This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Update HTTP::Tiny’s version in perldelta
[perl5.git] / pp_sort.c
... / ...
CommitLineData
1/* pp_sort.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16 */
17
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
33#if defined(UNDER_CE)
34/* looks like 'small' is reserved word for WINCE (or somesuch)*/
35#define small xsmall
36#endif
37
38#define sv_cmp_static Perl_sv_cmp
39#define sv_cmp_locale_static Perl_sv_cmp_locale
40
41#ifndef SMALLSORT
42#define SMALLSORT (200)
43#endif
44
45/* Flags for qsortsv and mergesortsv */
46#define SORTf_DESC 1
47#define SORTf_STABLE 2
48#define SORTf_QSORT 4
49
50/*
51 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
52 *
53 * The original code was written in conjunction with BSD Computer Software
54 * Research Group at University of California, Berkeley.
55 *
56 * See also: "Optimistic Merge Sort" (SODA '92)
57 *
58 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
59 *
60 * The code can be distributed under the same terms as Perl itself.
61 *
62 */
63
64
65typedef char * aptr; /* pointer for arithmetic on sizes */
66typedef SV * gptr; /* pointers in our lists */
67
68/* Binary merge internal sort, with a few special mods
69** for the special perl environment it now finds itself in.
70**
71** Things that were once options have been hotwired
72** to values suitable for this use. In particular, we'll always
73** initialize looking for natural runs, we'll always produce stable
74** output, and we'll always do Peter McIlroy's binary merge.
75*/
76
77/* Pointer types for arithmetic and storage and convenience casts */
78
79#define APTR(P) ((aptr)(P))
80#define GPTP(P) ((gptr *)(P))
81#define GPPP(P) ((gptr **)(P))
82
83
84/* byte offset from pointer P to (larger) pointer Q */
85#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
86
87#define PSIZE sizeof(gptr)
88
89/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
90
91#ifdef PSHIFT
92#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
93#define PNBYTE(N) ((N) << (PSHIFT))
94#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
95#else
96/* Leave optimization to compiler */
97#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
98#define PNBYTE(N) ((N) * (PSIZE))
99#define PINDEX(P, N) (GPTP(P) + (N))
100#endif
101
102/* Pointer into other corresponding to pointer into this */
103#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
104
105#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
106
107
108/* Runs are identified by a pointer in the auxiliary list.
109** The pointer is at the start of the list,
110** and it points to the start of the next list.
111** NEXT is used as an lvalue, too.
112*/
113
114#define NEXT(P) (*GPPP(P))
115
116
117/* PTHRESH is the minimum number of pairs with the same sense to justify
118** checking for a run and extending it. Note that PTHRESH counts PAIRS,
119** not just elements, so PTHRESH == 8 means a run of 16.
120*/
121
122#define PTHRESH (8)
123
124/* RTHRESH is the number of elements in a run that must compare low
125** to the low element from the opposing run before we justify
126** doing a binary rampup instead of single stepping.
127** In random input, N in a row low should only happen with
128** probability 2^(1-N), so we can risk that we are dealing
129** with orderly input without paying much when we aren't.
130*/
131
132#define RTHRESH (6)
133
134
135/*
136** Overview of algorithm and variables.
137** The array of elements at list1 will be organized into runs of length 2,
138** or runs of length >= 2 * PTHRESH. We only try to form long runs when
139** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
140**
141** Unless otherwise specified, pair pointers address the first of two elements.
142**
143** b and b+1 are a pair that compare with sense "sense".
144** b is the "bottom" of adjacent pairs that might form a longer run.
145**
146** p2 parallels b in the list2 array, where runs are defined by
147** a pointer chain.
148**
149** t represents the "top" of the adjacent pairs that might extend
150** the run beginning at b. Usually, t addresses a pair
151** that compares with opposite sense from (b,b+1).
152** However, it may also address a singleton element at the end of list1,
153** or it may be equal to "last", the first element beyond list1.
154**
155** r addresses the Nth pair following b. If this would be beyond t,
156** we back it off to t. Only when r is less than t do we consider the
157** run long enough to consider checking.
158**
159** q addresses a pair such that the pairs at b through q already form a run.
160** Often, q will equal b, indicating we only are sure of the pair itself.
161** However, a search on the previous cycle may have revealed a longer run,
162** so q may be greater than b.
163**
164** p is used to work back from a candidate r, trying to reach q,
165** which would mean b through r would be a run. If we discover such a run,
166** we start q at r and try to push it further towards t.
167** If b through r is NOT a run, we detect the wrong order at (p-1,p).
168** In any event, after the check (if any), we have two main cases.
169**
170** 1) Short run. b <= q < p <= r <= t.
171** b through q is a run (perhaps trivial)
172** q through p are uninteresting pairs
173** p through r is a run
174**
175** 2) Long run. b < r <= q < t.
176** b through q is a run (of length >= 2 * PTHRESH)
177**
178** Note that degenerate cases are not only possible, but likely.
179** For example, if the pair following b compares with opposite sense,
180** then b == q < p == r == t.
181*/
182
183
184static IV
185dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
186{
187 I32 sense;
188 register gptr *b, *p, *q, *t, *p2;
189 register gptr *last, *r;
190 IV runs = 0;
191
192 b = list1;
193 last = PINDEX(b, nmemb);
194 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
195 for (p2 = list2; b < last; ) {
196 /* We just started, or just reversed sense.
197 ** Set t at end of pairs with the prevailing sense.
198 */
199 for (p = b+2, t = p; ++p < last; t = ++p) {
200 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
201 }
202 q = b;
203 /* Having laid out the playing field, look for long runs */
204 do {
205 p = r = b + (2 * PTHRESH);
206 if (r >= t) p = r = t; /* too short to care about */
207 else {
208 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
209 ((p -= 2) > q)) {}
210 if (p <= q) {
211 /* b through r is a (long) run.
212 ** Extend it as far as possible.
213 */
214 p = q = r;
215 while (((p += 2) < t) &&
216 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
217 r = p = q + 2; /* no simple pairs, no after-run */
218 }
219 }
220 if (q > b) { /* run of greater than 2 at b */
221 gptr *savep = p;
222
223 p = q += 2;
224 /* pick up singleton, if possible */
225 if ((p == t) &&
226 ((t + 1) == last) &&
227 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
228 savep = r = p = q = last;
229 p2 = NEXT(p2) = p2 + (p - b); ++runs;
230 if (sense)
231 while (b < --p) {
232 const gptr c = *b;
233 *b++ = *p;
234 *p = c;
235 }
236 p = savep;
237 }
238 while (q < p) { /* simple pairs */
239 p2 = NEXT(p2) = p2 + 2; ++runs;
240 if (sense) {
241 const gptr c = *q++;
242 *(q-1) = *q;
243 *q++ = c;
244 } else q += 2;
245 }
246 if (((b = p) == t) && ((t+1) == last)) {
247 NEXT(p2) = p2 + 1; ++runs;
248 b++;
249 }
250 q = r;
251 } while (b < t);
252 sense = !sense;
253 }
254 return runs;
255}
256
257
258/* The original merge sort, in use since 5.7, was as fast as, or faster than,
259 * qsort on many platforms, but slower than qsort, conspicuously so,
260 * on others. The most likely explanation was platform-specific
261 * differences in cache sizes and relative speeds.
262 *
263 * The quicksort divide-and-conquer algorithm guarantees that, as the
264 * problem is subdivided into smaller and smaller parts, the parts
265 * fit into smaller (and faster) caches. So it doesn't matter how
266 * many levels of cache exist, quicksort will "find" them, and,
267 * as long as smaller is faster, take advantage of them.
268 *
269 * By contrast, consider how the original mergesort algorithm worked.
270 * Suppose we have five runs (each typically of length 2 after dynprep).
271 *
272 * pass base aux
273 * 0 1 2 3 4 5
274 * 1 12 34 5
275 * 2 1234 5
276 * 3 12345
277 * 4 12345
278 *
279 * Adjacent pairs are merged in "grand sweeps" through the input.
