This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Fix for Coverity perl5 CID 29034: Out-of-bounds read (OVERRUN) overrun-local: Overrun...
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21This file contains all the stuff needed by perl for manipulating numeric
22values, including such things as replacements for the OS's atof() function
23
24=cut
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32U32
33Perl_cast_ulong(pTHX_ NV f)
34{
35 PERL_UNUSED_CONTEXT;
36 if (f < 0.0)
37 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
38 if (f < U32_MAX_P1) {
39#if CASTFLAGS & 2
40 if (f < U32_MAX_P1_HALF)
41 return (U32) f;
42 f -= U32_MAX_P1_HALF;
43 return ((U32) f) | (1 + U32_MAX >> 1);
44#else
45 return (U32) f;
46#endif
47 }
48 return f > 0 ? U32_MAX : 0 /* NaN */;
49}
50
51I32
52Perl_cast_i32(pTHX_ NV f)
53{
54 PERL_UNUSED_CONTEXT;
55 if (f < I32_MAX_P1)
56 return f < I32_MIN ? I32_MIN : (I32) f;
57 if (f < U32_MAX_P1) {
58#if CASTFLAGS & 2
59 if (f < U32_MAX_P1_HALF)
60 return (I32)(U32) f;
61 f -= U32_MAX_P1_HALF;
62 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
63#else
64 return (I32)(U32) f;
65#endif
66 }
67 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
68}
69
70IV
71Perl_cast_iv(pTHX_ NV f)
72{
73 PERL_UNUSED_CONTEXT;
74 if (f < IV_MAX_P1)
75 return f < IV_MIN ? IV_MIN : (IV) f;
76 if (f < UV_MAX_P1) {
77#if CASTFLAGS & 2
78 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
79 if (f < UV_MAX_P1_HALF)
80 return (IV)(UV) f;
81 f -= UV_MAX_P1_HALF;
82 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
83#else
84 return (IV)(UV) f;
85#endif
86 }
87 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
88}
89
90UV
91Perl_cast_uv(pTHX_ NV f)
92{
93 PERL_UNUSED_CONTEXT;
94 if (f < 0.0)
95 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
96 if (f < UV_MAX_P1) {
97#if CASTFLAGS & 2
98 if (f < UV_MAX_P1_HALF)
99 return (UV) f;
100 f -= UV_MAX_P1_HALF;
101 return ((UV) f) | (1 + UV_MAX >> 1);
102#else
103 return (UV) f;
104#endif
105 }
106 return f > 0 ? UV_MAX : 0 /* NaN */;
107}
108
109/*
110=for apidoc grok_bin
111
112converts a string representing a binary number to numeric form.
113
114On entry I<start> and I<*len> give the string to scan, I<*flags> gives
115conversion flags, and I<result> should be NULL or a pointer to an NV.
116The scan stops at the end of the string, or the first invalid character.
117Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
118invalid character will also trigger a warning.
119On return I<*len> is set to the length of the scanned string,
120and I<*flags> gives output flags.
121
122If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
123and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
124returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
125and writes the value to I<*result> (or the value is discarded if I<result>
126is NULL).
127
128The binary number may optionally be prefixed with "0b" or "b" unless
129C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
130C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
131number may use '_' characters to separate digits.
132
133=cut
134
135Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
136which suppresses any message for non-portable numbers that are still valid
137on this platform.
138 */
139
140UV
141Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
142{
143 const char *s = start;
144 STRLEN len = *len_p;
145 UV value = 0;
146 NV value_nv = 0;
147
148 const UV max_div_2 = UV_MAX / 2;
149 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
150 bool overflowed = FALSE;
151 char bit;
152
153 PERL_ARGS_ASSERT_GROK_BIN;
154
155 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
156 /* strip off leading b or 0b.
