This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
PATCH: [perl #127581] Spurious warning about posix class
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21=cut
22
23This file contains all the stuff needed by perl for manipulating numeric
24values, including such things as replacements for the OS's atof() function
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32U32
33Perl_cast_ulong(NV f)
34{
35 if (f < 0.0)
36 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
37 if (f < U32_MAX_P1) {
38#if CASTFLAGS & 2
39 if (f < U32_MAX_P1_HALF)
40 return (U32) f;
41 f -= U32_MAX_P1_HALF;
42 return ((U32) f) | (1 + (U32_MAX >> 1));
43#else
44 return (U32) f;
45#endif
46 }
47 return f > 0 ? U32_MAX : 0 /* NaN */;
48}
49
50I32
51Perl_cast_i32(NV f)
52{
53 if (f < I32_MAX_P1)
54 return f < I32_MIN ? I32_MIN : (I32) f;
55 if (f < U32_MAX_P1) {
56#if CASTFLAGS & 2
57 if (f < U32_MAX_P1_HALF)
58 return (I32)(U32) f;
59 f -= U32_MAX_P1_HALF;
60 return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
61#else
62 return (I32)(U32) f;
63#endif
64 }
65 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
66}
67
68IV
69Perl_cast_iv(NV f)
70{
71 if (f < IV_MAX_P1)
72 return f < IV_MIN ? IV_MIN : (IV) f;
73 if (f < UV_MAX_P1) {
74#if CASTFLAGS & 2
75 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
76 if (f < UV_MAX_P1_HALF)
77 return (IV)(UV) f;
78 f -= UV_MAX_P1_HALF;
79 return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
80#else
81 return (IV)(UV) f;
82#endif
83 }
84 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
85}
86
87UV
88Perl_cast_uv(NV f)
89{
90 if (f < 0.0)
91 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
92 if (f < UV_MAX_P1) {
93#if CASTFLAGS & 2
94 if (f < UV_MAX_P1_HALF)
95 return (UV) f;
96 f -= UV_MAX_P1_HALF;
97 return ((UV) f) | (1 + (UV_MAX >> 1));
98#else
99 return (UV) f;
100#endif
101 }
102 return f > 0 ? UV_MAX : 0 /* NaN */;
103}
104
105/*
106=for apidoc grok_bin
107
108converts a string representing a binary number to numeric form.
109
110On entry C<start> and C<*len> give the string to scan, C<*flags> gives
111conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
112The scan stops at the end of the string, or the first invalid character.
113Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
114invalid character will also trigger a warning.
115On return C<*len> is set to the length of the scanned string,
116and C<*flags> gives output flags.
117
118If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
119and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
120returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
121and writes the value to C<*result> (or the value is discarded if C<result>
122is NULL).
123
124The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
125C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
126C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the binary
127number may use C<"_"> characters to separate digits.
128
129=cut
130
131Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
132which suppresses any message for non-portable numbers that are still valid
133on this platform.
134 */
135
136UV
137Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
138{
139 const char *s = start;
140 STRLEN len = *len_p;
141 UV value = 0;
142 NV value_nv = 0;
143
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
147 char bit;
148
149 PERL_ARGS_ASSERT_GROK_BIN;
150
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
154 numbers. */
155 if (len >= 1) {
156 if (isALPHA_FOLD_EQ(s[0], 'b')) {
157 s++;
158 len--;
159 }
160 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
161 s+=2;
162 len-=2;
163 }
164 }
165 }
166
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
172 redo:
173 if (!overflowed) {
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
176 continue;
177 }
178 /* Bah. We're just overflowed. */
179 /* diag_listed_as: Integer overflow in %s number */
180 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
181 "Integer overflow in binary number");
182 overflowed = TRUE;
183 value_nv = (NV) value;
184 }
185 value_nv *= 2.0;
186 /* If an NV has not enough bits in its mantissa to
187 * represent a UV this summing of small low-order numbers
188 * is a waste of time (because the NV cannot preserve
189 * the low-order bits anyway): we could just remember when
190 * did we overflow and in the end just multiply value_nv by the
191 * right amount. */
192 value_nv += (NV)(bit - '0');
193 continue;
194 }
195 if (bit == '_' && len && allow_underscores && (bit = s[1])
196 && (bit == '0' || bit == '1'))
197 {
198 --len;
199 ++s;
200 goto redo;
201 }
202 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
203 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
204 "Illegal binary digit '%c' ignored", *s);
205 break;
206 }
207
208 if ( ( overflowed && value_nv > 4294967295.0)
209#if UVSIZE > 4
210 || (!overflowed && value > 0xffffffff
211 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
212#endif
213 ) {
214 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
215 "Binary number > 0b11111111111111111111111111111111 non-portable");
216 }
217 *len_p = s - start;
218 if (!overflowed) {
219 *flags = 0;
220 return value;
221 }
222 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
223 if (result)
224 *result = value_nv;
225 return UV_MAX;
226}
227
228/*
229=for apidoc grok_hex
230
231converts a string representing a hex number to numeric form.
232
233On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
234conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
235The scan stops at the end of the string, or the first invalid character.
236Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
237invalid character will also trigger a warning.
238On return C<*len> is set to the length of the scanned string,
239and C<*flags> gives output flags.
240
241If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
242and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
243returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
244and writes the value to C<*result> (or the value is discarded if C<result>
245is C<NULL>).
246
247The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
248C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry. If
249C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the hex
250number may use C<"_"> characters to separate digits.
251
252=cut
253
254Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
255which suppresses any message for non-portable numbers, but which are valid
256on this platform.
257 */
258
259UV
260Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
261{
262 const char *s = start;
263 STRLEN len = *len_p;
264 UV value = 0;
265 NV value_nv = 0;
266 const UV max_div_16 = UV_MAX / 16;
267 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
268 bool overflowed = FALSE;
269
270 PERL_ARGS_ASSERT_GROK_HEX;
271
272 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
273 /* strip off leading x or 0x.
