This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perlvar - expand and link to ${^OPEN} documentation
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21=cut
22
23This file contains all the stuff needed by perl for manipulating numeric
24values, including such things as replacements for the OS's atof() function
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32#ifdef Perl_strtod
33
34PERL_STATIC_INLINE NV
35S_strtod(pTHX_ const char * const s, char ** e)
36{
37 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
38 NV result;
39
40 STORE_LC_NUMERIC_SET_TO_NEEDED();
41
42# ifdef USE_QUADMATH
43
44 result = strtoflt128(s, e);
45
46# elif defined(HAS_STRTOLD) && defined(HAS_LONG_DOUBLE) \
47 && defined(USE_LONG_DOUBLE)
48# if defined(__MINGW64_VERSION_MAJOR)
49 /***********************************************
50 We are unable to use strtold because of
51 https://sourceforge.net/p/mingw-w64/bugs/711/
52 &
53 https://sourceforge.net/p/mingw-w64/bugs/725/
54
55 but __mingw_strtold is fine.
56 ***********************************************/
57
58 result = __mingw_strtold(s, e);
59
60# else
61
62 result = strtold(s, e);
63
64# endif
65# elif defined(HAS_STRTOD)
66
67 result = strtod(s, e);
68
69# else
70# error No strtod() equivalent found
71# endif
72
73 RESTORE_LC_NUMERIC();
74
75 return result;
76}
77
78#endif /* #ifdef Perl_strtod */
79
80/*
81
82=for apidoc my_strtod
83
84This function is equivalent to the libc strtod() function, and is available
85even on platforms that lack plain strtod(). Its return value is the best
86available precision depending on platform capabilities and F<Configure>
87options.
88
89It properly handles the locale radix character, meaning it expects a dot except
90when called from within the scope of S<C<use locale>>, in which case the radix
91character should be that specified by the current locale.
92
93The synonym Strtod() may be used instead.
94
95=cut
96
97*/
98
99NV
100Perl_my_strtod(const char * const s, char **e)
101{
102 dTHX;
103
104 PERL_ARGS_ASSERT_MY_STRTOD;
105
106#ifdef Perl_strtod
107
108 return S_strtod(aTHX_ s, e);
109
110#else
111
112 {
113 NV result;
114 char ** end_ptr = NULL;
115
116 *end_ptr = my_atof2(s, &result);
117 if (e) {
118 *e = *end_ptr;
119 }
120
121 if (! *end_ptr) {
122 result = 0.0;
123 }
124
125 return result;
126 }
127
128#endif
129
130}
131
132
133U32
134Perl_cast_ulong(NV f)
135{
136 if (f < 0.0)
137 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
138 if (f < U32_MAX_P1) {
139#if CASTFLAGS & 2
140 if (f < U32_MAX_P1_HALF)
141 return (U32) f;
142 f -= U32_MAX_P1_HALF;
143 return ((U32) f) | (1 + (U32_MAX >> 1));
144#else
145 return (U32) f;
146#endif
147 }
148 return f > 0 ? U32_MAX : 0 /* NaN */;
149}
150
151I32
152Perl_cast_i32(NV f)
153{
154 if (f < I32_MAX_P1)
155 return f < I32_MIN ? I32_MIN : (I32) f;
156 if (f < U32_MAX_P1) {
157#if CASTFLAGS & 2
158 if (f < U32_MAX_P1_HALF)
159 return (I32)(U32) f;
160 f -= U32_MAX_P1_HALF;
161 return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
162#else
163 return (I32)(U32) f;
164#endif
165 }
166 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
167}
168
169IV
170Perl_cast_iv(NV f)
171{
172 if (f < IV_MAX_P1)
173 return f < IV_MIN ? IV_MIN : (IV) f;
174 if (f < UV_MAX_P1) {
175#if CASTFLAGS & 2
176 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
177 if (f < UV_MAX_P1_HALF)
178 return (IV)(UV) f;
179 f -= UV_MAX_P1_HALF;
180 return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
181#else
182 return (IV)(UV) f;
183#endif
184 }
185 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
186}
187
188UV
189Perl_cast_uv(NV f)
190{
191 if (f < 0.0)
192 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
193 if (f < UV_MAX_P1) {
194#if CASTFLAGS & 2
195 if (f < UV_MAX_P1_HALF)
196 return (UV) f;
197 f -= UV_MAX_P1_HALF;
198 return ((UV) f) | (1 + (UV_MAX >> 1));
199#else
200 return (UV) f;
201#endif
202 }
203 return f > 0 ? UV_MAX : 0 /* NaN */;
204}
205
206/*
207=for apidoc grok_bin
208
209converts a string representing a binary number to numeric form.
210
211On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
212conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
213scan stops at the end of the string, or at just before the first invalid
214character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
215encountering an invalid character (except NUL) will also trigger a warning. On
216return C<*len_p> is set to the length of the scanned string, and C<*flags>
217gives output flags.
218
219If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
220and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
221returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
222and writes an approximation of the correct value into C<*result> (which is an
223NV; or the approximation is discarded if C<result> is NULL).
224
225The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
226C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
227
228If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
229digits may be separated from each other by a single underscore; also a single
230leading underscore is accepted.
231
232=for apidoc Amnh||PERL_SCAN_ALLOW_UNDERSCORES
233=for apidoc Amnh||PERL_SCAN_DISALLOW_PREFIX
234=for apidoc Amnh||PERL_SCAN_GREATER_THAN_UV_MAX
235=for apidoc Amnh||PERL_SCAN_SILENT_ILLDIGIT
236
237=cut
238
239Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
240which suppresses any message for non-portable numbers that are still valid
241on this platform.
242 */
243
244UV
245Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
246{
247 PERL_ARGS_ASSERT_GROK_BIN;
248
249 return grok_bin(start, len_p, flags, result);
250}
251
252/*
253=for apidoc grok_hex
254
255converts a string representing a hex number to numeric form.
256
257On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
258conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
259scan stops at the end of the string, or at just before the first invalid
260character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
261encountering an invalid character (except NUL) will also trigger a warning. On
262return C<*len_p> is set to the length of the scanned string, and C<*flags>
263gives output flags.
264
265If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
266and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
267returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
268and writes an approximation of the correct value into C<*result> (which is an
269NV; or the approximation is discarded if C<result> is NULL).
270
271The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
272C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
273
274If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
275digits may be separated from each other by a single underscore; also a single
276leading underscore is accepted.
277
278=cut
279
280Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
281which suppresses any message for non-portable numbers, but which are valid
282on this platform. But, C<*flags> will have the corresponding flag bit set.
283 */
284
285UV
286Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
287{
288 PERL_ARGS_ASSERT_GROK_HEX;
289
290 return grok_hex(start, len_p, flags, result);
291}
292
293/*
294=for apidoc grok_oct
295
296converts a string representing an octal number to numeric form.
297
298On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
299conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
300scan stops at the end of the string, or at just before the first invalid
301character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
302encountering an invalid character (except NUL) will also trigger a warning. On
303return C<*len_p> is set to the length of the scanned string, and C<*flags>
304gives output flags.
305
306If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
307and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
308returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
309and writes an approximation of the correct value into C<*result> (which is an
310NV; or the approximation is discarded if C<result> is NULL).
311
312If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
313digits may be separated from each other by a single underscore; also a single
314leading underscore is accepted.
315
316The the C<PERL_SCAN_DISALLOW_PREFIX> flag is always treated as being set for
317this function.
