This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Storable: Restore 5.8.2 compatibility
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define HV_MAX_LENGTH_BEFORE_SPLIT 14
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43#ifdef PURIFY
44
45#define new_HE() (HE*)safemalloc(sizeof(HE))
46#define del_HE(p) safefree((char*)p)
47
48#else
49
50STATIC HE*
51S_new_he(pTHX)
52{
53 dVAR;
54 HE* he;
55 void ** const root = &PL_body_roots[HE_SVSLOT];
56
57 if (!*root)
58 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
59 he = (HE*) *root;
60 assert(he);
61 *root = HeNEXT(he);
62 return he;
63}
64
65#define new_HE() new_he()
66#define del_HE(p) \
67 STMT_START { \
68 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
69 PL_body_roots[HE_SVSLOT] = p; \
70 } STMT_END
71
72
73
74#endif
75
76STATIC HEK *
77S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
78{
79 const int flags_masked = flags & HVhek_MASK;
80 char *k;
81 register HEK *hek;
82
83 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
84
85 Newx(k, HEK_BASESIZE + len + 2, char);
86 hek = (HEK*)k;
87 Copy(str, HEK_KEY(hek), len, char);
88 HEK_KEY(hek)[len] = 0;
89 HEK_LEN(hek) = len;
90 HEK_HASH(hek) = hash;
91 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
92
93 if (flags & HVhek_FREEKEY)
94 Safefree(str);
95 return hek;
96}
97
98/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
99 * for tied hashes */
100
101void
102Perl_free_tied_hv_pool(pTHX)
103{
104 dVAR;
105 HE *he = PL_hv_fetch_ent_mh;
106 while (he) {
107 HE * const ohe = he;
108 Safefree(HeKEY_hek(he));
109 he = HeNEXT(he);
110 del_HE(ohe);
111 }
112 PL_hv_fetch_ent_mh = NULL;
113}
114
115#if defined(USE_ITHREADS)
116HEK *
117Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
118{
119 HEK *shared;
120
121 PERL_ARGS_ASSERT_HEK_DUP;
122 PERL_UNUSED_ARG(param);
123
124 if (!source)
125 return NULL;
126
127 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
128 if (shared) {
129 /* We already shared this hash key. */
130 (void)share_hek_hek(shared);
131 }
132 else {
133 shared
134 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
135 HEK_HASH(source), HEK_FLAGS(source));
136 ptr_table_store(PL_ptr_table, source, shared);
137 }
138 return shared;
139}
140
141HE *
142Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
143{
144 HE *ret;
145
146 PERL_ARGS_ASSERT_HE_DUP;
147
148 if (!e)
149 return NULL;
150 /* look for it in the table first */
151 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
152 if (ret)
153 return ret;
154
155 /* create anew and remember what it is */
156 ret = new_HE();
157 ptr_table_store(PL_ptr_table, e, ret);
158
159 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
160 if (HeKLEN(e) == HEf_SVKEY) {
161 char *k;
162 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
163 HeKEY_hek(ret) = (HEK*)k;
164 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
165 }
166 else if (shared) {
167 /* This is hek_dup inlined, which seems to be important for speed
168 reasons. */
169 HEK * const source = HeKEY_hek(e);
170 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
171
172 if (shared) {
173 /* We already shared this hash key. */
174 (void)share_hek_hek(shared);
175 }
176 else {
177 shared
178 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
179 HEK_HASH(source), HEK_FLAGS(source));
180 ptr_table_store(PL_ptr_table, source, shared);
181 }
182 HeKEY_hek(ret) = shared;
183 }
184 else
185 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
186 HeKFLAGS(e));
187 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
188 return ret;
189}
190#endif /* USE_ITHREADS */
191
192static void
193S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
194 const char *msg)
195{
196 SV * const sv = sv_newmortal();
197
198 PERL_ARGS_ASSERT_HV_NOTALLOWED;
199
200 if (!(flags & HVhek_FREEKEY)) {
201 sv_setpvn(sv, key, klen);
202 }
203 else {
204 /* Need to free saved eventually assign to mortal SV */
205 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
206 sv_usepvn(sv, (char *) key, klen);
207 }
208 if (flags & HVhek_UTF8) {
209 SvUTF8_on(sv);
210 }
211 Perl_croak(aTHX_ msg, SVfARG(sv));
212}
213
214/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
215 * contains an SV* */
216
217/*
218=for apidoc hv_store
219
220Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
221the length of the key. The C<hash> parameter is the precomputed hash
222value; if it is zero then Perl will compute it. The return value will be
223NULL if the operation failed or if the value did not need to be actually
224stored within the hash (as in the case of tied hashes). Otherwise it can
225be dereferenced to get the original C<SV*>. Note that the caller is
226responsible for suitably incrementing the reference count of C<val> before
227the call, and decrementing it if the function returned NULL. Effectively
228a successful hv_store takes ownership of one reference to C<val>. This is
229usually what you want; a newly created SV has a reference count of one, so
230if all your code does is create SVs then store them in a hash, hv_store
231will own the only reference to the new SV, and your code doesn't need to do
232anything further to tidy up. hv_store is not implemented as a call to
233hv_store_ent, and does not create a temporary SV for the key, so if your
234key data is not already in SV form then use hv_store in preference to
235hv_store_ent.
236
237See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
238information on how to use this function on tied hashes.
239
240=for apidoc hv_store_ent
241
242Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
243parameter is the precomputed hash value; if it is zero then Perl will
244compute it. The return value is the new hash entry so created. It will be
245NULL if the operation failed or if the value did not need to be actually
246stored within the hash (as in the case of tied hashes). Otherwise the
247contents of the return value can be accessed using the C<He?> macros
248described here. Note that the caller is responsible for suitably
249incrementing the reference count of C<val> before the call, and
250decrementing it if the function returned NULL. Effectively a successful
251hv_store_ent takes ownership of one reference to C<val>. This is
252usually what you want; a newly created SV has a reference count of one, so
253if all your code does is create SVs then store them in a hash, hv_store
254will own the only reference to the new SV, and your code doesn't need to do
255anything further to tidy up. Note that hv_store_ent only reads the C<key>;
256unlike C<val> it does not take ownership of it, so maintaining the correct
257reference count on C<key> is entirely the caller's responsibility. hv_store
258is not implemented as a call to hv_store_ent, and does not create a temporary
259SV for the key, so if your key data is not already in SV form then use
260hv_store in preference to hv_store_ent.
261
262See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
263information on how to use this function on tied hashes.
264
265=for apidoc hv_exists
266
267Returns a boolean indicating whether the specified hash key exists. The
268C<klen> is the length of the key.
269
270=for apidoc hv_fetch
271
272Returns the SV which corresponds to the specified key in the hash. The
273C<klen> is the length of the key. If C<lval> is set then the fetch will be
274part of a store. Check that the return value is non-null before
275dereferencing it to an C<SV*>.
276
277See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
278information on how to use this function on tied hashes.
279
280=for apidoc hv_exists_ent
281
282Returns a boolean indicating whether the specified hash key exists. C<hash>
283can be a valid precomputed hash value, or 0 to ask for it to be
284computed.
285
286=cut
287*/
288
289/* returns an HE * structure with the all fields set */
290/* note that hent_val will be a mortal sv for MAGICAL hashes */
291/*
292=for apidoc hv_fetch_ent
293
294Returns the hash entry which corresponds to the specified key in the hash.
295C<hash> must be a valid precomputed hash number for the given C<key>, or 0
296if you want the function to compute it. IF C<lval> is set then the fetch
297will be part of a store. Make sure the return value is non-null before
298accessing it. The return value when C<hv> is a tied hash is a pointer to a
299static location, so be sure to make a copy of the structure if you need to
300store it somewhere.
301
302See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
303information on how to use this function on tied hashes.
304
305=cut
306*/
307
308/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
309void *
310Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
311 const int action, SV *val, const U32 hash)
312{
313 STRLEN klen;
314 int flags;
315
316 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
317
318 if (klen_i32 < 0) {
319 klen = -klen_i32;
320 flags = HVhek_UTF8;
321 } else {
322 klen = klen_i32;
323 flags = 0;
324 }
325 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
326}
327
328void *
329Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
330 int flags, int action, SV *val, register U32 hash)
331{
332 dVAR;
333 XPVHV* xhv;
334 HE *entry;
335 HE **oentry;
336 SV *sv;
337 bool is_utf8;
338 int masked_flags;
339 const int return_svp = action & HV_FETCH_JUST_SV;
340
341 if (!hv)
342 return NULL;
343 if (SvTYPE(hv) == SVTYPEMASK)
344 return NULL;
345
346 assert(SvTYPE(hv) == SVt_PVHV);
347
348 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
349 MAGIC* mg;
350 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
351 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
352 if (uf->uf_set == NULL) {
353 SV* obj = mg->mg_obj;
354
355 if (!keysv) {
356 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
357 ((flags & HVhek_UTF8)
358 ? SVf_UTF8 : 0));
359 }
360
361 mg->mg_obj = keysv; /* pass key */
362 uf->uf_index = action; /* pass action */
363 magic_getuvar(MUTABLE_SV(hv), mg);
364 keysv = mg->mg_obj; /* may have changed */
365 mg->mg_obj = obj;
366
367 /* If the key may have changed, then we need to invalidate
368 any passed-in computed hash value. */
369 hash = 0;
370 }
371 }
372 }
373 if (keysv) {
374 if (flags & HVhek_FREEKEY)
375 Safefree(key);
376 key = SvPV_const(keysv, klen);
377 is_utf8 = (SvUTF8(keysv) != 0);
378 if (SvIsCOW_shared_hash(keysv)) {
379 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
380 } else {
381 flags = 0;
382 }
383 } else {
384 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
385 }
386
387 if (action & HV_DELETE) {
388 return (void *) hv_delete_common(hv, keysv, key, klen,
389 flags | (is_utf8 ? HVhek_UTF8 : 0),
390 action, hash);
391 }
392
393 xhv = (XPVHV*)SvANY(hv);
394 if (SvMAGICAL(hv)) {
395 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
396 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
397 || SvGMAGICAL((const SV *)hv))
398 {
399 /* FIXME should be able to skimp on the HE/HEK here when
400 HV_FETCH_JUST_SV is true. */
401 if (!keysv) {
402 keysv = newSVpvn_utf8(key, klen, is_utf8);
403 } else {
404 keysv = newSVsv(keysv);
405 }
406 sv = sv_newmortal();
407 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
408
409 /* grab a fake HE/HEK pair from the pool or make a new one */
410 entry = PL_hv_fetch_ent_mh;
411 if (entry)
412 PL_hv_fetch_ent_mh = HeNEXT(entry);
413 else {
414 char *k;
415 entry = new_HE();
416 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
417 HeKEY_hek(entry) = (HEK*)k;
418 }
419 HeNEXT(entry) = NULL;
420 HeSVKEY_set(entry, keysv);
421 HeVAL(entry) = sv;
422 sv_upgrade(sv, SVt_PVLV);
423 LvTYPE(sv) = 'T';
424 /* so we can free entry when freeing sv */
425 LvTARG(sv) = MUTABLE_SV(entry);
426
427 /* XXX remove at some point? */
428 if (flags & HVhek_FREEKEY)
429 Safefree(key);
430
431 if (return_svp) {
432 return entry ? (void *) &HeVAL(entry) : NULL;
433 }
434 return (void *) entry;
435 }
436#ifdef ENV_IS_CASELESS
437 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
438 U32 i;
439 for (i = 0; i < klen; ++i)
440 if (isLOWER(key[i])) {
441 /* Would be nice if we had a routine to do the
442 copy and upercase in a single pass through. */
443 const char * const nkey = strupr(savepvn(key,klen));
444 /* Note that this fetch is for nkey (the uppercased
445 key) whereas the store is for key (the original) */
446 void *result = hv_common(hv, NULL, nkey, klen,
447 HVhek_FREEKEY, /* free nkey */
448 0 /* non-LVAL fetch */
449 | HV_DISABLE_UVAR_XKEY
450 | return_svp,
451 NULL /* no value */,
452 0 /* compute hash */);
453 if (!result && (action & HV_FETCH_LVALUE)) {
454 /* This call will free key if necessary.