157 for compatibility silently suffer "b" and "0b" as valid binary
158 numbers. */
159 if (len >= 1) {
160 if (s[0] == 'b' || s[0] == 'B') {
161 s++;
162 len--;
163 }
164 else if (len >= 2 && s[0] == '0' && (s[1] == 'b' || s[1] == 'B')) {
165 s+=2;
166 len-=2;
167 }
168 }
169 }
170
171 for (; len-- && (bit = *s); s++) {
172 if (bit == '0' || bit == '1') {
173 /* Write it in this wonky order with a goto to attempt to get the
174 compiler to make the common case integer-only loop pretty tight.
175 With gcc seems to be much straighter code than old scan_bin. */
176 redo:
177 if (!overflowed) {
178 if (value <= max_div_2) {
179 value = (value << 1) | (bit - '0');
180 continue;
181 }
182 /* Bah. We're just overflowed. */
183 /* diag_listed_as: Integer overflow in %s number */
184 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
185 "Integer overflow in binary number");
186 overflowed = TRUE;
187 value_nv = (NV) value;
188 }
189 value_nv *= 2.0;
190 /* If an NV has not enough bits in its mantissa to
191 * represent a UV this summing of small low-order numbers
192 * is a waste of time (because the NV cannot preserve
193 * the low-order bits anyway): we could just remember when
194 * did we overflow and in the end just multiply value_nv by the
195 * right amount. */
196 value_nv += (NV)(bit - '0');
197 continue;
198 }
199 if (bit == '_' && len && allow_underscores && (bit = s[1])
200 && (bit == '0' || bit == '1'))
201 {
202 --len;
203 ++s;
204 goto redo;
205 }
206 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
207 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
208 "Illegal binary digit '%c' ignored", *s);
209 break;
210 }
211
212 if ( ( overflowed && value_nv > 4294967295.0)
213#if UVSIZE > 4
214 || (!overflowed && value > 0xffffffff
215 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
216#endif
217 ) {
218 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
219 "Binary number > 0b11111111111111111111111111111111 non-portable");
220 }
221 *len_p = s - start;
222 if (!overflowed) {
223 *flags = 0;
224 return value;
225 }
226 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
227 if (result)
228 *result = value_nv;
229 return UV_MAX;
230}
231
232/*
233=for apidoc grok_hex
234
235converts a string representing a hex number to numeric form.
236
237On entry I<start> and I<*len_p> give the string to scan, I<*flags> gives
238conversion flags, and I<result> should be NULL or a pointer to an NV.
239The scan stops at the end of the string, or the first invalid character.
240Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
241invalid character will also trigger a warning.
242On return I<*len> is set to the length of the scanned string,
243and I<*flags> gives output flags.
244
245If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
246and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
247returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
248and writes the value to I<*result> (or the value is discarded if I<result>
249is NULL).
250
251The hex number may optionally be prefixed with "0x" or "x" unless
252C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
253C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
254number may use '_' characters to separate digits.
255
256=cut
257
258Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
259which suppresses any message for non-portable numbers that are still valid
260on this platform.
261 */
262
263UV
264Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
265{
266 dVAR;
267 const char *s = start;
268 STRLEN len = *len_p;
269 UV value = 0;
270 NV value_nv = 0;
271 const UV max_div_16 = UV_MAX / 16;
272 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
273 bool overflowed = FALSE;
274
275 PERL_ARGS_ASSERT_GROK_HEX;
276
277 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
278 /* strip off leading x or 0x.
279 for compatibility silently suffer "x" and "0x" as valid hex numbers.
280 */
281 if (len >= 1) {
282 if (s[0] == 'x' || s[0] == 'X') {
283 s++;
284 len--;
285 }
286 else if (len >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
287 s+=2;
288 len-=2;
289 }
290 }
291 }
292
293 for (; len-- && *s; s++) {
294 if (isXDIGIT(*s)) {
295 /* Write it in this wonky order with a goto to attempt to get the
296 compiler to make the common case integer-only loop pretty tight.
