This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
bench.pl: improve single-field formatting
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21A HV structure represents a Perl hash. It consists mainly of an array
22of pointers, each of which points to a linked list of HE structures. The
23array is indexed by the hash function of the key, so each linked list
24represents all the hash entries with the same hash value. Each HE contains
25a pointer to the actual value, plus a pointer to a HEK structure which
26holds the key and hash value.
27
28=cut
29
30*/
31
32#include "EXTERN.h"
33#define PERL_IN_HV_C
34#define PERL_HASH_INTERNAL_ACCESS
35#include "perl.h"
36
37#define DO_HSPLIT(xhv) ((xhv)->xhv_keys > (xhv)->xhv_max) /* HvTOTALKEYS(hv) > HvMAX(hv) */
38#define HV_FILL_THRESHOLD 31
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43#ifdef PURIFY
44
45#define new_HE() (HE*)safemalloc(sizeof(HE))
46#define del_HE(p) safefree((char*)p)
47
48#else
49
50STATIC HE*
51S_new_he(pTHX)
52{
53 HE* he;
54 void ** const root = &PL_body_roots[HE_SVSLOT];
55
56 if (!*root)
57 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
58 he = (HE*) *root;
59 assert(he);
60 *root = HeNEXT(he);
61 return he;
62}
63
64#define new_HE() new_he()
65#define del_HE(p) \
66 STMT_START { \
67 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
68 PL_body_roots[HE_SVSLOT] = p; \
69 } STMT_END
70
71
72
73#endif
74
75STATIC HEK *
76S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
77{
78 const int flags_masked = flags & HVhek_MASK;
79 char *k;
80 HEK *hek;
81
82 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
83
84 Newx(k, HEK_BASESIZE + len + 2, char);
85 hek = (HEK*)k;
86 Copy(str, HEK_KEY(hek), len, char);
87 HEK_KEY(hek)[len] = 0;
88 HEK_LEN(hek) = len;
89 HEK_HASH(hek) = hash;
90 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
91
92 if (flags & HVhek_FREEKEY)
93 Safefree(str);
94 return hek;
95}
96
97/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
98 * for tied hashes */
99
100void
101Perl_free_tied_hv_pool(pTHX)
102{
103 HE *he = PL_hv_fetch_ent_mh;
104 while (he) {
105 HE * const ohe = he;
106 Safefree(HeKEY_hek(he));
107 he = HeNEXT(he);
108 del_HE(ohe);
109 }
110 PL_hv_fetch_ent_mh = NULL;
111}
112
113#if defined(USE_ITHREADS)
114HEK *
115Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
116{
117 HEK *shared;
118
119 PERL_ARGS_ASSERT_HEK_DUP;
120 PERL_UNUSED_ARG(param);
121
122 if (!source)
123 return NULL;
124
125 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
126 if (shared) {
127 /* We already shared this hash key. */
128 (void)share_hek_hek(shared);
129 }
130 else {
131 shared
132 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
133 HEK_HASH(source), HEK_FLAGS(source));
134 ptr_table_store(PL_ptr_table, source, shared);
135 }
136 return shared;
137}
138
139HE *
140Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
141{
142 HE *ret;
143
144 PERL_ARGS_ASSERT_HE_DUP;
145
146 if (!e)
147 return NULL;
148 /* look for it in the table first */
149 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
150 if (ret)
151 return ret;
152
153 /* create anew and remember what it is */
154 ret = new_HE();
155 ptr_table_store(PL_ptr_table, e, ret);
156
157 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
158 if (HeKLEN(e) == HEf_SVKEY) {
159 char *k;
160 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
161 HeKEY_hek(ret) = (HEK*)k;
162 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
163 }
164 else if (shared) {
165 /* This is hek_dup inlined, which seems to be important for speed
166 reasons. */
167 HEK * const source = HeKEY_hek(e);
168 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
169
170 if (shared) {
171 /* We already shared this hash key. */
172 (void)share_hek_hek(shared);
173 }
174 else {
175 shared
176 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
177 HEK_HASH(source), HEK_FLAGS(source));
178 ptr_table_store(PL_ptr_table, source, shared);
179 }
180 HeKEY_hek(ret) = shared;
181 }
182 else
183 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
184 HeKFLAGS(e));
185 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
186 return ret;
187}
188#endif /* USE_ITHREADS */
189
190static void
191S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
192 const char *msg)
193{
194 SV * const sv = sv_newmortal();
195
196 PERL_ARGS_ASSERT_HV_NOTALLOWED;
197
198 if (!(flags & HVhek_FREEKEY)) {
199 sv_setpvn(sv, key, klen);
200 }
201 else {
202 /* Need to free saved eventually assign to mortal SV */
203 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
204 sv_usepvn(sv, (char *) key, klen);
205 }
206 if (flags & HVhek_UTF8) {
207 SvUTF8_on(sv);
208 }
209 Perl_croak(aTHX_ msg, SVfARG(sv));
210}
211
212/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
213 * contains an SV* */
214
215/*
216=for apidoc hv_store
217
218Stores an SV in a hash. The hash key is specified as C<key> and the
219absolute value of C<klen> is the length of the key. If C<klen> is
220negative the key is assumed to be in UTF-8-encoded Unicode. The
221C<hash> parameter is the precomputed hash value; if it is zero then
222Perl will compute it.
223
224The return value will be
225NULL if the operation failed or if the value did not need to be actually
226stored within the hash (as in the case of tied hashes). Otherwise it can
227be dereferenced to get the original C<SV*>. Note that the caller is
228responsible for suitably incrementing the reference count of C<val> before
229the call, and decrementing it if the function returned NULL. Effectively
230a successful hv_store takes ownership of one reference to C<val>. This is
231usually what you want; a newly created SV has a reference count of one, so
232if all your code does is create SVs then store them in a hash, hv_store
233will own the only reference to the new SV, and your code doesn't need to do
234anything further to tidy up. hv_store is not implemented as a call to
235hv_store_ent, and does not create a temporary SV for the key, so if your
236key data is not already in SV form then use hv_store in preference to
237hv_store_ent.
238
239See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
240information on how to use this function on tied hashes.
241
242=for apidoc hv_store_ent
243
244Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
245parameter is the precomputed hash value; if it is zero then Perl will
246compute it. The return value is the new hash entry so created. It will be
247NULL if the operation failed or if the value did not need to be actually
248stored within the hash (as in the case of tied hashes). Otherwise the
249contents of the return value can be accessed using the C<He?> macros
250described here. Note that the caller is responsible for suitably
251incrementing the reference count of C<val> before the call, and
252decrementing it if the function returned NULL. Effectively a successful
253hv_store_ent takes ownership of one reference to C<val>. This is
254usually what you want; a newly created SV has a reference count of one, so
255if all your code does is create SVs then store them in a hash, hv_store
256will own the only reference to the new SV, and your code doesn't need to do
257anything further to tidy up. Note that hv_store_ent only reads the C<key>;
258unlike C<val> it does not take ownership of it, so maintaining the correct
259reference count on C<key> is entirely the caller's responsibility. hv_store
260is not implemented as a call to hv_store_ent, and does not create a temporary
261SV for the key, so if your key data is not already in SV form then use
262hv_store in preference to hv_store_ent.
263
264See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
265information on how to use this function on tied hashes.
266
267=for apidoc hv_exists
268
269Returns a boolean indicating whether the specified hash key exists. The
270absolute value of C<klen> is the length of the key. If C<klen> is
271negative the key is assumed to be in UTF-8-encoded Unicode.
272
273=for apidoc hv_fetch
274
275Returns the SV which corresponds to the specified key in the hash.
276The absolute value of C<klen> is the length of the key. If C<klen> is
277negative the key is assumed to be in UTF-8-encoded Unicode. If
278C<lval> is set then the fetch will be part of a store. This means that if
279there is no value in the hash associated with the given key, then one is
280created and a pointer to it is returned. The C<SV*> it points to can be
281assigned to. But always check that the
282return value is non-null before dereferencing it to an C<SV*>.
283
284See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
285information on how to use this function on tied hashes.
286
287=for apidoc hv_exists_ent
288
289Returns a boolean indicating whether
290the specified hash key exists. C<hash>
291can be a valid precomputed hash value, or 0 to ask for it to be
292computed.
293
294=cut
295*/
296
297/* returns an HE * structure with the all fields set */
298/* note that hent_val will be a mortal sv for MAGICAL hashes */
299/*
300=for apidoc hv_fetch_ent
301
302Returns the hash entry which corresponds to the specified key in the hash.
303C<hash> must be a valid precomputed hash number for the given C<key>, or 0
304if you want the function to compute it. IF C<lval> is set then the fetch
305will be part of a store. Make sure the return value is non-null before
306accessing it. The return value when C<hv> is a tied hash is a pointer to a
307static location, so be sure to make a copy of the structure if you need to
308store it somewhere.
309
310See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
311information on how to use this function on tied hashes.
312
313=cut
314*/
315
316/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
317void *
318Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
319 const int action, SV *val, const U32 hash)
320{
321 STRLEN klen;
322 int flags;
323
324 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
325
326 if (klen_i32 < 0) {
327 klen = -klen_i32;
328 flags = HVhek_UTF8;
329 } else {
330 klen = klen_i32;
331 flags = 0;
332 }
333 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
334}
335
336void *
337Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
338 int flags, int action, SV *val, U32 hash)
339{
340 dVAR;
341 XPVHV* xhv;
342 HE *entry;
343 HE **oentry;
344 SV *sv;
345 bool is_utf8;
346 int masked_flags;
347 const int return_svp = action & HV_FETCH_JUST_SV;
348 HEK *keysv_hek = NULL;
349
350 if (!hv)
351 return NULL;
352 if (SvTYPE(hv) == (svtype)SVTYPEMASK)
353 return NULL;
354
355 assert(SvTYPE(hv) == SVt_PVHV);
356
357 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
358 MAGIC* mg;
359 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
360 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
361 if (uf->uf_set == NULL) {
362 SV* obj = mg->mg_obj;
363
364 if (!keysv) {
365 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
366 ((flags & HVhek_UTF8)
367 ? SVf_UTF8 : 0));
368 }
369
370 mg->mg_obj = keysv; /* pass key */
371 uf->uf_index = action; /* pass action */
372 magic_getuvar(MUTABLE_SV(hv), mg);
373 keysv = mg->mg_obj; /* may have changed */
374 mg->mg_obj = obj;
375
376 /* If the key may have changed, then we need to invalidate
377 any passed-in computed hash value. */
378 hash = 0;
379 }
380 }
381 }
382 if (keysv) {
383 if (flags & HVhek_FREEKEY)
384 Safefree(key);
385 key = SvPV_const(keysv, klen);
386 is_utf8 = (SvUTF8(keysv) != 0);
387 if (SvIsCOW_shared_hash(keysv)) {
388 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
389 } else {
390 flags = is_utf8 ? HVhek_UTF8 : 0;
391 }
392 } else {
393 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
394 }
395
396 if (action & HV_DELETE) {
397 return (void *) hv_delete_common(hv, keysv, key, klen,
398 flags, action, hash);
399 }
400
401 xhv = (XPVHV*)SvANY(hv);
402 if (SvMAGICAL(hv)) {
403 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
404 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
405 || SvGMAGICAL((const SV *)hv))
406 {
407 /* FIXME should be able to skimp on the HE/HEK here when
408 HV_FETCH_JUST_SV is true. */
409 if (!keysv) {
410 keysv = newSVpvn_utf8(key, klen, is_utf8);
411 } else {
412 keysv = newSVsv(keysv);
413 }
414 sv = sv_newmortal();
415 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
416
417 /* grab a fake HE/HEK pair from the pool or make a new one */
418 entry = PL_hv_fetch_ent_mh;
419 if (entry)
420 PL_hv_fetch_ent_mh = HeNEXT(entry);
421 else {
422 char *k;
423 entry = new_HE();
424 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
425 HeKEY_hek(entry) = (HEK*)k;
426 }
427 HeNEXT(entry) = NULL;
428 HeSVKEY_set(entry, keysv);
429 HeVAL(entry) = sv;
430 sv_upgrade(sv, SVt_PVLV);
431 LvTYPE(sv) = 'T';
432 /* so we can free entry when freeing sv */
433 LvTARG(sv) = MUTABLE_SV(entry);
434
435 /* XXX remove at some point? */
436 if (flags & HVhek_FREEKEY)
437 Safefree(key);
438
439 if (return_svp) {
440 return entry ? (void *) &HeVAL(entry) : NULL;
441 }
442 return (void *) entry;
443 }
444#ifdef ENV_IS_CASELESS
445 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
446 U32 i;
447 for (i = 0; i < klen; ++i)
448 if (isLOWER(key[i])) {
449 /* Would be nice if we had a routine to do the
450 copy and upercase in a single pass through. */
451 const char * const nkey = strupr(savepvn(key,klen));
452 /* Note that this fetch is for nkey (the uppercased
453 key) whereas the store is for key (the original) */
454 void *result = hv_common(hv, NULL, nkey, klen,
455 HVhek_FREEKEY, /* free nkey */
456 0 /* non-LVAL fetch */
457 | HV_DISABLE_UVAR_XKEY
458 | return_svp,
459 NULL /* no value */,
460 0 /* compute hash */);
461 if (!result && (action & HV_FETCH_LVALUE)) {
462 /* This call will free key if necessary.
463 Do it this way to encourage compiler to tail
464 call optimise. */
465 result = hv_common(hv, keysv, key, klen, flags,
466 HV_FETCH_ISSTORE
467 | HV_DISABLE_UVAR_XKEY
468 | return_svp,
469 newSV(0), hash);
470 } else {
471 if (flags & HVhek_FREEKEY)
472 Safefree(key);
473 }
474 return result;
475 }
476 }
477#endif
478 } /* ISFETCH */
479 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
480 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
481 || SvGMAGICAL((const SV *)hv)) {
482 /* I don't understand why hv_exists_ent has svret and sv,
483 whereas hv_exists only had one. */
484 SV * const svret = sv_newmortal();
485 sv = sv_newmortal();
486
487 if (keysv || is_utf8) {
488 if (!keysv) {
489 keysv = newSVpvn_utf8(key, klen, TRUE);
490 } else {
491 keysv = newSVsv(keysv);
492 }
493 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
494 } else {
495 mg_copy(MUTABLE_SV(hv), sv, key, klen);
496 }
497 if (flags & HVhek_FREEKEY)
498 Safefree(key);
499 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
500 /* This cast somewhat evil, but I'm merely using NULL/
501 not NULL to return the boolean exists.