455 Do it this way to encourage compiler to tail
456 call optimise. */
457 result = hv_common(hv, keysv, key, klen, flags,
458 HV_FETCH_ISSTORE
459 | HV_DISABLE_UVAR_XKEY
460 | return_svp,
461 newSV(0), hash);
462 } else {
463 if (flags & HVhek_FREEKEY)
464 Safefree(key);
465 }
466 return result;
467 }
468 }
469#endif
470 } /* ISFETCH */
471 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
472 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
473 || SvGMAGICAL((const SV *)hv)) {
474 /* I don't understand why hv_exists_ent has svret and sv,
475 whereas hv_exists only had one. */
476 SV * const svret = sv_newmortal();
477 sv = sv_newmortal();
478
479 if (keysv || is_utf8) {
480 if (!keysv) {
481 keysv = newSVpvn_utf8(key, klen, TRUE);
482 } else {
483 keysv = newSVsv(keysv);
484 }
485 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
486 } else {
487 mg_copy(MUTABLE_SV(hv), sv, key, klen);
488 }
489 if (flags & HVhek_FREEKEY)
490 Safefree(key);
491 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
492 /* This cast somewhat evil, but I'm merely using NULL/
493 not NULL to return the boolean exists.
494 And I know hv is not NULL. */
495 return SvTRUE(svret) ? (void *)hv : NULL;
496 }
497#ifdef ENV_IS_CASELESS
498 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
499 /* XXX This code isn't UTF8 clean. */
500 char * const keysave = (char * const)key;
501 /* Will need to free this, so set FREEKEY flag. */
502 key = savepvn(key,klen);
503 key = (const char*)strupr((char*)key);
504 is_utf8 = FALSE;
505 hash = 0;
506 keysv = 0;
507
508 if (flags & HVhek_FREEKEY) {
509 Safefree(keysave);
510 }
511 flags |= HVhek_FREEKEY;
512 }
513#endif
514 } /* ISEXISTS */
515 else if (action & HV_FETCH_ISSTORE) {
516 bool needs_copy;
517 bool needs_store;
518 hv_magic_check (hv, &needs_copy, &needs_store);
519 if (needs_copy) {
520 const bool save_taint = PL_tainted;
521 if (keysv || is_utf8) {
522 if (!keysv) {
523 keysv = newSVpvn_utf8(key, klen, TRUE);
524 }
525 if (PL_tainting)
526 PL_tainted = SvTAINTED(keysv);
527 keysv = sv_2mortal(newSVsv(keysv));
528 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
529 } else {
530 mg_copy(MUTABLE_SV(hv), val, key, klen);
531 }
532
533 TAINT_IF(save_taint);
534 if (!needs_store) {
535 if (flags & HVhek_FREEKEY)
536 Safefree(key);
537 return NULL;
538 }
539#ifdef ENV_IS_CASELESS
540 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
541 /* XXX This code isn't UTF8 clean. */
542 const char *keysave = key;
543 /* Will need to free this, so set FREEKEY flag. */
544 key = savepvn(key,klen);
545 key = (const char*)strupr((char*)key);
546 is_utf8 = FALSE;
547 hash = 0;
548 keysv = 0;
549
550 if (flags & HVhek_FREEKEY) {
551 Safefree(keysave);
552 }
553 flags |= HVhek_FREEKEY;
554 }
555#endif
556 }
557 } /* ISSTORE */
558 } /* SvMAGICAL */
559
560 if (!HvARRAY(hv)) {
561 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
562#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
563 || (SvRMAGICAL((const SV *)hv)
564 && mg_find((const SV *)hv, PERL_MAGIC_env))
565#endif
566 ) {
567 char *array;
568 Newxz(array,
569 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
570 char);
571 HvARRAY(hv) = (HE**)array;
572 }
573#ifdef DYNAMIC_ENV_FETCH
574 else if (action & HV_FETCH_ISEXISTS) {
575 /* for an %ENV exists, if we do an insert it's by a recursive
576 store call, so avoid creating HvARRAY(hv) right now. */
577 }
578#endif
579 else {
580 /* XXX remove at some point? */
581 if (flags & HVhek_FREEKEY)
582 Safefree(key);
583
584 return NULL;
585 }
586 }
587
588 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
589 char * const keysave = (char *)key;
590 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
591 if (is_utf8)
592 flags |= HVhek_UTF8;
593 else
594 flags &= ~HVhek_UTF8;
595 if (key != keysave) {
596 if (flags & HVhek_FREEKEY)
597 Safefree(keysave);
598 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
599 /* If the caller calculated a hash, it was on the sequence of
600 octets that are the UTF-8 form. We've now changed the sequence
601 of octets stored to that of the equivalent byte representation,
602 so the hash we need is different. */
603 hash = 0;
604 }
605 }
606
607 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
608 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
609 else if (!hash)
610 hash = SvSHARED_HASH(keysv);
611
612 /* We don't have a pointer to the hv, so we have to replicate the
613 flag into every HEK, so that hv_iterkeysv can see it.
614 And yes, you do need this even though you are not "storing" because
615 you can flip the flags below if doing an lval lookup. (And that
616 was put in to give the semantics Andreas was expecting.) */
617 if (HvREHASH(hv))
618 flags |= HVhek_REHASH;
619
620 masked_flags = (flags & HVhek_MASK);
621
622#ifdef DYNAMIC_ENV_FETCH
623 if (!HvARRAY(hv)) entry = NULL;
624 else
625#endif
626 {
627 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
628 }
629 for (; entry; entry = HeNEXT(entry)) {
630 if (HeHASH(entry) != hash) /* strings can't be equal */
631 continue;
632 if (HeKLEN(entry) != (I32)klen)
633 continue;
634 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
635 continue;
636 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
637 continue;
638
639 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
640 if (HeKFLAGS(entry) != masked_flags) {
641 /* We match if HVhek_UTF8 bit in our flags and hash key's
642 match. But if entry was set previously with HVhek_WASUTF8
643 and key now doesn't (or vice versa) then we should change
644 the key's flag, as this is assignment. */
645 if (HvSHAREKEYS(hv)) {
646 /* Need to swap the key we have for a key with the flags we
647 need. As keys are shared we can't just write to the
648 flag, so we share the new one, unshare the old one. */
649 HEK * const new_hek = share_hek_flags(key, klen, hash,
650 masked_flags);
651 unshare_hek (HeKEY_hek(entry));
652 HeKEY_hek(entry) = new_hek;
653 }
654 else if (hv == PL_strtab) {
655 /* PL_strtab is usually the only hash without HvSHAREKEYS,
656 so putting this test here is cheap */
657 if (flags & HVhek_FREEKEY)
658 Safefree(key);
659 Perl_croak(aTHX_ S_strtab_error,
660 action & HV_FETCH_LVALUE ? "fetch" : "store");
661 }
662 else
663 HeKFLAGS(entry) = masked_flags;
664 if (masked_flags & HVhek_ENABLEHVKFLAGS)
665 HvHASKFLAGS_on(hv);
666 }
667 if (HeVAL(entry) == &PL_sv_placeholder) {
668 /* yes, can store into placeholder slot */
669 if (action & HV_FETCH_LVALUE) {
670 if (SvMAGICAL(hv)) {
671 /* This preserves behaviour with the old hv_fetch
672 implementation which at this point would bail out
673 with a break; (at "if we find a placeholder, we
674 pretend we haven't found anything")
675
676 That break mean that if a placeholder were found, it
677 caused a call into hv_store, which in turn would
678 check magic, and if there is no magic end up pretty
679 much back at this point (in hv_store's code). */
680 break;
681 }
682 /* LVAL fetch which actually needs a store. */
683 val = newSV(0);
684 HvPLACEHOLDERS(hv)--;
685 } else {
686 /* store */
687 if (val != &PL_sv_placeholder)
688 HvPLACEHOLDERS(hv)--;
689 }
690 HeVAL(entry) = val;
691 } else if (action & HV_FETCH_ISSTORE) {
692 SvREFCNT_dec(HeVAL(entry));
693 HeVAL(entry) = val;
694 }
695 } else if (HeVAL(entry) == &PL_sv_placeholder) {
696 /* if we find a placeholder, we pretend we haven't found
697 anything */
698 break;
699 }
700 if (flags & HVhek_FREEKEY)
701 Safefree(key);
702 if (return_svp) {
703 return entry ? (void *) &HeVAL(entry) : NULL;
704 }
705 return entry;
706 }
707#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
708 if (!(action & HV_FETCH_ISSTORE)
709 && SvRMAGICAL((const SV *)hv)
710 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
711 unsigned long len;
712 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
713 if (env) {
714 sv = newSVpvn(env,len);
715 SvTAINTED_on(sv);
716 return hv_common(hv, keysv, key, klen, flags,
717 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
718 sv, hash);
719 }
720 }
721#endif
722
723 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
724 hv_notallowed(flags, key, klen,
725 "Attempt to access disallowed key '%"SVf"' in"
726 " a restricted hash");
727 }
728 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
729 /* Not doing some form of store, so return failure. */
730 if (flags & HVhek_FREEKEY)
731 Safefree(key);
732 return NULL;
733 }
734 if (action & HV_FETCH_LVALUE) {
735 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
736 if (SvMAGICAL(hv)) {
737 /* At this point the old hv_fetch code would call to hv_store,
738 which in turn might do some tied magic. So we need to make that
739 magic check happen. */
740 /* gonna assign to this, so it better be there */
741 /* If a fetch-as-store fails on the fetch, then the action is to
742 recurse once into "hv_store". If we didn't do this, then that
743 recursive call would call the key conversion routine again.
744 However, as we replace the original key with the converted
745 key, this would result in a double conversion, which would show
746 up as a bug if the conversion routine is not idempotent. */
747 return hv_common(hv, keysv, key, klen, flags,
748 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
749 val, hash);
750 /* XXX Surely that could leak if the fetch-was-store fails?
751 Just like the hv_fetch. */
752 }
753 }
754
755 /* Welcome to hv_store... */
756
757 if (!HvARRAY(hv)) {
758 /* Not sure if we can get here. I think the only case of oentry being
759 NULL is for %ENV with dynamic env fetch. But that should disappear
760 with magic in the previous code. */
761 char *array;
762 Newxz(array,
763 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
764 char);
765 HvARRAY(hv) = (HE**)array;
766 }
767
768 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
769
770 entry = new_HE();
771 /* share_hek_flags will do the free for us. This might be considered
772 bad API design. */
773 if (HvSHAREKEYS(hv))
774 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
775 else if (hv == PL_strtab) {
776 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
777 this test here is cheap */
778 if (flags & HVhek_FREEKEY)
779 Safefree(key);
780 Perl_croak(aTHX_ S_strtab_error,
781 action & HV_FETCH_LVALUE ? "fetch" : "store");
782 }
783 else /* gotta do the real thing */
784 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
785 HeVAL(entry) = val;
786 HeNEXT(entry) = *oentry;
787 *oentry = entry;
788
789 if (val == &PL_sv_placeholder)
790 HvPLACEHOLDERS(hv)++;
791 if (masked_flags & HVhek_ENABLEHVKFLAGS)
792 HvHASKFLAGS_on(hv);
793
794 {
795 const HE *counter = HeNEXT(entry);
796
797 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
798 if (!counter) { /* initial entry? */
799 } else if (xhv->xhv_keys > xhv->xhv_max) {
800 /* Use only the old HvUSEDKEYS(hv) > HvMAX(hv) condition to limit
801 bucket splits on a rehashed hash, as we're not going to
802 split it again, and if someone is lucky (evil) enough to
803 get all the keys in one list they could exhaust our memory
804 as we repeatedly double the number of buckets on every
805 entry. Linear search feels a less worse thing to do. */
806 hsplit(hv);
807 } else if(!HvREHASH(hv)) {
808 U32 n_links = 1;
809
810 while ((counter = HeNEXT(counter)))
811 n_links++;
812
813 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
814 hsplit(hv);
815 }
816 }
817 }
818
819 if (return_svp) {
820 return entry ? (void *) &HeVAL(entry) : NULL;
821 }
822 return (void *) entry;
823}
824
825STATIC void
826S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
827{
828 const MAGIC *mg = SvMAGIC(hv);
829
830 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
831
832 *needs_copy = FALSE;
833 *needs_store = TRUE;
834 while (mg) {
835 if (isUPPER(mg->mg_type)) {
836 *needs_copy = TRUE;
837 if (mg->mg_type == PERL_MAGIC_tied) {
838 *needs_store = FALSE;
839 return; /* We've set all there is to set. */
840 }
841 }
842 mg = mg->mg_moremagic;
843 }
844}
845
846/*
847=for apidoc hv_scalar
848
849Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
850
851=cut
852*/
853
854SV *
855Perl_hv_scalar(pTHX_ HV *hv)
856{
857 SV *sv;
858
859 PERL_ARGS_ASSERT_HV_SCALAR;
860
861 if (SvRMAGICAL(hv)) {
862 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
863 if (mg)
864 return magic_scalarpack(hv, mg);
865 }
866
867 sv = sv_newmortal();
868 if (HvTOTALKEYS((const HV *)hv))
869 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
870 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
871 else
872 sv_setiv(sv, 0);
873
874 return sv;
875}
876
877/*
878=for apidoc hv_delete
879
880Deletes a key/value pair in the hash. The value's SV is removed from the
881hash, made mortal, and returned to the caller. The C<klen> is the length of
882the key. The C<flags> value will normally be zero; if set to G_DISCARD then
883NULL will be returned. NULL will also be returned if the key is not found.
