This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
pp.c: Make pp_rv2cv use gv_autoload_pvn()
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define HV_MAX_LENGTH_BEFORE_SPLIT 14
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43#ifdef PURIFY
44
45#define new_HE() (HE*)safemalloc(sizeof(HE))
46#define del_HE(p) safefree((char*)p)
47
48#else
49
50STATIC HE*
51S_new_he(pTHX)
52{
53 dVAR;
54 HE* he;
55 void ** const root = &PL_body_roots[HE_SVSLOT];
56
57 if (!*root)
58 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
59 he = (HE*) *root;
60 assert(he);
61 *root = HeNEXT(he);
62 return he;
63}
64
65#define new_HE() new_he()
66#define del_HE(p) \
67 STMT_START { \
68 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
69 PL_body_roots[HE_SVSLOT] = p; \
70 } STMT_END
71
72
73
74#endif
75
76STATIC HEK *
77S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
78{
79 const int flags_masked = flags & HVhek_MASK;
80 char *k;
81 register HEK *hek;
82
83 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
84
85 Newx(k, HEK_BASESIZE + len + 2, char);
86 hek = (HEK*)k;
87 Copy(str, HEK_KEY(hek), len, char);
88 HEK_KEY(hek)[len] = 0;
89 HEK_LEN(hek) = len;
90 HEK_HASH(hek) = hash;
91 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
92
93 if (flags & HVhek_FREEKEY)
94 Safefree(str);
95 return hek;
96}
97
98/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
99 * for tied hashes */
100
101void
102Perl_free_tied_hv_pool(pTHX)
103{
104 dVAR;
105 HE *he = PL_hv_fetch_ent_mh;
106 while (he) {
107 HE * const ohe = he;
108 Safefree(HeKEY_hek(he));
109 he = HeNEXT(he);
110 del_HE(ohe);
111 }
112 PL_hv_fetch_ent_mh = NULL;
113}
114
115#if defined(USE_ITHREADS)
116HEK *
117Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
118{
119 HEK *shared;
120
121 PERL_ARGS_ASSERT_HEK_DUP;
122 PERL_UNUSED_ARG(param);
123
124 if (!source)
125 return NULL;
126
127 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
128 if (shared) {
129 /* We already shared this hash key. */
130 (void)share_hek_hek(shared);
131 }
132 else {
133 shared
134 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
135 HEK_HASH(source), HEK_FLAGS(source));
136 ptr_table_store(PL_ptr_table, source, shared);
137 }
138 return shared;
139}
140
141HE *
142Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
143{
144 HE *ret;
145
146 PERL_ARGS_ASSERT_HE_DUP;
147
148 if (!e)
149 return NULL;
150 /* look for it in the table first */
151 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
152 if (ret)
153 return ret;
154
155 /* create anew and remember what it is */
156 ret = new_HE();
157 ptr_table_store(PL_ptr_table, e, ret);
158
159 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
160 if (HeKLEN(e) == HEf_SVKEY) {
161 char *k;
162 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
163 HeKEY_hek(ret) = (HEK*)k;
164 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
165 }
166 else if (shared) {
167 /* This is hek_dup inlined, which seems to be important for speed
168 reasons. */
169 HEK * const source = HeKEY_hek(e);
170 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
171
172 if (shared) {
173 /* We already shared this hash key. */
174 (void)share_hek_hek(shared);
175 }
176 else {
177 shared
178 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
179 HEK_HASH(source), HEK_FLAGS(source));
180 ptr_table_store(PL_ptr_table, source, shared);
181 }
182 HeKEY_hek(ret) = shared;
183 }
184 else
185 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
186 HeKFLAGS(e));
187 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
188 return ret;
189}
190#endif /* USE_ITHREADS */
191
192static void
193S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
194 const char *msg)
195{
196 SV * const sv = sv_newmortal();
197
198 PERL_ARGS_ASSERT_HV_NOTALLOWED;
199
200 if (!(flags & HVhek_FREEKEY)) {
201 sv_setpvn(sv, key, klen);
202 }
203 else {
204 /* Need to free saved eventually assign to mortal SV */
205 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
206 sv_usepvn(sv, (char *) key, klen);
207 }
208 if (flags & HVhek_UTF8) {
209 SvUTF8_on(sv);
210 }
211 Perl_croak(aTHX_ msg, SVfARG(sv));
212}
213
214/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
215 * contains an SV* */
216
217/*
218=for apidoc hv_store
219
220Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
221the length of the key. The C<hash> parameter is the precomputed hash
222value; if it is zero then Perl will compute it. The return value will be
223NULL if the operation failed or if the value did not need to be actually
224stored within the hash (as in the case of tied hashes). Otherwise it can
225be dereferenced to get the original C<SV*>. Note that the caller is
226responsible for suitably incrementing the reference count of C<val> before
227the call, and decrementing it if the function returned NULL. Effectively
228a successful hv_store takes ownership of one reference to C<val>. This is
229usually what you want; a newly created SV has a reference count of one, so
230if all your code does is create SVs then store them in a hash, hv_store
231will own the only reference to the new SV, and your code doesn't need to do
232anything further to tidy up. hv_store is not implemented as a call to
233hv_store_ent, and does not create a temporary SV for the key, so if your
234key data is not already in SV form then use hv_store in preference to
235hv_store_ent.
236
237See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
238information on how to use this function on tied hashes.
239
240=for apidoc hv_store_ent
241
242Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
243parameter is the precomputed hash value; if it is zero then Perl will
244compute it. The return value is the new hash entry so created. It will be
245NULL if the operation failed or if the value did not need to be actually
246stored within the hash (as in the case of tied hashes). Otherwise the
247contents of the return value can be accessed using the C<He?> macros
248described here. Note that the caller is responsible for suitably
249incrementing the reference count of C<val> before the call, and
250decrementing it if the function returned NULL. Effectively a successful
251hv_store_ent takes ownership of one reference to C<val>. This is
252usually what you want; a newly created SV has a reference count of one, so
253if all your code does is create SVs then store them in a hash, hv_store
254will own the only reference to the new SV, and your code doesn't need to do
255anything further to tidy up. Note that hv_store_ent only reads the C<key>;
256unlike C<val> it does not take ownership of it, so maintaining the correct
257reference count on C<key> is entirely the caller's responsibility. hv_store
258is not implemented as a call to hv_store_ent, and does not create a temporary
259SV for the key, so if your key data is not already in SV form then use
260hv_store in preference to hv_store_ent.
261
262See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
263information on how to use this function on tied hashes.
264
265=for apidoc hv_exists
266
267Returns a boolean indicating whether the specified hash key exists. The
268C<klen> is the length of the key.
269
270=for apidoc hv_fetch
271
272Returns the SV which corresponds to the specified key in the hash. The
273C<klen> is the length of the key. If C<lval> is set then the fetch will be
274part of a store. Check that the return value is non-null before
275dereferencing it to an C<SV*>.
276
277See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
278information on how to use this function on tied hashes.
279
280=for apidoc hv_exists_ent
281
282Returns a boolean indicating whether the specified hash key exists. C<hash>
283can be a valid precomputed hash value, or 0 to ask for it to be
284computed.
285
286=cut
287*/
288
289/* returns an HE * structure with the all fields set */
290/* note that hent_val will be a mortal sv for MAGICAL hashes */
291/*
292=for apidoc hv_fetch_ent
293
294Returns the hash entry which corresponds to the specified key in the hash.
295C<hash> must be a valid precomputed hash number for the given C<key>, or 0
296if you want the function to compute it. IF C<lval> is set then the fetch
297will be part of a store. Make sure the return value is non-null before
298accessing it. The return value when C<hv> is a tied hash is a pointer to a
299static location, so be sure to make a copy of the structure if you need to
300store it somewhere.
301
302See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
303information on how to use this function on tied hashes.
304
305=cut
306*/
307
308/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
309void *
310Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
311 const int action, SV *val, const U32 hash)
312{
313 STRLEN klen;
314 int flags;
315
316 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
317
318 if (klen_i32 < 0) {
319 klen = -klen_i32;
320 flags = HVhek_UTF8;
321 } else {
322 klen = klen_i32;
323 flags = 0;
324 }
325 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
326}
327
328void *
329Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
330 int flags, int action, SV *val, register U32 hash)
331{
332 dVAR;
333 XPVHV* xhv;
334 HE *entry;
335 HE **oentry;
336 SV *sv;
337 bool is_utf8;
338 int masked_flags;
339 const int return_svp = action & HV_FETCH_JUST_SV;
340
341 if (!hv)
342 return NULL;
343 if (SvTYPE(hv) == (svtype)SVTYPEMASK)
344 return NULL;
345
346 assert(SvTYPE(hv) == SVt_PVHV);
347
348 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
349 MAGIC* mg;
350 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
351 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
352 if (uf->uf_set == NULL) {
353 SV* obj = mg->mg_obj;
354
355 if (!keysv) {
356 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
357 ((flags & HVhek_UTF8)
358 ? SVf_UTF8 : 0));
359 }
360
361 mg->mg_obj = keysv; /* pass key */
362 uf->uf_index = action; /* pass action */
363 magic_getuvar(MUTABLE_SV(hv), mg);
364 keysv = mg->mg_obj; /* may have changed */
365 mg->mg_obj = obj;
366
367 /* If the key may have changed, then we need to invalidate
368 any passed-in computed hash value. */
369 hash = 0;
370 }
371 }
372 }
373 if (keysv) {
374 if (flags & HVhek_FREEKEY)
375 Safefree(key);
376 key = SvPV_const(keysv, klen);
377 is_utf8 = (SvUTF8(keysv) != 0);
378 if (SvIsCOW_shared_hash(keysv)) {
379 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
380 } else {
381 flags = 0;
382 }
383 } else {
384 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
385 }
386
387 if (action & HV_DELETE) {
388 return (void *) hv_delete_common(hv, keysv, key, klen,
389 flags | (is_utf8 ? HVhek_UTF8 : 0),
390 action, hash);
391 }
392
393 xhv = (XPVHV*)SvANY(hv);
394 if (SvMAGICAL(hv)) {
395 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
396 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
397 || SvGMAGICAL((const SV *)hv))
398 {
399 /* FIXME should be able to skimp on the HE/HEK here when
400 HV_FETCH_JUST_SV is true. */
401 if (!keysv) {
402 keysv = newSVpvn_utf8(key, klen, is_utf8);
403 } else {
404 keysv = newSVsv(keysv);
405 }
406 sv = sv_newmortal();
407 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
408
409 /* grab a fake HE/HEK pair from the pool or make a new one */
410 entry = PL_hv_fetch_ent_mh;
411 if (entry)
412 PL_hv_fetch_ent_mh = HeNEXT(entry);
413 else {
414 char *k;
415 entry = new_HE();
416 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
417 HeKEY_hek(entry) = (HEK*)k;
418 }
419 HeNEXT(entry) = NULL;
420 HeSVKEY_set(entry, keysv);
421 HeVAL(entry) = sv;
422 sv_upgrade(sv, SVt_PVLV);
423 LvTYPE(sv) = 'T';
424 /* so we can free entry when freeing sv */
425 LvTARG(sv) = MUTABLE_SV(entry);
426
427 /* XXX remove at some point? */
428 if (flags & HVhek_FREEKEY)
429 Safefree(key);
430
431 if (return_svp) {
432 return entry ? (void *) &HeVAL(entry) : NULL;
433 }
434 return (void *) entry;
435 }
436#ifdef ENV_IS_CASELESS
437 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
438 U32 i;
439 for (i = 0; i < klen; ++i)
440 if (isLOWER(key[i])) {
441 /* Would be nice if we had a routine to do the
442 copy and upercase in a single pass through. */
443 const char * const nkey = strupr(savepvn(key,klen));
444 /* Note that this fetch is for nkey (the uppercased
445 key) whereas the store is for key (the original) */
446 void *result = hv_common(hv, NULL, nkey, klen,
447 HVhek_FREEKEY, /* free nkey */
448 0 /* non-LVAL fetch */
449 | HV_DISABLE_UVAR_XKEY
450 | return_svp,
451 NULL /* no value */,
452 0 /* compute hash */);
453 if (!result && (action & HV_FETCH_LVALUE)) {
454 /* This call will free key if necessary.
