This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
regcomp.c: Add new static inline convenience function
[perl5.git] / time64.c
... / ...
CommitLineData
1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
36Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
37
38Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40*/
41
42#include "EXTERN.h"
43#define PERL_IN_TIME64_C
44#include "perl.h"
45#include "time64.h"
46
47static const char days_in_month[2][12] = {
48 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
49 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
50};
51
52static const short julian_days_by_month[2][12] = {
53 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
54 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
55};
56
57static const short length_of_year[2] = { 365, 366 };
58
59/* Number of days in a 400 year Gregorian cycle */
60static const Year years_in_gregorian_cycle = 400;
61static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
62
63/* 28 year calendar cycle between 2010 and 2037 */
64#define SOLAR_CYCLE_LENGTH 28
65static const short safe_years[SOLAR_CYCLE_LENGTH] = {
66 2016, 2017, 2018, 2019,
67 2020, 2021, 2022, 2023,
68 2024, 2025, 2026, 2027,
69 2028, 2029, 2030, 2031,
70 2032, 2033, 2034, 2035,
71 2036, 2037, 2010, 2011,
72 2012, 2013, 2014, 2015
73};
74
75/* Let's assume people are going to be looking for dates in the future.
76 Let's provide some cheats so you can skip ahead.
77 This has a 4x speed boost when near 2008.
78*/
79/* Number of days since epoch on Jan 1st, 2008 GMT */
80#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
81#define CHEAT_YEARS 108
82
83#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
84#undef WRAP /* some <termios.h> define this */
85#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
86
87#ifdef USE_SYSTEM_LOCALTIME
88# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
89 (a) <= SYSTEM_LOCALTIME_MAX && \
90 (a) >= SYSTEM_LOCALTIME_MIN \
91)
92#else
93# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
94#endif
95
96#ifdef USE_SYSTEM_GMTIME
97# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
98 (a) <= SYSTEM_GMTIME_MAX && \
99 (a) >= SYSTEM_GMTIME_MIN \
100)
101#else
102# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
103#endif
104
105/* Multi varadic macros are a C99 thing, alas */
106#ifdef TIME_64_DEBUG
107# define TIME64_TRACE(format) (fprintf(stderr, format))
108# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
109# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
110# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
111#else
112# define TIME64_TRACE(format) ((void)0)
113# define TIME64_TRACE1(format, var1) ((void)0)
114# define TIME64_TRACE2(format, var1, var2) ((void)0)
115# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
116#endif
117
118static int S_is_exception_century(Year year)
119{
120 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
121 TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
122
123 return(is_exception);
124}
125
126
127static Time64_T S_timegm64(struct TM *date) {
128 int days = 0;
129 Time64_T seconds = 0;
130 Year year;
131
132 if( date->tm_year > 70 ) {
133 year = 70;
134 while( year < date->tm_year ) {
135 days += length_of_year[IS_LEAP(year)];
136 year++;
137 }
138 }
139 else if ( date->tm_year < 70 ) {
140 year = 69;
141 do {
142 days -= length_of_year[IS_LEAP(year)];
143 year--;
144 } while( year >= date->tm_year );
145 }
146
147 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
148 days += date->tm_mday - 1;
149
150 /* Avoid overflowing the days integer */
151 seconds = days;
152 seconds = seconds * 60 * 60 * 24;
153
154 seconds += date->tm_hour * 60 * 60;
155 seconds += date->tm_min * 60;
156 seconds += date->tm_sec;
157
158 return(seconds);
159}
160
161
162#ifdef DEBUGGING
163static int S_check_tm(struct TM *tm)
164{
165 /* Don't forget leap seconds */
166 assert(tm->tm_sec >= 0);
167 assert(tm->tm_sec <= 61);
168
169 assert(tm->tm_min >= 0);
170 assert(tm->tm_min <= 59);
171
172 assert(tm->tm_hour >= 0);
173 assert(tm->tm_hour <= 23);
174
175 assert(tm->tm_mday >= 1);
176 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
177
178 assert(tm->tm_mon >= 0);
179 assert(tm->tm_mon <= 11);
180
181 assert(tm->tm_wday >= 0);
182 assert(tm->tm_wday <= 6);
183
184 assert(tm->tm_yday >= 0);
185 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
186
187#ifdef HAS_TM_TM_GMTOFF
188 assert(tm->tm_gmtoff >= -24 * 60 * 60);
189 assert(tm->tm_gmtoff <= 24 * 60 * 60);
190#endif
191
192 return 1;
193}
194#endif
195
196
197/* The exceptional centuries without leap years cause the cycle to
198 shift by 16
199*/
200static Year S_cycle_offset(Year year)
201{
202 const Year start_year = 2000;
203 Year year_diff = year - start_year;
204 Year exceptions;
205
206 if( year > start_year )
207 year_diff--;
208
209 exceptions = year_diff / 100;
210 exceptions -= year_diff / 400;
211
212 TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
213 year, exceptions, year_diff);
214
215 return exceptions * 16;
216}
217
218/* For a given year after 2038, pick the latest possible matching
219 year in the 28 year calendar cycle.
