This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
add =+label feature, which appends the label to perl-name
[perl5.git] / pp_sort.c
... / ...
CommitLineData
1/* pp_sort.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16 */
17
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
33#if defined(UNDER_CE)
34/* looks like 'small' is reserved word for WINCE (or somesuch)*/
35#define small xsmall
36#endif
37
38#define sv_cmp_static Perl_sv_cmp
39#define sv_cmp_locale_static Perl_sv_cmp_locale
40
41#ifndef SMALLSORT
42#define SMALLSORT (200)
43#endif
44
45/* Flags for qsortsv and mergesortsv */
46#define SORTf_DESC 1
47#define SORTf_STABLE 2
48#define SORTf_QSORT 4
49
50/*
51 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
52 *
53 * The original code was written in conjunction with BSD Computer Software
54 * Research Group at University of California, Berkeley.
55 *
56 * See also: "Optimistic Sorting and Information Theoretic Complexity"
57 * Peter McIlroy
58 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
59 * pp 467-474, Austin, Texas, 25-27 January 1993.
60 *
61 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
62 *
63 * The code can be distributed under the same terms as Perl itself.
64 *
65 */
66
67
68typedef char * aptr; /* pointer for arithmetic on sizes */
69typedef SV * gptr; /* pointers in our lists */
70
71/* Binary merge internal sort, with a few special mods
72** for the special perl environment it now finds itself in.
73**
74** Things that were once options have been hotwired
75** to values suitable for this use. In particular, we'll always
76** initialize looking for natural runs, we'll always produce stable
77** output, and we'll always do Peter McIlroy's binary merge.
78*/
79
80/* Pointer types for arithmetic and storage and convenience casts */
81
82#define APTR(P) ((aptr)(P))
83#define GPTP(P) ((gptr *)(P))
84#define GPPP(P) ((gptr **)(P))
85
86
87/* byte offset from pointer P to (larger) pointer Q */
88#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
89
90#define PSIZE sizeof(gptr)
91
92/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
93
94#ifdef PSHIFT
95#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
96#define PNBYTE(N) ((N) << (PSHIFT))
97#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
98#else
99/* Leave optimization to compiler */
100#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
101#define PNBYTE(N) ((N) * (PSIZE))
102#define PINDEX(P, N) (GPTP(P) + (N))
103#endif
104
105/* Pointer into other corresponding to pointer into this */
106#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
107
108#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
109
110
111/* Runs are identified by a pointer in the auxiliary list.
112** The pointer is at the start of the list,
113** and it points to the start of the next list.
114** NEXT is used as an lvalue, too.
115*/
116
117#define NEXT(P) (*GPPP(P))
118
119
120/* PTHRESH is the minimum number of pairs with the same sense to justify
121** checking for a run and extending it. Note that PTHRESH counts PAIRS,
122** not just elements, so PTHRESH == 8 means a run of 16.
123*/
124
125#define PTHRESH (8)
126
127/* RTHRESH is the number of elements in a run that must compare low
128** to the low element from the opposing run before we justify
129** doing a binary rampup instead of single stepping.
130** In random input, N in a row low should only happen with
131** probability 2^(1-N), so we can risk that we are dealing
132** with orderly input without paying much when we aren't.
133*/
134
135#define RTHRESH (6)
136
137
138/*
139** Overview of algorithm and variables.
140** The array of elements at list1 will be organized into runs of length 2,
141** or runs of length >= 2 * PTHRESH. We only try to form long runs when
142** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
143**
144** Unless otherwise specified, pair pointers address the first of two elements.
145**
146** b and b+1 are a pair that compare with sense "sense".
147** b is the "bottom" of adjacent pairs that might form a longer run.
148**
149** p2 parallels b in the list2 array, where runs are defined by
150** a pointer chain.
151**
152** t represents the "top" of the adjacent pairs that might extend
153** the run beginning at b. Usually, t addresses a pair
154** that compares with opposite sense from (b,b+1).