297 With gcc seems to be much straighter code than old scan_hex. */
298 redo:
299 if (!overflowed) {
300 if (value <= max_div_16) {
301 value = (value << 4) | XDIGIT_VALUE(*s);
302 continue;
303 }
304 /* Bah. We're just overflowed. */
305 /* diag_listed_as: Integer overflow in %s number */
306 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
307 "Integer overflow in hexadecimal number");
308 overflowed = TRUE;
309 value_nv = (NV) value;
310 }
311 value_nv *= 16.0;
312 /* If an NV has not enough bits in its mantissa to
313 * represent a UV this summing of small low-order numbers
314 * is a waste of time (because the NV cannot preserve
315 * the low-order bits anyway): we could just remember when
316 * did we overflow and in the end just multiply value_nv by the
317 * right amount of 16-tuples. */
318 value_nv += (NV) XDIGIT_VALUE(*s);
319 continue;
320 }
321 if (*s == '_' && len && allow_underscores && s[1]
322 && isXDIGIT(s[1]))
323 {
324 --len;
325 ++s;
326 goto redo;
327 }
328 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
329 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
330 "Illegal hexadecimal digit '%c' ignored", *s);
331 break;
332 }
333
334 if ( ( overflowed && value_nv > 4294967295.0)
335#if UVSIZE > 4
336 || (!overflowed && value > 0xffffffff
337 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
338#endif
339 ) {
340 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
341 "Hexadecimal number > 0xffffffff non-portable");
342 }
343 *len_p = s - start;
344 if (!overflowed) {
345 *flags = 0;
346 return value;
347 }
348 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
349 if (result)
350 *result = value_nv;
351 return UV_MAX;
352}
353
354/*
355=for apidoc grok_oct
356
357converts a string representing an octal number to numeric form.
358
359On entry I<start> and I<*len> give the string to scan, I<*flags> gives
360conversion flags, and I<result> should be NULL or a pointer to an NV.
361The scan stops at the end of the string, or the first invalid character.
362Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
3638 or 9 will also trigger a warning.
364On return I<*len> is set to the length of the scanned string,
365and I<*flags> gives output flags.
366
367If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
368and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
369returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
370and writes the value to I<*result> (or the value is discarded if I<result>
371is NULL).
372
373If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
374number may use '_' characters to separate digits.
375
376=cut
377
378Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
379which suppresses any message for non-portable numbers, but which are valid
380on this platform.
381 */
382
383UV
384Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
385{
386 const char *s = start;
387 STRLEN len = *len_p;
388 UV value = 0;
389 NV value_nv = 0;
390 const UV max_div_8 = UV_MAX / 8;
391 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
392 bool overflowed = FALSE;
393
394 PERL_ARGS_ASSERT_GROK_OCT;
395
396 for (; len-- && *s; s++) {
397 if (isOCTAL(*s)) {
398 /* Write it in this wonky order with a goto to attempt to get the
399 compiler to make the common case integer-only loop pretty tight.
400 */
401 redo:
402 if (!overflowed) {
403 if (value <= max_div_8) {
404 value = (value << 3) | OCTAL_VALUE(*s);
405 continue;
406 }
407 /* Bah. We're just overflowed. */
408 /* diag_listed_as: Integer overflow in %s number */
409 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
410 "Integer overflow in octal number");
411 overflowed = TRUE;
412 value_nv = (NV) value;
413 }
414 value_nv *= 8.0;
415 /* If an NV has not enough bits in its mantissa to
416 * represent a UV this summing of small low-order numbers
417 * is a waste of time (because the NV cannot preserve
418 * the low-order bits anyway): we could just remember when
419 * did we overflow and in the end just multiply value_nv by the
420 * right amount of 8-tuples. */
421 value_nv += (NV) OCTAL_VALUE(*s);
422 continue;
423 }
424 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
425 --len;
426 ++s;
427 goto redo;
428 }
429 /* Allow \octal to work the DWIM way (that is, stop scanning
430 * as soon as non-octal characters are seen, complain only if
431 * someone seems to want to use the digits eight and nine. Since we
432 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
433 if (isDIGIT(*s)) {
434 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
435 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
436 "Illegal octal digit '%c' ignored", *s);
437 }
438 break;
439 }
440
441 if ( ( overflowed && value_nv > 4294967295.0)
442#if UVSIZE > 4
443 || (!overflowed && value > 0xffffffff
444 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
445#endif
446 ) {
447 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
448 "Octal number > 037777777777 non-portable");
449 }
450 *len_p = s - start;
451 if (!overflowed) {
452 *flags = 0;
453 return value;
454 }
455 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
456 if (result)
457 *result = value_nv;
458 return UV_MAX;
459}
460
461/*
462=for apidoc scan_bin
463
464For backwards compatibility. Use C<grok_bin> instead.
