->modify('bmodpow');
 
-  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+  # check modulus for valid values
+  return $num->bnan() if ($mod->{sign} ne '+'          # NaN, - , -inf, +inf
+                       || $mod->is_zero());
 
-  my $t = $CALC->_rsft($x->{value},$y->{value},$n) if $CALC->can('_rsft');
-  if (defined $t)
+  # check exponent for valid values
+  if ($exp->{sign} =~ /\w/) 
     {
-    $x->{value} = $t; return $x;
+    # i.e., if it's NaN, +inf, or -inf...
+    return $num->bnan();
     }
-  # fallback
-  return scalar bdiv($x, $self->bpow($n, $y));
+
+  $num->bmodinv ($mod) if ($exp->{sign} eq '-');
+
+  # check num for valid values (also NaN if there was no inverse but $exp < 0)
+  return $num->bnan() if $num->{sign} !~ /^[+-]$/;
+
+  # $mod is positive, sign on $exp is ignored, result also positive
+  $num->{value} = $CALC->_modpow($num->{value},$exp->{value},$mod->{value});
+  $num;
   }
 
-sub band 
+###############################################################################
+
+sub bfac
+  {
+  # (BINT or num_str, BINT or num_str) return BINT
+  # compute factorial number from $x, modify $x in place
+  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
+
+  return $x if $x->modify('bfac') || $x->{sign} eq '+inf';     # inf => inf
+  return $x->bnan() if $x->{sign} ne '+';                      # NaN, <0 etc => NaN
+
+  $x->{value} = $CALC->_fac($x->{value});
+  $x->round(@r);
+  }
+sub bpow 
+  {
+  # (BINT or num_str, BINT or num_str) return BINT
+  # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
+  # modifies first argument
+
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
+
+  return $x if $x->modify('bpow');
+
+  return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
+
+  # inf handling
+  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+    {
+    if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+      {
+      # +-inf ** +-inf
+      return $x->bnan();
+      }
+    # +-inf ** Y
+    if ($x->{sign} =~ /^[+-]inf/)
+      {
+      # +inf ** 0 => NaN
+      return $x->bnan() if $y->is_zero();
+      # -inf ** -1 => 1/inf => 0
+      return $x->bzero() if $y->is_one('-') && $x->is_negative();
+
+      # +inf ** Y => inf
+      return $x if $x->{sign} eq '+inf';
+
+      # -inf ** Y => -inf if Y is odd
+      return $x if $y->is_odd();
+      return $x->babs();
+      }
+    # X ** +-inf
+
+    # 1 ** +inf => 1
+    return $x if $x->is_one();
+    
+    # 0 ** inf => 0
+    return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
+
+    # 0 ** -inf => inf
+    return $x->binf() if $x->is_zero();
+
+    # -1 ** -inf => NaN
+    return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
+
+    # -X ** -inf => 0
+    return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
+
+    # -1 ** inf => NaN
+    return $x->bnan() if $x->{sign} eq '-';
+
+    # X ** inf => inf
+    return $x->binf() if $y->{sign} =~ /^[+]/;
+    # X ** -inf => 0
+    return $x->bzero();
+    }
+
+  return $upgrade->bpow($upgrade->new($x),$y,@r)
+   if defined $upgrade && !$y->isa($self);
+
+  $r[3] = $y;                                  # no push!
+
+  # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
+
+  my $new_sign = '+';
+  $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+'); 
+
+  # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf 
+  return $x->binf() 
+    if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
+  # 1 ** -y => 1 / (1 ** |y|)
+  # so do test for negative $y after above's clause
+  return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
+
+  $x->{value} = $CALC->_pow($x->{value},$y->{value});
+  $x->{sign} = $new_sign;
+  $x->{sign} = '+' if $CALC->_is_zero($y->{value});
+  $x->round(@r);
+  }
+
+sub blsft 
+  {
+  # (BINT or num_str, BINT or num_str) return BINT
+  # compute x << y, base n, y >= 0
+  # set up parameters
+  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,$n,@r) = objectify(2,@_);
+    }
+
+  return $x if $x->modify('blsft');
+  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+  return $x->round(@r) if $y->is_zero();
+
+  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+
+  $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
+  $x->round(@r);
+  }
+
+sub brsft 
+  {
+  # (BINT or num_str, BINT or num_str) return BINT
+  # compute x >> y, base n, y >= 0
+  
+  # set up parameters
+  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,$n,@r) = objectify(2,@_);
+    }
+
+  return $x if $x->modify('brsft');
+  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+  return $x->round(@r) if $y->is_zero();
+  return $x->bzero(@r) if $x->is_zero();               # 0 => 0
+
+  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+
+   # this only works for negative numbers when shifting in base 2
+  if (($x->{sign} eq '-') && ($n == 2))
+    {
+    return $x->round(@r) if $x->is_one('-');   # -1 => -1
+    if (!$y->is_one())
+      {
+      # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
+      # but perhaps there is a better emulation for two's complement shift...
+      # if $y != 1, we must simulate it by doing:
+      # convert to bin, flip all bits, shift, and be done
+      $x->binc();                      # -3 => -2
+      my $bin = $x->as_bin();
+      $bin =~ s/^-0b//;                        # strip '-0b' prefix
+      $bin =~ tr/10/01/;               # flip bits
+      # now shift
+      if (CORE::length($bin) <= $y)
+        {
+       $bin = '0';                     # shifting to far right creates -1
+                                       # 0, because later increment makes 
+                                       # that 1, attached '-' makes it '-1'
+                                       # because -1 >> x == -1 !
+        } 
+      else
+       {
+       $bin =~ s/.{$y}$//;             # cut off at the right side
+        $bin = '1' . $bin;             # extend left side by one dummy '1'
+        $bin =~ tr/10/01/;             # flip bits back
+       }
+      my $res = $self->new('0b'.$bin); # add prefix and convert back
+      $res->binc();                    # remember to increment
+      $x->{value} = $res->{value};     # take over value
+      return $x->round(@r);            # we are done now, magic, isn't?
+      }
+    # x < 0, n == 2, y == 1
+    $x->bdec();                                # n == 2, but $y == 1: this fixes it
+    }
+
+  $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
+  $x->round(@r);
+  }
+
+sub band 
   {
   #(BINT or num_str, BINT or num_str) return BINT
   # compute x & y
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
   
   return $x if $x->modify('band');
 
+  $r[3] = $y;                          # no push!
+
   return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
-  return $x->bzero() if $y->is_zero();
 
-  my $sign = 0;                                        # sign of result
-  $sign = 1 if ($x->{sign} eq '-') && ($y->{sign} eq '-');
-  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
-  my $sy = 1; $sy = -1 if $y->{sign} eq '-';
+  my $sx = $x->{sign} eq '+' ? 1 : -1;
+  my $sy = $y->{sign} eq '+' ? 1 : -1;
   
-  if ($CALC->can('_and') && $sx == 1 && $sy == 1)
+  if ($sx == 1 && $sy == 1)
     {
     $x->{value} = $CALC->_and($x->{value},$y->{value});
-    return $x->round($a,$p,$r);
+    return $x->round(@r);
     }
-
-  my $m = new Math::BigInt 1; my ($xr,$yr);
-  my $x10000 = new Math::BigInt (0x1000);
-  my $y1 = copy(ref($x),$y);                   # make copy
-  $y1->babs();                                 # and positive
-  my $x1 = $x->copy()->babs(); $x->bzero();    # modify x in place!
-  use integer;                                 # need this for negative bools
-  while (!$x1->is_zero() && !$y1->is_zero())
+  
+  if ($CAN{signed_and})
     {
-    ($x1, $xr) = bdiv($x1, $x10000);
-    ($y1, $yr) = bdiv($y1, $x10000);
-    # make both op's numbers!
-    $x->badd( bmul( $class->new(
-       abs($sx*int($xr->numify()) & $sy*int($yr->numify()))), 
-      $m));
-    $m->bmul($x10000);
+    $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
+    return $x->round(@r);
     }
-  $x->bneg() if $sign;
-  return $x->round($a,$p,$r);
+  require $EMU_LIB;
+  __emu_band($self,$x,$y,$sx,$sy,@r);
   }
 
 sub bior 
   {
   #(BINT or num_str, BINT or num_str) return BINT
   # compute x | y
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+  
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
 
   return $x if $x->modify('bior');
+  $r[3] = $y;                          # no push!
 
   return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
-  return $x if $y->is_zero();
 
-  my $sign = 0;                                        # sign of result
-  $sign = 1 if ($x->{sign} eq '-') || ($y->{sign} eq '-');
-  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
-  my $sy = 1; $sy = -1 if $y->{sign} eq '-';
+  my $sx = $x->{sign} eq '+' ? 1 : -1;
+  my $sy = $y->{sign} eq '+' ? 1 : -1;
 
+  # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
+  
   # don't use lib for negative values
-  if ($CALC->can('_or') && $sx == 1 && $sy == 1)
+  if ($sx == 1 && $sy == 1)
     {
     $x->{value} = $CALC->_or($x->{value},$y->{value});
-    return $x->round($a,$p,$r);
+    return $x->round(@r);
     }
 
-  my $m = new Math::BigInt 1; my ($xr,$yr);
-  my $x10000 = new Math::BigInt (0x10000);
-  my $y1 = copy(ref($x),$y);                   # make copy
-  $y1->babs();                                 # and positive
-  my $x1 = $x->copy()->babs(); $x->bzero();    # modify x in place!
-  use integer;                                 # need this for negative bools
-  while (!$x1->is_zero() || !$y1->is_zero())
+  # if lib can do negative values, let it handle this
+  if ($CAN{signed_or})
     {
-    ($x1, $xr) = bdiv($x1,$x10000);
-    ($y1, $yr) = bdiv($y1,$x10000);
-    # make both op's numbers!
-    $x->badd( bmul( $class->new(
-       abs($sx*int($xr->numify()) | $sy*int($yr->numify()))), 
-      $m));
-#    $x->badd( bmul( $class->new(int($xr->numify()) | int($yr->numify())), $m));
-    $m->bmul($x10000);
+    $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
+    return $x->round(@r);
     }
-  $x->bneg() if $sign;
-  return $x->round($a,$p,$r);
+
+  require $EMU_LIB;
+  __emu_bior($self,$x,$y,$sx,$sy,@r);
   }
 
 sub bxor 
   {
   #(BINT or num_str, BINT or num_str) return BINT
   # compute x ^ y
-  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+  
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
+  # objectify is costly, so avoid it
+  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+    {
+    ($self,$x,$y,@r) = objectify(2,@_);
+    }
 
   return $x if $x->modify('bxor');
+  $r[3] = $y;                          # no push!
 
   return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
-  return $x if $y->is_zero();
-  return $x->bzero() if $x == $y; # shortcut
   
-  my $sign = 0;                                        # sign of result
-  $sign = 1 if $x->{sign} ne $y->{sign};
-  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
-  my $sy = 1; $sy = -1 if $y->{sign} eq '-';
+  my $sx = $x->{sign} eq '+' ? 1 : -1;
+  my $sy = $y->{sign} eq '+' ? 1 : -1;
 
   # don't use lib for negative values
-  if ($CALC->can('_xor') && $sx == 1 && $sy == 1)
+  if ($sx == 1 && $sy == 1)
     {
     $x->{value} = $CALC->_xor($x->{value},$y->{value});
-    return $x->round($a,$p,$r);
+    return $x->round(@r);
     }
-
-  my $m = new Math::BigInt 1; my ($xr,$yr);
-  my $x10000 = new Math::BigInt (0x10000);
-  my $y1 = copy(ref($x),$y);                   # make copy
-  $y1->babs();                                 # and positive
-  my $x1 = $x->copy()->babs(); $x->bzero();    # modify x in place!
-  use integer;                                 # need this for negative bools
-  while (!$x1->is_zero() || !$y1->is_zero())
+  
+  # if lib can do negative values, let it handle this
+  if ($CAN{signed_xor})
     {
-    ($x1, $xr) = bdiv($x1, $x10000);
-    ($y1, $yr) = bdiv($y1, $x10000);
-    # make both op's numbers!
-    $x->badd( bmul( $class->new(
-       abs($sx*int($xr->numify()) ^ $sy*int($yr->numify()))), 
-      $m));
-#    $x->badd( bmul( $class->new(int($xr->numify()) ^ int($yr->numify())), $m));
-    $m->bmul($x10000);
+    $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
+    return $x->round(@r);
     }
-  $x->bneg() if $sign;
-  return $x->round($a,$p,$r);
+
+  require $EMU_LIB;
+  __emu_bxor($self,$x,$y,$sx,$sy,@r);
   }
 
 sub length
   {
-  my ($self,$x) = objectify(1,@_);
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
 
   my $e = $CALC->_len($x->{value}); 
-  #  # fallback, since we do not know the underlying representation
-  #my $es = "$x"; my $c = 0; $c = 1 if $es =~ /^[+-]/; # if lib returns '+123'
-  #my $e = CORE::length($es)-$c;
-  return wantarray ? ($e,0) : $e;
+  wantarray ? ($e,0) : $e;
   }
 
 sub digit
   {
   # return the nth decimal digit, negative values count backward, 0 is right
-  my $x = shift;
-  my $n = shift || 0; 
+  my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
-  return $CALC->_digit($x->{value},$n);
+  $n = $n->numify() if ref($n);
+  $CALC->_digit($x->{value},$n||0);
   }
 
 sub _trailing_zeros
   {
-  # return the amount of trailing zeros in $x
+  # return the amount of trailing zeros in $x (as scalar)
   my $x = shift;
   $x = $class->new($x) unless ref $x;
 
-  #return 0 if $x->is_zero() || $x->is_odd() || $x->{sign} !~ /^[+-]$/;
-  return 0 if $x->is_zero() || $x->{sign} !~ /^[+-]$/;
+  return 0 if $x->{sign} !~ /^[+-]$/;  # NaN, inf, -inf etc
 