884
885=for apidoc hv_delete_ent
886
887Deletes a key/value pair in the hash. The value SV is removed from the hash,
888made mortal, and returned to the caller. The C<flags> value will normally be
889zero; if set to G_DISCARD then NULL will be returned. NULL will also be
890returned if the key is not found. C<hash> can be a valid precomputed hash
891value, or 0 to ask for it to be computed.
892
893=cut
894*/
895
896STATIC SV *
897S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
898 int k_flags, I32 d_flags, U32 hash)
899{
900 dVAR;
901 register XPVHV* xhv;
902 register HE *entry;
903 register HE **oentry;
904 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
905 int masked_flags;
906
907 if (SvRMAGICAL(hv)) {
908 bool needs_copy;
909 bool needs_store;
910 hv_magic_check (hv, &needs_copy, &needs_store);
911
912 if (needs_copy) {
913 SV *sv;
914 entry = (HE *) hv_common(hv, keysv, key, klen,
915 k_flags & ~HVhek_FREEKEY,
916 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
917 NULL, hash);
918 sv = entry ? HeVAL(entry) : NULL;
919 if (sv) {
920 if (SvMAGICAL(sv)) {
921 mg_clear(sv);
922 }
923 if (!needs_store) {
924 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
925 /* No longer an element */
926 sv_unmagic(sv, PERL_MAGIC_tiedelem);
927 return sv;
928 }
929 return NULL; /* element cannot be deleted */
930 }
931#ifdef ENV_IS_CASELESS
932 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
933 /* XXX This code isn't UTF8 clean. */
934 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
935 if (k_flags & HVhek_FREEKEY) {
936 Safefree(key);
937 }
938 key = strupr(SvPVX(keysv));
939 is_utf8 = 0;
940 k_flags = 0;
941 hash = 0;
942 }
943#endif
944 }
945 }
946 }
947 xhv = (XPVHV*)SvANY(hv);
948 if (!HvARRAY(hv))
949 return NULL;
950
951 if (is_utf8) {
952 const char * const keysave = key;
953 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
954
955 if (is_utf8)
956 k_flags |= HVhek_UTF8;
957 else
958 k_flags &= ~HVhek_UTF8;
959 if (key != keysave) {
960 if (k_flags & HVhek_FREEKEY) {
961 /* This shouldn't happen if our caller does what we expect,
962 but strictly the API allows it. */
963 Safefree(keysave);
964 }
965 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
966 }
967 HvHASKFLAGS_on(MUTABLE_SV(hv));
968 }
969
970 if (HvREHASH(hv) || (!hash && !(keysv && (SvIsCOW_shared_hash(keysv)))))
971 PERL_HASH_INTERNAL_(hash, key, klen, HvREHASH(hv));
972 else if (!hash)
973 hash = SvSHARED_HASH(keysv);
974
975 masked_flags = (k_flags & HVhek_MASK);
976
977 oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
978 entry = *oentry;
979 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
980 SV *sv;
981 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
982 GV *gv = NULL;
983 HV *stash = NULL;
984
985 if (HeHASH(entry) != hash) /* strings can't be equal */
986 continue;
987 if (HeKLEN(entry) != (I32)klen)
988 continue;
989 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
990 continue;
991 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
992 continue;
993
994 if (hv == PL_strtab) {
995 if (k_flags & HVhek_FREEKEY)
996 Safefree(key);
997 Perl_croak(aTHX_ S_strtab_error, "delete");
998 }
999
1000 /* if placeholder is here, it's already been deleted.... */
1001 if (HeVAL(entry) == &PL_sv_placeholder) {
1002 if (k_flags & HVhek_FREEKEY)
1003 Safefree(key);
1004 return NULL;
1005 }
1006 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))
1007 && !SvIsCOW(HeVAL(entry))) {
1008 hv_notallowed(k_flags, key, klen,
1009 "Attempt to delete readonly key '%"SVf"' from"
1010 " a restricted hash");
1011 }
1012 if (k_flags & HVhek_FREEKEY)
1013 Safefree(key);
1014
1015 /* If this is a stash and the key ends with ::, then someone is
1016 * deleting a package.
1017 */
1018 if (HeVAL(entry) && HvENAME_get(hv)) {
1019 gv = (GV *)HeVAL(entry);
1020 if (keysv) key = SvPV(keysv, klen);
1021 if ((
1022 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1023 ||
1024 (klen == 1 && key[0] == ':')
1025 )
1026 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1027 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1028 && HvENAME_get(stash)) {
1029 /* A previous version of this code checked that the
1030 * GV was still in the symbol table by fetching the
1031 * GV with its name. That is not necessary (and
1032 * sometimes incorrect), as HvENAME cannot be set
1033 * on hv if it is not in the symtab. */
1034 mro_changes = 2;
1035 /* Hang on to it for a bit. */
1036 SvREFCNT_inc_simple_void_NN(
1037 sv_2mortal((SV *)gv)
1038 );
1039 }
1040 else if (klen == 3 && strnEQ(key, "ISA", 3))
1041 mro_changes = 1;
1042 }
1043
1044 if (d_flags & G_DISCARD) {
1045 sv = HeVAL(entry);
1046 if (sv) {
1047 /* deletion of method from stash */
1048 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1049 && HvENAME_get(hv))
1050 mro_method_changed_in(hv);
1051 SvREFCNT_dec(sv);
1052 sv = NULL;
1053 }
1054 } else sv = sv_2mortal(HeVAL(entry));
1055 HeVAL(entry) = &PL_sv_placeholder;
1056
1057 /*
1058 * If a restricted hash, rather than really deleting the entry, put
1059 * a placeholder there. This marks the key as being "approved", so
1060 * we can still access via not-really-existing key without raising
1061 * an error.
1062 */
1063 if (SvREADONLY(hv))
1064 /* We'll be saving this slot, so the number of allocated keys
1065 * doesn't go down, but the number placeholders goes up */
1066 HvPLACEHOLDERS(hv)++;
1067 else {
1068 *oentry = HeNEXT(entry);
1069 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1070 HvLAZYDEL_on(hv);
1071 else {
1072 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1073 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1074 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1075 hv_free_ent(hv, entry);
1076 }
1077 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1078 if (xhv->xhv_keys == 0)
1079 HvHASKFLAGS_off(hv);
1080 }
1081
1082 if (mro_changes == 1) mro_isa_changed_in(hv);
1083 else if (mro_changes == 2)
1084 mro_package_moved(NULL, stash, gv, 1);
1085
1086 return sv;
1087 }
1088 if (SvREADONLY(hv)) {
1089 hv_notallowed(k_flags, key, klen,
1090 "Attempt to delete disallowed key '%"SVf"' from"
1091 " a restricted hash");
1092 }
1093
1094 if (k_flags & HVhek_FREEKEY)
1095 Safefree(key);
1096 return NULL;
1097}
1098
1099STATIC void
1100S_hsplit(pTHX_ HV *hv)
1101{
1102 dVAR;
1103 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1104 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1105 register I32 newsize = oldsize * 2;
1106 register I32 i;
1107 char *a = (char*) HvARRAY(hv);
1108 register HE **aep;
1109 int longest_chain = 0;
1110 int was_shared;
1111
1112 PERL_ARGS_ASSERT_HSPLIT;
1113
1114 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1115 (void*)hv, (int) oldsize);*/
1116
1117 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1118 /* Can make this clear any placeholders first for non-restricted hashes,
1119 even though Storable rebuilds restricted hashes by putting in all the
1120 placeholders (first) before turning on the readonly flag, because
1121 Storable always pre-splits the hash. */
1122 hv_clear_placeholders(hv);
1123 }
1124
1125 PL_nomemok = TRUE;
1126#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1127 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1128 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1129 if (!a) {
1130 PL_nomemok = FALSE;
1131 return;
1132 }
1133 if (SvOOK(hv)) {
1134 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1135 }
1136#else
1137 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1138 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1139 if (!a) {
1140 PL_nomemok = FALSE;
1141 return;
1142 }
1143 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1144 if (SvOOK(hv)) {
1145 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1146 }
1147 Safefree(HvARRAY(hv));
1148#endif
1149
1150 PL_nomemok = FALSE;
1151 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1152 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1153 HvARRAY(hv) = (HE**) a;
1154 aep = (HE**)a;
1155
1156 for (i=0; i<oldsize; i++,aep++) {
1157 int left_length = 0;
1158 int right_length = 0;
1159 HE **oentry = aep;
1160 HE *entry = *aep;
1161 register HE **bep;
1162
1163 if (!entry) /* non-existent */
1164 continue;
1165 bep = aep+oldsize;
1166 do {
1167 if ((HeHASH(entry) & newsize) != (U32)i) {
1168 *oentry = HeNEXT(entry);
1169 HeNEXT(entry) = *bep;
1170 *bep = entry;
1171 right_length++;
1172 }
1173 else {
1174 oentry = &HeNEXT(entry);
1175 left_length++;
1176 }
1177 entry = *oentry;
1178 } while (entry);
1179 /* I think we don't actually need to keep track of the longest length,
1180 merely flag if anything is too long. But for the moment while
1181 developing this code I'll track it. */
1182 if (left_length > longest_chain)
1183 longest_chain = left_length;
1184 if (right_length > longest_chain)
1185 longest_chain = right_length;
1186 }
1187
1188
1189 /* Pick your policy for "hashing isn't working" here: */
1190 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1191 || HvREHASH(hv)) {
1192 return;
1193 }
1194
1195 if (hv == PL_strtab) {
1196 /* Urg. Someone is doing something nasty to the string table.