220
221 A matching year...
222 1) Starts on the same day of the week.
223 2) Has the same leap year status.
224
225 This is so the calendars match up.
226
227 Also the previous year must match. When doing Jan 1st you might
228 wind up on Dec 31st the previous year when doing a -UTC time zone.
229
230 Finally, the next year must have the same start day of week. This
231 is for Dec 31st with a +UTC time zone.
232 It doesn't need the same leap year status since we only care about
233 January 1st.
234*/
235static int S_safe_year(Year year)
236{
237 int safe_year;
238 Year year_cycle = year + S_cycle_offset(year);
239
240 /* Change non-leap xx00 years to an equivalent */
241 if( S_is_exception_century(year) )
242 year_cycle += 11;
243
244 /* Also xx01 years, since the previous year will be wrong */
245 if( S_is_exception_century(year - 1) )
246 year_cycle += 17;
247
248 year_cycle %= SOLAR_CYCLE_LENGTH;
249 if( year_cycle < 0 )
250 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
251
252 assert( year_cycle >= 0 );
253 assert( year_cycle < SOLAR_CYCLE_LENGTH );
254 safe_year = safe_years[year_cycle];
255
256 assert(safe_year <= 2037 && safe_year >= 2010);
257
258 TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
259 year, year_cycle, safe_year);
260
261 return safe_year;
262}
263
264
265static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
266 assert(src);
267 assert(dest);
268#ifdef USE_TM64
269 dest->tm_sec = src->tm_sec;
270 dest->tm_min = src->tm_min;
271 dest->tm_hour = src->tm_hour;
272 dest->tm_mday = src->tm_mday;
273 dest->tm_mon = src->tm_mon;
274 dest->tm_year = (Year)src->tm_year;
275 dest->tm_wday = src->tm_wday;
276 dest->tm_yday = src->tm_yday;
277 dest->tm_isdst = src->tm_isdst;
278
279# ifdef HAS_TM_TM_GMTOFF
280 dest->tm_gmtoff = src->tm_gmtoff;
281# endif
282
283# ifdef HAS_TM_TM_ZONE
284 dest->tm_zone = src->tm_zone;
285# endif
286
287#else
288 /* They're the same type */
289 memcpy(dest, src, sizeof(*dest));
290#endif
291}
292
293
294#ifndef HAS_LOCALTIME_R
295/* Simulate localtime_r() to the best of our ability */
296static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
297#ifdef __VMS
298 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
299#endif
300 const struct tm *static_result = localtime(clock);
301
302 assert(result != NULL);
303
304 if( static_result == NULL ) {
305 memset(result, 0, sizeof(*result));
306 return NULL;
307 }
308 else {
309 memcpy(result, static_result, sizeof(*result));
310 return result;
311 }
312}
313#endif
314
315#ifndef HAS_GMTIME_R
316/* Simulate gmtime_r() to the best of our ability */
317static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
318#ifdef __VMS
319 dTHX; /* the following is defined as Perl_my_localtime(aTHX_ ...) */
320#endif
321 const struct tm *static_result = gmtime(clock);
322
323 assert(result != NULL);
324
325 if( static_result == NULL ) {
326 memset(result, 0, sizeof(*result));
327 return NULL;
328 }
329 else {
330 memcpy(result, static_result, sizeof(*result));
331 return result;
332 }
333}
334#endif
335
336struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
337{
338 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
339 Time64_T v_tm_tday;
340 int leap;
341 Time64_T m;
342 Time64_T time = *in_time;
343 Year year = 70;
344 int cycles = 0;
345
346 assert(p != NULL);
347
348 /* Use the system gmtime() if time_t is small enough */
349 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
350 time_t safe_time = (time_t)*in_time;
351 struct tm safe_date;
352 GMTIME_R(&safe_time, &safe_date);
353
354 S_copy_little_tm_to_big_TM(&safe_date, p);
355 assert(S_check_tm(p));
356
357 return p;
358 }
359
360#ifdef HAS_TM_TM_GMTOFF
361 p->tm_gmtoff = 0;
362#endif
363 p->tm_isdst = 0;
364
365#ifdef HAS_TM_TM_ZONE
366 p->tm_zone = (char *)"UTC";
367#endif
368
369 v_tm_sec = (int)Perl_fmod(time, 60.0);
370 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
371 v_tm_min = (int)Perl_fmod(time, 60.0);
372 time = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
373 v_tm_hour = (int)Perl_fmod(time, 24.0);
374 time = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
375 v_tm_tday = time;
376
377 WRAP (v_tm_sec, v_tm_min, 60);
378 WRAP (v_tm_min, v_tm_hour, 60);
379 WRAP (v_tm_hour, v_tm_tday, 24);
380
