This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
New perldelta for 5.27.6
[perl5.git] / pod / perlthrtut.pod
index cdc409f..956214f 100644 (file)
+=encoding utf8
+
 =head1 NAME
 
-perlthrtut - tutorial on threads in Perl
+perlthrtut - Tutorial on threads in Perl
 
 =head1 DESCRIPTION
 
-B<NOTE>: this tutorial describes the new Perl threading flavour
-introduced in Perl 5.6.0 called interpreter threads, or ithreads
-for short.  There is another older perl threading flavour called
-the 5.005 model, unsurprisingly for 5.005 versions of Perl.
+This tutorial describes the use of Perl interpreter threads (sometimes
+referred to as I<ithreads>).  In this
+model, each thread runs in its own Perl interpreter, and any data sharing
+between threads must be explicit.  The user-level interface for I<ithreads>
+uses the L<threads> class.
+
+B<NOTE>: There was another older Perl threading flavor called the 5.005 model
+that used the L<threads> class.  This old model was known to have problems, is
+deprecated, and was removed for release 5.10.  You are
+strongly encouraged to migrate any existing 5.005 threads code to the new
+model as soon as possible.
 
 You can see which (or neither) threading flavour you have by
-running C<perl -V> and look at the C<Platform> section.
+running C<perl -V> and looking at the C<Platform> section.
 If you have C<useithreads=define> you have ithreads, if you
 have C<use5005threads=define> you have 5.005 threads.
 If you have neither, you don't have any thread support built in.
 If you have both, you are in trouble.
 