1197 Can't win. */
1198 return;
1199 }
1200
1201 /* Awooga. Awooga. Pathological data. */
1202 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1203 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1204
1205 ++newsize;
1206 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1207 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1208 if (SvOOK(hv)) {
1209 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1210 }
1211
1212 was_shared = HvSHAREKEYS(hv);
1213
1214 HvSHAREKEYS_off(hv);
1215 HvREHASH_on(hv);
1216
1217 aep = HvARRAY(hv);
1218
1219 for (i=0; i<newsize; i++,aep++) {
1220 register HE *entry = *aep;
1221 while (entry) {
1222 /* We're going to trash this HE's next pointer when we chain it
1223 into the new hash below, so store where we go next. */
1224 HE * const next = HeNEXT(entry);
1225 UV hash;
1226 HE **bep;
1227
1228 /* Rehash it */
1229 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1230
1231 if (was_shared) {
1232 /* Unshare it. */
1233 HEK * const new_hek
1234 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1235 hash, HeKFLAGS(entry));
1236 unshare_hek (HeKEY_hek(entry));
1237 HeKEY_hek(entry) = new_hek;
1238 } else {
1239 /* Not shared, so simply write the new hash in. */
1240 HeHASH(entry) = hash;
1241 }
1242 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1243 HEK_REHASH_on(HeKEY_hek(entry));
1244 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1245
1246 /* Copy oentry to the correct new chain. */
1247 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1248 HeNEXT(entry) = *bep;
1249 *bep = entry;
1250
1251 entry = next;
1252 }
1253 }
1254 Safefree (HvARRAY(hv));
1255 HvARRAY(hv) = (HE **)a;
1256}
1257
1258void
1259Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1260{
1261 dVAR;
1262 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1263 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1264 register I32 newsize;
1265 register I32 i;
1266 register char *a;
1267 register HE **aep;
1268
1269 PERL_ARGS_ASSERT_HV_KSPLIT;
1270
1271 newsize = (I32) newmax; /* possible truncation here */
1272 if (newsize != newmax || newmax <= oldsize)
1273 return;
1274 while ((newsize & (1 + ~newsize)) != newsize) {
1275 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1276 }
1277 if (newsize < newmax)
1278 newsize *= 2;
1279 if (newsize < newmax)
1280 return; /* overflow detection */
1281
1282 a = (char *) HvARRAY(hv);
1283 if (a) {
1284 PL_nomemok = TRUE;
1285#if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1286 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1287 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1288 if (!a) {
1289 PL_nomemok = FALSE;
1290 return;
1291 }
1292 if (SvOOK(hv)) {
1293 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1294 }
1295#else
1296 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1297 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1298 if (!a) {
1299 PL_nomemok = FALSE;
1300 return;
1301 }
1302 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1303 if (SvOOK(hv)) {
1304 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1305 }
1306 Safefree(HvARRAY(hv));
1307#endif
1308 PL_nomemok = FALSE;
1309 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1310 }
1311 else {
1312 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1313 }
1314 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1315 HvARRAY(hv) = (HE **) a;
1316 if (!xhv->xhv_keys /* !HvTOTALKEYS(hv) */) /* skip rest if no entries */
1317 return;
1318
1319 aep = (HE**)a;
1320 for (i=0; i<oldsize; i++,aep++) {
1321 HE **oentry = aep;
1322 HE *entry = *aep;
1323
1324 if (!entry) /* non-existent */
1325 continue;
1326 do {
1327 register I32 j = (HeHASH(entry) & newsize);
1328
1329 if (j != i) {
1330 j -= i;
1331 *oentry = HeNEXT(entry);
1332 HeNEXT(entry) = aep[j];
1333 aep[j] = entry;
1334 }
1335 else
1336 oentry = &HeNEXT(entry);
1337 entry = *oentry;
1338 } while (entry);
1339 }
1340}
1341
1342HV *
1343Perl_newHVhv(pTHX_ HV *ohv)
1344{
1345 dVAR;
1346 HV * const hv = newHV();
1347 STRLEN hv_max;
1348
1349 if (!ohv || !HvTOTALKEYS(ohv))
1350 return hv;
1351 hv_max = HvMAX(ohv);
1352
1353 if (!SvMAGICAL((const SV *)ohv)) {
1354 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1355 STRLEN i;
1356 const bool shared = !!HvSHAREKEYS(ohv);
1357 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1358 char *a;
1359 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1360 ents = (HE**)a;
1361
1362 /* In each bucket... */
1363 for (i = 0; i <= hv_max; i++) {
1364 HE *prev = NULL;
1365 HE *oent = oents[i];
1366
1367 if (!oent) {
1368 ents[i] = NULL;
1369 continue;
1370 }
1371
1372 /* Copy the linked list of entries. */
1373 for (; oent; oent = HeNEXT(oent)) {
1374 const U32 hash = HeHASH(oent);
1375 const char * const key = HeKEY(oent);
1376 const STRLEN len = HeKLEN(oent);
1377 const int flags = HeKFLAGS(oent);
1378 HE * const ent = new_HE();
1379 SV *const val = HeVAL(oent);
1380
1381 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1382 HeKEY_hek(ent)
1383 = shared ? share_hek_flags(key, len, hash, flags)
1384 : save_hek_flags(key, len, hash, flags);
1385 if (prev)
1386 HeNEXT(prev) = ent;
1387 else
1388 ents[i] = ent;
1389 prev = ent;
1390 HeNEXT(ent) = NULL;
1391 }
1392 }
1393
1394 HvMAX(hv) = hv_max;
1395 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1396 HvARRAY(hv) = ents;
1397 } /* not magical */
1398 else {
1399 /* Iterate over ohv, copying keys and values one at a time. */
1400 HE *entry;
1401 const I32 riter = HvRITER_get(ohv);
1402 HE * const eiter = HvEITER_get(ohv);
1403 STRLEN hv_fill = HvFILL(ohv);
1404
1405 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1406 while (hv_max && hv_max + 1 >= hv_fill * 2)
1407 hv_max = hv_max / 2;
1408 HvMAX(hv) = hv_max;
1409
1410 hv_iterinit(ohv);
1411 while ((entry = hv_iternext_flags(ohv, 0))) {
1412 SV *const val = HeVAL(entry);
1413 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1414 SvIMMORTAL(val) ? val : newSVsv(val),
1415 HeHASH(entry), HeKFLAGS(entry));
1416 }
1417 HvRITER_set(ohv, riter);
1418 HvEITER_set(ohv, eiter);
1419 }
1420
1421 return hv;
1422}
1423
1424/*
1425=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1426
1427A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1428a pointer to a hash (which may have C<%^H> magic, but should be generally
1429non-magical), or C<NULL> (interpreted as an empty hash). The content
1430of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1431added to it. A pointer to the new hash is returned.
1432
1433=cut
1434*/
1435
1436HV *
1437Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1438{
1439 HV * const hv = newHV();
1440
1441 if (ohv && HvTOTALKEYS(ohv)) {
1442 STRLEN hv_max = HvMAX(ohv);
1443 STRLEN hv_fill = HvFILL(ohv);
1444 HE *entry;
1445 const I32 riter = HvRITER_get(ohv);
1446 HE * const eiter = HvEITER_get(ohv);
1447
1448 while (hv_max && hv_max + 1 >= hv_fill * 2)
1449 hv_max = hv_max / 2;
1450 HvMAX(hv) = hv_max;
1451
1452 hv_iterinit(ohv);
1453 while ((entry = hv_iternext_flags(ohv, 0))) {
1454 SV *const sv = newSVsv(HeVAL(entry));
1455 SV *heksv = newSVhek(HeKEY_hek(entry));
1456 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1457 (char *)heksv, HEf_SVKEY);
1458 SvREFCNT_dec(heksv);
1459 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1460 sv, HeHASH(entry), HeKFLAGS(entry));
1461 }
1462 HvRITER_set(ohv, riter);
1463 HvEITER_set(ohv, eiter);
1464 }
1465 hv_magic(hv, NULL, PERL_MAGIC_hints);
1466 return hv;
1467}
1468
1469/* like hv_free_ent, but returns the SV rather than freeing it */
1470STATIC SV*
1471S_hv_free_ent_ret(pTHX_ HV *hv, register HE *entry)
1472{
1473 dVAR;
1474 SV *val;
1475
1476 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1477
1478 if (!entry)
1479 return NULL;
1480 val = HeVAL(entry);
1481 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvENAME(hv))
1482 mro_method_changed_in(hv); /* deletion of method from stash */
1483 if (HeKLEN(entry) == HEf_SVKEY) {
1484 SvREFCNT_dec(HeKEY_sv(entry));
1485 Safefree(HeKEY_hek(entry));
1486 }
1487 else if (HvSHAREKEYS(hv))
1488 unshare_hek(HeKEY_hek(entry));
1489 else
1490 Safefree(HeKEY_hek(entry));
1491 del_HE(entry);
1492 return val;
1493}
1494
1495
1496void
1497Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1498{
1499 dVAR;
1500 SV *val;
1501
1502 PERL_ARGS_ASSERT_HV_FREE_ENT;
1503
1504 if (!entry)
1505 return;
1506 val = hv_free_ent_ret(hv, entry);
1507 SvREFCNT_dec(val);
1508}
1509
1510
1511void
1512Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1513{
1514 dVAR;
1515
1516 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1517
1518 if (!entry)
1519 return;
1520 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1521 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1522 if (HeKLEN(entry) == HEf_SVKEY) {
1523 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1524 }
1525 hv_free_ent(hv, entry);
1526}
1527
1528/*
1529=for apidoc hv_clear
1530
1531Frees the all the elements of a hash, leaving it empty.
1532The XS equivalent of %hash = (). See also L</hv_undef>.
1533
1534=cut
1535*/
1536
1537void
1538Perl_hv_clear(pTHX_ HV *hv)
1539{
1540 dVAR;
1541 register XPVHV* xhv;
1542 if (!hv)
1543 return;
1544
1545 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1546
1547 xhv = (XPVHV*)SvANY(hv);
1548
1549 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1550 /* restricted hash: convert all keys to placeholders */
1551 STRLEN i;
1552 for (i = 0; i <= xhv->xhv_max; i++) {
1553 HE *entry = (HvARRAY(hv))[i];
1554 for (; entry; entry = HeNEXT(entry)) {
1555 /* not already placeholder */
1556 if (HeVAL(entry) != &PL_sv_placeholder) {
1557 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))
1558 && !SvIsCOW(HeVAL(entry))) {
1559 SV* const keysv = hv_iterkeysv(entry);
1560 Perl_croak(aTHX_
1561 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1562 (void*)keysv);
1563 }
1564 SvREFCNT_dec(HeVAL(entry));
1565 HeVAL(entry) = &PL_sv_placeholder;
1566 HvPLACEHOLDERS(hv)++;
1567 }
1568 }
1569 }
1570 }
1571 else {
1572 hfreeentries(hv);
1573 HvPLACEHOLDERS_set(hv, 0);
1574
1575 if (SvRMAGICAL(hv))
1576 mg_clear(MUTABLE_SV(hv));
1577
1578 HvHASKFLAGS_off(hv);
1579 HvREHASH_off(hv);
1580 }
1581 if (SvOOK(hv)) {
1582 if(HvENAME_get(hv))
1583 mro_isa_changed_in(hv);
1584 HvEITER_set(hv, NULL);
1585 }
1586}
1587
1588/*
1589=for apidoc hv_clear_placeholders
1590
1591Clears any placeholders from a hash. If a restricted hash has any of its keys
1592marked as readonly and the key is subsequently deleted, the key is not actually
1593deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1594it so it will be ignored by future operations such as iterating over the hash,
1595but will still allow the hash to have a value reassigned to the key at some
1596future point. This function clears any such placeholder keys from the hash.
1597See Hash::Util::lock_keys() for an example of its use.
1598
1599=cut
1600*/
1601
1602void
1603Perl_hv_clear_placeholders(pTHX_ HV *hv)
1604{
1605 dVAR;
1606 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1607
1608 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1609
1610 if (items)
1611 clear_placeholders(hv, items);
1612}
1613
1614static void
1615S_clear_placeholders(pTHX_ HV *hv, U32 items)
1616{
1617 dVAR;
1618 I32 i;
1619
1620 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1621
1622 if (items == 0)
1623 return;
1624
1625 i = HvMAX(hv);
1626 do {
1627 /* Loop down the linked list heads */
1628 HE **oentry = &(HvARRAY(hv))[i];
1629 HE *entry;
1630
1631 while ((entry = *oentry)) {
1632 if (HeVAL(entry) == &PL_sv_placeholder) {
1633 *oentry = HeNEXT(entry);
1634 if (entry == HvEITER_get(hv))
1635 HvLAZYDEL_on(hv);
1636 else {
1637 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1638 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1639 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1640 hv_free_ent(hv, entry);
1641 }
1642
1643 if (--items == 0) {
1644 /* Finished. */
1645 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1646 if (HvUSEDKEYS(hv) == 0)
1647 HvHASKFLAGS_off(hv);
1648 HvPLACEHOLDERS_set(hv, 0);
1649 return;
1650 }
1651 } else {
1652 oentry = &HeNEXT(entry);
1653 }
1654 }
1655 } while (--i >= 0);
1656 /* You can't get here, hence assertion should always fail. */
1657 assert (items == 0);
1658 assert (0);
1659}
1660
1661STATIC void
1662S_hfreeentries(pTHX_ HV *hv)
1663{
1664 STRLEN index = 0;
1665 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1666 SV *sv;
1667
1668 PERL_ARGS_ASSERT_HFREEENTRIES;
1669
1670 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1671 SvREFCNT_dec(sv);
1672 }
1673}
1674
1675
1676/* hfree_next_entry()
1677 * For use only by S_hfreeentries() and sv_clear().
1678 * Delete the next available HE from hv and return the associated SV.
1679 * Returns null on empty hash. Nevertheless null is not a reliable
1680 * indicator that the hash is empty, as the deleted entry may have a
1681 * null value.