502 And I know hv is not NULL. */
503 return SvTRUE(svret) ? (void *)hv : NULL;
504 }
505#ifdef ENV_IS_CASELESS
506 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
507 /* XXX This code isn't UTF8 clean. */
508 char * const keysave = (char * const)key;
509 /* Will need to free this, so set FREEKEY flag. */
510 key = savepvn(key,klen);
511 key = (const char*)strupr((char*)key);
512 is_utf8 = FALSE;
513 hash = 0;
514 keysv = 0;
515
516 if (flags & HVhek_FREEKEY) {
517 Safefree(keysave);
518 }
519 flags |= HVhek_FREEKEY;
520 }
521#endif
522 } /* ISEXISTS */
523 else if (action & HV_FETCH_ISSTORE) {
524 bool needs_copy;
525 bool needs_store;
526 hv_magic_check (hv, &needs_copy, &needs_store);
527 if (needs_copy) {
528 const bool save_taint = TAINT_get;
529 if (keysv || is_utf8) {
530 if (!keysv) {
531 keysv = newSVpvn_utf8(key, klen, TRUE);
532 }
533 if (TAINTING_get)
534 TAINT_set(SvTAINTED(keysv));
535 keysv = sv_2mortal(newSVsv(keysv));
536 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
537 } else {
538 mg_copy(MUTABLE_SV(hv), val, key, klen);
539 }
540
541 TAINT_IF(save_taint);
542#ifdef NO_TAINT_SUPPORT
543 PERL_UNUSED_VAR(save_taint);
544#endif
545 if (!needs_store) {
546 if (flags & HVhek_FREEKEY)
547 Safefree(key);
548 return NULL;
549 }
550#ifdef ENV_IS_CASELESS
551 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
552 /* XXX This code isn't UTF8 clean. */
553 const char *keysave = key;
554 /* Will need to free this, so set FREEKEY flag. */
555 key = savepvn(key,klen);
556 key = (const char*)strupr((char*)key);
557 is_utf8 = FALSE;
558 hash = 0;
559 keysv = 0;
560
561 if (flags & HVhek_FREEKEY) {
562 Safefree(keysave);
563 }
564 flags |= HVhek_FREEKEY;
565 }
566#endif
567 }
568 } /* ISSTORE */
569 } /* SvMAGICAL */
570
571 if (!HvARRAY(hv)) {
572 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
573#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
574 || (SvRMAGICAL((const SV *)hv)
575 && mg_find((const SV *)hv, PERL_MAGIC_env))
576#endif
577 ) {
578 char *array;
579 Newxz(array,
580 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
581 char);
582 HvARRAY(hv) = (HE**)array;
583 }
584#ifdef DYNAMIC_ENV_FETCH
585 else if (action & HV_FETCH_ISEXISTS) {
586 /* for an %ENV exists, if we do an insert it's by a recursive
587 store call, so avoid creating HvARRAY(hv) right now. */
588 }
589#endif
590 else {
591 /* XXX remove at some point? */
592 if (flags & HVhek_FREEKEY)
593 Safefree(key);
594
595 return NULL;
596 }
597 }
598
599 if (is_utf8 && !(flags & HVhek_KEYCANONICAL)) {
600 char * const keysave = (char *)key;
601 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
602 if (is_utf8)
603 flags |= HVhek_UTF8;
604 else
605 flags &= ~HVhek_UTF8;
606 if (key != keysave) {
607 if (flags & HVhek_FREEKEY)
608 Safefree(keysave);
609 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
610 /* If the caller calculated a hash, it was on the sequence of
611 octets that are the UTF-8 form. We've now changed the sequence
612 of octets stored to that of the equivalent byte representation,
613 so the hash we need is different. */
614 hash = 0;
615 }
616 }
617
618 if (keysv && (SvIsCOW_shared_hash(keysv))) {
619 if (HvSHAREKEYS(hv))
620 keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv));
621 hash = SvSHARED_HASH(keysv);
622 }
623 else if (!hash)
624 PERL_HASH(hash, key, klen);
625
626 masked_flags = (flags & HVhek_MASK);
627
628#ifdef DYNAMIC_ENV_FETCH
629 if (!HvARRAY(hv)) entry = NULL;
630 else
631#endif
632 {
633 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
634 }
635
636 if (!entry)
637 goto not_found;
638
639 if (keysv_hek) {
640 /* keysv is actually a HEK in disguise, so we can match just by
641 * comparing the HEK pointers in the HE chain. There is a slight
642 * caveat: on something like "\x80", which has both plain and utf8
643 * representations, perl's hashes do encoding-insensitive lookups,
644 * but preserve the encoding of the stored key. Thus a particular
645 * key could map to two different HEKs in PL_strtab. We only
646 * conclude 'not found' if all the flags are the same; otherwise
647 * we fall back to a full search (this should only happen in rare
648 * cases).
649 */
650 int keysv_flags = HEK_FLAGS(keysv_hek);
651 HE *orig_entry = entry;
652
653 for (; entry; entry = HeNEXT(entry)) {
654 HEK *hek = HeKEY_hek(entry);
655 if (hek == keysv_hek)
656 goto found;
657 if (HEK_FLAGS(hek) != keysv_flags)
658 break; /* need to do full match */
659 }
660 if (!entry)
661 goto not_found;
662 /* failed on shortcut - do full search loop */
663 entry = orig_entry;
664 }
665
666 for (; entry; entry = HeNEXT(entry)) {
667 if (HeHASH(entry) != hash) /* strings can't be equal */
668 continue;
669 if (HeKLEN(entry) != (I32)klen)
670 continue;
671 if (memNE(HeKEY(entry),key,klen)) /* is this it? */
672 continue;
673 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
674 continue;
675
676 found:
677 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
678 if (HeKFLAGS(entry) != masked_flags) {
679 /* We match if HVhek_UTF8 bit in our flags and hash key's
680 match. But if entry was set previously with HVhek_WASUTF8
681 and key now doesn't (or vice versa) then we should change
682 the key's flag, as this is assignment. */
683 if (HvSHAREKEYS(hv)) {
684 /* Need to swap the key we have for a key with the flags we
685 need. As keys are shared we can't just write to the
686 flag, so we share the new one, unshare the old one. */
687 HEK * const new_hek = share_hek_flags(key, klen, hash,
688 masked_flags);
689 unshare_hek (HeKEY_hek(entry));
690 HeKEY_hek(entry) = new_hek;
691 }
692 else if (hv == PL_strtab) {
693 /* PL_strtab is usually the only hash without HvSHAREKEYS,
694 so putting this test here is cheap */
695 if (flags & HVhek_FREEKEY)
696 Safefree(key);
697 Perl_croak(aTHX_ S_strtab_error,
698 action & HV_FETCH_LVALUE ? "fetch" : "store");
699 }
700 else
701 HeKFLAGS(entry) = masked_flags;
702 if (masked_flags & HVhek_ENABLEHVKFLAGS)
703 HvHASKFLAGS_on(hv);
704 }
705 if (HeVAL(entry) == &PL_sv_placeholder) {
706 /* yes, can store into placeholder slot */
707 if (action & HV_FETCH_LVALUE) {
708 if (SvMAGICAL(hv)) {
709 /* This preserves behaviour with the old hv_fetch
710 implementation which at this point would bail out
711 with a break; (at "if we find a placeholder, we
712 pretend we haven't found anything")
713
714 That break mean that if a placeholder were found, it
715 caused a call into hv_store, which in turn would
716 check magic, and if there is no magic end up pretty
717 much back at this point (in hv_store's code). */
718 break;
719 }
720 /* LVAL fetch which actually needs a store. */
721 val = newSV(0);
722 HvPLACEHOLDERS(hv)--;
723 } else {
724 /* store */
725 if (val != &PL_sv_placeholder)
726 HvPLACEHOLDERS(hv)--;
727 }
728 HeVAL(entry) = val;
729 } else if (action & HV_FETCH_ISSTORE) {
730 SvREFCNT_dec(HeVAL(entry));
731 HeVAL(entry) = val;
732 }
733 } else if (HeVAL(entry) == &PL_sv_placeholder) {
734 /* if we find a placeholder, we pretend we haven't found
735 anything */
736 break;
737 }
738 if (flags & HVhek_FREEKEY)
739 Safefree(key);
740 if (return_svp) {
741 return entry ? (void *) &HeVAL(entry) : NULL;
742 }
743 return entry;
744 }
745
746 not_found:
747#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
748 if (!(action & HV_FETCH_ISSTORE)
749 && SvRMAGICAL((const SV *)hv)
750 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
751 unsigned long len;
752 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
753 if (env) {
754 sv = newSVpvn(env,len);
755 SvTAINTED_on(sv);
756 return hv_common(hv, keysv, key, klen, flags,
757 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
758 sv, hash);
759 }
760 }
761#endif
762
763 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
764 hv_notallowed(flags, key, klen,
765 "Attempt to access disallowed key '%"SVf"' in"
766 " a restricted hash");
767 }
768 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
769 /* Not doing some form of store, so return failure. */
770 if (flags & HVhek_FREEKEY)
771 Safefree(key);
772 return NULL;
773 }
774 if (action & HV_FETCH_LVALUE) {
775 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
776 if (SvMAGICAL(hv)) {
777 /* At this point the old hv_fetch code would call to hv_store,
778 which in turn might do some tied magic. So we need to make that
779 magic check happen. */
780 /* gonna assign to this, so it better be there */
781 /* If a fetch-as-store fails on the fetch, then the action is to
782 recurse once into "hv_store". If we didn't do this, then that
783 recursive call would call the key conversion routine again.
784 However, as we replace the original key with the converted
785 key, this would result in a double conversion, which would show
786 up as a bug if the conversion routine is not idempotent.
787 Hence the use of HV_DISABLE_UVAR_XKEY. */
788 return hv_common(hv, keysv, key, klen, flags,
789 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
790 val, hash);
791 /* XXX Surely that could leak if the fetch-was-store fails?
792 Just like the hv_fetch. */
793 }
794 }
795
796 /* Welcome to hv_store... */
797
798 if (!HvARRAY(hv)) {
799 /* Not sure if we can get here. I think the only case of oentry being
800 NULL is for %ENV with dynamic env fetch. But that should disappear
801 with magic in the previous code. */
802 char *array;
803 Newxz(array,
804 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
805 char);
806 HvARRAY(hv) = (HE**)array;
807 }
808
809 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
810
811 entry = new_HE();
812 /* share_hek_flags will do the free for us. This might be considered
813 bad API design. */
814 if (HvSHAREKEYS(hv))
815 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
816 else if (hv == PL_strtab) {
817 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
818 this test here is cheap */
819 if (flags & HVhek_FREEKEY)
820 Safefree(key);
821 Perl_croak(aTHX_ S_strtab_error,
822 action & HV_FETCH_LVALUE ? "fetch" : "store");
823 }
824 else /* gotta do the real thing */
825 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
826 HeVAL(entry) = val;
827
828 if (!*oentry && SvOOK(hv)) {
829 /* initial entry, and aux struct present. */
830 struct xpvhv_aux *const aux = HvAUX(hv);
831 if (aux->xhv_fill_lazy)
832 ++aux->xhv_fill_lazy;
833 }
834
835#ifdef PERL_HASH_RANDOMIZE_KEYS
836 /* This logic semi-randomizes the insert order in a bucket.
837 * Either we insert into the top, or the slot below the top,
838 * making it harder to see if there is a collision. We also
839 * reset the iterator randomizer if there is one.
840 */
841 if ( *oentry && PL_HASH_RAND_BITS_ENABLED) {
842 PL_hash_rand_bits++;
843 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
844 if ( PL_hash_rand_bits & 1 ) {
845 HeNEXT(entry) = HeNEXT(*oentry);
846 HeNEXT(*oentry) = entry;
847 } else {
848 HeNEXT(entry) = *oentry;
849 *oentry = entry;
850 }
851 } else
852#endif
853 {
854 HeNEXT(entry) = *oentry;
855 *oentry = entry;
856 }
857#ifdef PERL_HASH_RANDOMIZE_KEYS
858 if (SvOOK(hv)) {
859 /* Currently this makes various tests warn in annoying ways.
860 * So Silenced for now. - Yves | bogus end of comment =>* /
861 if (HvAUX(hv)->xhv_riter != -1) {
862 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
863 "[TESTING] Inserting into a hash during each() traversal results in undefined behavior"
864 pTHX__FORMAT
865 pTHX__VALUE);
866 }
867 */
868 if (PL_HASH_RAND_BITS_ENABLED) {
869 if (PL_HASH_RAND_BITS_ENABLED == 1)
870 PL_hash_rand_bits += (PTRV)entry + 1; /* we don't bother to use ptr_hash here */
871 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
872 }
873 HvAUX(hv)->xhv_rand= (U32)PL_hash_rand_bits;
874 }
875#endif
876
877 if (val == &PL_sv_placeholder)
878 HvPLACEHOLDERS(hv)++;
879 if (masked_flags & HVhek_ENABLEHVKFLAGS)
880 HvHASKFLAGS_on(hv);
881
882 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
883 if ( DO_HSPLIT(xhv) ) {
884 const STRLEN oldsize = xhv->xhv_max + 1;
885 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
886
887 if (items /* hash has placeholders */
888 && !SvREADONLY(hv) /* but is not a restricted hash */) {
889 /* If this hash previously was a "restricted hash" and had
890 placeholders, but the "restricted" flag has been turned off,
891 then the placeholders no longer serve any useful purpose.
892 However, they have the downsides of taking up RAM, and adding
893 extra steps when finding used values. It's safe to clear them
894 at this point, even though Storable rebuilds restricted hashes by
895 putting in all the placeholders (first) before turning on the
896 readonly flag, because Storable always pre-splits the hash.
897 If we're lucky, then we may clear sufficient placeholders to
898 avoid needing to split the hash at all. */
899 clear_placeholders(hv, items);
900 if (DO_HSPLIT(xhv))
901 hsplit(hv, oldsize, oldsize * 2);
902 } else
903 hsplit(hv, oldsize, oldsize * 2);
904 }
905
906 if (return_svp) {
907 return entry ? (void *) &HeVAL(entry) : NULL;
908 }
909 return (void *) entry;
910}
911
912STATIC void
913S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
914{
915 const MAGIC *mg = SvMAGIC(hv);
916
917 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
918
919 *needs_copy = FALSE;
920 *needs_store = TRUE;
921 while (mg) {
922 if (isUPPER(mg->mg_type)) {
923 *needs_copy = TRUE;
924 if (mg->mg_type == PERL_MAGIC_tied) {
925 *needs_store = FALSE;
926 return; /* We've set all there is to set. */
927 }
928 }
929 mg = mg->mg_moremagic;
930 }
931}
932
933/*
934=for apidoc hv_scalar
935
936Evaluates the hash in scalar context and returns the result. Handles magic
937when the hash is tied.