280 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
281 * runs 3 and 4 are merged and the runs from run 5 have been copied.
282 * The only cache that matters is one large enough to hold *all* the input.
283 * On some platforms, this may be many times slower than smaller caches.
284 *
285 * The following pseudo-code uses the same basic merge algorithm,
286 * but in a divide-and-conquer way.
287 *
288 * # merge $runs runs at offset $offset of list $list1 into $list2.
289 * # all unmerged runs ($runs == 1) originate in list $base.
290 * sub mgsort2 {
291 * my ($offset, $runs, $base, $list1, $list2) = @_;
292 *
293 * if ($runs == 1) {
294 * if ($list1 is $base) copy run to $list2
295 * return offset of end of list (or copy)
296 * } else {
297 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
298 * mgsort2($off2, $runs/2, $base, $list2, $list1)
299 * merge the adjacent runs at $offset of $list1 into $list2
300 * return the offset of the end of the merged runs
301 * }
302 * }
303 * mgsort2(0, $runs, $base, $aux, $base);
304 *
305 * For our 5 runs, the tree of calls looks like
306 *
307 * 5
308 * 3 2
309 * 2 1 1 1
310 * 1 1
311 *
312 * 1 2 3 4 5
313 *
314 * and the corresponding activity looks like
315 *
316 * copy runs 1 and 2 from base to aux
317 * merge runs 1 and 2 from aux to base
318 * (run 3 is where it belongs, no copy needed)
319 * merge runs 12 and 3 from base to aux
320 * (runs 4 and 5 are where they belong, no copy needed)
321 * merge runs 4 and 5 from base to aux
322 * merge runs 123 and 45 from aux to base
323 *
324 * Note that we merge runs 1 and 2 immediately after copying them,
325 * while they are still likely to be in fast cache. Similarly,
326 * run 3 is merged with run 12 while it still may be lingering in cache.
327 * This implementation should therefore enjoy much of the cache-friendly
328 * behavior that quicksort does. In addition, it does less copying
329 * than the original mergesort implementation (only runs 1 and 2 are copied)
330 * and the "balancing" of merges is better (merged runs comprise more nearly
331 * equal numbers of original runs).
332 *
333 * The actual cache-friendly implementation will use a pseudo-stack
334 * to avoid recursion, and will unroll processing of runs of length 2,
335 * but it is otherwise similar to the recursive implementation.
336 */
337
338typedef struct {
339 IV offset; /* offset of 1st of 2 runs at this level */
340 IV runs; /* how many runs must be combined into 1 */
341} off_runs; /* pseudo-stack element */
342
343
344static I32
345cmp_desc(pTHX_ gptr const a, gptr const b)
346{
347 dVAR;
348 return -PL_sort_RealCmp(aTHX_ a, b);
349}
350
351STATIC void
352S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
353{
354 dVAR;
355 IV i, run, offset;
356 I32 sense, level;
357 register gptr *f1, *f2, *t, *b, *p;
358 int iwhich;
359 gptr *aux;
360 gptr *p1;
361 gptr small[SMALLSORT];
362 gptr *which[3];
363 off_runs stack[60], *stackp;
364 SVCOMPARE_t savecmp = NULL;
365
366 if (nmemb <= 1) return; /* sorted trivially */
367
368 if ((flags & SORTf_DESC) != 0) {
369 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
370 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
371 cmp = cmp_desc;
372 }
373
374 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
375 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
376 level = 0;
377 stackp = stack;
378 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
379 stackp->offset = offset = 0;
380 which[0] = which[2] = base;
381 which[1] = aux;
382 for (;;) {
383 /* On levels where both runs have be constructed (stackp->runs == 0),
384 * merge them, and note the offset of their end, in case the offset
385 * is needed at the next level up. Hop up a level, and,
386 * as long as stackp->runs is 0, keep merging.
387 */
388 IV runs = stackp->runs;
389 if (runs == 0) {
390 gptr *list1, *list2;
391 iwhich = level & 1;
392 list1 = which[iwhich]; /* area where runs are now */
393 list2 = which[++iwhich]; /* area for merged runs */
394 do {
395 register gptr *l1, *l2, *tp2;
396 offset = stackp->offset;
397 f1 = p1 = list1 + offset; /* start of first run */
398 p = tp2 = list2 + offset; /* where merged run will go */
399 t = NEXT(p); /* where first run ends */
400 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
401 t = NEXT(t); /* where second runs ends */
402 l2 = POTHER(t, list2, list1); /* ... on the other side */
403 offset = PNELEM(list2, t);
404 while (f1 < l1 && f2 < l2) {
405 /* If head 1 is larger than head 2, find ALL the elements
406 ** in list 2 strictly less than head1, write them all,
407 ** then head 1. Then compare the new heads, and repeat,
408 ** until one or both lists are exhausted.
409 **
410 ** In all comparisons (after establishing
411 ** which head to merge) the item to merge
412 ** (at pointer q) is the first operand of
413 ** the comparison. When we want to know
414 ** if "q is strictly less than the other",
415 ** we can't just do
416 ** cmp(q, other) < 0
417 ** because stability demands that we treat equality
418 ** as high when q comes from l2, and as low when
419 ** q was from l1. So we ask the question by doing
420 ** cmp(q, other) <= sense
421 ** and make sense == 0 when equality should look low,
422 ** and -1 when equality should look high.
423 */
424
425 register gptr *q;
426 if (cmp(aTHX_ *f1, *f2) <= 0) {
427 q = f2; b = f1; t = l1;
428 sense = -1;
429 } else {
430 q = f1; b = f2; t = l2;
431 sense = 0;
432 }
433
434
435 /* ramp up
436 **
437 ** Leave t at something strictly
438 ** greater than q (or at the end of the list),
439 ** and b at something strictly less than q.
440 */
441 for (i = 1, run = 0 ;;) {
442 if ((p = PINDEX(b, i)) >= t) {
443 /* off the end */
444 if (((p = PINDEX(t, -1)) > b) &&
445 (cmp(aTHX_ *q, *p) <= sense))
446 t = p;
447 else b = p;
448 break;
449 } else if (cmp(aTHX_ *q, *p) <= sense) {
450 t = p;
451 break;
452 } else b = p;
453 if (++run >= RTHRESH) i += i;
454 }
455
456
457 /* q is known to follow b and must be inserted before t.
458 ** Increment b, so the range of possibilities is [b,t).
459 ** Round binary split down, to favor early appearance.
460 ** Adjust b and t until q belongs just before t.
461 */
462
463 b++;
464 while (b < t) {
465 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
466 if (cmp(aTHX_ *q, *p) <= sense) {
467 t = p;
468 } else b = p + 1;
469 }
470
471
472 /* Copy all the strictly low elements */
473
474 if (q == f1) {
475 FROMTOUPTO(f2, tp2, t);
476 *tp2++ = *f1++;
477 } else {
478 FROMTOUPTO(f1, tp2, t);
479 *tp2++ = *f2++;
480 }
481 }
482
483
484 /* Run out remaining list */
485 if (f1 == l1) {
486 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
487 } else FROMTOUPTO(f1, tp2, l1);
488 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
489
490 if (--level == 0) goto done;
491 --stackp;
492 t = list1; list1 = list2; list2 = t; /* swap lists */
493 } while ((runs = stackp->runs) == 0);
494 }
495
496
497 stackp->runs = 0; /* current run will finish level */
498 /* While there are more than 2 runs remaining,
499 * turn them into exactly 2 runs (at the "other" level),
500 * each made up of approximately half the runs.
501 * Stack the second half for later processing,
502 * and set about producing the first half now.
503 */
504 while (runs > 2) {
505 ++level;
506 ++stackp;
507 stackp->offset = offset;
508 runs -= stackp->runs = runs / 2;
509 }
510 /* We must construct a single run from 1 or 2 runs.
511 * All the original runs are in which[0] == base.
512 * The run we construct must end up in which[level&1].
513 */
514 iwhich = level & 1;
515 if (runs == 1) {
516 /* Constructing a single run from a single run.