465
466=for apidoc scan_hex
467
468For backwards compatibility. Use C<grok_hex> instead.
469
470=for apidoc scan_oct
471
472For backwards compatibility. Use C<grok_oct> instead.
473
474=cut
475 */
476
477NV
478Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
479{
480 NV rnv;
481 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
482 const UV ruv = grok_bin (start, &len, &flags, &rnv);
483
484 PERL_ARGS_ASSERT_SCAN_BIN;
485
486 *retlen = len;
487 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
488}
489
490NV
491Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
492{
493 NV rnv;
494 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
495 const UV ruv = grok_oct (start, &len, &flags, &rnv);
496
497 PERL_ARGS_ASSERT_SCAN_OCT;
498
499 *retlen = len;
500 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
501}
502
503NV
504Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
505{
506 NV rnv;
507 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
508 const UV ruv = grok_hex (start, &len, &flags, &rnv);
509
510 PERL_ARGS_ASSERT_SCAN_HEX;
511
512 *retlen = len;
513 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
514}
515
516/*
517=for apidoc grok_numeric_radix
518
519Scan and skip for a numeric decimal separator (radix).
520
521=cut
522 */
523bool
524Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
525{
526#ifdef USE_LOCALE_NUMERIC
527 dVAR;
528
529 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
530
531 if (PL_numeric_radix_sv && IN_SOME_LOCALE_FORM) {
532 STRLEN len;
533 const char * const radix = SvPV(PL_numeric_radix_sv, len);
534 if (*sp + len <= send && memEQ(*sp, radix, len)) {
535 *sp += len;
536 return TRUE;
537 }
538 }
539 /* always try "." if numeric radix didn't match because
540 * we may have data from different locales mixed */
541#endif
542
543 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
544
545 if (*sp < send && **sp == '.') {
546 ++*sp;
547 return TRUE;
548 }
549 return FALSE;
550}
551
552/*
553=for apidoc grok_number
554
555Recognise (or not) a number. The type of the number is returned
556(0 if unrecognised), otherwise it is a bit-ORed combination of
557IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
558IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
559
560If the value of the number can fit in a UV, it is returned in the *valuep
561IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
562will never be set unless *valuep is valid, but *valuep may have been assigned
563to during processing even though IS_NUMBER_IN_UV is not set on return.
564If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
565valuep is non-NULL, but no actual assignment (or SEGV) will occur.
566
567IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
568seen (in which case *valuep gives the true value truncated to an integer), and
569IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
570absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
571number is larger than a UV.
572
573=cut
574 */
575int
576Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
577{
578 const char *s = pv;
579 const char * const send = pv + len;
580 const UV max_div_10 = UV_MAX / 10;
581 const char max_mod_10 = UV_MAX % 10;
582 int numtype = 0;
583 int sawinf = 0;
584 int sawnan = 0;
585
586 PERL_ARGS_ASSERT_GROK_NUMBER;
587
588 while (s < send && isSPACE(*s))
589 s++;
590 if (s == send) {
591 return 0;
592 } else if (*s == '-') {
593 s++;
594 numtype = IS_NUMBER_NEG;
595 }
596 else if (*s == '+')
597 s++;
598
599 if (s == send)
600 return 0;
601
602 /* next must be digit or the radix separator or beginning of infinity */
603 if (isDIGIT(*s)) {
604 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
605 overflow. */
606 UV value = *s - '0';
607 /* This construction seems to be more optimiser friendly.