274 for compatibility silently suffer "x" and "0x" as valid hex numbers.
275 */
276 if (len >= 1) {
277 if (isALPHA_FOLD_EQ(s[0], 'x')) {
278 s++;
279 len--;
280 }
281 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
282 s+=2;
283 len-=2;
284 }
285 }
286 }
287
288 for (; len-- && *s; s++) {
289 if (isXDIGIT(*s)) {
290 /* Write it in this wonky order with a goto to attempt to get the
291 compiler to make the common case integer-only loop pretty tight.
292 With gcc seems to be much straighter code than old scan_hex. */
293 redo:
294 if (!overflowed) {
295 if (value <= max_div_16) {
296 value = (value << 4) | XDIGIT_VALUE(*s);
297 continue;
298 }
299 /* Bah. We're just overflowed. */
300 /* diag_listed_as: Integer overflow in %s number */
301 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
302 "Integer overflow in hexadecimal number");
303 overflowed = TRUE;
304 value_nv = (NV) value;
305 }
306 value_nv *= 16.0;
307 /* If an NV has not enough bits in its mantissa to
308 * represent a UV this summing of small low-order numbers
309 * is a waste of time (because the NV cannot preserve
310 * the low-order bits anyway): we could just remember when
311 * did we overflow and in the end just multiply value_nv by the
312 * right amount of 16-tuples. */
313 value_nv += (NV) XDIGIT_VALUE(*s);
314 continue;
315 }
316 if (*s == '_' && len && allow_underscores && s[1]
317 && isXDIGIT(s[1]))
318 {
319 --len;
320 ++s;
321 goto redo;
322 }
323 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
324 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
325 "Illegal hexadecimal digit '%c' ignored", *s);
326 break;
327 }
328
329 if ( ( overflowed && value_nv > 4294967295.0)
330#if UVSIZE > 4
331 || (!overflowed && value > 0xffffffff
332 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
333#endif
334 ) {
335 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
336 "Hexadecimal number > 0xffffffff non-portable");
337 }
338 *len_p = s - start;
339 if (!overflowed) {
340 *flags = 0;
341 return value;
342 }
343 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
344 if (result)
345 *result = value_nv;
346 return UV_MAX;
347}
348
349/*
350=for apidoc grok_oct
351
352converts a string representing an octal number to numeric form.
353
354On entry C<start> and C<*len> give the string to scan, C<*flags> gives
355conversion flags, and C<result> should be C<NULL> or a pointer to an NV.
356The scan stops at the end of the string, or the first invalid character.
357Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>, encountering an
3588 or 9 will also trigger a warning.
359On return C<*len> is set to the length of the scanned string,
360and C<*flags> gives output flags.
361
362If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
363and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
364returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
365and writes the value to C<*result> (or the value is discarded if C<result>
366is C<NULL>).
367
368If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then the octal
369number may use C<"_"> characters to separate digits.
370
371=cut
372
373Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
374which suppresses any message for non-portable numbers, but which are valid
375on this platform.
376 */
377
378UV
379Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
380{
381 const char *s = start;
382 STRLEN len = *len_p;
383 UV value = 0;
384 NV value_nv = 0;
385 const UV max_div_8 = UV_MAX / 8;
386 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
387 bool overflowed = FALSE;
388
389 PERL_ARGS_ASSERT_GROK_OCT;
390
391 for (; len-- && *s; s++) {
392 if (isOCTAL(*s)) {
393 /* Write it in this wonky order with a goto to attempt to get the
394 compiler to make the common case integer-only loop pretty tight.
395 */
396 redo:
397 if (!overflowed) {
398 if (value <= max_div_8) {
399 value = (value << 3) | OCTAL_VALUE(*s);
400 continue;
401 }
402 /* Bah. We're just overflowed. */
403 /* diag_listed_as: Integer overflow in %s number */
404 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
405 "Integer overflow in octal number");
406 overflowed = TRUE;
407 value_nv = (NV) value;
408 }
409 value_nv *= 8.0;
410 /* If an NV has not enough bits in its mantissa to
411 * represent a UV this summing of small low-order numbers
412 * is a waste of time (because the NV cannot preserve
413 * the low-order bits anyway): we could just remember when
414 * did we overflow and in the end just multiply value_nv by the
415 * right amount of 8-tuples. */
416 value_nv += (NV) OCTAL_VALUE(*s);
417 continue;
418 }
419 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
420 --len;
421 ++s;
422 goto redo;
423 }
424 /* Allow \octal to work the DWIM way (that is, stop scanning
425 * as soon as non-octal characters are seen, complain only if
426 * someone seems to want to use the digits eight and nine. Since we
427 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
428 if (isDIGIT(*s)) {
429 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
430 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
431 "Illegal octal digit '%c' ignored", *s);
432 }
433 break;
434 }
435
436 if ( ( overflowed && value_nv > 4294967295.0)
437#if UVSIZE > 4
438 || (!overflowed && value > 0xffffffff
439 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
440#endif
441 ) {
442 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
443 "Octal number > 037777777777 non-portable");
444 }
445 *len_p = s - start;
446 if (!overflowed) {
447 *flags = 0;
448 return value;
449 }
450 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
451 if (result)
452 *result = value_nv;
453 return UV_MAX;
454}
455
456/*
457=for apidoc scan_bin
458
459For backwards compatibility. Use C<grok_bin> instead.
460
461=for apidoc scan_hex
462
463For backwards compatibility. Use C<grok_hex> instead.
464
465=for apidoc scan_oct
466
467For backwards compatibility. Use C<grok_oct> instead.