517 * If it's where it belongs already, there's nothing to do.
518 * Otherwise, copy it to where it belongs.
519 * A run of 1 is either a singleton at level 0,
520 * or the second half of a split 3. In neither event
521 * is it necessary to set offset. It will be set by the merge
522 * that immediately follows.
523 */
524 if (iwhich) { /* Belongs in aux, currently in base */
525 f1 = b = PINDEX(base, offset); /* where list starts */
526 f2 = PINDEX(aux, offset); /* where list goes */
527 t = NEXT(f2); /* where list will end */
528 offset = PNELEM(aux, t); /* offset thereof */
529 t = PINDEX(base, offset); /* where it currently ends */
530 FROMTOUPTO(f1, f2, t); /* copy */
531 NEXT(b) = t; /* set up parallel pointer */
532 } else if (level == 0) goto done; /* single run at level 0 */
533 } else {
534 /* Constructing a single run from two runs.
535 * The merge code at the top will do that.
536 * We need only make sure the two runs are in the "other" array,
537 * so they'll end up in the correct array after the merge.
538 */
539 ++level;
540 ++stackp;
541 stackp->offset = offset;
542 stackp->runs = 0; /* take care of both runs, trigger merge */
543 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
544 f1 = b = PINDEX(base, offset); /* where first run starts */
545 f2 = PINDEX(aux, offset); /* where it will be copied */
546 t = NEXT(f2); /* where first run will end */
547 offset = PNELEM(aux, t); /* offset thereof */
548 p = PINDEX(base, offset); /* end of first run */
549 t = NEXT(t); /* where second run will end */
550 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
551 FROMTOUPTO(f1, f2, t); /* copy both runs */
552 NEXT(b) = p; /* paralleled pointer for 1st */
553 NEXT(p) = t; /* ... and for second */
554 }
555 }
556 }
557done:
558 if (aux != small) Safefree(aux); /* free iff allocated */
559 if (flags) {
560 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
561 }
562 return;
563}
564
565/*
566 * The quicksort implementation was derived from source code contributed
567 * by Tom Horsley.
568 *
569 * NOTE: this code was derived from Tom Horsley's qsort replacement
570 * and should not be confused with the original code.
571 */
572
573/* Copyright (C) Tom Horsley, 1997. All rights reserved.
574
575 Permission granted to distribute under the same terms as perl which are
576 (briefly):
577
578 This program is free software; you can redistribute it and/or modify
579 it under the terms of either:
580
581 a) the GNU General Public License as published by the Free
582 Software Foundation; either version 1, or (at your option) any
583 later version, or
584
585 b) the "Artistic License" which comes with this Kit.
586
587 Details on the perl license can be found in the perl source code which
588 may be located via the www.perl.com web page.
589
590 This is the most wonderfulest possible qsort I can come up with (and
591 still be mostly portable) My (limited) tests indicate it consistently
592 does about 20% fewer calls to compare than does the qsort in the Visual
593 C++ library, other vendors may vary.
594
595 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
596 others I invented myself (or more likely re-invented since they seemed
597 pretty obvious once I watched the algorithm operate for a while).
598
599 Most of this code was written while watching the Marlins sweep the Giants
600 in the 1997 National League Playoffs - no Braves fans allowed to use this
601 code (just kidding :-).
602
603 I realize that if I wanted to be true to the perl tradition, the only
604 comment in this file would be something like:
605
606 ...they shuffled back towards the rear of the line. 'No, not at the
607 rear!' the slave-driver shouted. 'Three files up. And stay there...
608
609 However, I really needed to violate that tradition just so I could keep
610 track of what happens myself, not to mention some poor fool trying to
611 understand this years from now :-).
612*/
613
614/* ********************************************************** Configuration */
615
616#ifndef QSORT_ORDER_GUESS
617#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
618#endif
619
620/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
621 future processing - a good max upper bound is log base 2 of memory size
622 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
623 safely be smaller than that since the program is taking up some space and
624 most operating systems only let you grab some subset of contiguous
625 memory (not to mention that you are normally sorting data larger than
626 1 byte element size :-).
627*/
628#ifndef QSORT_MAX_STACK
629#define QSORT_MAX_STACK 32
630#endif
631
632/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
633 Anything bigger and we use qsort. If you make this too small, the qsort
634 will probably break (or become less efficient), because it doesn't expect
635 the middle element of a partition to be the same as the right or left -
636 you have been warned).
637*/
638#ifndef QSORT_BREAK_EVEN
639#define QSORT_BREAK_EVEN 6
640#endif
641
642/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
643 to go quadratic on. We innoculate larger partitions against
644 quadratic behavior by shuffling them before sorting. This is not
645 an absolute guarantee of non-quadratic behavior, but it would take
646 staggeringly bad luck to pick extreme elements as the pivot
647 from randomized data.
648*/
649#ifndef QSORT_PLAY_SAFE
650#define QSORT_PLAY_SAFE 255
651#endif
652
653/* ************************************************************* Data Types */
654
655/* hold left and right index values of a partition waiting to be sorted (the
656 partition includes both left and right - right is NOT one past the end or
657 anything like that).
658*/
659struct partition_stack_entry {
660 int left;
661 int right;
662#ifdef QSORT_ORDER_GUESS
663 int qsort_break_even;
664#endif
665};
666
667/* ******************************************************* Shorthand Macros */
668
669/* Note that these macros will be used from inside the qsort function where
670 we happen to know that the variable 'elt_size' contains the size of an
671 array element and the variable 'temp' points to enough space to hold a
672 temp element and the variable 'array' points to the array being sorted
673 and 'compare' is the pointer to the compare routine.
674
675 Also note that there are very many highly architecture specific ways
676 these might be sped up, but this is simply the most generally portable
677 code I could think of.
678*/
679
680/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
681*/
682#define qsort_cmp(elt1, elt2) \
683 ((*compare)(aTHX_ array[elt1], array[elt2]))
684
685#ifdef QSORT_ORDER_GUESS
686#define QSORT_NOTICE_SWAP swapped++;
687#else
688#define QSORT_NOTICE_SWAP
689#endif
690
691/* swaps contents of array elements elt1, elt2.
692*/
693#define qsort_swap(elt1, elt2) \
694 STMT_START { \
695 QSORT_NOTICE_SWAP \
696 temp = array[elt1]; \
697 array[elt1] = array[elt2]; \
698 array[elt2] = temp; \
699 } STMT_END
700
701/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
702 elt3 and elt3 gets elt1.
703*/
704#define qsort_rotate(elt1, elt2, elt3) \
705 STMT_START { \
706 QSORT_NOTICE_SWAP \
707 temp = array[elt1]; \
708 array[elt1] = array[elt2]; \
709 array[elt2] = array[elt3]; \
710 array[elt3] = temp; \
711 } STMT_END
712
713/* ************************************************************ Debug stuff */
714
715#ifdef QSORT_DEBUG
716
717static void
718break_here()
719{
720 return; /* good place to set a breakpoint */
721}
722
723#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
724
725static void
726doqsort_all_asserts(
727 void * array,
728 size_t num_elts,
729 size_t elt_size,
730 int (*compare)(const void * elt1, const void * elt2),
731 int pc_left, int pc_right, int u_left, int u_right)
732{
733 int i;
734
735 qsort_assert(pc_left <= pc_right);
736 qsort_assert(u_right < pc_left);
737 qsort_assert(pc_right < u_left);
738 for (i = u_right + 1; i < pc_left; ++i) {
739 qsort_assert(qsort_cmp(i, pc_left) < 0);
740 }
741 for (i = pc_left; i < pc_right; ++i) {
742 qsort_assert(qsort_cmp(i, pc_right) == 0);
743 }
744 for (i = pc_right + 1; i < u_left; ++i) {
745 qsort_assert(qsort_cmp(pc_right, i) < 0);
746 }
747}
748
749#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
750 doqsort_all_asserts(array, num_elts, elt_size, compare, \
751 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
752
753#else
754
755#define qsort_assert(t) ((void)0)
756
757#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
758
759#endif
760
761/* ****************************************************************** qsort */
762
763STATIC void /* the standard unstable (u) quicksort (qsort) */
764S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
765{
766 register SV * temp;
767 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
768 int next_stack_entry = 0;
769 int part_left;
770 int part_right;
771#ifdef QSORT_ORDER_GUESS
772 int qsort_break_even;
773 int swapped;
774#endif
775
776 PERL_ARGS_ASSERT_QSORTSVU;
777
778 /* Make sure we actually have work to do.