608 (without it gcc does the isDIGIT test and the *s - '0' separately)
609 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
610 In theory the optimiser could deduce how far to unroll the loop
611 before checking for overflow. */
612 if (++s < send) {
613 int digit = *s - '0';
614 if (digit >= 0 && digit <= 9) {
615 value = value * 10 + digit;
616 if (++s < send) {
617 digit = *s - '0';
618 if (digit >= 0 && digit <= 9) {
619 value = value * 10 + digit;
620 if (++s < send) {
621 digit = *s - '0';
622 if (digit >= 0 && digit <= 9) {
623 value = value * 10 + digit;
624 if (++s < send) {
625 digit = *s - '0';
626 if (digit >= 0 && digit <= 9) {
627 value = value * 10 + digit;
628 if (++s < send) {
629 digit = *s - '0';
630 if (digit >= 0 && digit <= 9) {
631 value = value * 10 + digit;
632 if (++s < send) {
633 digit = *s - '0';
634 if (digit >= 0 && digit <= 9) {
635 value = value * 10 + digit;
636 if (++s < send) {
637 digit = *s - '0';
638 if (digit >= 0 && digit <= 9) {
639 value = value * 10 + digit;
640 if (++s < send) {
641 digit = *s - '0';
642 if (digit >= 0 && digit <= 9) {
643 value = value * 10 + digit;
644 if (++s < send) {
645 /* Now got 9 digits, so need to check
646 each time for overflow. */
647 digit = *s - '0';
648 while (digit >= 0 && digit <= 9
649 && (value < max_div_10
650 || (value == max_div_10
651 && digit <= max_mod_10))) {
652 value = value * 10 + digit;
653 if (++s < send)
654 digit = *s - '0';
655 else
656 break;
657 }
658 if (digit >= 0 && digit <= 9
659 && (s < send)) {
660 /* value overflowed.
661 skip the remaining digits, don't
662 worry about setting *valuep. */
663 do {
664 s++;
665 } while (s < send && isDIGIT(*s));
666 numtype |=
667 IS_NUMBER_GREATER_THAN_UV_MAX;
668 goto skip_value;
669 }
670 }
671 }
672 }
673 }
674 }
675 }
676 }
677 }
678 }
679 }
680 }
681 }
682 }
683 }
684 }
685 }
686 }
687 numtype |= IS_NUMBER_IN_UV;
688 if (valuep)
689 *valuep = value;
690
691 skip_value:
692 if (GROK_NUMERIC_RADIX(&s, send)) {
693 numtype |= IS_NUMBER_NOT_INT;
694 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
695 s++;
696 }
697 }
698 else if (GROK_NUMERIC_RADIX(&s, send)) {
699 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
700 /* no digits before the radix means we need digits after it */
701 if (s < send && isDIGIT(*s)) {
702 do {
703 s++;
704 } while (s < send && isDIGIT(*s));
705 if (valuep) {
706 /* integer approximation is valid - it's 0. */
707 *valuep = 0;
708 }
709 }
710 else
711 return 0;
712 } else if (*s == 'I' || *s == 'i') {
713 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
714 s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
715 s++; if (s < send && (*s == 'I' || *s == 'i')) {
716 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
717 s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
718 s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
719 s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
720 s++;
721 }
722 sawinf = 1;
723 } else if (*s == 'N' || *s == 'n') {
724 /* XXX TODO: There are signaling NaNs and quiet NaNs. */
725 s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
726 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
727 s++;
728 sawnan = 1;
729 } else
730 return 0;
731
732 if (sawinf) {
733 numtype &= IS_NUMBER_NEG; /* Keep track of sign */
734 numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
735 } else if (sawnan) {
736 numtype &= IS_NUMBER_NEG; /* Keep track of sign */
737 numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
738 } else if (s < send) {
739 /* we can have an optional exponent part */
740 if (*s == 'e' || *s == 'E') {
741 /* The only flag we keep is sign. Blow away any "it's UV" */
742 numtype &= IS_NUMBER_NEG;
743 numtype |= IS_NUMBER_NOT_INT;
744 s++;