-This document is unfortunately rather sparse as of 2001-Sep-17.
+The L<threads> and L<threads::shared> modules are included in the core Perl
+distribution.  Additionally, they are maintained as a separate modules on
+CPAN, so you can check there for any updates.
+
+=head1 What Is A Thread Anyway?
+
+A thread is a flow of control through a program with a single
+execution point.
+
+Sounds an awful lot like a process, doesn't it? Well, it should.
+Threads are one of the pieces of a process.  Every process has at least
+one thread and, up until now, every process running Perl had only one
+thread.  With 5.8, though, you can create extra threads.  We're going
+to show you how, when, and why.
+
+=head1 Threaded Program Models
+
+There are three basic ways that you can structure a threaded
+program.  Which model you choose depends on what you need your program
+to do.  For many non-trivial threaded programs, you'll need to choose
+different models for different pieces of your program.
+
+=head2 Boss/Worker
+
+The boss/worker model usually has one I<boss> thread and one or more
+I<worker> threads.  The boss thread gathers or generates tasks that need
+to be done, then parcels those tasks out to the appropriate worker
+thread.
+
+This model is common in GUI and server programs, where a main thread
+waits for some event and then passes that event to the appropriate
+worker threads for processing.  Once the event has been passed on, the
+boss thread goes back to waiting for another event.
+
+The boss thread does relatively little work.  While tasks aren't
+necessarily performed faster than with any other method, it tends to
+have the best user-response times.
+
+=head2 Work Crew
+
+In the work crew model, several threads are created that do
+essentially the same thing to different pieces of data.  It closely
+mirrors classical parallel processing and vector processors, where a
+large array of processors do the exact same thing to many pieces of
+data.
+
+This model is particularly useful if the system running the program
+will distribute multiple threads across different processors.  It can
+also be useful in ray tracing or rendering engines, where the
+individual threads can pass on interim results to give the user visual
+feedback.
+
+=head2 Pipeline
+
+The pipeline model divides up a task into a series of steps, and
+passes the results of one step on to the thread processing the
+next.  Each thread does one thing to each piece of data and passes the
+results to the next thread in line.
+
+This model makes the most sense if you have multiple processors so two
+or more threads will be executing in parallel, though it can often
+make sense in other contexts as well.  It tends to keep the individual
+tasks small and simple, as well as allowing some parts of the pipeline
+to block (on I/O or system calls, for example) while other parts keep
+going.  If you're running different parts of the pipeline on different
+processors you may also take advantage of the caches on each
+processor.
+
+This model is also handy for a form of recursive programming where,
+rather than having a subroutine call itself, it instead creates
+another thread.  Prime and Fibonacci generators both map well to this
+form of the pipeline model. (A version of a prime number generator is
+presented later on.)
+
+=head1 What kind of threads are Perl threads?
+
+If you have experience with other thread implementations, you might
+find that things aren't quite what you expect.  It's very important to
+remember when dealing with Perl threads that I<Perl Threads Are Not X
+Threads> for all values of X.  They aren't POSIX threads, or
+DecThreads, or Java's Green threads, or Win32 threads.  There are
+similarities, and the broad concepts are the same, but if you start
+looking for implementation details you're going to be either
+disappointed or confused.  Possibly both.
+
+This is not to say that Perl threads are completely different from
+everything that's ever come before. They're not.  Perl's threading
+model owes a lot to other thread models, especially POSIX.  Just as
+Perl is not C, though, Perl threads are not POSIX threads.  So if you
+find yourself looking for mutexes, or thread priorities, it's time to
+step back a bit and think about what you want to do and how Perl can
+do it.
+
+However, it is important to remember that Perl threads cannot magically
+do things unless your operating system's threads allow it. So if your
+system blocks the entire process on C<sleep()>, Perl usually will, as well.
+
+B<Perl Threads Are Different.>
+
+=head1 Thread-Safe Modules
+
+The addition of threads has changed Perl's internals
+substantially. There are implications for people who write
+modules with XS code or external libraries. However, since Perl data is
+not shared among threads by default, Perl modules stand a high chance of
+being thread-safe or can be made thread-safe easily.  Modules that are not
+tagged as thread-safe should be tested or code reviewed before being used
+in production code.
+
+Not all modules that you might use are thread-safe, and you should
+always assume a module is unsafe unless the documentation says
+otherwise.  This includes modules that are distributed as part of the
+core.  Threads are a relatively new feature, and even some of the standard
+modules aren't thread-safe.
+
+Even if a module is thread-safe, it doesn't mean that the module is optimized
+to work well with threads. A module could possibly be rewritten to utilize
+the new features in threaded Perl to increase performance in a threaded
+environment.
+
+If you're using a module that's not thread-safe for some reason, you
+can protect yourself by using it from one, and only one thread at all.
+If you need multiple threads to access such a module, you can use semaphores and
+lots of programming discipline to control access to it.  Semaphores
+are covered in L</"Basic semaphores">.
+
+See also L</"Thread-Safety of System Libraries">.
+
+=head1 Thread Basics
+
+The L<threads> module provides the basic functions you need to write
+threaded programs.  In the following sections, we'll cover the basics,
+showing you what you need to do to create a threaded program.   After
+that, we'll go over some of the features of the L<threads> module that
+make threaded programming easier.
+
+=head2 Basic Thread Support
+
+Thread support is a Perl compile-time option. It's something that's
+turned on or off when Perl is built at your site, rather than when
+your programs are compiled. If your Perl wasn't compiled with thread
+support enabled, then any attempt to use threads will fail.
+
+Your programs can use the Config module to check whether threads are
+enabled. If your program can't run without them, you can say something
+like:
+
+    use Config;
+    $Config{useithreads} or
+        die('Recompile Perl with threads to run this program.');
+
+A possibly-threaded program using a possibly-threaded module might
+have code like this:
+
+    use Config;
+    use MyMod;
+
+    BEGIN {
+        if ($Config{useithreads}) {
+            # We have threads
+            require MyMod_threaded;
+            import MyMod_threaded;
+        } else {
+            require MyMod_unthreaded;
+            import MyMod_unthreaded;
+        }
+    }
+
+Since code that runs both with and without threads is usually pretty
+messy, it's best to isolate the thread-specific code in its own