455 Do it this way to encourage compiler to tail
456 call optimise. */
457 result = hv_common(hv, keysv, key, klen, flags,
458 HV_FETCH_ISSTORE
459 | HV_DISABLE_UVAR_XKEY
460 | return_svp,
461 newSV(0), hash);
462 } else {
463 if (flags & HVhek_FREEKEY)
464 Safefree(key);
465 }
466 return result;
467 }
468 }
469#endif
470 } /* ISFETCH */
471 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
472 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
473 || SvGMAGICAL((const SV *)hv)) {
474 /* I don't understand why hv_exists_ent has svret and sv,
475 whereas hv_exists only had one. */
476 SV * const svret = sv_newmortal();
477 sv = sv_newmortal();
478
479 if (keysv || is_utf8) {
480 if (!keysv) {
481 keysv = newSVpvn_utf8(key, klen, TRUE);
482 } else {
483 keysv = newSVsv(keysv);
484 }
485 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
486 } else {
487 mg_copy(MUTABLE_SV(hv), sv, key, klen);
488 }
489 if (flags & HVhek_FREEKEY)
490 Safefree(key);
491 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
492 /* This cast somewhat evil, but I'm merely using NULL/
493 not NULL to return the boolean exists.
494 And I know hv is not NULL. */
495 return SvTRUE(svret) ? (void *)hv : NULL;
496 }
497#ifdef ENV_IS_CASELESS
498 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
499 /* XXX This code isn't UTF8 clean. */
500 char * const keysave = (char * const)key;
501 /* Will need to free this, so set FREEKEY flag. */
502 key = savepvn(key,klen);
503 key = (const char*)strupr((char*)key);
504 is_utf8 = FALSE;
505 hash = 0;
506 keysv = 0;
507
508 if (flags & HVhek_FREEKEY) {
509 Safefree(keysave);
510 }
511 flags |= HVhek_FREEKEY;
512 }
513#endif
514 } /* ISEXISTS */
515 else if (action & HV_FETCH_ISSTORE) {
516 bool needs_copy;
517 bool needs_store;
518 hv_magic_check (hv, &needs_copy, &needs_store);
519 if (needs_copy) {
520 const bool save_taint = PL_tainted;
521 if (keysv || is_utf8) {
522 if (!keysv) {
523 keysv = newSVpvn_utf8(key, klen, TRUE);
524 }
525 if (PL_tainting)
526 PL_tainted = SvTAINTED(keysv);
527 keysv = sv_2mortal(newSVsv(keysv));
528 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
529 } else {
530 mg_copy(MUTABLE_SV(hv), val, key, klen);
531 }
532
533 TAINT_IF(save_taint);
534 if (!needs_store) {
535 if (flags & HVhek_FREEKEY)
536 Safefree(key);
537 return NULL;
538 }
539#ifdef ENV_IS_CASELESS
540 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
541 /* XXX This code isn't UTF8 clean. */
542 const char *keysave = key;
543 /* Will need to free this, so set FREEKEY flag. */
544 key = savepvn(key,klen);
545 key = (const char*)strupr((char*)key);
546 is_utf8 = FALSE;
547 hash = 0;
548 keysv = 0;
549
550 if (flags & HVhek_FREEKEY) {
551 Safefree(keysave);
552 }
553 flags |= HVhek_FREEKEY;
554 }
555#endif
556 }
557 } /* ISSTORE */
558 } /* SvMAGICAL */
559
560 if (!HvARRAY(hv)) {
561 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
562#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
563 || (SvRMAGICAL((const SV *)hv)
564 && mg_find((const SV *)hv, PERL_MAGIC_env))
565#endif
566 ) {
567 char *array;
568 Newxz(array,
569 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
570 char);
571 HvARRAY(hv) = (HE**)array;
572 }
573#ifdef DYNAMIC_ENV_FETCH
574 else if (action & HV_FETCH_ISEXISTS) {
575 /* for an %ENV exists, if we do an insert it's by a recursive
576 store call, so avoid creating HvARRAY(hv) right now. */
577 }
578#endif
579 else {
580 /* XXX remove at some point? */
581 if (flags & HVhek_FREEKEY)
582 Safefree(key);
583
584 return NULL;
585 }
586 }
587
588 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
589 char * const keysave = (char *)key;
590 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
591 if (is_utf8)
592 flags |= HVhek_UTF8;
593 else
594 flags &= ~HVhek_UTF8;
595 if (key != keysave) {
596 if (flags & HVhek_FREEKEY)
597 Safefree(keysave);
598 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
599 /* If the caller calculated a hash, it was on the sequence of
600 octets that are the UTF-8 form. We've now changed the sequence
601 of octets stored to that of the equivalent byte representation,
602 so the hash we need is different. */
603 hash = 0;
604 }
605 }
606
607 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
608 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
609 else if (!hash)
610 hash = SvSHARED_HASH(keysv);
611
612 /* We don't have a pointer to the hv, so we have to replicate the
613 flag into every HEK, so that hv_iterkeysv can see it.
614 And yes, you do need this even though you are not "storing" because
615 you can flip the flags below if doing an lval lookup. (And that
616 was put in to give the semantics Andreas was expecting.) */
617 if (HvREHASH(hv))
618 flags |= HVhek_REHASH;
619
620 masked_flags = (flags & HVhek_MASK);
621
622#ifdef DYNAMIC_ENV_FETCH
623 if (!HvARRAY(hv)) entry = NULL;
624 else
625#endif
626 {
627 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
628 }
629 for (; entry; entry = HeNEXT(entry)) {
630 if (HeHASH(entry) != hash) /* strings can't be equal */
631 continue;
632 if (HeKLEN(entry) != (I32)klen)
633 continue;
634 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
635 continue;
636 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
637 continue;
638
639 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
640 if (HeKFLAGS(entry) != masked_flags) {
641 /* We match if HVhek_UTF8 bit in our flags and hash key's
642 match. But if entry was set previously with HVhek_WASUTF8
643 and key now doesn't (or vice versa) then we should change
644 the key's flag, as this is assignment. */
645 if (HvSHAREKEYS(hv)) {
646 /* Need to swap the key we have for a key with the flags we
647 need. As keys are shared we can't just write to the
648 flag, so we share the new one, unshare the old one. */
649 HEK * const new_hek = share_hek_flags(key, klen, hash,
650 masked_flags);
651 unshare_hek (HeKEY_hek(entry));
652 HeKEY_hek(entry) = new_hek;
653 }
654 else if (hv == PL_strtab) {
655 /* PL_strtab is usually the only hash without HvSHAREKEYS,
656 so putting this test here is cheap */
657 if (flags & HVhek_FREEKEY)
658 Safefree(key);
659 Perl_croak(aTHX_ S_strtab_error,
660 action & HV_FETCH_LVALUE ? "fetch" : "store");
661 }
662 else
663 HeKFLAGS(entry) = masked_flags;
664 if (masked_flags & HVhek_ENABLEHVKFLAGS)
665 HvHASKFLAGS_on(hv);
666 }
667 if (HeVAL(entry) == &PL_sv_placeholder) {
668 /* yes, can store into placeholder slot */
669 if (action & HV_FETCH_LVALUE) {
670 if (SvMAGICAL(hv)) {
671 /* This preserves behaviour with the old hv_fetch
672 implementation which at this point would bail out
673 with a break; (at "if we find a placeholder, we
674 pretend we haven't found anything")
675
676 That break mean that if a placeholder were found, it
677 caused a call into hv_store, which in turn would
678 check magic, and if there is no magic end up pretty
679 much back at this point (in hv_store's code). */
680 break;
681 }
682 /* LVAL fetch which actually needs a store. */
683 val = newSV(0);
684 HvPLACEHOLDERS(hv)--;
685 } else {
686 /* store */
687 if (val != &PL_sv_placeholder)
688 HvPLACEHOLDERS(hv)--;
689 }
690 HeVAL(entry) = val;
691 } else if (action & HV_FETCH_ISSTORE) {
692 SvREFCNT_dec(HeVAL(entry));
693 HeVAL(entry) = val;
694 }
695 } else if (HeVAL(entry) == &PL_sv_placeholder) {
696 /* if we find a placeholder, we pretend we haven't found
697 anything */
698 break;
699 }
700 if (flags & HVhek_FREEKEY)
701 Safefree(key);
702 if (return_svp) {
703 return entry ? (void *) &HeVAL(entry) : NULL;
704 }
705 return entry;
706 }
707#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
708 if (!(action & HV_FETCH_ISSTORE)
709 && SvRMAGICAL((const SV *)hv)
710 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
711 unsigned long len;
712 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
713 if (env) {
714 sv = newSVpvn(env,len);
715 SvTAINTED_on(sv);
716 return hv_common(hv, keysv, key, klen, flags,
717 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
718 sv, hash);
719 }
720 }
721#endif
722
723 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
724 hv_notallowed(flags, key, klen,
725 "Attempt to access disallowed key '%"SVf"' in"
726 " a restricted hash");
727 }
728 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
729 /* Not doing some form of store, so return failure. */
730 if (flags & HVhek_FREEKEY)
731 Safefree(key);
732 return NULL;
733 }
734 if (action & HV_FETCH_LVALUE) {
735 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
736 if (SvMAGICAL(hv)) {
737 /* At this point the old hv_fetch code would call to hv_store,
738 which in turn might do some tied magic. So we need to make that
739 magic check happen. */
740 /* gonna assign to this, so it better be there */
741 /* If a fetch-as-store fails on the fetch, then the action is to
742 recurse once into "hv_store". If we didn't do this, then that
743 recursive call would call the key conversion routine again.
744 However, as we replace the original key with the converted
745 key, this would result in a double conversion, which would show
746 up as a bug if the conversion routine is not idempotent. */
747 return hv_common(hv, keysv, key, klen, flags,
748 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
749 val, hash);
750 /* XXX Surely that could leak if the fetch-was-store fails?
751 Just like the hv_fetch. */
752 }
753 }
754
755 /* Welcome to hv_store... */
756
757 if (!HvARRAY(hv)) {
758 /* Not sure if we can get here. I think the only case of oentry being
759 NULL is for %ENV with dynamic env fetch. But that should disappear
760 with magic in the previous code. */
761 char *array;
762 Newxz(array,
763 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
764 char);
765 HvARRAY(hv) = (HE**)array;
766 }
767
768 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
769
770 entry = new_HE();
771 /* share_hek_flags will do the free for us. This might be considered
772 bad API design. */
773 if (HvSHAREKEYS(hv))
774 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
775 else if (hv == PL_strtab) {
776 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
777 this test here is cheap */
778 if (flags & HVhek_FREEKEY)
779 Safefree(key);
780 Perl_croak(aTHX_ S_strtab_error,
781 action & HV_FETCH_LVALUE ? "fetch" : "store");
782 }
783 else /* gotta do the real thing */
784 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
785 HeVAL(entry) = val;
786 HeNEXT(entry) = *oentry;
787 *oentry = entry;
788
789 if (val == &PL_sv_placeholder)
790 HvPLACEHOLDERS(hv)++;
791 if (masked_flags & HVhek_ENABLEHVKFLAGS)
792 HvHASKFLAGS_on(hv);
793
794 {
795 const HE *counter = HeNEXT(entry);
796
797 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
798 if (!counter) { /* initial entry? */
799 } else if (xhv->xhv_keys > xhv->xhv_max) {
800 /* Use only the old HvUSEDKEYS(hv) > HvMAX(hv) condition to limit
801 bucket splits on a rehashed hash, as we're not going to
802 split it again, and if someone is lucky (evil) enough to
803 get all the keys in one list they could exhaust our memory
804 as we repeatedly double the number of buckets on every
805 entry. Linear search feels a less worse thing to do. */
806 hsplit(hv);
807 } else if(!HvREHASH(hv)) {
808 U32 n_links = 1;
809
810 while ((counter = HeNEXT(counter)))
811 n_links++;
812
813 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
814 hsplit(hv);
815 }
816 }
817 }
818
819 if (return_svp) {
820 return entry ? (void *) &HeVAL(entry) : NULL;
821 }
822 return (void *) entry;
823}
824
825STATIC void
826S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
827{
828 const MAGIC *mg = SvMAGIC(hv);
829
830 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
831
832 *needs_copy = FALSE;
833 *needs_store = TRUE;
834 while (mg) {
835 if (isUPPER(mg->mg_type)) {
836 *needs_copy = TRUE;
837 if (mg->mg_type == PERL_MAGIC_tied) {
838 *needs_store = FALSE;
839 return; /* We've set all there is to set. */
840 }
841 }
842 mg = mg->mg_moremagic;
843 }
844}
845
846/*
847=for apidoc hv_scalar
848
849Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
850
851=cut
852*/
853
854SV *
855Perl_hv_scalar(pTHX_ HV *hv)
856{
857 SV *sv;
858
859 PERL_ARGS_ASSERT_HV_SCALAR;
860
861 if (SvRMAGICAL(hv)) {
862 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
863 if (mg)
864 return magic_scalarpack(hv, mg);
865 }
866
867 sv = sv_newmortal();
868 if (HvTOTALKEYS((const HV *)hv))
869 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
870 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
871 else
872 sv_setiv(sv, 0);
873
874 return sv;
875}
876
877/*
878=for apidoc hv_delete
879
880Deletes a key/value pair in the hash. The value's SV is removed from the
881hash, made mortal, and returned to the caller. The C<klen> is the length of
882the key. The C<flags> value will normally be zero; if set to G_DISCARD then
883NULL will be returned. NULL will also be returned if the key is not found.