938
939=cut
940*/
941
942SV *
943Perl_hv_scalar(pTHX_ HV *hv)
944{
945 SV *sv;
946
947 PERL_ARGS_ASSERT_HV_SCALAR;
948
949 if (SvRMAGICAL(hv)) {
950 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
951 if (mg)
952 return magic_scalarpack(hv, mg);
953 }
954
955 sv = sv_newmortal();
956 if (HvTOTALKEYS((const HV *)hv))
957 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
958 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
959 else
960 sv_setiv(sv, 0);
961
962 return sv;
963}
964
965/*
966=for apidoc hv_delete
967
968Deletes a key/value pair in the hash. The value's SV is removed from
969the hash, made mortal, and returned to the caller. The absolute
970value of C<klen> is the length of the key. If C<klen> is negative the
971key is assumed to be in UTF-8-encoded Unicode. The C<flags> value
972will normally be zero; if set to G_DISCARD then NULL will be returned.
973NULL will also be returned if the key is not found.
974
975=for apidoc hv_delete_ent
976
977Deletes a key/value pair in the hash. The value SV is removed from the hash,
978made mortal, and returned to the caller. The C<flags> value will normally be
979zero; if set to G_DISCARD then NULL will be returned. NULL will also be
980returned if the key is not found. C<hash> can be a valid precomputed hash
981value, or 0 to ask for it to be computed.
982
983=cut
984*/
985
986STATIC SV *
987S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
988 int k_flags, I32 d_flags, U32 hash)
989{
990 dVAR;
991 XPVHV* xhv;
992 HE *entry;
993 HE **oentry;
994 HE **first_entry;
995 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
996 int masked_flags;
997 HEK *keysv_hek = NULL;
998 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
999 SV *sv;
1000 GV *gv = NULL;
1001 HV *stash = NULL;
1002
1003 if (SvRMAGICAL(hv)) {
1004 bool needs_copy;
1005 bool needs_store;
1006 hv_magic_check (hv, &needs_copy, &needs_store);
1007
1008 if (needs_copy) {
1009 SV *sv;
1010 entry = (HE *) hv_common(hv, keysv, key, klen,
1011 k_flags & ~HVhek_FREEKEY,
1012 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
1013 NULL, hash);
1014 sv = entry ? HeVAL(entry) : NULL;
1015 if (sv) {
1016 if (SvMAGICAL(sv)) {
1017 mg_clear(sv);
1018 }
1019 if (!needs_store) {
1020 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
1021 /* No longer an element */
1022 sv_unmagic(sv, PERL_MAGIC_tiedelem);
1023 return sv;
1024 }
1025 return NULL; /* element cannot be deleted */
1026 }
1027#ifdef ENV_IS_CASELESS
1028 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
1029 /* XXX This code isn't UTF8 clean. */
1030 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
1031 if (k_flags & HVhek_FREEKEY) {
1032 Safefree(key);
1033 }
1034 key = strupr(SvPVX(keysv));
1035 is_utf8 = 0;
1036 k_flags = 0;
1037 hash = 0;
1038 }
1039#endif
1040 }
1041 }
1042 }
1043 xhv = (XPVHV*)SvANY(hv);
1044 if (!HvARRAY(hv))
1045 return NULL;
1046
1047 if (is_utf8 && !(k_flags & HVhek_KEYCANONICAL)) {
1048 const char * const keysave = key;
1049 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
1050
1051 if (is_utf8)
1052 k_flags |= HVhek_UTF8;
1053 else
1054 k_flags &= ~HVhek_UTF8;
1055 if (key != keysave) {
1056 if (k_flags & HVhek_FREEKEY) {
1057 /* This shouldn't happen if our caller does what we expect,
1058 but strictly the API allows it. */
1059 Safefree(keysave);
1060 }
1061 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
1062 }
1063 HvHASKFLAGS_on(MUTABLE_SV(hv));
1064 }
1065
1066 if (keysv && (SvIsCOW_shared_hash(keysv))) {
1067 if (HvSHAREKEYS(hv))
1068 keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv));
1069 hash = SvSHARED_HASH(keysv);
1070 }
1071 else if (!hash)
1072 PERL_HASH(hash, key, klen);
1073
1074 masked_flags = (k_flags & HVhek_MASK);
1075
1076 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1077 entry = *oentry;
1078
1079 if (!entry)
1080 goto not_found;
1081
1082 if (keysv_hek) {
1083 /* keysv is actually a HEK in disguise, so we can match just by
1084 * comparing the HEK pointers in the HE chain. There is a slight
1085 * caveat: on something like "\x80", which has both plain and utf8
1086 * representations, perl's hashes do encoding-insensitive lookups,
1087 * but preserve the encoding of the stored key. Thus a particular
1088 * key could map to two different HEKs in PL_strtab. We only
1089 * conclude 'not found' if all the flags are the same; otherwise
1090 * we fall back to a full search (this should only happen in rare
1091 * cases).
1092 */
1093 int keysv_flags = HEK_FLAGS(keysv_hek);
1094
1095 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1096 HEK *hek = HeKEY_hek(entry);
1097 if (hek == keysv_hek)
1098 goto found;
1099 if (HEK_FLAGS(hek) != keysv_flags)
1100 break; /* need to do full match */
1101 }
1102 if (!entry)
1103 goto not_found;
1104 /* failed on shortcut - do full search loop */
1105 oentry = first_entry;
1106 entry = *oentry;
1107 }
1108
1109 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1110 if (HeHASH(entry) != hash) /* strings can't be equal */
1111 continue;
1112 if (HeKLEN(entry) != (I32)klen)
1113 continue;
1114 if (memNE(HeKEY(entry),key,klen)) /* is this it? */
1115 continue;
1116 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1117 continue;
1118
1119 found:
1120 if (hv == PL_strtab) {
1121 if (k_flags & HVhek_FREEKEY)
1122 Safefree(key);
1123 Perl_croak(aTHX_ S_strtab_error, "delete");
1124 }
1125
1126 /* if placeholder is here, it's already been deleted.... */
1127 if (HeVAL(entry) == &PL_sv_placeholder) {
1128 if (k_flags & HVhek_FREEKEY)
1129 Safefree(key);
1130 return NULL;
1131 }
1132 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1133 hv_notallowed(k_flags, key, klen,
1134 "Attempt to delete readonly key '%"SVf"' from"
1135 " a restricted hash");
1136 }
1137 if (k_flags & HVhek_FREEKEY)
1138 Safefree(key);
1139
1140 /* If this is a stash and the key ends with ::, then someone is
1141 * deleting a package.
1142 */
1143 if (HeVAL(entry) && HvENAME_get(hv)) {
1144 gv = (GV *)HeVAL(entry);
1145 if (keysv) key = SvPV(keysv, klen);
1146 if ((
1147 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1148 ||
1149 (klen == 1 && key[0] == ':')
1150 )
1151 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1152 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1153 && HvENAME_get(stash)) {
1154 /* A previous version of this code checked that the
1155 * GV was still in the symbol table by fetching the
1156 * GV with its name. That is not necessary (and
1157 * sometimes incorrect), as HvENAME cannot be set
1158 * on hv if it is not in the symtab. */
1159 mro_changes = 2;
1160 /* Hang on to it for a bit. */
1161 SvREFCNT_inc_simple_void_NN(
1162 sv_2mortal((SV *)gv)
1163 );
1164 }
1165 else if (klen == 3 && strnEQ(key, "ISA", 3))
1166 mro_changes = 1;
1167 }
1168
1169 sv = d_flags & G_DISCARD ? HeVAL(entry) : sv_2mortal(HeVAL(entry));
1170 HeVAL(entry) = &PL_sv_placeholder;
1171 if (sv) {
1172 /* deletion of method from stash */
1173 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1174 && HvENAME_get(hv))
1175 mro_method_changed_in(hv);
1176 }
1177
1178 /*
1179 * If a restricted hash, rather than really deleting the entry, put
1180 * a placeholder there. This marks the key as being "approved", so
1181 * we can still access via not-really-existing key without raising
1182 * an error.
1183 */
1184 if (SvREADONLY(hv))
1185 /* We'll be saving this slot, so the number of allocated keys
1186 * doesn't go down, but the number placeholders goes up */
1187 HvPLACEHOLDERS(hv)++;
1188 else {
1189 *oentry = HeNEXT(entry);
1190 if(!*first_entry && SvOOK(hv)) {
1191 /* removed last entry, and aux struct present. */
1192 struct xpvhv_aux *const aux = HvAUX(hv);
1193 if (aux->xhv_fill_lazy)
1194 --aux->xhv_fill_lazy;
1195 }
1196 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1197 HvLAZYDEL_on(hv);
1198 else {
1199 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1200 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1201 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1202 hv_free_ent(hv, entry);
1203 }
1204 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1205 if (xhv->xhv_keys == 0)
1206 HvHASKFLAGS_off(hv);
1207 }
1208
1209 if (d_flags & G_DISCARD) {
1210 SvREFCNT_dec(sv);
1211 sv = NULL;
1212 }
1213
1214 if (mro_changes == 1) mro_isa_changed_in(hv);
1215 else if (mro_changes == 2)
1216 mro_package_moved(NULL, stash, gv, 1);
1217
1218 return sv;
1219 }
1220
1221 not_found:
1222 if (SvREADONLY(hv)) {
1223 hv_notallowed(k_flags, key, klen,
1224 "Attempt to delete disallowed key '%"SVf"' from"
1225 " a restricted hash");
1226 }
1227
1228 if (k_flags & HVhek_FREEKEY)
1229 Safefree(key);
1230 return NULL;
1231}
1232
1233
1234STATIC void
1235S_hsplit(pTHX_ HV *hv, STRLEN const oldsize, STRLEN newsize)
1236{
1237 STRLEN i = 0;
1238 char *a = (char*) HvARRAY(hv);
1239 HE **aep;
1240
1241 bool do_aux= (
1242 /* already have an HvAUX(hv) so we have to move it */
1243 SvOOK(hv) ||
1244 /* no HvAUX() but array we are going to allocate is large enough
1245 * there is no point in saving the space for the iterator, and
1246 * speeds up later traversals. */
1247 ( ( hv != PL_strtab ) && ( newsize >= PERL_HV_ALLOC_AUX_SIZE ) )
1248 );
1249
1250 PERL_ARGS_ASSERT_HSPLIT;
1251
1252 PL_nomemok = TRUE;
1253 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1254 + (do_aux ? sizeof(struct xpvhv_aux) : 0), char);
1255 PL_nomemok = FALSE;
1256 if (!a) {
1257 return;
1258 }
1259
1260#ifdef PERL_HASH_RANDOMIZE_KEYS
1261 /* the idea of this is that we create a "random" value by hashing the address of
1262 * the array, we then use the low bit to decide if we insert at the top, or insert
1263 * second from top. After each such insert we rotate the hashed value. So we can
1264 * use the same hashed value over and over, and in normal build environments use
1265 * very few ops to do so. ROTL32() should produce a single machine operation. */
1266 if (PL_HASH_RAND_BITS_ENABLED) {
1267 if (PL_HASH_RAND_BITS_ENABLED == 1)
1268 PL_hash_rand_bits += ptr_hash((PTRV)a);
1269 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1270 }
1271#endif
1272 HvARRAY(hv) = (HE**) a;
1273 HvMAX(hv) = newsize - 1;
1274 /* before we zero the newly added memory, we
1275 * need to deal with the aux struct that may be there
1276 * or have been allocated by us*/
1277 if (do_aux) {
1278 struct xpvhv_aux *const dest
1279 = (struct xpvhv_aux*) &a[newsize * sizeof(HE*)];
1280 if (SvOOK(hv)) {
1281 /* alread have an aux, copy the old one in place. */
1282 Move(&a[oldsize * sizeof(HE*)], dest, 1, struct xpvhv_aux);
1283 /* we reset the iterator's xhv_rand as well, so they get a totally new ordering */
1284#ifdef PERL_HASH_RANDOMIZE_KEYS
1285 dest->xhv_rand = (U32)PL_hash_rand_bits;
1286#endif
1287 /* For now, just reset the lazy fill counter.