-  return $CALC->_zeros($x->{value}) if $CALC->can('_zeros');
-
-  # if not: since we do not know underlying internal representation:
-  my $es = "$x"; $es =~ /([0]*)$/;
-  return 0 if !defined $1;     # no zeros
-  return CORE::length("$1");   # as string, not as +0!
+  $CALC->_zeros($x->{value});          # must handle odd values, 0 etc
   }
 
 sub bsqrt
   {
-  my ($self,$x) = objectify(1,@_);
+  # calculate square root of $x
+  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
-  return $x->bnan() if $x->{sign} =~ /\-|$nan/;        # -x or NaN => NaN
-  return $x->bzero() if $x->is_zero();         # 0 => 0
-  return $x if $x == 1;                                # 1 => 1
+  return $x if $x->modify('bsqrt');
 
-  my $y = $x->copy();                          # give us one more digit accur.
-  my $l = int($x->length()/2);
-  
-  $x->bzero(); 
-  $x->binc();          # keep ref($x), but modify it
-  $x *= 10 ** $l;
+  return $x->bnan() if $x->{sign} !~ /^\+/;    # -x or -inf or NaN => NaN
+  return $x if $x->{sign} eq '+inf';           # sqrt(+inf) == inf
+
+  return $upgrade->bsqrt($x,@r) if defined $upgrade;
 
-  # print "x: $y guess $x\n";
+  $x->{value} = $CALC->_sqrt($x->{value});
+  $x->round(@r);
+  }
+
+sub broot
+  {
+  # calculate $y'th root of $x
+  # set up parameters
+  my ($self,$x,$y,@r) = (ref($_[0]),@_);
 
-  my $last = $self->bzero();
-  while ($last != $x)
+  $y = $self->new(2) unless defined $y;
+
+  # objectify is costly, so avoid it
+  if ((!ref($x)) || (ref($x) ne ref($y)))
     {
-    $last = $x; 
-    $x += $y / $x; 
-    $x /= 2;
+    ($self,$x,$y,@r) = objectify(2,$self || $class,@_);
     }
-  return $x;
+
+  return $x if $x->modify('broot');
+
+  # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
+  return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
+         $y->{sign} !~ /^\+$/;
+
+  return $x->round(@r)
+    if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
+
+  return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
+
+  $x->{value} = $CALC->_root($x->{value},$y->{value});
+  $x->round(@r);
   }
 
 sub exponent
   {
   # return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
-  my ($self,$x) = objectify(1,@_);
+  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
  
-  return bnan() if $x->is_nan();
-  my $e = $class->bzero();
-  return $e->binc() if $x->is_zero();
-  $e += $x->_trailing_zeros();
-  return $e;
+  if ($x->{sign} !~ /^[+-]$/)
+    {
+    my $s = $x->{sign}; $s =~ s/^[+-]//;  # NaN, -inf,+inf => NaN or inf
+    return $self->new($s);
+    }
+  return $self->bone() if $x->is_zero();
+
+  $self->new($x->_trailing_zeros());
   }
 
 sub mantissa
   {
-  # return a copy of the mantissa (here always $self)
-  my ($self,$x) = objectify(1,@_);
+  # return the mantissa (compatible to Math::BigFloat, e.g. reduced)
+  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
 
-  return bnan() if $x->is_nan();
-  my $m = $x->copy();
-  # that's inefficient
+  if ($x->{sign} !~ /^[+-]$/)
+    {
+    # for NaN, +inf, -inf: keep the sign
+    return $self->new($x->{sign});
+    }
+  my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
+  # that's a bit inefficient:
   my $zeros = $m->_trailing_zeros();
-  $m /= 10 ** $zeros if $zeros != 0;
-  return $m;
+  $m->brsft($zeros,10) if $zeros != 0;
+  $m;
   }
 
 sub parts
   {
-  # return a copy of both the exponent and the mantissa (here 0 and self)
-  my $self = shift;
-  $self = $class->new($self) unless ref $self;
+  # return a copy of both the exponent and the mantissa
+  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
 
-  return ($self->mantissa(),$self->exponent());
+  ($x->mantissa(),$x->exponent());
   }
    
 ##############################################################################
@@ -1303,41 +2066,40 @@ sub parts
 sub bfround
   {
   # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
-  # $n == 0 => round to integer
-  my $x = shift; $x = $class->new($x) unless ref $x;
-  my ($scale,$mode) = $x->_scale_p($precision,$rnd_mode,@_);
-  return $x if !defined $scale;                # no-op
+  # $n == 0 || $n == 1 => round to integer
+  my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
+
+  my ($scale,$mode) = $x->_scale_p(@_);
+
+  return $x if !defined $scale || $x->modify('bfround');       # no-op
 
   # no-op for BigInts if $n <= 0
-  return $x if $scale <= 0;
+  $x->bround( $x->length()-$scale, $mode) if $scale > 0;
 
-  $x->bround( $x->length()-$scale, $mode);
+  delete $x->{_a};     # delete to save memory
+  $x->{_p} = $scale;   # store new _p
+  $x;
   }
 
 sub _scan_for_nonzero
   {
-  my $x = shift;
-  my $pad = shift;
-  my $xs = shift;
+  # internal, used by bround() to scan for non-zeros after a '5'
+  my ($x,$pad,$xs,$len) = @_;
  
-  my $len = $x->length();
-  return 0 if $len == 1;               # '5' is trailed by invisible zeros
+  return 0 if $len == 1;               # "5" is trailed by invisible zeros
   my $follow = $pad - 1;
   return 0 if $follow > $len || $follow < 1;
-  #print "checking $x $r\n";
 
-  # since we do not know underlying represention of $x, use decimal string
-  #my $r = substr ($$xs,-$follow);
-  my $r = substr ("$x",-$follow);
-  return 1 if $r =~ /[^0]/; return 0;
+  # use the string form to check whether only '0's follow or not
+  substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
   }
 
 sub fround
   {
-  # to make life easier for switch between MBF and MBI (autoload fxxx()
-  # like MBF does for bxxx()?)
-  my $x = shift;
-  return $x->bround(@_);
+  # Exists to make life easier for switch between MBF and MBI (should we
+  # autoload fxxx() like MBF does for bxxx()?)
+  my $x = shift; $x = $class->new($x) unless ref $x;
+  $x->bround(@_);
   }
 
 sub bround
@@ -1347,38 +2109,47 @@ sub bround
   # no-op for $n == 0
   # and overwrite the rest with 0's, return normalized number
   # do not return $x->bnorm(), but $x
+
   my $x = shift; $x = $class->new($x) unless ref $x;
-  my ($scale,$mode) = $x->_scale_a($accuracy,$rnd_mode,@_);
-  return $x if !defined $scale;                # no-op
+  my ($scale,$mode) = $x->_scale_a(@_);
+  return $x if !defined $scale || $x->modify('bround');        # no-op
   
-  # print "MBI round: $x to $scale $mode\n";
-  # -scale means what? tom? hullo? -$scale needed by MBF round, but what for?
-  return $x if $x->{sign} !~ /^[+-]$/ || $x->is_zero() || $scale == 0;
+  if ($x->is_zero() || $scale == 0)
+    {
+    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
+    return $x;
+    }
+  return $x if $x->{sign} !~ /^[+-]$/;         # inf, NaN
 
   # we have fewer digits than we want to scale to
   my $len = $x->length();
-  # print "$len $scale\n";
-  return $x if $len < abs($scale);
+  # convert $scale to a scalar in case it is an object (put's a limit on the
+  # number length, but this would already limited by memory constraints), makes
+  # it faster
+  $scale = $scale->numify() if ref ($scale);
+
+  # scale < 0, but > -len (not >=!)
+  if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
+    {
+    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
+    return $x; 
+    }
    
   # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
   my ($pad,$digit_round,$digit_after);
   $pad = $len - $scale;
-  $pad = abs($scale)+1 if $scale < 0;
-  # do not use digit(), it is costly for binary => decimal
-  #$digit_round = '0'; $digit_round = $x->digit($pad) if $pad < $len;
-  #$digit_after = '0'; $digit_after = $x->digit($pad-1) if $pad > 0;
+  $pad = abs($scale-1) if $scale < 0;
+
+  # do not use digit(), it is very costly for binary => decimal
+  # getting the entire string is also costly, but we need to do it only once
   my $xs = $CALC->_str($x->{value});
   my $pl = -$pad-1;
+
   # pad:   123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
   # pad+1: 123: 0 => 0,  at 1 => -1, at 2 => -2, at 3 => -3
-  $digit_round = '0'; $digit_round = substr($$xs,$pl,1) if $pad <= $len;
+  $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
   $pl++; $pl ++ if $pad >= $len;
-  $digit_after = '0'; $digit_after = substr($$xs,$pl,1)
-   if $pad > 0;
-  
-  #my $d_round = '0'; $d_round = $x->digit($pad) if $pad < $len;
-  #my $d_after = '0'; $d_after = $x->digit($pad-1) if $pad > 0;
-  # print "$pad $pl $$xs $digit_round:$d_round $digit_after:$d_after\n";
+  $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
 
   # in case of 01234 we round down, for 6789 up, and only in case 5 we look
   # closer at the remaining digits of the original $x, remember decision
@@ -1388,7 +2159,7 @@ sub bround
     ($digit_after =~ /[01234]/)                        ||      # round down anyway,
                                                        # 6789 => round up
     ($digit_after eq '5')                      &&      # not 5000...0000
-    ($x->_scan_for_nonzero($pad,$xs) == 0)             &&
+    ($x->_scan_for_nonzero($pad,$xs,$len) == 0)                &&
     (
      ($mode eq 'even') && ($digit_round =~ /[24680]/) ||
      ($mode eq 'odd')  && ($digit_round =~ /[13579]/) ||
@@ -1396,117 +2167,96 @@ sub bround
      ($mode eq '-inf') && ($x->{sign} eq '+')   ||
      ($mode eq 'zero')         # round down if zero, sign adjusted below
     );
-  # allow rounding one place left of mantissa
-  #print "$pad $len $scale\n";
-  # this is triggering warnings, and buggy for $scale < 0
-  #if (-$scale != $len)
-    {
-    # old code, depend on internal representation
-    # split mantissa at $pad and then pad with zeros
-    #my $s5 = int($pad / 5);
-    #my $i = 0;
-    #while ($i < $s5)
-    #  {
-    #  $x->{value}->[$i++] = 0;                                # replace with 5 x 0
-    #  }
-    #$x->{value}->[$s5] = '00000'.$x->{value}->[$s5];  # pad with 0
-    #my $rem = $pad % 5;                               # so much left over
-    #if ($rem > 0)
-    #  {
-    #  #print "remainder $rem\n";
-    ##  #print "elem      $x->{value}->[$s5]\n";
-    #  substr($x->{value}->[$s5],-$rem,$rem) = '0' x $rem;     # stamp w/ '0'
-    #  }
-    #$x->{value}->[$s5] = int ($x->{value}->[$s5]);    # str '05' => int '5'
-    #print ${$CALC->_str($pad->{value})}," $len\n";
-    if (($pad > 0) && ($pad <= $len))
-      {
-      substr($$xs,-$pad,$pad) = '0' x $pad;
-      $x->{value} = $CALC->_new($xs);                  # put back in
-      }
-    elsif ($pad > $len)
+  my $put_back = 0;                                    # not yet modified
+       
+  if (($pad > 0) && ($pad <= $len))
+    {
+    substr($xs,-$pad,$pad) = '0' x $pad;               # replace with '00...'
+    $put_back = 1;                                     # need to put back
+    }
+  elsif ($pad > $len)
+    {
+    $x->bzero();                                       # round to '0'
+    }
+
+  if ($round_up)                                       # what gave test above?
+    {
+    $put_back = 1;                                     # need to put back
+    $pad = $len, $xs = '0' x $pad if $scale < 0;       # tlr: whack 0.51=>1.0  
+
+    # we modify directly the string variant instead of creating a number and
+    # adding it, since that is faster (we already have the string)
+    my $c = 0; $pad ++;                                # for $pad == $len case
+    while ($pad <= $len)
       {
-      $x->bzero();                                     # round to '0'
+      $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
+      substr($xs,-$pad,1) = $c; $pad++;
+      last if $c != 0;                         # no overflow => early out
       }
-    # print "res $pad $len $x $$xs\n";
+    $xs = '1'.$xs if $c == 0;
+
     }
-  # move this later on after the inc of the string
-  #$x->{value} = $CALC->_new($xs);                     # put back in
-  if ($round_up)                                       # what gave test above?
+  $x->{value} = $CALC->_new($xs) if $put_back == 1;    # put back, if needed
+
+  $x->{_a} = $scale if $scale >= 0;
+  if ($scale < 0)
     {
-    $pad = $len if $scale < 0;                         # tlr: whack 0.51=>1.0  
-    # modify $x in place, undef, undef to avoid rounding
-    # str creation much faster than 10 ** something
-    $x->badd( Math::BigInt->new($x->{sign}.'1'.'0'x$pad) );
-    # increment string in place, to avoid dec=>hex for the '1000...000'
-    # $xs ...blah foo
+    $x->{_a} = $len+$scale;
+    $x->{_a} = 0 if $scale < -$len;
     }
-  # to here:
-  #$x->{value} = $CALC->_new($xs);                     # put back in
   $x;
   }
 
 sub bfloor
   {
-  # return integer less or equal then number, since it is already integer,
-  # always returns $self
-  my ($self,$x,$a,$p,$r) = objectify(1,@_);
+  # return integer less or equal then number; no-op since it's already integer
+  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
-  # not needed: return $x if $x->modify('bfloor');
-
-  return $x->round($a,$p,$r);
+  $x->round(@r);
   }
 
 sub bceil
   {
-  # return integer greater or equal then number, since it is already integer,
-  # always returns $self
-  my ($self,$x,$a,$p,$r) = objectify(1,@_);
-
-  # not needed: return $x if $x->modify('bceil');
+  # return integer greater or equal then number; no-op since it's already int
+  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
-  return $x->round($a,$p,$r);
+  $x->round(@r);
   }
 
-##############################################################################
-# private stuff (internal use only)
+sub as_number
+  {
+  # An object might be asked to return itself as bigint on certain overloaded
+  # operations, this does exactly this, so that sub classes can simple inherit
+  # it or override with their own integer conversion routine.
+  $_[0]->copy();
+  }
 