318
319=cut
320
321Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
322which suppresses any message for non-portable numbers, but which are valid
323on this platform.
324 */
325
326UV
327Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
328{
329 PERL_ARGS_ASSERT_GROK_OCT;
330
331 return grok_oct(start, len_p, flags, result);
332}
333
334STATIC void
335S_output_non_portable(pTHX_ const U8 base)
336{
337 /* Display the proper message for a number in the given input base not
338 * fitting in 32 bits */
339 const char * which = (base == 2)
340 ? "Binary number > 0b11111111111111111111111111111111"
341 : (base == 8)
342 ? "Octal number > 037777777777"
343 : "Hexadecimal number > 0xffffffff";
344
345 PERL_ARGS_ASSERT_OUTPUT_NON_PORTABLE;
346
347 /* Also there are listings for the other two. That's because, since they
348 * are the first word, it would be hard for a user to find them there
349 * starting with a %s */
350 /* diag_listed_as: Hexadecimal number > 0xffffffff non-portable */
351 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), "%s non-portable", which);
352}
353
354UV
355Perl_grok_bin_oct_hex(pTHX_ const char *start,
356 STRLEN *len_p,
357 I32 *flags,
358 NV *result,
359 const unsigned shift, /* 1 for binary; 3 for octal;
360 4 for hex */
361 const U8 class_bit,
362 const char prefix
363 )
364
365{
366 const char *s0 = start;
367 const char *s;
368 STRLEN len = *len_p;
369 STRLEN bytes_so_far; /* How many real digits have been processed */
370 UV value = 0;
371 NV value_nv = 0;
372 const PERL_UINT_FAST8_T base = 1 << shift; /* 2, 8, or 16 */
373 const UV max_div= UV_MAX / base; /* Value above which, the next digit
374 processed would overflow */
375 const I32 input_flags = *flags;
376 const bool allow_underscores =
377 cBOOL(input_flags & PERL_SCAN_ALLOW_UNDERSCORES);
378 bool overflowed = FALSE;
379
380 /* In overflows, this keeps track of how much to multiply the overflowed NV
381 * by as we continue to parse the remaining digits */
382 NV factor = 0;
383
384 /* This function unifies the core of grok_bin, grok_oct, and grok_hex. It
385 * is optimized for hex conversion. For example, it uses XDIGIT_VALUE to
386 * find the numeric value of a digit. That requires more instructions than
387 * OCTAL_VALUE would, but gives the same result for the narrowed range of
388 * octal digits; same for binary. If it were ever critical to squeeze more
389 * performance from this, the function could become grok_hex, and a regen
390 * perl script could scan it and write out two edited copies for the other
391 * two functions. That would improve the performance of all three
392 * somewhat. Besides eliminating XDIGIT_VALUE for the other two, extra
393 * parameters are now passed to this to avoid conditionals. Those could
394 * become declared consts, like:
395 * const U8 base = 16;
396 * const U8 base = 8;
397 * ...
398 */
399
400 PERL_ARGS_ASSERT_GROK_BIN_OCT_HEX;
401
402 ASSUME(inRANGE(shift, 1, 4) && shift != 2);
403
404 /* Clear output flags; unlikely to find a problem that sets them */
405 *flags = 0;
406
407 if (!(input_flags & PERL_SCAN_DISALLOW_PREFIX)) {
408
409 /* strip off leading b or 0b; x or 0x.
410 for compatibility silently suffer "b" and "0b" as valid binary; "x"
411 and "0x" as valid hex numbers. */
412 if (len >= 1) {
413 if (isALPHA_FOLD_EQ(s0[0], prefix)) {
414 s0++;
415 len--;
416 }
417 else if (len >= 2 && s0[0] == '0' && (isALPHA_FOLD_EQ(s0[1], prefix))) {
418 s0+=2;
419 len-=2;
420 }
421 }
422 }
423
424 s = s0; /* s0 potentially advanced from 'start' */
425
426 /* Unroll the loop so that the first 8 digits are branchless except for the
427 * switch. A ninth hex one overflows a 32 bit word. */
428 switch (len) {
429 case 0:
430 return 0;
431 default:
432 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
433 value = (value << shift) | XDIGIT_VALUE(*s);
434 s++;
435 /* FALLTHROUGH */
436 case 7:
437 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
438 value = (value << shift) | XDIGIT_VALUE(*s);
439 s++;
440 /* FALLTHROUGH */
441 case 6:
442 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
443 value = (value << shift) | XDIGIT_VALUE(*s);
444 s++;
445 /* FALLTHROUGH */
446 case 5:
447 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
448 value = (value << shift) | XDIGIT_VALUE(*s);
449 s++;
450 /* FALLTHROUGH */
451 case 4:
452 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
453 value = (value << shift) | XDIGIT_VALUE(*s);
454 s++;
455 /* FALLTHROUGH */
456 case 3:
457 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
458 value = (value << shift) | XDIGIT_VALUE(*s);
459 s++;
460 /* FALLTHROUGH */
461 case 2:
462 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
463 value = (value << shift) | XDIGIT_VALUE(*s);
464 s++;
465 /* FALLTHROUGH */
466 case 1:
467 if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
468 value = (value << shift) | XDIGIT_VALUE(*s);
469
470 if (LIKELY(len <= 8)) {
471 return value;
472 }
473
474 s++;
475 break;
476 }
477
478 bytes_so_far = s - s0;
479 factor = shift << bytes_so_far;
480 len -= bytes_so_far;
481
482 for (; len--; s++) {
483 if (_generic_isCC(*s, class_bit)) {
484 /* Write it in this wonky order with a goto to attempt to get the
485 compiler to make the common case integer-only loop pretty tight.