155** However, it may also address a singleton element at the end of list1,
156** or it may be equal to "last", the first element beyond list1.
157**
158** r addresses the Nth pair following b. If this would be beyond t,
159** we back it off to t. Only when r is less than t do we consider the
160** run long enough to consider checking.
161**
162** q addresses a pair such that the pairs at b through q already form a run.
163** Often, q will equal b, indicating we only are sure of the pair itself.
164** However, a search on the previous cycle may have revealed a longer run,
165** so q may be greater than b.
166**
167** p is used to work back from a candidate r, trying to reach q,
168** which would mean b through r would be a run. If we discover such a run,
169** we start q at r and try to push it further towards t.
170** If b through r is NOT a run, we detect the wrong order at (p-1,p).
171** In any event, after the check (if any), we have two main cases.
172**
173** 1) Short run. b <= q < p <= r <= t.
174** b through q is a run (perhaps trivial)
175** q through p are uninteresting pairs
176** p through r is a run
177**
178** 2) Long run. b < r <= q < t.
179** b through q is a run (of length >= 2 * PTHRESH)
180**
181** Note that degenerate cases are not only possible, but likely.
182** For example, if the pair following b compares with opposite sense,
183** then b == q < p == r == t.
184*/
185
186
187static IV
188dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
189{
190 I32 sense;
191 gptr *b, *p, *q, *t, *p2;
192 gptr *last, *r;
193 IV runs = 0;
194
195 b = list1;
196 last = PINDEX(b, nmemb);
197 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
198 for (p2 = list2; b < last; ) {
199 /* We just started, or just reversed sense.
200 ** Set t at end of pairs with the prevailing sense.
201 */
202 for (p = b+2, t = p; ++p < last; t = ++p) {
203 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
204 }
205 q = b;
206 /* Having laid out the playing field, look for long runs */
207 do {
208 p = r = b + (2 * PTHRESH);
209 if (r >= t) p = r = t; /* too short to care about */
210 else {
211 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
212 ((p -= 2) > q)) {}
213 if (p <= q) {
214 /* b through r is a (long) run.
215 ** Extend it as far as possible.
216 */
217 p = q = r;
218 while (((p += 2) < t) &&
219 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
220 r = p = q + 2; /* no simple pairs, no after-run */
221 }
222 }
223 if (q > b) { /* run of greater than 2 at b */
224 gptr *savep = p;
225
226 p = q += 2;
227 /* pick up singleton, if possible */
228 if ((p == t) &&
229 ((t + 1) == last) &&
230 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
231 savep = r = p = q = last;
232 p2 = NEXT(p2) = p2 + (p - b); ++runs;
233 if (sense)
234 while (b < --p) {
235 const gptr c = *b;
236 *b++ = *p;
237 *p = c;
238 }
239 p = savep;
240 }
241 while (q < p) { /* simple pairs */
242 p2 = NEXT(p2) = p2 + 2; ++runs;
243 if (sense) {
244 const gptr c = *q++;
245 *(q-1) = *q;
246 *q++ = c;
247 } else q += 2;
248 }
249 if (((b = p) == t) && ((t+1) == last)) {
250 NEXT(p2) = p2 + 1; ++runs;
251 b++;
252 }
253 q = r;
254 } while (b < t);
255 sense = !sense;
256 }
257 return runs;
258}
259
260
261/* The original merge sort, in use since 5.7, was as fast as, or faster than,
262 * qsort on many platforms, but slower than qsort, conspicuously so,
263 * on others. The most likely explanation was platform-specific
264 * differences in cache sizes and relative speeds.
265 *
266 * The quicksort divide-and-conquer algorithm guarantees that, as the
267 * problem is subdivided into smaller and smaller parts, the parts
268 * fit into smaller (and faster) caches. So it doesn't matter how
269 * many levels of cache exist, quicksort will "find" them, and,
270 * as long as smaller is faster, take advantage of them.