468
469=cut
470 */
471
472NV
473Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
474{
475 NV rnv;
476 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
477 const UV ruv = grok_bin (start, &len, &flags, &rnv);
478
479 PERL_ARGS_ASSERT_SCAN_BIN;
480
481 *retlen = len;
482 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
483}
484
485NV
486Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
487{
488 NV rnv;
489 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
490 const UV ruv = grok_oct (start, &len, &flags, &rnv);
491
492 PERL_ARGS_ASSERT_SCAN_OCT;
493
494 *retlen = len;
495 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
496}
497
498NV
499Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
500{
501 NV rnv;
502 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
503 const UV ruv = grok_hex (start, &len, &flags, &rnv);
504
505 PERL_ARGS_ASSERT_SCAN_HEX;
506
507 *retlen = len;
508 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
509}
510
511/*
512=for apidoc grok_numeric_radix
513
514Scan and skip for a numeric decimal separator (radix).
515
516=cut
517 */
518bool
519Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
520{
521#ifdef USE_LOCALE_NUMERIC
522 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
523
524 if (IN_LC(LC_NUMERIC)) {
525 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
526 STORE_LC_NUMERIC_SET_TO_NEEDED();
527 if (PL_numeric_radix_sv) {
528 STRLEN len;
529 const char * const radix = SvPV(PL_numeric_radix_sv, len);
530 if (*sp + len <= send && memEQ(*sp, radix, len)) {
531 *sp += len;
532 RESTORE_LC_NUMERIC();
533 return TRUE;
534 }
535 }
536 RESTORE_LC_NUMERIC();
537 }
538 /* always try "." if numeric radix didn't match because
539 * we may have data from different locales mixed */
540#endif
541
542 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
543
544 if (*sp < send && **sp == '.') {
545 ++*sp;
546 return TRUE;
547 }
548 return FALSE;
549}
550
551/*
552=for apidoc grok_infnan
553
554Helper for C<grok_number()>, accepts various ways of spelling "infinity"
555or "not a number", and returns one of the following flag combinations:
556
557 IS_NUMBER_INFINITE
558 IS_NUMBER_NAN
559 IS_NUMBER_INFINITE | IS_NUMBER_NEG
560 IS_NUMBER_NAN | IS_NUMBER_NEG
561 0
562
563possibly |-ed with C<IS_NUMBER_TRAILING>.
564
565If an infinity or a not-a-number is recognized, C<*sp> will point to
566one byte past the end of the recognized string. If the recognition fails,
567zero is returned, and C<*sp> will not move.
568
569=cut
570*/
571
572int
573Perl_grok_infnan(pTHX_ const char** sp, const char* send)
574{
575 const char* s = *sp;
576 int flags = 0;
577 bool odh = FALSE; /* one-dot-hash: 1.#INF */
578
579 PERL_ARGS_ASSERT_GROK_INFNAN;
580
581 if (*s == '+') {
582 s++; if (s == send) return 0;
583 }
584 else if (*s == '-') {
585 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
586 s++; if (s == send) return 0;
587 }
588
589 if (*s == '1') {
590 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
591 * Let's keep the dot optional. */
592 s++; if (s == send) return 0;
593 if (*s == '.') {
594 s++; if (s == send) return 0;
595 }
596 if (*s == '#') {
597 s++; if (s == send) return 0;
598 } else
599 return 0;
600 odh = TRUE;
601 }
602
603 if (isALPHA_FOLD_EQ(*s, 'I')) {
604 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
605
606 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
607 s++; if (s == send) return 0;
608 if (isALPHA_FOLD_EQ(*s, 'F')) {
609 s++;
610 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
611 int fail =
612 flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
613 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
614 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
615 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
616 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
617 s++;
618 } else if (odh) {
619 while (*s == '0') { /* 1.#INF00 */
620 s++;
621 }
622 }
623 while (s < send && isSPACE(*s))
624 s++;
625 if (s < send && *s) {
626 flags |= IS_NUMBER_TRAILING;
627 }
628 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
629 }
630 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
631 s++;
632 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
633 while (*s == '0') { /* 1.#IND00 */
634 s++;
635 }
636 if (*s) {
637 flags |= IS_NUMBER_TRAILING;
638 }
639 } else
640 return 0;
641 }
642 else {
643 /* Maybe NAN of some sort */
644
645 if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
646 /* snan, qNaN */
647 /* XXX do something with the snan/qnan difference */
648 s++; if (s == send) return 0;
649 }
650
651 if (isALPHA_FOLD_EQ(*s, 'N')) {
652 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
653 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
654 s++;
655
656 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
657
658 /* NaN can be followed by various stuff (NaNQ, NaNS), but
659 * there are also multiple different NaN values, and some
660 * implementations output the "payload" values,
661 * e.g. NaN123, NAN(abc), while some legacy implementations
662 * have weird stuff like NaN%. */
663 if (isALPHA_FOLD_EQ(*s, 'q') ||
664 isALPHA_FOLD_EQ(*s, 's')) {
665 /* "nanq" or "nans" are ok, though generating
666 * these portably is tricky. */
667 s++;
668 }
669 if (*s == '(') {
670 /* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
671 const char *t;
672 s++;
673 if (s == send) {
674 return flags | IS_NUMBER_TRAILING;
675 }
676 t = s + 1;
677 while (t < send && *t && *t != ')') {
678 t++;
679 }
680 if (t == send) {
681 return flags | IS_NUMBER_TRAILING;
682 }
683 if (*t == ')') {
684 int nantype;
685 UV nanval;
686 if (s[0] == '0' && s + 2 < t &&
687 isALPHA_FOLD_EQ(s[1], 'x') &&
688 isXDIGIT(s[2])) {
689 STRLEN len = t - s;
690 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
691 nanval = grok_hex(s, &len, &flags, NULL);
692 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
693 nantype = 0;
694 } else {
695 nantype = IS_NUMBER_IN_UV;
696 }
697 s += len;
698 } else if (s[0] == '0' && s + 2 < t &&
699 isALPHA_FOLD_EQ(s[1], 'b') &&
700 (s[2] == '0' || s[2] == '1')) {
701 STRLEN len = t - s;
702 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
703 nanval = grok_bin(s, &len, &flags, NULL);
704 if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
705 nantype = 0;
706 } else {
707 nantype = IS_NUMBER_IN_UV;
708 }
709 s += len;
710 } else {
711 const char *u;
712 nantype =
713 grok_number_flags(s, t - s, &nanval,
714 PERL_SCAN_TRAILING |
715 PERL_SCAN_ALLOW_UNDERSCORES);
716 /* Unfortunately grok_number_flags() doesn't
717 * tell how far we got and the ')' will always
718 * be "trailing", so we need to double-check
719 * whether we had something dubious. */
720 for (u = s; u < t; u++) {
721 if (!isDIGIT(*u)) {
722 flags |= IS_NUMBER_TRAILING;
723 break;
724 }
725 }
726 s = u;
727 }
728
729 /* XXX Doesn't do octal: nan("0123").