745 if (s < send && (*s == '-' || *s == '+'))
746 s++;
747 if (s < send && isDIGIT(*s)) {
748 do {
749 s++;
750 } while (s < send && isDIGIT(*s));
751 }
752 else
753 return 0;
754 }
755 }
756 while (s < send && isSPACE(*s))
757 s++;
758 if (s >= send)
759 return numtype;
760 if (len == 10 && memEQ(pv, "0 but true", 10)) {
761 if (valuep)
762 *valuep = 0;
763 return IS_NUMBER_IN_UV;
764 }
765 return 0;
766}
767
768STATIC NV
769S_mulexp10(NV value, I32 exponent)
770{
771 NV result = 1.0;
772 NV power = 10.0;
773 bool negative = 0;
774 I32 bit;
775
776 if (exponent == 0)
777 return value;
778 if (value == 0)
779 return (NV)0;
780
781 /* On OpenVMS VAX we by default use the D_FLOAT double format,
782 * and that format does not have *easy* capabilities [1] for
783 * overflowing doubles 'silently' as IEEE fp does. We also need
784 * to support G_FLOAT on both VAX and Alpha, and though the exponent
785 * range is much larger than D_FLOAT it still doesn't do silent
786 * overflow. Therefore we need to detect early whether we would
787 * overflow (this is the behaviour of the native string-to-float
788 * conversion routines, and therefore of native applications, too).
789 *
790 * [1] Trying to establish a condition handler to trap floating point
791 * exceptions is not a good idea. */
792
793 /* In UNICOS and in certain Cray models (such as T90) there is no
794 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
795 * There is something you can do if you are willing to use some
796 * inline assembler: the instruction is called DFI-- but that will
797 * disable *all* floating point interrupts, a little bit too large
798 * a hammer. Therefore we need to catch potential overflows before
799 * it's too late. */
800
801#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
802 STMT_START {
803 const NV exp_v = log10(value);
804 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
805 return NV_MAX;
806 if (exponent < 0) {
807 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
808 return 0.0;
809 while (-exponent >= NV_MAX_10_EXP) {
810 /* combination does not overflow, but 10^(-exponent) does */
811 value /= 10;
812 ++exponent;
813 }
814 }
815 } STMT_END;
816#endif
817
818 if (exponent < 0) {
819 negative = 1;
820 exponent = -exponent;
821#ifdef NV_MAX_10_EXP
822 /* for something like 1234 x 10^-309, the action of calculating
823 * the intermediate value 10^309 then returning 1234 / (10^309)
824 * will fail, since 10^309 becomes infinity. In this case try to
825 * refactor it as 123 / (10^308) etc.
826 */
827 while (value && exponent > NV_MAX_10_EXP) {
828 exponent--;
829 value /= 10;
830 }
831#endif
832 }
833 for (bit = 1; exponent; bit <<= 1) {
834 if (exponent & bit) {
835 exponent ^= bit;
836 result *= power;
837 /* Floating point exceptions are supposed to be turned off,
838 * but if we're obviously done, don't risk another iteration.
839 */
840 if (exponent == 0) break;
841 }
842 power *= power;
843 }
844 return negative ? value / result : value * result;
845}
846
847NV
848Perl_my_atof(pTHX_ const char* s)
849{
850 NV x = 0.0;
851#ifdef USE_LOCALE_NUMERIC
852 dVAR;
853
854 PERL_ARGS_ASSERT_MY_ATOF;
855
856 {
857 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
858 if (PL_numeric_local && PL_numeric_radix_sv && IN_SOME_LOCALE_FORM) {
859 const char *standard = NULL, *local = NULL;
860 bool use_standard_radix;
861
862 /* Look through the string for the first thing that looks like a
863 * decimal point: either the value in the current locale or the
864 * standard fallback of '.'. The one which appears earliest in the
865 * input string is the one that we should have atof look for. Note
866 * that we have to determine this beforehand because on some
867 * systems, Perl_atof2 is just a wrapper around the system's atof.