271 *
272 * By contrast, consider how the original mergesort algorithm worked.
273 * Suppose we have five runs (each typically of length 2 after dynprep).
274 *
275 * pass base aux
276 * 0 1 2 3 4 5
277 * 1 12 34 5
278 * 2 1234 5
279 * 3 12345
280 * 4 12345
281 *
282 * Adjacent pairs are merged in "grand sweeps" through the input.
283 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
284 * runs 3 and 4 are merged and the runs from run 5 have been copied.
285 * The only cache that matters is one large enough to hold *all* the input.
286 * On some platforms, this may be many times slower than smaller caches.
287 *
288 * The following pseudo-code uses the same basic merge algorithm,
289 * but in a divide-and-conquer way.
290 *
291 * # merge $runs runs at offset $offset of list $list1 into $list2.
292 * # all unmerged runs ($runs == 1) originate in list $base.
293 * sub mgsort2 {
294 * my ($offset, $runs, $base, $list1, $list2) = @_;
295 *
296 * if ($runs == 1) {
297 * if ($list1 is $base) copy run to $list2
298 * return offset of end of list (or copy)
299 * } else {
300 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
301 * mgsort2($off2, $runs/2, $base, $list2, $list1)
302 * merge the adjacent runs at $offset of $list1 into $list2
303 * return the offset of the end of the merged runs
304 * }
305 * }
306 * mgsort2(0, $runs, $base, $aux, $base);
307 *
308 * For our 5 runs, the tree of calls looks like
309 *
310 * 5
311 * 3 2
312 * 2 1 1 1
313 * 1 1
314 *
315 * 1 2 3 4 5
316 *
317 * and the corresponding activity looks like
318 *
319 * copy runs 1 and 2 from base to aux
320 * merge runs 1 and 2 from aux to base
321 * (run 3 is where it belongs, no copy needed)
322 * merge runs 12 and 3 from base to aux
323 * (runs 4 and 5 are where they belong, no copy needed)
324 * merge runs 4 and 5 from base to aux
325 * merge runs 123 and 45 from aux to base
326 *
327 * Note that we merge runs 1 and 2 immediately after copying them,
328 * while they are still likely to be in fast cache. Similarly,
329 * run 3 is merged with run 12 while it still may be lingering in cache.
330 * This implementation should therefore enjoy much of the cache-friendly
331 * behavior that quicksort does. In addition, it does less copying
332 * than the original mergesort implementation (only runs 1 and 2 are copied)
333 * and the "balancing" of merges is better (merged runs comprise more nearly
334 * equal numbers of original runs).
335 *
336 * The actual cache-friendly implementation will use a pseudo-stack
337 * to avoid recursion, and will unroll processing of runs of length 2,
338 * but it is otherwise similar to the recursive implementation.
339 */
340
341typedef struct {
342 IV offset; /* offset of 1st of 2 runs at this level */
343 IV runs; /* how many runs must be combined into 1 */
344} off_runs; /* pseudo-stack element */
345
346
347static I32
348cmp_desc(pTHX_ gptr const a, gptr const b)
349{
350 return -PL_sort_RealCmp(aTHX_ a, b);
351}
352
353STATIC void
354S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
355{
356 IV i, run, offset;
357 I32 sense, level;
358 gptr *f1, *f2, *t, *b, *p;
359 int iwhich;
360 gptr *aux;
361 gptr *p1;
362 gptr small[SMALLSORT];
363 gptr *which[3];
364 off_runs stack[60], *stackp;
365 SVCOMPARE_t savecmp = NULL;
366
367 if (nmemb <= 1) return; /* sorted trivially */
368
369 if ((flags & SORTf_DESC) != 0) {
370 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
371 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
372 cmp = cmp_desc;
373 }
374
375 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
376 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
377 level = 0;
378 stackp = stack;
379 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
380 stackp->offset = offset = 0;
381 which[0] = which[2] = base;
382 which[1] = aux;
383 for (;;) {
384 /* On levels where both runs have be constructed (stackp->runs == 0),
385 * merge them, and note the offset of their end, in case the offset
386 * is needed at the next level up. Hop up a level, and,
387 * as long as stackp->runs is 0, keep merging.