1288 It would be possible to update the counter in the code below
1289 instead. */
1290 dest->xhv_fill_lazy = 0;
1291 } else {
1292 /* no existing aux structure, but we allocated space for one
1293 * so intialize it properly. This unrolls hv_auxinit() a bit,
1294 * since we have to do the realloc anyway. */
1295 /* first we set the iterator's xhv_rand so it can be copied into lastrand below */
1296#ifdef PERL_HASH_RANDOMIZE_KEYS
1297 dest->xhv_rand = (U32)PL_hash_rand_bits;
1298#endif
1299 /* this is the "non realloc" part of the hv_auxinit() */
1300 (void)hv_auxinit_internal(dest);
1301 /* Turn on the OOK flag */
1302 SvOOK_on(hv);
1303 }
1304 }
1305 /* now we can safely clear the second half */
1306 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1307
1308 if (!HvTOTALKEYS(hv)) /* skip rest if no entries */
1309 return;
1310
1311 newsize--;
1312 aep = (HE**)a;
1313 do {
1314 HE **oentry = aep + i;
1315 HE *entry = aep[i];
1316
1317 if (!entry) /* non-existent */
1318 continue;
1319 do {
1320 U32 j = (HeHASH(entry) & newsize);
1321 if (j != (U32)i) {
1322 *oentry = HeNEXT(entry);
1323#ifdef PERL_HASH_RANDOMIZE_KEYS
1324 /* if the target cell is empty or PL_HASH_RAND_BITS_ENABLED is false
1325 * insert to top, otherwise rotate the bucket rand 1 bit,
1326 * and use the new low bit to decide if we insert at top,
1327 * or next from top. IOW, we only rotate on a collision.*/
1328 if (aep[j] && PL_HASH_RAND_BITS_ENABLED) {
1329 PL_hash_rand_bits+= ROTL32(HeHASH(entry), 17);
1330 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
1331 if (PL_hash_rand_bits & 1) {
1332 HeNEXT(entry)= HeNEXT(aep[j]);
1333 HeNEXT(aep[j])= entry;
1334 } else {
1335 /* Note, this is structured in such a way as the optimizer
1336 * should eliminate the duplicated code here and below without
1337 * us needing to explicitly use a goto. */
1338 HeNEXT(entry) = aep[j];
1339 aep[j] = entry;
1340 }
1341 } else
1342#endif
1343 {
1344 /* see comment above about duplicated code */
1345 HeNEXT(entry) = aep[j];
1346 aep[j] = entry;
1347 }
1348 }
1349 else {
1350 oentry = &HeNEXT(entry);
1351 }
1352 entry = *oentry;
1353 } while (entry);
1354 } while (i++ < oldsize);
1355}
1356
1357void
1358Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1359{
1360 XPVHV* xhv = (XPVHV*)SvANY(hv);
1361 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1362 I32 newsize;
1363 char *a;
1364
1365 PERL_ARGS_ASSERT_HV_KSPLIT;
1366
1367 newsize = (I32) newmax; /* possible truncation here */
1368 if (newsize != newmax || newmax <= oldsize)
1369 return;
1370 while ((newsize & (1 + ~newsize)) != newsize) {
1371 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1372 }
1373 if (newsize < newmax)
1374 newsize *= 2;
1375 if (newsize < newmax)
1376 return; /* overflow detection */
1377
1378 a = (char *) HvARRAY(hv);
1379 if (a) {
1380 hsplit(hv, oldsize, newsize);
1381 } else {
1382 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1383 xhv->xhv_max = --newsize;
1384 HvARRAY(hv) = (HE **) a;
1385 }
1386}
1387
1388/* IMO this should also handle cases where hv_max is smaller than hv_keys
1389 * as tied hashes could play silly buggers and mess us around. We will
1390 * do the right thing during hv_store() afterwards, but still - Yves */
1391#define HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys) STMT_START {\
1392 /* Can we use fewer buckets? (hv_max is always 2^n-1) */ \
1393 if (hv_max < PERL_HASH_DEFAULT_HvMAX) { \
1394 hv_max = PERL_HASH_DEFAULT_HvMAX; \
1395 } else { \
1396 while (hv_max > PERL_HASH_DEFAULT_HvMAX && hv_max + 1 >= hv_keys * 2) \
1397 hv_max = hv_max / 2; \
1398 } \
1399 HvMAX(hv) = hv_max; \
1400} STMT_END
1401
1402
1403HV *
1404Perl_newHVhv(pTHX_ HV *ohv)
1405{
1406 dVAR;
1407 HV * const hv = newHV();
1408 STRLEN hv_max;
1409
1410 if (!ohv || (!HvTOTALKEYS(ohv) && !SvMAGICAL((const SV *)ohv)))
1411 return hv;
1412 hv_max = HvMAX(ohv);
1413
1414 if (!SvMAGICAL((const SV *)ohv)) {
1415 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1416 STRLEN i;
1417 const bool shared = !!HvSHAREKEYS(ohv);
1418 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1419 char *a;
1420 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1421 ents = (HE**)a;
1422
1423 /* In each bucket... */
1424 for (i = 0; i <= hv_max; i++) {
1425 HE *prev = NULL;
1426 HE *oent = oents[i];
1427
1428 if (!oent) {
1429 ents[i] = NULL;
1430 continue;
1431 }
1432
1433 /* Copy the linked list of entries. */
1434 for (; oent; oent = HeNEXT(oent)) {
1435 const U32 hash = HeHASH(oent);
1436 const char * const key = HeKEY(oent);
1437 const STRLEN len = HeKLEN(oent);
1438 const int flags = HeKFLAGS(oent);
1439 HE * const ent = new_HE();
1440 SV *const val = HeVAL(oent);
1441
1442 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1443 HeKEY_hek(ent)
1444 = shared ? share_hek_flags(key, len, hash, flags)
1445 : save_hek_flags(key, len, hash, flags);
1446 if (prev)
1447 HeNEXT(prev) = ent;
1448 else
1449 ents[i] = ent;
1450 prev = ent;
1451 HeNEXT(ent) = NULL;
1452 }
1453 }
1454
1455 HvMAX(hv) = hv_max;
1456 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1457 HvARRAY(hv) = ents;
1458 } /* not magical */
1459 else {
1460 /* Iterate over ohv, copying keys and values one at a time. */
1461 HE *entry;
1462 const I32 riter = HvRITER_get(ohv);
1463 HE * const eiter = HvEITER_get(ohv);
1464 STRLEN hv_keys = HvTOTALKEYS(ohv);
1465
1466 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1467
1468 hv_iterinit(ohv);
1469 while ((entry = hv_iternext_flags(ohv, 0))) {
1470 SV *val = hv_iterval(ohv,entry);
1471 SV * const keysv = HeSVKEY(entry);
1472 val = SvIMMORTAL(val) ? val : newSVsv(val);
1473 if (keysv)
1474 (void)hv_store_ent(hv, keysv, val, 0);
1475 else
1476 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry), val,
1477 HeHASH(entry), HeKFLAGS(entry));
1478 }
1479 HvRITER_set(ohv, riter);
1480 HvEITER_set(ohv, eiter);
1481 }
1482
1483 return hv;
1484}
1485
1486/*
1487=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1488
1489A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1490a pointer to a hash (which may have C<%^H> magic, but should be generally
1491non-magical), or C<NULL> (interpreted as an empty hash). The content
1492of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1493added to it. A pointer to the new hash is returned.
1494
1495=cut
1496*/
1497
1498HV *
1499Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1500{
1501 HV * const hv = newHV();
1502
1503 if (ohv) {
1504 STRLEN hv_max = HvMAX(ohv);
1505 STRLEN hv_keys = HvTOTALKEYS(ohv);
1506 HE *entry;
1507 const I32 riter = HvRITER_get(ohv);
1508 HE * const eiter = HvEITER_get(ohv);
1509
1510 ENTER;
1511 SAVEFREESV(hv);
1512
1513 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1514
1515 hv_iterinit(ohv);
1516 while ((entry = hv_iternext_flags(ohv, 0))) {
1517 SV *const sv = newSVsv(hv_iterval(ohv,entry));
1518 SV *heksv = HeSVKEY(entry);
1519 if (!heksv && sv) heksv = newSVhek(HeKEY_hek(entry));
1520 if (sv) sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1521 (char *)heksv, HEf_SVKEY);
1522 if (heksv == HeSVKEY(entry))
1523 (void)hv_store_ent(hv, heksv, sv, 0);
1524 else {
1525 (void)hv_common(hv, heksv, HeKEY(entry), HeKLEN(entry),
1526 HeKFLAGS(entry), HV_FETCH_ISSTORE|HV_FETCH_JUST_SV, sv, HeHASH(entry));
1527 SvREFCNT_dec_NN(heksv);
1528 }
1529 }
1530 HvRITER_set(ohv, riter);
1531 HvEITER_set(ohv, eiter);
1532
1533 SvREFCNT_inc_simple_void_NN(hv);
1534 LEAVE;
1535 }
1536 hv_magic(hv, NULL, PERL_MAGIC_hints);
1537 return hv;
1538}
1539#undef HV_SET_MAX_ADJUSTED_FOR_KEYS
1540
1541/* like hv_free_ent, but returns the SV rather than freeing it */
1542STATIC SV*
1543S_hv_free_ent_ret(pTHX_ HV *hv, HE *entry)
1544{
1545 SV *val;
1546
1547 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1548
1549 val = HeVAL(entry);
1550 if (HeKLEN(entry) == HEf_SVKEY) {
1551 SvREFCNT_dec(HeKEY_sv(entry));
1552 Safefree(HeKEY_hek(entry));
1553 }
1554 else if (HvSHAREKEYS(hv))
1555 unshare_hek(HeKEY_hek(entry));
1556 else
1557 Safefree(HeKEY_hek(entry));
1558 del_HE(entry);
1559 return val;
1560}
1561
1562
1563void
1564Perl_hv_free_ent(pTHX_ HV *hv, HE *entry)
1565{
1566 SV *val;
1567
1568 PERL_ARGS_ASSERT_HV_FREE_ENT;
1569
1570 if (!entry)
1571 return;
1572 val = hv_free_ent_ret(hv, entry);
1573 SvREFCNT_dec(val);
1574}
1575
1576
1577void
1578Perl_hv_delayfree_ent(pTHX_ HV *hv, HE *entry)
1579{
1580 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1581
1582 if (!entry)
1583 return;
1584 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1585 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1586 if (HeKLEN(entry) == HEf_SVKEY) {
1587 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1588 }
1589 hv_free_ent(hv, entry);
1590}
1591
1592/*
1593=for apidoc hv_clear
1594
1595Frees the all the elements of a hash, leaving it empty.
1596The XS equivalent of C<%hash = ()>. See also L</hv_undef>.
1597
1598If any destructors are triggered as a result, the hv itself may
1599be freed.
1600
1601=cut
1602*/
1603
1604void
1605Perl_hv_clear(pTHX_ HV *hv)
1606{
1607 dVAR;
1608 XPVHV* xhv;
1609 if (!hv)
1610 return;
1611
1612 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1613
1614 xhv = (XPVHV*)SvANY(hv);
1615
1616 ENTER;
1617 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1618 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1619 /* restricted hash: convert all keys to placeholders */
1620 STRLEN i;
1621 for (i = 0; i <= xhv->xhv_max; i++) {
1622 HE *entry = (HvARRAY(hv))[i];
1623 for (; entry; entry = HeNEXT(entry)) {
1624 /* not already placeholder */
1625 if (HeVAL(entry) != &PL_sv_placeholder) {
1626 if (HeVAL(entry)) {
1627 if (SvREADONLY(HeVAL(entry))) {
1628 SV* const keysv = hv_iterkeysv(entry);
1629 Perl_croak_nocontext(
1630 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1631 (void*)keysv);
1632 }
1633 SvREFCNT_dec_NN(HeVAL(entry));
1634 }
1635 HeVAL(entry) = &PL_sv_placeholder;
1636 HvPLACEHOLDERS(hv)++;
1637 }
1638 }
1639 }
1640 }
1641 else {
1642 hfreeentries(hv);
1643 HvPLACEHOLDERS_set(hv, 0);
1644
1645 if (SvRMAGICAL(hv))
1646 mg_clear(MUTABLE_SV(hv));
1647
1648 HvHASKFLAGS_off(hv);
1649 }
1650 if (SvOOK(hv)) {
1651 if(HvENAME_get(hv))
1652 mro_isa_changed_in(hv);
1653 HvEITER_set(hv, NULL);
1654 }
1655 LEAVE;
1656}
1657
1658/*
1659=for apidoc hv_clear_placeholders
1660
1661Clears any placeholders from a hash. If a restricted hash has any of its keys
1662marked as readonly and the key is subsequently deleted, the key is not actually
1663deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1664it so it will be ignored by future operations such as iterating over the hash,
1665but will still allow the hash to have a value reassigned to the key at some
1666future point. This function clears any such placeholder keys from the hash.
1667See Hash::Util::lock_keys() for an example of its use.
1668
1669=cut
1670*/
1671
1672void
1673Perl_hv_clear_placeholders(pTHX_ HV *hv)
1674{
1675 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1676
1677 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1678
1679 if (items)
1680 clear_placeholders(hv, items);
1681}
1682
1683static void
1684S_clear_placeholders(pTHX_ HV *hv, U32 items)
1685{
1686 dVAR;
1687 I32 i;
1688
1689 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1690
1691 if (items == 0)
1692 return;
1693
1694 i = HvMAX(hv);
1695 do {
1696 /* Loop down the linked list heads */
1697 HE **oentry = &(HvARRAY(hv))[i];
1698 HE *entry;
1699
1700 while ((entry = *oentry)) {
1701 if (HeVAL(entry) == &PL_sv_placeholder) {
1702 *oentry = HeNEXT(entry);
1703 if (entry == HvEITER_get(hv))
1704 HvLAZYDEL_on(hv);
1705 else {
1706 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1707 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1708 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1709 hv_free_ent(hv, entry);
1710 }
1711
1712 if (--items == 0) {
1713 /* Finished. */
1714 I32 placeholders = HvPLACEHOLDERS_get(hv);
1715 HvTOTALKEYS(hv) -= (IV)placeholders;
1716 /* HvUSEDKEYS expanded */
1717 if ((HvTOTALKEYS(hv) - placeholders) == 0)
1718 HvHASKFLAGS_off(hv);
1719 HvPLACEHOLDERS_set(hv, 0);
1720 return;
1721 }
1722 } else {
1723 oentry = &HeNEXT(entry);
1724 }
1725 }
1726 } while (--i >= 0);
1727 /* You can't get here, hence assertion should always fail. */
1728 assert (items == 0);
1729 NOT_REACHED;
1730}
1731
1732STATIC void
1733S_hfreeentries(pTHX_ HV *hv)
1734{
1735 STRLEN index = 0;
1736 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1737 SV *sv;
1738
1739 PERL_ARGS_ASSERT_HFREEENTRIES;
1740
1741 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1742 SvREFCNT_dec(sv);
1743 }
1744}
1745
1746
1747/* hfree_next_entry()
1748 * For use only by S_hfreeentries() and sv_clear().
1749 * Delete the next available HE from hv and return the associated SV.
1750 * Returns null on empty hash. Nevertheless null is not a reliable
1751 * indicator that the hash is empty, as the deleted entry may have a
1752 * null value.
1753 * indexp is a pointer to the current index into HvARRAY. The index should
1754 * initially be set to 0. hfree_next_entry() may update it. */
1755
1756SV*
1757Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1758{
1759 struct xpvhv_aux *iter;
1760 HE *entry;
1761 HE ** array;
1762#ifdef DEBUGGING
1763 STRLEN orig_index = *indexp;
1764#endif
1765
1766 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1767
1768 if (SvOOK(hv) && ((iter = HvAUX(hv)))) {
1769 if ((entry = iter->xhv_eiter)) {
1770 /* the iterator may get resurrected after each
1771 * destructor call, so check each time */
1772 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1773 HvLAZYDEL_off(hv);
1774 hv_free_ent(hv, entry);
1775 /* warning: at this point HvARRAY may have been
1776 * re-allocated, HvMAX changed etc */
1777 }
1778 iter = HvAUX(hv); /* may have been realloced */
1779 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1780 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1781#ifdef PERL_HASH_RANDOMIZE_KEYS
1782 iter->xhv_last_rand = iter->xhv_rand;
1783#endif
1784 }
1785 /* Reset any cached HvFILL() to "unknown". It's unlikely that anyone
1786 will actually call HvFILL() on a hash under destruction, so it
1787 seems pointless attempting to track the number of keys remaining.