868 * */
869 standard = strchr(s, '.');
870 local = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
871
872 use_standard_radix = standard && (!local || standard < local);
873
874 if (use_standard_radix)
875 SET_NUMERIC_STANDARD();
876
877 Perl_atof2(s, x);
878
879 if (use_standard_radix)
880 SET_NUMERIC_LOCAL();
881 }
882 else
883 Perl_atof2(s, x);
884 RESTORE_LC_NUMERIC();
885 }
886#else
887 Perl_atof2(s, x);
888#endif
889 return x;
890}
891
892char*
893Perl_my_atof2(pTHX_ const char* orig, NV* value)
894{
895 NV result[3] = {0.0, 0.0, 0.0};
896 const char* s = orig;
897#ifdef USE_PERL_ATOF
898 UV accumulator[2] = {0,0}; /* before/after dp */
899 bool negative = 0;
900 const char* send = s + strlen(orig) - 1;
901 bool seen_digit = 0;
902 I32 exp_adjust[2] = {0,0};
903 I32 exp_acc[2] = {-1, -1};
904 /* the current exponent adjust for the accumulators */
905 I32 exponent = 0;
906 I32 seen_dp = 0;
907 I32 digit = 0;
908 I32 old_digit = 0;
909 I32 sig_digits = 0; /* noof significant digits seen so far */
910
911 PERL_ARGS_ASSERT_MY_ATOF2;
912
913/* There is no point in processing more significant digits
914 * than the NV can hold. Note that NV_DIG is a lower-bound value,
915 * while we need an upper-bound value. We add 2 to account for this;
916 * since it will have been conservative on both the first and last digit.
917 * For example a 32-bit mantissa with an exponent of 4 would have
918 * exact values in the set
919 * 4
920 * 8
921 * ..
922 * 17179869172
923 * 17179869176
924 * 17179869180
925 *
926 * where for the purposes of calculating NV_DIG we would have to discount
927 * both the first and last digit, since neither can hold all values from
928 * 0..9; but for calculating the value we must examine those two digits.
929 */
930#ifdef MAX_SIG_DIG_PLUS
931 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
932 possible digits in a NV, especially if NVs are not IEEE compliant
933 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
934# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
935#else
936# define MAX_SIG_DIGITS (NV_DIG+2)
937#endif
938
939/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
940#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
941
942 /* leading whitespace */
943 while (isSPACE(*s))
944 ++s;
945
946 /* sign */
947 switch (*s) {
948 case '-':
949 negative = 1;
950 /* fall through */
951 case '+':
952 ++s;
953 }
954
955 /* punt to strtod for NaN/Inf; if no support for it there, tough luck */
956
957#ifdef HAS_STRTOD
958 if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') {
959 const char *p = negative ? s - 1 : s;
960 char *endp;
961 NV rslt;
962 rslt = strtod(p, &endp);
963 if (endp != p) {
964 *value = rslt;
965 return (char *)endp;
966 }
967 }
968#endif
969
970 /* we accumulate digits into an integer; when this becomes too
971 * large, we add the total to NV and start again */
972
973 while (1) {
974 if (isDIGIT(*s)) {
975 seen_digit = 1;
976 old_digit = digit;
977 digit = *s++ - '0';
978 if (seen_dp)
979 exp_adjust[1]++;
980
981 /* don't start counting until we see the first significant
982 * digit, eg the 5 in 0.00005... */
983 if (!sig_digits && digit == 0)
984 continue;
985
986 if (++sig_digits > MAX_SIG_DIGITS) {
987 /* limits of precision reached */
988 if (digit > 5) {
989 ++accumulator[seen_dp];
990 } else if (digit == 5) {
991 if (old_digit % 2) { /* round to even - Allen */
992 ++accumulator[seen_dp];
993 }
994 }
995 if (seen_dp) {
996 exp_adjust[1]--;
997 } else {
998 exp_adjust[0]++;
999 }
1000 /* skip remaining digits */
1001 while (isDIGIT(*s)) {