779 */
780 if (num_elts <= 1) {
781 return;
782 }
783
784 /* Inoculate large partitions against quadratic behavior */
785 if (num_elts > QSORT_PLAY_SAFE) {
786 register size_t n;
787 register SV ** const q = array;
788 for (n = num_elts; n > 1; ) {
789 register const size_t j = (size_t)(n-- * Drand01());
790 temp = q[j];
791 q[j] = q[n];
792 q[n] = temp;
793 }
794 }
795
796 /* Setup the initial partition definition and fall into the sorting loop
797 */
798 part_left = 0;
799 part_right = (int)(num_elts - 1);
800#ifdef QSORT_ORDER_GUESS
801 qsort_break_even = QSORT_BREAK_EVEN;
802#else
803#define qsort_break_even QSORT_BREAK_EVEN
804#endif
805 for ( ; ; ) {
806 if ((part_right - part_left) >= qsort_break_even) {
807 /* OK, this is gonna get hairy, so lets try to document all the
808 concepts and abbreviations and variables and what they keep
809 track of:
810
811 pc: pivot chunk - the set of array elements we accumulate in the
812 middle of the partition, all equal in value to the original
813 pivot element selected. The pc is defined by:
814
815 pc_left - the leftmost array index of the pc
816 pc_right - the rightmost array index of the pc
817
818 we start with pc_left == pc_right and only one element
819 in the pivot chunk (but it can grow during the scan).
820
821 u: uncompared elements - the set of elements in the partition
822 we have not yet compared to the pivot value. There are two
823 uncompared sets during the scan - one to the left of the pc
824 and one to the right.
825
826 u_right - the rightmost index of the left side's uncompared set
827 u_left - the leftmost index of the right side's uncompared set
828
829 The leftmost index of the left sides's uncompared set
830 doesn't need its own variable because it is always defined
831 by the leftmost edge of the whole partition (part_left). The
832 same goes for the rightmost edge of the right partition
833 (part_right).
834
835 We know there are no uncompared elements on the left once we
836 get u_right < part_left and no uncompared elements on the
837 right once u_left > part_right. When both these conditions
838 are met, we have completed the scan of the partition.
839
840 Any elements which are between the pivot chunk and the
841 uncompared elements should be less than the pivot value on
842 the left side and greater than the pivot value on the right
843 side (in fact, the goal of the whole algorithm is to arrange
844 for that to be true and make the groups of less-than and
845 greater-then elements into new partitions to sort again).
846
847 As you marvel at the complexity of the code and wonder why it
848 has to be so confusing. Consider some of the things this level
849 of confusion brings:
850
851 Once I do a compare, I squeeze every ounce of juice out of it. I
852 never do compare calls I don't have to do, and I certainly never
853 do redundant calls.
854
855 I also never swap any elements unless I can prove there is a
856 good reason. Many sort algorithms will swap a known value with
857 an uncompared value just to get things in the right place (or
858 avoid complexity :-), but that uncompared value, once it gets
859 compared, may then have to be swapped again. A lot of the
860 complexity of this code is due to the fact that it never swaps
861 anything except compared values, and it only swaps them when the
862 compare shows they are out of position.
863 */
864 int pc_left, pc_right;
865 int u_right, u_left;
866
867 int s;
868
869 pc_left = ((part_left + part_right) / 2);
870 pc_right = pc_left;
871 u_right = pc_left - 1;
872 u_left = pc_right + 1;
873
874 /* Qsort works best when the pivot value is also the median value
875 in the partition (unfortunately you can't find the median value
876 without first sorting :-), so to give the algorithm a helping
877 hand, we pick 3 elements and sort them and use the median value
878 of that tiny set as the pivot value.
879
880 Some versions of qsort like to use the left middle and right as
881 the 3 elements to sort so they can insure the ends of the
882 partition will contain values which will stop the scan in the
883 compare loop, but when you have to call an arbitrarily complex
884 routine to do a compare, its really better to just keep track of
885 array index values to know when you hit the edge of the
886 partition and avoid the extra compare. An even better reason to
887 avoid using a compare call is the fact that you can drop off the
888 edge of the array if someone foolishly provides you with an
889 unstable compare function that doesn't always provide consistent
890 results.
891
892 So, since it is simpler for us to compare the three adjacent
893 elements in the middle of the partition, those are the ones we
894 pick here (conveniently pointed at by u_right, pc_left, and
895 u_left). The values of the left, center, and right elements
896 are refered to as l c and r in the following comments.
897 */
898
899#ifdef QSORT_ORDER_GUESS
900 swapped = 0;
901#endif
902 s = qsort_cmp(u_right, pc_left);
903 if (s < 0) {
904 /* l < c */
905 s = qsort_cmp(pc_left, u_left);
906 /* if l < c, c < r - already in order - nothing to do */
907 if (s == 0) {
908 /* l < c, c == r - already in order, pc grows */
909 ++pc_right;
910 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
911 } else if (s > 0) {
912 /* l < c, c > r - need to know more */
913 s = qsort_cmp(u_right, u_left);
914 if (s < 0) {
915 /* l < c, c > r, l < r - swap c & r to get ordered */
916 qsort_swap(pc_left, u_left);
917 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
918 } else if (s == 0) {
919 /* l < c, c > r, l == r - swap c&r, grow pc */
920 qsort_swap(pc_left, u_left);
921 --pc_left;
922 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
923 } else {
924 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
925 qsort_rotate(pc_left, u_right, u_left);
926 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
927 }
928 }
929 } else if (s == 0) {
930 /* l == c */
931 s = qsort_cmp(pc_left, u_left);
932 if (s < 0) {
933 /* l == c, c < r - already in order, grow pc */
934 --pc_left;
935 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
936 } else if (s == 0) {
937 /* l == c, c == r - already in order, grow pc both ways */
938 --pc_left;
939 ++pc_right;
940 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
941 } else {
942 /* l == c, c > r - swap l & r, grow pc */
943 qsort_swap(u_right, u_left);
944 ++pc_right;
945 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
946 }
947 } else {
948 /* l > c */
949 s = qsort_cmp(pc_left, u_left);
950 if (s < 0) {
951 /* l > c, c < r - need to know more */
952 s = qsort_cmp(u_right, u_left);
953 if (s < 0) {
954 /* l > c, c < r, l < r - swap l & c to get ordered */
955 qsort_swap(u_right, pc_left);
956 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
957 } else if (s == 0) {
958 /* l > c, c < r, l == r - swap l & c, grow pc */
959 qsort_swap(u_right, pc_left);
960 ++pc_right;
961 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
962 } else {
963 /* l > c, c < r, l > r - rotate lcr into crl to order */
964 qsort_rotate(u_right, pc_left, u_left);
965 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
966 }
967 } else if (s == 0) {
968 /* l > c, c == r - swap ends, grow pc */
969 qsort_swap(u_right, u_left);
970 --pc_left;
971 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
972 } else {
973 /* l > c, c > r - swap ends to get in order */
974 qsort_swap(u_right, u_left);
975 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
976 }
977 }
978 /* We now know the 3 middle elements have been compared and
979 arranged in the desired order, so we can shrink the uncompared
980 sets on both sides
981 */
982 --u_right;
983 ++u_left;
984 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
985
986 /* The above massive nested if was the simple part :-). We now have
987 the middle 3 elements ordered and we need to scan through the
988 uncompared sets on either side, swapping elements that are on
989 the wrong side or simply shuffling equal elements around to get
990 all equal elements into the pivot chunk.