884
885=for apidoc hv_delete_ent
886
887Deletes a key/value pair in the hash. The value SV is removed from the hash,
888made mortal, and returned to the caller. The C<flags> value will normally be
889zero; if set to G_DISCARD then NULL will be returned. NULL will also be
890returned if the key is not found. C<hash> can be a valid precomputed hash
891value, or 0 to ask for it to be computed.
892
893=cut
894*/
895
896STATIC SV *
897S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
898 int k_flags, I32 d_flags, U32 hash)
899{
900 dVAR;
901 register XPVHV* xhv;
902 register HE *entry;
903 register HE **oentry;
904 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
905 int masked_flags;
906
907 if (SvRMAGICAL(hv)) {
908 bool needs_copy;
909 bool needs_store;
910 hv_magic_check (hv, &needs_copy, &needs_store);
911
912 if (needs_copy) {
913 SV *sv;
914 entry = (HE *) hv_common(hv, keysv, key, klen,
915 k_flags & ~HVhek_FREEKEY,
916 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
917 NULL, hash);
918 sv = entry ? HeVAL(entry) : NULL;
919 if (sv) {
920 if (SvMAGICAL(sv)) {
921 mg_clear(sv);
922 }
923 if (!needs_store) {
924 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
925 /* No longer an element */
926 sv_unmagic(sv, PERL_MAGIC_tiedelem);
927 return sv;
928 }
929 return NULL; /* element cannot be deleted */
930 }
931#ifdef ENV_IS_CASELESS
932 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
933 /* XXX This code isn't UTF8 clean. */
934 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
935 if (k_flags & HVhek_FREEKEY) {
936 Safefree(key);
937 }
938 key = strupr(SvPVX(keysv));
939 is_utf8 = 0;
940 k_flags = 0;
941 hash = 0;
942 }
943#endif
944 }
945 }
946 }
947 xhv = (XPVHV*)SvANY(hv);
948 if (!HvARRAY(hv))
949 return NULL;
950
951 if (is_utf8) {
952 const char * const keysave = key;
953 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
954
955 if (is_utf8)
956 k_flags |= HVhek_UTF8;
957 else
958 k_flags &= ~HVhek_UTF8;
959 if (key != keysave) {
960 if (k_flags & HVhek_FREEKEY) {
961 /* This shouldn't happen if our caller does what we expect,
962 but strictly the API allows it. */
963 Safefree(keysave);
964 }
965 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
966 }
967 HvHASKFLAGS_on(MUTABLE_SV(hv));
968 }
969
970 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
971 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
972 else if (!hash)
973 hash = SvSHARED_HASH(keysv);
974
975 masked_flags = (k_flags & HVhek_MASK);
976
977 oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
978 entry = *oentry;
979 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
980 SV *sv;
981 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
982 GV *gv = NULL;
983 HV *stash = NULL;
984
985 if (HeHASH(entry) != hash) /* strings can't be equal */
986 continue;
987 if (HeKLEN(entry) != (I32)klen)
988 continue;
989 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
990 continue;
991 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
992 continue;
993
994 if (hv == PL_strtab) {
995 if (k_flags & HVhek_FREEKEY)
996 Safefree(key);
997 Perl_croak(aTHX_ S_strtab_error, "delete");
998 }
999
1000 /* if placeholder is here, it's already been deleted.... */
1001 if (HeVAL(entry) == &PL_sv_placeholder) {
1002 if (k_flags & HVhek_FREEKEY)
1003 Safefree(key);
1004 return NULL;
1005 }
1006 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))
1007 && !SvIsCOW(HeVAL(entry))) {
1008 hv_notallowed(k_flags, key, klen,
1009 "Attempt to delete readonly key '%"SVf"' from"
1010 " a restricted hash");
1011 }
1012 if (k_flags & HVhek_FREEKEY)
1013 Safefree(key);
1014
1015 /* If this is a stash and the key ends with ::, then someone is
1016 * deleting a package.
1017 */
1018 if (HeVAL(entry) && HvENAME_get(hv)) {
1019 gv = (GV *)HeVAL(entry);
1020 if (keysv) key = SvPV(keysv, klen);
1021 if ((
1022 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1023 ||
1024 (klen == 1 && key[0] == ':')
1025 )
1026 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1027 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1028 && HvENAME_get(stash)) {
1029 /* A previous version of this code checked that the
1030 * GV was still in the symbol table by fetching the
1031 * GV with its name. That is not necessary (and
1032 * sometimes incorrect), as HvENAME cannot be set
1033 * on hv if it is not in the symtab. */
1034 mro_changes = 2;
1035 /* Hang on to it for a bit. */
1036 SvREFCNT_inc_simple_void_NN(
1037 sv_2mortal((SV *)gv)
1038 );
1039 }
1040 else if (klen == 3 && strnEQ(key, "ISA", 3))
1041 mro_changes = 1;
1042 }
1043
1044 if (d_flags & G_DISCARD) {
1045 sv = HeVAL(entry);
1046 HeVAL(entry) = &PL_sv_placeholder;
1047 if (sv) {
1048 /* deletion of method from stash */
1049 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1050 && HvENAME_get(hv))
1051 mro_method_changed_in(hv);
1052 SvREFCNT_dec(sv);
1053 sv = NULL;
1054 }
1055 }
1056 else {
1057 sv = sv_2mortal(HeVAL(entry));
1058 HeVAL(entry) = &PL_sv_placeholder;
1059 }
1060
1061 /*
1062 * If a restricted hash, rather than really deleting the entry, put
1063 * a placeholder there. This marks the key as being "approved", so
1064 * we can still access via not-really-existing key without raising
1065 * an error.
1066 */
1067 if (SvREADONLY(hv))
1068 /* We'll be saving this slot, so the number of allocated keys
1069 * doesn't go down, but the number placeholders goes up */
1070 HvPLACEHOLDERS(hv)++;
1071 else {
1072 *oentry = HeNEXT(entry);
1073 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1074 HvLAZYDEL_on(hv);
1075 else {
1076 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1077 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1078 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1079 hv_free_ent(hv, entry);
1080 }
1081 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1082 if (xhv->xhv_keys == 0)
1083 HvHASKFLAGS_off(hv);
1084 }
1085
1086 if (mro_changes == 1) mro_isa_changed_in(hv);
1087 else if (mro_changes == 2)
1088 mro_package_moved(NULL, stash, gv, 1);
1089
1090 return sv;
1091 }
1092 if (SvREADONLY(hv)) {
1093 hv_notallowed(k_flags, key, klen,
1094 "Attempt to delete disallowed key '%"SVf"' from"
1095 " a restricted hash");
1096 }
1097
1098 if (k_flags & HVhek_FREEKEY)
1099 Safefree(key);
1100 return NULL;
1101}
1102
1103STATIC void
1104S_hsplit(pTHX_ HV *hv)
1105{
1106 dVAR;
1107 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1108 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1109 register I32 newsize = oldsize * 2;
1110 register I32 i;
1111 char *a = (char*) HvARRAY(hv);
1112 register HE **aep;
1113 int longest_chain = 0;
1114 int was_shared;
1115
1116 PERL_ARGS_ASSERT_HSPLIT;
1117
1118 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1119 (void*)hv, (int) oldsize);*/
1120
1121 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1122 /* Can make this clear any placeholders first for non-restricted hashes,
1123 even though Storable rebuilds restricted hashes by putting in all the
1124 placeholders (first) before turning on the readonly flag, because
1125 Storable always pre-splits the hash. */
1126 hv_clear_placeholders(hv);
1127 }
1128
1129 PL_nomemok = TRUE;
1130#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1131 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1132 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1133 if (!a) {
1134 PL_nomemok = FALSE;
1135 return;
1136 }
1137 if (SvOOK(hv)) {
1138 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1139 }
1140#else
1141 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1142 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1143 if (!a) {
1144 PL_nomemok = FALSE;
1145 return;
1146 }
1147 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1148 if (SvOOK(hv)) {
1149 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1150 }
1151 Safefree(HvARRAY(hv));
1152#endif
1153
1154 PL_nomemok = FALSE;
1155 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1156 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1157 HvARRAY(hv) = (HE**) a;
1158 aep = (HE**)a;
1159
1160 for (i=0; i<oldsize; i++,aep++) {
1161 int left_length = 0;
1162 int right_length = 0;
1163 HE **oentry = aep;
1164 HE *entry = *aep;
1165 register HE **bep;
1166
1167 if (!entry) /* non-existent */
1168 continue;
1169 bep = aep+oldsize;
1170 do {
1171 if ((HeHASH(entry) & newsize) != (U32)i) {
1172 *oentry = HeNEXT(entry);
1173 HeNEXT(entry) = *bep;
1174 *bep = entry;
1175 right_length++;
1176 }
1177 else {
1178 oentry = &HeNEXT(entry);
1179 left_length++;
1180 }
1181 entry = *oentry;
1182 } while (entry);
1183 /* I think we don't actually need to keep track of the longest length,
1184 merely flag if anything is too long. But for the moment while
1185 developing this code I'll track it. */
1186 if (left_length > longest_chain)
1187 longest_chain = left_length;
1188 if (right_length > longest_chain)
1189 longest_chain = right_length;
1190 }
1191
1192
1193 /* Pick your policy for "hashing isn't working" here: */
1194 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1195 || HvREHASH(hv)) {
1196 return;
1197 }
1198
1199 if (hv == PL_strtab) {
1200 /* Urg. Someone is doing something nasty to the string table.
