This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
regcomp.c: typo in comment
[perl5.git] / hv.h
... / ...
CommitLineData
1/* hv.h
2 *
3 * Copyright (C) 1991, 1992, 1993, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/* entry in hash value chain */
12struct he {
13 /* Keep hent_next first in this structure, because sv_free_arenas take
14 advantage of this to share code between the he arenas and the SV
15 body arenas */
16 HE *hent_next; /* next entry in chain */
17 HEK *hent_hek; /* hash key */
18 union {
19 SV *hent_val; /* scalar value that was hashed */
20 Size_t hent_refcount; /* references for this shared hash key */
21 } he_valu;
22};
23
24/* hash key -- defined separately for use as shared pointer */
25struct hek {
26 U32 hek_hash; /* hash of key */
27 I32 hek_len; /* length of hash key */
28 char hek_key[1]; /* variable-length hash key */
29 /* the hash-key is \0-terminated */
30 /* after the \0 there is a byte for flags, such as whether the key
31 is UTF-8 */
32};
33
34struct shared_he {
35 struct he shared_he_he;
36 struct hek shared_he_hek;
37};
38
39/* Subject to change.
40 Don't access this directly.
41 Use the funcs in mro.c
42*/
43
44struct mro_alg {
45 AV *(*resolve)(pTHX_ HV* stash, U32 level);
46 const char *name;
47 U16 length;
48 U16 kflags; /* For the hash API - set HVhek_UTF8 if name is UTF-8 */
49 U32 hash; /* or 0 */
50};
51
52struct mro_meta {
53 /* a hash holding the different MROs private data. */
54 HV *mro_linear_all;
55 /* a pointer directly to the current MROs private data. If mro_linear_all
56 is NULL, this owns the SV reference, else it is just a pointer to a
57 value stored in and owned by mro_linear_all. */
58 SV *mro_linear_current;
59 HV *mro_nextmethod; /* next::method caching */
60 U32 cache_gen; /* Bumping this invalidates our method cache */
61 U32 pkg_gen; /* Bumps when local methods/@ISA change */
62 const struct mro_alg *mro_which; /* which mro alg is in use? */
63 HV *isa; /* Everything this class @ISA */
64};
65
66#define MRO_GET_PRIVATE_DATA(smeta, which) \
67 (((smeta)->mro_which && (which) == (smeta)->mro_which) \
68 ? (smeta)->mro_linear_current \
69 : Perl_mro_get_private_data(aTHX_ (smeta), (which)))
70
71/* Subject to change.
72 Don't access this directly.
73*/
74
75union _xhvnameu {
76 HEK *xhvnameu_name; /* When xhv_name_count is 0 */
77 HEK **xhvnameu_names; /* When xhv_name_count is non-0 */
78};
79
80struct xpvhv_aux {
81 union _xhvnameu xhv_name_u; /* name, if a symbol table */
82 AV *xhv_backreferences; /* back references for weak references */
83 HE *xhv_eiter; /* current entry of iterator */
84 I32 xhv_riter; /* current root of iterator */
85
86/* Concerning xhv_name_count: When non-zero, xhv_name_u contains a pointer
87 * to an array of HEK pointers, this being the length. The first element is
88 * the name of the stash, which may be NULL. If xhv_name_count is positive,
89 * then *xhv_name is one of the effective names. If xhv_name_count is nega-
90 * tive, then xhv_name_u.xhvnameu_names[1] is the first effective name.
91 */
92 I32 xhv_name_count;
93 struct mro_meta *xhv_mro_meta;
94 HV * xhv_super; /* SUPER method cache */
95};
96
97/* hash structure: */
98/* This structure must match the beginning of struct xpvmg in sv.h. */
99struct xpvhv {
100 HV* xmg_stash; /* class package */
101 union _xmgu xmg_u;
102 STRLEN xhv_keys; /* total keys, including placeholders */
103 STRLEN xhv_max; /* subscript of last element of xhv_array */
104};
105
106/* hash a key */
107/* The use of a temporary pointer and the casting games
108 * is needed to serve the dual purposes of
109 * (a) the hashed data being interpreted as "unsigned char" (new since 5.8,
110 * a "char" can be either signed or unsigned, depending on the compiler)
111 * (b) catering for old code that uses a "char"
112 *
113 * The "hash seed" feature was added in Perl 5.8.1 to perturb the results
114 * to avoid "algorithmic complexity attacks".
115 *
116 * If USE_HASH_SEED is defined, hash randomisation is done by default
117 * If USE_HASH_SEED_EXPLICIT is defined, hash randomisation is done
118 * only if the environment variable PERL_HASH_SEED is set.
119 * (see also perl.c:perl_parse() and S_init_tls_and_interp() and util.c:get_hash_seed())
120 */
121#ifndef PERL_HASH_SEED
122# if defined(USE_HASH_SEED) || defined(USE_HASH_SEED_EXPLICIT)
123# define PERL_HASH_SEED PL_hash_seed
124# else
125# define PERL_HASH_SEED "PeRlHaShhAcKpErl"
126# endif
127#endif
128
129#define PERL_HASH_SEED_U32 *((U32*)PERL_HASH_SEED)
130#define PERL_HASH_SEED_U64_1 (((U64*)PERL_HASH_SEED)[0])
131#define PERL_HASH_SEED_U64_2 (((U64*)PERL_HASH_SEED)[1])
132#define PERL_HASH_SEED_U16_x(idx) (((U16*)PERL_HASH_SEED)[idx])
133
134/* legacy - only mod_perl should be doing this. */
135#ifdef PERL_HASH_INTERNAL_ACCESS
136#define PERL_HASH_INTERNAL(hash,str,len) PERL_HASH(hash,str,len)
137#endif
138
139/* Uncomment one of the following lines to use an alternative hash algorithm.
140#define PERL_HASH_FUNC_SDBM
141#define PERL_HASH_FUNC_DJB2
142#define PERL_HASH_FUNC_SUPERFAST
143#define PERL_HASH_FUNC_MURMUR3
144#define PERL_HASH_FUNC_SIPHASH
145#define PERL_HASH_FUNC_ONE_AT_A_TIME
146#define PERL_HASH_FUNC_ONE_AT_A_TIME_OLD
147#define PERL_HASH_FUNC_BUZZHASH16
148*/
149
150#if !( 0 \
151 || defined(PERL_HASH_FUNC_SDBM) \
152 || defined(PERL_HASH_FUNC_DJB2) \
153 || defined(PERL_HASH_FUNC_SUPERFAST) \
154 || defined(PERL_HASH_FUNC_MURMUR3) \
155 || defined(PERL_HASH_FUNC_ONE_AT_A_TIME) \
156 || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) \
157 || defined(PERL_HASH_FUNC_BUZZHASH16) \
158 )
159#ifdef U64
160#define PERL_HASH_FUNC_SIPHASH
161#else
162#define PERL_HASH_FUNC_ONE_AT_A_TIME
163#endif
164#endif
165
166#if defined(PERL_HASH_FUNC_BUZZHASH16)
167/* "BUZZHASH16"
168 *
169 * I whacked this together while just playing around.