388 */
389 IV runs = stackp->runs;
390 if (runs == 0) {
391 gptr *list1, *list2;
392 iwhich = level & 1;
393 list1 = which[iwhich]; /* area where runs are now */
394 list2 = which[++iwhich]; /* area for merged runs */
395 do {
396 gptr *l1, *l2, *tp2;
397 offset = stackp->offset;
398 f1 = p1 = list1 + offset; /* start of first run */
399 p = tp2 = list2 + offset; /* where merged run will go */
400 t = NEXT(p); /* where first run ends */
401 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
402 t = NEXT(t); /* where second runs ends */
403 l2 = POTHER(t, list2, list1); /* ... on the other side */
404 offset = PNELEM(list2, t);
405 while (f1 < l1 && f2 < l2) {
406 /* If head 1 is larger than head 2, find ALL the elements
407 ** in list 2 strictly less than head1, write them all,
408 ** then head 1. Then compare the new heads, and repeat,
409 ** until one or both lists are exhausted.
410 **
411 ** In all comparisons (after establishing
412 ** which head to merge) the item to merge
413 ** (at pointer q) is the first operand of
414 ** the comparison. When we want to know
415 ** if "q is strictly less than the other",
416 ** we can't just do
417 ** cmp(q, other) < 0
418 ** because stability demands that we treat equality
419 ** as high when q comes from l2, and as low when
420 ** q was from l1. So we ask the question by doing
421 ** cmp(q, other) <= sense
422 ** and make sense == 0 when equality should look low,
423 ** and -1 when equality should look high.
424 */
425
426 gptr *q;
427 if (cmp(aTHX_ *f1, *f2) <= 0) {
428 q = f2; b = f1; t = l1;
429 sense = -1;
430 } else {
431 q = f1; b = f2; t = l2;
432 sense = 0;
433 }
434
435
436 /* ramp up
437 **
438 ** Leave t at something strictly
439 ** greater than q (or at the end of the list),
440 ** and b at something strictly less than q.
441 */
442 for (i = 1, run = 0 ;;) {
443 if ((p = PINDEX(b, i)) >= t) {
444 /* off the end */
445 if (((p = PINDEX(t, -1)) > b) &&
446 (cmp(aTHX_ *q, *p) <= sense))
447 t = p;
448 else b = p;
449 break;
450 } else if (cmp(aTHX_ *q, *p) <= sense) {
451 t = p;
452 break;
453 } else b = p;
454 if (++run >= RTHRESH) i += i;
455 }
456
457
458 /* q is known to follow b and must be inserted before t.
459 ** Increment b, so the range of possibilities is [b,t).
460 ** Round binary split down, to favor early appearance.
461 ** Adjust b and t until q belongs just before t.
462 */
463
464 b++;
465 while (b < t) {
466 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
467 if (cmp(aTHX_ *q, *p) <= sense) {
468 t = p;
469 } else b = p + 1;
470 }
471
472
473 /* Copy all the strictly low elements */
474
475 if (q == f1) {
476 FROMTOUPTO(f2, tp2, t);
477 *tp2++ = *f1++;
478 } else {
479 FROMTOUPTO(f1, tp2, t);
480 *tp2++ = *f2++;
481 }
482 }
483
484
485 /* Run out remaining list */
486 if (f1 == l1) {
487 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
488 } else FROMTOUPTO(f1, tp2, l1);
489 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
490
491 if (--level == 0) goto done;
492 --stackp;
493 t = list1; list1 = list2; list2 = t; /* swap lists */
494 } while ((runs = stackp->runs) == 0);
495 }
496
497
498 stackp->runs = 0; /* current run will finish level */
499 /* While there are more than 2 runs remaining,
500 * turn them into exactly 2 runs (at the "other" level),
501 * each made up of approximately half the runs.