1682 * indexp is a pointer to the current index into HvARRAY. The index should
1683 * initially be set to 0. hfree_next_entry() may update it. */
1684
1685SV*
1686Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1687{
1688 struct xpvhv_aux *iter;
1689 HE *entry;
1690 HE ** array;
1691#ifdef DEBUGGING
1692 STRLEN orig_index = *indexp;
1693#endif
1694
1695 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1696
1697 if (SvOOK(hv) && ((iter = HvAUX(hv)))
1698 && ((entry = iter->xhv_eiter)) )
1699 {
1700 /* the iterator may get resurrected after each
1701 * destructor call, so check each time */
1702 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1703 HvLAZYDEL_off(hv);
1704 hv_free_ent(hv, entry);
1705 /* warning: at this point HvARRAY may have been
1706 * re-allocated, HvMAX changed etc */
1707 }
1708 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1709 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1710 }
1711
1712 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1713 return NULL;
1714
1715 array = HvARRAY(hv);
1716 assert(array);
1717 while ( ! ((entry = array[*indexp])) ) {
1718 if ((*indexp)++ >= HvMAX(hv))
1719 *indexp = 0;
1720 assert(*indexp != orig_index);
1721 }
1722 array[*indexp] = HeNEXT(entry);
1723 ((XPVHV*) SvANY(hv))->xhv_keys--;
1724
1725 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1726 && HeVAL(entry) && isGV(HeVAL(entry))
1727 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1728 ) {
1729 STRLEN klen;
1730 const char * const key = HePV(entry,klen);
1731 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1732 || (klen == 1 && key[0] == ':')) {
1733 mro_package_moved(
1734 NULL, GvHV(HeVAL(entry)),
1735 (GV *)HeVAL(entry), 0
1736 );
1737 }
1738 }
1739 return hv_free_ent_ret(hv, entry);
1740}
1741
1742
1743/*
1744=for apidoc hv_undef
1745
1746Undefines the hash. The XS equivalent of undef(%hash).
1747
1748As well as freeing all the elements of the hash (like hv_clear()), this
1749also frees any auxiliary data and storage associated with the hash.
1750See also L</hv_clear>.
1751
1752=cut
1753*/
1754
1755void
1756Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1757{
1758 dVAR;
1759 register XPVHV* xhv;
1760 const char *name;
1761
1762 if (!hv)
1763 return;
1764 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1765 xhv = (XPVHV*)SvANY(hv);
1766
1767 /* The name must be deleted before the call to hfreeeeentries so that
1768 CVs are anonymised properly. But the effective name must be pre-
1769 served until after that call (and only deleted afterwards if the
1770 call originated from sv_clear). For stashes with one name that is
1771 both the canonical name and the effective name, hv_name_set has to
1772 allocate an array for storing the effective name. We can skip that
1773 during global destruction, as it does not matter where the CVs point
1774 if they will be freed anyway. */
1775 /* note that the code following prior to hfreeentries is duplicated
1776 * in sv_clear(), and changes here should be done there too */
1777 if (PL_phase != PERL_PHASE_DESTRUCT && (name = HvNAME(hv))) {
1778 if (PL_stashcache)
1779 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1780 hv_name_set(hv, NULL, 0, 0);
1781 }
1782 hfreeentries(hv);
1783 if (SvOOK(hv)) {
1784 struct xpvhv_aux * const aux = HvAUX(hv);
1785 struct mro_meta *meta;
1786
1787 if ((name = HvENAME_get(hv))) {
1788 if (PL_phase != PERL_PHASE_DESTRUCT)
1789 mro_isa_changed_in(hv);
1790 if (PL_stashcache)
1791 (void)hv_delete(
1792 PL_stashcache, name, HvENAMELEN_get(hv), G_DISCARD
1793 );
1794 }
1795
1796 /* If this call originated from sv_clear, then we must check for
1797 * effective names that need freeing, as well as the usual name. */
1798 name = HvNAME(hv);
1799 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1800 if (name && PL_stashcache)
1801 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1802 hv_name_set(hv, NULL, 0, flags);
1803 }
1804 if((meta = aux->xhv_mro_meta)) {
1805 if (meta->mro_linear_all) {
1806 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1807 meta->mro_linear_all = NULL;
1808 /* This is just acting as a shortcut pointer. */
1809 meta->mro_linear_current = NULL;
1810 } else if (meta->mro_linear_current) {
1811 /* Only the current MRO is stored, so this owns the data.
1812 */
1813 SvREFCNT_dec(meta->mro_linear_current);
1814 meta->mro_linear_current = NULL;
1815 }
1816 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1817 SvREFCNT_dec(meta->isa);
1818 Safefree(meta);
1819 aux->xhv_mro_meta = NULL;
1820 }
1821 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1822 SvFLAGS(hv) &= ~SVf_OOK;
1823 }
1824 if (!SvOOK(hv)) {
1825 Safefree(HvARRAY(hv));
1826 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1827 HvARRAY(hv) = 0;
1828 }
1829 HvPLACEHOLDERS_set(hv, 0);
1830
1831 if (SvRMAGICAL(hv))
1832 mg_clear(MUTABLE_SV(hv));
1833}
1834
1835/*
1836=for apidoc hv_fill
1837
1838Returns the number of hash buckets that happen to be in use. This function is
1839wrapped by the macro C<HvFILL>.
1840
1841Previously this value was stored in the HV structure, rather than being
1842calculated on demand.
1843
1844=cut
1845*/
1846
1847STRLEN
1848Perl_hv_fill(pTHX_ HV const *const hv)
1849{
1850 STRLEN count = 0;
1851 HE **ents = HvARRAY(hv);
1852
1853 PERL_ARGS_ASSERT_HV_FILL;
1854
1855 if (ents) {
1856 HE *const *const last = ents + HvMAX(hv);
1857 count = last + 1 - ents;
1858
1859 do {
1860 if (!*ents)
1861 --count;
1862 } while (++ents <= last);
1863 }
1864 return count;
1865}
1866
1867static struct xpvhv_aux*
1868S_hv_auxinit(HV *hv) {
1869 struct xpvhv_aux *iter;
1870 char *array;
1871
1872 PERL_ARGS_ASSERT_HV_AUXINIT;
1873
1874 if (!HvARRAY(hv)) {
1875 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1876 + sizeof(struct xpvhv_aux), char);
1877 } else {
1878 array = (char *) HvARRAY(hv);
1879 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1880 + sizeof(struct xpvhv_aux), char);
1881 }
1882 HvARRAY(hv) = (HE**) array;
1883 /* SvOOK_on(hv) attacks the IV flags. */
1884 SvFLAGS(hv) |= SVf_OOK;
1885 iter = HvAUX(hv);
1886
1887 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1888 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1889 iter->xhv_name_u.xhvnameu_name = 0;
1890 iter->xhv_name_count = 0;
1891 iter->xhv_backreferences = 0;
1892 iter->xhv_mro_meta = NULL;
1893 return iter;
1894}
1895
1896/*
1897=for apidoc hv_iterinit
1898
1899Prepares a starting point to traverse a hash table. Returns the number of
1900keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1901currently only meaningful for hashes without tie magic.
1902
1903NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1904hash buckets that happen to be in use. If you still need that esoteric
1905value, you can get it through the macro C<HvFILL(hv)>.
1906
1907
1908=cut
1909*/
1910
1911I32
1912Perl_hv_iterinit(pTHX_ HV *hv)
1913{
1914 PERL_ARGS_ASSERT_HV_ITERINIT;
1915
1916 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1917
1918 if (!hv)
1919 Perl_croak(aTHX_ "Bad hash");
1920
1921 if (SvOOK(hv)) {
1922 struct xpvhv_aux * const iter = HvAUX(hv);
1923 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1924 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1925 HvLAZYDEL_off(hv);
1926 hv_free_ent(hv, entry);
1927 }
1928 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1929 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1930 } else {
1931 hv_auxinit(hv);
1932 }
1933
1934 /* used to be xhv->xhv_fill before 5.004_65 */
1935 return HvTOTALKEYS(hv);
1936}
1937
1938I32 *
1939Perl_hv_riter_p(pTHX_ HV *hv) {
1940 struct xpvhv_aux *iter;
1941
1942 PERL_ARGS_ASSERT_HV_RITER_P;
1943
1944 if (!hv)
1945 Perl_croak(aTHX_ "Bad hash");
1946
1947 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1948 return &(iter->xhv_riter);
1949}
1950
1951HE **
1952Perl_hv_eiter_p(pTHX_ HV *hv) {
1953 struct xpvhv_aux *iter;
1954
1955 PERL_ARGS_ASSERT_HV_EITER_P;
1956
1957 if (!hv)
1958 Perl_croak(aTHX_ "Bad hash");
1959
1960 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1961 return &(iter->xhv_eiter);
1962}
1963
1964void
1965Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1966 struct xpvhv_aux *iter;
1967
1968 PERL_ARGS_ASSERT_HV_RITER_SET;
1969
1970 if (!hv)
1971 Perl_croak(aTHX_ "Bad hash");
1972
1973 if (SvOOK(hv)) {
1974 iter = HvAUX(hv);
1975 } else {
1976 if (riter == -1)
1977 return;
1978
1979 iter = hv_auxinit(hv);
1980 }
1981 iter->xhv_riter = riter;
1982}
1983
1984void
1985Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1986 struct xpvhv_aux *iter;
1987
1988 PERL_ARGS_ASSERT_HV_EITER_SET;
1989
1990 if (!hv)
1991 Perl_croak(aTHX_ "Bad hash");
1992
1993 if (SvOOK(hv)) {
1994 iter = HvAUX(hv);
1995 } else {
1996 /* 0 is the default so don't go malloc()ing a new structure just to
1997 hold 0. */
1998 if (!eiter)
1999 return;
2000
2001 iter = hv_auxinit(hv);
2002 }
2003 iter->xhv_eiter = eiter;
2004}
2005
2006void
2007Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2008{
2009 dVAR;
2010 struct xpvhv_aux *iter;
2011 U32 hash;
2012 HEK **spot;
2013
2014 PERL_ARGS_ASSERT_HV_NAME_SET;
2015 PERL_UNUSED_ARG(flags);
2016
2017 if (len > I32_MAX)
2018 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2019
2020 if (SvOOK(hv)) {
2021 iter = HvAUX(hv);
2022 if (iter->xhv_name_u.xhvnameu_name) {
2023 if(iter->xhv_name_count) {
2024 if(flags & HV_NAME_SETALL) {
2025 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2026 HEK **hekp = name + (
2027 iter->xhv_name_count < 0
2028 ? -iter->xhv_name_count
2029 : iter->xhv_name_count
2030 );
2031 while(hekp-- > name+1)
2032 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2033 /* The first elem may be null. */
2034 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2035 Safefree(name);
2036 spot = &iter->xhv_name_u.xhvnameu_name;
2037 iter->xhv_name_count = 0;
2038 }
2039 else {
2040 if(iter->xhv_name_count > 0) {
2041 /* shift some things over */
2042 Renew(
2043 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2044 );
2045 spot = iter->xhv_name_u.xhvnameu_names;
2046 spot[iter->xhv_name_count] = spot[1];
2047 spot[1] = spot[0];
2048 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2049 }
2050 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2051 unshare_hek_or_pvn(*spot, 0, 0, 0);
2052 }
2053 }
2054 }
2055 else if (flags & HV_NAME_SETALL) {
2056 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2057 spot = &iter->xhv_name_u.xhvnameu_name;
2058 }
2059 else {
2060 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2061 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2062 iter->xhv_name_count = -2;
2063 spot = iter->xhv_name_u.xhvnameu_names;
2064 spot[1] = existing_name;
2065 }
2066 }
2067 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2068 } else {
2069 if (name == 0)
2070 return;
2071
2072 iter = hv_auxinit(hv);
2073 spot = &iter->xhv_name_u.xhvnameu_name;
2074 }
2075 PERL_HASH(hash, name, len);
2076 *spot = name ? share_hek(name, len, hash) : NULL;
2077}
2078
2079/*
2080=for apidoc hv_ename_add
2081
2082Adds a name to a stash's internal list of effective names. See
2083C<hv_ename_delete>.
2084
2085This is called when a stash is assigned to a new location in the symbol
2086table.