170 *
171 * The idea is that instead of hashing the actual string input we use the
172 * bytes of the string as an index into a table of randomly generated
173 * 16 bit values.
174 *
175 * A left rotate is used to "mix" in previous bits as we go, and I borrowed
176 * the avalanche function from one-at-a-time for the final step. A lookup
177 * into the table based on the lower 8 bits of the length combined with
178 * the length itself is used as an itializer.
179 *
180 * The resulting hash value has no actual bits fed in from the string so
181 * I would guess it is pretty secure, although I am not a cryptographer
182 * and have no idea for sure. Nor has it been rigorously tested. On the
183 * other hand it is reasonably fast, and seems to produce reasonable
184 * distributions.
185 *
186 * Yves Orton
187 */
188
189
190#define PERL_HASH_FUNC "BUZZHASH16"
191#define PERL_HASH_SEED_BYTES 512 /* 2 bytes per octet value, 2 * 256 */
192/* Find best way to ROTL32 */
193#if defined(_MSC_VER)
194 #include <stdlib.h> /* Microsoft put _rotl declaration in here */
195 #define BUZZHASH_ROTL32(x,r) _rotl(x,r)
196#else
197 /* gcc recognises this code and generates a rotate instruction for CPUs with one */
198 #define BUZZHASH_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r)))
199#endif
200
201#define PERL_HASH(hash,str,len) \
202 STMT_START { \
203 const char * const s_PeRlHaSh_tmp = (str); \
204 const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
205 const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh + len; \
206 U32 hash_PeRlHaSh = (PERL_HASH_SEED_U16_x(len & 0xff) << 16) + len; \
207 while (s_PeRlHaSh < end_PeRlHaSh) { \
208 hash_PeRlHaSh ^= PERL_HASH_SEED_U16_x((U8)*s_PeRlHaSh++); \
209 hash_PeRlHaSh += BUZZHASH_ROTL32(hash_PeRlHaSh,11); \
210 } \
211 hash_PeRlHaSh += (hash_PeRlHaSh << 3); \
212 hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \
213 (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \
214 } STMT_END
215
216#elif defined(PERL_HASH_FUNC_SIPHASH)
217#define PERL_HASH_FUNC "SIPHASH"
218#define PERL_HASH_SEED_BYTES 16
219
220/* This is SipHash by Jean-Philippe Aumasson and Daniel J. Bernstein.
221 * The authors claim it is relatively secure compared to the alternatives
222 * and that performance wise it is a suitable hash for languages like Perl.
223 * See:
224 *
225 * https://www.131002.net/siphash/
226 *
227 * This implementation seems to perform slightly slower than one-at-a-time for
228 * short keys, but degrades slower for longer keys. Murmur Hash outperforms it
229 * regardless of keys size.
230 *
231 * It is 64 bit only.
232 */
233
234#define PERL_HASH_NEEDS_TWO_SEEDS
235
236#ifndef U64
237#define U64 uint64_t
238#endif
239
240#define ROTL(x,b) (U64)( ((x) << (b)) | ( (x) >> (64 - (b))) )
241
242#define U32TO8_LE(p, v) \
243 (p)[0] = (U8)((v) ); (p)[1] = (U8)((v) >> 8); \
244 (p)[2] = (U8)((v) >> 16); (p)[3] = (U8)((v) >> 24);
245
246#define U64TO8_LE(p, v) \
247 U32TO8_LE((p), (U32)((v) )); \
248 U32TO8_LE((p) + 4, (U32)((v) >> 32));
249
250#define U8TO64_LE(p) \
251 (((U64)((p)[0]) ) | \
252 ((U64)((p)[1]) << 8) | \
253 ((U64)((p)[2]) << 16) | \
254 ((U64)((p)[3]) << 24) | \
255 ((U64)((p)[4]) << 32) | \
256 ((U64)((p)[5]) << 40) | \
257 ((U64)((p)[6]) << 48) | \
258 ((U64)((p)[7]) << 56))
259
260#define SIPROUND \
261 do { \
262 v0_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,13); v1_PeRlHaSh ^= v0_PeRlHaSh; v0_PeRlHaSh=ROTL(v0_PeRlHaSh,32); \
263 v2_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,16); v3_PeRlHaSh ^= v2_PeRlHaSh; \
264 v0_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,21); v3_PeRlHaSh ^= v0_PeRlHaSh; \
265 v2_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,17); v1_PeRlHaSh ^= v2_PeRlHaSh; v2_PeRlHaSh=ROTL(v2_PeRlHaSh,32); \
266 } while(0)
267
268/* SipHash-2-4 */
269#define PERL_HASH(hash,str,len) STMT_START { \
270 const char * const strtmp_PeRlHaSh = (str); \
271 const unsigned char *in_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
272 const U32 inlen_PeRlHaSh = (len); \
273 /* "somepseudorandomlygeneratedbytes" */ \
274 U64 v0_PeRlHaSh = 0x736f6d6570736575ULL; \
275 U64 v1_PeRlHaSh = 0x646f72616e646f6dULL; \
276 U64 v2_PeRlHaSh = 0x6c7967656e657261ULL; \
277 U64 v3_PeRlHaSh = 0x7465646279746573ULL; \
278\
279 U64 b_PeRlHaSh; \
280 U64 k0_PeRlHaSh = PERL_HASH_SEED_U64_1; \
281 U64 k1_PeRlHaSh = PERL_HASH_SEED_U64_2; \
282 U64 m_PeRlHaSh; \
283 const int left_PeRlHaSh = inlen_PeRlHaSh & 7; \
284 const U8 *end_PeRlHaSh = in_PeRlHaSh + inlen_PeRlHaSh - left_PeRlHaSh; \
285\
286 b_PeRlHaSh = ( ( U64 )(len) ) << 56; \
287 v3_PeRlHaSh ^= k1_PeRlHaSh; \
288 v2_PeRlHaSh ^= k0_PeRlHaSh; \
289 v1_PeRlHaSh ^= k1_PeRlHaSh; \
290 v0_PeRlHaSh ^= k0_PeRlHaSh; \
291\
292 for ( ; in_PeRlHaSh != end_PeRlHaSh; in_PeRlHaSh += 8 ) \
293 { \
294 m_PeRlHaSh = U8TO64_LE( in_PeRlHaSh ); \
295 v3_PeRlHaSh ^= m_PeRlHaSh; \
296 SIPROUND; \
297 SIPROUND; \
298 v0_PeRlHaSh ^= m_PeRlHaSh; \
299 } \