381 v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
382 if (v_tm_wday < 0)
383 v_tm_wday += 7;
384 m = v_tm_tday;
385
386 if (m >= CHEAT_DAYS) {
387 year = CHEAT_YEARS;
388 m -= CHEAT_DAYS;
389 }
390
391 if (m >= 0) {
392 /* Gregorian cycles, this is huge optimization for distant times */
393 cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
394 if( cycles ) {
395 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
396 year += (cycles * years_in_gregorian_cycle);
397 }
398
399 /* Years */
400 leap = IS_LEAP (year);
401 while (m >= (Time64_T) length_of_year[leap]) {
402 m -= (Time64_T) length_of_year[leap];
403 year++;
404 leap = IS_LEAP (year);
405 }
406
407 /* Months */
408 v_tm_mon = 0;
409 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
410 m -= (Time64_T) days_in_month[leap][v_tm_mon];
411 v_tm_mon++;
412 }
413 } else {
414 year--;
415
416 /* Gregorian cycles */
417 cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
418 if( cycles ) {
419 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
420 year += (cycles * years_in_gregorian_cycle);
421 }
422
423 /* Years */
424 leap = IS_LEAP (year);
425 while (m < (Time64_T) -length_of_year[leap]) {
426 m += (Time64_T) length_of_year[leap];
427 year--;
428 leap = IS_LEAP (year);
429 }
430
431 /* Months */
432 v_tm_mon = 11;
433 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
434 m += (Time64_T) days_in_month[leap][v_tm_mon];
435 v_tm_mon--;
436 }
437 m += (Time64_T) days_in_month[leap][v_tm_mon];
438 }
439
440 p->tm_year = year;
441 if( p->tm_year != year ) {
442#ifdef EOVERFLOW
443 errno = EOVERFLOW;
444#endif
445 return NULL;
446 }
447
448 /* At this point m is less than a year so casting to an int is safe */
449 p->tm_mday = (int) m + 1;
450 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
451 p->tm_sec = v_tm_sec;
452 p->tm_min = v_tm_min;
453 p->tm_hour = v_tm_hour;
454 p->tm_mon = v_tm_mon;
455 p->tm_wday = v_tm_wday;
456
457 assert(S_check_tm(p));
458
459 return p;
460}
461
462
463struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
464{
465 time_t safe_time;
466 struct tm safe_date;
467 struct TM gm_tm;
468 Year orig_year;
469 int month_diff;
470
471 assert(local_tm != NULL);
472
473 /* Use the system localtime() if time_t is small enough */
474 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
475 safe_time = (time_t)*time;
476
477 TIME64_TRACE1("Using system localtime for %lld\n", *time);
478
479 LOCALTIME_R(&safe_time, &safe_date);
480
481 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
482 assert(S_check_tm(local_tm));
483
484 return local_tm;
485 }
486
487 if( Perl_gmtime64_r(time, &gm_tm) == NULL ) {
488 TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
489 return NULL;
490 }
491
492 orig_year = gm_tm.tm_year;
493
494 if (gm_tm.tm_year > (2037 - 1900) ||
495 gm_tm.tm_year < (1970 - 1900)
496 )
497 {
498 TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
499 gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
500 }
501
502 safe_time = (time_t)S_timegm64(&gm_tm);
503 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
504 TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
505 return NULL;
506 }
507
508 S_copy_little_tm_to_big_TM(&safe_date, local_tm);
509
510 local_tm->tm_year = orig_year;
511 if( local_tm->tm_year != orig_year ) {
512 TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
513 (Year)local_tm->tm_year, (Year)orig_year);
514
515#ifdef EOVERFLOW
516 errno = EOVERFLOW;
517#endif
518 return NULL;
519 }
520
521
522 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
523
524 /* When localtime is Dec 31st previous year and
525 gmtime is Jan 1st next year.
526 */
527 if( month_diff == 11 ) {
528 local_tm->tm_year--;
529 }
530
531 /* When localtime is Jan 1st, next year and
532 gmtime is Dec 31st, previous year.
533 */
534 if( month_diff == -11 ) {
535 local_tm->tm_year++;
536 }
537
538 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
539 in a non-leap xx00. There is one point in the cycle
540 we can't account for which the safe xx00 year is a leap
541 year. So we need to correct for Dec 31st coming out as
542 the 366th day of the year.
543 */
544 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
545 local_tm->tm_yday--;
546
547 assert(S_check_tm(local_tm));
548
549 return local_tm;
550}