+module.  In our example above, that's what C<MyMod_threaded> is, and it's
+only imported if we're running on a threaded Perl.
+
+=head2 A Note about the Examples
+
+In a real situation, care should be taken that all threads are finished
+executing before the program exits.  That care has B<not> been taken in these
+examples in the interest of simplicity.  Running these examples I<as is> will
+produce error messages, usually caused by the fact that there are still
+threads running when the program exits.  You should not be alarmed by this.
+
+=head2 Creating Threads
+
+The L<threads> module provides the tools you need to create new
+threads.  Like any other module, you need to tell Perl that you want to use
+it; C<use threads;> imports all the pieces you need to create basic
+threads.
+
+The simplest, most straightforward way to create a thread is with C<create()>:
+
+    use threads;
+
+    my $thr = threads->create(\&sub1);
+
+    sub sub1 {
+        print("In the thread\n");
+    }
+
+The C<create()> method takes a reference to a subroutine and creates a new
+thread that starts executing in the referenced subroutine.  Control
+then passes both to the subroutine and the caller.
+
+If you need to, your program can pass parameters to the subroutine as
+part of the thread startup.  Just include the list of parameters as
+part of the C<threads-E<gt>create()> call, like this:
+
+    use threads;
+
+    my $Param3 = 'foo';
+    my $thr1 = threads->create(\&sub1, 'Param 1', 'Param 2', $Param3);
+    my @ParamList = (42, 'Hello', 3.14);
+    my $thr2 = threads->create(\&sub1, @ParamList);
+    my $thr3 = threads->create(\&sub1, qw(Param1 Param2 Param3));
+
+    sub sub1 {
+        my @InboundParameters = @_;
+        print("In the thread\n");
+        print('Got parameters >', join('<>',@InboundParameters), "<\n");
+    }
+
+The last example illustrates another feature of threads.  You can spawn
+off several threads using the same subroutine.  Each thread executes
+the same subroutine, but in a separate thread with a separate
+environment and potentially separate arguments.
+
+C<new()> is a synonym for C<create()>.
+
+=head2 Waiting For A Thread To Exit
+
+Since threads are also subroutines, they can return values.  To wait
+for a thread to exit and extract any values it might return, you can
+use the C<join()> method:
+
+    use threads;
+
+    my ($thr) = threads->create(\&sub1);
+
+    my @ReturnData = $thr->join();
+    print('Thread returned ', join(', ', @ReturnData), "\n");
+
+    sub sub1 { return ('Fifty-six', 'foo', 2); }
+
+In the example above, the C<join()> method returns as soon as the thread
+ends.  In addition to waiting for a thread to finish and gathering up
+any values that the thread might have returned, C<join()> also performs
+any OS cleanup necessary for the thread.  That cleanup might be
+important, especially for long-running programs that spawn lots of
+threads.  If you don't want the return values and don't want to wait
+for the thread to finish, you should call the C<detach()> method
+instead, as described next.
+
+NOTE: In the example above, the thread returns a list, thus necessitating
+that the thread creation call be made in list context (i.e., C<my ($thr)>).
+See L<< threads/"$thr->join()" >> and L<threads/"THREAD CONTEXT"> for more
+details on thread context and return values.
+
+=head2 Ignoring A Thread
+
+C<join()> does three things: it waits for a thread to exit, cleans up
+after it, and returns any data the thread may have produced.  But what
+if you're not interested in the thread's return values, and you don't
+really care when the thread finishes? All you want is for the thread
+to get cleaned up after when it's done.
+
+In this case, you use the C<detach()> method.  Once a thread is detached,
+it'll run until it's finished; then Perl will clean up after it
+automatically.
+
+    use threads;
+
+    my $thr = threads->create(\&sub1);   # Spawn the thread
+
+    $thr->detach();   # Now we officially don't care any more
+
+    sleep(15);        # Let thread run for awhile
+
+    sub sub1 {
+        my $count = 0;
+        while (1) {
+            $count++;
+            print("\$count is $count\n");
+            sleep(1);
+        }
+    }
+
+Once a thread is detached, it may not be joined, and any return data
+that it might have produced (if it was done and waiting for a join) is
+lost.
+
+C<detach()> can also be called as a class method to allow a thread to
+detach itself:
+
+    use threads;
+
+    my $thr = threads->create(\&sub1);
+
+    sub sub1 {
+        threads->detach();
+        # Do more work
+    }
+
+=head2 Process and Thread Termination
+
+With threads one must be careful to make sure they all have a chance to
+run to completion, assuming that is what you want.
+
+An action that terminates a process will terminate I<all> running
+threads.  die() and exit() have this property,
+and perl does an exit when the main thread exits,
+perhaps implicitly by falling off the end of your code,
+even if that's not what you want.
+
+As an example of this case, this code prints the message
+"Perl exited with active threads: 2 running and unjoined":
+
+    use threads;
+    my $thr1 = threads->new(\&thrsub, "test1");
+    my $thr2 = threads->new(\&thrsub, "test2");
+    sub thrsub {
+       my ($message) = @_;
+       sleep 1;
+       print "thread $message\n";
+    }
+
+But when the following lines are added at the end:
+
+    $thr1->join();
+    $thr2->join();
+
+it prints two lines of output, a perhaps more useful outcome.
+
+=head1 Threads And Data
+
+Now that we've covered the basics of threads, it's time for our next
+topic: Data.  Threading introduces a couple of complications to data
+access that non-threaded programs never need to worry about.
+
+=head2 Shared And Unshared Data
+
+The biggest difference between Perl I<ithreads> and the old 5.005 style
+threading, or for that matter, to most other threading systems out there,
+is that by default, no data is shared. When a new Perl thread is created,
+all the data associated with the current thread is copied to the new
+thread, and is subsequently private to that new thread!
+This is similar in feel to what happens when a Unix process forks,
+except that in this case, the data is just copied to a different part of
+memory within the same process rather than a real fork taking place.
+
+To make use of threading, however, one usually wants the threads to share
+at least some data between themselves. This is done with the
+L<threads::shared> module and the C<:shared> attribute:
+
+    use threads;
+    use threads::shared;
+
+    my $foo :shared = 1;
+    my $bar = 1;
+    threads->create(sub { $foo++; $bar++; })->join();
+
+    print("$foo\n");  # Prints 2 since $foo is shared
+    print("$bar\n");  # Prints 1 since $bar is not shared
+
+In the case of a shared array, all the array's elements are shared, and for
+a shared hash, all the keys and values are shared. This places
+restrictions on what may be assigned to shared array and hash elements: only
+simple values or references to shared variables are allowed - this is
+so that a private variable can't accidentally become shared. A bad
+assignment will cause the thread to die. For example:
+
+    use threads;
+    use threads::shared;
+
+    my $var          = 1;
+    my $svar :shared = 2;
+    my %hash :shared;
+
+    ... create some threads ...
+
+    $hash{a} = 1;       # All threads see exists($hash{a})