486 With gcc seems to be much straighter code than old scan_hex.
487 (khw suspects that adding a LIKELY() just above would do the
488 same thing) */
489 redo:
490 if (LIKELY(value <= max_div)) {
491 value = (value << shift) | XDIGIT_VALUE(*s);
492 /* Note XDIGIT_VALUE() is branchless, works on binary
493 * and octal as well, so can be used here, without
494 * slowing those down */
495 factor *= 1 << shift;
496 continue;
497 }
498
499 /* Bah. We are about to overflow. Instead, add the unoverflowed
500 * value to an NV that contains an approximation to the correct
501 * value. Each time through the loop we have increased 'factor' so
502 * that it gives how much the current approximation needs to
503 * effectively be shifted to make room for this new value */
504 value_nv *= factor;
505 value_nv += (NV) value;
506
507 /* Then we keep accumulating digits, until all are parsed. We
508 * start over using the current input value. This will be added to
509 * 'value_nv' eventually, either when all digits are gone, or we
510 * have overflowed this fresh start. */
511 value = XDIGIT_VALUE(*s);
512 factor = 1 << shift;
513
514 if (! overflowed) {
515 overflowed = TRUE;
516 if ( ! (input_flags & PERL_SCAN_SILENT_OVERFLOW)
517 && ckWARN_d(WARN_OVERFLOW))
518 {
519 Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
520 "Integer overflow in %s number",
521 (base == 16) ? "hexadecimal"
522 : (base == 2)
523 ? "binary"
524 : "octal");
525 }
526 }
527 continue;
528 }
529
530 if ( *s == '_'
531 && len
532 && allow_underscores
533 && _generic_isCC(s[1], class_bit)
534
535 /* Don't allow a leading underscore if the only-medial bit is
536 * set */
537 && ( LIKELY(s > s0)
538 || UNLIKELY((input_flags & PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)
539 != PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)))
540 {
541 --len;
542 ++s;
543 goto redo;
544 }
545
546 if (*s) {
547 if ( ! (input_flags & PERL_SCAN_SILENT_ILLDIGIT)
548 && ckWARN(WARN_DIGIT))
549 {
550 if (base != 8) {
551 Perl_warner(aTHX_ packWARN(WARN_DIGIT),
552 "Illegal %s digit '%c' ignored",
553 ((base == 2)
554 ? "binary"
555 : "hexadecimal"),
556 *s);
557 }
558 else if (isDIGIT(*s)) { /* octal base */
559
560 /* Allow \octal to work the DWIM way (that is, stop
561 * scanning as soon as non-octal characters are seen,
562 * complain only if someone seems to want to use the digits
563 * eight and nine. Since we know it is not octal, then if
564 * isDIGIT, must be an 8 or 9). */
565 Perl_warner(aTHX_ packWARN(WARN_DIGIT),
566 "Illegal octal digit '%c' ignored", *s);
567 }
568 }
569
570 if (input_flags & PERL_SCAN_NOTIFY_ILLDIGIT) {
571 *flags |= PERL_SCAN_NOTIFY_ILLDIGIT;
572 }
573 }
574
575 break;
576 }
577
578 *len_p = s - start;
579
580 if (LIKELY(! overflowed)) {
581#if UVSIZE > 4
582 if ( UNLIKELY(value > 0xffffffff)
583 && ! (input_flags & PERL_SCAN_SILENT_NON_PORTABLE))
584 {
585 output_non_portable(base);
586 *flags |= PERL_SCAN_SILENT_NON_PORTABLE;
587 }
588#endif
589 return value;
590 }
591
592 /* Overflowed: Calculate the final overflow approximation */
593 value_nv *= factor;
594 value_nv += (NV) value;
595
596 output_non_portable(base);
597
598 *flags |= PERL_SCAN_GREATER_THAN_UV_MAX
599 | PERL_SCAN_SILENT_NON_PORTABLE;
600 if (result)
601 *result = value_nv;
602 return UV_MAX;
603}
604
605/*
606=for apidoc scan_bin
607
608For backwards compatibility. Use C<grok_bin> instead.
609
610=for apidoc scan_hex
611
612For backwards compatibility. Use C<grok_hex> instead.
613
614=for apidoc scan_oct
615
616For backwards compatibility. Use C<grok_oct> instead.
617
618=cut
619 */
620
621NV
622Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
623{
624 NV rnv;
625 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
626 const UV ruv = grok_bin (start, &len, &flags, &rnv);
627
628 PERL_ARGS_ASSERT_SCAN_BIN;
629
630 *retlen = len;
631 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
632}
633
634NV
635Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
636{
637 NV rnv;
638 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
639 const UV ruv = grok_oct (start, &len, &flags, &rnv);
640
641 PERL_ARGS_ASSERT_SCAN_OCT;
642
643 *retlen = len;
644 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
645}
646
647NV
648Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
649{
650 NV rnv;
651 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
652 const UV ruv = grok_hex (start, &len, &flags, &rnv);
653
654 PERL_ARGS_ASSERT_SCAN_HEX;
655
656 *retlen = len;
657 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
658}
659
660/*
661=for apidoc grok_numeric_radix
662
663Scan and skip for a numeric decimal separator (radix).
664
665=cut
666 */
667bool
668Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
669{
670 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
671
672#ifdef USE_LOCALE_NUMERIC
673
674 if (IN_LC(LC_NUMERIC)) {
675 STRLEN len;
676 char * radix;
677 bool matches_radix = FALSE;
678 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
679
680 STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
681
682 radix = SvPV(PL_numeric_radix_sv, len);
683 radix = savepvn(radix, len);
684
685 RESTORE_LC_NUMERIC();
686
687 if (*sp + len <= send) {
688 matches_radix = memEQ(*sp, radix, len);
689 }
690
691 Safefree(radix);
692
693 if (matches_radix) {
694 *sp += len;
695 return TRUE;
696 }
697 }
698
699#endif
700
701 /* always try "." if numeric radix didn't match because
702 * we may have data from different locales mixed */
703 if (*sp < send && **sp == '.') {
704 ++*sp;
705 return TRUE;
706 }
707
708 return FALSE;
709}
710
711/*
712=for apidoc grok_infnan
713
714Helper for C<grok_number()>, accepts various ways of spelling "infinity"
715or "not a number", and returns one of the following flag combinations:
716
717 IS_NUMBER_INFINITY
718 IS_NUMBER_NAN
719 IS_NUMBER_INFINITY | IS_NUMBER_NEG
720 IS_NUMBER_NAN | IS_NUMBER_NEG
721 0
722
723possibly |-ed with C<IS_NUMBER_TRAILING>.
724
725If an infinity or a not-a-number is recognized, C<*sp> will point to
726one byte past the end of the recognized string. If the recognition fails,
727zero is returned, and C<*sp> will not move.
728
729=for apidoc Amn|bool|IS_NUMBER_GREATER_THAN_UV_MAX
730=for apidoc Amn|bool|IS_NUMBER_INFINITY
731=for apidoc Amn|bool|IS_NUMBER_IN_UV
732=for apidoc Amn|bool|IS_NUMBER_NAN
733=for apidoc Amn|bool|IS_NUMBER_NEG
734=for apidoc Amn|bool|IS_NUMBER_NOT_INT
735
736=cut
737*/
738
739int
740Perl_grok_infnan(pTHX_ const char** sp, const char* send)
741{
742 const char* s = *sp;
743 int flags = 0;
744#if defined(NV_INF) || defined(NV_NAN)
745 bool odh = FALSE; /* one-dot-hash: 1.#INF */
746
747 PERL_ARGS_ASSERT_GROK_INFNAN;
748
749 if (*s == '+') {
750 s++; if (s == send) return 0;
751 }
752 else if (*s == '-') {
753 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
754 s++; if (s == send) return 0;
755 }
756
757 if (*s == '1') {
758 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
759 * Let's keep the dot optional. */
760 s++; if (s == send) return 0;
761 if (*s == '.') {
762 s++; if (s == send) return 0;
763 }
764 if (*s == '#') {
765 s++; if (s == send) return 0;
766 } else
767 return 0;
768 odh = TRUE;
769 }
770
771 if (isALPHA_FOLD_EQ(*s, 'I')) {
772 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
773
774 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