502 * Stack the second half for later processing,
503 * and set about producing the first half now.
504 */
505 while (runs > 2) {
506 ++level;
507 ++stackp;
508 stackp->offset = offset;
509 runs -= stackp->runs = runs / 2;
510 }
511 /* We must construct a single run from 1 or 2 runs.
512 * All the original runs are in which[0] == base.
513 * The run we construct must end up in which[level&1].
514 */
515 iwhich = level & 1;
516 if (runs == 1) {
517 /* Constructing a single run from a single run.
518 * If it's where it belongs already, there's nothing to do.
519 * Otherwise, copy it to where it belongs.
520 * A run of 1 is either a singleton at level 0,
521 * or the second half of a split 3. In neither event
522 * is it necessary to set offset. It will be set by the merge
523 * that immediately follows.
524 */
525 if (iwhich) { /* Belongs in aux, currently in base */
526 f1 = b = PINDEX(base, offset); /* where list starts */
527 f2 = PINDEX(aux, offset); /* where list goes */
528 t = NEXT(f2); /* where list will end */
529 offset = PNELEM(aux, t); /* offset thereof */
530 t = PINDEX(base, offset); /* where it currently ends */
531 FROMTOUPTO(f1, f2, t); /* copy */
532 NEXT(b) = t; /* set up parallel pointer */
533 } else if (level == 0) goto done; /* single run at level 0 */
534 } else {
535 /* Constructing a single run from two runs.
536 * The merge code at the top will do that.
537 * We need only make sure the two runs are in the "other" array,
538 * so they'll end up in the correct array after the merge.
539 */
540 ++level;
541 ++stackp;
542 stackp->offset = offset;
543 stackp->runs = 0; /* take care of both runs, trigger merge */
544 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
545 f1 = b = PINDEX(base, offset); /* where first run starts */
546 f2 = PINDEX(aux, offset); /* where it will be copied */
547 t = NEXT(f2); /* where first run will end */
548 offset = PNELEM(aux, t); /* offset thereof */
549 p = PINDEX(base, offset); /* end of first run */
550 t = NEXT(t); /* where second run will end */
551 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
552 FROMTOUPTO(f1, f2, t); /* copy both runs */
553 NEXT(b) = p; /* paralleled pointer for 1st */
554 NEXT(p) = t; /* ... and for second */
555 }
556 }
557 }
558 done:
559 if (aux != small) Safefree(aux); /* free iff allocated */
560 if (flags) {
561 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
562 }
563 return;
564}
565
566/*
567 * The quicksort implementation was derived from source code contributed
568 * by Tom Horsley.
569 *
570 * NOTE: this code was derived from Tom Horsley's qsort replacement
571 * and should not be confused with the original code.
572 */
573
574/* Copyright (C) Tom Horsley, 1997. All rights reserved.
575
576 Permission granted to distribute under the same terms as perl which are
577 (briefly):
578
579 This program is free software; you can redistribute it and/or modify
580 it under the terms of either:
581
582 a) the GNU General Public License as published by the Free
583 Software Foundation; either version 1, or (at your option) any
584 later version, or
585
586 b) the "Artistic License" which comes with this Kit.
587
588 Details on the perl license can be found in the perl source code which
589 may be located via the www.perl.com web page.
590
591 This is the most wonderfulest possible qsort I can come up with (and
592 still be mostly portable) My (limited) tests indicate it consistently
593 does about 20% fewer calls to compare than does the qsort in the Visual
594 C++ library, other vendors may vary.
595
596 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
597 others I invented myself (or more likely re-invented since they seemed
598 pretty obvious once I watched the algorithm operate for a while).
599
600 Most of this code was written while watching the Marlins sweep the Giants
601 in the 1997 National League Playoffs - no Braves fans allowed to use this
602 code (just kidding :-).