+                        # and $hash{a} == 1
+    $hash{a} = $var;    # okay - copy-by-value: same effect as previous
+    $hash{a} = $svar;   # okay - copy-by-value: same effect as previous
+    $hash{a} = \$svar;  # okay - a reference to a shared variable
+    $hash{a} = \$var;   # This will die
+    delete($hash{a});   # okay - all threads will see !exists($hash{a})
+
+Note that a shared variable guarantees that if two or more threads try to
+modify it at the same time, the internal state of the variable will not
+become corrupted. However, there are no guarantees beyond this, as
+explained in the next section.
+
+=head2 Thread Pitfalls: Races
+
+While threads bring a new set of useful tools, they also bring a
+number of pitfalls.  One pitfall is the race condition:
+
+    use threads;
+    use threads::shared;
+
+    my $x :shared = 1;
+    my $thr1 = threads->create(\&sub1);
+    my $thr2 = threads->create(\&sub2);
+
+    $thr1->join();
+    $thr2->join();
+    print("$x\n");
+
+    sub sub1 { my $foo = $x; $x = $foo + 1; }
+    sub sub2 { my $bar = $x; $x = $bar + 1; }
+
+What do you think C<$x> will be? The answer, unfortunately, is I<it
+depends>. Both C<sub1()> and C<sub2()> access the global variable C<$x>, once
+to read and once to write.  Depending on factors ranging from your
+thread implementation's scheduling algorithm to the phase of the moon,
+C<$x> can be 2 or 3.
+
+Race conditions are caused by unsynchronized access to shared
+data.  Without explicit synchronization, there's no way to be sure that
+nothing has happened to the shared data between the time you access it
+and the time you update it.  Even this simple code fragment has the
+possibility of error:
+
+    use threads;
+    my $x :shared = 2;
+    my $y :shared;
+    my $z :shared;
+    my $thr1 = threads->create(sub { $y = $x; $x = $y + 1; });
+    my $thr2 = threads->create(sub { $z = $x; $x = $z + 1; });
+    $thr1->join();
+    $thr2->join();
+
+Two threads both access C<$x>.  Each thread can potentially be interrupted
+at any point, or be executed in any order.  At the end, C<$x> could be 3
+or 4, and both C<$y> and C<$z> could be 2 or 3.
+
+Even C<$x += 5> or C<$x++> are not guaranteed to be atomic.
+
+Whenever your program accesses data or resources that can be accessed
+by other threads, you must take steps to coordinate access or risk
+data inconsistency and race conditions. Note that Perl will protect its
+internals from your race conditions, but it won't protect you from you.
+
+=head1 Synchronization and control
+
+Perl provides a number of mechanisms to coordinate the interactions
+between themselves and their data, to avoid race conditions and the like.
+Some of these are designed to resemble the common techniques used in thread
+libraries such as C<pthreads>; others are Perl-specific. Often, the
+standard techniques are clumsy and difficult to get right (such as
+condition waits). Where possible, it is usually easier to use Perlish
+techniques such as queues, which remove some of the hard work involved.
+
+=head2 Controlling access: lock()
+
+The C<lock()> function takes a shared variable and puts a lock on it.
+No other thread may lock the variable until the variable is unlocked
+by the thread holding the lock. Unlocking happens automatically
+when the locking thread exits the block that contains the call to the
+C<lock()> function.  Using C<lock()> is straightforward: This example has
+several threads doing some calculations in parallel, and occasionally
+updating a running total:
+
+    use threads;
+    use threads::shared;
+
+    my $total :shared = 0;
+
+    sub calc {
+        while (1) {
+            my $result;
+            # (... do some calculations and set $result ...)
+            {
+                lock($total);  # Block until we obtain the lock
+                $total += $result;
+            } # Lock implicitly released at end of scope
+            last if $result == 0;
+        }
+    }
+
+    my $thr1 = threads->create(\&calc);
+    my $thr2 = threads->create(\&calc);
+    my $thr3 = threads->create(\&calc);
+    $thr1->join();
+    $thr2->join();
+    $thr3->join();
+    print("total=$total\n");
+
+C<lock()> blocks the thread until the variable being locked is
+available.  When C<lock()> returns, your thread can be sure that no other
+thread can lock that variable until the block containing the
+lock exits.
+
+It's important to note that locks don't prevent access to the variable
+in question, only lock attempts.  This is in keeping with Perl's
+longstanding tradition of courteous programming, and the advisory file
+locking that C<flock()> gives you.
+
+You may lock arrays and hashes as well as scalars.  Locking an array,
+though, will not block subsequent locks on array elements, just lock
+attempts on the array itself.
+
+Locks are recursive, which means it's okay for a thread to
+lock a variable more than once.  The lock will last until the outermost
+C<lock()> on the variable goes out of scope. For example:
+
+    my $x :shared;
+    doit();
+
+    sub doit {
+        {
+            {
+                lock($x); # Wait for lock
+                lock($x); # NOOP - we already have the lock
+                {
+                    lock($x); # NOOP
+                    {
+                        lock($x); # NOOP
+                        lockit_some_more();
+                    }
+                }
+            } # *** Implicit unlock here ***
+        }
+    }
+
+    sub lockit_some_more {
+        lock($x); # NOOP
+    } # Nothing happens here
+
+Note that there is no C<unlock()> function - the only way to unlock a
+variable is to allow it to go out of scope.
+
+A lock can either be used to guard the data contained within the variable
+being locked, or it can be used to guard something else, like a section
+of code. In this latter case, the variable in question does not hold any
+useful data, and exists only for the purpose of being locked. In this
+respect, the variable behaves like the mutexes and basic semaphores of
+traditional thread libraries.
+
+=head2 A Thread Pitfall: Deadlocks
+
+Locks are a handy tool to synchronize access to data, and using them
+properly is the key to safe shared data.  Unfortunately, locks aren't
+without their dangers, especially when multiple locks are involved.
+Consider the following code:
+
+    use threads;
+
+    my $x :shared = 4;
+    my $y :shared = 'foo';
+    my $thr1 = threads->create(sub {
+        lock($x);
+        sleep(20);
+        lock($y);
+    });
+    my $thr2 = threads->create(sub {
+        lock($y);
+        sleep(20);
+        lock($x);
+    });
+
+This program will probably hang until you kill it.  The only way it
+won't hang is if one of the two threads acquires both locks
+first.  A guaranteed-to-hang version is more complicated, but the
+principle is the same.
+
+The first thread will grab a lock on C<$x>, then, after a pause during which
+the second thread has probably had time to do some work, try to grab a
+lock on C<$y>.  Meanwhile, the second thread grabs a lock on C<$y>, then later
+tries to grab a lock on C<$x>.  The second lock attempt for both threads will
+block, each waiting for the other to release its lock.
+
+This condition is called a deadlock, and it occurs whenever two or
+more threads are trying to get locks on resources that the others
+own.  Each thread will block, waiting for the other to release a lock