-sub __one
+sub as_hex
   {
-  # internal speedup, set argument to 1, or create a +/- 1
-  my $self = shift;
-  my $x = $self->bzero(); $x->{value} = $CALC->_one();
-  $x->{sign} = shift || '+';
-  return $x;
+  # return as hex string, with prefixed 0x
+  my $x = shift; $x = $class->new($x) if !ref($x);
+
+  return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+  my $s = '';
+  $s = $x->{sign} if $x->{sign} eq '-';
+  $s . $CALC->_as_hex($x->{value});
   }
 
-sub _swap
+sub as_bin
   {
-  # Overload will swap params if first one is no object ref so that the first
-  # one is always an object ref. In this case, third param is true.
-  # This routine is to overcome the effect of scalar,$object creating an object
-  # of the class of this package, instead of the second param $object. This
-  # happens inside overload, when the overload section of this package is
-  # inherited by sub classes.
-  # For overload cases (and this is used only there), we need to preserve the
-  # args, hence the copy().
-  # You can override this method in a subclass, the overload section will call
-  # $object->_swap() to make sure it arrives at the proper subclass, with some
-  # exceptions like '+' and '-'.
+  # return as binary string, with prefixed 0b
+  my $x = shift; $x = $class->new($x) if !ref($x);
 
-  # object, (object|scalar) => preserve first and make copy
-  # scalar, object         => swapped, re-swap and create new from first
-  #                            (using class of second object, not $class!!)
-  my $self = shift;                    # for override in subclass
-  #print "swap $self 0:$_[0] 1:$_[1] 2:$_[2]\n";
-  if ($_[2])
-    {
-    my $c = ref ($_[0]) || $class;     # fallback $class should not happen
-    return ( $c->new($_[1]), $_[0] );
-    }
-  return ( $_[0]->copy(), $_[1] );
+  return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
+
+  my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
+  return $s . $CALC->_as_bin($x->{value});
   }
 
+##############################################################################
+# private stuff (internal use only)
+
 sub objectify
   {
   # check for strings, if yes, return objects instead
@@ -1514,7 +2264,7 @@ sub objectify
   # the first argument is number of args objectify() should look at it will
   # return $count+1 elements, the first will be a classname. This is because
   # overloaded '""' calls bstr($object,undef,undef) and this would result in
-  # useless objects beeing created and thrown away. So we cannot simple loop
+  # useless objects being created and thrown away. So we cannot simple loop
   # over @_. If the given count is 0, all arguments will be used.
  
   # If the second arg is a ref, use it as class.
@@ -1530,12 +2280,14 @@ sub objectify
   # $class,1,2. (We can not take '1' as class ;o)
   # badd($class,1) is not supported (it should, eventually, try to add undef)
   # currently it tries 'Math::BigInt' + 1, which will not work.
+
+  # some shortcut for the common cases
+  # $x->unary_op();
+  return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
+
   my $count = abs(shift || 0);
   
-  #print caller(),"\n";
-  my @a;                       # resulting array 
+  my (@a,$k,$d);               # resulting array, temp, and downgrade 
   if (ref $_[0])
     {
     # okay, got object as first
@@ -1545,12 +2297,19 @@ sub objectify
     {
     # nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
     $a[0] = $class;
-    #print "@_\n"; sleep(1); 
     $a[0] = shift if $_[0] =~ /^[A-Z].*::/;    # classname as first?
     }
-  #print caller(),"\n";
-  # print "Now in objectify, my class is today $a[0]\n";
-  my $k; 
+
+  no strict 'refs';
+  # disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats
+  if (defined ${"$a[0]::downgrade"})
+    {
+    $d = ${"$a[0]::downgrade"};
+    ${"$a[0]::downgrade"} = undef;
+    }
+
+  my $up = ${"$a[0]::upgrade"};
+  #print "Now in objectify, my class is today $a[0], count = $count\n";
   if ($count == 0)
     {
     while (@_)
@@ -1560,7 +2319,7 @@ sub objectify
         {
         $k = $a[0]->new($k);
         }
-      elsif (ref($k) ne $a[0])
+      elsif (!defined $up && ref($k) ne $a[0])
        {
        # foreign object, try to convert to integer
         $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
@@ -1572,14 +2331,13 @@ sub objectify
     {
     while ($count > 0)
       {
-      #print "$count\n";
       $count--; 
       $k = shift; 
       if (!ref($k))
         {
         $k = $a[0]->new($k);
         }
-      elsif (ref($k) ne $a[0])
+      elsif (!defined $up && ref($k) ne $a[0])
        {
        # foreign object, try to convert to integer
         $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
@@ -1588,491 +2346,1019 @@ sub objectify
       }
     push @a,@_;                # return other params, too
     }
-  #my $i = 0;
-  #foreach (@a)
-  #  {
-  #  print "o $i $a[0]\n" if $i == 0;
-  #  print "o $i ",ref($_),"\n" if $i != 0; $i++;
-  #  }
-  #print "objectify done: would return ",scalar @a," values\n";
-  #print caller(1),"\n" unless wantarray;
-  die "$class objectify needs list context" unless wantarray;
+  if (! wantarray)
+    {
+    require Carp; Carp::croak ("$class objectify needs list context");
+    }
+  ${"$a[0]::downgrade"} = $d;
   @a;
   }
 
+sub _register_callback
+  {
+  my ($class,$callback) = @_;
+
+  if (ref($callback) ne 'CODE')
+    { 
+    require Carp;
+    Carp::croak ("$callback is not a coderef");
+    }
+  $CALLBACKS{$class} = $callback;
+  }
+
 sub import 
   {
   my $self = shift;
-  #print "import $self @_\n";
-  my @a = @_; my $l = scalar @_; my $j = 0;
-  for ( my $i = 0; $i < $l ; $i++,$j++ )
+
+  $IMPORT++;                           # remember we did import()
+  my @a; my $l = scalar @_;
+  for ( my $i = 0; $i < $l ; $i++ )
     {
     if ($_[$i] eq ':constant')
       {
       # this causes overlord er load to step in
-      overload::constant integer => sub { $self->new(shift) };
-      splice @a, $j, 1; $j --;
+      overload::constant 
+       integer => sub { $self->new(shift) },
+       binary => sub { $self->new(shift) };
+      }
+    elsif ($_[$i] eq 'upgrade')
+      {
+      # this causes upgrading
+      $upgrade = $_[$i+1];             # or undef to disable
+      $i++;
       }
     elsif ($_[$i] =~ /^lib$/i)
       {
       # this causes a different low lib to take care...
-      $CALC = $_[$i+1] || $CALC;
-      my $s = 2; $s = 1 if @a-$j < 2; # avoid "can not modify non-existant..."
-      splice @a, $j, $s; $j -= $s;
+      $CALC = $_[$i+1] || '';
+      $i++;
+      }
+    else
+      {
+      push @a, $_[$i];
       }
     }
   # any non :constant stuff is handled by our parent, Exporter
-  # even if @_ is empty, to give it a chance 
-  #$self->SUPER::import(@a);                   # does not work
-  $self->export_to_level(1,$self,@a);          # need this instead
+  if (@a > 0)
+    {
+    require Exporter;
+    $self->SUPER::import(@a);                  # need it for subclasses
+    $self->export_to_level(1,$self,@a);                # need it for MBF
+    }
 
   # try to load core math lib
   my @c = split /\s*,\s*/,$CALC;
-  push @c,'Calc';                              # if all fail, try this
+  foreach (@c)
+    {
+    $_ =~ tr/a-zA-Z0-9://cd;                   # limit to sane characters
+    }
+  push @c, 'FastCalc', 'Calc';                 # if all fail, try these
+  $CALC = '';                                  # signal error
   foreach my $lib (@c)
     {
+    next if ($lib || '') eq '';
     $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
     $lib =~ s/\.pm$//;
-    if ($] < 5.6)
+    if ($] < 5.006)
       {
-      # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
-      # used in the same script, or eval inside import().
-      (my $mod = $lib . '.pm') =~ s!::!/!g;
-      # require does not automatically :: => /, so portability problems arise
-      eval { require $mod; $lib->import( @c ); }
+      # Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
+      # used in the same script, or eval("") inside import().
+      my @parts = split /::/, $lib;             # Math::BigInt => Math BigInt
+      my $file = pop @parts; $file .= '.pm';    # BigInt => BigInt.pm
+      require File::Spec;
+      $file = File::Spec->catfile (@parts, $file);
+      eval { require "$file"; $lib->import( @c ); }
       }
     else
       {
-      eval "use $lib @c;";
+      eval "use $lib qw/@c/;";
+      }
+    if ($@ eq '')
+      {
+      my $ok = 1;
+      # loaded it ok, see if the api_version() is high enough
+      if ($lib->can('api_version') && $lib->api_version() >= 1.0)
+       {
+       $ok = 0;
+       # api_version matches, check if it really provides anything we need
+        for my $method (qw/
+               one two ten
+               str num
+               add mul div sub dec inc
+               acmp len digit is_one is_zero is_even is_odd
+               is_two is_ten
+               new copy check from_hex from_bin as_hex as_bin zeros
+               rsft lsft xor and or
+               mod sqrt root fac pow modinv modpow log_int gcd
+        /)
+          {
+         if (!$lib->can("_$method"))
+           {
+           if (($WARN{$lib}||0) < 2)
+             {
+             require Carp;
+             Carp::carp ("$lib is missing method '_$method'");
+             $WARN{$lib} = 1;          # still warn about the lib
+             }
+            $ok++; last; 
+           }
+          }
+       }
+      if ($ok == 0)
+       {
+       $CALC = $lib;
+        last;                  # found a usable one, break
+       }
+      else
+       {
+       if (($WARN{$lib}||0) < 2)
+         {
+         my $ver = eval "\$$lib\::VERSION" || 'unknown';
+         require Carp;
+         Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
+         $WARN{$lib} = 2;              # never warn again
+         }
+        }
+      }
+    }
+  if ($CALC eq '')
+    {
+    require Carp;
+    Carp::croak ("Couldn't load any math lib, not even 'Calc.pm'");
+    }
+
+  # notify callbacks
+  foreach my $class (keys %CALLBACKS)
+    {
+    &{$CALLBACKS{$class}}($CALC);
+    }
+
+  # Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
+  # functions
+
+  %CAN = ();
+  for my $method (qw/ signed_and signed_or signed_xor /)
+    {
+    $CAN{$method} = $CALC->can("_$method") ? 1 : 0;
+    }
+
+  # import done
+  }
+
+sub __from_hex
+  {
+  # internal
+  # convert a (ref to) big hex string to BigInt, return undef for error
+  my $hs = shift;
+
+  my $x = Math::BigInt->bzero();
+  
+  # strip underscores
+  $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g; 
+  $hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g; 
+  
+  return $x->bnan() if $hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;
+
+  my $sign = '+'; $sign = '-' if $hs =~ /^-/;
+
+  $hs =~ s/^[+-]//;                                            # strip sign
+  $x->{value} = $CALC->_from_hex($hs);
+  $x->{sign} = $sign unless $CALC->_is_zero($x->{value});      # no '-0'
+  $x;
+  }
+
+sub __from_bin
+  {
+  # internal
+  # convert a (ref to) big binary string to BigInt, return undef for error
+  my $bs = shift;
+
+  my $x = Math::BigInt->bzero();
+  # strip underscores
+  $bs =~ s/([01])_([01])/$1$2/g;       
+  $bs =~ s/([01])_([01])/$1$2/g;       
+  return $x->bnan() if $bs !~ /^[+-]?0b[01]+$/;
+
+  my $sign = '+'; $sign = '-' if $bs =~ /^\-/;
+  $bs =~ s/^[+-]//;                                            # strip sign
+
+  $x->{value} = $CALC->_from_bin($bs);
+  $x->{sign} = $sign unless $CALC->_is_zero($x->{value});      # no '-0'
+  $x;
+  }
+
+sub _split
+  {
+  # input: num_str; output: undef for invalid or
+  # (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value)
+  # Internal, take apart a string and return the pieces.
+  # Strip leading/trailing whitespace, leading zeros, underscore and reject
+  # invalid input.
+  my $x = shift;
+
+  # strip white space at front, also extranous leading zeros
+  $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g;  # will not strip '  .2'
+  $x =~ s/^\s+//;                      # but this will                 
+  $x =~ s/\s+$//g;                     # strip white space at end
+
+  # shortcut, if nothing to split, return early
+  if ($x =~ /^[+-]?\d+\z/)
+    {
+    $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
+    return (\$sign, \$x, \'', \'', \0);
+    }
+
+  # invalid starting char?
+  return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
+
+  return __from_hex($x) if $x =~ /^[\-\+]?0x/; # hex string
+  return __from_bin($x) if $x =~ /^[\-\+]?0b/; # binary string
+  
+  # strip underscores between digits
+  $x =~ s/(\d)_(\d)/$1$2/g;
+  $x =~ s/(\d)_(\d)/$1$2/g;            # do twice for 1_2_3
+
+  # some possible inputs: 
+  # 2.1234 # 0.12        # 1         # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 
+  # .2            # 1_2_3.4_5_6 # 1.4E1_2_3  # 1e3 # +.2     # 0e999   
+
+  my ($m,$e,$last) = split /[Ee]/,$x;
+  return if defined $last;             # last defined => 1e2E3 or others
+  $e = '0' if !defined $e || $e eq "";
+
+  # sign,value for exponent,mantint,mantfrac
+  my ($es,$ev,$mis,$miv,$mfv);
+  # valid exponent?
+  if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
+    {
+    $es = $1; $ev = $2;
+    # valid mantissa?
+    return if $m eq '.' || $m eq '';
+    my ($mi,$mf,$lastf) = split /\./,$m;
+    return if defined $lastf;          # lastf defined => 1.2.3 or others
+    $mi = '0' if !defined $mi;
+    $mi .= '0' if $mi =~ /^[\-\+]?$/;
+    $mf = '0' if !defined $mf || $mf eq '';
+    if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
+      {
+      $mis = $1||'+'; $miv = $2;
+      return unless ($mf =~ /^(\d*?)0*$/);     # strip trailing zeros
+      $mfv = $1;
+      # handle the 0e999 case here
+      $ev = 0 if $miv eq '0' && $mfv eq '';
+      return (\$mis,\$miv,\$mfv,\$es,\$ev);
       }
-    $CALC = $lib, last if $@ eq '';    # no error in loading lib?
     }
+  return; # NaN, not a number
+  }
+
+##############################################################################
+# internal calculation routines (others are in Math::BigInt::Calc etc)
+
+sub __lcm 
+  { 
+  # (BINT or num_str, BINT or num_str) return BINT
+  # does modify first argument
+  # LCM
+  my ($x,$ty) = @_;
+  return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
+  my $method = ref($x) . '::bgcd';
+  no strict 'refs';
+  $x * $ty / &$method($x,$ty);
   }
 