1788 But if they do, we want to reset it again. */
1789 if (iter->xhv_fill_lazy)
1790 iter->xhv_fill_lazy = 0;
1791 }
1792
1793 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1794 return NULL;
1795
1796 array = HvARRAY(hv);
1797 assert(array);
1798 while ( ! ((entry = array[*indexp])) ) {
1799 if ((*indexp)++ >= HvMAX(hv))
1800 *indexp = 0;
1801 assert(*indexp != orig_index);
1802 }
1803 array[*indexp] = HeNEXT(entry);
1804 ((XPVHV*) SvANY(hv))->xhv_keys--;
1805
1806 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1807 && HeVAL(entry) && isGV(HeVAL(entry))
1808 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1809 ) {
1810 STRLEN klen;
1811 const char * const key = HePV(entry,klen);
1812 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1813 || (klen == 1 && key[0] == ':')) {
1814 mro_package_moved(
1815 NULL, GvHV(HeVAL(entry)),
1816 (GV *)HeVAL(entry), 0
1817 );
1818 }
1819 }
1820 return hv_free_ent_ret(hv, entry);
1821}
1822
1823
1824/*
1825=for apidoc hv_undef
1826
1827Undefines the hash. The XS equivalent of C<undef(%hash)>.
1828
1829As well as freeing all the elements of the hash (like hv_clear()), this
1830also frees any auxiliary data and storage associated with the hash.
1831
1832If any destructors are triggered as a result, the hv itself may
1833be freed.
1834
1835See also L</hv_clear>.
1836
1837=cut
1838*/
1839
1840void
1841Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1842{
1843 XPVHV* xhv;
1844 bool save;
1845
1846 if (!hv)
1847 return;
1848 save = !!SvREFCNT(hv);
1849 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1850 xhv = (XPVHV*)SvANY(hv);
1851
1852 /* The name must be deleted before the call to hfreeeeentries so that
1853 CVs are anonymised properly. But the effective name must be pre-
1854 served until after that call (and only deleted afterwards if the
1855 call originated from sv_clear). For stashes with one name that is
1856 both the canonical name and the effective name, hv_name_set has to
1857 allocate an array for storing the effective name. We can skip that
1858 during global destruction, as it does not matter where the CVs point
1859 if they will be freed anyway. */
1860 /* note that the code following prior to hfreeentries is duplicated
1861 * in sv_clear(), and changes here should be done there too */
1862 if (PL_phase != PERL_PHASE_DESTRUCT && HvNAME(hv)) {
1863 if (PL_stashcache) {
1864 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for '%"
1865 HEKf"'\n", HEKfARG(HvNAME_HEK(hv))));
1866 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1867 }
1868 hv_name_set(hv, NULL, 0, 0);
1869 }
1870 if (save) {
1871 ENTER;
1872 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1873 }
1874 hfreeentries(hv);
1875 if (SvOOK(hv)) {
1876 struct mro_meta *meta;
1877 const char *name;
1878
1879 if (HvENAME_get(hv)) {
1880 if (PL_phase != PERL_PHASE_DESTRUCT)
1881 mro_isa_changed_in(hv);
1882 if (PL_stashcache) {
1883 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for effective name '%"
1884 HEKf"'\n", HEKfARG(HvENAME_HEK(hv))));
1885 (void)hv_deletehek(PL_stashcache, HvENAME_HEK(hv), G_DISCARD);
1886 }
1887 }
1888
1889 /* If this call originated from sv_clear, then we must check for
1890 * effective names that need freeing, as well as the usual name. */
1891 name = HvNAME(hv);
1892 if (flags & HV_NAME_SETALL ? !!HvAUX(hv)->xhv_name_u.xhvnameu_name : !!name) {
1893 if (name && PL_stashcache) {
1894 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for name '%"
1895 HEKf"'\n", HEKfARG(HvNAME_HEK(hv))));
1896 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1897 }
1898 hv_name_set(hv, NULL, 0, flags);
1899 }
1900 if((meta = HvAUX(hv)->xhv_mro_meta)) {
1901 if (meta->mro_linear_all) {
1902 SvREFCNT_dec_NN(meta->mro_linear_all);
1903 /* mro_linear_current is just acting as a shortcut pointer,
1904 hence the else. */
1905 }
1906 else
1907 /* Only the current MRO is stored, so this owns the data.
1908 */
1909 SvREFCNT_dec(meta->mro_linear_current);
1910 SvREFCNT_dec(meta->mro_nextmethod);
1911 SvREFCNT_dec(meta->isa);
1912 SvREFCNT_dec(meta->super);
1913 Safefree(meta);
1914 HvAUX(hv)->xhv_mro_meta = NULL;
1915 }
1916 if (!HvAUX(hv)->xhv_name_u.xhvnameu_name && ! HvAUX(hv)->xhv_backreferences)
1917 SvFLAGS(hv) &= ~SVf_OOK;
1918 }
1919 if (!SvOOK(hv)) {
1920 Safefree(HvARRAY(hv));
1921 xhv->xhv_max = PERL_HASH_DEFAULT_HvMAX; /* HvMAX(hv) = 7 (it's a normal hash) */
1922 HvARRAY(hv) = 0;
1923 }
1924 /* if we're freeing the HV, the SvMAGIC field has been reused for
1925 * other purposes, and so there can't be any placeholder magic */
1926 if (SvREFCNT(hv))
1927 HvPLACEHOLDERS_set(hv, 0);
1928
1929 if (SvRMAGICAL(hv))
1930 mg_clear(MUTABLE_SV(hv));
1931 if (save) LEAVE;
1932}
1933
1934/*
1935=for apidoc hv_fill
1936
1937Returns the number of hash buckets that
1938happen to be in use. This function is
1939wrapped by the macro C<HvFILL>.
1940
1941Previously this value was always stored in the HV structure, which created an
1942overhead on every hash (and pretty much every object) for something that was
1943rarely used. Now we calculate it on demand the first
1944time that it is needed, and cache it if that calculation
1945is going to be costly to repeat. The cached
1946value is updated by insertions and deletions, but (currently) discarded if
1947the hash is split.
1948
1949=cut
1950*/
1951
1952STRLEN
1953Perl_hv_fill(pTHX_ HV *const hv)
1954{
1955 STRLEN count = 0;
1956 HE **ents = HvARRAY(hv);
1957 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : NULL;
1958
1959 PERL_ARGS_ASSERT_HV_FILL;
1960
1961 /* No keys implies no buckets used.
1962 One key can only possibly mean one bucket used. */
1963 if (HvTOTALKEYS(hv) < 2)
1964 return HvTOTALKEYS(hv);
1965
1966#ifndef DEBUGGING
1967 if (aux && aux->xhv_fill_lazy)
1968 return aux->xhv_fill_lazy;
1969#endif
1970
1971 if (ents) {
1972 HE *const *const last = ents + HvMAX(hv);
1973 count = last + 1 - ents;
1974
1975 do {
1976 if (!*ents)
1977 --count;
1978 } while (++ents <= last);
1979 }
1980 if (aux) {
1981#ifdef DEBUGGING
1982 if (aux->xhv_fill_lazy)
1983 assert(aux->xhv_fill_lazy == count);
1984#endif
1985 aux->xhv_fill_lazy = count;
1986 } else if (HvMAX(hv) >= HV_FILL_THRESHOLD) {
1987 aux = hv_auxinit(hv);
1988 aux->xhv_fill_lazy = count;
1989 }
1990 return count;
1991}
1992
1993/* hash a pointer to a U32 - Used in the hash traversal randomization
1994 * and bucket order randomization code
1995 *
1996 * this code was derived from Sereal, which was derived from autobox.
1997 */
1998
1999PERL_STATIC_INLINE U32 S_ptr_hash(PTRV u) {
2000#if PTRSIZE == 8
2001 /*
2002 * This is one of Thomas Wang's hash functions for 64-bit integers from:
2003 * http://www.concentric.net/~Ttwang/tech/inthash.htm
2004 */
2005 u = (~u) + (u << 18);
2006 u = u ^ (u >> 31);
2007 u = u * 21;
2008 u = u ^ (u >> 11);
2009 u = u + (u << 6);
2010 u = u ^ (u >> 22);
2011#else
2012 /*
2013 * This is one of Bob Jenkins' hash functions for 32-bit integers
2014 * from: http://burtleburtle.net/bob/hash/integer.html
2015 */
2016 u = (u + 0x7ed55d16) + (u << 12);
2017 u = (u ^ 0xc761c23c) ^ (u >> 19);
2018 u = (u + 0x165667b1) + (u << 5);
2019 u = (u + 0xd3a2646c) ^ (u << 9);
2020 u = (u + 0xfd7046c5) + (u << 3);
2021 u = (u ^ 0xb55a4f09) ^ (u >> 16);
2022#endif
2023 return (U32)u;
2024}
2025
2026static struct xpvhv_aux*
2027S_hv_auxinit_internal(struct xpvhv_aux *iter) {
2028 PERL_ARGS_ASSERT_HV_AUXINIT_INTERNAL;
2029 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2030 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2031#ifdef PERL_HASH_RANDOMIZE_KEYS
2032 iter->xhv_last_rand = iter->xhv_rand;
2033#endif
2034 iter->xhv_fill_lazy = 0;
2035 iter->xhv_name_u.xhvnameu_name = 0;
2036 iter->xhv_name_count = 0;
2037 iter->xhv_backreferences = 0;
2038 iter->xhv_mro_meta = NULL;
2039 iter->xhv_aux_flags = 0;
2040 return iter;
2041}
2042
2043
2044static struct xpvhv_aux*
2045S_hv_auxinit(pTHX_ HV *hv) {
2046 struct xpvhv_aux *iter;
2047 char *array;
2048
2049 PERL_ARGS_ASSERT_HV_AUXINIT;
2050
2051 if (!SvOOK(hv)) {
2052 if (!HvARRAY(hv)) {
2053 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
2054 + sizeof(struct xpvhv_aux), char);
2055 } else {
2056 array = (char *) HvARRAY(hv);
2057 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
2058 + sizeof(struct xpvhv_aux), char);
2059 }
2060 HvARRAY(hv) = (HE**)array;
2061 SvOOK_on(hv);
2062 iter = HvAUX(hv);
2063#ifdef PERL_HASH_RANDOMIZE_KEYS
2064 if (PL_HASH_RAND_BITS_ENABLED) {
2065 /* mix in some new state to PL_hash_rand_bits to "randomize" the traversal order*/
2066 if (PL_HASH_RAND_BITS_ENABLED == 1)
2067 PL_hash_rand_bits += ptr_hash((PTRV)array);
2068 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
2069 }
2070 iter->xhv_rand = (U32)PL_hash_rand_bits;
2071#endif
2072 } else {
2073 iter = HvAUX(hv);
2074 }
2075
2076 return hv_auxinit_internal(iter);
2077}
2078
2079/*
2080=for apidoc hv_iterinit
2081
2082Prepares a starting point to traverse a hash table. Returns the number of
2083keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
2084currently only meaningful for hashes without tie magic.
2085
2086NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
2087hash buckets that happen to be in use. If you still need that esoteric
2088value, you can get it through the macro C<HvFILL(hv)>.