300\
301 switch( left_PeRlHaSh ) \
302 { \
303 case 7: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 6] ) << 48; \
304 case 6: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 5] ) << 40; \
305 case 5: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 4] ) << 32; \
306 case 4: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 3] ) << 24; \
307 case 3: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 2] ) << 16; \
308 case 2: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 1] ) << 8; \
309 case 1: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 0] ); break; \
310 case 0: break; \
311 } \
312\
313 v3_PeRlHaSh ^= b_PeRlHaSh; \
314 SIPROUND; \
315 SIPROUND; \
316 v0_PeRlHaSh ^= b_PeRlHaSh; \
317\
318 v2_PeRlHaSh ^= 0xff; \
319 SIPROUND; \
320 SIPROUND; \
321 SIPROUND; \
322 SIPROUND; \
323 b_PeRlHaSh = v0_PeRlHaSh ^ v1_PeRlHaSh ^ v2_PeRlHaSh ^ v3_PeRlHaSh; \
324 (hash)= (U32)(b_PeRlHaSh & U32_MAX); \
325} STMT_END
326
327#elif defined(PERL_HASH_FUNC_SUPERFAST)
328#define PERL_HASH_FUNC "SUPERFAST"
329#define PERL_HASH_SEED_BYTES 4
330/* FYI: This is the "Super-Fast" algorithm mentioned by Bob Jenkins in
331 * (http://burtleburtle.net/bob/hash/doobs.html)
332 * It is by Paul Hsieh (c) 2004 and is analysed here
333 * http://www.azillionmonkeys.com/qed/hash.html
334 * license terms are here:
335 * http://www.azillionmonkeys.com/qed/weblicense.html
336 */
337#undef get16bits
338#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
339 || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
340#define get16bits(d) (*((const U16 *) (d)))
341#endif
342
343#if !defined (get16bits)
344#define get16bits(d) ((((const U8 *)(d))[1] << UINT32_C(8))\
345 +((const U8 *)(d))[0])
346#endif
347#define PERL_HASH(hash,str,len) \
348 STMT_START { \
349 const char * const strtmp_PeRlHaSh = (str); \
350 const unsigned char *str_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
351 U32 len_PeRlHaSh = (len); \
352 U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
353 U32 tmp_PeRlHaSh; \
354 int rem_PeRlHaSh= len_PeRlHaSh & 3; \
355 len_PeRlHaSh >>= 2; \
356 \
357 for (;len_PeRlHaSh > 0; len_PeRlHaSh--) { \
358 hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
359 tmp_PeRlHaSh = (get16bits (str_PeRlHaSh+2) << 11) ^ hash_PeRlHaSh; \
360 hash_PeRlHaSh = (hash_PeRlHaSh << 16) ^ tmp_PeRlHaSh; \
361 str_PeRlHaSh += 2 * sizeof (U16); \
362 hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
363 } \
364 \
365 /* Handle end cases */ \
366 switch (rem_PeRlHaSh) { \
367 case 3: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
368 hash_PeRlHaSh ^= hash_PeRlHaSh << 16; \
369 hash_PeRlHaSh ^= str_PeRlHaSh[sizeof (U16)] << 18; \
370 hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
371 break; \
372 case 2: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
373 hash_PeRlHaSh ^= hash_PeRlHaSh << 11; \
374 hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
375 break; \
376 case 1: hash_PeRlHaSh += *str_PeRlHaSh; \
377 hash_PeRlHaSh ^= hash_PeRlHaSh << 10; \
378 hash_PeRlHaSh += hash_PeRlHaSh >> 1; \
379 } \
380 \
381 /* Force "avalanching" of final 127 bits */ \
382 hash_PeRlHaSh ^= hash_PeRlHaSh << 3; \
383 hash_PeRlHaSh += hash_PeRlHaSh >> 5; \
384 hash_PeRlHaSh ^= hash_PeRlHaSh << 4; \
385 hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
386 hash_PeRlHaSh ^= hash_PeRlHaSh << 25; \
387 (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh >> 6)); \
388 } STMT_END
389
390#elif defined(PERL_HASH_FUNC_MURMUR3)
391#define PERL_HASH_FUNC "MURMUR3"
392#define PERL_HASH_SEED_BYTES 4
393
394/*-----------------------------------------------------------------------------
395 * MurmurHash3 was written by Austin Appleby, and is placed in the public
396 * domain.
397 *
398 * This implementation was originally written by Shane Day, and is also public domain,
399 * and was modified to function as a macro similar to other perl hash functions by
400 * Yves Orton.
401 *
402 * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A)
403 * with support for progressive processing.
404 *
405 * If you want to understand the MurmurHash algorithm you would be much better
406 * off reading the original source. Just point your browser at:
407 * http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
408 *
409 * How does it work?
410 *
411 * We can only process entire 32 bit chunks of input, except for the very end
412 * that may be shorter.
413 *
414 * To handle endianess I simply use a macro that reads a U32 and define
415 * that macro to be a direct read on little endian machines, a read and swap
416 * on big endian machines, or a byte-by-byte read if the endianess is unknown.
417 */
418
419
420/*-----------------------------------------------------------------------------
421 * Endianess, misalignment capabilities and util macros
422 *
423 * The following 3 macros are defined in this section. The other macros defined
424 * are only needed to help derive these 3.