775 s++; if (s == send) return 0;
776 if (isALPHA_FOLD_EQ(*s, 'F')) {
777 s++;
778 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
779 int fail =
780 flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
781 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
782 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
783 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
784 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
785 s++;
786 } else if (odh) {
787 while (*s == '0') { /* 1.#INF00 */
788 s++;
789 }
790 }
791 while (s < send && isSPACE(*s))
792 s++;
793 if (s < send && *s) {
794 flags |= IS_NUMBER_TRAILING;
795 }
796 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
797 }
798 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
799 s++;
800 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
801 while (*s == '0') { /* 1.#IND00 */
802 s++;
803 }
804 if (*s) {
805 flags |= IS_NUMBER_TRAILING;
806 }
807 } else
808 return 0;
809 }
810 else {
811 /* Maybe NAN of some sort */
812
813 if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
814 /* snan, qNaN */
815 /* XXX do something with the snan/qnan difference */
816 s++; if (s == send) return 0;
817 }
818
819 if (isALPHA_FOLD_EQ(*s, 'N')) {
820 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
821 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
822 s++;
823
824 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
825 if (s == send) {
826 return flags;
827 }
828
829 /* NaN can be followed by various stuff (NaNQ, NaNS), but
830 * there are also multiple different NaN values, and some
831 * implementations output the "payload" values,
832 * e.g. NaN123, NAN(abc), while some legacy implementations
833 * have weird stuff like NaN%. */
834 if (isALPHA_FOLD_EQ(*s, 'q') ||
835 isALPHA_FOLD_EQ(*s, 's')) {
836 /* "nanq" or "nans" are ok, though generating
837 * these portably is tricky. */
838 s++;
839 if (s == send) {
840 return flags;
841 }
842 }
843 if (*s == '(') {
844 /* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
845 const char *t;
846 s++;
847 if (s == send) {
848 return flags | IS_NUMBER_TRAILING;
849 }
850 t = s + 1;
851 while (t < send && *t && *t != ')') {
852 t++;
853 }
854 if (t == send) {
855 return flags | IS_NUMBER_TRAILING;
856 }
857 if (*t == ')') {
858 int nantype;
859 UV nanval;
860 if (s[0] == '0' && s + 2 < t &&
861 isALPHA_FOLD_EQ(s[1], 'x') &&
862 isXDIGIT(s[2])) {
863 STRLEN len = t - s;
864 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
865 nanval = grok_hex(s, &len, &flags, NULL);
866 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
867 nantype = 0;
868 } else {
869 nantype = IS_NUMBER_IN_UV;
870 }
871 s += len;
872 } else if (s[0] == '0' && s + 2 < t &&
873 isALPHA_FOLD_EQ(s[1], 'b') &&
874 (s[2] == '0' || s[2] == '1')) {
875 STRLEN len = t - s;
876 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
877 nanval = grok_bin(s, &len, &flags, NULL);
878 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
879 nantype = 0;
880 } else {
881 nantype = IS_NUMBER_IN_UV;
882 }
883 s += len;
884 } else {
885 const char *u;
886 nantype =
887 grok_number_flags(s, t - s, &nanval,
888 PERL_SCAN_TRAILING |
889 PERL_SCAN_ALLOW_UNDERSCORES);
890 /* Unfortunately grok_number_flags() doesn't
891 * tell how far we got and the ')' will always
892 * be "trailing", so we need to double-check
893 * whether we had something dubious. */
894 for (u = s; u < t; u++) {
895 if (!isDIGIT(*u)) {
896 flags |= IS_NUMBER_TRAILING;
897 break;
898 }
899 }
900 s = u;
901 }
902
903 /* XXX Doesn't do octal: nan("0123").
904 * Probably not a big loss. */
905
906 if ((nantype & IS_NUMBER_NOT_INT) ||
907 !(nantype && IS_NUMBER_IN_UV)) {
908 /* XXX the nanval is currently unused, that is,
909 * not inserted as the NaN payload of the NV.
910 * But the above code already parses the C99
911 * nan(...) format. See below, and see also
912 * the nan() in POSIX.xs.
913 *
914 * Certain configuration combinations where
915 * NVSIZE is greater than UVSIZE mean that
916 * a single UV cannot contain all the possible
917 * NaN payload bits. There would need to be
918 * some more generic syntax than "nan($uv)".
919 *
920 * Issues to keep in mind:
921 *
922 * (1) In most common cases there would
923 * not be an integral number of bytes that
924 * could be set, only a certain number of bits.
925 * For example for the common case of
926 * NVSIZE == UVSIZE == 8 there is room for 52
927 * bits in the payload, but the most significant
928 * bit is commonly reserved for the
929 * signaling/quiet bit, leaving 51 bits.
930 * Furthermore, the C99 nan() is supposed
931 * to generate quiet NaNs, so it is doubtful
932 * whether it should be able to generate
933 * signaling NaNs. For the x86 80-bit doubles
934 * (if building a long double Perl) there would
935 * be 62 bits (s/q bit being the 63rd).
936 *
937 * (2) Endianness of the payload bits. If the
938 * payload is specified as an UV, the low-order
939 * bits of the UV are naturally little-endianed
940 * (rightmost) bits of the payload. The endianness
941 * of UVs and NVs can be different. */
942 return 0;
943 }
944 if (s < t) {
945 flags |= IS_NUMBER_TRAILING;
946 }
947 } else {
948 /* Looked like nan(...), but no close paren. */
949 flags |= IS_NUMBER_TRAILING;
950 }
951 } else {
952 while (s < send && isSPACE(*s))
953 s++;
954 if (s < send && *s) {
955 /* Note that we here implicitly accept (parse as
956 * "nan", but with warnings) also any other weird
957 * trailing stuff for "nan". In the above we just
958 * check that if we got the C99-style "nan(...)",
959 * the "..." looks sane.
960 * If in future we accept more ways of specifying
961 * the nan payload, the accepting would happen around
962 * here. */
963 flags |= IS_NUMBER_TRAILING;
964 }
965 }
966 s = send;
967 }
968 else
969 return 0;
970 }
971
972 while (s < send && isSPACE(*s))
973 s++;
974
975#else
976 PERL_UNUSED_ARG(send);
977#endif /* #if defined(NV_INF) || defined(NV_NAN) */
978 *sp = s;
979 return flags;
980}
981
982/*
983=for apidoc grok_number_flags
984
985Recognise (or not) a number. The type of the number is returned
986(0 if unrecognised), otherwise it is a bit-ORed combination of
987C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
988C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
989
990If the value of the number can fit in a UV, it is returned in C<*valuep>.
991C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
992will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
993to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
994If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
995C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
996
997C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
998seen (in which case C<*valuep> gives the true value truncated to an integer), and
999C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
1000absolute value). C<IS_NUMBER_IN_UV> is not set if e notation was used or the
1001number is larger than a UV.
1002
1003C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
1004non-numeric text on an otherwise successful I<grok>, setting
1005C<IS_NUMBER_TRAILING> on the result.
1006
1007=for apidoc Amnh||PERL_SCAN_TRAILING
1008
1009=for apidoc grok_number
1010
1011Identical to C<grok_number_flags()> with C<flags> set to zero.