1201 Can't win. */
1202 return;
1203 }
1204
1205 /* Awooga. Awooga. Pathological data. */
1206 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1207 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1208
1209 ++newsize;
1210 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1211 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1212 if (SvOOK(hv)) {
1213 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1214 }
1215
1216 was_shared = HvSHAREKEYS(hv);
1217
1218 HvSHAREKEYS_off(hv);
1219 HvREHASH_on(hv);
1220
1221 aep = HvARRAY(hv);
1222
1223 for (i=0; i<newsize; i++,aep++) {
1224 register HE *entry = *aep;
1225 while (entry) {
1226 /* We're going to trash this HE's next pointer when we chain it
1227 into the new hash below, so store where we go next. */
1228 HE * const next = HeNEXT(entry);
1229 UV hash;
1230 HE **bep;
1231
1232 /* Rehash it */
1233 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1234
1235 if (was_shared) {
1236 /* Unshare it. */
1237 HEK * const new_hek
1238 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1239 hash, HeKFLAGS(entry));
1240 unshare_hek (HeKEY_hek(entry));
1241 HeKEY_hek(entry) = new_hek;
1242 } else {
1243 /* Not shared, so simply write the new hash in. */
1244 HeHASH(entry) = hash;
1245 }
1246 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1247 HEK_REHASH_on(HeKEY_hek(entry));
1248 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1249
1250 /* Copy oentry to the correct new chain. */
1251 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1252 HeNEXT(entry) = *bep;
1253 *bep = entry;
1254
1255 entry = next;
1256 }
1257 }
1258 Safefree (HvARRAY(hv));
1259 HvARRAY(hv) = (HE **)a;
1260}
1261
1262void
1263Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1264{
1265 dVAR;
1266 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1267 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1268 register I32 newsize;
1269 register I32 i;
1270 register char *a;
1271 register HE **aep;
1272
1273 PERL_ARGS_ASSERT_HV_KSPLIT;
1274
1275 newsize = (I32) newmax; /* possible truncation here */
1276 if (newsize != newmax || newmax <= oldsize)
1277 return;
1278 while ((newsize & (1 + ~newsize)) != newsize) {
1279 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1280 }
1281 if (newsize < newmax)
1282 newsize *= 2;
1283 if (newsize < newmax)
1284 return; /* overflow detection */
1285
1286 a = (char *) HvARRAY(hv);
1287 if (a) {
1288 PL_nomemok = TRUE;
1289#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1290 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1291 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1292 if (!a) {
1293 PL_nomemok = FALSE;
1294 return;
1295 }
1296 if (SvOOK(hv)) {
1297 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1298 }
1299#else
1300 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1301 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1302 if (!a) {
1303 PL_nomemok = FALSE;
1304 return;
1305 }
1306 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1307 if (SvOOK(hv)) {
1308 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1309 }
1310 Safefree(HvARRAY(hv));
1311#endif
1312 PL_nomemok = FALSE;
1313 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1314 }
1315 else {
1316 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1317 }
1318 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1319 HvARRAY(hv) = (HE **) a;
1320 if (!xhv->xhv_keys /* !HvTOTALKEYS(hv) */) /* skip rest if no entries */
1321 return;
1322
1323 aep = (HE**)a;
1324 for (i=0; i<oldsize; i++,aep++) {
1325 HE **oentry = aep;
1326 HE *entry = *aep;
1327
1328 if (!entry) /* non-existent */
1329 continue;
1330 do {
1331 register I32 j = (HeHASH(entry) & newsize);
1332
1333 if (j != i) {
1334 j -= i;
1335 *oentry = HeNEXT(entry);
1336 HeNEXT(entry) = aep[j];
1337 aep[j] = entry;
1338 }
1339 else
1340 oentry = &HeNEXT(entry);
1341 entry = *oentry;
1342 } while (entry);
1343 }
1344}
1345
1346HV *
1347Perl_newHVhv(pTHX_ HV *ohv)
1348{
1349 dVAR;
1350 HV * const hv = newHV();
1351 STRLEN hv_max;
1352
1353 if (!ohv || !HvTOTALKEYS(ohv))
1354 return hv;
1355 hv_max = HvMAX(ohv);
1356
1357 if (!SvMAGICAL((const SV *)ohv)) {
1358 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1359 STRLEN i;
1360 const bool shared = !!HvSHAREKEYS(ohv);
1361 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1362 char *a;
1363 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1364 ents = (HE**)a;
1365
1366 /* In each bucket... */
1367 for (i = 0; i <= hv_max; i++) {
1368 HE *prev = NULL;
1369 HE *oent = oents[i];
1370
1371 if (!oent) {
1372 ents[i] = NULL;
1373 continue;
1374 }
1375
1376 /* Copy the linked list of entries. */
1377 for (; oent; oent = HeNEXT(oent)) {
1378 const U32 hash = HeHASH(oent);
1379 const char * const key = HeKEY(oent);
1380 const STRLEN len = HeKLEN(oent);
1381 const int flags = HeKFLAGS(oent);
1382 HE * const ent = new_HE();
1383 SV *const val = HeVAL(oent);
1384
1385 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1386 HeKEY_hek(ent)
1387 = shared ? share_hek_flags(key, len, hash, flags)
1388 : save_hek_flags(key, len, hash, flags);
1389 if (prev)
1390 HeNEXT(prev) = ent;
1391 else
1392 ents[i] = ent;
1393 prev = ent;
1394 HeNEXT(ent) = NULL;
1395 }
1396 }
1397
1398 HvMAX(hv) = hv_max;
1399 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1400 HvARRAY(hv) = ents;
1401 } /* not magical */
1402 else {
1403 /* Iterate over ohv, copying keys and values one at a time. */
1404 HE *entry;
1405 const I32 riter = HvRITER_get(ohv);
1406 HE * const eiter = HvEITER_get(ohv);
1407 STRLEN hv_fill = HvFILL(ohv);
1408
1409 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1410 while (hv_max && hv_max + 1 >= hv_fill * 2)
1411 hv_max = hv_max / 2;
1412 HvMAX(hv) = hv_max;
1413
1414 hv_iterinit(ohv);
1415 while ((entry = hv_iternext_flags(ohv, 0))) {
1416 SV *const val = HeVAL(entry);
1417 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1418 SvIMMORTAL(val) ? val : newSVsv(val),
1419 HeHASH(entry), HeKFLAGS(entry));
1420 }
1421 HvRITER_set(ohv, riter);
1422 HvEITER_set(ohv, eiter);
1423 }
1424
1425 return hv;
1426}
1427
1428/*
1429=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1430
1431A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1432a pointer to a hash (which may have C<%^H> magic, but should be generally
1433non-magical), or C<NULL> (interpreted as an empty hash). The content
1434of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1435added to it. A pointer to the new hash is returned.
1436
1437=cut
1438*/
1439
1440HV *
1441Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1442{
1443 HV * const hv = newHV();
1444
1445 if (ohv && HvTOTALKEYS(ohv)) {
1446 STRLEN hv_max = HvMAX(ohv);
1447 STRLEN hv_fill = HvFILL(ohv);
1448 HE *entry;
1449 const I32 riter = HvRITER_get(ohv);
1450 HE * const eiter = HvEITER_get(ohv);
1451
1452 while (hv_max && hv_max + 1 >= hv_fill * 2)
1453 hv_max = hv_max / 2;
1454 HvMAX(hv) = hv_max;
1455
1456 hv_iterinit(ohv);
1457 while ((entry = hv_iternext_flags(ohv, 0))) {
1458 SV *const sv = newSVsv(HeVAL(entry));
1459 SV *heksv = newSVhek(HeKEY_hek(entry));
1460 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1461 (char *)heksv, HEf_SVKEY);
1462 SvREFCNT_dec(heksv);
1463 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1464 sv, HeHASH(entry), HeKFLAGS(entry));
1465 }
1466 HvRITER_set(ohv, riter);
1467 HvEITER_set(ohv, eiter);
1468 }
1469 hv_magic(hv, NULL, PERL_MAGIC_hints);
1470 return hv;
1471}
1472
1473/* like hv_free_ent, but returns the SV rather than freeing it */
1474STATIC SV*
1475S_hv_free_ent_ret(pTHX_ HV *hv, register HE *entry)
1476{
1477 dVAR;
1478 SV *val;
1479
1480 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1481
1482 if (!entry)
1483 return NULL;
1484 val = HeVAL(entry);
1485 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvENAME(hv))
1486 mro_method_changed_in(hv); /* deletion of method from stash */
1487 if (HeKLEN(entry) == HEf_SVKEY) {
1488 SvREFCNT_dec(HeKEY_sv(entry));
1489 Safefree(HeKEY_hek(entry));
1490 }
1491 else if (HvSHAREKEYS(hv))
1492 unshare_hek(HeKEY_hek(entry));
1493 else
1494 Safefree(HeKEY_hek(entry));
1495 del_HE(entry);
1496 return val;
1497}
1498
1499
1500void
1501Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1502{
1503 dVAR;
1504 SV *val;
1505
1506 PERL_ARGS_ASSERT_HV_FREE_ENT;
1507
1508 if (!entry)
1509 return;
1510 val = hv_free_ent_ret(hv, entry);
1511 SvREFCNT_dec(val);
1512}
1513
1514
1515void
1516Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1517{
1518 dVAR;
1519
1520 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1521
1522 if (!entry)
1523 return;
1524 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1525 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1526 if (HeKLEN(entry) == HEf_SVKEY) {
1527 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1528 }
1529 hv_free_ent(hv, entry);
1530}
1531
1532/*
1533=for apidoc hv_clear
1534
1535Frees the all the elements of a hash, leaving it empty.
1536The XS equivalent of %hash = (). See also L</hv_undef>.
1537
1538=cut
1539*/
1540
1541void
1542Perl_hv_clear(pTHX_ HV *hv)
1543{
1544 dVAR;
1545 register XPVHV* xhv;
1546 if (!hv)
1547 return;
1548
1549 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1550
1551 xhv = (XPVHV*)SvANY(hv);
1552
1553 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1554 /* restricted hash: convert all keys to placeholders */
1555 STRLEN i;
1556 for (i = 0; i <= xhv->xhv_max; i++) {
1557 HE *entry = (HvARRAY(hv))[i];
1558 for (; entry; entry = HeNEXT(entry)) {
1559 /* not already placeholder */
1560 if (HeVAL(entry) != &PL_sv_placeholder) {
1561 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))
1562 && !SvIsCOW(HeVAL(entry))) {
1563 SV* const keysv = hv_iterkeysv(entry);
1564 Perl_croak(aTHX_
1565 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1566 (void*)keysv);
1567 }
1568 SvREFCNT_dec(HeVAL(entry));
1569 HeVAL(entry) = &PL_sv_placeholder;
1570 HvPLACEHOLDERS(hv)++;
1571 }
1572 }
1573 }
1574 }
1575 else {
1576 hfreeentries(hv);
1577 HvPLACEHOLDERS_set(hv, 0);
1578
1579 if (SvRMAGICAL(hv))
1580 mg_clear(MUTABLE_SV(hv));
1581
1582 HvHASKFLAGS_off(hv);
1583 HvREHASH_off(hv);
1584 }
1585 if (SvOOK(hv)) {
1586 if(HvENAME_get(hv))
1587 mro_isa_changed_in(hv);
1588 HvEITER_set(hv, NULL);
1589 }
1590}
1591
1592/*
1593=for apidoc hv_clear_placeholders
1594
1595Clears any placeholders from a hash. If a restricted hash has any of its keys
1596marked as readonly and the key is subsequently deleted, the key is not actually
1597deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1598it so it will be ignored by future operations such as iterating over the hash,
1599but will still allow the hash to have a value reassigned to the key at some
1600future point. This function clears any such placeholder keys from the hash.
1601See Hash::Util::lock_keys() for an example of its use.
1602
1603=cut
1604*/
1605
1606void
1607Perl_hv_clear_placeholders(pTHX_ HV *hv)
1608{
1609 dVAR;
1610 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1611
1612 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1613
1614 if (items)
1615 clear_placeholders(hv, items);
1616}
1617
1618static void
1619S_clear_placeholders(pTHX_ HV *hv, U32 items)
1620{
1621 dVAR;
1622 I32 i;
1623
1624 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1625
1626 if (items == 0)
1627 return;
1628
1629 i = HvMAX(hv);
1630 do {
1631 /* Loop down the linked list heads */
1632 HE **oentry = &(HvARRAY(hv))[i];
1633 HE *entry;
1634
1635 while ((entry = *oentry)) {
1636 if (HeVAL(entry) == &PL_sv_placeholder) {
1637 *oentry = HeNEXT(entry);
1638 if (entry == HvEITER_get(hv))
1639 HvLAZYDEL_on(hv);
1640 else {
1641 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1642 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1643 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1644 hv_free_ent(hv, entry);
1645 }
1646
1647 if (--items == 0) {
1648 /* Finished. */
1649 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1650 if (HvUSEDKEYS(hv) == 0)
1651 HvHASKFLAGS_off(hv);
1652 HvPLACEHOLDERS_set(hv, 0);
1653 return;
1654 }
1655 } else {
1656 oentry = &HeNEXT(entry);
1657 }
1658 }
1659 } while (--i >= 0);
1660 /* You can't get here, hence assertion should always fail. */
1661 assert (items == 0);
1662 assert (0);
1663}
1664
1665STATIC void
1666S_hfreeentries(pTHX_ HV *hv)
1667{
1668 STRLEN index = 0;
1669 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1670 SV *sv;
1671
1672 PERL_ARGS_ASSERT_HFREEENTRIES;
1673
1674 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1675 SvREFCNT_dec(sv);
1676 }
1677}
1678
1679
1680/* hfree_next_entry()
1681 * For use only by S_hfreeentries() and sv_clear().
1682 * Delete the next available HE from hv and return the associated SV.
1683 * Returns null on empty hash. Nevertheless null is not a reliable
1684 * indicator that the hash is empty, as the deleted entry may have a
1685 * null value.