2087
2088=cut
2089*/
2090
2091void
2092Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2093{
2094 dVAR;
2095 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2096 U32 hash;
2097
2098 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2099 PERL_UNUSED_ARG(flags);
2100
2101 if (len > I32_MAX)
2102 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2103
2104 PERL_HASH(hash, name, len);
2105
2106 if (aux->xhv_name_count) {
2107 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2108 I32 count = aux->xhv_name_count;
2109 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2110 while (hekp-- > xhv_name)
2111 if (
2112 HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len)
2113 ) {
2114 if (hekp == xhv_name && count < 0)
2115 aux->xhv_name_count = -count;
2116 return;
2117 }
2118 if (count < 0) aux->xhv_name_count--, count = -count;
2119 else aux->xhv_name_count++;
2120 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2121 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, len, hash);
2122 }
2123 else {
2124 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2125 if (
2126 existing_name && HEK_LEN(existing_name) == (I32)len
2127 && memEQ(HEK_KEY(existing_name), name, len)
2128 ) return;
2129 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2130 aux->xhv_name_count = existing_name ? 2 : -2;
2131 *aux->xhv_name_u.xhvnameu_names = existing_name;
2132 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, len, hash);
2133 }
2134}
2135
2136/*
2137=for apidoc hv_ename_delete
2138
2139Removes a name from a stash's internal list of effective names. If this is
2140the name returned by C<HvENAME>, then another name in the list will take
2141its place (C<HvENAME> will use it).
2142
2143This is called when a stash is deleted from the symbol table.
2144
2145=cut
2146*/
2147
2148void
2149Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2150{
2151 dVAR;
2152 struct xpvhv_aux *aux;
2153
2154 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2155 PERL_UNUSED_ARG(flags);
2156
2157 if (len > I32_MAX)
2158 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2159
2160 if (!SvOOK(hv)) return;
2161
2162 aux = HvAUX(hv);
2163 if (!aux->xhv_name_u.xhvnameu_name) return;
2164
2165 if (aux->xhv_name_count) {
2166 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2167 I32 const count = aux->xhv_name_count;
2168 HEK **victim = namep + (count < 0 ? -count : count);
2169 while (victim-- > namep + 1)
2170 if (
2171 HEK_LEN(*victim) == (I32)len
2172 && memEQ(HEK_KEY(*victim), name, len)
2173 ) {
2174 unshare_hek_or_pvn(*victim, 0, 0, 0);
2175 if (count < 0) ++aux->xhv_name_count;
2176 else --aux->xhv_name_count;
2177 if (
2178 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2179 && !*namep
2180 ) { /* if there are none left */
2181 Safefree(namep);
2182 aux->xhv_name_u.xhvnameu_names = NULL;
2183 aux->xhv_name_count = 0;
2184 }
2185 else {
2186 /* Move the last one back to fill the empty slot. It
2187 does not matter what order they are in. */
2188 *victim = *(namep + (count < 0 ? -count : count) - 1);
2189 }
2190 return;
2191 }
2192 if (
2193 count > 0 && HEK_LEN(*namep) == (I32)len
2194 && memEQ(HEK_KEY(*namep),name,len)
2195 ) {
2196 aux->xhv_name_count = -count;
2197 }
2198 }
2199 else if(
2200 HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len
2201 && memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len)
2202 ) {
2203 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2204 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2205 *aux->xhv_name_u.xhvnameu_names = namehek;
2206 aux->xhv_name_count = -1;
2207 }
2208}
2209
2210AV **
2211Perl_hv_backreferences_p(pTHX_ HV *hv) {
2212 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2213
2214 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2215 PERL_UNUSED_CONTEXT;
2216
2217 return &(iter->xhv_backreferences);
2218}
2219
2220void
2221Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2222 AV *av;
2223
2224 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2225
2226 if (!SvOOK(hv))
2227 return;
2228
2229 av = HvAUX(hv)->xhv_backreferences;
2230
2231 if (av) {
2232 HvAUX(hv)->xhv_backreferences = 0;
2233 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2234 if (SvTYPE(av) == SVt_PVAV)
2235 SvREFCNT_dec(av);
2236 }
2237}
2238
2239/*
2240hv_iternext is implemented as a macro in hv.h
2241
2242=for apidoc hv_iternext
2243
2244Returns entries from a hash iterator. See C<hv_iterinit>.
2245
2246You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2247iterator currently points to, without losing your place or invalidating your
2248iterator. Note that in this case the current entry is deleted from the hash
2249with your iterator holding the last reference to it. Your iterator is flagged
2250to free the entry on the next call to C<hv_iternext>, so you must not discard
2251your iterator immediately else the entry will leak - call C<hv_iternext> to
2252trigger the resource deallocation.
2253
2254=for apidoc hv_iternext_flags
2255
2256Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2257The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2258set the placeholders keys (for restricted hashes) will be returned in addition
2259to normal keys. By default placeholders are automatically skipped over.
2260Currently a placeholder is implemented with a value that is
2261C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2262restricted hashes may change, and the implementation currently is
2263insufficiently abstracted for any change to be tidy.
2264
2265=cut
2266*/
2267
2268HE *
2269Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2270{
2271 dVAR;
2272 register XPVHV* xhv;
2273 register HE *entry;
2274 HE *oldentry;
2275 MAGIC* mg;
2276 struct xpvhv_aux *iter;
2277
2278 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2279
2280 if (!hv)
2281 Perl_croak(aTHX_ "Bad hash");
2282
2283 xhv = (XPVHV*)SvANY(hv);
2284
2285 if (!SvOOK(hv)) {
2286 /* Too many things (well, pp_each at least) merrily assume that you can
2287 call iv_iternext without calling hv_iterinit, so we'll have to deal
2288 with it. */
2289 hv_iterinit(hv);
2290 }
2291 iter = HvAUX(hv);
2292
2293 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2294 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2295 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2296 SV * const key = sv_newmortal();
2297 if (entry) {
2298 sv_setsv(key, HeSVKEY_force(entry));
2299 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2300 }
2301 else {
2302 char *k;
2303 HEK *hek;
2304
2305 /* one HE per MAGICAL hash */
2306 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2307 Zero(entry, 1, HE);
2308 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2309 hek = (HEK*)k;
2310 HeKEY_hek(entry) = hek;
2311 HeKLEN(entry) = HEf_SVKEY;
2312 }
2313 magic_nextpack(MUTABLE_SV(hv),mg,key);
2314 if (SvOK(key)) {
2315 /* force key to stay around until next time */
2316 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2317 return entry; /* beware, hent_val is not set */
2318 }
2319 SvREFCNT_dec(HeVAL(entry));
2320 Safefree(HeKEY_hek(entry));
2321 del_HE(entry);
2322 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2323 return NULL;
2324 }
2325 }
2326#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2327 if (!entry && SvRMAGICAL((const SV *)hv)
2328 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2329 prime_env_iter();
2330#ifdef VMS
2331 /* The prime_env_iter() on VMS just loaded up new hash values
2332 * so the iteration count needs to be reset back to the beginning
2333 */
2334 hv_iterinit(hv);
2335 iter = HvAUX(hv);
2336 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2337#endif
2338 }
2339#endif
2340
2341 /* hv_iterint now ensures this. */
2342 assert (HvARRAY(hv));
2343
2344 /* At start of hash, entry is NULL. */
2345 if (entry)
2346 {
2347 entry = HeNEXT(entry);
2348 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2349 /*
2350 * Skip past any placeholders -- don't want to include them in
2351 * any iteration.
2352 */
2353 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2354 entry = HeNEXT(entry);
2355 }
2356 }
2357 }
2358
2359 /* Skip the entire loop if the hash is empty. */
2360 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2361 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2362 while (!entry) {
2363 /* OK. Come to the end of the current list. Grab the next one. */
2364
2365 iter->xhv_riter++; /* HvRITER(hv)++ */
2366 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2367 /* There is no next one. End of the hash. */
2368 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2369 break;
2370 }
2371 entry = (HvARRAY(hv))[iter->xhv_riter];
2372
2373 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2374 /* If we have an entry, but it's a placeholder, don't count it.
2375 Try the next. */
2376 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2377 entry = HeNEXT(entry);
2378 }
2379 /* Will loop again if this linked list starts NULL
2380 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2381 or if we run through it and find only placeholders. */
2382 }
2383 }
2384
2385 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2386 HvLAZYDEL_off(hv);
2387 hv_free_ent(hv, oldentry);
2388 }
2389
2390 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2391 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2392
2393 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2394 return entry;
2395}
2396
2397/*
2398=for apidoc hv_iterkey
2399
2400Returns the key from the current position of the hash iterator. See
2401C<hv_iterinit>.
2402
2403=cut
2404*/
2405
2406char *
2407Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2408{
2409 PERL_ARGS_ASSERT_HV_ITERKEY;
2410
2411 if (HeKLEN(entry) == HEf_SVKEY) {
2412 STRLEN len;
2413 char * const p = SvPV(HeKEY_sv(entry), len);
2414 *retlen = len;
2415 return p;
2416 }
2417 else {
2418 *retlen = HeKLEN(entry);
2419 return HeKEY(entry);
2420 }
2421}
2422
2423/* unlike hv_iterval(), this always returns a mortal copy of the key */
2424/*
2425=for apidoc hv_iterkeysv
2426
2427Returns the key as an C<SV*> from the current position of the hash
2428iterator. The return value will always be a mortal copy of the key. Also
2429see C<hv_iterinit>.
2430
2431=cut
2432*/
2433
2434SV *
2435Perl_hv_iterkeysv(pTHX_ register HE *entry)
2436{
2437 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2438
2439 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2440}
2441
2442/*
2443=for apidoc hv_iterval
2444
2445Returns the value from the current position of the hash iterator. See
2446C<hv_iterkey>.
2447
2448=cut
2449*/
2450
2451SV *
2452Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2453{
2454 PERL_ARGS_ASSERT_HV_ITERVAL;
2455
2456 if (SvRMAGICAL(hv)) {
2457 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2458 SV* const sv = sv_newmortal();
2459 if (HeKLEN(entry) == HEf_SVKEY)
2460 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2461 else
2462 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2463 return sv;
2464 }
2465 }
2466 return HeVAL(entry);
2467}
2468
2469/*
2470=for apidoc hv_iternextsv
2471
2472Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2473operation.
2474
2475=cut
2476*/
2477
2478SV *
2479Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2480{
2481 HE * const he = hv_iternext_flags(hv, 0);
2482
2483 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2484
2485 if (!he)
2486 return NULL;
2487 *key = hv_iterkey(he, retlen);
2488 return hv_iterval(hv, he);
2489}
2490
2491/*
2492
2493Now a macro in hv.h
2494
2495=for apidoc hv_magic
2496
2497Adds magic to a hash. See C<sv_magic>.
2498
2499=cut
2500*/
2501
2502/* possibly free a shared string if no one has access to it
2503 * len and hash must both be valid for str.
2504 */
2505void
2506Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2507{
2508 unshare_hek_or_pvn (NULL, str, len, hash);
2509}
2510
2511
2512void
2513Perl_unshare_hek(pTHX_ HEK *hek)
2514{
2515 assert(hek);
2516 unshare_hek_or_pvn(hek, NULL, 0, 0);
2517}
2518
2519/* possibly free a shared string if no one has access to it
2520 hek if non-NULL takes priority over the other 3, else str, len and hash
2521 are used. If so, len and hash must both be valid for str.