1012
1013=cut
1014 */
1015int
1016Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
1017{
1018 PERL_ARGS_ASSERT_GROK_NUMBER;
1019
1020 return grok_number_flags(pv, len, valuep, 0);
1021}
1022
1023static const UV uv_max_div_10 = UV_MAX / 10;
1024static const U8 uv_max_mod_10 = UV_MAX % 10;
1025
1026int
1027Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
1028{
1029 const char *s = pv;
1030 const char * const send = pv + len;
1031 const char *d;
1032 int numtype = 0;
1033
1034 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
1035
1036 if (UNLIKELY(isSPACE(*s))) {
1037 s++;
1038 while (s < send) {
1039 if (LIKELY(! isSPACE(*s))) goto non_space;
1040 s++;
1041 }
1042 return 0;
1043 non_space: ;
1044 }
1045
1046 /* See if signed. This assumes it is more likely to be unsigned, so
1047 * penalizes signed by an extra conditional; rewarding unsigned by one fewer
1048 * (because we detect '+' and '-' with a single test and then add a
1049 * conditional to determine which) */
1050 if (UNLIKELY((*s & ~('+' ^ '-')) == ('+' & '-') )) {
1051
1052 /* Here, on ASCII platforms, *s is one of: 0x29 = ')', 2B = '+', 2D = '-',
1053 * 2F = '/'. That is, it is either a sign, or a character that doesn't
1054 * belong in a number at all (unless it's a radix character in a weird
1055 * locale). Given this, it's far more likely to be a minus than the
1056 * others. (On EBCDIC it is one of 42, 44, 46, 48, 4A, 4C, 4E, (not 40
1057 * because can't be a space) 60, 62, 64, 66, 68, 6A, 6C, 6E. Again,
1058 * only potentially a weird radix character, or 4E='+', or 60='-') */
1059 if (LIKELY(*s == '-')) {
1060 s++;
1061 numtype = IS_NUMBER_NEG;
1062 }
1063 else if (LIKELY(*s == '+'))
1064 s++;
1065 else /* Can't just return failure here, as it could be a weird radix
1066 character */
1067 goto done_sign;
1068
1069 if (UNLIKELY(s == send))
1070 return 0;
1071 done_sign: ;
1072 }
1073
1074 /* The first digit (after optional sign): note that might
1075 * also point to "infinity" or "nan", or "1.#INF". */
1076 d = s;
1077
1078 /* next must be digit or the radix separator or beginning of infinity/nan */
1079 if (LIKELY(isDIGIT(*s))) {
1080 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
1081 overflow. */
1082 UV value = *s - '0'; /* Process this first (perhaps only) digit */
1083 int digit;
1084
1085 s++;
1086
1087 switch(send - s) {
1088 default: /* 8 or more remaining characters */
1089 digit = *s - '0';
1090 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1091 value = value * 10 + digit;
1092 s++;
1093 /* FALLTHROUGH */
1094 case 7:
1095 digit = *s - '0';
1096 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1097 value = value * 10 + digit;
1098 s++;
1099 /* FALLTHROUGH */
1100 case 6:
1101 digit = *s - '0';
1102 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1103 value = value * 10 + digit;
1104 s++;
1105 /* FALLTHROUGH */
1106 case 5:
1107 digit = *s - '0';
1108 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1109 value = value * 10 + digit;
1110 s++;
1111 /* FALLTHROUGH */
1112 case 4:
1113 digit = *s - '0';
1114 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1115 value = value * 10 + digit;
1116 s++;
1117 /* FALLTHROUGH */
1118 case 3:
1119 digit = *s - '0';
1120 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1121 value = value * 10 + digit;
1122 s++;
1123 /* FALLTHROUGH */
1124 case 2:
1125 digit = *s - '0';
1126 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1127 value = value * 10 + digit;
1128 s++;
1129 /* FALLTHROUGH */
1130 case 1:
1131 digit = *s - '0';
1132 if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
1133 value = value * 10 + digit;
1134 s++;
1135 /* FALLTHROUGH */
1136 case 0: /* This case means the string consists of just the one
1137 digit we already have processed */
1138
1139 /* If we got here by falling through other than the default: case, we
1140 * have processed the whole string, and know it consists entirely of
1141 * digits, and can't have overflowed. */
1142 if (s >= send) {
1143 if (valuep)
1144 *valuep = value;
1145 return numtype|IS_NUMBER_IN_UV;
1146 }
1147
1148 /* Here, there are extra characters beyond the first 9 digits. Use a
1149 * loop to accumulate any remaining digits, until we get a non-digit or
1150 * would overflow. Note that leading zeros could cause us to get here
1151 * without being close to overflowing.
1152 *
1153 * (The conditional 's >= send' above could be eliminated by making the
1154 * default: in the switch to instead be 'case 8:', and process longer
1155 * strings separately by using the loop below. This would penalize
1156 * these inputs by the extra instructions needed for looping. That
1157 * could be eliminated by copying the unwound code from above to handle
1158 * the firt 9 digits of these. khw didn't think this saving of a
1159 * single conditional was worth it.) */
1160 do {
1161 digit = *s - '0';
1162 if (! inRANGE(digit, 0, 9)) goto mantissa_done;
1163 if ( value < uv_max_div_10
1164 || ( value == uv_max_div_10
1165 && digit <= uv_max_mod_10))
1166 {
1167 value = value * 10 + digit;
1168 s++;
1169 }
1170 else { /* value would overflow. skip the remaining digits, don't
1171 worry about setting *valuep. */
1172 do {
1173 s++;
1174 } while (s < send && isDIGIT(*s));
1175 numtype |=
1176 IS_NUMBER_GREATER_THAN_UV_MAX;
1177 goto skip_value;
1178 }
1179 } while (s < send);
1180 } /* End switch on input length */
1181
1182 mantissa_done:
1183 numtype |= IS_NUMBER_IN_UV;
1184 if (valuep)
1185 *valuep = value;
1186
1187 skip_value:
1188 if (GROK_NUMERIC_RADIX(&s, send)) {
1189 numtype |= IS_NUMBER_NOT_INT;
1190 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
1191 s++;
1192 }
1193 } /* End of *s is a digit */
1194 else if (GROK_NUMERIC_RADIX(&s, send)) {
1195 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
1196 /* no digits before the radix means we need digits after it */
1197 if (s < send && isDIGIT(*s)) {
1198 do {
1199 s++;
1200 } while (s < send && isDIGIT(*s));
1201 if (valuep) {
1202 /* integer approximation is valid - it's 0. */
1203 *valuep = 0;
1204 }
1205 }
1206 else
1207 return 0;
1208 }
1209
1210 if (LIKELY(s > d) && s < send) {
1211 /* we can have an optional exponent part */
1212 if (UNLIKELY(isALPHA_FOLD_EQ(*s, 'e'))) {
1213 s++;
1214 if (s < send && (*s == '-' || *s == '+'))
1215 s++;
1216 if (s < send && isDIGIT(*s)) {
1217 do {
1218 s++;
1219 } while (s < send && isDIGIT(*s));
1220 }
1221 else if (flags & PERL_SCAN_TRAILING)
1222 return numtype | IS_NUMBER_TRAILING;
1223 else
1224 return 0;
1225
1226 /* The only flag we keep is sign. Blow away any "it's UV" */
1227 numtype &= IS_NUMBER_NEG;
1228 numtype |= IS_NUMBER_NOT_INT;
1229 }
1230 }
1231
1232 while (s < send) {
1233 if (LIKELY(! isSPACE(*s))) goto end_space;
1234 s++;
1235 }
1236 return numtype;
1237
1238 end_space:
1239
1240 if (UNLIKELY(memEQs(pv, len, "0 but true"))) {
1241 if (valuep)
1242 *valuep = 0;
1243 return IS_NUMBER_IN_UV;
1244 }
1245
1246 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1247 if ((s + 2 < send) && UNLIKELY(memCHRs("inqs#", toFOLD(*s)))) {
1248 /* Really detect inf/nan. Start at d, not s, since the above
1249 * code might have already consumed the "1." or "1". */
1250 const int infnan = Perl_grok_infnan(aTHX_ &d, send);
1251 if ((infnan & IS_NUMBER_INFINITY)) {
1252 return (numtype | infnan); /* Keep sign for infinity. */
1253 }
1254 else if ((infnan & IS_NUMBER_NAN)) {
1255 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1256 }
1257 }
1258 else if (flags & PERL_SCAN_TRAILING) {
1259 return numtype | IS_NUMBER_TRAILING;
1260 }
1261
1262 return 0;
1263}
1264
1265/*
1266=for apidoc grok_atoUV
1267
1268parse a string, looking for a decimal unsigned integer.