1686 * indexp is a pointer to the current index into HvARRAY. The index should
1687 * initially be set to 0. hfree_next_entry() may update it. */
1688
1689SV*
1690Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1691{
1692 struct xpvhv_aux *iter;
1693 HE *entry;
1694 HE ** array;
1695#ifdef DEBUGGING
1696 STRLEN orig_index = *indexp;
1697#endif
1698
1699 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1700
1701 if (SvOOK(hv) && ((iter = HvAUX(hv)))
1702 && ((entry = iter->xhv_eiter)) )
1703 {
1704 /* the iterator may get resurrected after each
1705 * destructor call, so check each time */
1706 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1707 HvLAZYDEL_off(hv);
1708 hv_free_ent(hv, entry);
1709 /* warning: at this point HvARRAY may have been
1710 * re-allocated, HvMAX changed etc */
1711 }
1712 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1713 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1714 }
1715
1716 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1717 return NULL;
1718
1719 array = HvARRAY(hv);
1720 assert(array);
1721 while ( ! ((entry = array[*indexp])) ) {
1722 if ((*indexp)++ >= HvMAX(hv))
1723 *indexp = 0;
1724 assert(*indexp != orig_index);
1725 }
1726 array[*indexp] = HeNEXT(entry);
1727 ((XPVHV*) SvANY(hv))->xhv_keys--;
1728
1729 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1730 && HeVAL(entry) && isGV(HeVAL(entry))
1731 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1732 ) {
1733 STRLEN klen;
1734 const char * const key = HePV(entry,klen);
1735 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1736 || (klen == 1 && key[0] == ':')) {
1737 mro_package_moved(
1738 NULL, GvHV(HeVAL(entry)),
1739 (GV *)HeVAL(entry), 0
1740 );
1741 }
1742 }
1743 return hv_free_ent_ret(hv, entry);
1744}
1745
1746
1747/*
1748=for apidoc hv_undef
1749
1750Undefines the hash. The XS equivalent of undef(%hash).
1751
1752As well as freeing all the elements of the hash (like hv_clear()), this
1753also frees any auxiliary data and storage associated with the hash.
1754See also L</hv_clear>.
1755
1756=cut
1757*/
1758
1759void
1760Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1761{
1762 dVAR;
1763 register XPVHV* xhv;
1764 const char *name;
1765
1766 if (!hv)
1767 return;
1768 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1769 xhv = (XPVHV*)SvANY(hv);
1770
1771 /* The name must be deleted before the call to hfreeeeentries so that
1772 CVs are anonymised properly. But the effective name must be pre-
1773 served until after that call (and only deleted afterwards if the
1774 call originated from sv_clear). For stashes with one name that is
1775 both the canonical name and the effective name, hv_name_set has to
1776 allocate an array for storing the effective name. We can skip that
1777 during global destruction, as it does not matter where the CVs point
1778 if they will be freed anyway. */
1779 /* note that the code following prior to hfreeentries is duplicated
1780 * in sv_clear(), and changes here should be done there too */
1781 if (PL_phase != PERL_PHASE_DESTRUCT && (name = HvNAME(hv))) {
1782 if (PL_stashcache)
1783 (void)hv_delete(PL_stashcache, name,
1784 HEK_UTF8(HvNAME_HEK(hv)) ? -HvNAMELEN_get(hv) : HvNAMELEN_get(hv),
1785 G_DISCARD
1786 );
1787 hv_name_set(hv, NULL, 0, 0);
1788 }
1789 hfreeentries(hv);
1790 if (SvOOK(hv)) {
1791 struct xpvhv_aux * const aux = HvAUX(hv);
1792 struct mro_meta *meta;
1793
1794 if ((name = HvENAME_get(hv))) {
1795 if (PL_phase != PERL_PHASE_DESTRUCT)
1796 mro_isa_changed_in(hv);
1797 if (PL_stashcache)
1798 (void)hv_delete(
1799 PL_stashcache, name,
1800 HEK_UTF8(HvENAME_HEK(hv)) ? -HvENAMELEN_get(hv) : HvENAMELEN_get(hv),
1801 G_DISCARD
1802 );
1803 }
1804
1805 /* If this call originated from sv_clear, then we must check for
1806 * effective names that need freeing, as well as the usual name. */
1807 name = HvNAME(hv);
1808 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1809 if (name && PL_stashcache)
1810 (void)hv_delete(PL_stashcache, name, (HEK_UTF8(HvNAME_HEK(hv)) ? -HvNAMELEN_get(hv) : HvNAMELEN_get(hv)), G_DISCARD);
1811 hv_name_set(hv, NULL, 0, flags);
1812 }
1813 if((meta = aux->xhv_mro_meta)) {
1814 if (meta->mro_linear_all) {
1815 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1816 meta->mro_linear_all = NULL;
1817 /* This is just acting as a shortcut pointer. */
1818 meta->mro_linear_current = NULL;
1819 } else if (meta->mro_linear_current) {
1820 /* Only the current MRO is stored, so this owns the data.
1821 */
1822 SvREFCNT_dec(meta->mro_linear_current);
1823 meta->mro_linear_current = NULL;
1824 }
1825 SvREFCNT_dec(meta->mro_nextmethod);
1826 SvREFCNT_dec(meta->isa);
1827 Safefree(meta);
1828 aux->xhv_mro_meta = NULL;
1829 }
1830 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1831 SvFLAGS(hv) &= ~SVf_OOK;
1832 }
1833 if (!SvOOK(hv)) {
1834 Safefree(HvARRAY(hv));
1835 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1836 HvARRAY(hv) = 0;
1837 }
1838 HvPLACEHOLDERS_set(hv, 0);
1839
1840 if (SvRMAGICAL(hv))
1841 mg_clear(MUTABLE_SV(hv));
1842}
1843
1844/*
1845=for apidoc hv_fill
1846
1847Returns the number of hash buckets that happen to be in use. This function is
1848wrapped by the macro C<HvFILL>.
1849
1850Previously this value was stored in the HV structure, rather than being
1851calculated on demand.
1852
1853=cut
1854*/
1855
1856STRLEN
1857Perl_hv_fill(pTHX_ HV const *const hv)
1858{
1859 STRLEN count = 0;
1860 HE **ents = HvARRAY(hv);
1861
1862 PERL_ARGS_ASSERT_HV_FILL;
1863
1864 if (ents) {
1865 HE *const *const last = ents + HvMAX(hv);
1866 count = last + 1 - ents;
1867
1868 do {
1869 if (!*ents)
1870 --count;
1871 } while (++ents <= last);
1872 }
1873 return count;
1874}
1875
1876static struct xpvhv_aux*
1877S_hv_auxinit(HV *hv) {
1878 struct xpvhv_aux *iter;
1879 char *array;
1880
1881 PERL_ARGS_ASSERT_HV_AUXINIT;
1882
1883 if (!HvARRAY(hv)) {
1884 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1885 + sizeof(struct xpvhv_aux), char);
1886 } else {
1887 array = (char *) HvARRAY(hv);
1888 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1889 + sizeof(struct xpvhv_aux), char);
1890 }
1891 HvARRAY(hv) = (HE**) array;
1892 /* SvOOK_on(hv) attacks the IV flags. */
1893 SvFLAGS(hv) |= SVf_OOK;
1894 iter = HvAUX(hv);
1895
1896 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1897 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1898 iter->xhv_name_u.xhvnameu_name = 0;
1899 iter->xhv_name_count = 0;
1900 iter->xhv_backreferences = 0;
1901 iter->xhv_mro_meta = NULL;
1902 return iter;
1903}
1904
1905/*
1906=for apidoc hv_iterinit
1907
1908Prepares a starting point to traverse a hash table. Returns the number of
1909keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1910currently only meaningful for hashes without tie magic.
1911
1912NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1913hash buckets that happen to be in use. If you still need that esoteric
1914value, you can get it through the macro C<HvFILL(hv)>.
1915
1916
1917=cut
1918*/
1919
1920I32
1921Perl_hv_iterinit(pTHX_ HV *hv)
1922{
1923 PERL_ARGS_ASSERT_HV_ITERINIT;
1924
1925 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1926
1927 if (!hv)
1928 Perl_croak(aTHX_ "Bad hash");
1929
1930 if (SvOOK(hv)) {
1931 struct xpvhv_aux * const iter = HvAUX(hv);
1932 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1933 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1934 HvLAZYDEL_off(hv);
1935 hv_free_ent(hv, entry);
1936 }
1937 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1938 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1939 } else {
1940 hv_auxinit(hv);
1941 }
1942
1943 /* used to be xhv->xhv_fill before 5.004_65 */
1944 return HvTOTALKEYS(hv);
1945}
1946
1947I32 *
1948Perl_hv_riter_p(pTHX_ HV *hv) {
1949 struct xpvhv_aux *iter;
1950
1951 PERL_ARGS_ASSERT_HV_RITER_P;
1952
1953 if (!hv)
1954 Perl_croak(aTHX_ "Bad hash");
1955
1956 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1957 return &(iter->xhv_riter);
1958}
1959
1960HE **
1961Perl_hv_eiter_p(pTHX_ HV *hv) {
1962 struct xpvhv_aux *iter;
1963
1964 PERL_ARGS_ASSERT_HV_EITER_P;
1965
1966 if (!hv)
1967 Perl_croak(aTHX_ "Bad hash");
1968
1969 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1970 return &(iter->xhv_eiter);
1971}
1972
1973void
1974Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1975 struct xpvhv_aux *iter;
1976
1977 PERL_ARGS_ASSERT_HV_RITER_SET;
1978
1979 if (!hv)
1980 Perl_croak(aTHX_ "Bad hash");
1981
1982 if (SvOOK(hv)) {
1983 iter = HvAUX(hv);
1984 } else {
1985 if (riter == -1)
1986 return;
1987
1988 iter = hv_auxinit(hv);
1989 }
1990 iter->xhv_riter = riter;
1991}
1992
1993void
1994Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1995 struct xpvhv_aux *iter;
1996
1997 PERL_ARGS_ASSERT_HV_EITER_SET;
1998
1999 if (!hv)
2000 Perl_croak(aTHX_ "Bad hash");
2001
2002 if (SvOOK(hv)) {
2003 iter = HvAUX(hv);
2004 } else {
2005 /* 0 is the default so don't go malloc()ing a new structure just to
2006 hold 0. */
2007 if (!eiter)
2008 return;
2009
2010 iter = hv_auxinit(hv);
2011 }
2012 iter->xhv_eiter = eiter;
2013}
2014
2015void
2016Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2017{
2018 dVAR;
2019 struct xpvhv_aux *iter;
2020 U32 hash;
2021 HEK **spot;
2022
2023 PERL_ARGS_ASSERT_HV_NAME_SET;
2024
2025 if (len > I32_MAX)
2026 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2027
2028 if (SvOOK(hv)) {
2029 iter = HvAUX(hv);
2030 if (iter->xhv_name_u.xhvnameu_name) {
2031 if(iter->xhv_name_count) {
2032 if(flags & HV_NAME_SETALL) {
2033 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2034 HEK **hekp = name + (
2035 iter->xhv_name_count < 0
2036 ? -iter->xhv_name_count
2037 : iter->xhv_name_count
2038 );
2039 while(hekp-- > name+1)
2040 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2041 /* The first elem may be null. */
2042 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2043 Safefree(name);
2044 spot = &iter->xhv_name_u.xhvnameu_name;
2045 iter->xhv_name_count = 0;
2046 }
2047 else {
2048 if(iter->xhv_name_count > 0) {
2049 /* shift some things over */
2050 Renew(
2051 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2052 );
2053 spot = iter->xhv_name_u.xhvnameu_names;
2054 spot[iter->xhv_name_count] = spot[1];
2055 spot[1] = spot[0];
2056 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2057 }
2058 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2059 unshare_hek_or_pvn(*spot, 0, 0, 0);
2060 }
2061 }
2062 }
2063 else if (flags & HV_NAME_SETALL) {
2064 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2065 spot = &iter->xhv_name_u.xhvnameu_name;
2066 }
2067 else {
2068 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2069 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2070 iter->xhv_name_count = -2;
2071 spot = iter->xhv_name_u.xhvnameu_names;
2072 spot[1] = existing_name;
2073 }
2074 }
2075 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2076 } else {
2077 if (name == 0)
2078 return;
2079
2080 iter = hv_auxinit(hv);
2081 spot = &iter->xhv_name_u.xhvnameu_name;
2082 }
2083 PERL_HASH(hash, name, len);
2084 *spot = name ? share_hek(name, flags & SVf_UTF8 ? -len : len, hash) : NULL;
2085}
2086
2087/*
2088This is basically sv_eq_flags() in sv.c, but we avoid the magic
2089and bytes checking.
2090*/
2091
2092STATIC I32
2093hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) {
2094 if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) {
2095 if (flags & SVf_UTF8)
2096 return (bytes_cmp_utf8(
2097 (const U8*)HEK_KEY(hek), HEK_LEN(hek),
2098 (const U8*)pv, pvlen) == 0);
2099 else
2100 return (bytes_cmp_utf8(
2101 (const U8*)pv, pvlen,
2102 (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0);
2103 }
2104 else
2105 return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv)
2106 || memEQ(HEK_KEY(hek), pv, pvlen));
2107}
2108
2109/*
2110=for apidoc hv_ename_add
2111
2112Adds a name to a stash's internal list of effective names. See
2113C<hv_ename_delete>.