425 *
426 * MURMUR_READ_UINT32(x) Read a little endian unsigned 32-bit int
427 * MURMUR_UNALIGNED_SAFE Defined if READ_UINT32 works on non-word boundaries
428 * MURMUR_ROTL32(x,r) Rotate x left by r bits
429 */
430
431/* Now find best way we can to READ_UINT32 */
432#if (BYTEORDER == 0x1234 || BYTEORDER == 0x12345678) && U32SIZE == 4
433 /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */
434 #define MURMUR_READ_UINT32(ptr) (*((U32*)(ptr)))
435#elif BYTEORDER == 0x4321 || BYTEORDER == 0x87654321
436 /* TODO: Add additional cases below where a compiler provided bswap32 is available */
437 #if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3))
438 #define MURMUR_READ_UINT32(ptr) (__builtin_bswap32(*((U32*)(ptr))))
439 #else
440 /* Without a known fast bswap32 we're just as well off doing this */
441 #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
442 #define MURMUR_UNALIGNED_SAFE
443 #endif
444#else
445 /* Unknown endianess so last resort is to read individual bytes */
446 #define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
447
448 /* Since we're not doing word-reads we can skip the messing about with realignment */
449 #define MURMUR_UNALIGNED_SAFE
450#endif
451
452/* Find best way to ROTL32 */
453#if defined(_MSC_VER)
454 #include <stdlib.h> /* Microsoft put _rotl declaration in here */
455 #define MURMUR_ROTL32(x,r) _rotl(x,r)
456#else
457 /* gcc recognises this code and generates a rotate instruction for CPUs with one */
458 #define MURMUR_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r)))
459#endif
460
461
462/*-----------------------------------------------------------------------------
463 * Core murmurhash algorithm macros */
464
465#define MURMUR_C1 (0xcc9e2d51)
466#define MURMUR_C2 (0x1b873593)
467#define MURMUR_C3 (0xe6546b64)
468#define MURMUR_C4 (0x85ebca6b)
469#define MURMUR_C5 (0xc2b2ae35)
470
471/* This is the main processing body of the algorithm. It operates
472 * on each full 32-bits of input. */
473#define MURMUR_DOBLOCK(h1, k1) STMT_START { \
474 k1 *= MURMUR_C1; \
475 k1 = MURMUR_ROTL32(k1,15); \
476 k1 *= MURMUR_C2; \
477 \
478 h1 ^= k1; \
479 h1 = MURMUR_ROTL32(h1,13); \
480 h1 = h1 * 5 + MURMUR_C3; \
481} STMT_END
482
483
484/* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */
485/* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */
486#define MURMUR_DOBYTES(cnt, h1, c, n, ptr, len) STMT_START { \
487 int MURMUR_DOBYTES_i = cnt; \
488 while(MURMUR_DOBYTES_i--) { \
489 c = c>>8 | *ptr++<<24; \
490 n++; len--; \
491 if(n==4) { \
492 MURMUR_DOBLOCK(h1, c); \
493 n = 0; \
494 } \
495 } \
496} STMT_END
497
498/* process the last 1..3 bytes and finalize */
499#define MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length) STMT_START { \
500 /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */\
501 PeRlHaSh_len -= PeRlHaSh_len/4*4; \
502 \
503 /* Append any remaining bytes into carry */ \
504 MURMUR_DOBYTES(PeRlHaSh_len, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len); \
505 \
506 if (PeRlHaSh_bytes_in_carry) { \
507 PeRlHaSh_k1 = PeRlHaSh_carry >> ( 4 - PeRlHaSh_bytes_in_carry ) * 8; \
508 PeRlHaSh_k1 *= MURMUR_C1; \
509 PeRlHaSh_k1 = MURMUR_ROTL32(PeRlHaSh_k1,15); \
510 PeRlHaSh_k1 *= MURMUR_C2; \
511 PeRlHaSh_h1 ^= PeRlHaSh_k1; \
512 } \
513 PeRlHaSh_h1 ^= PeRlHaSh_total_length; \
514 \
515 /* fmix */ \
516 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
517 PeRlHaSh_h1 *= MURMUR_C4; \
518 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 13; \
519 PeRlHaSh_h1 *= MURMUR_C5; \
520 PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
521 (hash)= PeRlHaSh_h1; \
522} STMT_END
523
524/* now we create the hash function */
525
526#if defined(UNALIGNED_SAFE)
527#define PERL_HASH(hash,str,len) STMT_START { \
528 const char * const s_PeRlHaSh_tmp = (str); \
529 const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
530 I32 PeRlHaSh_len = len; \
531 \
532 U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
533 U32 PeRlHaSh_k1; \
534 U32 PeRlHaSh_carry = 0; \
535 \
536 const unsigned char *PeRlHaSh_end; \
537 \
538 int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
539 I32 PeRlHaSh_total_length= PeRlHaSh_len; \
540 \
541 /* This CPU handles unaligned word access */ \
542 /* Process 32-bit chunks */ \
543 PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
544 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
545 PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
546 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
547 } \
548 \
549 MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
550 } STMT_END
551#else
552#define PERL_HASH(hash,str,len) STMT_START { \
553 const char * const s_PeRlHaSh_tmp = (str); \
554 const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
555 I32 PeRlHaSh_len = len; \
556 \
557 U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
558 U32 PeRlHaSh_k1; \
559 U32 PeRlHaSh_carry = 0; \
560 \
561 const unsigned char *PeRlHaSh_end; \
562 \
563 int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
564 I32 PeRlHaSh_total_length= PeRlHaSh_len; \
565 \
566 /* This CPU does not handle unaligned word access */ \
567 \
568 /* Consume enough so that the next data byte is word aligned */ \
569 int PeRlHaSh_i = -(long)PeRlHaSh_ptr & 3; \
570 if(PeRlHaSh_i && PeRlHaSh_i <= PeRlHaSh_len) { \
571 MURMUR_DOBYTES(PeRlHaSh_i, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len);\
572 } \
573 \
574 /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */ \
575 PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
576 switch(PeRlHaSh_bytes_in_carry) { /* how many bytes in carry */ \
577 case 0: /* c=[----] w=[3210] b=[3210]=w c'=[----] */ \
578 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
579 PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
580 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
581 } \
582 break; \
583 case 1: /* c=[0---] w=[4321] b=[3210]=c>>24|w<<8 c'=[4---] */ \
584 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
585 PeRlHaSh_k1 = PeRlHaSh_carry>>24; \
586 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
587 PeRlHaSh_k1 |= PeRlHaSh_carry<<8; \
588 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
589 } \
590 break; \
591 case 2: /* c=[10--] w=[5432] b=[3210]=c>>16|w<<16 c'=[54--] */ \
592 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
593 PeRlHaSh_k1 = PeRlHaSh_carry>>16; \
594 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
595 PeRlHaSh_k1 |= PeRlHaSh_carry<<16; \
596 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
597 } \
598 break; \
599 case 3: /* c=[210-] w=[6543] b=[3210]=c>>8|w<<24 c'=[654-] */ \
600 for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
601 PeRlHaSh_k1 = PeRlHaSh_carry>>8; \
602 PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
603 PeRlHaSh_k1 |= PeRlHaSh_carry<<24; \
604 MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
605 } \
606 } \
607 \
608 MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
609 } STMT_END
610#endif
611
612#elif defined(PERL_HASH_FUNC_DJB2)
613#define PERL_HASH_FUNC "DJB2"
614#define PERL_HASH_SEED_BYTES 4
615#define PERL_HASH(hash,str,len) \
616 STMT_START { \
617 const char * const s_PeRlHaSh_tmp = (str); \
618 const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
619 I32 i_PeRlHaSh = len; \
620 U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
621 while (i_PeRlHaSh--) { \
622 hash_PeRlHaSh = ((hash_PeRlHaSh << 5) + hash_PeRlHaSh) + *s_PeRlHaSh++; \
623 } \
624 (hash) = hash_PeRlHaSh;\
625 } STMT_END
626
627#elif defined(PERL_HASH_FUNC_SDBM)
628#define PERL_HASH_FUNC "SDBM"
629#define PERL_HASH_SEED_BYTES 4
630#define PERL_HASH(hash,str,len) \
631 STMT_START { \
632 const char * const s_PeRlHaSh_tmp = (str); \
633 const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
634 I32 i_PeRlHaSh = len; \
635 U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
636 while (i_PeRlHaSh--) { \
637 hash_PeRlHaSh = (hash_PeRlHaSh << 6) + (hash_PeRlHaSh << 16) - hash_PeRlHaSh + *s_PeRlHaSh++; \
638 } \
639 (hash) = hash_PeRlHaSh;\
640 } STMT_END
641
642#elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME) || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD)
643
644#define PERL_HASH_SEED_BYTES 4
645
646#ifdef PERL_HASH_FUNC_ONE_AT_A_TIME
647/* new version, add the length to the seed so that adding characters changes the "seed" being used. */
648#define PERL_HASH_FUNC "ONE_AT_A_TIME"
649#define MIX_SEED_AND_LEN(seed,len) (seed + len)
650#else
651/* old version, just use the seed. - not recommended */
652#define PERL_HASH_FUNC "ONE_AT_A_TIME_OLD"
653#define MIX_SEED_AND_LEN(seed,len) (seed)
654#endif
655
656/* FYI: This is the "One-at-a-Time" algorithm by Bob Jenkins
657 * from requirements by Colin Plumb.