603
604 I realize that if I wanted to be true to the perl tradition, the only
605 comment in this file would be something like:
606
607 ...they shuffled back towards the rear of the line. 'No, not at the
608 rear!' the slave-driver shouted. 'Three files up. And stay there...
609
610 However, I really needed to violate that tradition just so I could keep
611 track of what happens myself, not to mention some poor fool trying to
612 understand this years from now :-).
613*/
614
615/* ********************************************************** Configuration */
616
617#ifndef QSORT_ORDER_GUESS
618#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
619#endif
620
621/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
622 future processing - a good max upper bound is log base 2 of memory size
623 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
624 safely be smaller than that since the program is taking up some space and
625 most operating systems only let you grab some subset of contiguous
626 memory (not to mention that you are normally sorting data larger than
627 1 byte element size :-).
628*/
629#ifndef QSORT_MAX_STACK
630#define QSORT_MAX_STACK 32
631#endif
632
633/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
634 Anything bigger and we use qsort. If you make this too small, the qsort
635 will probably break (or become less efficient), because it doesn't expect
636 the middle element of a partition to be the same as the right or left -
637 you have been warned).
638*/
639#ifndef QSORT_BREAK_EVEN
640#define QSORT_BREAK_EVEN 6
641#endif
642
643/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
644 to go quadratic on. We innoculate larger partitions against
645 quadratic behavior by shuffling them before sorting. This is not
646 an absolute guarantee of non-quadratic behavior, but it would take
647 staggeringly bad luck to pick extreme elements as the pivot
648 from randomized data.
649*/
650#ifndef QSORT_PLAY_SAFE
651#define QSORT_PLAY_SAFE 255
652#endif
653
654/* ************************************************************* Data Types */
655
656/* hold left and right index values of a partition waiting to be sorted (the
657 partition includes both left and right - right is NOT one past the end or
658 anything like that).
659*/
660struct partition_stack_entry {
661 int left;
662 int right;
663#ifdef QSORT_ORDER_GUESS
664 int qsort_break_even;
665#endif
666};
667
668/* ******************************************************* Shorthand Macros */
669
670/* Note that these macros will be used from inside the qsort function where
671 we happen to know that the variable 'elt_size' contains the size of an
672 array element and the variable 'temp' points to enough space to hold a
673 temp element and the variable 'array' points to the array being sorted
674 and 'compare' is the pointer to the compare routine.
675
676 Also note that there are very many highly architecture specific ways
677 these might be sped up, but this is simply the most generally portable
678 code I could think of.
679*/
680
681/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
682*/
683#define qsort_cmp(elt1, elt2) \
684 ((*compare)(aTHX_ array[elt1], array[elt2]))
685
686#ifdef QSORT_ORDER_GUESS
687#define QSORT_NOTICE_SWAP swapped++;
688#else
689#define QSORT_NOTICE_SWAP
690#endif
691
692/* swaps contents of array elements elt1, elt2.
693*/
694#define qsort_swap(elt1, elt2) \
695 STMT_START { \
696 QSORT_NOTICE_SWAP \
697 temp = array[elt1]; \
698 array[elt1] = array[elt2]; \
699 array[elt2] = temp; \
700 } STMT_END
701
702/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
703 elt3 and elt3 gets elt1.