730 * Probably not a big loss. */
731
732 if ((nantype & IS_NUMBER_NOT_INT) ||
733 !(nantype && IS_NUMBER_IN_UV)) {
734 /* XXX the nanval is currently unused, that is,
735 * not inserted as the NaN payload of the NV.
736 * But the above code already parses the C99
737 * nan(...) format. See below, and see also
738 * the nan() in POSIX.xs.
739 *
740 * Certain configuration combinations where
741 * NVSIZE is greater than UVSIZE mean that
742 * a single UV cannot contain all the possible
743 * NaN payload bits. There would need to be
744 * some more generic syntax than "nan($uv)".
745 *
746 * Issues to keep in mind:
747 *
748 * (1) In most common cases there would
749 * not be an integral number of bytes that
750 * could be set, only a certain number of bits.
751 * For example for the common case of
752 * NVSIZE == UVSIZE == 8 there is room for 52
753 * bits in the payload, but the most significant
754 * bit is commonly reserved for the
755 * signaling/quiet bit, leaving 51 bits.
756 * Furthermore, the C99 nan() is supposed
757 * to generate quiet NaNs, so it is doubtful
758 * whether it should be able to generate
759 * signaling NaNs. For the x86 80-bit doubles
760 * (if building a long double Perl) there would
761 * be 62 bits (s/q bit being the 63rd).
762 *
763 * (2) Endianness of the payload bits. If the
764 * payload is specified as an UV, the low-order
765 * bits of the UV are naturally little-endianed
766 * (rightmost) bits of the payload. The endianness
767 * of UVs and NVs can be different. */
768 return 0;
769 }
770 if (s < t) {
771 flags |= IS_NUMBER_TRAILING;
772 }
773 } else {
774 /* Looked like nan(...), but no close paren. */
775 flags |= IS_NUMBER_TRAILING;
776 }
777 } else {
778 while (s < send && isSPACE(*s))
779 s++;
780 if (s < send && *s) {
781 /* Note that we here implicitly accept (parse as
782 * "nan", but with warnings) also any other weird
783 * trailing stuff for "nan". In the above we just
784 * check that if we got the C99-style "nan(...)",
785 * the "..." looks sane.
786 * If in future we accept more ways of specifying
787 * the nan payload, the accepting would happen around
788 * here. */
789 flags |= IS_NUMBER_TRAILING;
790 }
791 }
792 s = send;
793 }
794 else
795 return 0;
796 }
797
798 while (s < send && isSPACE(*s))
799 s++;
800
801 *sp = s;
802 return flags;
803}
804
805/*
806=for apidoc grok_number_flags
807
808Recognise (or not) a number. The type of the number is returned
809(0 if unrecognised), otherwise it is a bit-ORed combination of
810C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
811C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
812
813If the value of the number can fit in a UV, it is returned in C<*valuep>.
814C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
815will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
816to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
817If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
818C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
819
820C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
821seen (in which case C<*valuep> gives the true value truncated to an integer), and
822C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
823absolute value). C<IS_NUMBER_IN_UV> is not set if e notation was used or the
824number is larger than a UV.
825
826C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
827non-numeric text on an otherwise successful I<grok>, setting
828C<IS_NUMBER_TRAILING> on the result.
829
830=for apidoc grok_number
831
832Identical to C<grok_number_flags()> with C<flags> set to zero.
833
834=cut
835 */
836int
837Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
838{
839 PERL_ARGS_ASSERT_GROK_NUMBER;
840
841 return grok_number_flags(pv, len, valuep, 0);
842}
843
844static const UV uv_max_div_10 = UV_MAX / 10;
845static const U8 uv_max_mod_10 = UV_MAX % 10;
846
847int
848Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
849{
850 const char *s = pv;
851 const char * const send = pv + len;
852 const char *d;
853 int numtype = 0;
854
855 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
856
857 while (s < send && isSPACE(*s))
858 s++;
859 if (s == send) {
860 return 0;
861 } else if (*s == '-') {
862 s++;
863 numtype = IS_NUMBER_NEG;
864 }
865 else if (*s == '+')
866 s++;
867
868 if (s == send)
869 return 0;
870
871 /* The first digit (after optional sign): note that might
872 * also point to "infinity" or "nan", or "1.#INF". */
873 d = s;
874
875 /* next must be digit or the radix separator or beginning of infinity/nan */
876 if (isDIGIT(*s)) {
877 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
878 overflow. */
879 UV value = *s - '0';
880 /* This construction seems to be more optimiser friendly.