1269
1270On entry, C<pv> points to the beginning of the string;
1271C<valptr> points to a UV that will receive the converted value, if found;
1272C<endptr> is either NULL or points to a variable that points to one byte
1273beyond the point in C<pv> that this routine should examine.
1274If C<endptr> is NULL, C<pv> is assumed to be NUL-terminated.
1275
1276Returns FALSE if C<pv> doesn't represent a valid unsigned integer value (with
1277no leading zeros). Otherwise it returns TRUE, and sets C<*valptr> to that
1278value.
1279
1280If you constrain the portion of C<pv> that is looked at by this function (by
1281passing a non-NULL C<endptr>), and if the intial bytes of that portion form a
1282valid value, it will return TRUE, setting C<*endptr> to the byte following the
1283final digit of the value. But if there is no constraint at what's looked at,
1284all of C<pv> must be valid in order for TRUE to be returned. C<*endptr> is
1285unchanged from its value on input if FALSE is returned;
1286
1287The only characters this accepts are the decimal digits '0'..'9'.
1288
1289As opposed to L<atoi(3)> or L<strtol(3)>, C<grok_atoUV> does NOT allow optional
1290leading whitespace, nor negative inputs. If such features are required, the
1291calling code needs to explicitly implement those.
1292
1293Note that this function returns FALSE for inputs that would overflow a UV,
1294or have leading zeros. Thus a single C<0> is accepted, but not C<00> nor
1295C<01>, C<002>, I<etc>.
1296
1297Background: C<atoi> has severe problems with illegal inputs, it cannot be
1298used for incremental parsing, and therefore should be avoided
1299C<atoi> and C<strtol> are also affected by locale settings, which can also be
1300seen as a bug (global state controlled by user environment).
1301
1302=cut
1303
1304*/
1305
1306bool
1307Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
1308{
1309 const char* s = pv;
1310 const char** eptr;
1311 const char* end2; /* Used in case endptr is NULL. */
1312 UV val = 0; /* The parsed value. */
1313
1314 PERL_ARGS_ASSERT_GROK_ATOUV;
1315
1316 if (endptr) {
1317 eptr = endptr;
1318 }
1319 else {
1320 end2 = s + strlen(s);
1321 eptr = &end2;
1322 }
1323
1324 if ( *eptr <= s
1325 || ! isDIGIT(*s))
1326 {
1327 return FALSE;
1328 }
1329
1330 /* Single-digit inputs are quite common. */
1331 val = *s++ - '0';
1332 if (s < *eptr && isDIGIT(*s)) {
1333 /* Fail on extra leading zeros. */
1334 if (val == 0)
1335 return FALSE;
1336 while (s < *eptr && isDIGIT(*s)) {
1337 /* This could be unrolled like in grok_number(), but
1338 * the expected uses of this are not speed-needy, and
1339 * unlikely to need full 64-bitness. */
1340 const U8 digit = *s++ - '0';
1341 if (val < uv_max_div_10 ||
1342 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1343 val = val * 10 + digit;
1344 } else {
1345 return FALSE;
1346 }
1347 }
1348 }
1349
1350 if (endptr == NULL) {
1351 if (*s) {
1352 return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
1353 }
1354 }
1355 else {
1356 *endptr = s;
1357 }
1358
1359 *valptr = val;
1360 return TRUE;
1361}
1362
1363#ifndef Perl_strtod
1364STATIC NV
1365S_mulexp10(NV value, I32 exponent)
1366{
1367 NV result = 1.0;
1368 NV power = 10.0;
1369 bool negative = 0;
1370 I32 bit;
1371
1372 if (exponent == 0)
1373 return value;
1374 if (value == 0)
1375 return (NV)0;
1376
1377 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1378 * and that format does not have *easy* capabilities [1] for
1379 * overflowing doubles 'silently' as IEEE fp does. We also need
1380 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1381 * range is much larger than D_FLOAT it still doesn't do silent
1382 * overflow. Therefore we need to detect early whether we would
1383 * overflow (this is the behaviour of the native string-to-float
1384 * conversion routines, and therefore of native applications, too).
1385 *
1386 * [1] Trying to establish a condition handler to trap floating point
1387 * exceptions is not a good idea. */
1388
1389 /* In UNICOS and in certain Cray models (such as T90) there is no
1390 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1391 * There is something you can do if you are willing to use some
1392 * inline assembler: the instruction is called DFI-- but that will
1393 * disable *all* floating point interrupts, a little bit too large
1394 * a hammer. Therefore we need to catch potential overflows before
1395 * it's too late. */
1396
1397#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS) || defined(DOUBLE_IS_VAX_FLOAT)) && defined(NV_MAX_10_EXP)
1398 STMT_START {
1399 const NV exp_v = log10(value);
1400 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1401 return NV_MAX;
1402 if (exponent < 0) {
1403 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1404 return 0.0;
1405 while (-exponent >= NV_MAX_10_EXP) {
1406 /* combination does not overflow, but 10^(-exponent) does */
1407 value /= 10;
1408 ++exponent;
1409 }
1410 }
1411 } STMT_END;
1412#endif
1413
1414 if (exponent < 0) {
1415 negative = 1;
1416 exponent = -exponent;
1417#ifdef NV_MAX_10_EXP
1418 /* for something like 1234 x 10^-309, the action of calculating
1419 * the intermediate value 10^309 then returning 1234 / (10^309)
1420 * will fail, since 10^309 becomes infinity. In this case try to
1421 * refactor it as 123 / (10^308) etc.
1422 */
1423 while (value && exponent > NV_MAX_10_EXP) {
1424 exponent--;
1425 value /= 10;
1426 }
1427 if (value == 0.0)
1428 return value;
1429#endif
1430 }
1431#if defined(__osf__)
1432 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1433 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1434 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1435 * but that breaks another set of infnan.t tests. */
1436# define FP_OVERFLOWS_TO_ZERO
1437#endif
1438 for (bit = 1; exponent; bit <<= 1) {
1439 if (exponent & bit) {
1440 exponent ^= bit;
1441 result *= power;
1442#ifdef FP_OVERFLOWS_TO_ZERO
1443 if (result == 0)
1444# ifdef NV_INF
1445 return value < 0 ? -NV_INF : NV_INF;
1446# else
1447 return value < 0 ? -FLT_MAX : FLT_MAX;
1448# endif
1449#endif
1450 /* Floating point exceptions are supposed to be turned off,
1451 * but if we're obviously done, don't risk another iteration.
1452 */
1453 if (exponent == 0) break;
1454 }
1455 power *= power;
1456 }
1457 return negative ? value / result : value * result;
1458}
1459#endif /* #ifndef Perl_strtod */
1460
1461#ifdef Perl_strtod
1462# define ATOF(s, x) my_atof2(s, &x)
1463#else
1464# define ATOF(s, x) Perl_atof2(s, x)
1465#endif
1466
1467NV
1468Perl_my_atof(pTHX_ const char* s)
1469{
1470 /* 's' must be NUL terminated */
1471
1472 NV x = 0.0;
1473
1474 PERL_ARGS_ASSERT_MY_ATOF;
1475
1476#if ! defined(USE_LOCALE_NUMERIC)
1477
1478 ATOF(s, x);
1479
1480#else
1481
1482 {
1483 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
1484 STORE_LC_NUMERIC_SET_TO_NEEDED();
1485 if (! (PL_numeric_radix_sv && IN_LC(LC_NUMERIC))) {
1486 ATOF(s,x);
1487 }
1488 else {
1489
1490 /* Look through the string for the first thing that looks like a
1491 * decimal point: either the value in the current locale or the
1492 * standard fallback of '.'. The one which appears earliest in the
1493 * input string is the one that we should have atof look for. Note
1494 * that we have to determine this beforehand because on some
1495 * systems, Perl_atof2 is just a wrapper around the system's atof.