2114
2115This is called when a stash is assigned to a new location in the symbol
2116table.
2117
2118=cut
2119*/
2120
2121void
2122Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2123{
2124 dVAR;
2125 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2126 U32 hash;
2127
2128 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2129
2130 if (len > I32_MAX)
2131 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2132
2133 PERL_HASH(hash, name, len);
2134
2135 if (aux->xhv_name_count) {
2136 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2137 I32 count = aux->xhv_name_count;
2138 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2139 while (hekp-- > xhv_name)
2140 if (
2141 (HEK_UTF8(*hekp) || (flags & SVf_UTF8))
2142 ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags)
2143 : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len))
2144 ) {
2145 if (hekp == xhv_name && count < 0)
2146 aux->xhv_name_count = -count;
2147 return;
2148 }
2149 if (count < 0) aux->xhv_name_count--, count = -count;
2150 else aux->xhv_name_count++;
2151 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2152 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -len : len), hash);
2153 }
2154 else {
2155 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2156 if (
2157 existing_name && (
2158 (HEK_UTF8(existing_name) || (flags & SVf_UTF8))
2159 ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags)
2160 : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len))
2161 )
2162 ) return;
2163 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2164 aux->xhv_name_count = existing_name ? 2 : -2;
2165 *aux->xhv_name_u.xhvnameu_names = existing_name;
2166 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -len : len), hash);
2167 }
2168}
2169
2170/*
2171=for apidoc hv_ename_delete
2172
2173Removes a name from a stash's internal list of effective names. If this is
2174the name returned by C<HvENAME>, then another name in the list will take
2175its place (C<HvENAME> will use it).
2176
2177This is called when a stash is deleted from the symbol table.
2178
2179=cut
2180*/
2181
2182void
2183Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2184{
2185 dVAR;
2186 struct xpvhv_aux *aux;
2187
2188 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2189
2190 if (len > I32_MAX)
2191 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2192
2193 if (!SvOOK(hv)) return;
2194
2195 aux = HvAUX(hv);
2196 if (!aux->xhv_name_u.xhvnameu_name) return;
2197
2198 if (aux->xhv_name_count) {
2199 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2200 I32 const count = aux->xhv_name_count;
2201 HEK **victim = namep + (count < 0 ? -count : count);
2202 while (victim-- > namep + 1)
2203 if (
2204 (HEK_UTF8(*victim) || (flags & SVf_UTF8))
2205 ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags)
2206 : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len))
2207 ) {
2208 unshare_hek_or_pvn(*victim, 0, 0, 0);
2209 if (count < 0) ++aux->xhv_name_count;
2210 else --aux->xhv_name_count;
2211 if (
2212 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2213 && !*namep
2214 ) { /* if there are none left */
2215 Safefree(namep);
2216 aux->xhv_name_u.xhvnameu_names = NULL;
2217 aux->xhv_name_count = 0;
2218 }
2219 else {
2220 /* Move the last one back to fill the empty slot. It
2221 does not matter what order they are in. */
2222 *victim = *(namep + (count < 0 ? -count : count) - 1);
2223 }
2224 return;
2225 }
2226 if (
2227 count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8))
2228 ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags)
2229 : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len))
2230 ) {
2231 aux->xhv_name_count = -count;
2232 }
2233 }
2234 else if(
2235 (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8))
2236 ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags)
2237 : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len &&
2238 memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len))
2239 ) {
2240 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2241 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2242 *aux->xhv_name_u.xhvnameu_names = namehek;
2243 aux->xhv_name_count = -1;
2244 }
2245}
2246
2247AV **
2248Perl_hv_backreferences_p(pTHX_ HV *hv) {
2249 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2250
2251 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2252 PERL_UNUSED_CONTEXT;
2253
2254 return &(iter->xhv_backreferences);
2255}
2256
2257void
2258Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2259 AV *av;
2260
2261 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2262
2263 if (!SvOOK(hv))
2264 return;
2265
2266 av = HvAUX(hv)->xhv_backreferences;
2267
2268 if (av) {
2269 HvAUX(hv)->xhv_backreferences = 0;
2270 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2271 if (SvTYPE(av) == SVt_PVAV)
2272 SvREFCNT_dec(av);
2273 }
2274}
2275
2276/*
2277hv_iternext is implemented as a macro in hv.h
2278
2279=for apidoc hv_iternext
2280
2281Returns entries from a hash iterator. See C<hv_iterinit>.
2282
2283You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2284iterator currently points to, without losing your place or invalidating your
2285iterator. Note that in this case the current entry is deleted from the hash
2286with your iterator holding the last reference to it. Your iterator is flagged
2287to free the entry on the next call to C<hv_iternext>, so you must not discard
2288your iterator immediately else the entry will leak - call C<hv_iternext> to
2289trigger the resource deallocation.
2290
2291=for apidoc hv_iternext_flags
2292
2293Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2294The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2295set the placeholders keys (for restricted hashes) will be returned in addition
2296to normal keys. By default placeholders are automatically skipped over.
2297Currently a placeholder is implemented with a value that is
2298C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2299restricted hashes may change, and the implementation currently is
2300insufficiently abstracted for any change to be tidy.
2301
2302=cut
2303*/
2304
2305HE *
2306Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2307{
2308 dVAR;
2309 register XPVHV* xhv;
2310 register HE *entry;
2311 HE *oldentry;
2312 MAGIC* mg;
2313 struct xpvhv_aux *iter;
2314
2315 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2316
2317 if (!hv)
2318 Perl_croak(aTHX_ "Bad hash");
2319
2320 xhv = (XPVHV*)SvANY(hv);
2321
2322 if (!SvOOK(hv)) {
2323 /* Too many things (well, pp_each at least) merrily assume that you can
2324 call iv_iternext without calling hv_iterinit, so we'll have to deal
2325 with it. */
2326 hv_iterinit(hv);
2327 }
2328 iter = HvAUX(hv);
2329
2330 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2331 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2332 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2333 SV * const key = sv_newmortal();
2334 if (entry) {
2335 sv_setsv(key, HeSVKEY_force(entry));
2336 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2337 }
2338 else {
2339 char *k;
2340 HEK *hek;
2341
2342 /* one HE per MAGICAL hash */
2343 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2344 Zero(entry, 1, HE);
2345 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2346 hek = (HEK*)k;
2347 HeKEY_hek(entry) = hek;
2348 HeKLEN(entry) = HEf_SVKEY;
2349 }
2350 magic_nextpack(MUTABLE_SV(hv),mg,key);
2351 if (SvOK(key)) {
2352 /* force key to stay around until next time */
2353 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2354 return entry; /* beware, hent_val is not set */
2355 }
2356 SvREFCNT_dec(HeVAL(entry));
2357 Safefree(HeKEY_hek(entry));
2358 del_HE(entry);
2359 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2360 return NULL;
2361 }
2362 }
2363#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2364 if (!entry && SvRMAGICAL((const SV *)hv)
2365 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2366 prime_env_iter();
2367#ifdef VMS
2368 /* The prime_env_iter() on VMS just loaded up new hash values
2369 * so the iteration count needs to be reset back to the beginning
2370 */
2371 hv_iterinit(hv);
2372 iter = HvAUX(hv);
2373 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2374#endif
2375 }
2376#endif
2377
2378 /* hv_iterint now ensures this. */
2379 assert (HvARRAY(hv));
2380
2381 /* At start of hash, entry is NULL. */
2382 if (entry)
2383 {
2384 entry = HeNEXT(entry);
2385 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2386 /*
2387 * Skip past any placeholders -- don't want to include them in
2388 * any iteration.
2389 */
2390 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2391 entry = HeNEXT(entry);
2392 }
2393 }
2394 }
2395
2396 /* Skip the entire loop if the hash is empty. */
2397 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2398 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2399 while (!entry) {
2400 /* OK. Come to the end of the current list. Grab the next one. */
2401
2402 iter->xhv_riter++; /* HvRITER(hv)++ */
2403 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2404 /* There is no next one. End of the hash. */
2405 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2406 break;
2407 }
2408 entry = (HvARRAY(hv))[iter->xhv_riter];
2409
2410 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2411 /* If we have an entry, but it's a placeholder, don't count it.
2412 Try the next. */
2413 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2414 entry = HeNEXT(entry);
2415 }
2416 /* Will loop again if this linked list starts NULL
2417 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2418 or if we run through it and find only placeholders. */
2419 }
2420 }
2421
2422 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2423 HvLAZYDEL_off(hv);
2424 hv_free_ent(hv, oldentry);
2425 }
2426
2427 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2428 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2429
2430 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2431 return entry;
2432}
2433
2434/*
2435=for apidoc hv_iterkey
2436
2437Returns the key from the current position of the hash iterator. See
2438C<hv_iterinit>.
2439
2440=cut
2441*/
2442
2443char *
2444Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2445{
2446 PERL_ARGS_ASSERT_HV_ITERKEY;
2447
2448 if (HeKLEN(entry) == HEf_SVKEY) {
2449 STRLEN len;
2450 char * const p = SvPV(HeKEY_sv(entry), len);
2451 *retlen = len;
2452 return p;
2453 }
2454 else {
2455 *retlen = HeKLEN(entry);
2456 return HeKEY(entry);
2457 }
2458}
2459
2460/* unlike hv_iterval(), this always returns a mortal copy of the key */
2461/*
2462=for apidoc hv_iterkeysv
2463
2464Returns the key as an C<SV*> from the current position of the hash
2465iterator. The return value will always be a mortal copy of the key. Also
2466see C<hv_iterinit>.
2467
2468=cut
2469*/
2470
2471SV *
2472Perl_hv_iterkeysv(pTHX_ register HE *entry)
2473{
2474 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2475
2476 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2477}
2478
2479/*
2480=for apidoc hv_iterval
2481
2482Returns the value from the current position of the hash iterator. See
2483C<hv_iterkey>.
2484
2485=cut
2486*/
2487
2488SV *
2489Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2490{
2491 PERL_ARGS_ASSERT_HV_ITERVAL;
2492
2493 if (SvRMAGICAL(hv)) {
2494 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2495 SV* const sv = sv_newmortal();
2496 if (HeKLEN(entry) == HEf_SVKEY)
2497 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2498 else
2499 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2500 return sv;
2501 }
2502 }
2503 return HeVAL(entry);
2504}
2505
2506/*
2507=for apidoc hv_iternextsv
2508
2509Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2510operation.
2511
2512=cut
2513*/
2514
2515SV *
2516Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2517{
2518 HE * const he = hv_iternext_flags(hv, 0);
2519
2520 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2521
2522 if (!he)
2523 return NULL;
2524 *key = hv_iterkey(he, retlen);
2525 return hv_iterval(hv, he);
2526}
2527
2528/*
2529
2530Now a macro in hv.h
2531
2532=for apidoc hv_magic
2533
2534Adds magic to a hash. See C<sv_magic>.
2535
2536=cut
2537*/
2538
2539/* possibly free a shared string if no one has access to it
2540 * len and hash must both be valid for str.
2541 */
2542void
2543Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2544{
2545 unshare_hek_or_pvn (NULL, str, len, hash);
2546}
2547
2548
2549void
2550Perl_unshare_hek(pTHX_ HEK *hek)
2551{
2552 assert(hek);
2553 unshare_hek_or_pvn(hek, NULL, 0, 0);
2554}
2555
2556/* possibly free a shared string if no one has access to it
2557 hek if non-NULL takes priority over the other 3, else str, len and hash
2558 are used. If so, len and hash must both be valid for str.