-sub __from_hex
-  {
-  # convert a (ref to) big hex string to BigInt, return undef for error
-  my $hs = shift;
+###############################################################################
+# this method returns 0 if the object can be modified, or 1 if not.
+# We use a fast constant sub() here, to avoid costly calls. Subclasses
+# may override it with special code (f.i. Math::BigInt::Constant does so)
+
+sub modify () { 0; }
+
+1;
+__END__
+
+=pod
+
+=head1 NAME
+
+Math::BigInt - Arbitrary size integer/float math package
+
+=head1 SYNOPSIS
+
+  use Math::BigInt;
+
+  # or make it faster: install (optional) Math::BigInt::GMP
+  # and always use (it will fall back to pure Perl if the
+  # GMP library is not installed):
+
+  use Math::BigInt lib => 'GMP';
+
+  my $str = '1234567890';
+  my @values = (64,74,18);
+  my $n = 1; my $sign = '-';
+
+  # Number creation    
+  $x = Math::BigInt->new($str);                # defaults to 0
+  $y = $x->copy();                     # make a true copy
+  $nan  = Math::BigInt->bnan();        # create a NotANumber
+  $zero = Math::BigInt->bzero();       # create a +0
+  $inf = Math::BigInt->binf();         # create a +inf
+  $inf = Math::BigInt->binf('-');      # create a -inf
+  $one = Math::BigInt->bone();         # create a +1
+  $one = Math::BigInt->bone('-');      # create a -1
+
+  # Testing (don't modify their arguments)
+  # (return true if the condition is met, otherwise false)
+
+  $x->is_zero();       # if $x is +0
+  $x->is_nan();                # if $x is NaN
+  $x->is_one();                # if $x is +1
+  $x->is_one('-');     # if $x is -1
+  $x->is_odd();                # if $x is odd
+  $x->is_even();       # if $x is even
+  $x->is_pos();                # if $x >= 0
+  $x->is_neg();                # if $x <  0
+  $x->is_inf($sign);   # if $x is +inf, or -inf (sign is default '+')
+  $x->is_int();                # if $x is an integer (not a float)
+
+  # comparing and digit/sign extraction
+  $x->bcmp($y);                # compare numbers (undef,<0,=0,>0)
+  $x->bacmp($y);       # compare absolutely (undef,<0,=0,>0)
+  $x->sign();          # return the sign, either +,- or NaN
+  $x->digit($n);       # return the nth digit, counting from right
+  $x->digit(-$n);      # return the nth digit, counting from left
+
+  # The following all modify their first argument. If you want to preserve
+  # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
+  # necessary when mixing $a = $b assignments with non-overloaded math.
+
+  $x->bzero();         # set $x to 0
+  $x->bnan();          # set $x to NaN
+  $x->bone();          # set $x to +1
+  $x->bone('-');       # set $x to -1
+  $x->binf();          # set $x to inf
+  $x->binf('-');       # set $x to -inf
+
+  $x->bneg();          # negation
+  $x->babs();          # absolute value
+  $x->bnorm();         # normalize (no-op in BigInt)
+  $x->bnot();          # two's complement (bit wise not)
+  $x->binc();          # increment $x by 1
+  $x->bdec();          # decrement $x by 1
+  
+  $x->badd($y);                # addition (add $y to $x)
+  $x->bsub($y);                # subtraction (subtract $y from $x)
+  $x->bmul($y);                # multiplication (multiply $x by $y)
+  $x->bdiv($y);                # divide, set $x to quotient
+                       # return (quo,rem) or quo if scalar
+
+  $x->bmod($y);                   # modulus (x % y)
+  $x->bmodpow($exp,$mod);  # modular exponentation (($num**$exp) % $mod))
+  $x->bmodinv($mod);      # the inverse of $x in the given modulus $mod
+
+  $x->bpow($y);                   # power of arguments (x ** y)
+  $x->blsft($y);          # left shift
+  $x->brsft($y);          # right shift 
+  $x->blsft($y,$n);       # left shift, by base $n (like 10)
+  $x->brsft($y,$n);       # right shift, by base $n (like 10)
+  
+  $x->band($y);                   # bitwise and
+  $x->bior($y);                   # bitwise inclusive or
+  $x->bxor($y);                   # bitwise exclusive or
+  $x->bnot();             # bitwise not (two's complement)
+
+  $x->bsqrt();            # calculate square-root
+  $x->broot($y);          # $y'th root of $x (e.g. $y == 3 => cubic root)
+  $x->bfac();             # factorial of $x (1*2*3*4*..$x)
+
+  $x->round($A,$P,$mode);  # round to accuracy or precision using mode $mode
+  $x->bround($n);         # accuracy: preserve $n digits
+  $x->bfround($n);        # round to $nth digit, no-op for BigInts
+
+  # The following do not modify their arguments in BigInt (are no-ops),
+  # but do so in BigFloat:
+
+  $x->bfloor();                   # return integer less or equal than $x
+  $x->bceil();            # return integer greater or equal than $x
+  
+  # The following do not modify their arguments:
+
+  # greatest common divisor (no OO style)
+  my $gcd = Math::BigInt::bgcd(@values);
+  # lowest common multiplicator (no OO style)
+  my $lcm = Math::BigInt::blcm(@values);       
+  $x->length();                   # return number of digits in number
+  ($xl,$f) = $x->length(); # length of number and length of fraction part,
+                          # latter is always 0 digits long for BigInts
+
+  $x->exponent();         # return exponent as BigInt
+  $x->mantissa();         # return (signed) mantissa as BigInt
+  $x->parts();            # return (mantissa,exponent) as BigInt
+  $x->copy();             # make a true copy of $x (unlike $y = $x;)
+  $x->as_int();                   # return as BigInt (in BigInt: same as copy())
+  $x->numify();                   # return as scalar (might overflow!)
+  
+  # conversation to string (do not modify their argument)
+  $x->bstr();             # normalized string (e.g. '3')
+  $x->bsstr();            # norm. string in scientific notation (e.g. '3E0')
+  $x->as_hex();                   # as signed hexadecimal string with prefixed 0x
+  $x->as_bin();                   # as signed binary string with prefixed 0b
+
+
+  # precision and accuracy (see section about rounding for more)
+  $x->precision();        # return P of $x (or global, if P of $x undef)
+  $x->precision($n);      # set P of $x to $n
+  $x->accuracy();         # return A of $x (or global, if A of $x undef)
+  $x->accuracy($n);       # set A $x to $n
+
+  # Global methods
+  Math::BigInt->precision();   # get/set global P for all BigInt objects
+  Math::BigInt->accuracy();    # get/set global A for all BigInt objects
+  Math::BigInt->round_mode();  # get/set global round mode, one of
+                               # 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
+  Math::BigInt->config();      # return hash containing configuration
+
+=head1 DESCRIPTION
+
+All operators (including basic math operations) are overloaded if you
+declare your big integers as
+
+  $i = new Math::BigInt '123_456_789_123_456_789';
+
+Operations with overloaded operators preserve the arguments which is
+exactly what you expect.
+
+=over 2
+
+=item Input
+
+Input values to these routines may be any string, that looks like a number
+and results in an integer, including hexadecimal and binary numbers.
+
+Scalars holding numbers may also be passed, but note that non-integer numbers
+may already have lost precision due to the conversation to float. Quote
+your input if you want BigInt to see all the digits:
+
+       $x = Math::BigInt->new(12345678890123456789);   # bad
+       $x = Math::BigInt->new('12345678901234567890'); # good
+
+You can include one underscore between any two digits.
+
+This means integer values like 1.01E2 or even 1000E-2 are also accepted.
+Non-integer values result in NaN.
+
+Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
+results in 'NaN'. This might change in the future, so use always the following
+explicit forms to get a zero or NaN:
+
+       $zero = Math::BigInt->bzero(); 
+       $nan = Math::BigInt->bnan(); 
+
+C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers 
+are always stored in normalized form. If passed a string, creates a BigInt 
+object from the input.
+
+=item Output
+
+Output values are BigInt objects (normalized), except for the methods which
+return a string (see L<SYNOPSIS>).
+
+Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
+C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>)
+return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort.
+
+=back
+
+=head1 METHODS
+
+Each of the methods below (except config(), accuracy() and precision())
+accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R>
+are C<accuracy>, C<precision> and C<round_mode>. Please see the section about
+L<ACCURACY and PRECISION> for more information.
+
+=head2 config
+
+       use Data::Dumper;
+
+       print Dumper ( Math::BigInt->config() );
+       print Math::BigInt->config()->{lib},"\n";
+
+Returns a hash containing the configuration, e.g. the version number, lib
+loaded etc. The following hash keys are currently filled in with the
+appropriate information.
+
+       key             Description
+                       Example
+       ============================================================
+       lib             Name of the low-level math library
+                       Math::BigInt::Calc
+       lib_version     Version of low-level math library (see 'lib')
+                       0.30
+       class           The class name of config() you just called
+                       Math::BigInt
+       upgrade         To which class math operations might be upgraded
+                       Math::BigFloat
+       downgrade       To which class math operations might be downgraded
+                       undef
+       precision       Global precision
+                       undef
+       accuracy        Global accuracy
+                       undef
+       round_mode      Global round mode
+                       even
+       version         version number of the class you used
+                       1.61
+       div_scale       Fallback accuracy for div
+                       40
+       trap_nan        If true, traps creation of NaN via croak()
+                       1
+       trap_inf        If true, traps creation of +inf/-inf via croak()
+                       1
+
+The following values can be set by passing C<config()> a reference to a hash:
+
+       trap_inf trap_nan
+        upgrade downgrade precision accuracy round_mode div_scale
+
+Example:
+       
+       $new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
+
+=head2 accuracy
+
+       $x->accuracy(5);                # local for $x
+       CLASS->accuracy(5);             # global for all members of CLASS
+                                       # Note: This also applies to new()!
+
+       $A = $x->accuracy();            # read out accuracy that affects $x
+       $A = CLASS->accuracy();         # read out global accuracy
+
+Set or get the global or local accuracy, aka how many significant digits the
+results have. If you set a global accuracy, then this also applies to new()!
+
+Warning! The accuracy I<sticks>, e.g. once you created a number under the
+influence of C<< CLASS->accuracy($A) >>, all results from math operations with
+that number will also be rounded. 
+
+In most cases, you should probably round the results explicitly using one of
+L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
+to the math operation as additional parameter:
+
+        my $x = Math::BigInt->new(30000);
+        my $y = Math::BigInt->new(7);
+        print scalar $x->copy()->bdiv($y, 2);          # print 4300
+        print scalar $x->copy()->bdiv($y)->bround(2);  # print 4300
+
+Please see the section about L<ACCURACY AND PRECISION> for further details.
+
+Value must be greater than zero. Pass an undef value to disable it:
+
+       $x->accuracy(undef);
+       Math::BigInt->accuracy(undef);
+
+Returns the current accuracy. For C<$x->accuracy()> it will return either the
+local accuracy, or if not defined, the global. This means the return value
+represents the accuracy that will be in effect for $x:
+
+       $y = Math::BigInt->new(1234567);        # unrounded
+       print Math::BigInt->accuracy(4),"\n";   # set 4, print 4
+       $x = Math::BigInt->new(123456);         # $x will be automatically rounded!
+       print "$x $y\n";                        # '123500 1234567'
+       print $x->accuracy(),"\n";              # will be 4
+       print $y->accuracy(),"\n";              # also 4, since global is 4
+       print Math::BigInt->accuracy(5),"\n";   # set to 5, print 5
+       print $x->accuracy(),"\n";              # still 4
+       print $y->accuracy(),"\n";              # 5, since global is 5
+
+Note: Works also for subclasses like Math::BigFloat. Each class has it's own
+globals separated from Math::BigInt, but it is possible to subclass
+Math::BigInt and make the globals of the subclass aliases to the ones from
+Math::BigInt.
+
+=head2 precision
+
+       $x->precision(-2);      # local for $x, round at the second digit right of the dot
+       $x->precision(2);       # ditto, round at the second digit left of the dot
+
+       CLASS->precision(5);    # Global for all members of CLASS
+                               # This also applies to new()!
+       CLASS->precision(-5);   # ditto
+
+       $P = CLASS->precision();        # read out global precision 
+       $P = $x->precision();           # read out precision that affects $x
+
+Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
+set the number of digits each result should have, with L<precision> you
+set the place where to round!
+
+C<precision()> sets or gets the global or local precision, aka at which digit
+before or after the dot to round all results. A set global precision also
+applies to all newly created numbers!
+
+In Math::BigInt, passing a negative number precision has no effect since no
+numbers have digits after the dot. In L<Math::BigFloat>, it will round all
+results to P digits after the dot.
+
+Please see the section about L<ACCURACY AND PRECISION> for further details.
+
+Pass an undef value to disable it:
+
+       $x->precision(undef);
+       Math::BigInt->precision(undef);
+
+Returns the current precision. For C<$x->precision()> it will return either the
+local precision of $x, or if not defined, the global. This means the return
+value represents the prevision that will be in effect for $x:
+
+       $y = Math::BigInt->new(1234567);        # unrounded
+       print Math::BigInt->precision(4),"\n";  # set 4, print 4
+       $x = Math::BigInt->new(123456);         # will be automatically rounded
+       print $x;                               # print "120000"!
+
+Note: Works also for subclasses like L<Math::BigFloat>. Each class has its
+own globals separated from Math::BigInt, but it is possible to subclass
+Math::BigInt and make the globals of the subclass aliases to the ones from
+Math::BigInt.
+
+=head2 brsft
+
+       $x->brsft($y,$n);               
+
+Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
+2, but others work, too.
+
+Right shifting usually amounts to dividing $x by $n ** $y and truncating the
+result:
+
+
+       $x = Math::BigInt->new(10);
+       $x->brsft(1);                   # same as $x >> 1: 5
+       $x = Math::BigInt->new(1234);
+       $x->brsft(2,10);                # result 12
+
+There is one exception, and that is base 2 with negative $x:
+
+
+       $x = Math::BigInt->new(-5);
+       print $x->brsft(1);
+
+This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
+result).
+
+=head2 new
+
+       $x = Math::BigInt->new($str,$A,$P,$R);
+
+Creates a new BigInt object from a scalar or another BigInt object. The
+input is accepted as decimal, hex (with leading '0x') or binary (with leading
+'0b').
+
+See L<Input> for more info on accepted input formats.
+
+=head2 bnan
+
+       $x = Math::BigInt->bnan();
+
+Creates a new BigInt object representing NaN (Not A Number).
+If used on an object, it will set it to NaN:
+
+       $x->bnan();
+
+=head2 bzero
+
+       $x = Math::BigInt->bzero();
+
+Creates a new BigInt object representing zero.
+If used on an object, it will set it to zero:
+
+       $x->bzero();
+
+=head2 binf
+
+       $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing infinity. The optional argument is
+either '-' or '+', indicating whether you want infinity or minus infinity.
+If used on an object, it will set it to infinity:
+
+       $x->binf();
+       $x->binf('-');
+
+=head2 bone
+
+       $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing one. The optional argument is
+either '-' or '+', indicating whether you want one or minus one.
+If used on an object, it will set it to one:
+
+       $x->bone();             # +1
+       $x->bone('-');          # -1
+
+=head2 is_one()/is_zero()/is_nan()/is_inf()
+
+  
+       $x->is_zero();                  # true if arg is +0
+       $x->is_nan();                   # true if arg is NaN
+       $x->is_one();                   # true if arg is +1
+       $x->is_one('-');                # true if arg is -1
+       $x->is_inf();                   # true if +inf
+       $x->is_inf('-');                # true if -inf (sign is default '+')
+
+These methods all test the BigInt for being one specific value and return
+true or false depending on the input. These are faster than doing something
+like:
+
+       if ($x == 0)
+
+=head2 is_pos()/is_neg()
+       
+       $x->is_pos();                   # true if > 0
+       $x->is_neg();                   # true if < 0
+
+The methods return true if the argument is positive or negative, respectively.
+C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
+C<-inf> is negative. A C<zero> is neither positive nor negative.
+
+These methods are only testing the sign, and not the value.
+
+C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and
+C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
+introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
+in v1.68.
+
+=head2 is_odd()/is_even()/is_int()
+
+       $x->is_odd();                   # true if odd, false for even
+       $x->is_even();                  # true if even, false for odd
+       $x->is_int();                   # true if $x is an integer
+
+The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
+C<-inf> are not integers and are neither odd nor even.
+
+In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.
+
+=head2 bcmp
+
+       $x->bcmp($y);
+
+Compares $x with $y and takes the sign into account.
+Returns -1, 0, 1 or undef.
+
+=head2 bacmp
+
+       $x->bacmp($y);
+
+Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef.
+
+=head2 sign
+
+       $x->sign();
+
+Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
+
+If you want $x to have a certain sign, use one of the following methods:
+
+       $x->babs();             # '+'
+       $x->babs()->bneg();     # '-'
+       $x->bnan();             # 'NaN'
+       $x->binf();             # '+inf'
+       $x->binf('-');          # '-inf'
+
+=head2 digit
+
+       $x->digit($n);          # return the nth digit, counting from right
+
+If C<$n> is negative, returns the digit counting from left.
+
+=head2 bneg
+
+       $x->bneg();
+
+Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
+and '-inf', respectively. Does nothing for NaN or zero.
+
+=head2 babs
+
+       $x->babs();
+
+Set the number to it's absolute value, e.g. change the sign from '-' to '+'
+and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
+numbers.
+
+=head2 bnorm
+
+       $x->bnorm();                    # normalize (no-op)
+
+=head2 bnot
+
+       $x->bnot();                     
+
+Two's complement (bit wise not). This is equivalent to
+
+       $x->binc()->bneg();
+
+but faster.
+
+=head2 binc
+
+       $x->binc();                     # increment x by 1
+
+=head2 bdec
+
+       $x->bdec();                     # decrement x by 1
+
+=head2 badd
+
+       $x->badd($y);                   # addition (add $y to $x)
+
+=head2 bsub
+
+       $x->bsub($y);                   # subtraction (subtract $y from $x)
+
+=head2 bmul
+
+       $x->bmul($y);                   # multiplication (multiply $x by $y)
+
+=head2 bdiv
+
+       $x->bdiv($y);                   # divide, set $x to quotient
+                                       # return (quo,rem) or quo if scalar
+
+=head2 bmod
+
+       $x->bmod($y);                   # modulus (x % y)
 