1002 ++s;
1003 if (! seen_dp) {
1004 exp_adjust[0]++;
1005 }
1006 }
1007 /* warn of loss of precision? */
1008 }
1009 else {
1010 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1011 /* add accumulator to result and start again */
1012 result[seen_dp] = S_mulexp10(result[seen_dp],
1013 exp_acc[seen_dp])
1014 + (NV)accumulator[seen_dp];
1015 accumulator[seen_dp] = 0;
1016 exp_acc[seen_dp] = 0;
1017 }
1018 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1019 ++exp_acc[seen_dp];
1020 }
1021 }
1022 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1023 seen_dp = 1;
1024 if (sig_digits > MAX_SIG_DIGITS) {
1025 do {
1026 ++s;
1027 } while (isDIGIT(*s));
1028 break;
1029 }
1030 }
1031 else {
1032 break;
1033 }
1034 }
1035
1036 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1037 if (seen_dp) {
1038 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1039 }
1040
1041 if (seen_digit && (*s == 'e' || *s == 'E')) {
1042 bool expnegative = 0;
1043
1044 ++s;
1045 switch (*s) {
1046 case '-':
1047 expnegative = 1;
1048 /* fall through */
1049 case '+':
1050 ++s;
1051 }
1052 while (isDIGIT(*s))
1053 exponent = exponent * 10 + (*s++ - '0');
1054 if (expnegative)
1055 exponent = -exponent;
1056 }
1057
1058
1059
1060 /* now apply the exponent */
1061
1062 if (seen_dp) {
1063 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1064 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1065 } else {
1066 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1067 }
1068
1069 /* now apply the sign */
1070 if (negative)
1071 result[2] = -result[2];
1072#endif /* USE_PERL_ATOF */
1073 *value = result[2];
1074 return (char *)s;
1075}
1076
1077#if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1078long double
1079Perl_my_modfl(long double x, long double *ip)
1080{
1081 *ip = aintl(x);
1082 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1083}
1084#endif
1085
1086#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1087long double
1088Perl_my_frexpl(long double x, int *e) {
1089 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1090 return (scalbnl(x, -*e));
1091}
1092#endif
1093
1094/*
1095=for apidoc Perl_signbit
1096
1097Return a non-zero integer if the sign bit on an NV is set, and 0 if
1098it is not.
1099
1100If Configure detects this system has a signbit() that will work with
1101our NVs, then we just use it via the #define in perl.h. Otherwise,
1102fall back on this implementation. As a first pass, this gets everything
1103right except -0.0. Alas, catching -0.0 is the main use for this function,
1104so this is not too helpful yet. Still, at least we have the scaffolding
1105in place to support other systems, should that prove useful.
1106
1107
1108Configure notes: This function is called 'Perl_signbit' instead of a
1109plain 'signbit' because it is easy to imagine a system having a signbit()
1110function or macro that doesn't happen to work with our particular choice
1111of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
1112the standard system headers to be happy. Also, this is a no-context
1113function (no pTHX_) because Perl_signbit() is usually re-#defined in
1114perl.h as a simple macro call to the system's signbit().
1115Users should just always call Perl_signbit().
1116
1117=cut
1118*/
1119#if !defined(HAS_SIGNBIT)
1120int
1121Perl_signbit(NV x) {
1122 return (x < 0.0) ? 1 : 0;
1123}
1124#endif
1125
1126/*
1127 * Local variables:
1128 * c-indentation-style: bsd
1129 * c-basic-offset: 4
1130 * indent-tabs-mode: nil
1131 * End:
1132 *
1133 * ex: set ts=8 sts=4 sw=4 et:
1134 */