2559 */
2560STATIC void
2561S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2562{
2563 dVAR;
2564 register XPVHV* xhv;
2565 HE *entry;
2566 register HE **oentry;
2567 bool is_utf8 = FALSE;
2568 int k_flags = 0;
2569 const char * const save = str;
2570 struct shared_he *he = NULL;
2571
2572 if (hek) {
2573 /* Find the shared he which is just before us in memory. */
2574 he = (struct shared_he *)(((char *)hek)
2575 - STRUCT_OFFSET(struct shared_he,
2576 shared_he_hek));
2577
2578 /* Assert that the caller passed us a genuine (or at least consistent)
2579 shared hek */
2580 assert (he->shared_he_he.hent_hek == hek);
2581
2582 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2583 --he->shared_he_he.he_valu.hent_refcount;
2584 return;
2585 }
2586
2587 hash = HEK_HASH(hek);
2588 } else if (len < 0) {
2589 STRLEN tmplen = -len;
2590 is_utf8 = TRUE;
2591 /* See the note in hv_fetch(). --jhi */
2592 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2593 len = tmplen;
2594 if (is_utf8)
2595 k_flags = HVhek_UTF8;
2596 if (str != save)
2597 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2598 }
2599
2600 /* what follows was the moral equivalent of:
2601 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2602 if (--*Svp == NULL)
2603 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2604 } */
2605 xhv = (XPVHV*)SvANY(PL_strtab);
2606 /* assert(xhv_array != 0) */
2607 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2608 if (he) {
2609 const HE *const he_he = &(he->shared_he_he);
2610 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2611 if (entry == he_he)
2612 break;
2613 }
2614 } else {
2615 const int flags_masked = k_flags & HVhek_MASK;
2616 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2617 if (HeHASH(entry) != hash) /* strings can't be equal */
2618 continue;
2619 if (HeKLEN(entry) != len)
2620 continue;
2621 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2622 continue;
2623 if (HeKFLAGS(entry) != flags_masked)
2624 continue;
2625 break;
2626 }
2627 }
2628
2629 if (entry) {
2630 if (--entry->he_valu.hent_refcount == 0) {
2631 *oentry = HeNEXT(entry);
2632 Safefree(entry);
2633 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2634 }
2635 }
2636
2637 if (!entry)
2638 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2639 "Attempt to free non-existent shared string '%s'%s"
2640 pTHX__FORMAT,
2641 hek ? HEK_KEY(hek) : str,
2642 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2643 if (k_flags & HVhek_FREEKEY)
2644 Safefree(str);
2645}
2646
2647/* get a (constant) string ptr from the global string table
2648 * string will get added if it is not already there.
2649 * len and hash must both be valid for str.
2650 */
2651HEK *
2652Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2653{
2654 bool is_utf8 = FALSE;
2655 int flags = 0;
2656 const char * const save = str;
2657
2658 PERL_ARGS_ASSERT_SHARE_HEK;
2659
2660 if (len < 0) {
2661 STRLEN tmplen = -len;
2662 is_utf8 = TRUE;
2663 /* See the note in hv_fetch(). --jhi */
2664 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2665 len = tmplen;
2666 /* If we were able to downgrade here, then than means that we were passed
2667 in a key which only had chars 0-255, but was utf8 encoded. */
2668 if (is_utf8)
2669 flags = HVhek_UTF8;
2670 /* If we found we were able to downgrade the string to bytes, then
2671 we should flag that it needs upgrading on keys or each. Also flag
2672 that we need share_hek_flags to free the string. */
2673 if (str != save) {
2674 PERL_HASH(hash, str, len);
2675 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2676 }
2677 }
2678
2679 return share_hek_flags (str, len, hash, flags);
2680}
2681
2682STATIC HEK *
2683S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2684{
2685 dVAR;
2686 register HE *entry;
2687 const int flags_masked = flags & HVhek_MASK;
2688 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2689 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2690
2691 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2692
2693 /* what follows is the moral equivalent of:
2694
2695 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2696 hv_store(PL_strtab, str, len, NULL, hash);
2697
2698 Can't rehash the shared string table, so not sure if it's worth
2699 counting the number of entries in the linked list
2700 */
2701
2702 /* assert(xhv_array != 0) */
2703 entry = (HvARRAY(PL_strtab))[hindex];
2704 for (;entry; entry = HeNEXT(entry)) {
2705 if (HeHASH(entry) != hash) /* strings can't be equal */
2706 continue;
2707 if (HeKLEN(entry) != len)
2708 continue;
2709 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2710 continue;
2711 if (HeKFLAGS(entry) != flags_masked)
2712 continue;
2713 break;
2714 }
2715
2716 if (!entry) {
2717 /* What used to be head of the list.
2718 If this is NULL, then we're the first entry for this slot, which
2719 means we need to increate fill. */
2720 struct shared_he *new_entry;
2721 HEK *hek;
2722 char *k;
2723 HE **const head = &HvARRAY(PL_strtab)[hindex];
2724 HE *const next = *head;
2725
2726 /* We don't actually store a HE from the arena and a regular HEK.
2727 Instead we allocate one chunk of memory big enough for both,
2728 and put the HEK straight after the HE. This way we can find the
2729 HEK directly from the HE.
2730 */
2731
2732 Newx(k, STRUCT_OFFSET(struct shared_he,
2733 shared_he_hek.hek_key[0]) + len + 2, char);
2734 new_entry = (struct shared_he *)k;
2735 entry = &(new_entry->shared_he_he);
2736 hek = &(new_entry->shared_he_hek);
2737
2738 Copy(str, HEK_KEY(hek), len, char);
2739 HEK_KEY(hek)[len] = 0;
2740 HEK_LEN(hek) = len;
2741 HEK_HASH(hek) = hash;
2742 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2743
2744 /* Still "point" to the HEK, so that other code need not know what
2745 we're up to. */
2746 HeKEY_hek(entry) = hek;
2747 entry->he_valu.hent_refcount = 0;
2748 HeNEXT(entry) = next;
2749 *head = entry;
2750
2751 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2752 if (!next) { /* initial entry? */
2753 } else if (xhv->xhv_keys > xhv->xhv_max /* HvUSEDKEYS(hv) > HvMAX(hv) */) {
2754 hsplit(PL_strtab);
2755 }
2756 }
2757
2758 ++entry->he_valu.hent_refcount;
2759
2760 if (flags & HVhek_FREEKEY)
2761 Safefree(str);
2762
2763 return HeKEY_hek(entry);
2764}
2765
2766I32 *
2767Perl_hv_placeholders_p(pTHX_ HV *hv)
2768{
2769 dVAR;
2770 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2771
2772 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2773
2774 if (!mg) {
2775 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2776
2777 if (!mg) {
2778 Perl_die(aTHX_ "panic: hv_placeholders_p");
2779 }
2780 }
2781 return &(mg->mg_len);
2782}
2783
2784
2785I32
2786Perl_hv_placeholders_get(pTHX_ const HV *hv)
2787{
2788 dVAR;
2789 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2790
2791 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2792
2793 return mg ? mg->mg_len : 0;
2794}
2795
2796void
2797Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2798{
2799 dVAR;
2800 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2801
2802 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2803
2804 if (mg) {
2805 mg->mg_len = ph;
2806 } else if (ph) {
2807 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2808 Perl_die(aTHX_ "panic: hv_placeholders_set");
2809 }
2810 /* else we don't need to add magic to record 0 placeholders. */
2811}
2812
2813STATIC SV *
2814S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2815{
2816 dVAR;
2817 SV *value;
2818
2819 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2820
2821 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2822 case HVrhek_undef:
2823 value = newSV(0);
2824 break;
2825 case HVrhek_delete:
2826 value = &PL_sv_placeholder;
2827 break;
2828 case HVrhek_IV:
2829 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2830 break;
2831 case HVrhek_UV:
2832 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2833 break;
2834 case HVrhek_PV:
2835 case HVrhek_PV_UTF8:
2836 /* Create a string SV that directly points to the bytes in our
2837 structure. */
2838 value = newSV_type(SVt_PV);
2839 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2840 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2841 /* This stops anything trying to free it */
2842 SvLEN_set(value, 0);
2843 SvPOK_on(value);
2844 SvREADONLY_on(value);
2845 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2846 SvUTF8_on(value);
2847 break;
2848 default:
2849 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2850 (UV)he->refcounted_he_data[0]);
2851 }
2852 return value;
2853}
2854
2855/*
2856=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2857
2858Generates and returns a C<HV *> representing the content of a
2859C<refcounted_he> chain.
2860I<flags> is currently unused and must be zero.
2861
2862=cut
2863*/
2864HV *
2865Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2866{
2867 dVAR;
2868 HV *hv;
2869 U32 placeholders, max;
2870
2871 if (flags)
2872 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
2873 (UV)flags);
2874
2875 /* We could chase the chain once to get an idea of the number of keys,
2876 and call ksplit. But for now we'll make a potentially inefficient
2877 hash with only 8 entries in its array. */
2878 hv = newHV();
2879 max = HvMAX(hv);
2880 if (!HvARRAY(hv)) {
2881 char *array;
2882 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2883 HvARRAY(hv) = (HE**)array;
2884 }
2885
2886 placeholders = 0;
2887 while (chain) {
2888#ifdef USE_ITHREADS
2889 U32 hash = chain->refcounted_he_hash;
2890#else
2891 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2892#endif
2893 HE **oentry = &((HvARRAY(hv))[hash & max]);
2894 HE *entry = *oentry;
2895 SV *value;
2896
2897 for (; entry; entry = HeNEXT(entry)) {
2898 if (HeHASH(entry) == hash) {
2899 /* We might have a duplicate key here. If so, entry is older
2900 than the key we've already put in the hash, so if they are
2901 the same, skip adding entry. */
2902#ifdef USE_ITHREADS
2903 const STRLEN klen = HeKLEN(entry);
2904 const char *const key = HeKEY(entry);
2905 if (klen == chain->refcounted_he_keylen
2906 && (!!HeKUTF8(entry)
2907 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2908 && memEQ(key, REF_HE_KEY(chain), klen))
2909 goto next_please;
2910#else
2911 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2912 goto next_please;
2913 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2914 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2915 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2916 HeKLEN(entry)))
2917 goto next_please;
2918#endif
2919 }
2920 }
2921 assert (!entry);
2922 entry = new_HE();
2923
2924#ifdef USE_ITHREADS
2925 HeKEY_hek(entry)
2926 = share_hek_flags(REF_HE_KEY(chain),
2927 chain->refcounted_he_keylen,
2928 chain->refcounted_he_hash,
2929 (chain->refcounted_he_data[0]
2930 & (HVhek_UTF8|HVhek_WASUTF8)));
2931#else
2932 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2933#endif
2934 value = refcounted_he_value(chain);
2935 if (value == &PL_sv_placeholder)
2936 placeholders++;
2937 HeVAL(entry) = value;
2938
2939 /* Link it into the chain. */
2940 HeNEXT(entry) = *oentry;
2941 *oentry = entry;
2942
2943 HvTOTALKEYS(hv)++;
2944
2945 next_please:
2946 chain = chain->refcounted_he_next;
2947 }
2948
2949 if (placeholders) {
2950 clear_placeholders(hv, placeholders);
2951 HvTOTALKEYS(hv) -= placeholders;
2952 }
2953
2954 /* We could check in the loop to see if we encounter any keys with key
2955 flags, but it's probably not worth it, as this per-hash flag is only
2956 really meant as an optimisation for things like Storable. */
2957 HvHASKFLAGS_on(hv);
2958 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2959
2960 return hv;
2961}
2962
2963/*
2964=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
2965
2966Search along a C<refcounted_he> chain for an entry with the key specified
2967by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
2968bit set, the key octets are interpreted as UTF-8, otherwise they
2969are interpreted as Latin-1. I<hash> is a precomputed hash of the key
2970string, or zero if it has not been precomputed. Returns a mortal scalar
2971representing the value associated with the key, or C<&PL_sv_placeholder>
2972if there is no value associated with the key.
2973
2974=cut
2975*/
2976
2977SV *
2978Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
2979 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
2980{
2981 dVAR;
2982 U8 utf8_flag;
2983 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
2984
2985 if (flags & ~REFCOUNTED_HE_KEY_UTF8)
2986 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
2987 (UV)flags);
2988 if (!chain)
2989 return &PL_sv_placeholder;
2990 if (flags & REFCOUNTED_HE_KEY_UTF8) {
2991 /* For searching purposes, canonicalise to Latin-1 where possible. */
2992 const char *keyend = keypv + keylen, *p;
2993 STRLEN nonascii_count = 0;
2994 for (p = keypv; p != keyend; p++) {
2995 U8 c = (U8)*p;
2996 if (c & 0x80) {
2997 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
2998 (((U8)*p) & 0xc0) == 0x80))
2999 goto canonicalised_key;
3000 nonascii_count++;
3001 }
3002 }
3003 if (nonascii_count) {
3004 char *q;
3005 const char *p = keypv, *keyend = keypv + keylen;
3006 keylen -= nonascii_count;
3007 Newx(q, keylen, char);
3008 SAVEFREEPV(q);
3009 keypv = q;
3010 for (; p != keyend; p++, q++) {
3011 U8 c = (U8)*p;
3012 *q = (char)
3013 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3014 }
3015 }
3016 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3017 canonicalised_key: ;
3018 }
3019 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
3020 if (!hash)
3021 PERL_HASH(hash, keypv, keylen);
3022
3023 for (; chain; chain = chain->refcounted_he_next) {
3024 if (
3025#ifdef USE_ITHREADS
3026 hash == chain->refcounted_he_hash &&
3027 keylen == chain->refcounted_he_keylen &&
3028 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
3029 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
3030#else
3031 hash == HEK_HASH(chain->refcounted_he_hek) &&
3032 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
3033 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
3034 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
3035#endif
3036 )
3037 return sv_2mortal(refcounted_he_value(chain));
3038 }
3039 return &PL_sv_placeholder;
3040}
3041
3042/*
3043=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3044
3045Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3046instead of a string/length pair.