658 * (http://burtleburtle.net/bob/hash/doobs.html) */
659#define PERL_HASH(hash,str,len) \
660 STMT_START { \
661 const char * const s_PeRlHaSh_tmp = (str); \
662 const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
663 const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp + (len); \
664 U32 hash_PeRlHaSh = MIX_SEED_AND_LEN(PERL_HASH_SEED_U32, len); \
665 while (s_PeRlHaSh < end_PeRlHaSh) { \
666 hash_PeRlHaSh += (U8)*s_PeRlHaSh++; \
667 hash_PeRlHaSh += (hash_PeRlHaSh << 10); \
668 hash_PeRlHaSh ^= (hash_PeRlHaSh >> 6); \
669 } \
670 hash_PeRlHaSh += (hash_PeRlHaSh << 3); \
671 hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \
672 (hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \
673 } STMT_END
674#endif
675#ifndef PERL_HASH
676#error "No hash function defined!"
677#endif
678/*
679=head1 Hash Manipulation Functions
680
681=for apidoc AmU||HEf_SVKEY
682This flag, used in the length slot of hash entries and magic structures,
683specifies the structure contains an C<SV*> pointer where a C<char*> pointer
684is to be expected. (For information only--not to be used).
685
686=head1 Handy Values
687
688=for apidoc AmU||Nullhv
689Null HV pointer.
690
691(deprecated - use C<(HV *)NULL> instead)
692
693=head1 Hash Manipulation Functions
694
695=for apidoc Am|char*|HvNAME|HV* stash
696Returns the package name of a stash, or NULL if C<stash> isn't a stash.
697See C<SvSTASH>, C<CvSTASH>.
698
699=for apidoc Am|STRLEN|HvNAMELEN|HV *stash
700Returns the length of the stash's name.
701
702=for apidoc Am|unsigned char|HvNAMEUTF8|HV *stash
703Returns true if the name is in UTF8 encoding.
704
705=for apidoc Am|char*|HvENAME|HV* stash
706Returns the effective name of a stash, or NULL if there is none. The
707effective name represents a location in the symbol table where this stash
708resides. It is updated automatically when packages are aliased or deleted.
709A stash that is no longer in the symbol table has no effective name. This
710name is preferable to C<HvNAME> for use in MRO linearisations and isa
711caches.
712
713=for apidoc Am|STRLEN|HvENAMELEN|HV *stash
714Returns the length of the stash's effective name.
715
716=for apidoc Am|unsigned char|HvENAMEUTF8|HV *stash
717Returns true if the effective name is in UTF8 encoding.
718
719=for apidoc Am|void*|HeKEY|HE* he
720Returns the actual pointer stored in the key slot of the hash entry. The
721pointer may be either C<char*> or C<SV*>, depending on the value of
722C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros are
723usually preferable for finding the value of a key.
724
725=for apidoc Am|STRLEN|HeKLEN|HE* he
726If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
727holds an C<SV*> key. Otherwise, holds the actual length of the key. Can
728be assigned to. The C<HePV()> macro is usually preferable for finding key
729lengths.
730
731=for apidoc Am|SV*|HeVAL|HE* he
732Returns the value slot (type C<SV*>) stored in the hash entry. Can be assigned
733to.
734
735 SV *foo= HeVAL(hv);
736 HeVAL(hv)= sv;
737
738
739=for apidoc Am|U32|HeHASH|HE* he
740Returns the computed hash stored in the hash entry.
741
742=for apidoc Am|char*|HePV|HE* he|STRLEN len
743Returns the key slot of the hash entry as a C<char*> value, doing any
744necessary dereferencing of possibly C<SV*> keys. The length of the string
745is placed in C<len> (this is a macro, so do I<not> use C<&len>). If you do
746not care about what the length of the key is, you may use the global
747variable C<PL_na>, though this is rather less efficient than using a local
748variable. Remember though, that hash keys in perl are free to contain
749embedded nulls, so using C<strlen()> or similar is not a good way to find
750the length of hash keys. This is very similar to the C<SvPV()> macro
751described elsewhere in this document. See also C<HeUTF8>.
752
753If you are using C<HePV> to get values to pass to C<newSVpvn()> to create a
754new SV, you should consider using C<newSVhek(HeKEY_hek(he))> as it is more
755efficient.
756
757=for apidoc Am|char*|HeUTF8|HE* he
758Returns whether the C<char *> value returned by C<HePV> is encoded in UTF-8,
759doing any necessary dereferencing of possibly C<SV*> keys. The value returned
760will be 0 or non-0, not necessarily 1 (or even a value with any low bits set),
761so B<do not> blindly assign this to a C<bool> variable, as C<bool> may be a
762typedef for C<char>.
763
764=for apidoc Am|SV*|HeSVKEY|HE* he
765Returns the key as an C<SV*>, or C<NULL> if the hash entry does not
766contain an C<SV*> key.