1496 * */
1497 const char * const standard_pos = strchr(s, '.');
1498 const char * const local_pos
1499 = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1500 const bool use_standard_radix
1501 = standard_pos && (!local_pos || standard_pos < local_pos);
1502
1503 if (use_standard_radix) {
1504 SET_NUMERIC_STANDARD();
1505 LOCK_LC_NUMERIC_STANDARD();
1506 }
1507
1508 ATOF(s,x);
1509
1510 if (use_standard_radix) {
1511 UNLOCK_LC_NUMERIC_STANDARD();
1512 SET_NUMERIC_UNDERLYING();
1513 }
1514 }
1515 RESTORE_LC_NUMERIC();
1516 }
1517
1518#endif
1519
1520 return x;
1521}
1522
1523#if defined(NV_INF) || defined(NV_NAN)
1524
1525static char*
1526S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1527{
1528 const char *p0 = negative ? s - 1 : s;
1529 const char *p = p0;
1530 const int infnan = grok_infnan(&p, send);
1531 if (infnan && p != p0) {
1532 /* If we can generate inf/nan directly, let's do so. */
1533#ifdef NV_INF
1534 if ((infnan & IS_NUMBER_INFINITY)) {
1535 *value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1536 return (char*)p;
1537 }
1538#endif
1539#ifdef NV_NAN
1540 if ((infnan & IS_NUMBER_NAN)) {
1541 *value = NV_NAN;
1542 return (char*)p;
1543 }
1544#endif
1545#ifdef Perl_strtod
1546 /* If still here, we didn't have either NV_INF or NV_NAN,
1547 * and can try falling back to native strtod/strtold.
1548 *
1549 * The native interface might not recognize all the possible
1550 * inf/nan strings Perl recognizes. What we can try
1551 * is to try faking the input. We will try inf/-inf/nan
1552 * as the most promising/portable input. */
1553 {
1554 const char* fake = "silence compiler warning";
1555 char* endp;
1556 NV nv;
1557#ifdef NV_INF
1558 if ((infnan & IS_NUMBER_INFINITY)) {
1559 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1560 }
1561#endif
1562#ifdef NV_NAN
1563 if ((infnan & IS_NUMBER_NAN)) {
1564 fake = "nan";
1565 }
1566#endif
1567 assert(strNE(fake, "silence compiler warning"));
1568 nv = S_strtod(aTHX_ fake, &endp);
1569 if (fake != endp) {
1570#ifdef NV_INF
1571 if ((infnan & IS_NUMBER_INFINITY)) {
1572# ifdef Perl_isinf
1573 if (Perl_isinf(nv))
1574 *value = nv;
1575# else
1576 /* last resort, may generate SIGFPE */
1577 *value = Perl_exp((NV)1e9);
1578 if ((infnan & IS_NUMBER_NEG))
1579 *value = -*value;
1580# endif
1581 return (char*)p; /* p, not endp */
1582 }
1583#endif
1584#ifdef NV_NAN
1585 if ((infnan & IS_NUMBER_NAN)) {
1586# ifdef Perl_isnan
1587 if (Perl_isnan(nv))
1588 *value = nv;
1589# else
1590 /* last resort, may generate SIGFPE */
1591 *value = Perl_log((NV)-1.0);
1592# endif
1593 return (char*)p; /* p, not endp */
1594#endif
1595 }
1596 }
1597 }
1598#endif /* #ifdef Perl_strtod */
1599 }
1600 return NULL;
1601}
1602
1603#endif /* if defined(NV_INF) || defined(NV_NAN) */
1604
1605char*
1606Perl_my_atof2(pTHX_ const char* orig, NV* value)
1607{
1608 PERL_ARGS_ASSERT_MY_ATOF2;
1609 return my_atof3(orig, value, 0);
1610}
1611
1612char*
1613Perl_my_atof3(pTHX_ const char* orig, NV* value, const STRLEN len)
1614{
1615 const char* s = orig;
1616 NV result[3] = {0.0, 0.0, 0.0};
1617#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1618 const char* send = s + ((len != 0)
1619 ? len
1620 : strlen(orig)); /* one past the last */
1621 bool negative = 0;
1622#endif
1623#if defined(USE_PERL_ATOF) && !defined(Perl_strtod)
1624 UV accumulator[2] = {0,0}; /* before/after dp */
1625 bool seen_digit = 0;
1626 I32 exp_adjust[2] = {0,0};
1627 I32 exp_acc[2] = {-1, -1};
1628 /* the current exponent adjust for the accumulators */
1629 I32 exponent = 0;
1630 I32 seen_dp = 0;
1631 I32 digit = 0;
1632 I32 old_digit = 0;
1633 I32 sig_digits = 0; /* noof significant digits seen so far */
1634#endif
1635
1636#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
1637 PERL_ARGS_ASSERT_MY_ATOF3;
1638
1639 /* leading whitespace */
1640 while (s < send && isSPACE(*s))
1641 ++s;
1642
1643 /* sign */
1644 switch (*s) {
1645 case '-':
1646 negative = 1;
1647 /* FALLTHROUGH */
1648 case '+':
1649 ++s;
1650 }
1651#endif
1652
1653#ifdef Perl_strtod
1654 {
1655 char* endp;
1656 char* copy = NULL;
1657
1658 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1659 return endp;
1660
1661 /* strtold() accepts 0x-prefixed hex and in POSIX implementations,
1662 0b-prefixed binary numbers, which is backward incompatible
1663 */
1664 if ((len == 0 || len - (s-orig) >= 2) && *s == '0' &&
1665 (isALPHA_FOLD_EQ(s[1], 'x') || isALPHA_FOLD_EQ(s[1], 'b'))) {
1666 *value = 0;
1667 return (char *)s+1;
1668 }
1669
1670 /* If the length is passed in, the input string isn't NUL-terminated,
1671 * and in it turns out the function below assumes it is; therefore we
1672 * create a copy and NUL-terminate that */
1673 if (len) {
1674 Newx(copy, len + 1, char);
1675 Copy(orig, copy, len, char);
1676 copy[len] = '\0';
1677 s = copy + (s - orig);
1678 }
1679
1680 result[2] = S_strtod(aTHX_ s, &endp);
1681
1682 /* If we created a copy, 'endp' is in terms of that. Convert back to
1683 * the original */
1684 if (copy) {
1685 s = (s - copy) + (char *) orig;
1686 endp = (endp - copy) + (char *) orig;
1687 Safefree(copy);
1688 }
1689
1690 if (s != endp) {
1691 *value = negative ? -result[2] : result[2];
1692 return endp;
1693 }
1694 return NULL;
1695 }
1696#elif defined(USE_PERL_ATOF)
1697
1698/* There is no point in processing more significant digits
1699 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1700 * while we need an upper-bound value. We add 2 to account for this;
1701 * since it will have been conservative on both the first and last digit.
1702 * For example a 32-bit mantissa with an exponent of 4 would have
1703 * exact values in the set
1704 * 4
1705 * 8
1706 * ..