991 */
992
993 for ( ; ; ) {
994 int still_work_on_left;
995 int still_work_on_right;
996
997 /* Scan the uncompared values on the left. If I find a value
998 equal to the pivot value, move it over so it is adjacent to
999 the pivot chunk and expand the pivot chunk. If I find a value
1000 less than the pivot value, then just leave it - its already
1001 on the correct side of the partition. If I find a greater
1002 value, then stop the scan.
1003 */
1004 while ((still_work_on_left = (u_right >= part_left))) {
1005 s = qsort_cmp(u_right, pc_left);
1006 if (s < 0) {
1007 --u_right;
1008 } else if (s == 0) {
1009 --pc_left;
1010 if (pc_left != u_right) {
1011 qsort_swap(u_right, pc_left);
1012 }
1013 --u_right;
1014 } else {
1015 break;
1016 }
1017 qsort_assert(u_right < pc_left);
1018 qsort_assert(pc_left <= pc_right);
1019 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1020 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1021 }
1022
1023 /* Do a mirror image scan of uncompared values on the right
1024 */
1025 while ((still_work_on_right = (u_left <= part_right))) {
1026 s = qsort_cmp(pc_right, u_left);
1027 if (s < 0) {
1028 ++u_left;
1029 } else if (s == 0) {
1030 ++pc_right;
1031 if (pc_right != u_left) {
1032 qsort_swap(pc_right, u_left);
1033 }
1034 ++u_left;
1035 } else {
1036 break;
1037 }
1038 qsort_assert(u_left > pc_right);
1039 qsort_assert(pc_left <= pc_right);
1040 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1041 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1042 }
1043
1044 if (still_work_on_left) {
1045 /* I know I have a value on the left side which needs to be
1046 on the right side, but I need to know more to decide
1047 exactly the best thing to do with it.
1048 */
1049 if (still_work_on_right) {
1050 /* I know I have values on both side which are out of
1051 position. This is a big win because I kill two birds
1052 with one swap (so to speak). I can advance the
1053 uncompared pointers on both sides after swapping both
1054 of them into the right place.
1055 */
1056 qsort_swap(u_right, u_left);
1057 --u_right;
1058 ++u_left;
1059 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1060 } else {
1061 /* I have an out of position value on the left, but the
1062 right is fully scanned, so I "slide" the pivot chunk
1063 and any less-than values left one to make room for the
1064 greater value over on the right. If the out of position
1065 value is immediately adjacent to the pivot chunk (there
1066 are no less-than values), I can do that with a swap,
1067 otherwise, I have to rotate one of the less than values
1068 into the former position of the out of position value
1069 and the right end of the pivot chunk into the left end
1070 (got all that?).
1071 */
1072 --pc_left;
1073 if (pc_left == u_right) {
1074 qsort_swap(u_right, pc_right);
1075 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1076 } else {
1077 qsort_rotate(u_right, pc_left, pc_right);
1078 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1079 }
1080 --pc_right;
1081 --u_right;
1082 }
1083 } else if (still_work_on_right) {
1084 /* Mirror image of complex case above: I have an out of
1085 position value on the right, but the left is fully
1086 scanned, so I need to shuffle things around to make room
1087 for the right value on the left.
1088 */
1089 ++pc_right;
1090 if (pc_right == u_left) {
1091 qsort_swap(u_left, pc_left);
1092 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1093 } else {
1094 qsort_rotate(pc_right, pc_left, u_left);
1095 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1096 }
1097 ++pc_left;
1098 ++u_left;
1099 } else {
1100 /* No more scanning required on either side of partition,
1101 break out of loop and figure out next set of partitions
1102 */
1103 break;
1104 }
1105 }
1106
1107 /* The elements in the pivot chunk are now in the right place. They
1108 will never move or be compared again. All I have to do is decide
1109 what to do with the stuff to the left and right of the pivot
1110 chunk.
1111
1112 Notes on the QSORT_ORDER_GUESS ifdef code:
1113
1114 1. If I just built these partitions without swapping any (or
1115 very many) elements, there is a chance that the elements are
1116 already ordered properly (being properly ordered will
1117 certainly result in no swapping, but the converse can't be
1118 proved :-).
1119
1120 2. A (properly written) insertion sort will run faster on
1121 already ordered data than qsort will.
1122
1123 3. Perhaps there is some way to make a good guess about
1124 switching to an insertion sort earlier than partition size 6
1125 (for instance - we could save the partition size on the stack
1126 and increase the size each time we find we didn't swap, thus
1127 switching to insertion sort earlier for partitions with a
1128 history of not swapping).
1129
1130 4. Naturally, if I just switch right away, it will make
1131 artificial benchmarks with pure ascending (or descending)
1132 data look really good, but is that a good reason in general?
1133 Hard to say...
1134 */
1135
1136#ifdef QSORT_ORDER_GUESS
1137 if (swapped < 3) {
1138#if QSORT_ORDER_GUESS == 1
1139 qsort_break_even = (part_right - part_left) + 1;
1140#endif
1141#if QSORT_ORDER_GUESS == 2
1142 qsort_break_even *= 2;
1143#endif
1144#if QSORT_ORDER_GUESS == 3
1145 const int prev_break = qsort_break_even;
1146 qsort_break_even *= qsort_break_even;
1147 if (qsort_break_even < prev_break) {
1148 qsort_break_even = (part_right - part_left) + 1;
1149 }
1150#endif
1151 } else {
1152 qsort_break_even = QSORT_BREAK_EVEN;
1153 }
1154#endif
1155
1156 if (part_left < pc_left) {
1157 /* There are elements on the left which need more processing.
1158 Check the right as well before deciding what to do.
1159 */
1160 if (pc_right < part_right) {
1161 /* We have two partitions to be sorted. Stack the biggest one
1162 and process the smallest one on the next iteration. This
1163 minimizes the stack height by insuring that any additional
1164 stack entries must come from the smallest partition which
1165 (because it is smallest) will have the fewest
1166 opportunities to generate additional stack entries.
1167 */
1168 if ((part_right - pc_right) > (pc_left - part_left)) {
1169 /* stack the right partition, process the left */
1170 partition_stack[next_stack_entry].left = pc_right + 1;
1171 partition_stack[next_stack_entry].right = part_right;
1172#ifdef QSORT_ORDER_GUESS
1173 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1174#endif
1175 part_right = pc_left - 1;
1176 } else {
1177 /* stack the left partition, process the right */
1178 partition_stack[next_stack_entry].left = part_left;
1179 partition_stack[next_stack_entry].right = pc_left - 1;
1180#ifdef QSORT_ORDER_GUESS
1181 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1182#endif
1183 part_left = pc_right + 1;
1184 }
1185 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1186 ++next_stack_entry;
1187 } else {
1188 /* The elements on the left are the only remaining elements
1189 that need sorting, arrange for them to be processed as the
1190 next partition.
1191 */
1192 part_right = pc_left - 1;
1193 }
1194 } else if (pc_right < part_right) {
1195 /* There is only one chunk on the right to be sorted, make it
1196 the new partition and loop back around.
1197 */
1198 part_left = pc_right + 1;
1199 } else {
1200 /* This whole partition wound up in the pivot chunk, so
1201 we need to get a new partition off the stack.
1202 */
1203 if (next_stack_entry == 0) {
1204 /* the stack is empty - we are done */
1205 break;
1206 }
1207 --next_stack_entry;
1208 part_left = partition_stack[next_stack_entry].left;
1209 part_right = partition_stack[next_stack_entry].right;
1210#ifdef QSORT_ORDER_GUESS
1211 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1212#endif
1213 }
1214 } else {
1215 /* This partition is too small to fool with qsort complexity, just
1216 do an ordinary insertion sort to minimize overhead.
1217 */
1218 int i;
1219 /* Assume 1st element is in right place already, and start checking
1220 at 2nd element to see where it should be inserted.
1221 */
1222 for (i = part_left + 1; i <= part_right; ++i) {
1223 int j;
1224 /* Scan (backwards - just in case 'i' is already in right place)
1225 through the elements already sorted to see if the ith element
1226 belongs ahead of one of them.