2089
2090
2091=cut
2092*/
2093
2094I32
2095Perl_hv_iterinit(pTHX_ HV *hv)
2096{
2097 PERL_ARGS_ASSERT_HV_ITERINIT;
2098
2099 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
2100
2101 if (!hv)
2102 Perl_croak(aTHX_ "Bad hash");
2103
2104 if (SvOOK(hv)) {
2105 struct xpvhv_aux * iter = HvAUX(hv);
2106 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
2107 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2108 HvLAZYDEL_off(hv);
2109 hv_free_ent(hv, entry);
2110 }
2111 iter = HvAUX(hv); /* may have been reallocated */
2112 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2113 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2114#ifdef PERL_HASH_RANDOMIZE_KEYS
2115 iter->xhv_last_rand = iter->xhv_rand;
2116#endif
2117 } else {
2118 hv_auxinit(hv);
2119 }
2120
2121 /* used to be xhv->xhv_fill before 5.004_65 */
2122 return HvTOTALKEYS(hv);
2123}
2124
2125I32 *
2126Perl_hv_riter_p(pTHX_ HV *hv) {
2127 struct xpvhv_aux *iter;
2128
2129 PERL_ARGS_ASSERT_HV_RITER_P;
2130
2131 if (!hv)
2132 Perl_croak(aTHX_ "Bad hash");
2133
2134 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2135 return &(iter->xhv_riter);
2136}
2137
2138HE **
2139Perl_hv_eiter_p(pTHX_ HV *hv) {
2140 struct xpvhv_aux *iter;
2141
2142 PERL_ARGS_ASSERT_HV_EITER_P;
2143
2144 if (!hv)
2145 Perl_croak(aTHX_ "Bad hash");
2146
2147 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2148 return &(iter->xhv_eiter);
2149}
2150
2151void
2152Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
2153 struct xpvhv_aux *iter;
2154
2155 PERL_ARGS_ASSERT_HV_RITER_SET;
2156
2157 if (!hv)
2158 Perl_croak(aTHX_ "Bad hash");
2159
2160 if (SvOOK(hv)) {
2161 iter = HvAUX(hv);
2162 } else {
2163 if (riter == -1)
2164 return;
2165
2166 iter = hv_auxinit(hv);
2167 }
2168 iter->xhv_riter = riter;
2169}
2170
2171void
2172Perl_hv_rand_set(pTHX_ HV *hv, U32 new_xhv_rand) {
2173 struct xpvhv_aux *iter;
2174
2175 PERL_ARGS_ASSERT_HV_RAND_SET;
2176
2177#ifdef PERL_HASH_RANDOMIZE_KEYS
2178 if (!hv)
2179 Perl_croak(aTHX_ "Bad hash");
2180
2181 if (SvOOK(hv)) {
2182 iter = HvAUX(hv);
2183 } else {
2184 iter = hv_auxinit(hv);
2185 }
2186 iter->xhv_rand = new_xhv_rand;
2187#else
2188 Perl_croak(aTHX_ "This Perl has not been built with support for randomized hash key traversal but something called Perl_hv_rand_set().");
2189#endif
2190}
2191
2192void
2193Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
2194 struct xpvhv_aux *iter;
2195
2196 PERL_ARGS_ASSERT_HV_EITER_SET;
2197
2198 if (!hv)
2199 Perl_croak(aTHX_ "Bad hash");
2200
2201 if (SvOOK(hv)) {
2202 iter = HvAUX(hv);
2203 } else {
2204 /* 0 is the default so don't go malloc()ing a new structure just to
2205 hold 0. */
2206 if (!eiter)
2207 return;
2208
2209 iter = hv_auxinit(hv);
2210 }
2211 iter->xhv_eiter = eiter;
2212}
2213
2214void
2215Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2216{
2217 dVAR;
2218 struct xpvhv_aux *iter;
2219 U32 hash;
2220 HEK **spot;
2221
2222 PERL_ARGS_ASSERT_HV_NAME_SET;
2223
2224 if (len > I32_MAX)
2225 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2226
2227 if (SvOOK(hv)) {
2228 iter = HvAUX(hv);
2229 if (iter->xhv_name_u.xhvnameu_name) {
2230 if(iter->xhv_name_count) {
2231 if(flags & HV_NAME_SETALL) {
2232 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2233 HEK **hekp = name + (
2234 iter->xhv_name_count < 0
2235 ? -iter->xhv_name_count
2236 : iter->xhv_name_count
2237 );
2238 while(hekp-- > name+1)
2239 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2240 /* The first elem may be null. */
2241 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2242 Safefree(name);
2243 iter = HvAUX(hv); /* may been realloced */
2244 spot = &iter->xhv_name_u.xhvnameu_name;
2245 iter->xhv_name_count = 0;
2246 }
2247 else {
2248 if(iter->xhv_name_count > 0) {
2249 /* shift some things over */
2250 Renew(
2251 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2252 );
2253 spot = iter->xhv_name_u.xhvnameu_names;
2254 spot[iter->xhv_name_count] = spot[1];
2255 spot[1] = spot[0];
2256 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2257 }
2258 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2259 unshare_hek_or_pvn(*spot, 0, 0, 0);
2260 }
2261 }
2262 }
2263 else if (flags & HV_NAME_SETALL) {
2264 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2265 iter = HvAUX(hv); /* may been realloced */
2266 spot = &iter->xhv_name_u.xhvnameu_name;
2267 }
2268 else {
2269 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2270 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2271 iter->xhv_name_count = -2;
2272 spot = iter->xhv_name_u.xhvnameu_names;
2273 spot[1] = existing_name;
2274 }
2275 }
2276 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2277 } else {
2278 if (name == 0)
2279 return;
2280
2281 iter = hv_auxinit(hv);
2282 spot = &iter->xhv_name_u.xhvnameu_name;
2283 }
2284 PERL_HASH(hash, name, len);
2285 *spot = name ? share_hek(name, flags & SVf_UTF8 ? -(I32)len : (I32)len, hash) : NULL;
2286}
2287
2288/*
2289This is basically sv_eq_flags() in sv.c, but we avoid the magic
2290and bytes checking.
2291*/
2292
2293STATIC I32
2294hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) {
2295 if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) {
2296 if (flags & SVf_UTF8)
2297 return (bytes_cmp_utf8(
2298 (const U8*)HEK_KEY(hek), HEK_LEN(hek),
2299 (const U8*)pv, pvlen) == 0);
2300 else
2301 return (bytes_cmp_utf8(
2302 (const U8*)pv, pvlen,
2303 (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0);
2304 }
2305 else
2306 return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv)
2307 || memEQ(HEK_KEY(hek), pv, pvlen));
2308}
2309
2310/*
2311=for apidoc hv_ename_add
2312
2313Adds a name to a stash's internal list of effective names. See
2314C<hv_ename_delete>.
2315
2316This is called when a stash is assigned to a new location in the symbol
2317table.
2318
2319=cut
2320*/
2321
2322void
2323Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2324{
2325 dVAR;
2326 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2327 U32 hash;
2328
2329 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2330
2331 if (len > I32_MAX)
2332 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2333
2334 PERL_HASH(hash, name, len);
2335
2336 if (aux->xhv_name_count) {
2337 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2338 I32 count = aux->xhv_name_count;
2339 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2340 while (hekp-- > xhv_name)
2341 if (
2342 (HEK_UTF8(*hekp) || (flags & SVf_UTF8))
2343 ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags)
2344 : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len))
2345 ) {
2346 if (hekp == xhv_name && count < 0)
2347 aux->xhv_name_count = -count;
2348 return;
2349 }
2350 if (count < 0) aux->xhv_name_count--, count = -count;
2351 else aux->xhv_name_count++;
2352 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2353 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2354 }
2355 else {
2356 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2357 if (
2358 existing_name && (
2359 (HEK_UTF8(existing_name) || (flags & SVf_UTF8))
2360 ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags)
2361 : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len))
2362 )
2363 ) return;
2364 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2365 aux->xhv_name_count = existing_name ? 2 : -2;
2366 *aux->xhv_name_u.xhvnameu_names = existing_name;
2367 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2368 }
2369}
2370
2371/*
2372=for apidoc hv_ename_delete
2373
2374Removes a name from a stash's internal list of effective names. If this is
2375the name returned by C<HvENAME>, then another name in the list will take
2376its place (C<HvENAME> will use it).
2377
2378This is called when a stash is deleted from the symbol table.
2379
2380=cut
2381*/
2382
2383void
2384Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2385{
2386 struct xpvhv_aux *aux;
2387
2388 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2389
2390 if (len > I32_MAX)
2391 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2392
2393 if (!SvOOK(hv)) return;
2394
2395 aux = HvAUX(hv);
2396 if (!aux->xhv_name_u.xhvnameu_name) return;
2397
2398 if (aux->xhv_name_count) {
2399 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2400 I32 const count = aux->xhv_name_count;
2401 HEK **victim = namep + (count < 0 ? -count : count);
2402 while (victim-- > namep + 1)
2403 if (
2404 (HEK_UTF8(*victim) || (flags & SVf_UTF8))
2405 ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags)
2406 : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len))
2407 ) {
2408 unshare_hek_or_pvn(*victim, 0, 0, 0);
2409 aux = HvAUX(hv); /* may been realloced */
2410 if (count < 0) ++aux->xhv_name_count;
2411 else --aux->xhv_name_count;
2412 if (
2413 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2414 && !*namep
2415 ) { /* if there are none left */
2416 Safefree(namep);
2417 aux->xhv_name_u.xhvnameu_names = NULL;
2418 aux->xhv_name_count = 0;
2419 }
2420 else {
2421 /* Move the last one back to fill the empty slot. It
2422 does not matter what order they are in. */
2423 *victim = *(namep + (count < 0 ? -count : count) - 1);
2424 }
2425 return;
2426 }
2427 if (
2428 count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8))
2429 ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags)
2430 : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len))
2431 ) {
2432 aux->xhv_name_count = -count;
2433 }
2434 }
2435 else if(
2436 (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8))
2437 ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags)
2438 : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len &&
2439 memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len))
2440 ) {
2441 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2442 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2443 *aux->xhv_name_u.xhvnameu_names = namehek;
2444 aux->xhv_name_count = -1;
2445 }
2446}
2447
2448AV **
2449Perl_hv_backreferences_p(pTHX_ HV *hv) {
2450 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2451
2452 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2453
2454 return &(iter->xhv_backreferences);
2455}
2456
2457void
2458Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2459 AV *av;
2460
2461 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2462
2463 if (!SvOOK(hv))
2464 return;
2465
2466 av = HvAUX(hv)->xhv_backreferences;
2467
2468 if (av) {
2469 HvAUX(hv)->xhv_backreferences = 0;
2470 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2471 if (SvTYPE(av) == SVt_PVAV)
2472 SvREFCNT_dec_NN(av);
2473 }
2474}
2475
2476/*
2477hv_iternext is implemented as a macro in hv.h
2478
2479=for apidoc hv_iternext
2480
2481Returns entries from a hash iterator. See C<hv_iterinit>.
2482
2483You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2484iterator currently points to, without losing your place or invalidating your
2485iterator. Note that in this case the current entry is deleted from the hash
2486with your iterator holding the last reference to it. Your iterator is flagged
2487to free the entry on the next call to C<hv_iternext>, so you must not discard
2488your iterator immediately else the entry will leak - call C<hv_iternext> to
2489trigger the resource deallocation.
2490
2491=for apidoc hv_iternext_flags
2492
2493Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2494The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2495set the placeholders keys (for restricted hashes) will be returned in addition
2496to normal keys. By default placeholders are automatically skipped over.
2497Currently a placeholder is implemented with a value that is
2498C<&PL_sv_placeholder>. Note that the implementation of placeholders and
2499restricted hashes may change, and the implementation currently is
2500insufficiently abstracted for any change to be tidy.
2501
2502=cut
2503*/
2504
2505HE *
2506Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2507{
2508 dVAR;
2509 XPVHV* xhv;
2510 HE *entry;
2511 HE *oldentry;
2512 MAGIC* mg;
2513 struct xpvhv_aux *iter;
2514
2515 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2516
2517 if (!hv)
2518 Perl_croak(aTHX_ "Bad hash");
2519
2520 xhv = (XPVHV*)SvANY(hv);
2521
2522 if (!SvOOK(hv)) {
2523 /* Too many things (well, pp_each at least) merrily assume that you can
2524 call hv_iternext without calling hv_iterinit, so we'll have to deal
2525 with it. */
2526 hv_iterinit(hv);
2527 }
2528 iter = HvAUX(hv);
2529
2530 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2531 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2532 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2533 SV * const key = sv_newmortal();
2534 if (entry) {
2535 sv_setsv(key, HeSVKEY_force(entry));
2536 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2537 HeSVKEY_set(entry, NULL);
2538 }
2539 else {
2540 char *k;
2541 HEK *hek;
2542
2543 /* one HE per MAGICAL hash */
2544 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2545 HvLAZYDEL_on(hv); /* make sure entry gets freed */
2546 Zero(entry, 1, HE);
2547 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2548 hek = (HEK*)k;
2549 HeKEY_hek(entry) = hek;
2550 HeKLEN(entry) = HEf_SVKEY;
2551 }
2552 magic_nextpack(MUTABLE_SV(hv),mg,key);
2553 if (SvOK(key)) {
2554 /* force key to stay around until next time */
2555 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2556 return entry; /* beware, hent_val is not set */
2557 }
2558 SvREFCNT_dec(HeVAL(entry));
2559 Safefree(HeKEY_hek(entry));
2560 del_HE(entry);
2561 iter = HvAUX(hv); /* may been realloced */
2562 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2563 HvLAZYDEL_off(hv);
2564 return NULL;
2565 }
2566 }
2567#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2568 if (!entry && SvRMAGICAL((const SV *)hv)
2569 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2570 prime_env_iter();
2571#ifdef VMS
2572 /* The prime_env_iter() on VMS just loaded up new hash values
2573 * so the iteration count needs to be reset back to the beginning
2574 */
2575 hv_iterinit(hv);
2576 iter = HvAUX(hv);
2577 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2578#endif
2579 }
2580#endif
2581
2582 /* hv_iterinit now ensures this. */
2583 assert (HvARRAY(hv));
2584
2585 /* At start of hash, entry is NULL. */
2586 if (entry)
2587 {
2588 entry = HeNEXT(entry);
2589 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2590 /*
2591 * Skip past any placeholders -- don't want to include them in
2592 * any iteration.
2593 */
2594 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2595 entry = HeNEXT(entry);
2596 }
2597 }
2598 }
2599
2600#ifdef PERL_HASH_RANDOMIZE_KEYS
2601 if (iter->xhv_last_rand != iter->xhv_rand) {
2602 if (iter->xhv_riter != -1) {
2603 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2604 "Use of each() on hash after insertion without resetting hash iterator results in undefined behavior"
2605 pTHX__FORMAT
2606 pTHX__VALUE);
2607 }
2608 iter = HvAUX(hv); /* may been realloced */
2609 iter->xhv_last_rand = iter->xhv_rand;
2610 }
2611#endif
2612
2613 /* Skip the entire loop if the hash is empty. */
2614 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2615 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2616 while (!entry) {
2617 /* OK. Come to the end of the current list. Grab the next one. */
2618
2619 iter->xhv_riter++; /* HvRITER(hv)++ */
2620 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2621 /* There is no next one. End of the hash. */
2622 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2623#ifdef PERL_HASH_RANDOMIZE_KEYS
2624 iter->xhv_last_rand = iter->xhv_rand; /* reset xhv_last_rand so we can detect inserts during traversal */
2625#endif
2626 break;
2627 }
2628 entry = (HvARRAY(hv))[ PERL_HASH_ITER_BUCKET(iter) & xhv->xhv_max ];
2629
2630 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2631 /* If we have an entry, but it's a placeholder, don't count it.
2632 Try the next. */
2633 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2634 entry = HeNEXT(entry);
2635 }
2636 /* Will loop again if this linked list starts NULL
2637 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2638 or if we run through it and find only placeholders. */
2639 }
2640 }
2641 else {
2642 iter->xhv_riter = -1;
2643#ifdef PERL_HASH_RANDOMIZE_KEYS
2644 iter->xhv_last_rand = iter->xhv_rand;
2645#endif
2646 }
2647
2648 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2649 HvLAZYDEL_off(hv);
2650 hv_free_ent(hv, oldentry);
2651 }
2652
2653 iter = HvAUX(hv); /* may been realloced */
2654 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2655 return entry;
2656}
2657
2658/*
2659=for apidoc hv_iterkey
2660
2661Returns the key from the current position of the hash iterator. See
2662C<hv_iterinit>.
2663
2664=cut
2665*/
2666
2667char *
2668Perl_hv_iterkey(pTHX_ HE *entry, I32 *retlen)
2669{
2670 PERL_ARGS_ASSERT_HV_ITERKEY;
2671
2672 if (HeKLEN(entry) == HEf_SVKEY) {
2673 STRLEN len;
2674 char * const p = SvPV(HeKEY_sv(entry), len);
2675 *retlen = len;
2676 return p;
2677 }
2678 else {
2679 *retlen = HeKLEN(entry);
2680 return HeKEY(entry);
2681 }
2682}
2683
2684/* unlike hv_iterval(), this always returns a mortal copy of the key */
2685/*
2686=for apidoc hv_iterkeysv
2687
2688Returns the key as an C<SV*> from the current position of the hash
2689iterator. The return value will always be a mortal copy of the key. Also
2690see C<hv_iterinit>.