881 (without it gcc does the isDIGIT test and the *s - '0' separately)
882 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
883 In theory the optimiser could deduce how far to unroll the loop
884 before checking for overflow. */
885 if (++s < send) {
886 int digit = *s - '0';
887 if (digit >= 0 && digit <= 9) {
888 value = value * 10 + digit;
889 if (++s < send) {
890 digit = *s - '0';
891 if (digit >= 0 && digit <= 9) {
892 value = value * 10 + digit;
893 if (++s < send) {
894 digit = *s - '0';
895 if (digit >= 0 && digit <= 9) {
896 value = value * 10 + digit;
897 if (++s < send) {
898 digit = *s - '0';
899 if (digit >= 0 && digit <= 9) {
900 value = value * 10 + digit;
901 if (++s < send) {
902 digit = *s - '0';
903 if (digit >= 0 && digit <= 9) {
904 value = value * 10 + digit;
905 if (++s < send) {
906 digit = *s - '0';
907 if (digit >= 0 && digit <= 9) {
908 value = value * 10 + digit;
909 if (++s < send) {
910 digit = *s - '0';
911 if (digit >= 0 && digit <= 9) {
912 value = value * 10 + digit;
913 if (++s < send) {
914 digit = *s - '0';
915 if (digit >= 0 && digit <= 9) {
916 value = value * 10 + digit;
917 if (++s < send) {
918 /* Now got 9 digits, so need to check
919 each time for overflow. */
920 digit = *s - '0';
921 while (digit >= 0 && digit <= 9
922 && (value < uv_max_div_10
923 || (value == uv_max_div_10
924 && digit <= uv_max_mod_10))) {
925 value = value * 10 + digit;
926 if (++s < send)
927 digit = *s - '0';
928 else
929 break;
930 }
931 if (digit >= 0 && digit <= 9
932 && (s < send)) {
933 /* value overflowed.
934 skip the remaining digits, don't
935 worry about setting *valuep. */
936 do {
937 s++;
938 } while (s < send && isDIGIT(*s));
939 numtype |=
940 IS_NUMBER_GREATER_THAN_UV_MAX;
941 goto skip_value;
942 }
943 }
944 }
945 }
946 }
947 }
948 }
949 }
950 }
951 }
952 }
953 }
954 }
955 }
956 }
957 }
958 }
959 }
960 numtype |= IS_NUMBER_IN_UV;
961 if (valuep)
962 *valuep = value;
963
964 skip_value:
965 if (GROK_NUMERIC_RADIX(&s, send)) {
966 numtype |= IS_NUMBER_NOT_INT;
967 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
968 s++;
969 }
970 }
971 else if (GROK_NUMERIC_RADIX(&s, send)) {
972 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
973 /* no digits before the radix means we need digits after it */
974 if (s < send && isDIGIT(*s)) {
975 do {
976 s++;
977 } while (s < send && isDIGIT(*s));
978 if (valuep) {
979 /* integer approximation is valid - it's 0. */
980 *valuep = 0;
981 }
982 }
983 else
984 return 0;
985 }
986
987 if (s > d && s < send) {
988 /* we can have an optional exponent part */
989 if (isALPHA_FOLD_EQ(*s, 'e')) {
990 s++;
991 if (s < send && (*s == '-' || *s == '+'))
992 s++;
993 if (s < send && isDIGIT(*s)) {
994 do {
995 s++;
996 } while (s < send && isDIGIT(*s));
997 }
998 else if (flags & PERL_SCAN_TRAILING)
999 return numtype | IS_NUMBER_TRAILING;
1000 else
1001 return 0;
1002
1003 /* The only flag we keep is sign. Blow away any "it's UV" */
1004 numtype &= IS_NUMBER_NEG;
1005 numtype |= IS_NUMBER_NOT_INT;
1006 }
1007 }
1008 while (s < send && isSPACE(*s))
1009 s++;
1010 if (s >= send)
1011 return numtype;
1012 if (len == 10 && memEQ(pv, "0 but true", 10)) {
1013 if (valuep)
1014 *valuep = 0;
1015 return IS_NUMBER_IN_UV;
1016 }
1017 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1018 if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
1019 /* Really detect inf/nan. Start at d, not s, since the above
1020 * code might have already consumed the "1." or "1". */
1021 int infnan = Perl_grok_infnan(aTHX_ &d, send);
1022 if ((infnan & IS_NUMBER_INFINITY)) {
1023 return (numtype | infnan); /* Keep sign for infinity. */
1024 }
1025 else if ((infnan & IS_NUMBER_NAN)) {
1026 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1027 }
1028 }
1029 else if (flags & PERL_SCAN_TRAILING) {
1030 return numtype | IS_NUMBER_TRAILING;
1031 }
1032
1033 return 0;
1034}
1035
1036/*
1037grok_atoUV
1038
1039grok_atoUV parses a C-style zero-byte terminated string, looking for
1040a decimal unsigned integer.
1041
1042Returns the unsigned integer, if a valid value can be parsed
1043from the beginning of the string.
1044
1045Accepts only the decimal digits '0'..'9'.
1046
1047As opposed to atoi or strtol, grok_atoUV does NOT allow optional
1048leading whitespace, or negative inputs. If such features are
1049required, the calling code needs to explicitly implement those.
1050
1051Returns true if a valid value could be parsed. In that case, valptr
1052is set to the parsed value, and endptr (if provided) is set to point
1053to the character after the last digit.
1054
1055Returns false otherwise. This can happen if a) there is a leading zero
1056followed by another digit; b) the digits would overflow a UV; or c)
1057there are trailing non-digits AND endptr is not provided.
1058
1059Background: atoi has severe problems with illegal inputs, it cannot be
1060used for incremental parsing, and therefore should be avoided
1061atoi and strtol are also affected by locale settings, which can also be
1062seen as a bug (global state controlled by user environment).