1227 */
1228 for (j = i - 1; j >= part_left; --j) {
1229 if (qsort_cmp(i, j) >= 0) {
1230 /* i belongs right after j
1231 */
1232 break;
1233 }
1234 }
1235 ++j;
1236 if (j != i) {
1237 /* Looks like we really need to move some things
1238 */
1239 int k;
1240 temp = array[i];
1241 for (k = i - 1; k >= j; --k)
1242 array[k + 1] = array[k];
1243 array[j] = temp;
1244 }
1245 }
1246
1247 /* That partition is now sorted, grab the next one, or get out
1248 of the loop if there aren't any more.
1249 */
1250
1251 if (next_stack_entry == 0) {
1252 /* the stack is empty - we are done */
1253 break;
1254 }
1255 --next_stack_entry;
1256 part_left = partition_stack[next_stack_entry].left;
1257 part_right = partition_stack[next_stack_entry].right;
1258#ifdef QSORT_ORDER_GUESS
1259 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1260#endif
1261 }
1262 }
1263
1264 /* Believe it or not, the array is sorted at this point! */
1265}
1266
1267/* Stabilize what is, presumably, an otherwise unstable sort method.
1268 * We do that by allocating (or having on hand) an array of pointers
1269 * that is the same size as the original array of elements to be sorted.
1270 * We initialize this parallel array with the addresses of the original
1271 * array elements. This indirection can make you crazy.
1272 * Some pictures can help. After initializing, we have
1273 *
1274 * indir list1
1275 * +----+ +----+
1276 * | | --------------> | | ------> first element to be sorted
1277 * +----+ +----+
1278 * | | --------------> | | ------> second element to be sorted
1279 * +----+ +----+
1280 * | | --------------> | | ------> third element to be sorted
1281 * +----+ +----+
1282 * ...
1283 * +----+ +----+
1284 * | | --------------> | | ------> n-1st element to be sorted
1285 * +----+ +----+
1286 * | | --------------> | | ------> n-th element to be sorted
1287 * +----+ +----+
1288 *
1289 * During the sort phase, we leave the elements of list1 where they are,
1290 * and sort the pointers in the indirect array in the same order determined
1291 * by the original comparison routine on the elements pointed to.
1292 * Because we don't move the elements of list1 around through
1293 * this phase, we can break ties on elements that compare equal
1294 * using their address in the list1 array, ensuring stability.
1295 * This leaves us with something looking like
1296 *
1297 * indir list1
1298 * +----+ +----+
1299 * | | --+ +---> | | ------> first element to be sorted
1300 * +----+ | | +----+
1301 * | | --|-------|---> | | ------> second element to be sorted
1302 * +----+ | | +----+
1303 * | | --|-------+ +-> | | ------> third element to be sorted
1304 * +----+ | | +----+
1305 * ...
1306 * +----+ | | | | +----+
1307 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1308 * +----+ | | +----+
1309 * | | ---+ +----> | | ------> n-th element to be sorted
1310 * +----+ +----+
1311 *
1312 * where the i-th element of the indirect array points to the element
1313 * that should be i-th in the sorted array. After the sort phase,
1314 * we have to put the elements of list1 into the places
1315 * dictated by the indirect array.
1316 */
1317
1318
1319static I32
1320cmpindir(pTHX_ gptr const a, gptr const b)
1321{
1322 dVAR;
1323 gptr * const ap = (gptr *)a;
1324 gptr * const bp = (gptr *)b;
1325 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1326
1327 if (sense)
1328 return sense;
1329 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1330}
1331
1332static I32
1333cmpindir_desc(pTHX_ gptr const a, gptr const b)
1334{
1335 dVAR;
1336 gptr * const ap = (gptr *)a;
1337 gptr * const bp = (gptr *)b;
1338 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1339
1340 /* Reverse the default */
1341 if (sense)
1342 return -sense;
1343 /* But don't reverse the stability test. */
1344 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1345
1346}
1347
1348STATIC void
1349S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1350{
1351 dVAR;
1352 if ((flags & SORTf_STABLE) != 0) {
1353 register gptr **pp, *q;
1354 register size_t n, j, i;
1355 gptr *small[SMALLSORT], **indir, tmp;
1356 SVCOMPARE_t savecmp;
1357 if (nmemb <= 1) return; /* sorted trivially */
1358
1359 /* Small arrays can use the stack, big ones must be allocated */
1360 if (nmemb <= SMALLSORT) indir = small;
1361 else { Newx(indir, nmemb, gptr *); }
1362
1363 /* Copy pointers to original array elements into indirect array */
1364 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
1365
1366 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1367 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
1368
1369 /* sort, with indirection */
1370 if (flags & SORTf_DESC)
1371 qsortsvu((gptr *)indir, nmemb, cmpindir_desc);
1372 else
1373 qsortsvu((gptr *)indir, nmemb, cmpindir);
1374
1375 pp = indir;
1376 q = list1;
1377 for (n = nmemb; n--; ) {
1378 /* Assert A: all elements of q with index > n are already
1379 * in place. This is vacuously true at the start, and we
1380 * put element n where it belongs below (if it wasn't
1381 * already where it belonged). Assert B: we only move
1382 * elements that aren't where they belong,
1383 * so, by A, we never tamper with elements above n.
1384 */
1385 j = pp[n] - q; /* This sets j so that q[j] is
1386 * at pp[n]. *pp[j] belongs in
1387 * q[j], by construction.
1388 */
1389 if (n != j) { /* all's well if n == j */
1390 tmp = q[j]; /* save what's in q[j] */
1391 do {
1392 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1393 i = pp[j] - q; /* the index in q of the element
1394 * just moved */
1395 pp[j] = q + j; /* this is ok now */
1396 } while ((j = i) != n);
1397 /* There are only finitely many (nmemb) addresses
1398 * in the pp array.
1399 * So we must eventually revisit an index we saw before.
1400 * Suppose the first revisited index is k != n.
1401 * An index is visited because something else belongs there.
1402 * If we visit k twice, then two different elements must
1403 * belong in the same place, which cannot be.
1404 * So j must get back to n, the loop terminates,
1405 * and we put the saved element where it belongs.
1406 */
1407 q[n] = tmp; /* put what belongs into
1408 * the n-th element */
1409 }
1410 }
1411
1412 /* free iff allocated */
1413 if (indir != small) { Safefree(indir); }
1414 /* restore prevailing comparison routine */
1415 PL_sort_RealCmp = savecmp;
1416 } else if ((flags & SORTf_DESC) != 0) {
1417 const SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1418 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1419 cmp = cmp_desc;
1420 qsortsvu(list1, nmemb, cmp);
1421 /* restore prevailing comparison routine */
1422 PL_sort_RealCmp = savecmp;
1423 } else {
1424 qsortsvu(list1, nmemb, cmp);
1425 }
1426}
1427
1428/*
1429=head1 Array Manipulation Functions
1430
1431=for apidoc sortsv
1432
1433Sort an array. Here is an example:
1434
1435 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
1436
1437Currently this always uses mergesort. See sortsv_flags for a more
1438flexible routine.
1439
1440=cut
1441*/
1442
1443void
1444Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1445{
1446 PERL_ARGS_ASSERT_SORTSV;
1447
1448 sortsv_flags(array, nmemb, cmp, 0);
1449}
1450
1451/*
1452=for apidoc sortsv_flags
1453
1454Sort an array, with various options.