2691
2692=cut
2693*/
2694
2695SV *
2696Perl_hv_iterkeysv(pTHX_ HE *entry)
2697{
2698 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2699
2700 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2701}
2702
2703/*
2704=for apidoc hv_iterval
2705
2706Returns the value from the current position of the hash iterator. See
2707C<hv_iterkey>.
2708
2709=cut
2710*/
2711
2712SV *
2713Perl_hv_iterval(pTHX_ HV *hv, HE *entry)
2714{
2715 PERL_ARGS_ASSERT_HV_ITERVAL;
2716
2717 if (SvRMAGICAL(hv)) {
2718 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2719 SV* const sv = sv_newmortal();
2720 if (HeKLEN(entry) == HEf_SVKEY)
2721 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2722 else
2723 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2724 return sv;
2725 }
2726 }
2727 return HeVAL(entry);
2728}
2729
2730/*
2731=for apidoc hv_iternextsv
2732
2733Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2734operation.
2735
2736=cut
2737*/
2738
2739SV *
2740Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2741{
2742 HE * const he = hv_iternext_flags(hv, 0);
2743
2744 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2745
2746 if (!he)
2747 return NULL;
2748 *key = hv_iterkey(he, retlen);
2749 return hv_iterval(hv, he);
2750}
2751
2752/*
2753
2754Now a macro in hv.h
2755
2756=for apidoc hv_magic
2757
2758Adds magic to a hash. See C<sv_magic>.
2759
2760=cut
2761*/
2762
2763/* possibly free a shared string if no one has access to it
2764 * len and hash must both be valid for str.
2765 */
2766void
2767Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2768{
2769 unshare_hek_or_pvn (NULL, str, len, hash);
2770}
2771
2772
2773void
2774Perl_unshare_hek(pTHX_ HEK *hek)
2775{
2776 assert(hek);
2777 unshare_hek_or_pvn(hek, NULL, 0, 0);
2778}
2779
2780/* possibly free a shared string if no one has access to it
2781 hek if non-NULL takes priority over the other 3, else str, len and hash
2782 are used. If so, len and hash must both be valid for str.
2783 */
2784STATIC void
2785S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2786{
2787 XPVHV* xhv;
2788 HE *entry;
2789 HE **oentry;
2790 bool is_utf8 = FALSE;
2791 int k_flags = 0;
2792 const char * const save = str;
2793 struct shared_he *he = NULL;
2794
2795 if (hek) {
2796 /* Find the shared he which is just before us in memory. */
2797 he = (struct shared_he *)(((char *)hek)
2798 - STRUCT_OFFSET(struct shared_he,
2799 shared_he_hek));
2800
2801 /* Assert that the caller passed us a genuine (or at least consistent)
2802 shared hek */
2803 assert (he->shared_he_he.hent_hek == hek);
2804
2805 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2806 --he->shared_he_he.he_valu.hent_refcount;
2807 return;
2808 }
2809
2810 hash = HEK_HASH(hek);
2811 } else if (len < 0) {
2812 STRLEN tmplen = -len;
2813 is_utf8 = TRUE;
2814 /* See the note in hv_fetch(). --jhi */
2815 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2816 len = tmplen;
2817 if (is_utf8)
2818 k_flags = HVhek_UTF8;
2819 if (str != save)
2820 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2821 }
2822
2823 /* what follows was the moral equivalent of:
2824 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2825 if (--*Svp == NULL)
2826 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2827 } */
2828 xhv = (XPVHV*)SvANY(PL_strtab);
2829 /* assert(xhv_array != 0) */
2830 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2831 if (he) {
2832 const HE *const he_he = &(he->shared_he_he);
2833 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2834 if (entry == he_he)
2835 break;
2836 }
2837 } else {
2838 const int flags_masked = k_flags & HVhek_MASK;
2839 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2840 if (HeHASH(entry) != hash) /* strings can't be equal */
2841 continue;
2842 if (HeKLEN(entry) != len)
2843 continue;
2844 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2845 continue;
2846 if (HeKFLAGS(entry) != flags_masked)
2847 continue;
2848 break;
2849 }
2850 }
2851
2852 if (entry) {
2853 if (--entry->he_valu.hent_refcount == 0) {
2854 *oentry = HeNEXT(entry);
2855 Safefree(entry);
2856 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2857 }
2858 }
2859
2860 if (!entry)
2861 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2862 "Attempt to free nonexistent shared string '%s'%s"
2863 pTHX__FORMAT,
2864 hek ? HEK_KEY(hek) : str,
2865 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2866 if (k_flags & HVhek_FREEKEY)
2867 Safefree(str);
2868}
2869
2870/* get a (constant) string ptr from the global string table
2871 * string will get added if it is not already there.
2872 * len and hash must both be valid for str.
2873 */
2874HEK *
2875Perl_share_hek(pTHX_ const char *str, I32 len, U32 hash)
2876{
2877 bool is_utf8 = FALSE;
2878 int flags = 0;
2879 const char * const save = str;
2880
2881 PERL_ARGS_ASSERT_SHARE_HEK;
2882
2883 if (len < 0) {
2884 STRLEN tmplen = -len;
2885 is_utf8 = TRUE;
2886 /* See the note in hv_fetch(). --jhi */
2887 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2888 len = tmplen;
2889 /* If we were able to downgrade here, then than means that we were passed
2890 in a key which only had chars 0-255, but was utf8 encoded. */
2891 if (is_utf8)
2892 flags = HVhek_UTF8;
2893 /* If we found we were able to downgrade the string to bytes, then
2894 we should flag that it needs upgrading on keys or each. Also flag
2895 that we need share_hek_flags to free the string. */
2896 if (str != save) {
2897 dVAR;
2898 PERL_HASH(hash, str, len);
2899 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2900 }
2901 }
2902
2903 return share_hek_flags (str, len, hash, flags);
2904}
2905
2906STATIC HEK *
2907S_share_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags)
2908{
2909 HE *entry;
2910 const int flags_masked = flags & HVhek_MASK;
2911 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2912 XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2913
2914 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2915
2916 /* what follows is the moral equivalent of:
2917
2918 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2919 hv_store(PL_strtab, str, len, NULL, hash);
2920
2921 Can't rehash the shared string table, so not sure if it's worth
2922 counting the number of entries in the linked list
2923 */
2924
2925 /* assert(xhv_array != 0) */
2926 entry = (HvARRAY(PL_strtab))[hindex];
2927 for (;entry; entry = HeNEXT(entry)) {
2928 if (HeHASH(entry) != hash) /* strings can't be equal */
2929 continue;
2930 if (HeKLEN(entry) != len)
2931 continue;
2932 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2933 continue;
2934 if (HeKFLAGS(entry) != flags_masked)
2935 continue;
2936 break;
2937 }
2938
2939 if (!entry) {
2940 /* What used to be head of the list.
2941 If this is NULL, then we're the first entry for this slot, which
2942 means we need to increate fill. */
2943 struct shared_he *new_entry;
2944 HEK *hek;
2945 char *k;
2946 HE **const head = &HvARRAY(PL_strtab)[hindex];
2947 HE *const next = *head;
2948
2949 /* We don't actually store a HE from the arena and a regular HEK.
2950 Instead we allocate one chunk of memory big enough for both,
2951 and put the HEK straight after the HE. This way we can find the
2952 HE directly from the HEK.
2953 */
2954
2955 Newx(k, STRUCT_OFFSET(struct shared_he,
2956 shared_he_hek.hek_key[0]) + len + 2, char);
2957 new_entry = (struct shared_he *)k;
2958 entry = &(new_entry->shared_he_he);
2959 hek = &(new_entry->shared_he_hek);
2960
2961 Copy(str, HEK_KEY(hek), len, char);
2962 HEK_KEY(hek)[len] = 0;
2963 HEK_LEN(hek) = len;
2964 HEK_HASH(hek) = hash;
2965 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2966
2967 /* Still "point" to the HEK, so that other code need not know what
2968 we're up to. */
2969 HeKEY_hek(entry) = hek;
2970 entry->he_valu.hent_refcount = 0;
2971 HeNEXT(entry) = next;
2972 *head = entry;
2973
2974 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2975 if (!next) { /* initial entry? */
2976 } else if ( DO_HSPLIT(xhv) ) {
2977 const STRLEN oldsize = xhv->xhv_max + 1;
2978 hsplit(PL_strtab, oldsize, oldsize * 2);
2979 }
2980 }
2981
2982 ++entry->he_valu.hent_refcount;
2983
2984 if (flags & HVhek_FREEKEY)
2985 Safefree(str);
2986
2987 return HeKEY_hek(entry);
2988}
2989
2990SSize_t *
2991Perl_hv_placeholders_p(pTHX_ HV *hv)
2992{
2993 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2994
2995 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2996
2997 if (!mg) {
2998 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2999
3000 if (!mg) {
3001 Perl_die(aTHX_ "panic: hv_placeholders_p");
3002 }
3003 }
3004 return &(mg->mg_len);
3005}
3006
3007
3008I32
3009Perl_hv_placeholders_get(pTHX_ const HV *hv)
3010{
3011 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
3012
3013 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
3014 PERL_UNUSED_CONTEXT;
3015
3016 return mg ? mg->mg_len : 0;
3017}
3018
3019void
3020Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
3021{
3022 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
3023
3024 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
3025
3026 if (mg) {
3027 mg->mg_len = ph;
3028 } else if (ph) {
3029 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
3030 Perl_die(aTHX_ "panic: hv_placeholders_set");
3031 }
3032 /* else we don't need to add magic to record 0 placeholders. */
3033}
3034
3035STATIC SV *
3036S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
3037{
3038 dVAR;
3039 SV *value;
3040
3041 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
3042
3043 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
3044 case HVrhek_undef:
3045 value = newSV(0);
3046 break;
3047 case HVrhek_delete:
3048 value = &PL_sv_placeholder;
3049 break;
3050 case HVrhek_IV:
3051 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
3052 break;
3053 case HVrhek_UV:
3054 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
3055 break;
3056 case HVrhek_PV:
3057 case HVrhek_PV_UTF8:
3058 /* Create a string SV that directly points to the bytes in our
3059 structure. */
3060 value = newSV_type(SVt_PV);
3061 SvPV_set(value, (char *) he->refcounted_he_data + 1);
3062 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
3063 /* This stops anything trying to free it */
3064 SvLEN_set(value, 0);
3065 SvPOK_on(value);
3066 SvREADONLY_on(value);
3067 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
3068 SvUTF8_on(value);
3069 break;
3070 default:
3071 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
3072 (UV)he->refcounted_he_data[0]);
3073 }
3074 return value;
3075}
3076
3077/*
3078=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
3079
3080Generates and returns a C<HV *> representing the content of a
3081C<refcounted_he> chain.
3082I<flags> is currently unused and must be zero.
3083
3084=cut
3085*/
3086HV *
3087Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
3088{
3089 dVAR;
3090 HV *hv;
3091 U32 placeholders, max;
3092
3093 if (flags)
3094 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
3095 (UV)flags);
3096
3097 /* We could chase the chain once to get an idea of the number of keys,
3098 and call ksplit. But for now we'll make a potentially inefficient
3099 hash with only 8 entries in its array. */
3100 hv = newHV();
3101 max = HvMAX(hv);
3102 if (!HvARRAY(hv)) {
3103 char *array;
3104 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
3105 HvARRAY(hv) = (HE**)array;
3106 }
3107
3108 placeholders = 0;
3109 while (chain) {
3110#ifdef USE_ITHREADS
3111 U32 hash = chain->refcounted_he_hash;
3112#else
3113 U32 hash = HEK_HASH(chain->refcounted_he_hek);
3114#endif
3115 HE **oentry = &((HvARRAY(hv))[hash & max]);
3116 HE *entry = *oentry;
3117 SV *value;
3118
3119 for (; entry; entry = HeNEXT(entry)) {
3120 if (HeHASH(entry) == hash) {
3121 /* We might have a duplicate key here. If so, entry is older
3122 than the key we've already put in the hash, so if they are
3123 the same, skip adding entry. */
3124#ifdef USE_ITHREADS
3125 const STRLEN klen = HeKLEN(entry);
3126 const char *const key = HeKEY(entry);
3127 if (klen == chain->refcounted_he_keylen
3128 && (!!HeKUTF8(entry)
3129 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
3130 && memEQ(key, REF_HE_KEY(chain), klen))
3131 goto next_please;
3132#else
3133 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
3134 goto next_please;
3135 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
3136 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
3137 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
3138 HeKLEN(entry)))
3139 goto next_please;
3140#endif
3141 }
3142 }
3143 assert (!entry);
3144 entry = new_HE();
3145
3146#ifdef USE_ITHREADS
3147 HeKEY_hek(entry)
3148 = share_hek_flags(REF_HE_KEY(chain),
3149 chain->refcounted_he_keylen,
3150 chain->refcounted_he_hash,
3151 (chain->refcounted_he_data[0]
3152 & (HVhek_UTF8|HVhek_WASUTF8)));
3153#else
3154 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
3155#endif
3156 value = refcounted_he_value(chain);
3157 if (value == &PL_sv_placeholder)
3158 placeholders++;
3159 HeVAL(entry) = value;
3160
3161 /* Link it into the chain. */
3162 HeNEXT(entry) = *oentry;
3163 *oentry = entry;
3164
3165 HvTOTALKEYS(hv)++;
3166
3167 next_please:
3168 chain = chain->refcounted_he_next;
3169 }
3170
3171 if (placeholders) {
3172 clear_placeholders(hv, placeholders);
3173 HvTOTALKEYS(hv) -= placeholders;
3174 }
3175
3176 /* We could check in the loop to see if we encounter any keys with key
3177 flags, but it's probably not worth it, as this per-hash flag is only
3178 really meant as an optimisation for things like Storable. */
3179 HvHASKFLAGS_on(hv);
3180 DEBUG_A(Perl_hv_assert(aTHX_ hv));
3181
3182 return hv;
3183}
3184
3185/*
3186=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
3187
3188Search along a C<refcounted_he> chain for an entry with the key specified
3189by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
3190bit set, the key octets are interpreted as UTF-8, otherwise they
3191are interpreted as Latin-1. I<hash> is a precomputed hash of the key
3192string, or zero if it has not been precomputed. Returns a mortal scalar
3193representing the value associated with the key, or C<&PL_sv_placeholder>
3194if there is no value associated with the key.