1063
1064*/
1065
1066bool
1067Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
1068{
1069 const char* s = pv;
1070 const char** eptr;
1071 const char* end2; /* Used in case endptr is NULL. */
1072 UV val = 0; /* The parsed value. */
1073
1074 PERL_ARGS_ASSERT_GROK_ATOUV;
1075
1076 eptr = endptr ? endptr : &end2;
1077 if (isDIGIT(*s)) {
1078 /* Single-digit inputs are quite common. */
1079 val = *s++ - '0';
1080 if (isDIGIT(*s)) {
1081 /* Fail on extra leading zeros. */
1082 if (val == 0)
1083 return FALSE;
1084 while (isDIGIT(*s)) {
1085 /* This could be unrolled like in grok_number(), but
1086 * the expected uses of this are not speed-needy, and
1087 * unlikely to need full 64-bitness. */
1088 U8 digit = *s++ - '0';
1089 if (val < uv_max_div_10 ||
1090 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1091 val = val * 10 + digit;
1092 } else {
1093 return FALSE;
1094 }
1095 }
1096 }
1097 }
1098 if (s == pv)
1099 return FALSE;
1100 if (endptr == NULL && *s)
1101 return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
1102 *eptr = s;
1103 *valptr = val;
1104 return TRUE;
1105}
1106
1107#ifndef USE_QUADMATH
1108STATIC NV
1109S_mulexp10(NV value, I32 exponent)
1110{
1111 NV result = 1.0;
1112 NV power = 10.0;
1113 bool negative = 0;
1114 I32 bit;
1115
1116 if (exponent == 0)
1117 return value;
1118 if (value == 0)
1119 return (NV)0;
1120
1121 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1122 * and that format does not have *easy* capabilities [1] for
1123 * overflowing doubles 'silently' as IEEE fp does. We also need
1124 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1125 * range is much larger than D_FLOAT it still doesn't do silent
1126 * overflow. Therefore we need to detect early whether we would
1127 * overflow (this is the behaviour of the native string-to-float
1128 * conversion routines, and therefore of native applications, too).
1129 *
1130 * [1] Trying to establish a condition handler to trap floating point
1131 * exceptions is not a good idea. */
1132
1133 /* In UNICOS and in certain Cray models (such as T90) there is no
1134 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1135 * There is something you can do if you are willing to use some
1136 * inline assembler: the instruction is called DFI-- but that will
1137 * disable *all* floating point interrupts, a little bit too large
1138 * a hammer. Therefore we need to catch potential overflows before
1139 * it's too late. */
1140
1141#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
1142 STMT_START {
1143 const NV exp_v = log10(value);
1144 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1145 return NV_MAX;
1146 if (exponent < 0) {
1147 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1148 return 0.0;
1149 while (-exponent >= NV_MAX_10_EXP) {
1150 /* combination does not overflow, but 10^(-exponent) does */
1151 value /= 10;
1152 ++exponent;
1153 }
1154 }
1155 } STMT_END;
1156#endif
1157
1158 if (exponent < 0) {
1159 negative = 1;
1160 exponent = -exponent;
1161#ifdef NV_MAX_10_EXP
1162 /* for something like 1234 x 10^-309, the action of calculating
1163 * the intermediate value 10^309 then returning 1234 / (10^309)
1164 * will fail, since 10^309 becomes infinity. In this case try to
1165 * refactor it as 123 / (10^308) etc.
1166 */
1167 while (value && exponent > NV_MAX_10_EXP) {
1168 exponent--;
1169 value /= 10;
1170 }
1171 if (value == 0.0)
1172 return value;
1173#endif
1174 }
1175#if defined(__osf__)
1176 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1177 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1178 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1179 * but that breaks another set of infnan.t tests. */
1180# define FP_OVERFLOWS_TO_ZERO
1181#endif
1182 for (bit = 1; exponent; bit <<= 1) {
1183 if (exponent & bit) {
1184 exponent ^= bit;
1185 result *= power;
1186#ifdef FP_OVERFLOWS_TO_ZERO
1187 if (result == 0)
1188 return value < 0 ? -NV_INF : NV_INF;
1189#endif
1190 /* Floating point exceptions are supposed to be turned off,
1191 * but if we're obviously done, don't risk another iteration.
1192 */
1193 if (exponent == 0) break;
1194 }
1195 power *= power;
1196 }
1197 return negative ? value / result : value * result;
1198}
1199#endif /* #ifndef USE_QUADMATH */
1200
1201NV
1202Perl_my_atof(pTHX_ const char* s)
1203{
1204 NV x = 0.0;
1205#ifdef USE_QUADMATH
1206 Perl_my_atof2(aTHX_ s, &x);
1207 return x;
1208#else
1209# ifdef USE_LOCALE_NUMERIC
1210 PERL_ARGS_ASSERT_MY_ATOF;
1211
1212 {
1213 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
1214 STORE_LC_NUMERIC_SET_TO_NEEDED();
1215 if (PL_numeric_radix_sv && IN_LC(LC_NUMERIC)) {
1216 const char *standard = NULL, *local = NULL;
1217 bool use_standard_radix;
1218
1219 /* Look through the string for the first thing that looks like a
1220 * decimal point: either the value in the current locale or the
1221 * standard fallback of '.'. The one which appears earliest in the
1222 * input string is the one that we should have atof look for. Note
1223 * that we have to determine this beforehand because on some
1224 * systems, Perl_atof2 is just a wrapper around the system's atof.
1225 * */
1226 standard = strchr(s, '.');
1227 local = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1228
1229 use_standard_radix = standard && (!local || standard < local);
1230
1231 if (use_standard_radix)
1232 SET_NUMERIC_STANDARD();
1233
1234 Perl_atof2(s, x);
1235
1236 if (use_standard_radix)
1237 SET_NUMERIC_UNDERLYING();
1238 }
1239 else
1240 Perl_atof2(s, x);
1241 RESTORE_LC_NUMERIC();
1242 }
1243# else
1244 Perl_atof2(s, x);
1245# endif
1246#endif
1247 return x;
1248}
1249
1250
1251#ifdef USING_MSVC6
1252# pragma warning(push)
1253# pragma warning(disable:4756;disable:4056)
1254#endif
1255static char*
1256S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1257{
1258 const char *p0 = negative ? s - 1 : s;
1259 const char *p = p0;
1260 int infnan = grok_infnan(&p, send);
1261 if (infnan && p != p0) {
1262 /* If we can generate inf/nan directly, let's do so. */
1263#ifdef NV_INF
1264 if ((infnan & IS_NUMBER_INFINITY)) {
1265 *value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1266 return (char*)p;
1267 }
1268#endif
1269#ifdef NV_NAN
1270 if ((infnan & IS_NUMBER_NAN)) {
1271 *value = NV_NAN;
1272 return (char*)p;
1273 }
1274#endif
1275#ifdef Perl_strtod
1276 /* If still here, we didn't have either NV_INF or NV_NAN,
1277 * and can try falling back to native strtod/strtold.