-  my $x = Math::BigInt->bzero();
-  return $x->bnan() if $$hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;
+=head2 bmodinv
 
-  my $sign = '+'; $sign = '-' if ($$hs =~ /^-/);
+       num->bmodinv($mod);             # modular inverse
 
-  $$hs =~ s/^[+-]//;                   # strip sign
-  if ($CALC->can('_from_hex'))
-    {
-    $x->{value} = $CALC->_from_hex($hs);
-    }
-  else
-    {
-    # fallback to pure perl
-    my $mul = Math::BigInt->bzero(); $mul++;
-    my $x65536 = Math::BigInt->new(65536);
-    my $len = CORE::length($$hs)-2;
-    $len = int($len/4);                        # 4-digit parts, w/o '0x'
-    my $val; my $i = -4;
-    while ($len >= 0)
-      {
-      $val = substr($$hs,$i,4);
-      $val =~ s/^[+-]?0x// if $len == 0;       # for last part only because
-      $val = hex($val);                        # hex does not like wrong chars
-      # print "$val ",substr($$hs,$i,4),"\n";
-      $i -= 4; $len --;
-      $x += $mul * $val if $val != 0;
-      $mul *= $x65536 if $len >= 0;            # skip last mul
-      }
-    }
-  $x->{sign} = $sign if !$x->is_zero();                # no '-0'
-  return $x;
-  }
+Returns the inverse of C<$num> in the given modulus C<$mod>.  'C<NaN>' is
+returned unless C<$num> is relatively prime to C<$mod>, i.e. unless
+C<bgcd($num, $mod)==1>.
 
-sub __from_bin
-  {
-  # convert a (ref to) big binary string to BigInt, return undef for error
-  my $bs = shift;
+=head2 bmodpow
 
-  my $x = Math::BigInt->bzero();
-  return $x->bnan() if $$bs !~ /^[+-]?0b[01]+$/;
+       $num->bmodpow($exp,$mod);       # modular exponentation
+                                       # ($num**$exp % $mod)
 
-  my $mul = Math::BigInt->bzero(); $mul++;
-  my $x256 = Math::BigInt->new(256);
+Returns the value of C<$num> taken to the power C<$exp> in the modulus
+C<$mod> using binary exponentation.  C<bmodpow> is far superior to
+writing
 
-  my $sign = '+'; $sign = '-' if ($$bs =~ /^\-/);
-  $$bs =~ s/^[+-]//;                           # strip sign
-  if ($CALC->can('_from_bin'))
-    {
-    $x->{value} = $CALC->_from_bin($bs);
-    }
-  else
-    {
-    my $len = CORE::length($$bs)-2;
-    $len = int($len/8);                                # 8-digit parts, w/o '0b'
-    my $val; my $i = -8;
-    while ($len >= 0)
-      {
-      $val = substr($$bs,$i,8);
-      $val =~ s/^[+-]?0b// if $len == 0;       # for last part only
-      #$val = oct('0b'.$val);  # does not work on Perl prior to 5.6.0
-      $val = ('0' x (8-CORE::length($val))).$val if CORE::length($val) < 8;
-      $val = ord(pack('B8',$val));
-      # print "$val ",substr($$bs,$i,16),"\n";
-      $i -= 8; $len --;
-      $x += $mul * $val if $val != 0;
-      $mul *= $x256 if $len >= 0;              # skip last mul
-      }
-    }
-  $x->{sign} = $sign if !$x->is_zero();
-  return $x;
-  }
+       $num ** $exp % $mod
 
-sub _split
-  {
-  # (ref to num_str) return num_str
-  # internal, take apart a string and return the pieces
-  # strip leading/trailing whitespace, leading zeros, underscore, reject
-  # invalid input
-  my $x = shift;
+because it is much faster - it reduces internal variables into
+the modulus whenever possible, so it operates on smaller numbers.
 
-  # strip white space at front, also extranous leading zeros
-  $$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip '  .2'
-  $$x =~ s/^\s+//;                     # but this will                 
-  $$x =~ s/\s+$//g;                    # strip white space at end
+C<bmodpow> also supports negative exponents.
 
-  # shortcut, if nothing to split, return early
-  if ($$x =~ /^[+-]?\d+$/)
-    {
-    $$x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
-    return (\$sign, $x, \'', \'', \0);
-    }
+       bmodpow($num, -1, $mod)
 
-  # invalid starting char?
-  return if $$x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
+is exactly equivalent to
 
-  $$x =~ s/(\d)_(\d)/$1$2/g;           # strip underscores between digits
-  $$x =~ s/(\d)_(\d)/$1$2/g;           # do twice for 1_2_3
-  
-  return __from_hex($x) if $$x =~ /^[\-\+]?0x/;        # hex string
-  return __from_bin($x) if $$x =~ /^[\-\+]?0b/;        # binary string
+       bmodinv($num, $mod)
 
-  # some possible inputs: 
-  # 2.1234 # 0.12        # 1         # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 
-  # .2            # 1_2_3.4_5_6 # 1.4E1_2_3  # 1e3 # +.2
+=head2 bpow
 
-  #print "input: '$$x' ";
-  my ($m,$e) = split /[Ee]/,$$x;
-  $e = '0' if !defined $e || $e eq "";
-  # print "m '$m' e '$e'\n";
-  # sign,value for exponent,mantint,mantfrac
-  my ($es,$ev,$mis,$miv,$mfv);
-  # valid exponent?
-  if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
-    {
-    $es = $1; $ev = $2;
-    #print "'$m' '$e' e: $es $ev ";
-    # valid mantissa?
-    return if $m eq '.' || $m eq '';
-    my ($mi,$mf) = split /\./,$m;
-    $mi = '0' if !defined $mi;
-    $mi .= '0' if $mi =~ /^[\-\+]?$/;
-    $mf = '0' if !defined $mf || $mf eq '';
-    if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
-      {
-      $mis = $1||'+'; $miv = $2;
-      # print "$mis $miv";
-      # valid, existing fraction part of mantissa?
-      return unless ($mf =~ /^(\d*?)0*$/);     # strip trailing zeros
-      $mfv = $1;
-      #print " split: $mis $miv . $mfv E $es $ev\n";
-      return (\$mis,\$miv,\$mfv,\$es,\$ev);
-      }
-    }
-  return; # NaN, not a number
-  }
+       $x->bpow($y);                   # power of arguments (x ** y)
 
-sub as_number
-  {
-  # an object might be asked to return itself as bigint on certain overloaded
-  # operations, this does exactly this, so that sub classes can simple inherit
-  # it or override with their own integer conversion routine
-  my $self = shift;
+=head2 blsft
 
-  $self->copy();
-  }
+       $x->blsft($y);          # left shift
+       $x->blsft($y,$n);       # left shift, in base $n (like 10)
 
-sub as_hex
-  {
-  # return as hex string, with prefixed 0x
-  my $x = shift; $x = $class->new($x) if !ref($x);
+=head2 brsft
 
-  return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
-  return '0x0' if $x->is_zero();
+       $x->brsft($y);          # right shift 
+       $x->brsft($y,$n);       # right shift, in base $n (like 10)
 
-  my $es = ''; my $s = '';
-  $s = $x->{sign} if $x->{sign} eq '-';
-  $s .= '0x';
-  if ($CALC->can('_as_hex'))
-    {
-    $es = $CALC->_as_hex($x->{value});
-    }
-  else
-    {
-    my $x1 = $x->copy()->babs(); my $xr;
-    my $x100 = Math::BigInt->new (0x100);
-    while (!$x1->is_zero())
-      {
-      ($x1, $xr) = bdiv($x1,$x100);
-      $es .= unpack('h2',pack('C',$xr->numify()));
-      }
-    $es = reverse $es;
-    $es =~ s/^[0]+//;  # strip leading zeros
-    }
-  $s . $es;
-  }
+=head2 band
 
-sub as_bin
-  {
-  # return as binary string, with prefixed 0b
-  my $x = shift; $x = $class->new($x) if !ref($x);
+       $x->band($y);                   # bitwise and
 
-  return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
-  return '0b0' if $x->is_zero();
+=head2 bior
 
-  my $es = ''; my $s = '';
-  $s = $x->{sign} if $x->{sign} eq '-';
-  $s .= '0b';
-  if ($CALC->can('_as_bin'))
-    {
-    $es = $CALC->_as_bin($x->{value});
-    }
-  else
-    {
-    my $x1 = $x->copy()->babs(); my $xr;
-    my $x100 = Math::BigInt->new (0x100);
-    while (!$x1->is_zero())
-      {
-      ($x1, $xr) = bdiv($x1,$x100);
-      $es .= unpack('b8',pack('C',$xr->numify()));
-      }
-    $es = reverse $es; 
-    $es =~ s/^[0]+//;  # strip leading zeros
-    }
-  $s . $es;
-  }
+       $x->bior($y);                   # bitwise inclusive or
 
-##############################################################################
-# internal calculation routines (others are in Math::BigInt::Calc etc)
+=head2 bxor
 
-sub cmp 
-  {
-  # post-normalized compare for internal use (honors signs)
-  # input:  ref to value, ref to value, sign, sign
-  # output: <0, 0, >0
-  my ($cx,$cy,$sx,$sy) = @_;
+       $x->bxor($y);                   # bitwise exclusive or
 
-  if ($sx eq '+') 
-    {
-    return 1 if $sy eq '-'; # 0 check handled above
-    return $CALC->_acmp($cx,$cy);
-    }
-  else
-    {
-    # $sx eq '-'
-    return -1 if $sy eq '+';
-    return $CALC->_acmp($cy,$cx);
-    }
-  0; # equal
-  }
+=head2 bnot
 
-sub _lcm 
-  { 
-  # (BINT or num_str, BINT or num_str) return BINT
-  # does modify first argument
-  # LCM
-  my $x = shift; my $ty = shift;
-  return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
-  return $x * $ty / bgcd($x,$ty);
-  }
+       $x->bnot();                     # bitwise not (two's complement)
 
-sub __gcd
-  { 
-  # (BINT or num_str, BINT or num_str) return BINT
-  # does modify first arg
-  # GCD -- Euclids algorithm E, Knuth Vol 2 pg 296
-  my $x = shift; my $ty = $class->new(shift); # preserve y, but make class
-  return $x->bnan() if $x->{sign} !~ /^[+-]$/ || $ty->{sign} !~ /^[+-]$/;
+=head2 bsqrt
 
-  while (!$ty->is_zero())
-    {
-    ($x, $ty) = ($ty,bmod($x,$ty));
-    }
-  $x;
-  }
+       $x->bsqrt();                    # calculate square-root
 
-###############################################################################
-# this method return 0 if the object can be modified, or 1 for not
-# We use a fast use constant statement here, to avoid costly calls. Subclasses
-# may override it with special code (f.i. Math::BigInt::Constant does so)
+=head2 bfac
 
-sub modify () { 0; }
+       $x->bfac();                     # factorial of $x (1*2*3*4*..$x)
 
-1;
-__END__
+=head2 round
 
-=head1 NAME
+       $x->round($A,$P,$round_mode);
+       
+Round $x to accuracy C<$A> or precision C<$P> using the round mode
+C<$round_mode>.
 