2522 */
2523STATIC void
2524S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2525{
2526 dVAR;
2527 register XPVHV* xhv;
2528 HE *entry;
2529 register HE **oentry;
2530 bool is_utf8 = FALSE;
2531 int k_flags = 0;
2532 const char * const save = str;
2533 struct shared_he *he = NULL;
2534
2535 if (hek) {
2536 /* Find the shared he which is just before us in memory. */
2537 he = (struct shared_he *)(((char *)hek)
2538 - STRUCT_OFFSET(struct shared_he,
2539 shared_he_hek));
2540
2541 /* Assert that the caller passed us a genuine (or at least consistent)
2542 shared hek */
2543 assert (he->shared_he_he.hent_hek == hek);
2544
2545 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2546 --he->shared_he_he.he_valu.hent_refcount;
2547 return;
2548 }
2549
2550 hash = HEK_HASH(hek);
2551 } else if (len < 0) {
2552 STRLEN tmplen = -len;
2553 is_utf8 = TRUE;
2554 /* See the note in hv_fetch(). --jhi */
2555 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2556 len = tmplen;
2557 if (is_utf8)
2558 k_flags = HVhek_UTF8;
2559 if (str != save)
2560 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2561 }
2562
2563 /* what follows was the moral equivalent of:
2564 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2565 if (--*Svp == NULL)
2566 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2567 } */
2568 xhv = (XPVHV*)SvANY(PL_strtab);
2569 /* assert(xhv_array != 0) */
2570 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2571 if (he) {
2572 const HE *const he_he = &(he->shared_he_he);
2573 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2574 if (entry == he_he)
2575 break;
2576 }
2577 } else {
2578 const int flags_masked = k_flags & HVhek_MASK;
2579 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2580 if (HeHASH(entry) != hash) /* strings can't be equal */
2581 continue;
2582 if (HeKLEN(entry) != len)
2583 continue;
2584 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2585 continue;
2586 if (HeKFLAGS(entry) != flags_masked)
2587 continue;
2588 break;
2589 }
2590 }
2591
2592 if (entry) {
2593 if (--entry->he_valu.hent_refcount == 0) {
2594 *oentry = HeNEXT(entry);
2595 Safefree(entry);
2596 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2597 }
2598 }
2599
2600 if (!entry)
2601 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2602 "Attempt to free non-existent shared string '%s'%s"
2603 pTHX__FORMAT,
2604 hek ? HEK_KEY(hek) : str,
2605 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2606 if (k_flags & HVhek_FREEKEY)
2607 Safefree(str);
2608}
2609
2610/* get a (constant) string ptr from the global string table
2611 * string will get added if it is not already there.
2612 * len and hash must both be valid for str.
2613 */
2614HEK *
2615Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2616{
2617 bool is_utf8 = FALSE;
2618 int flags = 0;
2619 const char * const save = str;
2620
2621 PERL_ARGS_ASSERT_SHARE_HEK;
2622
2623 if (len < 0) {
2624 STRLEN tmplen = -len;
2625 is_utf8 = TRUE;
2626 /* See the note in hv_fetch(). --jhi */
2627 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2628 len = tmplen;
2629 /* If we were able to downgrade here, then than means that we were passed
2630 in a key which only had chars 0-255, but was utf8 encoded. */
2631 if (is_utf8)
2632 flags = HVhek_UTF8;
2633 /* If we found we were able to downgrade the string to bytes, then
2634 we should flag that it needs upgrading on keys or each. Also flag
2635 that we need share_hek_flags to free the string. */
2636 if (str != save)
2637 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2638 }
2639
2640 return share_hek_flags (str, len, hash, flags);
2641}
2642
2643STATIC HEK *
2644S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2645{
2646 dVAR;
2647 register HE *entry;
2648 const int flags_masked = flags & HVhek_MASK;
2649 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2650 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2651
2652 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2653
2654 /* what follows is the moral equivalent of:
2655
2656 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2657 hv_store(PL_strtab, str, len, NULL, hash);
2658
2659 Can't rehash the shared string table, so not sure if it's worth
2660 counting the number of entries in the linked list
2661 */
2662
2663 /* assert(xhv_array != 0) */
2664 entry = (HvARRAY(PL_strtab))[hindex];
2665 for (;entry; entry = HeNEXT(entry)) {
2666 if (HeHASH(entry) != hash) /* strings can't be equal */
2667 continue;
2668 if (HeKLEN(entry) != len)
2669 continue;
2670 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2671 continue;
2672 if (HeKFLAGS(entry) != flags_masked)
2673 continue;
2674 break;
2675 }
2676
2677 if (!entry) {
2678 /* What used to be head of the list.
2679 If this is NULL, then we're the first entry for this slot, which
2680 means we need to increate fill. */
2681 struct shared_he *new_entry;
2682 HEK *hek;
2683 char *k;
2684 HE **const head = &HvARRAY(PL_strtab)[hindex];
2685 HE *const next = *head;
2686
2687 /* We don't actually store a HE from the arena and a regular HEK.
2688 Instead we allocate one chunk of memory big enough for both,
2689 and put the HEK straight after the HE. This way we can find the
2690 HEK directly from the HE.
2691 */
2692
2693 Newx(k, STRUCT_OFFSET(struct shared_he,
2694 shared_he_hek.hek_key[0]) + len + 2, char);
2695 new_entry = (struct shared_he *)k;
2696 entry = &(new_entry->shared_he_he);
2697 hek = &(new_entry->shared_he_hek);
2698
2699 Copy(str, HEK_KEY(hek), len, char);
2700 HEK_KEY(hek)[len] = 0;
2701 HEK_LEN(hek) = len;
2702 HEK_HASH(hek) = hash;
2703 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2704
2705 /* Still "point" to the HEK, so that other code need not know what
2706 we're up to. */
2707 HeKEY_hek(entry) = hek;
2708 entry->he_valu.hent_refcount = 0;
2709 HeNEXT(entry) = next;
2710 *head = entry;
2711
2712 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2713 if (!next) { /* initial entry? */
2714 } else if (xhv->xhv_keys > xhv->xhv_max /* HvUSEDKEYS(hv) > HvMAX(hv) */) {
2715 hsplit(PL_strtab);
2716 }
2717 }
2718
2719 ++entry->he_valu.hent_refcount;
2720
2721 if (flags & HVhek_FREEKEY)
2722 Safefree(str);
2723
2724 return HeKEY_hek(entry);
2725}
2726
2727I32 *
2728Perl_hv_placeholders_p(pTHX_ HV *hv)
2729{
2730 dVAR;
2731 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2732
2733 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2734
2735 if (!mg) {
2736 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2737
2738 if (!mg) {
2739 Perl_die(aTHX_ "panic: hv_placeholders_p");
2740 }
2741 }
2742 return &(mg->mg_len);
2743}
2744
2745
2746I32
2747Perl_hv_placeholders_get(pTHX_ const HV *hv)
2748{
2749 dVAR;
2750 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2751
2752 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2753
2754 return mg ? mg->mg_len : 0;
2755}
2756
2757void
2758Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2759{
2760 dVAR;
2761 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2762
2763 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2764
2765 if (mg) {
2766 mg->mg_len = ph;
2767 } else if (ph) {
2768 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2769 Perl_die(aTHX_ "panic: hv_placeholders_set");
2770 }
2771 /* else we don't need to add magic to record 0 placeholders. */
2772}
2773
2774STATIC SV *
2775S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2776{
2777 dVAR;
2778 SV *value;
2779
2780 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2781
2782 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2783 case HVrhek_undef:
2784 value = newSV(0);
2785 break;
2786 case HVrhek_delete:
2787 value = &PL_sv_placeholder;
2788 break;
2789 case HVrhek_IV:
2790 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2791 break;
2792 case HVrhek_UV:
2793 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2794 break;
2795 case HVrhek_PV:
2796 case HVrhek_PV_UTF8:
2797 /* Create a string SV that directly points to the bytes in our
2798 structure. */
2799 value = newSV_type(SVt_PV);
2800 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2801 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2802 /* This stops anything trying to free it */
2803 SvLEN_set(value, 0);
2804 SvPOK_on(value);
2805 SvREADONLY_on(value);
2806 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2807 SvUTF8_on(value);
2808 break;
2809 default:
2810 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2811 (UV)he->refcounted_he_data[0]);
2812 }
2813 return value;
2814}
2815
2816/*
2817=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2818
2819Generates and returns a C<HV *> representing the content of a
2820C<refcounted_he> chain.
2821I<flags> is currently unused and must be zero.
2822
2823=cut
2824*/
2825HV *
2826Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2827{
2828 dVAR;
2829 HV *hv;
2830 U32 placeholders, max;
2831
2832 if (flags)
2833 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
2834 (UV)flags);
2835
2836 /* We could chase the chain once to get an idea of the number of keys,
2837 and call ksplit. But for now we'll make a potentially inefficient
2838 hash with only 8 entries in its array. */
2839 hv = newHV();
2840 max = HvMAX(hv);
2841 if (!HvARRAY(hv)) {
2842 char *array;
2843 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2844 HvARRAY(hv) = (HE**)array;
2845 }
2846
2847 placeholders = 0;
2848 while (chain) {
2849#ifdef USE_ITHREADS
2850 U32 hash = chain->refcounted_he_hash;
2851#else
2852 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2853#endif
2854 HE **oentry = &((HvARRAY(hv))[hash & max]);
2855 HE *entry = *oentry;
2856 SV *value;
2857
2858 for (; entry; entry = HeNEXT(entry)) {
2859 if (HeHASH(entry) == hash) {
2860 /* We might have a duplicate key here. If so, entry is older
2861 than the key we've already put in the hash, so if they are
2862 the same, skip adding entry. */
2863#ifdef USE_ITHREADS
2864 const STRLEN klen = HeKLEN(entry);
2865 const char *const key = HeKEY(entry);
2866 if (klen == chain->refcounted_he_keylen
2867 && (!!HeKUTF8(entry)
2868 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2869 && memEQ(key, REF_HE_KEY(chain), klen))
2870 goto next_please;
2871#else
2872 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2873 goto next_please;
2874 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2875 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2876 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2877 HeKLEN(entry)))
2878 goto next_please;
2879#endif
2880 }
2881 }
2882 assert (!entry);
2883 entry = new_HE();
2884
2885#ifdef USE_ITHREADS
2886 HeKEY_hek(entry)
2887 = share_hek_flags(REF_HE_KEY(chain),
2888 chain->refcounted_he_keylen,
2889 chain->refcounted_he_hash,
2890 (chain->refcounted_he_data[0]
2891 & (HVhek_UTF8|HVhek_WASUTF8)));
2892#else
2893 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2894#endif
2895 value = refcounted_he_value(chain);
2896 if (value == &PL_sv_placeholder)
2897 placeholders++;
2898 HeVAL(entry) = value;
2899
2900 /* Link it into the chain. */
2901 HeNEXT(entry) = *oentry;
2902 *oentry = entry;
2903
2904 HvTOTALKEYS(hv)++;
2905
2906 next_please:
2907 chain = chain->refcounted_he_next;
2908 }
2909
2910 if (placeholders) {
2911 clear_placeholders(hv, placeholders);
2912 HvTOTALKEYS(hv) -= placeholders;
2913 }
2914
2915 /* We could check in the loop to see if we encounter any keys with key
2916 flags, but it's probably not worth it, as this per-hash flag is only
2917 really meant as an optimisation for things like Storable. */
2918 HvHASKFLAGS_on(hv);
2919 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2920
2921 return hv;
2922}
2923
2924/*
2925=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
2926
2927Search along a C<refcounted_he> chain for an entry with the key specified
2928by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
2929bit set, the key octets are interpreted as UTF-8, otherwise they
2930are interpreted as Latin-1. I<hash> is a precomputed hash of the key
2931string, or zero if it has not been precomputed. Returns a mortal scalar
2932representing the value associated with the key, or C<&PL_sv_placeholder>
2933if there is no value associated with the key.
2934
2935=cut
2936*/
2937
2938SV *
2939Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
2940 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
2941{
2942 dVAR;
2943 U8 utf8_flag;
2944 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
2945
2946 if (flags & ~REFCOUNTED_HE_KEY_UTF8)
2947 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
2948 (UV)flags);
2949 if (!chain)
2950 return &PL_sv_placeholder;
2951 if (flags & REFCOUNTED_HE_KEY_UTF8) {
2952 /* For searching purposes, canonicalise to Latin-1 where possible. */
2953 const char *keyend = keypv + keylen, *p;
2954 STRLEN nonascii_count = 0;
2955 for (p = keypv; p != keyend; p++) {
2956 U8 c = (U8)*p;
2957 if (c & 0x80) {
2958 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
2959 (((U8)*p) & 0xc0) == 0x80))
2960 goto canonicalised_key;
2961 nonascii_count++;
2962 }
2963 }
2964 if (nonascii_count) {
2965 char *q;
2966 const char *p = keypv, *keyend = keypv + keylen;
2967 keylen -= nonascii_count;
2968 Newx(q, keylen, char);
2969 SAVEFREEPV(q);
2970 keypv = q;
2971 for (; p != keyend; p++, q++) {
2972 U8 c = (U8)*p;
2973 *q = (char)
2974 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
2975 }
2976 }
2977 flags &= ~REFCOUNTED_HE_KEY_UTF8;
2978 canonicalised_key: ;
2979 }
2980 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
2981 if (!hash)
2982 PERL_HASH(hash, keypv, keylen);
2983
2984 for (; chain; chain = chain->refcounted_he_next) {
2985 if (
2986#ifdef USE_ITHREADS
2987 hash == chain->refcounted_he_hash &&
2988 keylen == chain->refcounted_he_keylen &&
2989 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
2990 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
2991#else
2992 hash == HEK_HASH(chain->refcounted_he_hek) &&
2993 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
2994 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
2995 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
2996#endif
2997 )
2998 return sv_2mortal(refcounted_he_value(chain));
2999 }
3000 return &PL_sv_placeholder;
3001}
3002
3003/*
3004=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3005
3006Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3007instead of a string/length pair.