1455
1456=cut
1457*/
1458void
1459Perl_sortsv_flags(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1460{
1461 PERL_ARGS_ASSERT_SORTSV_FLAGS;
1462
1463 if (flags & SORTf_QSORT)
1464 S_qsortsv(aTHX_ array, nmemb, cmp, flags);
1465 else
1466 S_mergesortsv(aTHX_ array, nmemb, cmp, flags);
1467}
1468
1469#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1470#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1471#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1472
1473PP(pp_sort)
1474{
1475 dVAR; dSP; dMARK; dORIGMARK;
1476 register SV **p1 = ORIGMARK+1, **p2;
1477 register I32 max, i;
1478 AV* av = NULL;
1479 HV *stash;
1480 GV *gv;
1481 CV *cv = NULL;
1482 I32 gimme = GIMME;
1483 OP* const nextop = PL_op->op_next;
1484 I32 overloading = 0;
1485 bool hasargs = FALSE;
1486 I32 is_xsub = 0;
1487 I32 sorting_av = 0;
1488 const U8 priv = PL_op->op_private;
1489 const U8 flags = PL_op->op_flags;
1490 U32 sort_flags = 0;
1491 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1492 = Perl_sortsv_flags;
1493 I32 all_SIVs = 1;
1494
1495 if ((priv & OPpSORT_DESCEND) != 0)
1496 sort_flags |= SORTf_DESC;
1497 if ((priv & OPpSORT_QSORT) != 0)
1498 sort_flags |= SORTf_QSORT;
1499 if ((priv & OPpSORT_STABLE) != 0)
1500 sort_flags |= SORTf_STABLE;
1501
1502 if (gimme != G_ARRAY) {
1503 SP = MARK;
1504 EXTEND(SP,1);
1505 RETPUSHUNDEF;
1506 }
1507
1508 ENTER;
1509 SAVEVPTR(PL_sortcop);
1510 if (flags & OPf_STACKED) {
1511 if (flags & OPf_SPECIAL) {
1512 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1513 kid = kUNOP->op_first; /* pass rv2gv */
1514 kid = kUNOP->op_first; /* pass leave */
1515 PL_sortcop = kid->op_next;
1516 stash = CopSTASH(PL_curcop);
1517 }
1518 else {
1519 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1520 if (cv && SvPOK(cv)) {
1521 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
1522 if (proto && strEQ(proto, "$$")) {
1523 hasargs = TRUE;
1524 }
1525 }
1526 if (!(cv && CvROOT(cv))) {
1527 if (cv && CvISXSUB(cv)) {
1528 is_xsub = 1;
1529 }
1530 else if (gv) {
1531 SV *tmpstr = sv_newmortal();
1532 gv_efullname3(tmpstr, gv, NULL);
1533 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1534 SVfARG(tmpstr));
1535 }
1536 else {
1537 DIE(aTHX_ "Undefined subroutine in sort");
1538 }
1539 }
1540
1541 if (is_xsub)
1542 PL_sortcop = (OP*)cv;
1543 else
1544 PL_sortcop = CvSTART(cv);
1545 }
1546 }
1547 else {
1548 PL_sortcop = NULL;
1549 stash = CopSTASH(PL_curcop);
1550 }
1551
1552 /* optimiser converts "@a = sort @a" to "sort \@a";
1553 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1554 * result back to @a at the end of this function */
1555 if (priv & OPpSORT_INPLACE) {
1556 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1557 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1558 av = MUTABLE_AV((*SP));
1559 max = AvFILL(av) + 1;
1560 if (SvMAGICAL(av)) {
1561 MEXTEND(SP, max);
1562 for (i=0; i < max; i++) {
1563 SV **svp = av_fetch(av, i, FALSE);
1564 *SP++ = (svp) ? *svp : NULL;
1565 }
1566 SP--;
1567 p1 = p2 = SP - (max-1);
1568 }
1569 else {
1570 if (SvREADONLY(av))
1571 Perl_croak_no_modify(aTHX);
1572 else
1573 SvREADONLY_on(av);
1574 p1 = p2 = AvARRAY(av);
1575 sorting_av = 1;
1576 }
1577 }
1578 else {
1579 p2 = MARK+1;
1580 max = SP - MARK;
1581 }
1582
1583 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1584 * any nulls; also stringify or converting to integer or number as
1585 * required any args */
1586 for (i=max; i > 0 ; i--) {
1587 if ((*p1 = *p2++)) { /* Weed out nulls. */
1588 SvTEMP_off(*p1);
1589 if (!PL_sortcop) {
1590 if (priv & OPpSORT_NUMERIC) {
1591 if (priv & OPpSORT_INTEGER) {
1592 if (!SvIOK(*p1))
1593 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1594 }
1595 else {
1596 if (!SvNSIOK(*p1))
1597 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1598 if (all_SIVs && !SvSIOK(*p1))
1599 all_SIVs = 0;
1600 }
1601 }
1602 else {
1603 if (!SvPOK(*p1))
1604 (void)sv_2pv_flags(*p1, 0,
1605 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
1606 }
1607 if (SvAMAGIC(*p1))
1608 overloading = 1;
1609 }
1610 p1++;
1611 }
1612 else
1613 max--;
1614 }
1615 if (sorting_av)
1616 AvFILLp(av) = max-1;
1617
1618 if (max > 1) {
1619 SV **start;
1620 if (PL_sortcop) {
1621 PERL_CONTEXT *cx;
1622 SV** newsp;
1623 const bool oldcatch = CATCH_GET;
1624
1625 SAVETMPS;
1626 SAVEOP();
1627
1628 CATCH_SET(TRUE);
1629 PUSHSTACKi(PERLSI_SORT);
1630 if (!hasargs && !is_xsub) {
1631 SAVESPTR(PL_firstgv);
1632 SAVESPTR(PL_secondgv);
1633 SAVESPTR(PL_sortstash);
1634 PL_firstgv = gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV);
1635 PL_secondgv = gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV);
1636 PL_sortstash = stash;
1637 SAVESPTR(GvSV(PL_firstgv));
1638 SAVESPTR(GvSV(PL_secondgv));
1639 }
1640
1641 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1642 if (!(flags & OPf_SPECIAL)) {
1643 cx->cx_type = CXt_SUB;
1644 cx->blk_gimme = G_SCALAR;
1645 /* If our comparison routine is already active (CvDEPTH is
1646 * is not 0), then PUSHSUB does not increase the refcount,
1647 * so we have to do it ourselves, because the LEAVESUB fur-
1648 * ther down lowers it. */
1649 if (CvDEPTH(cv)) SvREFCNT_inc_simple_void_NN(cv);
1650 PUSHSUB(cx);
1651 if (!is_xsub) {
1652 AV* const padlist = CvPADLIST(cv);
1653
1654 if (++CvDEPTH(cv) >= 2) {
1655 PERL_STACK_OVERFLOW_CHECK();
1656 pad_push(padlist, CvDEPTH(cv));
1657 }
1658 SAVECOMPPAD();
1659 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
1660
1661 if (hasargs) {
1662 /* This is mostly copied from pp_entersub */
1663 AV * const av = MUTABLE_AV(PAD_SVl(0));
1664
1665 cx->blk_sub.savearray = GvAV(PL_defgv);
1666 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
1667 CX_CURPAD_SAVE(cx->blk_sub);
1668 cx->blk_sub.argarray = av;
1669 }
1670
1671 }
1672 }
1673 cx->cx_type |= CXp_MULTICALL;
1674
1675 start = p1 - max;
1676 sortsvp(aTHX_ start, max,
1677 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1678 sort_flags);
1679
1680 if (!(flags & OPf_SPECIAL)) {
1681 SV *sv;
1682 /* Reset cx, in case the context stack has been
1683 reallocated. */
1684 cx = &cxstack[cxstack_ix];
1685 POPSUB(cx, sv);
1686 LEAVESUB(sv);
1687 }
1688 POPBLOCK(cx,PL_curpm);
1689 PL_stack_sp = newsp;
1690 POPSTACK;
1691 CATCH_SET(oldcatch);
1692 }
1693 else {
1694 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1695 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1696 sortsvp(aTHX_ start, max,
1697 (priv & OPpSORT_NUMERIC)
1698 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