+on a resource.  That never happens, though, since the thread with the
+resource is itself waiting for a lock to be released.
+
+There are a number of ways to handle this sort of problem.  The best
+way is to always have all threads acquire locks in the exact same
+order.  If, for example, you lock variables C<$x>, C<$y>, and C<$z>, always lock
+C<$x> before C<$y>, and C<$y> before C<$z>.  It's also best to hold on to locks for
+as short a period of time to minimize the risks of deadlock.
+
+The other synchronization primitives described below can suffer from
+similar problems.
+
+=head2 Queues: Passing Data Around
+
+A queue is a special thread-safe object that lets you put data in one
+end and take it out the other without having to worry about
+synchronization issues.  They're pretty straightforward, and look like
+this:
+
+    use threads;
+    use Thread::Queue;
+
+    my $DataQueue = Thread::Queue->new();
+    my $thr = threads->create(sub {
+        while (my $DataElement = $DataQueue->dequeue()) {
+            print("Popped $DataElement off the queue\n");
+        }
+    });
+
+    $DataQueue->enqueue(12);
+    $DataQueue->enqueue("A", "B", "C");
+    sleep(10);
+    $DataQueue->enqueue(undef);
+    $thr->join();
+
+You create the queue with C<Thread::Queue-E<gt>new()>.  Then you can
+add lists of scalars onto the end with C<enqueue()>, and pop scalars off
+the front of it with C<dequeue()>.  A queue has no fixed size, and can grow
+as needed to hold everything pushed on to it.
+
+If a queue is empty, C<dequeue()> blocks until another thread enqueues
+something.  This makes queues ideal for event loops and other
+communications between threads.
+
+=head2 Semaphores: Synchronizing Data Access
+
+Semaphores are a kind of generic locking mechanism. In their most basic
+form, they behave very much like lockable scalars, except that they
+can't hold data, and that they must be explicitly unlocked. In their
+advanced form, they act like a kind of counter, and can allow multiple
+threads to have the I<lock> at any one time.
+
+=head2 Basic semaphores
+
+Semaphores have two methods, C<down()> and C<up()>: C<down()> decrements the resource
+count, while C<up()> increments it. Calls to C<down()> will block if the
+semaphore's current count would decrement below zero.  This program
+gives a quick demonstration:
+
+    use threads;
+    use Thread::Semaphore;
+
+    my $semaphore = Thread::Semaphore->new();
+    my $GlobalVariable :shared = 0;
+
+    $thr1 = threads->create(\&sample_sub, 1);
+    $thr2 = threads->create(\&sample_sub, 2);
+    $thr3 = threads->create(\&sample_sub, 3);
+
+    sub sample_sub {
+        my $SubNumber = shift(@_);
+        my $TryCount = 10;
+        my $LocalCopy;
+        sleep(1);
+        while ($TryCount--) {
+            $semaphore->down();
+            $LocalCopy = $GlobalVariable;
+            print("$TryCount tries left for sub $SubNumber "
+                 ."(\$GlobalVariable is $GlobalVariable)\n");
+            sleep(2);
+            $LocalCopy++;
+            $GlobalVariable = $LocalCopy;
+            $semaphore->up();
+        }
+    }
+
+    $thr1->join();
+    $thr2->join();
+    $thr3->join();
+
+The three invocations of the subroutine all operate in sync.  The
+semaphore, though, makes sure that only one thread is accessing the
+global variable at once.
+
+=head2 Advanced Semaphores
+
+By default, semaphores behave like locks, letting only one thread
+C<down()> them at a time.  However, there are other uses for semaphores.
+
+Each semaphore has a counter attached to it. By default, semaphores are
+created with the counter set to one, C<down()> decrements the counter by
+one, and C<up()> increments by one. However, we can override any or all
+of these defaults simply by passing in different values:
+
+    use threads;
+    use Thread::Semaphore;
+
+    my $semaphore = Thread::Semaphore->new(5);
+                    # Creates a semaphore with the counter set to five
+
+    my $thr1 = threads->create(\&sub1);
+    my $thr2 = threads->create(\&sub1);
+
+    sub sub1 {
+        $semaphore->down(5); # Decrements the counter by five
+        # Do stuff here
+        $semaphore->up(5); # Increment the counter by five
+    }
+
+    $thr1->detach();
+    $thr2->detach();
+
+If C<down()> attempts to decrement the counter below zero, it blocks until
+the counter is large enough.  Note that while a semaphore can be created
+with a starting count of zero, any C<up()> or C<down()> always changes the
+counter by at least one, and so C<< $semaphore->down(0) >> is the same as
+C<< $semaphore->down(1) >>.
+
+The question, of course, is why would you do something like this? Why
+create a semaphore with a starting count that's not one, or why
+decrement or increment it by more than one? The answer is resource
+availability.  Many resources that you want to manage access for can be
+safely used by more than one thread at once.
+
+For example, let's take a GUI driven program.  It has a semaphore that
+it uses to synchronize access to the display, so only one thread is
+ever drawing at once.  Handy, but of course you don't want any thread
+to start drawing until things are properly set up.  In this case, you
+can create a semaphore with a counter set to zero, and up it when
+things are ready for drawing.
+
+Semaphores with counters greater than one are also useful for
+establishing quotas.  Say, for example, that you have a number of
+threads that can do I/O at once.  You don't want all the threads
+reading or writing at once though, since that can potentially swamp
+your I/O channels, or deplete your process's quota of filehandles.  You
+can use a semaphore initialized to the number of concurrent I/O
+requests (or open files) that you want at any one time, and have your
+threads quietly block and unblock themselves.
+
+Larger increments or decrements are handy in those cases where a
+thread needs to check out or return a number of resources at once.
+
+=head2 Waiting for a Condition
+
+The functions C<cond_wait()> and C<cond_signal()>
+can be used in conjunction with locks to notify
+co-operating threads that a resource has become available. They are
+very similar in use to the functions found in C<pthreads>. However
+for most purposes, queues are simpler to use and more intuitive. See
+L<threads::shared> for more details.
+
+=head2 Giving up control
+
+There are times when you may find it useful to have a thread
+explicitly give up the CPU to another thread.  You may be doing something
+processor-intensive and want to make sure that the user-interface thread
+gets called frequently.  Regardless, there are times that you might want
+a thread to give up the processor.
+
+Perl's threading package provides the C<yield()> function that does
+this. C<yield()> is pretty straightforward, and works like this:
+
+    use threads;
+
+    sub loop {
+        my $thread = shift;
+        my $foo = 50;
+        while($foo--) { print("In thread $thread\n"); }
+        threads->yield();
+        $foo = 50;
+        while($foo--) { print("In thread $thread\n"); }
+    }
+
+    my $thr1 = threads->create(\&loop, 'first');
+    my $thr2 = threads->create(\&loop, 'second');
+    my $thr3 = threads->create(\&loop, 'third');
+
+It is important to remember that C<yield()> is only a hint to give up the CPU,
+it depends on your hardware, OS and threading libraries what actually happens.