3047
3048=cut
3049*/
3050
3051SV *
3052Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3053 const char *key, U32 hash, U32 flags)
3054{
3055 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3056 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3057}
3058
3059/*
3060=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3061
3062Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3063string/length pair.
3064
3065=cut
3066*/
3067
3068SV *
3069Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3070 SV *key, U32 hash, U32 flags)
3071{
3072 const char *keypv;
3073 STRLEN keylen;
3074 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3075 if (flags & REFCOUNTED_HE_KEY_UTF8)
3076 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3077 (UV)flags);
3078 keypv = SvPV_const(key, keylen);
3079 if (SvUTF8(key))
3080 flags |= REFCOUNTED_HE_KEY_UTF8;
3081 if (!hash && SvIsCOW_shared_hash(key))
3082 hash = SvSHARED_HASH(key);
3083 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3084}
3085
3086/*
3087=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3088
3089Creates a new C<refcounted_he>. This consists of a single key/value
3090pair and a reference to an existing C<refcounted_he> chain (which may
3091be empty), and thus forms a longer chain. When using the longer chain,
3092the new key/value pair takes precedence over any entry for the same key
3093further along the chain.
3094
3095The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3096the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3097as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3098a precomputed hash of the key string, or zero if it has not been
3099precomputed.
3100
3101I<value> is the scalar value to store for this key. I<value> is copied
3102by this function, which thus does not take ownership of any reference
3103to it, and later changes to the scalar will not be reflected in the
3104value visible in the C<refcounted_he>. Complex types of scalar will not
3105be stored with referential integrity, but will be coerced to strings.
3106I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3107value is to be associated with the key; this, as with any non-null value,
3108takes precedence over the existence of a value for the key further along
3109the chain.
3110
3111I<parent> points to the rest of the C<refcounted_he> chain to be
3112attached to the new C<refcounted_he>. This function takes ownership
3113of one reference to I<parent>, and returns one reference to the new
3114C<refcounted_he>.
3115
3116=cut
3117*/
3118
3119struct refcounted_he *
3120Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3121 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3122{
3123 dVAR;
3124 STRLEN value_len = 0;
3125 const char *value_p = NULL;
3126 bool is_pv;
3127 char value_type;
3128 char hekflags;
3129 STRLEN key_offset = 1;
3130 struct refcounted_he *he;
3131 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3132
3133 if (!value || value == &PL_sv_placeholder) {
3134 value_type = HVrhek_delete;
3135 } else if (SvPOK(value)) {
3136 value_type = HVrhek_PV;
3137 } else if (SvIOK(value)) {
3138 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3139 } else if (!SvOK(value)) {
3140 value_type = HVrhek_undef;
3141 } else {
3142 value_type = HVrhek_PV;
3143 }
3144 is_pv = value_type == HVrhek_PV;
3145 if (is_pv) {
3146 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3147 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3148 value_p = SvPV_const(value, value_len);
3149 if (SvUTF8(value))
3150 value_type = HVrhek_PV_UTF8;
3151 key_offset = value_len + 2;
3152 }
3153 hekflags = value_type;
3154
3155 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3156 /* Canonicalise to Latin-1 where possible. */
3157 const char *keyend = keypv + keylen, *p;
3158 STRLEN nonascii_count = 0;
3159 for (p = keypv; p != keyend; p++) {
3160 U8 c = (U8)*p;
3161 if (c & 0x80) {
3162 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3163 (((U8)*p) & 0xc0) == 0x80))
3164 goto canonicalised_key;
3165 nonascii_count++;
3166 }
3167 }
3168 if (nonascii_count) {
3169 char *q;
3170 const char *p = keypv, *keyend = keypv + keylen;
3171 keylen -= nonascii_count;
3172 Newx(q, keylen, char);
3173 SAVEFREEPV(q);
3174 keypv = q;
3175 for (; p != keyend; p++, q++) {
3176 U8 c = (U8)*p;
3177 *q = (char)
3178 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3179 }
3180 }
3181 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3182 canonicalised_key: ;
3183 }
3184 if (flags & REFCOUNTED_HE_KEY_UTF8)
3185 hekflags |= HVhek_UTF8;
3186 if (!hash)
3187 PERL_HASH(hash, keypv, keylen);
3188
3189#ifdef USE_ITHREADS
3190 he = (struct refcounted_he*)
3191 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3192 + keylen
3193 + key_offset);
3194#else
3195 he = (struct refcounted_he*)
3196 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3197 + key_offset);
3198#endif
3199
3200 he->refcounted_he_next = parent;
3201
3202 if (is_pv) {
3203 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3204 he->refcounted_he_val.refcounted_he_u_len = value_len;
3205 } else if (value_type == HVrhek_IV) {
3206 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3207 } else if (value_type == HVrhek_UV) {
3208 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3209 }
3210
3211#ifdef USE_ITHREADS
3212 he->refcounted_he_hash = hash;
3213 he->refcounted_he_keylen = keylen;
3214 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3215#else
3216 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3217#endif
3218
3219 he->refcounted_he_data[0] = hekflags;
3220 he->refcounted_he_refcnt = 1;
3221
3222 return he;
3223}
3224
3225/*
3226=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3227
3228Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3229of a string/length pair.
3230
3231=cut
3232*/
3233
3234struct refcounted_he *
3235Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3236 const char *key, U32 hash, SV *value, U32 flags)
3237{
3238 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3239 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3240}
3241
3242/*
3243=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3244
3245Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3246string/length pair.
3247
3248=cut
3249*/
3250
3251struct refcounted_he *
3252Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3253 SV *key, U32 hash, SV *value, U32 flags)
3254{
3255 const char *keypv;
3256 STRLEN keylen;
3257 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3258 if (flags & REFCOUNTED_HE_KEY_UTF8)
3259 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3260 (UV)flags);
3261 keypv = SvPV_const(key, keylen);
3262 if (SvUTF8(key))
3263 flags |= REFCOUNTED_HE_KEY_UTF8;
3264 if (!hash && SvIsCOW_shared_hash(key))
3265 hash = SvSHARED_HASH(key);
3266 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3267}
3268
3269/*
3270=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3271
3272Decrements the reference count of a C<refcounted_he> by one. If the
3273reference count reaches zero the structure's memory is freed, which
3274(recursively) causes a reduction of its parent C<refcounted_he>'s
3275reference count. It is safe to pass a null pointer to this function:
3276no action occurs in this case.
3277
3278=cut
3279*/
3280
3281void
3282Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3283 dVAR;
3284 PERL_UNUSED_CONTEXT;
3285
3286 while (he) {
3287 struct refcounted_he *copy;
3288 U32 new_count;
3289
3290 HINTS_REFCNT_LOCK;
3291 new_count = --he->refcounted_he_refcnt;
3292 HINTS_REFCNT_UNLOCK;
3293
3294 if (new_count) {
3295 return;
3296 }
3297
3298#ifndef USE_ITHREADS
3299 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3300#endif
3301 copy = he;
3302 he = he->refcounted_he_next;
3303 PerlMemShared_free(copy);
3304 }
3305}
3306
3307/*
3308=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3309
3310Increment the reference count of a C<refcounted_he>. The pointer to the
3311C<refcounted_he> is also returned. It is safe to pass a null pointer
3312to this function: no action occurs and a null pointer is returned.
3313
3314=cut
3315*/
3316
3317struct refcounted_he *
3318Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3319{
3320 dVAR;
3321 if (he) {
3322 HINTS_REFCNT_LOCK;
3323 he->refcounted_he_refcnt++;
3324 HINTS_REFCNT_UNLOCK;
3325 }
3326 return he;
3327}
3328
3329/*
3330=for apidoc cop_fetch_label
3331
3332Returns the label attached to a cop.
3333The flags pointer may be set to C<SVf_UTF8> or 0.
3334
3335=cut
3336*/
3337
3338/* pp_entereval is aware that labels are stored with a key ':' at the top of
3339 the linked list. */
3340const char *
3341Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3342 struct refcounted_he *const chain = cop->cop_hints_hash;
3343
3344 PERL_ARGS_ASSERT_COP_FETCH_LABEL;
3345
3346 if (!chain)
3347 return NULL;
3348#ifdef USE_ITHREADS
3349 if (chain->refcounted_he_keylen != 1)
3350 return NULL;
3351 if (*REF_HE_KEY(chain) != ':')
3352 return NULL;
3353#else
3354 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3355 return NULL;
3356 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3357 return NULL;
3358#endif
3359 /* Stop anyone trying to really mess us up by adding their own value for
3360 ':' into %^H */
3361 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3362 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3363 return NULL;
3364
3365 if (len)
3366 *len = chain->refcounted_he_val.refcounted_he_u_len;
3367 if (flags) {
3368 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3369 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3370 }
3371 return chain->refcounted_he_data + 1;
3372}
3373
3374/*
3375=for apidoc cop_store_label
3376
3377Save a label into a C<cop_hints_hash>. You need to set flags to C<SVf_UTF8>
3378for a utf-8 label.
3379
3380=cut
3381*/
3382
3383void
3384Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3385 U32 flags)
3386{
3387 SV *labelsv;
3388 PERL_ARGS_ASSERT_COP_STORE_LABEL;
3389
3390 if (flags & ~(SVf_UTF8))
3391 Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf,
3392 (UV)flags);
3393 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3394 if (flags & SVf_UTF8)
3395 SvUTF8_on(labelsv);
3396 cop->cop_hints_hash
3397 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3398}
3399
3400/*
3401=for apidoc hv_assert
3402
3403Check that a hash is in an internally consistent state.
3404
3405=cut
3406*/
3407
3408#ifdef DEBUGGING
3409
3410void
3411Perl_hv_assert(pTHX_ HV *hv)
3412{
3413 dVAR;
3414 HE* entry;
3415 int withflags = 0;
3416 int placeholders = 0;
3417 int real = 0;
3418 int bad = 0;
3419 const I32 riter = HvRITER_get(hv);
3420 HE *eiter = HvEITER_get(hv);
3421
3422 PERL_ARGS_ASSERT_HV_ASSERT;
3423
3424 (void)hv_iterinit(hv);
3425
3426 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3427 /* sanity check the values */
3428 if (HeVAL(entry) == &PL_sv_placeholder)
3429 placeholders++;
3430 else
3431 real++;
3432 /* sanity check the keys */
3433 if (HeSVKEY(entry)) {
3434 NOOP; /* Don't know what to check on SV keys. */
3435 } else if (HeKUTF8(entry)) {
3436 withflags++;
3437 if (HeKWASUTF8(entry)) {
3438 PerlIO_printf(Perl_debug_log,
3439 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3440 (int) HeKLEN(entry), HeKEY(entry));
3441 bad = 1;
3442 }
3443 } else if (HeKWASUTF8(entry))
3444 withflags++;
3445 }
3446 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3447 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3448 const int nhashkeys = HvUSEDKEYS(hv);
3449 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3450
3451 if (nhashkeys != real) {
3452 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3453 bad = 1;
3454 }
3455 if (nhashplaceholders != placeholders) {
3456 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3457 bad = 1;
3458 }
3459 }
3460 if (withflags && ! HvHASKFLAGS(hv)) {
3461 PerlIO_printf(Perl_debug_log,
3462 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3463 withflags);
3464 bad = 1;
3465 }
3466 if (bad) {
3467 sv_dump(MUTABLE_SV(hv));
3468 }
3469 HvRITER_set(hv, riter); /* Restore hash iterator state */
3470 HvEITER_set(hv, eiter);
3471}
3472
3473#endif
3474
3475/*
3476 * Local variables:
3477 * c-indentation-style: bsd
3478 * c-basic-offset: 4
3479 * indent-tabs-mode: t
3480 * End:
3481 *
3482 * ex: set ts=8 sts=4 sw=4 noet:
3483 */