1707 * 17179869172
1708 * 17179869176
1709 * 17179869180
1710 *
1711 * where for the purposes of calculating NV_DIG we would have to discount
1712 * both the first and last digit, since neither can hold all values from
1713 * 0..9; but for calculating the value we must examine those two digits.
1714 */
1715#ifdef MAX_SIG_DIG_PLUS
1716 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1717 possible digits in a NV, especially if NVs are not IEEE compliant
1718 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1719# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1720#else
1721# define MAX_SIG_DIGITS (NV_DIG+2)
1722#endif
1723
1724/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1725#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1726
1727#if defined(NV_INF) || defined(NV_NAN)
1728 {
1729 char* endp;
1730 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1731 return endp;
1732 }
1733#endif
1734
1735 /* we accumulate digits into an integer; when this becomes too
1736 * large, we add the total to NV and start again */
1737
1738 while (s < send) {
1739 if (isDIGIT(*s)) {
1740 seen_digit = 1;
1741 old_digit = digit;
1742 digit = *s++ - '0';
1743 if (seen_dp)
1744 exp_adjust[1]++;
1745
1746 /* don't start counting until we see the first significant
1747 * digit, eg the 5 in 0.00005... */
1748 if (!sig_digits && digit == 0)
1749 continue;
1750
1751 if (++sig_digits > MAX_SIG_DIGITS) {
1752 /* limits of precision reached */
1753 if (digit > 5) {
1754 ++accumulator[seen_dp];
1755 } else if (digit == 5) {
1756 if (old_digit % 2) { /* round to even - Allen */
1757 ++accumulator[seen_dp];
1758 }
1759 }
1760 if (seen_dp) {
1761 exp_adjust[1]--;
1762 } else {
1763 exp_adjust[0]++;
1764 }
1765 /* skip remaining digits */
1766 while (s < send && isDIGIT(*s)) {
1767 ++s;
1768 if (! seen_dp) {
1769 exp_adjust[0]++;
1770 }
1771 }
1772 /* warn of loss of precision? */
1773 }
1774 else {
1775 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1776 /* add accumulator to result and start again */
1777 result[seen_dp] = S_mulexp10(result[seen_dp],
1778 exp_acc[seen_dp])
1779 + (NV)accumulator[seen_dp];
1780 accumulator[seen_dp] = 0;
1781 exp_acc[seen_dp] = 0;
1782 }
1783 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1784 ++exp_acc[seen_dp];
1785 }
1786 }
1787 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1788 seen_dp = 1;
1789 if (sig_digits > MAX_SIG_DIGITS) {
1790 while (s < send && isDIGIT(*s)) {
1791 ++s;
1792 }
1793 break;
1794 }
1795 }
1796 else {
1797 break;
1798 }
1799 }
1800
1801 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1802 if (seen_dp) {
1803 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1804 }
1805
1806 if (s < send && seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1807 bool expnegative = 0;
1808
1809 ++s;
1810 switch (*s) {
1811 case '-':
1812 expnegative = 1;
1813 /* FALLTHROUGH */
1814 case '+':
1815 ++s;
1816 }
1817 while (s < send && isDIGIT(*s))
1818 exponent = exponent * 10 + (*s++ - '0');
1819 if (expnegative)
1820 exponent = -exponent;
1821 }
1822
1823 /* now apply the exponent */
1824
1825 if (seen_dp) {
1826 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1827 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1828 } else {
1829 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1830 }
1831
1832 /* now apply the sign */
1833 if (negative)
1834 result[2] = -result[2];
1835#endif /* USE_PERL_ATOF */
1836 *value = result[2];
1837 return (char *)s;
1838}
1839
1840/*
1841=for apidoc isinfnan
1842
1843C<Perl_isinfnan()> is a utility function that returns true if the NV
1844argument is either an infinity or a C<NaN>, false otherwise. To test
1845in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
1846
1847This is also the logical inverse of Perl_isfinite().
1848
1849=cut
1850*/
1851bool
1852Perl_isinfnan(NV nv)
1853{
1854 PERL_UNUSED_ARG(nv);
1855#ifdef Perl_isinf
1856 if (Perl_isinf(nv))
1857 return TRUE;
1858#endif
1859#ifdef Perl_isnan
1860 if (Perl_isnan(nv))
1861 return TRUE;
1862#endif
1863 return FALSE;
1864}
1865
1866/*
1867=for apidoc isinfnansv
1868
1869Checks whether the argument would be either an infinity or C<NaN> when used
1870as a number, but is careful not to trigger non-numeric or uninitialized
1871warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
1872
1873=cut
1874*/
1875
1876bool
1877Perl_isinfnansv(pTHX_ SV *sv)
1878{
1879 PERL_ARGS_ASSERT_ISINFNANSV;
1880 if (!SvOK(sv))
1881 return FALSE;
1882 if (SvNOKp(sv))
1883 return Perl_isinfnan(SvNVX(sv));
1884 if (SvIOKp(sv))
1885 return FALSE;
1886 {
1887 STRLEN len;
1888 const char *s = SvPV_nomg_const(sv, len);
1889 return cBOOL(grok_infnan(&s, s+len));
1890 }
1891}
1892
1893#ifndef HAS_MODFL
1894/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1895 * copysignl to emulate modfl, which is in some platforms missing or
1896 * broken. */
1897# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1898long double
1899Perl_my_modfl(long double x, long double *ip)
1900{
1901 *ip = truncl(x);
1902 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1903}
1904# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1905long double
1906Perl_my_modfl(long double x, long double *ip)
1907{
1908 *ip = aintl(x);
1909 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1910}
1911# endif
1912#endif
1913
1914/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1915#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1916long double
1917Perl_my_frexpl(long double x, int *e) {
1918 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1919 return (scalbnl(x, -*e));
1920}
1921#endif
1922
1923/*
1924=for apidoc Perl_signbit
1925
1926Return a non-zero integer if the sign bit on an NV is set, and 0 if
1927it is not.
1928
1929If F<Configure> detects this system has a C<signbit()> that will work with
1930our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
1931fall back on this implementation. The main use of this function
1932is catching C<-0.0>.
1933
1934C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
1935plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
1936function or macro that doesn't happen to work with our particular choice
1937of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
1938the standard system headers to be happy. Also, this is a no-context
1939function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
1940F<perl.h> as a simple macro call to the system's C<signbit()>.
1941Users should just always call C<Perl_signbit()>.
1942
1943=cut
1944*/
1945#if !defined(HAS_SIGNBIT)
1946int
1947Perl_signbit(NV x) {
1948# ifdef Perl_fp_class_nzero
1949 return Perl_fp_class_nzero(x);
1950 /* Try finding the high byte, and assume it's highest bit
1951 * is the sign. This assumption is probably wrong somewhere. */
1952# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
1953 return (((unsigned char *)&x)[9] & 0x80);
1954# elif defined(NV_LITTLE_ENDIAN)
1955 /* Note that NVSIZE is sizeof(NV), which would make the below be
1956 * wrong if the end bytes are unused, which happens with the x86
1957 * 80-bit long doubles, which is why take care of that above. */
1958 return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
1959# elif defined(NV_BIG_ENDIAN)
1960 return (((unsigned char *)&x)[0] & 0x80);
1961# else
1962 /* This last resort fallback is wrong for the negative zero. */
1963 return (x < 0.0) ? 1 : 0;
1964# endif
1965}
1966#endif
1967
1968/*
1969 * ex: set ts=8 sts=4 sw=4 et:
1970 */