3195
3196=cut
3197*/
3198
3199SV *
3200Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
3201 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
3202{
3203 dVAR;
3204 U8 utf8_flag;
3205 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
3206
3207 if (flags & ~(REFCOUNTED_HE_KEY_UTF8|REFCOUNTED_HE_EXISTS))
3208 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
3209 (UV)flags);
3210 if (!chain)
3211 return &PL_sv_placeholder;
3212 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3213 /* For searching purposes, canonicalise to Latin-1 where possible. */
3214 const char *keyend = keypv + keylen, *p;
3215 STRLEN nonascii_count = 0;
3216 for (p = keypv; p != keyend; p++) {
3217 if (! UTF8_IS_INVARIANT(*p)) {
3218 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3219 goto canonicalised_key;
3220 }
3221 nonascii_count++;
3222 p++;
3223 }
3224 }
3225 if (nonascii_count) {
3226 char *q;
3227 const char *p = keypv, *keyend = keypv + keylen;
3228 keylen -= nonascii_count;
3229 Newx(q, keylen, char);
3230 SAVEFREEPV(q);
3231 keypv = q;
3232 for (; p != keyend; p++, q++) {
3233 U8 c = (U8)*p;
3234 if (UTF8_IS_INVARIANT(c)) {
3235 *q = (char) c;
3236 }
3237 else {
3238 p++;
3239 *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p);
3240 }
3241 }
3242 }
3243 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3244 canonicalised_key: ;
3245 }
3246 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
3247 if (!hash)
3248 PERL_HASH(hash, keypv, keylen);
3249
3250 for (; chain; chain = chain->refcounted_he_next) {
3251 if (
3252#ifdef USE_ITHREADS
3253 hash == chain->refcounted_he_hash &&
3254 keylen == chain->refcounted_he_keylen &&
3255 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
3256 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
3257#else
3258 hash == HEK_HASH(chain->refcounted_he_hek) &&
3259 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
3260 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
3261 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
3262#endif
3263 ) {
3264 if (flags & REFCOUNTED_HE_EXISTS)
3265 return (chain->refcounted_he_data[0] & HVrhek_typemask)
3266 == HVrhek_delete
3267 ? NULL : &PL_sv_yes;
3268 return sv_2mortal(refcounted_he_value(chain));
3269 }
3270 }
3271 return flags & REFCOUNTED_HE_EXISTS ? NULL : &PL_sv_placeholder;
3272}
3273
3274/*
3275=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3276
3277Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3278instead of a string/length pair.
3279
3280=cut
3281*/
3282
3283SV *
3284Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3285 const char *key, U32 hash, U32 flags)
3286{
3287 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3288 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3289}
3290
3291/*
3292=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3293
3294Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3295string/length pair.
3296
3297=cut
3298*/
3299
3300SV *
3301Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3302 SV *key, U32 hash, U32 flags)
3303{
3304 const char *keypv;
3305 STRLEN keylen;
3306 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3307 if (flags & REFCOUNTED_HE_KEY_UTF8)
3308 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3309 (UV)flags);
3310 keypv = SvPV_const(key, keylen);
3311 if (SvUTF8(key))
3312 flags |= REFCOUNTED_HE_KEY_UTF8;
3313 if (!hash && SvIsCOW_shared_hash(key))
3314 hash = SvSHARED_HASH(key);
3315 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3316}
3317
3318/*
3319=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3320
3321Creates a new C<refcounted_he>. This consists of a single key/value
3322pair and a reference to an existing C<refcounted_he> chain (which may
3323be empty), and thus forms a longer chain. When using the longer chain,
3324the new key/value pair takes precedence over any entry for the same key
3325further along the chain.
3326
3327The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3328the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3329as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3330a precomputed hash of the key string, or zero if it has not been
3331precomputed.
3332
3333I<value> is the scalar value to store for this key. I<value> is copied
3334by this function, which thus does not take ownership of any reference
3335to it, and later changes to the scalar will not be reflected in the
3336value visible in the C<refcounted_he>. Complex types of scalar will not
3337be stored with referential integrity, but will be coerced to strings.
3338I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3339value is to be associated with the key; this, as with any non-null value,
3340takes precedence over the existence of a value for the key further along
3341the chain.
3342
3343I<parent> points to the rest of the C<refcounted_he> chain to be
3344attached to the new C<refcounted_he>. This function takes ownership
3345of one reference to I<parent>, and returns one reference to the new
3346C<refcounted_he>.
3347
3348=cut
3349*/
3350
3351struct refcounted_he *
3352Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3353 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3354{
3355 dVAR;
3356 STRLEN value_len = 0;
3357 const char *value_p = NULL;
3358 bool is_pv;
3359 char value_type;
3360 char hekflags;
3361 STRLEN key_offset = 1;
3362 struct refcounted_he *he;
3363 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3364
3365 if (!value || value == &PL_sv_placeholder) {
3366 value_type = HVrhek_delete;
3367 } else if (SvPOK(value)) {
3368 value_type = HVrhek_PV;
3369 } else if (SvIOK(value)) {
3370 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3371 } else if (!SvOK(value)) {
3372 value_type = HVrhek_undef;
3373 } else {
3374 value_type = HVrhek_PV;
3375 }
3376 is_pv = value_type == HVrhek_PV;
3377 if (is_pv) {
3378 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3379 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3380 value_p = SvPV_const(value, value_len);
3381 if (SvUTF8(value))
3382 value_type = HVrhek_PV_UTF8;
3383 key_offset = value_len + 2;
3384 }
3385 hekflags = value_type;
3386
3387 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3388 /* Canonicalise to Latin-1 where possible. */
3389 const char *keyend = keypv + keylen, *p;
3390 STRLEN nonascii_count = 0;
3391 for (p = keypv; p != keyend; p++) {
3392 if (! UTF8_IS_INVARIANT(*p)) {
3393 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3394 goto canonicalised_key;
3395 }
3396 nonascii_count++;
3397 p++;
3398 }
3399 }
3400 if (nonascii_count) {
3401 char *q;
3402 const char *p = keypv, *keyend = keypv + keylen;
3403 keylen -= nonascii_count;
3404 Newx(q, keylen, char);
3405 SAVEFREEPV(q);
3406 keypv = q;
3407 for (; p != keyend; p++, q++) {
3408 U8 c = (U8)*p;
3409 if (UTF8_IS_INVARIANT(c)) {
3410 *q = (char) c;
3411 }
3412 else {
3413 p++;
3414 *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p);
3415 }
3416 }
3417 }
3418 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3419 canonicalised_key: ;
3420 }
3421 if (flags & REFCOUNTED_HE_KEY_UTF8)
3422 hekflags |= HVhek_UTF8;
3423 if (!hash)
3424 PERL_HASH(hash, keypv, keylen);
3425
3426#ifdef USE_ITHREADS
3427 he = (struct refcounted_he*)
3428 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3429 + keylen
3430 + key_offset);
3431#else
3432 he = (struct refcounted_he*)
3433 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3434 + key_offset);
3435#endif
3436
3437 he->refcounted_he_next = parent;
3438
3439 if (is_pv) {
3440 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3441 he->refcounted_he_val.refcounted_he_u_len = value_len;
3442 } else if (value_type == HVrhek_IV) {
3443 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3444 } else if (value_type == HVrhek_UV) {
3445 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3446 }
3447
3448#ifdef USE_ITHREADS
3449 he->refcounted_he_hash = hash;
3450 he->refcounted_he_keylen = keylen;
3451 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3452#else
3453 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3454#endif
3455
3456 he->refcounted_he_data[0] = hekflags;
3457 he->refcounted_he_refcnt = 1;
3458
3459 return he;
3460}
3461
3462/*
3463=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3464
3465Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3466of a string/length pair.
3467
3468=cut
3469*/
3470
3471struct refcounted_he *
3472Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3473 const char *key, U32 hash, SV *value, U32 flags)
3474{
3475 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3476 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3477}
3478
3479/*
3480=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3481
3482Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3483string/length pair.
3484
3485=cut
3486*/
3487
3488struct refcounted_he *
3489Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3490 SV *key, U32 hash, SV *value, U32 flags)
3491{
3492 const char *keypv;
3493 STRLEN keylen;
3494 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3495 if (flags & REFCOUNTED_HE_KEY_UTF8)
3496 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3497 (UV)flags);
3498 keypv = SvPV_const(key, keylen);
3499 if (SvUTF8(key))
3500 flags |= REFCOUNTED_HE_KEY_UTF8;
3501 if (!hash && SvIsCOW_shared_hash(key))
3502 hash = SvSHARED_HASH(key);
3503 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3504}
3505
3506/*
3507=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3508
3509Decrements the reference count of a C<refcounted_he> by one. If the
3510reference count reaches zero the structure's memory is freed, which
3511(recursively) causes a reduction of its parent C<refcounted_he>'s
3512reference count. It is safe to pass a null pointer to this function:
3513no action occurs in this case.
3514
3515=cut
3516*/
3517
3518void
3519Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3520#ifdef USE_ITHREADS
3521 dVAR;
3522#endif
3523 PERL_UNUSED_CONTEXT;
3524
3525 while (he) {
3526 struct refcounted_he *copy;
3527 U32 new_count;
3528
3529 HINTS_REFCNT_LOCK;
3530 new_count = --he->refcounted_he_refcnt;
3531 HINTS_REFCNT_UNLOCK;
3532
3533 if (new_count) {
3534 return;
3535 }
3536
3537#ifndef USE_ITHREADS
3538 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3539#endif
3540 copy = he;
3541 he = he->refcounted_he_next;
3542 PerlMemShared_free(copy);
3543 }
3544}
3545
3546/*
3547=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3548
3549Increment the reference count of a C<refcounted_he>. The pointer to the
3550C<refcounted_he> is also returned. It is safe to pass a null pointer
3551to this function: no action occurs and a null pointer is returned.
3552
3553=cut
3554*/
3555
3556struct refcounted_he *
3557Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3558{
3559#ifdef USE_ITHREADS
3560 dVAR;
3561#endif
3562 PERL_UNUSED_CONTEXT;
3563 if (he) {
3564 HINTS_REFCNT_LOCK;
3565 he->refcounted_he_refcnt++;
3566 HINTS_REFCNT_UNLOCK;
3567 }
3568 return he;
3569}
3570
3571/*
3572=for apidoc cop_fetch_label
3573
3574Returns the label attached to a cop.
3575The flags pointer may be set to C<SVf_UTF8> or 0.
3576
3577=cut
3578*/
3579
3580/* pp_entereval is aware that labels are stored with a key ':' at the top of
3581 the linked list. */
3582const char *
3583Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3584 struct refcounted_he *const chain = cop->cop_hints_hash;
3585
3586 PERL_ARGS_ASSERT_COP_FETCH_LABEL;
3587 PERL_UNUSED_CONTEXT;
3588
3589 if (!chain)
3590 return NULL;
3591#ifdef USE_ITHREADS
3592 if (chain->refcounted_he_keylen != 1)
3593 return NULL;
3594 if (*REF_HE_KEY(chain) != ':')
3595 return NULL;
3596#else
3597 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3598 return NULL;
3599 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3600 return NULL;
3601#endif
3602 /* Stop anyone trying to really mess us up by adding their own value for
3603 ':' into %^H */
3604 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3605 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3606 return NULL;
3607
3608 if (len)
3609 *len = chain->refcounted_he_val.refcounted_he_u_len;
3610 if (flags) {
3611 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3612 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3613 }
3614 return chain->refcounted_he_data + 1;
3615}
3616
3617/*
3618=for apidoc cop_store_label
3619
3620Save a label into a C<cop_hints_hash>.
3621You need to set flags to C<SVf_UTF8>
3622for a utf-8 label.
3623
3624=cut
3625*/
3626
3627void
3628Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3629 U32 flags)
3630{
3631 SV *labelsv;
3632 PERL_ARGS_ASSERT_COP_STORE_LABEL;
3633
3634 if (flags & ~(SVf_UTF8))
3635 Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf,
3636 (UV)flags);
3637 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3638 if (flags & SVf_UTF8)
3639 SvUTF8_on(labelsv);
3640 cop->cop_hints_hash
3641 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3642}
3643
3644/*
3645=for apidoc hv_assert
3646
3647Check that a hash is in an internally consistent state.
3648
3649=cut
3650*/
3651
3652#ifdef DEBUGGING
3653
3654void
3655Perl_hv_assert(pTHX_ HV *hv)
3656{
3657 dVAR;
3658 HE* entry;
3659 int withflags = 0;
3660 int placeholders = 0;
3661 int real = 0;
3662 int bad = 0;
3663 const I32 riter = HvRITER_get(hv);
3664 HE *eiter = HvEITER_get(hv);
3665
3666 PERL_ARGS_ASSERT_HV_ASSERT;
3667
3668 (void)hv_iterinit(hv);
3669
3670 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3671 /* sanity check the values */
3672 if (HeVAL(entry) == &PL_sv_placeholder)
3673 placeholders++;
3674 else
3675 real++;
3676 /* sanity check the keys */
3677 if (HeSVKEY(entry)) {
3678 NOOP; /* Don't know what to check on SV keys. */
3679 } else if (HeKUTF8(entry)) {
3680 withflags++;
3681 if (HeKWASUTF8(entry)) {
3682 PerlIO_printf(Perl_debug_log,
3683 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3684 (int) HeKLEN(entry), HeKEY(entry));
3685 bad = 1;
3686 }
3687 } else if (HeKWASUTF8(entry))
3688 withflags++;
3689 }
3690 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3691 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3692 const int nhashkeys = HvUSEDKEYS(hv);
3693 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3694
3695 if (nhashkeys != real) {
3696 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3697 bad = 1;
3698 }
3699 if (nhashplaceholders != placeholders) {
3700 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3701 bad = 1;
3702 }
3703 }
3704 if (withflags && ! HvHASKFLAGS(hv)) {
3705 PerlIO_printf(Perl_debug_log,
3706 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3707 withflags);
3708 bad = 1;
3709 }
3710 if (bad) {
3711 sv_dump(MUTABLE_SV(hv));
3712 }
3713 HvRITER_set(hv, riter); /* Restore hash iterator state */
3714 HvEITER_set(hv, eiter);
3715}
3716
3717#endif
3718
3719/*
3720 * Local variables:
3721 * c-indentation-style: bsd
3722 * c-basic-offset: 4
3723 * indent-tabs-mode: nil
3724 * End:
3725 *
3726 * ex: set ts=8 sts=4 sw=4 et:
3727 */