+B<On many operating systems, yield() is a no-op.>  Therefore it is important
+to note that one should not build the scheduling of the threads around
+C<yield()> calls. It might work on your platform but it won't work on another
+platform.
+
+=head1 General Thread Utility Routines
+
+We've covered the workhorse parts of Perl's threading package, and
+with these tools you should be well on your way to writing threaded
+code and packages.  There are a few useful little pieces that didn't
+really fit in anyplace else.
+
+=head2 What Thread Am I In?
+
+The C<threads-E<gt>self()> class method provides your program with a way to
+get an object representing the thread it's currently in.  You can use this
+object in the same way as the ones returned from thread creation.
+
+=head2 Thread IDs
+
+C<tid()> is a thread object method that returns the thread ID of the
+thread the object represents.  Thread IDs are integers, with the main
+thread in a program being 0.  Currently Perl assigns a unique TID to
+every thread ever created in your program, assigning the first thread
+to be created a TID of 1, and increasing the TID by 1 for each new
+thread that's created.  When used as a class method, C<threads-E<gt>tid()>
+can be used by a thread to get its own TID.
+
+=head2 Are These Threads The Same?
+
+The C<equal()> method takes two thread objects and returns true
+if the objects represent the same thread, and false if they don't.
+
+Thread objects also have an overloaded C<==> comparison so that you can do
+comparison on them as you would with normal objects.
+
+=head2 What Threads Are Running?
+
+C<threads-E<gt>list()> returns a list of thread objects, one for each thread
+that's currently running and not detached.  Handy for a number of things,
+including cleaning up at the end of your program (from the main Perl thread,
+of course):
+
+    # Loop through all the threads
+    foreach my $thr (threads->list()) {
+        $thr->join();
+    }
+
+If some threads have not finished running when the main Perl thread
+ends, Perl will warn you about it and die, since it is impossible for Perl
+to clean up itself while other threads are running.
+
+NOTE:  The main Perl thread (thread 0) is in a I<detached> state, and so
+does not appear in the list returned by C<threads-E<gt>list()>.
+
+=head1 A Complete Example
+
+Confused yet? It's time for an example program to show some of the
+things we've covered.  This program finds prime numbers using threads.
+
+   1 #!/usr/bin/perl
+   2 # prime-pthread, courtesy of Tom Christiansen
+   3
+   4 use strict;
+   5 use warnings;
+   6
+   7 use threads;
+   8 use Thread::Queue;
+   9
+  10 sub check_num {
+  11     my ($upstream, $cur_prime) = @_;
+  12     my $kid;
+  13     my $downstream = Thread::Queue->new();
+  14     while (my $num = $upstream->dequeue()) {
+  15         next unless ($num % $cur_prime);
+  16         if ($kid) {
+  17             $downstream->enqueue($num);
+  18         } else {
+  19             print("Found prime: $num\n");
+  20             $kid = threads->create(\&check_num, $downstream, $num);
+  21             if (! $kid) {
+  22                 warn("Sorry.  Ran out of threads.\n");
+  23                 last;
+  24             }
+  25         }
+  26     }
+  27     if ($kid) {
+  28         $downstream->enqueue(undef);
+  29         $kid->join();
+  30     }
+  31 }
+  32
+  33 my $stream = Thread::Queue->new(3..1000, undef);
+  34 check_num($stream, 2);
+
+This program uses the pipeline model to generate prime numbers.  Each
+thread in the pipeline has an input queue that feeds numbers to be
+checked, a prime number that it's responsible for, and an output queue
+into which it funnels numbers that have failed the check.  If the thread
+has a number that's failed its check and there's no child thread, then
+the thread must have found a new prime number.  In that case, a new
+child thread is created for that prime and stuck on the end of the
+pipeline.
+
+This probably sounds a bit more confusing than it really is, so let's
+go through this program piece by piece and see what it does.  (For
+those of you who might be trying to remember exactly what a prime
+number is, it's a number that's only evenly divisible by itself and 1.)
+
+The bulk of the work is done by the C<check_num()> subroutine, which
+takes a reference to its input queue and a prime number that it's
+responsible for.  After pulling in the input queue and the prime that
+the subroutine is checking (line 11), we create a new queue (line 13)
+and reserve a scalar for the thread that we're likely to create later
+(line 12).
+
+The while loop from line 14 to line 26 grabs a scalar off the input
+queue and checks against the prime this thread is responsible
+for.  Line 15 checks to see if there's a remainder when we divide the
+number to be checked by our prime.  If there is one, the number
+must not be evenly divisible by our prime, so we need to either pass
+it on to the next thread if we've created one (line 17) or create a
+new thread if we haven't.
+
+The new thread creation is line 20.  We pass on to it a reference to
+the queue we've created, and the prime number we've found.  In lines 21
+through 24, we check to make sure that our new thread got created, and
+if not, we stop checking any remaining numbers in the queue.
+
+Finally, once the loop terminates (because we got a 0 or C<undef> in the
+queue, which serves as a note to terminate), we pass on the notice to our
+child, and wait for it to exit if we've created a child (lines 27 and
+30).
+
+Meanwhile, back in the main thread, we first create a queue (line 33) and
+queue up all the numbers from 3 to 1000 for checking, plus a termination
+notice.  Then all we have to do to get the ball rolling is pass the queue
+and the first prime to the C<check_num()> subroutine (line 34).
+
+That's how it works.  It's pretty simple; as with many Perl programs,
+the explanation is much longer than the program.
+
+=head1 Different implementations of threads
+
+Some background on thread implementations from the operating system
+viewpoint.  There are three basic categories of threads: user-mode threads,
+kernel threads, and multiprocessor kernel threads.
+
+User-mode threads are threads that live entirely within a program and
+its libraries.  In this model, the OS knows nothing about threads.  As
+far as it's concerned, your process is just a process.
+
+This is the easiest way to implement threads, and the way most OSes
+start.  The big disadvantage is that, since the OS knows nothing about
+threads, if one thread blocks they all do.  Typical blocking activities
+include most system calls, most I/O, and things like C<sleep()>.
+
+Kernel threads are the next step in thread evolution.  The OS knows
+about kernel threads, and makes allowances for them.  The main
+difference between a kernel thread and a user-mode thread is
+blocking.  With kernel threads, things that block a single thread don't
+block other threads.  This is not the case with user-mode threads,
+where the kernel blocks at the process level and not the thread level.
+
+This is a big step forward, and can give a threaded program quite a
+performance boost over non-threaded programs.  Threads that block
+performing I/O, for example, won't block threads that are doing other
+things.  Each process still has only one thread running at once,
+though, regardless of how many CPUs a system might have.
+
+Since kernel threading can interrupt a thread at any time, they will