-Math::BigInt - Arbitrary size integer math package
+=head2 bround
 
-=head1 SYNOPSIS
+       $x->bround($N);               # accuracy: preserve $N digits
 
-  use Math::BigInt;
+=head2 bfround
 
-  # Number creation    
-  $x = Math::BigInt->new($str);                # defaults to 0
-  $nan  = Math::BigInt->bnan();        # create a NotANumber
-  $zero = Math::BigInt->bzero();       # create a +0
-  $inf = Math::BigInt->binf();         # create a +inf
-  $inf = Math::BigInt->binf('-');      # create a -inf
-  $one = Math::BigInt->bone();         # create a +1
-  $one = Math::BigInt->bone('-');      # create a -1
+       $x->bfround($N);              # round to $Nth digit, no-op for BigInts
 
-  # Testing
-  $x->is_zero();               # true if arg is +0
-  $x->is_nan();                        # true if arg is NaN
-  $x->is_one();                        # true if arg is +1
-  $x->is_one('-');             # true if arg is -1
-  $x->is_odd();                        # true if odd, false for even
-  $x->is_even();               # true if even, false for odd
-  $x->is_positive();           # true if >= 0
-  $x->is_negative();           # true if <  0
-  $x->is_inf(sign);            # true if +inf, or -inf (sign is default '+')
-
-  $x->bcmp($y);                        # compare numbers (undef,<0,=0,>0)
-  $x->bacmp($y);               # compare absolutely (undef,<0,=0,>0)
-  $x->sign();                  # return the sign, either +,- or NaN
-  $x->digit($n);               # return the nth digit, counting from right
-  $x->digit(-$n);              # return the nth digit, counting from left
-
-  # The following all modify their first argument:
-
-  # set 
-  $x->bzero();                 # set $x to 0
-  $x->bnan();                  # set $x to NaN
-  $x->bone();                  # set $x to +1
-  $x->bone('-');               # set $x to -1
-
-  $x->bneg();                  # negation
-  $x->babs();                  # absolute value
-  $x->bnorm();                 # normalize (no-op)
-  $x->bnot();                  # two's complement (bit wise not)
-  $x->binc();                  # increment x by 1
-  $x->bdec();                  # decrement x by 1
-  
-  $x->badd($y);                        # addition (add $y to $x)
-  $x->bsub($y);                        # subtraction (subtract $y from $x)
-  $x->bmul($y);                        # multiplication (multiply $x by $y)
-  $x->bdiv($y);                        # divide, set $x to quotient
-                               # return (quo,rem) or quo if scalar
-
-  $x->bmod($y);                        # modulus (x % y)
-  $x->bpow($y);                        # power of arguments (x ** y)
-  $x->blsft($y);               # left shift
-  $x->brsft($y);               # right shift 
-  $x->blsft($y,$n);            # left shift, by base $n (like 10)
-  $x->brsft($y,$n);            # right shift, by base $n (like 10)
-  
-  $x->band($y);                        # bitwise and
-  $x->bior($y);                        # bitwise inclusive or
-  $x->bxor($y);                        # bitwise exclusive or
-  $x->bnot();                  # bitwise not (two's complement)
+=head2 bfloor
 
-  $x->bsqrt();                 # calculate square-root
+       $x->bfloor();                   
 
-  $x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
-  $x->bround($N);               # accuracy: preserve $N digits
-  $x->bfround($N);              # round to $Nth digit, no-op for BigInts
+Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
 
-  # The following do not modify their arguments in BigInt, but do in BigFloat:
-  $x->bfloor();                        # return integer less or equal than $x
-  $x->bceil();                 # return integer greater or equal than $x
-  
-  # The following do not modify their arguments:
+=head2 bceil
+
+       $x->bceil();
+
+Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
+
+=head2 bgcd
 
-  bgcd(@values);               # greatest common divisor
-  blcm(@values);               # lowest common multiplicator
+       bgcd(@values);          # greatest common divisor (no OO style)
+
+=head2 blcm
+
+       blcm(@values);          # lowest common multiplicator (no OO style)
  
-  $x->length();                        # return number of digits in number
-  ($x,$f) = $x->length();      # length of number and length of fraction part,
-                               # latter is always 0 digits long for BigInt's
-
-  $x->exponent();              # return exponent as BigInt
-  $x->mantissa();              # return mantissa as BigInt
-  $x->parts();                 # return (mantissa,exponent) as BigInt
-  $x->copy();                  # make a true copy of $x (unlike $y = $x;)
-  $x->as_number();             # return as BigInt (in BigInt: same as copy())
-  
-  # conversation to string 
-  $x->bstr();                  # normalized string
-  $x->bsstr();                 # normalized string in scientific notation
-  $x->as_hex();                        # as signed hexadecimal string with prefixed 0x
-  $x->as_bin();                        # as signed binary string with prefixed 0b
+head2 length
 
+       $x->length();
+        ($xl,$fl) = $x->length();
 
-=head1 DESCRIPTION
+Returns the number of digits in the decimal representation of the number.
+In list context, returns the length of the integer and fraction part. For
+BigInt's, the length of the fraction part will always be 0.
 
-All operators (inlcuding basic math operations) are overloaded if you
-declare your big integers as
+=head2 exponent
 
-  $i = new Math::BigInt '123_456_789_123_456_789';
+       $x->exponent();
 
-Operations with overloaded operators preserve the arguments which is
-exactly what you expect.
+Return the exponent of $x as BigInt.
 
-=over 2
+=head2 mantissa
 
-=item Canonical notation
+       $x->mantissa();
 
-Big integer values are strings of the form C</^[+-]\d+$/> with leading
-zeros suppressed.
+Return the signed mantissa of $x as BigInt.
 
-   '-0'                            canonical value '-0', normalized '0'
-   '   -123_123_123'               canonical value '-123123123'
-   '1_23_456_7890'                 canonical value '1234567890'
+=head2 parts
 
-=item Input
+       $x->parts();            # return (mantissa,exponent) as BigInt
 
-Input values to these routines may be either Math::BigInt objects or
-strings of the form C</^\s*[+-]?[\d]+\.?[\d]*E?[+-]?[\d]*$/>.
+=head2 copy
 
-You can include one underscore between any two digits.
+       $x->copy();             # make a true copy of $x (unlike $y = $x;)
 
-This means integer values like 1.01E2 or even 1000E-2 are also accepted.
-Non integer values result in NaN.
+=head2 as_int
 
-Math::BigInt::new() defaults to 0, while Math::BigInt::new('') results
-in 'NaN'.
+       $x->as_int();   
 
-bnorm() on a BigInt object is now effectively a no-op, since the numbers 
-are always stored in normalized form. On a string, it creates a BigInt 
-object.
+Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
+C<copy()>. 
 
-=item Output
+C<as_number()> is an alias to this method. C<as_number> was introduced in
+v1.22, while C<as_int()> was only introduced in v1.68.
+  
+=head2 bstr
 
-Output values are BigInt objects (normalized), except for bstr(), which
-returns a string in normalized form.
-Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
-C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
-return either undef, <0, 0 or >0 and are suited for sort.
+       $x->bstr();
 
-=back
+Returns a normalized string representation of C<$x>.
+
+=head2 bsstr
+
+       $x->bsstr();            # normalized string in scientific notation
+
+=head2 as_hex
+
+       $x->as_hex();           # as signed hexadecimal string with prefixed 0x
+
+=head2 as_bin
+
+       $x->as_bin();           # as signed binary string with prefixed 0b
 
 =head1 ACCURACY and PRECISION
 
 Since version v1.33, Math::BigInt and Math::BigFloat have full support for
 accuracy and precision based rounding, both automatically after every
-operation as well as manually.
+operation, as well as manually.
 
 This section describes the accuracy/precision handling in Math::Big* as it
 used to be and as it is now, complete with an explanation of all terms and
@@ -2225,16 +3511,16 @@ versions <= 5.7.2) is like this:
       result has at most max(scale, length(dividend), length(divisor)) digits
     Actual code:
       scale = max(scale, length(dividend)-1,length(divisor)-1);
-      scale += length(divisior) - length(dividend);
+      scale += length(divisor) - length(dividend);
     So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
     Actually, the 'difference' added to the scale is calculated from the
     number of "significant digits" in dividend and divisor, which is derived
     by looking at the length of the mantissa. Which is wrong, since it includes
-    the + sign (oups) and actually gets 2 for '+100' and 4 for '+101'. Oups
+    the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
     again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
     assumption that 124 has 3 significant digits, while 120/7 will get you
     '17', not '17.1' since 120 is thought to have 2 significant digits.
-    The rounding after the division then uses the reminder and $y to determine
+    The rounding after the division then uses the remainder and $y to determine
     wether it must round up or down.
  ?  I have no idea which is the right way. That's why I used a slightly more
  ?  simple scheme and tweaked the few failing testcases to match it.
@@ -2247,29 +3533,51 @@ This is how it works now:
 
 =item Setting/Accessing
 
-  * You can set the A global via $Math::BigInt::accuracy or
-    $Math::BigFloat::accuracy or whatever class you are using.
-  * You can also set P globally by using $Math::SomeClass::precision likewise.
+  * You can set the A global via C<< Math::BigInt->accuracy() >> or
+    C<< Math::BigFloat->accuracy() >> or whatever class you are using.
+  * You can also set P globally by using C<< Math::SomeClass->precision() >>
+    likewise.
   * Globals are classwide, and not inherited by subclasses.
-  * to undefine A, use $Math::SomeCLass::accuracy = undef
-  * to undefine P, use $Math::SomeClass::precision = undef
+  * to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
+  * to undefine P, use C<< Math::SomeClass->precision(undef); >>
+  * Setting C<< Math::SomeClass->accuracy() >> clears automatically
+    C<< Math::SomeClass->precision() >>, and vice versa.
   * To be valid, A must be > 0, P can have any value.
   * If P is negative, this means round to the P'th place to the right of the
     decimal point; positive values mean to the left of the decimal point.
     P of 0 means round to integer.
-  * to find out the current global A, take $Math::SomeClass::accuracy
-  * use $x->accuracy() for the local setting of $x.
-  * to find out the current global P, take $Math::SomeClass::precision
-  * use $x->precision() for the local setting
+  * to find out the current global A, use C<< Math::SomeClass->accuracy() >>
+  * to find out the current global P, use C<< Math::SomeClass->precision() >>
+  * use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local
+    setting of C<< $x >>.
+  * Please note that C<< $x->accuracy() >> respective C<< $x->precision() >>
+    return eventually defined global A or P, when C<< $x >>'s A or P is not
+    set.
 
 =item Creating numbers
 
- !* When you create a number, there should be a way to define its A & P
-  * When a number without specific A or P is created, but the globals are
-    defined, these should be used to round the number immediately and also
-    stored locally with the number. Thus changing the global defaults later on
+  * When you create a number, you can give it's desired A or P via:
+    $x = Math::BigInt->new($number,$A,$P);
+  * Only one of A or P can be defined, otherwise the result is NaN
+  * If no A or P is give ($x = Math::BigInt->new($number) form), then the
+    globals (if set) will be used. Thus changing the global defaults later on
     will not change the A or P of previously created numbers (i.e., A and P of
-    $x will be what was in effect when $x was created) 
+    $x will be what was in effect when $x was created)
+  * If given undef for A and P, B<no> rounding will occur, and the globals will
+    B<not> be used. This is used by subclasses to create numbers without
+    suffering rounding in the parent. Thus a subclass is able to have it's own
+    globals enforced upon creation of a number by using
+    C<< $x = Math::BigInt->new($number,undef,undef) >>:
+
+       use Math::BigInt::SomeSubclass;
+       use Math::BigInt;
+
+       Math::BigInt->accuracy(2);
+       Math::BigInt::SomeSubClass->accuracy(3);
+       $x = Math::BigInt::SomeSubClass->new(1234);     
+
+    $x is now 1230, and not 1200. A subclass might choose to implement
+    this otherwise, e.g. falling back to the parent's A and P.
 