3008
3009=cut
3010*/
3011
3012SV *
3013Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3014 const char *key, U32 hash, U32 flags)
3015{
3016 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3017 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3018}
3019
3020/*
3021=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3022
3023Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3024string/length pair.
3025
3026=cut
3027*/
3028
3029SV *
3030Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3031 SV *key, U32 hash, U32 flags)
3032{
3033 const char *keypv;
3034 STRLEN keylen;
3035 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3036 if (flags & REFCOUNTED_HE_KEY_UTF8)
3037 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3038 (UV)flags);
3039 keypv = SvPV_const(key, keylen);
3040 if (SvUTF8(key))
3041 flags |= REFCOUNTED_HE_KEY_UTF8;
3042 if (!hash && SvIsCOW_shared_hash(key))
3043 hash = SvSHARED_HASH(key);
3044 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3045}
3046
3047/*
3048=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3049
3050Creates a new C<refcounted_he>. This consists of a single key/value
3051pair and a reference to an existing C<refcounted_he> chain (which may
3052be empty), and thus forms a longer chain. When using the longer chain,
3053the new key/value pair takes precedence over any entry for the same key
3054further along the chain.
3055
3056The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3057the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3058as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3059a precomputed hash of the key string, or zero if it has not been
3060precomputed.
3061
3062I<value> is the scalar value to store for this key. I<value> is copied
3063by this function, which thus does not take ownership of any reference
3064to it, and later changes to the scalar will not be reflected in the
3065value visible in the C<refcounted_he>. Complex types of scalar will not
3066be stored with referential integrity, but will be coerced to strings.
3067I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3068value is to be associated with the key; this, as with any non-null value,
3069takes precedence over the existence of a value for the key further along
3070the chain.
3071
3072I<parent> points to the rest of the C<refcounted_he> chain to be
3073attached to the new C<refcounted_he>. This function takes ownership
3074of one reference to I<parent>, and returns one reference to the new
3075C<refcounted_he>.
3076
3077=cut
3078*/
3079
3080struct refcounted_he *
3081Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3082 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3083{
3084 dVAR;
3085 STRLEN value_len = 0;
3086 const char *value_p = NULL;
3087 bool is_pv;
3088 char value_type;
3089 char hekflags;
3090 STRLEN key_offset = 1;
3091 struct refcounted_he *he;
3092 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3093
3094 if (!value || value == &PL_sv_placeholder) {
3095 value_type = HVrhek_delete;
3096 } else if (SvPOK(value)) {
3097 value_type = HVrhek_PV;
3098 } else if (SvIOK(value)) {
3099 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3100 } else if (!SvOK(value)) {
3101 value_type = HVrhek_undef;
3102 } else {
3103 value_type = HVrhek_PV;
3104 }
3105 is_pv = value_type == HVrhek_PV;
3106 if (is_pv) {
3107 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3108 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3109 value_p = SvPV_const(value, value_len);
3110 if (SvUTF8(value))
3111 value_type = HVrhek_PV_UTF8;
3112 key_offset = value_len + 2;
3113 }
3114 hekflags = value_type;
3115
3116 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3117 /* Canonicalise to Latin-1 where possible. */
3118 const char *keyend = keypv + keylen, *p;
3119 STRLEN nonascii_count = 0;
3120 for (p = keypv; p != keyend; p++) {
3121 U8 c = (U8)*p;
3122 if (c & 0x80) {
3123 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3124 (((U8)*p) & 0xc0) == 0x80))
3125 goto canonicalised_key;
3126 nonascii_count++;
3127 }
3128 }
3129 if (nonascii_count) {
3130 char *q;
3131 const char *p = keypv, *keyend = keypv + keylen;
3132 keylen -= nonascii_count;
3133 Newx(q, keylen, char);
3134 SAVEFREEPV(q);
3135 keypv = q;
3136 for (; p != keyend; p++, q++) {
3137 U8 c = (U8)*p;
3138 *q = (char)
3139 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3140 }
3141 }
3142 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3143 canonicalised_key: ;
3144 }
3145 if (flags & REFCOUNTED_HE_KEY_UTF8)
3146 hekflags |= HVhek_UTF8;
3147 if (!hash)
3148 PERL_HASH(hash, keypv, keylen);
3149
3150#ifdef USE_ITHREADS
3151 he = (struct refcounted_he*)
3152 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3153 + keylen
3154 + key_offset);
3155#else
3156 he = (struct refcounted_he*)
3157 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3158 + key_offset);
3159#endif
3160
3161 he->refcounted_he_next = parent;
3162
3163 if (is_pv) {
3164 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3165 he->refcounted_he_val.refcounted_he_u_len = value_len;
3166 } else if (value_type == HVrhek_IV) {
3167 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3168 } else if (value_type == HVrhek_UV) {
3169 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3170 }
3171
3172#ifdef USE_ITHREADS
3173 he->refcounted_he_hash = hash;
3174 he->refcounted_he_keylen = keylen;
3175 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3176#else
3177 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3178#endif
3179
3180 he->refcounted_he_data[0] = hekflags;
3181 he->refcounted_he_refcnt = 1;
3182
3183 return he;
3184}
3185
3186/*
3187=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3188
3189Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3190of a string/length pair.
3191
3192=cut
3193*/
3194
3195struct refcounted_he *
3196Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3197 const char *key, U32 hash, SV *value, U32 flags)
3198{
3199 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3200 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3201}
3202
3203/*
3204=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3205
3206Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3207string/length pair.
3208
3209=cut
3210*/
3211
3212struct refcounted_he *
3213Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3214 SV *key, U32 hash, SV *value, U32 flags)
3215{
3216 const char *keypv;
3217 STRLEN keylen;
3218 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3219 if (flags & REFCOUNTED_HE_KEY_UTF8)
3220 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3221 (UV)flags);
3222 keypv = SvPV_const(key, keylen);
3223 if (SvUTF8(key))
3224 flags |= REFCOUNTED_HE_KEY_UTF8;
3225 if (!hash && SvIsCOW_shared_hash(key))
3226 hash = SvSHARED_HASH(key);
3227 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3228}
3229
3230/*
3231=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3232
3233Decrements the reference count of a C<refcounted_he> by one. If the
3234reference count reaches zero the structure's memory is freed, which
3235(recursively) causes a reduction of its parent C<refcounted_he>'s
3236reference count. It is safe to pass a null pointer to this function:
3237no action occurs in this case.
3238
3239=cut
3240*/
3241
3242void
3243Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3244 dVAR;
3245 PERL_UNUSED_CONTEXT;
3246
3247 while (he) {
3248 struct refcounted_he *copy;
3249 U32 new_count;
3250
3251 HINTS_REFCNT_LOCK;
3252 new_count = --he->refcounted_he_refcnt;
3253 HINTS_REFCNT_UNLOCK;
3254
3255 if (new_count) {
3256 return;
3257 }
3258
3259#ifndef USE_ITHREADS
3260 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3261#endif
3262 copy = he;
3263 he = he->refcounted_he_next;
3264 PerlMemShared_free(copy);
3265 }
3266}
3267
3268/*
3269=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3270
3271Increment the reference count of a C<refcounted_he>. The pointer to the
3272C<refcounted_he> is also returned. It is safe to pass a null pointer
3273to this function: no action occurs and a null pointer is returned.
3274
3275=cut
3276*/
3277
3278struct refcounted_he *
3279Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3280{
3281 dVAR;
3282 if (he) {
3283 HINTS_REFCNT_LOCK;
3284 he->refcounted_he_refcnt++;
3285 HINTS_REFCNT_UNLOCK;
3286 }
3287 return he;
3288}
3289
3290/* pp_entereval is aware that labels are stored with a key ':' at the top of
3291 the linked list. */
3292const char *
3293Perl_fetch_cop_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3294 struct refcounted_he *const chain = cop->cop_hints_hash;
3295
3296 PERL_ARGS_ASSERT_FETCH_COP_LABEL;
3297
3298 if (!chain)
3299 return NULL;
3300#ifdef USE_ITHREADS
3301 if (chain->refcounted_he_keylen != 1)
3302 return NULL;
3303 if (*REF_HE_KEY(chain) != ':')
3304 return NULL;
3305#else
3306 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3307 return NULL;
3308 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3309 return NULL;
3310#endif
3311 /* Stop anyone trying to really mess us up by adding their own value for
3312 ':' into %^H */
3313 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3314 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3315 return NULL;
3316
3317 if (len)
3318 *len = chain->refcounted_he_val.refcounted_he_u_len;
3319 if (flags) {
3320 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3321 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3322 }
3323 return chain->refcounted_he_data + 1;
3324}
3325
3326void
3327Perl_store_cop_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3328 U32 flags)
3329{
3330 SV *labelsv;
3331 PERL_ARGS_ASSERT_STORE_COP_LABEL;
3332
3333 if (flags & ~(SVf_UTF8))
3334 Perl_croak(aTHX_ "panic: store_cop_label illegal flag bits 0x%" UVxf,
3335 (UV)flags);
3336 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3337 if (flags & SVf_UTF8)
3338 SvUTF8_on(labelsv);
3339 cop->cop_hints_hash
3340 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3341}
3342
3343/*
3344=for apidoc hv_assert
3345
3346Check that a hash is in an internally consistent state.
3347
3348=cut
3349*/
3350
3351#ifdef DEBUGGING
3352
3353void
3354Perl_hv_assert(pTHX_ HV *hv)
3355{
3356 dVAR;
3357 HE* entry;
3358 int withflags = 0;
3359 int placeholders = 0;
3360 int real = 0;
3361 int bad = 0;
3362 const I32 riter = HvRITER_get(hv);
3363 HE *eiter = HvEITER_get(hv);
3364
3365 PERL_ARGS_ASSERT_HV_ASSERT;
3366
3367 (void)hv_iterinit(hv);
3368
3369 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3370 /* sanity check the values */
3371 if (HeVAL(entry) == &PL_sv_placeholder)
3372 placeholders++;
3373 else
3374 real++;
3375 /* sanity check the keys */
3376 if (HeSVKEY(entry)) {
3377 NOOP; /* Don't know what to check on SV keys. */
3378 } else if (HeKUTF8(entry)) {
3379 withflags++;
3380 if (HeKWASUTF8(entry)) {
3381 PerlIO_printf(Perl_debug_log,
3382 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3383 (int) HeKLEN(entry), HeKEY(entry));
3384 bad = 1;
3385 }
3386 } else if (HeKWASUTF8(entry))
3387 withflags++;
3388 }
3389 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3390 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3391 const int nhashkeys = HvUSEDKEYS(hv);
3392 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3393
3394 if (nhashkeys != real) {
3395 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3396 bad = 1;
3397 }
3398 if (nhashplaceholders != placeholders) {
3399 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3400 bad = 1;
3401 }
3402 }
3403 if (withflags && ! HvHASKFLAGS(hv)) {
3404 PerlIO_printf(Perl_debug_log,
3405 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3406 withflags);
3407 bad = 1;
3408 }
3409 if (bad) {
3410 sv_dump(MUTABLE_SV(hv));
3411 }
3412 HvRITER_set(hv, riter); /* Restore hash iterator state */
3413 HvEITER_set(hv, eiter);
3414}
3415
3416#endif
3417
3418/*
3419 * Local variables:
3420 * c-indentation-style: bsd
3421 * c-basic-offset: 4
3422 * indent-tabs-mode: t
3423 * End:
3424 *
3425 * ex: set ts=8 sts=4 sw=4 noet:
3426 */