1278 *
1279 * (Though, are our NV_INF or NV_NAN ever not defined?)
1280 *
1281 * The native interface might not recognize all the possible
1282 * inf/nan strings Perl recognizes. What we can try
1283 * is to try faking the input. We will try inf/-inf/nan
1284 * as the most promising/portable input. */
1285 {
1286 const char* fake = NULL;
1287 char* endp;
1288 NV nv;
1289 if ((infnan & IS_NUMBER_INFINITY)) {
1290 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1291 }
1292 else if ((infnan & IS_NUMBER_NAN)) {
1293 fake = "nan";
1294 }
1295 assert(fake);
1296 nv = Perl_strtod(fake, &endp);
1297 if (fake != endp) {
1298 if ((infnan & IS_NUMBER_INFINITY)) {
1299#ifdef Perl_isinf
1300 if (Perl_isinf(nv))
1301 *value = nv;
1302#else
1303 /* last resort, may generate SIGFPE */
1304 *value = Perl_exp((NV)1e9);
1305 if ((infnan & IS_NUMBER_NEG))
1306 *value = -*value;
1307#endif
1308 return (char*)p; /* p, not endp */
1309 }
1310 else if ((infnan & IS_NUMBER_NAN)) {
1311#ifdef Perl_isnan
1312 if (Perl_isnan(nv))
1313 *value = nv;
1314#else
1315 /* last resort, may generate SIGFPE */
1316 *value = Perl_log((NV)-1.0);
1317#endif
1318 return (char*)p; /* p, not endp */
1319 }
1320 }
1321 }
1322#endif /* #ifdef Perl_strtod */
1323 }
1324 return NULL;
1325}
1326#ifdef USING_MSVC6
1327# pragma warning(pop)
1328#endif
1329
1330char*
1331Perl_my_atof2(pTHX_ const char* orig, NV* value)
1332{
1333 const char* s = orig;
1334 NV result[3] = {0.0, 0.0, 0.0};
1335#if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1336 const char* send = s + strlen(orig); /* one past the last */
1337 bool negative = 0;
1338#endif
1339#if defined(USE_PERL_ATOF) && !defined(USE_QUADMATH)
1340 UV accumulator[2] = {0,0}; /* before/after dp */
1341 bool seen_digit = 0;
1342 I32 exp_adjust[2] = {0,0};
1343 I32 exp_acc[2] = {-1, -1};
1344 /* the current exponent adjust for the accumulators */
1345 I32 exponent = 0;
1346 I32 seen_dp = 0;
1347 I32 digit = 0;
1348 I32 old_digit = 0;
1349 I32 sig_digits = 0; /* noof significant digits seen so far */
1350#endif
1351
1352#if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1353 PERL_ARGS_ASSERT_MY_ATOF2;
1354
1355 /* leading whitespace */
1356 while (isSPACE(*s))
1357 ++s;
1358
1359 /* sign */
1360 switch (*s) {
1361 case '-':
1362 negative = 1;
1363 /* FALLTHROUGH */
1364 case '+':
1365 ++s;
1366 }
1367#endif
1368
1369#ifdef USE_QUADMATH
1370 {
1371 char* endp;
1372 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1373 return endp;
1374 result[2] = strtoflt128(s, &endp);
1375 if (s != endp) {
1376 *value = negative ? -result[2] : result[2];
1377 return endp;
1378 }
1379 return NULL;
1380 }
1381#elif defined(USE_PERL_ATOF)
1382
1383/* There is no point in processing more significant digits
1384 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1385 * while we need an upper-bound value. We add 2 to account for this;
1386 * since it will have been conservative on both the first and last digit.
1387 * For example a 32-bit mantissa with an exponent of 4 would have
1388 * exact values in the set
1389 * 4
1390 * 8
1391 * ..
1392 * 17179869172
1393 * 17179869176
1394 * 17179869180
1395 *
1396 * where for the purposes of calculating NV_DIG we would have to discount
1397 * both the first and last digit, since neither can hold all values from
1398 * 0..9; but for calculating the value we must examine those two digits.