 =item Usage
 
@@ -2277,38 +3585,36 @@ This is how it works now:
     operation according to the rules below
   * Negative P is ignored in Math::BigInt, since BigInts never have digits
     after the decimal point
-  * Math::BigFloat uses Math::BigInts internally, but setting A or P inside
-    Math::BigInt as globals should not tamper with the parts of a BigFloat.
-    Thus a flag is used to mark all Math::BigFloat numbers as 'never round'
+  * Math::BigFloat uses Math::BigInt internally, but setting A or P inside
+    Math::BigInt as globals does not tamper with the parts of a BigFloat.
+    A flag is used to mark all Math::BigFloat numbers as 'never round'.
 
 =item Precedence
 
   * It only makes sense that a number has only one of A or P at a time.
-    Since you can set/get both A and P, there is a rule that will practically
-    enforce only A or P to be in effect at a time, even if both are set.
-    This is called precedence.
- !* If two objects are involved in an operation, and one of them has A in
- !  effect, and the other P, this should result in a warning or an error,
- !  probably in NaN.
-  * A takes precendence over P (Hint: A comes before P). If A is defined, it
-    is used, otherwise P is used. If neither of them is defined, nothing is
-    used, i.e. the result will have as many digits as it can (with an
-    exception for fdiv/fsqrt) and will not be rounded.
+    If you set either A or P on one object, or globally, the other one will
+    be automatically cleared.
+  * If two objects are involved in an operation, and one of them has A in
+    effect, and the other P, this results in an error (NaN).
+  * A takes precedence over P (Hint: A comes before P).
+    If neither of them is defined, nothing is used, i.e. the result will have
+    as many digits as it can (with an exception for fdiv/fsqrt) and will not
+    be rounded.
   * There is another setting for fdiv() (and thus for fsqrt()). If neither of
     A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
     If either the dividend's or the divisor's mantissa has more digits than
     the value of F, the higher value will be used instead of F.
     This is to limit the digits (A) of the result (just consider what would
     happen with unlimited A and P in the case of 1/3 :-)
-  * fdiv will calculate 1 more digit than required (determined by
+  * fdiv will calculate (at least) 4 more digits than required (determined by
     A, P or F), and, if F is not used, round the result
     (this will still fail in the case of a result like 0.12345000000001 with A
     or P of 5, but this can not be helped - or can it?)
-  * Thus you can have the math done by on Math::Big* class in three modes:
+  * Thus you can have the math done by on Math::Big* class in two modi:
     + never round (this is the default):
       This is done by setting A and P to undef. No math operation
       will round the result, with fdiv() and fsqrt() as exceptions to guard
-      against overflows. You must explicitely call bround(), bfround() or
+      against overflows. You must explicitly call bround(), bfround() or
       round() (the latter with parameters).
       Note: Once you have rounded a number, the settings will 'stick' on it
       and 'infect' all other numbers engaged in math operations with it, since
@@ -2336,7 +3642,7 @@ This is how it works now:
 
   * you will be able to give A, P and R as an argument to all the calculation
     routines; the second parameter is A, the third one is P, and the fourth is
-    R (shift place by one for binary operations like add). P is used only if
+    R (shift right by one for binary operations like badd). P is used only if
     the first parameter (A) is undefined. These three parameters override the
     globals in the order detailed as follows, i.e. the first defined value
     wins:
@@ -2344,7 +3650,7 @@ This is how it works now:
       + parameter A
       + parameter P
       + local A (if defined on both of the operands: smaller one is taken)
-      + local P (if defined on both of the operands: smaller one is taken)
+      + local P (if defined on both of the operands: bigger one is taken)
       + global A
       + global P
       + global F
@@ -2353,9 +3659,11 @@ This is how it works now:
 
 =item Local settings
 
-  * You can set A and P locally by using $x->accuracy() and $x->precision()
+  * You can set A or P locally by using C<< $x->accuracy() >> or
+    C<< $x->precision() >>
     and thus force different A and P for different objects/numbers.
   * Setting A or P this way immediately rounds $x to the new value.
+  * C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.
 
 =item Rounding
 
@@ -2365,12 +3673,12 @@ This is how it works now:
   * the two rounding functions take as the second parameter one of the
     following rounding modes (R):
     'even', 'odd', '+inf', '-inf', 'zero', 'trunc'
-  * you can set and get the global R by using Math::SomeClass->round_mode()
-    or by setting $Math::SomeClass::rnd_mode
-  * after each operation, $result->round() is called, and the result may
+  * you can set/get the global R by using C<< Math::SomeClass->round_mode() >>
+    or by setting C<< $Math::SomeClass::round_mode >>
+  * after each operation, C<< $result->round() >> is called, and the result may
     eventually be rounded (that is, if A or P were set either locally,
     globally or as parameter to the operation)
-  * to manually round a number, call $x->round($A,$P,$rnd_mode);
+  * to manually round a number, call C<< $x->round($A,$P,$round_mode); >>
     this will round the number by using the appropriate rounding function
     and then normalize it.
   * rounding modifies the local settings of the number:
@@ -2399,17 +3707,63 @@ This is how it works now:
 
 =back
 
+=head1 Infinity and Not a Number
+
+While BigInt has extensive handling of inf and NaN, certain quirks remain.
+
+=over 2
+
+=item oct()/hex()
+
+These perl routines currently (as of Perl v.5.8.6) cannot handle passed
+inf.
+
+       te@linux:~> perl -wle 'print 2 ** 3333'
+       inf
+       te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
+       1
+       te@linux:~> perl -wle 'print oct(2 ** 3333)'
+       0
+       te@linux:~> perl -wle 'print hex(2 ** 3333)'
+       Illegal hexadecimal digit 'i' ignored at -e line 1.
+       0
+
+The same problems occur if you pass them Math::BigInt->binf() objects. Since
+overloading these routines is not possible, this cannot be fixed from BigInt.
+
+=item ==, !=, <, >, <=, >= with NaNs
+
+BigInt's bcmp() routine currently returns undef to signal that a NaN was
+involved in a comparison. However, the overload code turns that into
+either 1 or '' and thus operations like C<< NaN != NaN >> might return
+wrong values.
+
+=item log(-inf)
+
+C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then
+log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real
+infinity "overshadows" it, so the number might as well just be infinity.
+However, the result is a complex number, and since BigInt/BigFloat can only
+have real numbers as results, the result is NaN.
+
+=item exp(), cos(), sin(), atan2()
+
+These all might have problems handling infinity right.
+=back
+
 =head1 INTERNALS
 
 The actual numbers are stored as unsigned big integers (with seperate sign).
+
 You should neither care about nor depend on the internal representation; it
-might change without notice. Use only method calls like C<< $x->sign(); >>
-instead relying on the internal hash keys like in C<< $x->{sign}; >>. 
+might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
+instead relying on the internal representation.
 
 =head2 MATH LIBRARY
 
 Math with the numbers is done (by default) by a module called
-Math::BigInt::Calc. This is equivalent to saying:
+C<Math::BigInt::Calc>. This is equivalent to saying:
 
        use Math::BigInt lib => 'Calc';
 
@@ -2422,15 +3776,22 @@ Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
 
        use Math::BigInt lib => 'Foo,Math::BigInt::Bar';
 
-Calc.pm uses as internal format an array of elements of some decimal base
-(usually 1e5, but this might change to 1e7) with the least significant digit
-first, while BitVect.pm uses a bit vector of base 2, most significant bit
-first. Other modules might use even different means of representing the
-numbers. See the respective module documentation for further details.
+Since Math::BigInt::GMP is in almost all cases faster than Calc (especially in
+math involving really big numbers, where it is B<much> faster), and there is
+no penalty if Math::BigInt::GMP is not installed, it is a good idea to always
+use the following:
+
+       use Math::BigInt lib => 'GMP';
+
+Different low-level libraries use different formats to store the
+numbers. You should B<NOT> depend on the number having a specific format
+internally.
+
+See the respective math library module documentation for further details.
 
 =head2 SIGN
 
-The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.
+The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
 
 A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
@@ -2450,26 +3811,24 @@ that:
 C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
 in one go. Both the returned mantissa and exponent have a sign.
 
-Currently, for BigInts C<$e> will be always 0, except for NaN, +inf and -inf,
-where it will be NaN; and for $x == 0, where it will be 1
-(to be compatible with Math::BigFloat's internal representation of a zero as
-C<0E1>).
+Currently, for BigInts C<$e> is always 0, except for NaN, +inf and -inf,
+where it is C<NaN>; and for C<$x == 0>, where it is C<1> (to be compatible
+with Math::BigFloat's internal representation of a zero as C<0E1>).
 
-C<$m> will always be a copy of the original number. The relation between $e
-and $m might change in the future, but will always be equivalent in a
-numerical sense, e.g. $m might get minimized.
+C<$m> is currently just a copy of the original number. The relation between
+C<$e> and C<$m> will stay always the same, though their real values might
+change.
 
 =head1 EXAMPLES
  
-  use Math::BigInt qw(bstr);
+  use Math::BigInt;
 
   sub bint { Math::BigInt->new(shift); }
 
-  $x = bstr("1234")                    # string "1234"
+  $x = Math::BigInt->bstr("1234")              # string "1234"
   $x = "$x";                           # same as bstr()
-  $x = bneg("1234")                    # Bigint "-1234"
-  $x = Math::BigInt->bneg("1234");     # Bigint "-1234"
-  $x = Math::BigInt->babs("-12345");   # Bigint "12345"
+  $x = Math::BigInt->bneg("1234");     # BigInt "-1234"
+  $x = Math::BigInt->babs("-12345");   # BigInt "12345"
   $x = Math::BigInt->bnorm("-0 00");   # BigInt "0"
   $x = bint(1) + bint(2);              # BigInt "3"
   $x = bint(1) + "2";                  # ditto (auto-BigIntify of "2")
@@ -2477,10 +3836,9 @@ numerical sense, e.g. $m might get minimized.
   $x = $x + 5 / 2;                     # BigInt "3"
   $x = $x ** 3;                        # BigInt "27"
   $x *= 2;                             # BigInt "54"
-  $x = new Math::BigInt;               # BigInt "0"
+  $x = Math::BigInt->new(0);           # BigInt "0"
   $x--;                                # BigInt "-1"
   $x = Math::BigInt->badd(4,5)         # BigInt "9"
-  $x = Math::BigInt::badd(4,5)         # BigInt "9"
   print $x->bsstr();                   # 9e+0
 
 Examples for rounding:
@@ -2490,22 +3848,22 @@ Examples for rounding:
 
   $x = Math::BigFloat->new(123.4567);
   $y = Math::BigFloat->new(123.456789);
-  $Math::BigFloat::accuracy = 4;       # no more A than 4
+  Math::BigFloat->accuracy(4);         # no more A than 4
 
   ok ($x->copy()->fround(),123.4);     # even rounding
   print $x->copy()->fround(),"\n";     # 123.4
   Math::BigFloat->round_mode('odd');   # round to odd
   print $x->copy()->fround(),"\n";     # 123.5
-  $Math::BigFloat::accuracy = 5;       # no more A than 5
+  Math::BigFloat->accuracy(5);         # no more A than 5
   Math::BigFloat->round_mode('odd');   # round to odd
   print $x->copy()->fround(),"\n";     # 123.46
   $y = $x->copy()->fround(4),"\n";     # A = 4: 123.4
   print "$y, ",$y->accuracy(),"\n";    # 123.4, 4
 
-  $Math::BigFloat::accuracy = undef;    # A not important
-  $Math::BigFloat::precision = 2;       # P important
-  print $x->copy()->bnorm(),"\n";       # 123.46
-  print $x->copy()->fround(),"\n";      # 123.46
+  Math::BigFloat->accuracy(undef);     # A not important now
+  Math::BigFloat->precision(2);        # P important
+  print $x->copy()->bnorm(),"\n";      # 123.46
+  print $x->copy()->fround(),"\n";     # 123.46
 
 Examples for converting:
 
@@ -2514,15 +3872,15 @@ Examples for converting:
 
 =head1 Autocreating constants
 
-After C<use Math::BigInt ':constant'> all the B<integer> decimal constants
-in the given scope are converted to C<Math::BigInt>. This conversion
-happens at compile time.
+After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
+and binary constants in the given scope are converted to C<Math::BigInt>.
+This conversion happens at compile time. 
 
 In particular,
 
   perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
 
-prints the integer value of C<2**100>.  Note that without conversion of 
+prints the integer value of C<2**100>. Note that without conversion of 
 constants the expression 2**100 will be calculated as perl scalar.
 
 Please note that strings and floating point constants are not affected,
@@ -2536,7 +3894,25 @@ so that
                + '123456789123456789';
 
 do not work. You need an explicit Math::BigInt->new() around one of the
-operands.
+operands. You should also quote large constants to protect loss of precision:
+
+       use Math::BigInt;
+
+       $x = Math::BigInt->new('1234567889123456789123456789123456789');
+
+Without the quotes Perl would convert the large number to a floating point
+constant at compile time and then hand the result to BigInt, which results in
+an truncated result or a NaN.
+
+This also applies to integers that look like floating point constants:
+
+       use Math::BigInt ':constant';
+
+       print ref(123e2),"\n";
+       print ref(123.2e2),"\n";
+
+will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
+to get this to work.
 
 =head1 PERFORMANCE
 
@@ -2548,12 +3924,21 @@ $x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
 more time then the actual addition.
 
 With a technique called copy-on-write, the cost of copying with overload could
-be minimized or even completely avoided. This is currently not implemented.
-
-The new version of this module is slower on new(), bstr() and numify(). Some
-operations may be slower for small numbers, but are significantly faster for
-big numbers. Other operations are now constant (O(1), like bneg(), babs()
-etc), instead of O(N) and thus nearly always take much less time.
+be minimized or even completely avoided. A test implementation of COW did show
+performance gains for overloaded math, but introduced a performance loss due
+to a constant overhead for all other operations. So Math::BigInt does currently
+not COW.
+
+The rewritten version of this module (vs. v0.01) is slower on certain
+operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
+does now more work and handles much more cases. The time spent in these
+operations is usually gained in the other math operations so that code on
+the average should get (much) faster. If they don't, please contact the author.
+
+Some operations may be slower for small numbers, but are significantly faster
+for big numbers. Other operations are now constant (O(1), like C<bneg()>,
+C<babs()> etc), instead of O(N) and thus nearly always take much less time.
+These optimizations were done on purpose.
 