767
768=for apidoc Am|SV*|HeSVKEY_force|HE* he
769Returns the key as an C<SV*>. Will create and return a temporary mortal
770C<SV*> if the hash entry contains only a C<char*> key.
771
772=for apidoc Am|SV*|HeSVKEY_set|HE* he|SV* sv
773Sets the key to a given C<SV*>, taking care to set the appropriate flags to
774indicate the presence of an C<SV*> key, and returns the same
775C<SV*>.
776
777=cut
778*/
779
780/* these hash entry flags ride on hent_klen (for use only in magic/tied HVs) */
781#define HEf_SVKEY -2 /* hent_key is an SV* */
782
783#ifndef PERL_CORE
784# define Nullhv Null(HV*)
785#endif
786#define HvARRAY(hv) ((hv)->sv_u.svu_hash)
787#define HvFILL(hv) Perl_hv_fill(aTHX_ (const HV *)(hv))
788#define HvMAX(hv) ((XPVHV*) SvANY(hv))->xhv_max
789/* This quite intentionally does no flag checking first. That's your
790 responsibility. */
791#define HvAUX(hv) ((struct xpvhv_aux*)&(HvARRAY(hv)[HvMAX(hv)+1]))
792#define HvRITER(hv) (*Perl_hv_riter_p(aTHX_ MUTABLE_HV(hv)))
793#define HvEITER(hv) (*Perl_hv_eiter_p(aTHX_ MUTABLE_HV(hv)))
794#define HvRITER_set(hv,r) Perl_hv_riter_set(aTHX_ MUTABLE_HV(hv), r)
795#define HvEITER_set(hv,e) Perl_hv_eiter_set(aTHX_ MUTABLE_HV(hv), e)
796#define HvRITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_riter : -1)
797#define HvEITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_eiter : NULL)
798#define HvNAME(hv) HvNAME_get(hv)
799#define HvNAMELEN(hv) HvNAMELEN_get(hv)
800#define HvENAME(hv) HvENAME_get(hv)
801#define HvENAMELEN(hv) HvENAMELEN_get(hv)
802
803/* Checking that hv is a valid package stash is the
804 caller's responsibility */
805#define HvMROMETA(hv) (HvAUX(hv)->xhv_mro_meta \
806 ? HvAUX(hv)->xhv_mro_meta \
807 : Perl_mro_meta_init(aTHX_ hv))
808
809#define HvNAME_HEK_NN(hv) \
810 ( \
811 HvAUX(hv)->xhv_name_count \
812 ? *HvAUX(hv)->xhv_name_u.xhvnameu_names \
813 : HvAUX(hv)->xhv_name_u.xhvnameu_name \
814 )
815/* This macro may go away without notice. */
816#define HvNAME_HEK(hv) \
817 (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvNAME_HEK_NN(hv) : NULL)
818#define HvNAME_get(hv) \
819 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
820 ? HEK_KEY(HvNAME_HEK_NN(hv)) : NULL)
821#define HvNAMELEN_get(hv) \
822 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
823 ? HEK_LEN(HvNAME_HEK_NN(hv)) : 0)
824#define HvNAMEUTF8(hv) \
825 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
826 ? HEK_UTF8(HvNAME_HEK_NN(hv)) : 0)
827#define HvENAME_HEK_NN(hv) \
828 ( \
829 HvAUX(hv)->xhv_name_count > 0 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[0] : \
830 HvAUX(hv)->xhv_name_count < -1 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[1] : \
831 HvAUX(hv)->xhv_name_count == -1 ? NULL : \
832 HvAUX(hv)->xhv_name_u.xhvnameu_name \
833 )
834#define HvENAME_HEK(hv) \
835 (SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvENAME_HEK_NN(hv) : NULL)
836#define HvENAME_get(hv) \
837 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
838 ? HEK_KEY(HvENAME_HEK_NN(hv)) : NULL)
839#define HvENAMELEN_get(hv) \
840 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
841 ? HEK_LEN(HvENAME_HEK_NN(hv)) : 0)
842#define HvENAMEUTF8(hv) \
843 ((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
844 ? HEK_UTF8(HvENAME_HEK_NN(hv)) : 0)
845
846/* the number of keys (including any placeholders) */
847#define XHvTOTALKEYS(xhv) ((xhv)->xhv_keys)
848
849/*
850 * HvKEYS gets the number of keys that actually exist(), and is provided
851 * for backwards compatibility with old XS code. The core uses HvUSEDKEYS
852 * (keys, excluding placeholders) and HvTOTALKEYS (including placeholders)
853 */
854#define HvKEYS(hv) HvUSEDKEYS(hv)
855#define HvUSEDKEYS(hv) (HvTOTALKEYS(hv) - HvPLACEHOLDERS_get(hv))
856#define HvTOTALKEYS(hv) XHvTOTALKEYS((XPVHV*) SvANY(hv))
857#define HvPLACEHOLDERS(hv) (*Perl_hv_placeholders_p(aTHX_ MUTABLE_HV(hv)))
858#define HvPLACEHOLDERS_get(hv) (SvMAGIC(hv) ? Perl_hv_placeholders_get(aTHX_ (const HV *)hv) : 0)
859#define HvPLACEHOLDERS_set(hv,p) Perl_hv_placeholders_set(aTHX_ MUTABLE_HV(hv), p)
860
861#define HvSHAREKEYS(hv) (SvFLAGS(hv) & SVphv_SHAREKEYS)
862#define HvSHAREKEYS_on(hv) (SvFLAGS(hv) |= SVphv_SHAREKEYS)
863#define HvSHAREKEYS_off(hv) (SvFLAGS(hv) &= ~SVphv_SHAREKEYS)
864
865/* This is an optimisation flag. It won't be set if all hash keys have a 0
866 * flag. Currently the only flags relate to utf8.
867 * Hence it won't be set if all keys are 8 bit only. It will be set if any key
868 * is utf8 (including 8 bit keys that were entered as utf8, and need upgrading
869 * when retrieved during iteration. It may still be set when there are no longer
870 * any utf8 keys.
871 * See HVhek_ENABLEHVKFLAGS for the trigger.