1399 */
1400#ifdef MAX_SIG_DIG_PLUS
1401 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1402 possible digits in a NV, especially if NVs are not IEEE compliant
1403 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1404# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1405#else
1406# define MAX_SIG_DIGITS (NV_DIG+2)
1407#endif
1408
1409/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1410#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1411
1412 {
1413 const char* endp;
1414 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1415 return (char*)endp;
1416 }
1417
1418 /* we accumulate digits into an integer; when this becomes too
1419 * large, we add the total to NV and start again */
1420
1421 while (1) {
1422 if (isDIGIT(*s)) {
1423 seen_digit = 1;
1424 old_digit = digit;
1425 digit = *s++ - '0';
1426 if (seen_dp)
1427 exp_adjust[1]++;
1428
1429 /* don't start counting until we see the first significant
1430 * digit, eg the 5 in 0.00005... */
1431 if (!sig_digits && digit == 0)
1432 continue;
1433
1434 if (++sig_digits > MAX_SIG_DIGITS) {
1435 /* limits of precision reached */
1436 if (digit > 5) {
1437 ++accumulator[seen_dp];
1438 } else if (digit == 5) {
1439 if (old_digit % 2) { /* round to even - Allen */
1440 ++accumulator[seen_dp];
1441 }
1442 }
1443 if (seen_dp) {
1444 exp_adjust[1]--;
1445 } else {
1446 exp_adjust[0]++;
1447 }
1448 /* skip remaining digits */
1449 while (isDIGIT(*s)) {
1450 ++s;
1451 if (! seen_dp) {
1452 exp_adjust[0]++;
1453 }
1454 }
1455 /* warn of loss of precision? */
1456 }
1457 else {
1458 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1459 /* add accumulator to result and start again */
1460 result[seen_dp] = S_mulexp10(result[seen_dp],
1461 exp_acc[seen_dp])
1462 + (NV)accumulator[seen_dp];
1463 accumulator[seen_dp] = 0;
1464 exp_acc[seen_dp] = 0;
1465 }
1466 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1467 ++exp_acc[seen_dp];
1468 }
1469 }
1470 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1471 seen_dp = 1;
1472 if (sig_digits > MAX_SIG_DIGITS) {
1473 do {
1474 ++s;
1475 } while (isDIGIT(*s));
1476 break;
1477 }
1478 }
1479 else {
1480 break;
1481 }
1482 }
1483
1484 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1485 if (seen_dp) {
1486 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1487 }
1488
1489 if (seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1490 bool expnegative = 0;
1491
1492 ++s;
1493 switch (*s) {
1494 case '-':
1495 expnegative = 1;
1496 /* FALLTHROUGH */
1497 case '+':
1498 ++s;
1499 }
1500 while (isDIGIT(*s))
1501 exponent = exponent * 10 + (*s++ - '0');
1502 if (expnegative)
1503 exponent = -exponent;
1504 }
1505
1506
1507
1508 /* now apply the exponent */
1509
1510 if (seen_dp) {
1511 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1512 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1513 } else {
1514 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1515 }
1516
1517 /* now apply the sign */
1518 if (negative)
1519 result[2] = -result[2];
1520#endif /* USE_PERL_ATOF */
1521 *value = result[2];
1522 return (char *)s;
1523}
1524
1525/*
1526=for apidoc isinfnan
1527
1528C<Perl_isinfnan()> is utility function that returns true if the NV
1529argument is either an infinity or a C<NaN>, false otherwise. To test
1530in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
1531
1532This is also the logical inverse of Perl_isfinite().
1533
1534=cut
1535*/
1536bool
1537Perl_isinfnan(NV nv)
1538{
1539#ifdef Perl_isinf
1540 if (Perl_isinf(nv))
1541 return TRUE;
1542#endif
1543#ifdef Perl_isnan
1544 if (Perl_isnan(nv))
1545 return TRUE;
1546#endif
1547 return FALSE;
1548}
1549
1550/*
1551=for apidoc
1552
1553Checks whether the argument would be either an infinity or C<NaN> when used
1554as a number, but is careful not to trigger non-numeric or uninitialized
1555warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
1556
1557=cut
1558*/
1559
1560bool
1561Perl_isinfnansv(pTHX_ SV *sv)
1562{
1563 PERL_ARGS_ASSERT_ISINFNANSV;
1564 if (!SvOK(sv))
1565 return FALSE;
1566 if (SvNOKp(sv))
1567 return Perl_isinfnan(SvNVX(sv));
1568 if (SvIOKp(sv))
1569 return FALSE;
1570 {
1571 STRLEN len;
1572 const char *s = SvPV_nomg_const(sv, len);
1573 return cBOOL(grok_infnan(&s, s+len));
1574 }
1575}
1576
1577#ifndef HAS_MODFL
1578/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1579 * copysignl to emulate modfl, which is in some platforms missing or
1580 * broken. */
1581# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1582long double
1583Perl_my_modfl(long double x, long double *ip)
1584{
1585 *ip = truncl(x);
1586 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1587}
1588# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1589long double
1590Perl_my_modfl(long double x, long double *ip)
1591{
1592 *ip = aintl(x);
1593 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1594}
1595# endif
1596#endif
1597
1598/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1599#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1600long double
1601Perl_my_frexpl(long double x, int *e) {
1602 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1603 return (scalbnl(x, -*e));
1604}
1605#endif
1606
1607/*
1608=for apidoc Perl_signbit
1609
1610Return a non-zero integer if the sign bit on an NV is set, and 0 if
1611it is not.
1612
1613If F<Configure> detects this system has a C<signbit()> that will work with
1614our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
1615fall back on this implementation. The main use of this function
1616is catching C<-0.0>.
1617
1618C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
1619plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
1620function or macro that doesn't happen to work with our particular choice
1621of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
1622the standard system headers to be happy. Also, this is a no-context
1623function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
1624F<perl.h> as a simple macro call to the system's C<signbit()>.
1625Users should just always call C<Perl_signbit()>.
1626
1627=cut
1628*/
1629#if !defined(HAS_SIGNBIT)
1630int
1631Perl_signbit(NV x) {
1632# ifdef Perl_fp_class_nzero
1633 return Perl_fp_class_nzero(x);
1634 /* Try finding the high byte, and assume it's highest bit
1635 * is the sign. This assumption is probably wrong somewhere. */
1636# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
1637 return (((unsigned char *)&x)[9] & 0x80);
1638# elif defined(NV_LITTLE_ENDIAN)
1639 /* Note that NVSIZE is sizeof(NV), which would make the below be
1640 * wrong if the end bytes are unused, which happens with the x86
1641 * 80-bit long doubles, which is why take care of that above. */
1642 return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
1643# elif defined(NV_BIG_ENDIAN)
1644 return (((unsigned char *)&x)[0] & 0x80);
1645# else
1646 /* This last resort fallback is wrong for the negative zero. */
1647 return (x < 0.0) ? 1 : 0;
1648# endif
1649}
1650#endif
1651
1652/*
1653 * ex: set ts=8 sts=4 sw=4 et:
1654 */