+uncover some of the implicit locking assumptions you may make in your
+program.  For example, something as simple as C<$x = $x + 2> can behave
+unpredictably with kernel threads if C<$x> is visible to other
+threads, as another thread may have changed C<$x> between the time it
+was fetched on the right hand side and the time the new value is
+stored.
+
+Multiprocessor kernel threads are the final step in thread
+support.  With multiprocessor kernel threads on a machine with multiple
+CPUs, the OS may schedule two or more threads to run simultaneously on
+different CPUs.
+
+This can give a serious performance boost to your threaded program,
+since more than one thread will be executing at the same time.  As a
+tradeoff, though, any of those nagging synchronization issues that
+might not have shown with basic kernel threads will appear with a
+vengeance.
+
+In addition to the different levels of OS involvement in threads,
+different OSes (and different thread implementations for a particular
+OS) allocate CPU cycles to threads in different ways.
+
+Cooperative multitasking systems have running threads give up control
+if one of two things happen.  If a thread calls a yield function, it
+gives up control.  It also gives up control if the thread does
+something that would cause it to block, such as perform I/O.  In a
+cooperative multitasking implementation, one thread can starve all the
+others for CPU time if it so chooses.
+
+Preemptive multitasking systems interrupt threads at regular intervals
+while the system decides which thread should run next.  In a preemptive
+multitasking system, one thread usually won't monopolize the CPU.
+
+On some systems, there can be cooperative and preemptive threads
+running simultaneously. (Threads running with realtime priorities
+often behave cooperatively, for example, while threads running at
+normal priorities behave preemptively.)
+
+Most modern operating systems support preemptive multitasking nowadays.
+
+=head1 Performance considerations
+
+The main thing to bear in mind when comparing Perl's I<ithreads> to other threading
+models is the fact that for each new thread created, a complete copy of
+all the variables and data of the parent thread has to be taken. Thus,
+thread creation can be quite expensive, both in terms of memory usage and
+time spent in creation. The ideal way to reduce these costs is to have a
+relatively short number of long-lived threads, all created fairly early
+on (before the base thread has accumulated too much data). Of course, this
+may not always be possible, so compromises have to be made. However, after
+a thread has been created, its performance and extra memory usage should
+be little different than ordinary code.
+
+Also note that under the current implementation, shared variables
+use a little more memory and are a little slower than ordinary variables.
+
+=head1 Process-scope Changes
+
+Note that while threads themselves are separate execution threads and
+Perl data is thread-private unless explicitly shared, the threads can
+affect process-scope state, affecting all the threads.
+
+The most common example of this is changing the current working
+directory using C<chdir()>.  One thread calls C<chdir()>, and the working
+directory of all the threads changes.
+
+Even more drastic example of a process-scope change is C<chroot()>:
+the root directory of all the threads changes, and no thread can
+undo it (as opposed to C<chdir()>).
+
+Further examples of process-scope changes include C<umask()> and
+changing uids and gids.
+
+Thinking of mixing C<fork()> and threads?  Please lie down and wait
+until the feeling passes.  Be aware that the semantics of C<fork()> vary
+between platforms.  For example, some Unix systems copy all the current
+threads into the child process, while others only copy the thread that
+called C<fork()>. You have been warned!
+
+Similarly, mixing signals and threads may be problematic.
+Implementations are platform-dependent, and even the POSIX
+semantics may not be what you expect (and Perl doesn't even
+give you the full POSIX API).  For example, there is no way to
+guarantee that a signal sent to a multi-threaded Perl application
+will get intercepted by any particular thread.  (However, a recently
+added feature does provide the capability to send signals between
+threads.  See L<threads/THREAD SIGNALLING> for more details.)
+
+=head1 Thread-Safety of System Libraries
+
+Whether various library calls are thread-safe is outside the control
+of Perl.  Calls often suffering from not being thread-safe include:
+C<localtime()>, C<gmtime()>,  functions fetching user, group and
+network information (such as C<getgrent()>, C<gethostent()>,
+C<getnetent()> and so on), C<readdir()>, C<rand()>, and C<srand()>. In
+general, calls that depend on some global external state.
+
+If the system Perl is compiled in has thread-safe variants of such
+calls, they will be used.  Beyond that, Perl is at the mercy of
+the thread-safety or -unsafety of the calls.  Please consult your
+C library call documentation.
+
+On some platforms the thread-safe library interfaces may fail if the
+result buffer is too small (for example the user group databases may
+be rather large, and the reentrant interfaces may have to carry around
+a full snapshot of those databases).  Perl will start with a small
+buffer, but keep retrying and growing the result buffer
+until the result fits.  If this limitless growing sounds bad for
+security or memory consumption reasons you can recompile Perl with
+C<PERL_REENTRANT_MAXSIZE> defined to the maximum number of bytes you will
+allow.
+
+=head1 Conclusion
+
+A complete thread tutorial could fill a book (and has, many times),
+but with what we've covered in this introduction, you should be well
+on your way to becoming a threaded Perl expert.
+
+=head1 SEE ALSO
+
+Annotated POD for L<threads>:
+L<http://annocpan.org/?mode=search&field=Module&name=threads>
+
+Latest version of L<threads> on CPAN:
+L<http://search.cpan.org/search?module=threads>
+
+Annotated POD for L<threads::shared>:
+L<http://annocpan.org/?mode=search&field=Module&name=threads%3A%3Ashared>
+
+Latest version of L<threads::shared> on CPAN:
+L<http://search.cpan.org/search?module=threads%3A%3Ashared>
+
+Perl threads mailing list:
+L<http://lists.perl.org/list/ithreads.html>
+
+=head1 Bibliography
+
+Here's a short bibliography courtesy of Jürgen Christoffel:
+
+=head2 Introductory Texts
+
+Birrell, Andrew D. An Introduction to Programming with
+Threads. Digital Equipment Corporation, 1989, DEC-SRC Research Report
+#35 online as
+L<ftp://ftp.dec.com/pub/DEC/SRC/research-reports/SRC-035.pdf>
+(highly recommended)
+
+Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A
+Guide to Concurrency, Communication, and
+Multithreading. Prentice-Hall, 1996.
+
+Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with
+Pthreads. Prentice Hall, 1997, ISBN 0-13-443698-9 (a well-written
+introduction to threads).
+
+Nelson, Greg (editor). Systems Programming with Modula-3.  Prentice
+Hall, 1991, ISBN 0-13-590464-1.
+
+Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.
+Pthreads Programming. O'Reilly & Associates, 1996, ISBN 156592-115-1
+(covers POSIX threads).
+
+=head2 OS-Related References
+
+Boykin, Joseph, David Kirschen, Alan Langerman, and Susan
+LoVerso. Programming under Mach. Addison-Wesley, 1994, ISBN
+0-201-52739-1.
 