872 */
873#define HvHASKFLAGS(hv) (SvFLAGS(hv) & SVphv_HASKFLAGS)
874#define HvHASKFLAGS_on(hv) (SvFLAGS(hv) |= SVphv_HASKFLAGS)
875#define HvHASKFLAGS_off(hv) (SvFLAGS(hv) &= ~SVphv_HASKFLAGS)
876
877#define HvLAZYDEL(hv) (SvFLAGS(hv) & SVphv_LAZYDEL)
878#define HvLAZYDEL_on(hv) (SvFLAGS(hv) |= SVphv_LAZYDEL)
879#define HvLAZYDEL_off(hv) (SvFLAGS(hv) &= ~SVphv_LAZYDEL)
880
881#ifndef PERL_CORE
882# define Nullhe Null(HE*)
883#endif
884#define HeNEXT(he) (he)->hent_next
885#define HeKEY_hek(he) (he)->hent_hek
886#define HeKEY(he) HEK_KEY(HeKEY_hek(he))
887#define HeKEY_sv(he) (*(SV**)HeKEY(he))
888#define HeKLEN(he) HEK_LEN(HeKEY_hek(he))
889#define HeKUTF8(he) HEK_UTF8(HeKEY_hek(he))
890#define HeKWASUTF8(he) HEK_WASUTF8(HeKEY_hek(he))
891#define HeKLEN_UTF8(he) (HeKUTF8(he) ? -HeKLEN(he) : HeKLEN(he))
892#define HeKFLAGS(he) HEK_FLAGS(HeKEY_hek(he))
893#define HeVAL(he) (he)->he_valu.hent_val
894#define HeHASH(he) HEK_HASH(HeKEY_hek(he))
895#define HePV(he,lp) ((HeKLEN(he) == HEf_SVKEY) ? \
896 SvPV(HeKEY_sv(he),lp) : \
897 ((lp = HeKLEN(he)), HeKEY(he)))
898#define HeUTF8(he) ((HeKLEN(he) == HEf_SVKEY) ? \
899 SvUTF8(HeKEY_sv(he)) : \
900 (U32)HeKUTF8(he))
901
902#define HeSVKEY(he) ((HeKEY(he) && \
903 HeKLEN(he) == HEf_SVKEY) ? \
904 HeKEY_sv(he) : NULL)
905
906#define HeSVKEY_force(he) (HeKEY(he) ? \
907 ((HeKLEN(he) == HEf_SVKEY) ? \
908 HeKEY_sv(he) : \
909 newSVpvn_flags(HeKEY(he), \
910 HeKLEN(he), SVs_TEMP)) : \
911 &PL_sv_undef)
912#define HeSVKEY_set(he,sv) ((HeKLEN(he) = HEf_SVKEY), (HeKEY_sv(he) = sv))
913
914#ifndef PERL_CORE
915# define Nullhek Null(HEK*)
916#endif
917#define HEK_BASESIZE STRUCT_OFFSET(HEK, hek_key[0])
918#define HEK_HASH(hek) (hek)->hek_hash
919#define HEK_LEN(hek) (hek)->hek_len
920#define HEK_KEY(hek) (hek)->hek_key
921#define HEK_FLAGS(hek) (*((unsigned char *)(HEK_KEY(hek))+HEK_LEN(hek)+1))
922
923#define HVhek_UTF8 0x01 /* Key is utf8 encoded. */
924#define HVhek_WASUTF8 0x02 /* Key is bytes here, but was supplied as utf8. */
925#define HVhek_UNSHARED 0x08 /* This key isn't a shared hash key. */
926#define HVhek_FREEKEY 0x100 /* Internal flag to say key is malloc()ed. */
927#define HVhek_PLACEHOLD 0x200 /* Internal flag to create placeholder.
928 * (may change, but Storable is a core module) */
929#define HVhek_KEYCANONICAL 0x400 /* Internal flag - key is in canonical form.
930 If the string is UTF-8, it cannot be
931 converted to bytes. */
932#define HVhek_MASK 0xFF
933
934#define HVhek_ENABLEHVKFLAGS (HVhek_MASK & ~(HVhek_UNSHARED))
935
936#define HEK_UTF8(hek) (HEK_FLAGS(hek) & HVhek_UTF8)
937#define HEK_UTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_UTF8)
938#define HEK_UTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_UTF8)
939#define HEK_WASUTF8(hek) (HEK_FLAGS(hek) & HVhek_WASUTF8)
940#define HEK_WASUTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_WASUTF8)
941#define HEK_WASUTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_WASUTF8)
942
943/* calculate HV array allocation */
944#ifndef PERL_USE_LARGE_HV_ALLOC
945/* Default to allocating the correct size - default to assuming that malloc()
946 is not broken and is efficient at allocating blocks sized at powers-of-two.
947*/
948# define PERL_HV_ARRAY_ALLOC_BYTES(size) ((size) * sizeof(HE*))
949#else
950# define MALLOC_OVERHEAD 16
951# define PERL_HV_ARRAY_ALLOC_BYTES(size) \
952 (((size) < 64) \
953 ? (size) * sizeof(HE*) \
954 : (size) * sizeof(HE*) * 2 - MALLOC_OVERHEAD)
955#endif
956
957/* Flags for hv_iternext_flags. */
958#define HV_ITERNEXT_WANTPLACEHOLDERS 0x01 /* Don't skip placeholders. */
959
960#define hv_iternext(hv) hv_iternext_flags(hv, 0)
961#define hv_magic(hv, gv, how) sv_magic(MUTABLE_SV(hv), MUTABLE_SV(gv), how, NULL, 0)
962#define hv_undef(hv) Perl_hv_undef_flags(aTHX_ hv, 0)
963
964#define Perl_sharepvn(pv, len, hash) HEK_KEY(share_hek(pv, len, hash))
965#define sharepvn(pv, len, hash) Perl_sharepvn(pv, len, hash)
966
967#define share_hek_hek(hek) \
968 (++(((struct shared_he *)(((char *)hek) \
969 - STRUCT_OFFSET(struct shared_he, \
970 shared_he_hek))) \
971 ->shared_he_he.he_valu.hent_refcount), \
972 hek)
973
974#define hv_store_ent(hv, keysv, val, hash) \
975 ((HE *) hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISSTORE, \
976 (val), (hash)))
977
978#define hv_exists_ent(hv, keysv, hash) \
979 (hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISEXISTS, 0, (hash)) \
980 ? TRUE : FALSE)
981#define hv_fetch_ent(hv, keysv, lval, hash) \
982 ((HE *) hv_common((hv), (keysv), NULL, 0, 0, \
983 ((lval) ? HV_FETCH_LVALUE : 0), NULL, (hash)))
984#define hv_delete_ent(hv, key, flags, hash) \
985 (MUTABLE_SV(hv_common((hv), (key), NULL, 0, 0, (flags) | HV_DELETE, \
986 NULL, (hash))))
987
988#define hv_store_flags(hv, key, klen, val, hash, flags) \
989 ((SV**) hv_common((hv), NULL, (key), (klen), (flags), \
990 (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), (val), \
991 (hash)))
992
993#define hv_store(hv, key, klen, val, hash) \
994 ((SV**) hv_common_key_len((hv), (key), (klen), \
995 (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), \
996 (val), (hash)))
997
998#define hv_exists(hv, key, klen) \
999 (hv_common_key_len((hv), (key), (klen), HV_FETCH_ISEXISTS, NULL, 0) \
1000 ? TRUE : FALSE)
1001
1002#define hv_fetch(hv, key, klen, lval) \
1003 ((SV**) hv_common_key_len((hv), (key), (klen), (lval) \
1004 ? (HV_FETCH_JUST_SV | HV_FETCH_LVALUE) \
1005 : HV_FETCH_JUST_SV, NULL, 0))
1006
1007#define hv_delete(hv, key, klen, flags) \
1008 (MUTABLE_SV(hv_common_key_len((hv), (key), (klen), \
1009 (flags) | HV_DELETE, NULL, 0)))
1010
1011/* This refcounted he structure is used for storing the hints used for lexical
1012 pragmas. Without threads, it's basically struct he + refcount.