1699 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1700 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
1701 : ( IN_LOCALE_RUNTIME
1702 ? ( overloading
1703 ? (SVCOMPARE_t)S_amagic_cmp_locale
1704 : (SVCOMPARE_t)sv_cmp_locale_static)
1705 : ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)),
1706 sort_flags);
1707 }
1708 if ((priv & OPpSORT_REVERSE) != 0) {
1709 SV **q = start+max-1;
1710 while (start < q) {
1711 SV * const tmp = *start;
1712 *start++ = *q;
1713 *q-- = tmp;
1714 }
1715 }
1716 }
1717 if (sorting_av)
1718 SvREADONLY_off(av);
1719 else if (av && !sorting_av) {
1720 /* simulate pp_aassign of tied AV */
1721 SV** const base = MARK+1;
1722 for (i=0; i < max; i++) {
1723 base[i] = newSVsv(base[i]);
1724 }
1725 av_clear(av);
1726 av_extend(av, max);
1727 for (i=0; i < max; i++) {
1728 SV * const sv = base[i];
1729 SV ** const didstore = av_store(av, i, sv);
1730 if (SvSMAGICAL(sv))
1731 mg_set(sv);
1732 if (!didstore)
1733 sv_2mortal(sv);
1734 }
1735 }
1736 LEAVE;
1737 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
1738 return nextop;
1739}
1740
1741static I32
1742S_sortcv(pTHX_ SV *const a, SV *const b)
1743{
1744 dVAR;
1745 const I32 oldsaveix = PL_savestack_ix;
1746 const I32 oldscopeix = PL_scopestack_ix;
1747 I32 result;
1748 PMOP * const pm = PL_curpm;
1749
1750 PERL_ARGS_ASSERT_SORTCV;
1751
1752 GvSV(PL_firstgv) = a;
1753 GvSV(PL_secondgv) = b;
1754 PL_stack_sp = PL_stack_base;
1755 PL_op = PL_sortcop;
1756 CALLRUNOPS(aTHX);
1757 if (PL_stack_sp != PL_stack_base + 1)
1758 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1759 result = SvIV(*PL_stack_sp);
1760 while (PL_scopestack_ix > oldscopeix) {
1761 LEAVE;
1762 }
1763 leave_scope(oldsaveix);
1764 PL_curpm = pm;
1765 return result;
1766}
1767
1768static I32
1769S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1770{
1771 dVAR;
1772 const I32 oldsaveix = PL_savestack_ix;
1773 const I32 oldscopeix = PL_scopestack_ix;
1774 I32 result;
1775 AV * const av = GvAV(PL_defgv);
1776 PMOP * const pm = PL_curpm;
1777
1778 PERL_ARGS_ASSERT_SORTCV_STACKED;
1779
1780 if (AvREAL(av)) {
1781 av_clear(av);
1782 AvREAL_off(av);
1783 AvREIFY_on(av);
1784 }
1785 if (AvMAX(av) < 1) {
1786 SV **ary = AvALLOC(av);
1787 if (AvARRAY(av) != ary) {
1788 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1789 AvARRAY(av) = ary;
1790 }
1791 if (AvMAX(av) < 1) {
1792 AvMAX(av) = 1;
1793 Renew(ary,2,SV*);
1794 AvARRAY(av) = ary;
1795 AvALLOC(av) = ary;
1796 }
1797 }
1798 AvFILLp(av) = 1;
1799
1800 AvARRAY(av)[0] = a;
1801 AvARRAY(av)[1] = b;
1802 PL_stack_sp = PL_stack_base;
1803 PL_op = PL_sortcop;
1804 CALLRUNOPS(aTHX);
1805 if (PL_stack_sp != PL_stack_base + 1)
1806 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1807 result = SvIV(*PL_stack_sp);
1808 while (PL_scopestack_ix > oldscopeix) {
1809 LEAVE;
1810 }
1811 leave_scope(oldsaveix);
1812 PL_curpm = pm;
1813 return result;
1814}
1815
1816static I32
1817S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1818{
1819 dVAR; dSP;
1820 const I32 oldsaveix = PL_savestack_ix;
1821 const I32 oldscopeix = PL_scopestack_ix;
1822 CV * const cv=MUTABLE_CV(PL_sortcop);
1823 I32 result;
1824 PMOP * const pm = PL_curpm;
1825
1826 PERL_ARGS_ASSERT_SORTCV_XSUB;
1827
1828 SP = PL_stack_base;
1829 PUSHMARK(SP);
1830 EXTEND(SP, 2);
1831 *++SP = a;
1832 *++SP = b;
1833 PUTBACK;
1834 (void)(*CvXSUB(cv))(aTHX_ cv);
1835 if (PL_stack_sp != PL_stack_base + 1)
1836 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1837 result = SvIV(*PL_stack_sp);
1838 while (PL_scopestack_ix > oldscopeix) {
1839 LEAVE;
1840 }
1841 leave_scope(oldsaveix);
1842 PL_curpm = pm;
1843 return result;
1844}
1845
1846
1847static I32
1848S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1849{
1850 const NV nv1 = SvNSIV(a);
1851 const NV nv2 = SvNSIV(b);
1852
1853 PERL_ARGS_ASSERT_SV_NCMP;
1854
1855 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1856}
1857
1858static I32
1859S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1860{
1861 const IV iv1 = SvIV(a);
1862 const IV iv2 = SvIV(b);
1863
1864 PERL_ARGS_ASSERT_SV_I_NCMP;
1865
1866 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1867}
1868
1869#define tryCALL_AMAGICbin(left,right,meth) \
1870 (SvAMAGIC(left)||SvAMAGIC(right)) \
1871 ? amagic_call(left, right, meth, 0) \
1872 : NULL;
1873
1874#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
1875
1876static I32
1877S_amagic_ncmp(pTHX_ register SV *const a, register SV *const b)
1878{
1879 dVAR;
1880 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1881
1882 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1883
1884 if (tmpsv) {
1885 if (SvIOK(tmpsv)) {
1886 const I32 i = SvIVX(tmpsv);
1887 return SORT_NORMAL_RETURN_VALUE(i);
1888 }
1889 else {
1890 const NV d = SvNV(tmpsv);
1891 return SORT_NORMAL_RETURN_VALUE(d);
1892 }
1893 }
1894 return S_sv_ncmp(aTHX_ a, b);
1895}
1896
1897static I32
1898S_amagic_i_ncmp(pTHX_ register SV *const a, register SV *const b)
1899{
1900 dVAR;
1901 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1902
1903 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1904
1905 if (tmpsv) {
1906 if (SvIOK(tmpsv)) {
1907 const I32 i = SvIVX(tmpsv);
1908 return SORT_NORMAL_RETURN_VALUE(i);
1909 }
1910 else {
1911 const NV d = SvNV(tmpsv);
1912 return SORT_NORMAL_RETURN_VALUE(d);
1913 }
1914 }
1915 return S_sv_i_ncmp(aTHX_ a, b);
1916}
1917
1918static I32
1919S_amagic_cmp(pTHX_ register SV *const str1, register SV *const str2)
1920{
1921 dVAR;
1922 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1923
1924 PERL_ARGS_ASSERT_AMAGIC_CMP;
1925
1926 if (tmpsv) {
1927 if (SvIOK(tmpsv)) {
1928 const I32 i = SvIVX(tmpsv);
1929 return SORT_NORMAL_RETURN_VALUE(i);
1930 }
1931 else {
1932 const NV d = SvNV(tmpsv);
1933 return SORT_NORMAL_RETURN_VALUE(d);
1934 }
1935 }
1936 return sv_cmp(str1, str2);
1937}
1938
1939static I32
1940S_amagic_cmp_locale(pTHX_ register SV *const str1, register SV *const str2)
1941{
1942 dVAR;
1943 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1944
1945 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1946
1947 if (tmpsv) {
1948 if (SvIOK(tmpsv)) {
1949 const I32 i = SvIVX(tmpsv);
1950 return SORT_NORMAL_RETURN_VALUE(i);
1951 }
1952 else {
1953 const NV d = SvNV(tmpsv);
1954 return SORT_NORMAL_RETURN_VALUE(d);
1955 }
1956 }
1957 return sv_cmp_locale(str1, str2);
1958}
1959
1960/*
1961 * Local variables:
1962 * c-indentation-style: bsd
1963 * c-basic-offset: 4
1964 * indent-tabs-mode: t
1965 * End:
1966 *
1967 * ex: set ts=8 sts=4 sw=4 noet:
1968 */