-In the meanwhile, you can read up on threading basics (while keeping
-in mind the above caveat about the changing threading flavours) in
-L<perlothrtut>
+Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall,
+1995, ISBN 0-13-219908-4 (great textbook).
 
-=over 4
+Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts,
+4th ed. Addison-Wesley, 1995, ISBN 0-201-59292-4
 
-=item *
+=head2 Other References
 
-L<perlothrtut/What Is A Thread Anyway?>
+Arnold, Ken and James Gosling. The Java Programming Language, 2nd
+ed. Addison-Wesley, 1998, ISBN 0-201-31006-6.
 
-=item *
+comp.programming.threads FAQ,
+L<http://www.serpentine.com/~bos/threads-faq/>
 
-L<perlothrtut/Threaded Program Models>
+Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage
+Collection on Virtually Shared Memory Architectures" in Memory
+Management: Proc. of the International Workshop IWMM 92, St. Malo,
+France, September 1992, Yves Bekkers and Jacques Cohen, eds. Springer,
+1992, ISBN 3540-55940-X (real-life thread applications).
 
-=item *
+Artur Bergman, "Where Wizards Fear To Tread", June 11, 2002,
+L<http://www.perl.com/pub/a/2002/06/11/threads.html>
 
-L<perlothrtut/Native threads>
+=head1 Acknowledgements
 
-=item *
+Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy
+Sarathy, Ilya Zakharevich, Benjamin Sugars, Jürgen Christoffel, Joshua
+Pritikin, and Alan Burlison, for their help in reality-checking and
+polishing this article.  Big thanks to Tom Christiansen for his rewrite
+of the prime number generator.
 
-L<perlothrtut/What kind of threads are perl threads?>
+=head1 AUTHOR
 
+Dan Sugalski E<lt>dan@sidhe.org<gt>
 
-=item *
+Slightly modified by Arthur Bergman to fit the new thread model/module.
 
-L<perlothrtut/Threadsafe Modules>
+Reworked slightly by Jörg Walter E<lt>jwalt@cpan.org<gt> to be more concise
+about thread-safety of Perl code.
 
-=back
+Rearranged slightly by Elizabeth Mattijsen E<lt>liz@dijkmat.nl<gt> to put
+less emphasis on yield().
 
-When C<perlothrut> reaches L<perlothrtut/Thread Basics> is when
-you should slow down and remember to mentally read C<threads>
-when C<perlothrtut> says C<Thread>.  The C<Thread> was the old
-5.005-style threading module, the C<threads> is the new ithreads
-style threading module.
+=head1 Copyrights
 
-For more information please see L<threads> and L<threads::shared>.
+The original version of this article originally appeared in The Perl
+Journal #10, and is copyright 1998 The Perl Journal. It appears courtesy
+of Jon Orwant and The Perl Journal.  This document may be distributed
+under the same terms as Perl itself.
 
+=cut