1013 With threads, life gets more complex as the structure needs to be shared
1014 between threads (because it hangs from OPs, which are shared), hence the
1015 alternate definition and mutex. */
1016
1017struct refcounted_he;
1018
1019/* flags for the refcounted_he API */
1020#define REFCOUNTED_HE_KEY_UTF8 0x00000001
1021#ifdef PERL_CORE
1022# define REFCOUNTED_HE_EXISTS 0x00000002
1023#endif
1024
1025#ifdef PERL_CORE
1026
1027/* Gosh. This really isn't a good name any longer. */
1028struct refcounted_he {
1029 struct refcounted_he *refcounted_he_next; /* next entry in chain */
1030#ifdef USE_ITHREADS
1031 U32 refcounted_he_hash;
1032 U32 refcounted_he_keylen;
1033#else
1034 HEK *refcounted_he_hek; /* hint key */
1035#endif
1036 union {
1037 IV refcounted_he_u_iv;
1038 UV refcounted_he_u_uv;
1039 STRLEN refcounted_he_u_len;
1040 void *refcounted_he_u_ptr; /* Might be useful in future */
1041 } refcounted_he_val;
1042 U32 refcounted_he_refcnt; /* reference count */
1043 /* First byte is flags. Then NUL-terminated value. Then for ithreads,
1044 non-NUL terminated key. */
1045 char refcounted_he_data[1];
1046};
1047
1048/*
1049=for apidoc m|SV *|refcounted_he_fetch_pvs|const struct refcounted_he *chain|const char *key|U32 flags
1050
1051Like L</refcounted_he_fetch_pvn>, but takes a literal string instead of
1052a string/length pair, and no precomputed hash.
1053
1054=cut
1055*/
1056
1057#define refcounted_he_fetch_pvs(chain, key, flags) \
1058 Perl_refcounted_he_fetch_pvn(aTHX_ chain, STR_WITH_LEN(key), 0, flags)
1059
1060/*
1061=for apidoc m|struct refcounted_he *|refcounted_he_new_pvs|struct refcounted_he *parent|const char *key|SV *value|U32 flags
1062
1063Like L</refcounted_he_new_pvn>, but takes a literal string instead of
1064a string/length pair, and no precomputed hash.
1065
1066=cut
1067*/
1068
1069#define refcounted_he_new_pvs(parent, key, value, flags) \
1070 Perl_refcounted_he_new_pvn(aTHX_ parent, STR_WITH_LEN(key), 0, value, flags)
1071
1072/* Flag bits are HVhek_UTF8, HVhek_WASUTF8, then */
1073#define HVrhek_undef 0x00 /* Value is undef. */
1074#define HVrhek_delete 0x10 /* Value is placeholder - signifies delete. */
1075#define HVrhek_IV 0x20 /* Value is IV. */
1076#define HVrhek_UV 0x30 /* Value is UV. */
1077#define HVrhek_PV 0x40 /* Value is a (byte) string. */
1078#define HVrhek_PV_UTF8 0x50 /* Value is a (utf8) string. */
1079/* Two spare. As these have to live in the optree, you can't store anything
1080 interpreter specific, such as SVs. :-( */
1081#define HVrhek_typemask 0x70
1082
1083#ifdef USE_ITHREADS
1084/* A big expression to find the key offset */
1085#define REF_HE_KEY(chain) \
1086 ((((chain->refcounted_he_data[0] & 0x60) == 0x40) \
1087 ? chain->refcounted_he_val.refcounted_he_u_len + 1 : 0) \
1088 + 1 + chain->refcounted_he_data)
1089#endif
1090
1091# ifdef USE_ITHREADS
1092# define HINTS_REFCNT_LOCK MUTEX_LOCK(&PL_hints_mutex)
1093# define HINTS_REFCNT_UNLOCK MUTEX_UNLOCK(&PL_hints_mutex)
1094# else
1095# define HINTS_REFCNT_LOCK NOOP
1096# define HINTS_REFCNT_UNLOCK NOOP
1097# endif
1098#endif
1099
1100#ifdef USE_ITHREADS
1101# define HINTS_REFCNT_INIT MUTEX_INIT(&PL_hints_mutex)
1102# define HINTS_REFCNT_TERM MUTEX_DESTROY(&PL_hints_mutex)
1103#else
1104# define HINTS_REFCNT_INIT NOOP
1105# define HINTS_REFCNT_TERM NOOP
1106#endif
1107
1108/* Hash actions
1109 * Passed in PERL_MAGIC_uvar calls
1110 */
1111#define HV_DISABLE_UVAR_XKEY 0x01
1112/* We need to ensure that these don't clash with G_DISCARD, which is 2, as it
1113 is documented as being passed to hv_delete(). */
1114#define HV_FETCH_ISSTORE 0x04
1115#define HV_FETCH_ISEXISTS 0x08
1116#define HV_FETCH_LVALUE 0x10
1117#define HV_FETCH_JUST_SV 0x20
1118#define HV_DELETE 0x40
1119#define HV_FETCH_EMPTY_HE 0x80 /* Leave HeVAL null. */
1120
1121/* Must not conflict with HVhek_UTF8 */
1122#define HV_NAME_SETALL 0x02
1123
1124/*
1125=for apidoc newHV
1126
1127Creates a new HV. The reference count is set to 1.
1128
1129=cut
1130*/
1131
1132#define newHV() MUTABLE_HV(newSV_type(SVt_PVHV))
1133
1134/*
1135 * Local variables:
1136 * c-indentation-style: bsd
1137 * c-basic-offset: 4
1138 * indent-tabs-mode: nil
1139 * End:
1140 *
1141 * ex: set ts=8 sts=4 sw=4 et:
1142 */