 If you find the Calc module to slow, try to install any of the replacement
 modules and see if they help you. 
@@ -2564,25 +3949,129 @@ You can use an alternative library to drive Math::BigInt via:
 
        use Math::BigInt lib => 'Module';
 
-The default is called Math::BigInt::Calc and is a pure-perl implementation
-that consists mainly of the standard routine present in earlier versions of
-Math::BigInt.
+See L<MATH LIBRARY> for more information.
 
-There are also Math::BigInt::Scalar (primarily for testing) and
-Math::BigInt::BitVect; as well as Math::BigInt::Pari and likely others.
-All these can be found via L<http://search.cpan.org/>:
+For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
 
-       use Math::BigInt lib => 'BitVect';
+=head2 SUBCLASSING
+
+=head1 Subclassing Math::BigInt
+
+The basic design of Math::BigInt allows simple subclasses with very little
+work, as long as a few simple rules are followed:
+
+=over 2
+
+=item *
+
+The public API must remain consistent, i.e. if a sub-class is overloading
+addition, the sub-class must use the same name, in this case badd(). The
+reason for this is that Math::BigInt is optimized to call the object methods
+directly.
+
+=item *
+
+The private object hash keys like C<$x->{sign}> may not be changed, but
+additional keys can be added, like C<$x->{_custom}>.
+
+=item *
+
+Accessor functions are available for all existing object hash keys and should
+be used instead of directly accessing the internal hash keys. The reason for
+this is that Math::BigInt itself has a pluggable interface which permits it
+to support different storage methods.
+
+=back
+
+More complex sub-classes may have to replicate more of the logic internal of
+Math::BigInt if they need to change more basic behaviors. A subclass that
+needs to merely change the output only needs to overload C<bstr()>. 
+
+All other object methods and overloaded functions can be directly inherited
+from the parent class.
+
+At the very minimum, any subclass will need to provide it's own C<new()> and can
+store additional hash keys in the object. There are also some package globals
+that must be defined, e.g.:
+
+  # Globals
+  $accuracy = undef;
+  $precision = -2;       # round to 2 decimal places
+  $round_mode = 'even';
+  $div_scale = 40;
+
+Additionally, you might want to provide the following two globals to allow
+auto-upgrading and auto-downgrading to work correctly:
+
+  $upgrade = undef;
+  $downgrade = undef;
+
+This allows Math::BigInt to correctly retrieve package globals from the 
+subclass, like C<$SubClass::precision>.  See t/Math/BigInt/Subclass.pm or
+t/Math/BigFloat/SubClass.pm completely functional subclass examples.
+
+Don't forget to 
+
+       use overload;
+
+in your subclass to automatically inherit the overloading from the parent. If
+you like, you can change part of the overloading, look at Math::String for an
+example.
+
+=head1 UPGRADING
+
+When used like this:
+
+       use Math::BigInt upgrade => 'Foo::Bar';
+
+certain operations will 'upgrade' their calculation and thus the result to
+the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
 
-       my $x = Math::BigInt->new(2);
-       print $x ** (1024*1024);
+       use Math::BigInt upgrade => 'Math::BigFloat';
 
-For more benchmark results see http://bloodgate.com/perl/benchmarks.html
+As a shortcut, you can use the module C<bignum>:
+
+       use bignum;
+
+Also good for oneliners:
+
+       perl -Mbignum -le 'print 2 ** 255'
+
+This makes it possible to mix arguments of different classes (as in 2.5 + 2)
+as well es preserve accuracy (as in sqrt(3)).
+
+Beware: This feature is not fully implemented yet.
+
+=head2 Auto-upgrade
+
+The following methods upgrade themselves unconditionally; that is if upgrade
+is in effect, they will always hand up their work:
+
+=over 2
+
+=item bsqrt()
+
+=item div()
+
+=item blog()
+
+=back
+
+Beware: This list is not complete.
+
+All other methods upgrade themselves only when one (or all) of their
+arguments are of the class mentioned in $upgrade (This might change in later
+versions to a more sophisticated scheme):
 
 =head1 BUGS
 
 =over 2
 
+=item broot() does not work
+
+The broot() function in BigInt may only work for small values. This will be
+fixed in a later version.
+
 =item Out of Memory!
 
 Under Perl prior to 5.6.0 having an C<use Math::BigInt ':constant';> and 
@@ -2606,14 +4095,16 @@ known to be troublesome:
 
 =over 1
 
-=item stringify, bstr(), bsstr() and 'cmp'
+=item bstr(), bsstr() and 'cmp'
 
-Both stringify and bstr() now drop the leading '+'. The old code would return
-'+3', the new returns '3'. This is to be consistent with Perl and to make
-cmp (especially with overloading) to work as you expect. It also solves
-problems with Test.pm, it's ok() uses 'eq' internally. 
+Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
+drop the leading '+'. The old code would return '+3', the new returns '3'.
+This is to be consistent with Perl and to make C<cmp> (especially with
+overloading) to work as you expect. It also solves problems with C<Test.pm>,
+because it's C<ok()> uses 'eq' internally. 
 
-Mark said, when asked about to drop the '+' altogether, or make only cmp work:
+Mark Biggar said, when asked about to drop the '+' altogether, or make only
+C<cmp> work:
 
        I agree (with the first alternative), don't add the '+' on positive
        numbers.  It's not as important anymore with the new internal 
@@ -2642,8 +4133,9 @@ Additionally, the following still works:
 
 There is now a C<bsstr()> method to get the string in scientific notation aka
 C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
-for comparisation, but Perl will represent some numbers as 100 and others
-as 1e+308. If in doubt, convert both arguments to Math::BigInt before doing eq:
+for comparison, but Perl will represent some numbers as 100 and others
+as 1e+308. If in doubt, convert both arguments to Math::BigInt before 
+comparing them as strings:
 
        use Test;
         BEGIN { plan tests => 3 }
@@ -2655,8 +4147,12 @@ as 1e+308. If in doubt, convert both arguments to Math::BigInt before doing eq:
        $y = Math::BigInt->new($y);
        ok ($x,$y);                     # okay
 
-There is not yet a way to get a number automatically represented in exactly
-the way Perl represents it.
+Alternatively, simple use C<< <=> >> for comparisons, this will get it
+always right. There is not yet a way to get a number automatically represented
+as a string that matches exactly the way Perl represents it.
+
+See also the section about L<Infinity and Not a Number> for problems in
+comparing NaNs.
 
 =item int()
 
@@ -2668,16 +4164,27 @@ Perl scalar:
        $x = Math::BigFloat->new(123.45);
        $y = int($x);                           # BigInt 123
 
-In all Perl versions you can use C<as_number()> for the same effect:
+In all Perl versions you can use C<as_number()> or C<as_int> for the same
+effect:
 
        $x = Math::BigFloat->new(123.45);
        $y = $x->as_number();                   # BigInt 123
+       $y = $x->as_int();                      # ditto
 
 This also works for other subclasses, like Math::String.
 
-It is yet unlcear whether overloaded int() should return a scalar or a BigInt.
+It is yet unclear whether overloaded int() should return a scalar or a BigInt.
 
-=item bdiv
+If you want a real Perl scalar, use C<numify()>:
+
+       $y = $x->numify();                      # 123 as scalar
+
+This is seldom necessary, though, because this is done automatically, like
+when you access an array:
+
+       $z = $array[$x];                        # does work automatically
+
+=item length
 
 The following will probably not do what you expect:
 
@@ -2695,8 +4202,8 @@ The following will probably not do what you expect:
 
        print $c->bdiv(10000),"\n";
 
-It prints both quotient and reminder since print calls C<bdiv()> in list
-context. Also, C<bdiv()> will modify $c, so be carefull. You probably want
+It prints both quotient and remainder since print calls C<bdiv()> in list
+context. Also, C<bdiv()> will modify $c, so be careful. You probably want
 to use
        
        print $c / 10000,"\n";
@@ -2709,10 +4216,12 @@ real-valued quotient of the two operands, and the remainder (when it is
 nonzero) always has the same sign as the second operand; so, for
 example,
 
-        1 / 4  => ( 0, 1)
-        1 / -4 => (-1,-3)
-       -3 / 4  => (-1, 1)
-       -3 / -4 => ( 0,-3)
+         1 / 4  => ( 0, 1)
+         1 / -4 => (-1,-3)
+        -3 / 4  => (-1, 1)
+        -3 / -4 => ( 0,-3)
+       -11 / 2  => (-5,1)
+        11 /-2  => (-5,-1)
 
 As a consequence, the behavior of the operator % agrees with the
 behavior of Perl's built-in % operator (as documented in the perlop
@@ -2721,7 +4230,9 @@ manpage), and the equation
        $x == ($x / $y) * $y + ($x % $y)
 
 holds true for any $x and $y, which justifies calling the two return
-values of bdiv() the quotient and remainder.
+values of bdiv() the quotient and remainder. The only exception to this rule
+are when $y == 0 and $x is negative, then the remainder will also be
+negative. See below under "infinity handling" for the reasoning behind this.
 
 Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
 not change BigInt's way to do things. This is because under 'use integer' Perl
@@ -2729,6 +4240,47 @@ will do what the underlying C thinks is right and this is different for each
 system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
 the author to implement it ;)
 
+=item infinity handling
+
+Here are some examples that explain the reasons why certain results occur while
+handling infinity:
+
+The following table shows the result of the division and the remainder, so that
+the equation above holds true. Some "ordinary" cases are strewn in to show more
+clearly the reasoning:
+
+       A /  B  =   C,     R so that C *    B +    R =    A
+     =========================================================
+       5 /   8 =   0,     5         0 *    8 +    5 =    5
+       0 /   8 =   0,     0         0 *    8 +    0 =    0
+       0 / inf =   0,     0         0 *  inf +    0 =    0
+       0 /-inf =   0,     0         0 * -inf +    0 =    0
+       5 / inf =   0,     5         0 *  inf +    5 =    5
+       5 /-inf =   0,     5         0 * -inf +    5 =    5
+       -5/ inf =   0,    -5         0 *  inf +   -5 =   -5
+       -5/-inf =   0,    -5         0 * -inf +   -5 =   -5
+       inf/   5 =  inf,    0      inf *    5 +    0 =  inf
+      -inf/   5 = -inf,    0      -inf *    5 +    0 = -inf
+       inf/  -5 = -inf,    0     -inf *   -5 +    0 =  inf
+      -inf/  -5 =  inf,    0       inf *   -5 +    0 = -inf
+        5/   5 =    1,    0         1 *    5 +    0 =    5
+       -5/  -5 =    1,    0         1 *   -5 +    0 =   -5
+       inf/ inf =    1,    0         1 *  inf +    0 =  inf
+      -inf/-inf =    1,    0         1 * -inf +    0 = -inf
+       inf/-inf =   -1,    0        -1 * -inf +    0 =  inf
+      -inf/ inf =   -1,    0         1 * -inf +    0 = -inf
+        8/   0 =  inf,    8       inf *    0 +    8 =    8 
+       inf/   0 =  inf,  inf       inf *    0 +  inf =  inf 
+         0/   0 =  NaN
+
+These cases below violate the "remainder has the sign of the second of the two
+arguments", since they wouldn't match up otherwise.
+
+       A /  B  =   C,     R so that C *    B +    R =    A
+     ========================================================
+      -inf/   0 = -inf, -inf      -inf *    0 +  inf = -inf 
+       -8/   0 = -inf,   -8      -inf *    0 +    8 = -8 
+
 =item Modifying and =
 
 Beware of:
@@ -2784,8 +4336,6 @@ since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
 needs to preserve $x since it does not know that it later will get overwritten.
 This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
 
-With Copy-On-Write, this issue will be gone. Stay tuned...
-
 =item Mixing different object types
 
 In Perl you will get a floating point value if you do one of the following:
@@ -2811,7 +4361,7 @@ With overloaded math, only the first two variants will result in a BigFloat:
        $integer = $mbi2 / $mbf;        # $mbi2->bdiv()
 
 This is because math with overloaded operators follows the first (dominating)
-operand, this one's operation is called and returns thus the result. So,
+operand, and the operation of that is called and returns thus the result. So,
 Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
 the result should be a Math::BigFloat or the second operant is one.
 
@@ -2843,23 +4393,30 @@ will both result in the proper type due to the way the overloaded math works.
 
 This section also applies to other overloaded math packages, like Math::String.
 
+One solution to you problem might be autoupgrading|upgrading. See the
+pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
+
 =item bsqrt()
 
-C<bsqrt()> works only good if the result is an big integer, e.g. the square
+C<bsqrt()> works only good if the result is a big integer, e.g. the square
 root of 144 is 12, but from 12 the square root is 3, regardless of rounding
-mode.
+mode. The reason is that the result is always truncated to an integer.
 
 If you want a better approximation of the square root, then use:
 
        $x = Math::BigFloat->new(12);
-       $Math::BigFloat::precision = 0;
+       Math::BigFloat->precision(0);
        Math::BigFloat->round_mode('even');
        print $x->copy->bsqrt(),"\n";           # 4
 
-       $Math::BigFloat::precision = 2;
+       Math::BigFloat->precision(2);
        print $x->bsqrt(),"\n";                 # 3.46
        print $x->bsqrt(3),"\n";                # 3.464
 
+=item brsft()
+
+For negative numbers in base see also L<brsft|brsft>.
+
 =back
 
 =head1 LICENSE
@@ -2869,13 +4426,25 @@ the same terms as Perl itself.
 
 =head1 SEE ALSO
 
-L<Math::BigFloat> and L<Math::Big>.
+L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
+L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and  L<Math::BigInt::GMP>.
 
-L<Math::BigInt::BitVect> and L<Math::BigInt::Pari>.
+The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
+because they solve the autoupgrading/downgrading issue, at least partly.
+
+The package at
+L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
+more documentation including a full version history, testcases, empty
+subclass files and benchmarks.
 
 =head1 AUTHORS
 
 Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
-Completely rewritten by Tels http://bloodgate.com in late 2000, 2001.
+Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2004
+and still at it in 2005.
+
+Many people contributed in one or more ways to the final beast, see the file
+CREDITS for an (incomplete) list. If you miss your name, please drop me a
+mail. Thank you!
 
 =cut