704*/
705#define qsort_rotate(elt1, elt2, elt3) \
706 STMT_START { \
707 QSORT_NOTICE_SWAP \
708 temp = array[elt1]; \
709 array[elt1] = array[elt2]; \
710 array[elt2] = array[elt3]; \
711 array[elt3] = temp; \
712 } STMT_END
713
714/* ************************************************************ Debug stuff */
715
716#ifdef QSORT_DEBUG
717
718static void
719break_here()
720{
721 return; /* good place to set a breakpoint */
722}
723
724#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
725
726static void
727doqsort_all_asserts(
728 void * array,
729 size_t num_elts,
730 size_t elt_size,
731 int (*compare)(const void * elt1, const void * elt2),
732 int pc_left, int pc_right, int u_left, int u_right)
733{
734 int i;
735
736 qsort_assert(pc_left <= pc_right);
737 qsort_assert(u_right < pc_left);
738 qsort_assert(pc_right < u_left);
739 for (i = u_right + 1; i < pc_left; ++i) {
740 qsort_assert(qsort_cmp(i, pc_left) < 0);
741 }
742 for (i = pc_left; i < pc_right; ++i) {
743 qsort_assert(qsort_cmp(i, pc_right) == 0);
744 }
745 for (i = pc_right + 1; i < u_left; ++i) {
746 qsort_assert(qsort_cmp(pc_right, i) < 0);
747 }
748}
749
750#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
751 doqsort_all_asserts(array, num_elts, elt_size, compare, \
752 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
753
754#else
755
756#define qsort_assert(t) ((void)0)
757
758#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
759
760#endif
761
762/* ****************************************************************** qsort */
763
764STATIC void /* the standard unstable (u) quicksort (qsort) */
765S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
766{
767 SV * temp;
768 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
769 int next_stack_entry = 0;
770 int part_left;
771 int part_right;
772#ifdef QSORT_ORDER_GUESS
773 int qsort_break_even;
774 int swapped;
775#endif
776
777 PERL_ARGS_ASSERT_QSORTSVU;
778
779 /* Make sure we actually have work to do.
780 */
781 if (num_elts <= 1) {
782 return;
783 }
784
785 /* Inoculate large partitions against quadratic behavior */
786 if (num_elts > QSORT_PLAY_SAFE) {
787 size_t n;
788 SV ** const q = array;
789 for (n = num_elts; n > 1; ) {
790 const size_t j = (size_t)(n-- * Drand01());
791 temp = q[j];
792 q[j] = q[n];
793 q[n] = temp;
794 }
795 }
796
797 /* Setup the initial partition definition and fall into the sorting loop
798 */
799 part_left = 0;
800 part_right = (int)(num_elts - 1);
801#ifdef QSORT_ORDER_GUESS
802 qsort_break_even = QSORT_BREAK_EVEN;
803#else
804#define qsort_break_even QSORT_BREAK_EVEN
805#endif
806 for ( ; ; ) {
807 if ((part_right - part_left) >= qsort_break_even) {
808 /* OK, this is gonna get hairy, so lets try to document all the
809 concepts and abbreviations and variables and what they keep
810 track of:
811
812 pc: pivot chunk - the set of array elements we accumulate in the
813 middle of the partition, all equal in value to the original
814 pivot element selected. The pc is defined by:
815
816 pc_left - the leftmost array index of the pc
817 pc_right - the rightmost array index of the pc
818
819 we start with pc_left == pc_right and only one element
820 in the pivot chunk (but it can grow during the scan).
821
822 u: uncompared elements - the set of elements in the partition
823 we have not yet compared to the pivot value. There are two
824 uncompared sets during the scan - one to the left of the pc
825 and one to the right.
826
827 u_right - the rightmost index of the left side's uncompared set
828 u_left - the leftmost index of the right side's uncompared set
829
830 The leftmost index of the left sides's uncompared set
831 doesn't need its own variable because it is always defined
832 by the leftmost edge of the whole partition (part_left). The
833 same goes for the rightmost edge of the right partition
834 (part_right).
835
836 We know there are no uncompared elements on the left once we
837 get u_right < part_left and no uncompared elements on the
838 right once u_left > part_right. When both these conditions
839 are met, we have completed the scan of the partition.
840
841 Any elements which are between the pivot chunk and the
842 uncompared elements should be less than the pivot value on
843 the left side and greater than the pivot value on the right
844 side (in fact, the goal of the whole algorithm is to arrange
845 for that to be true and make the groups of less-than and
846 greater-then elements into new partitions to sort again).
847
848 As you marvel at the complexity of the code and wonder why it
849 has to be so confusing. Consider some of the things this level
850 of confusion brings:
851
852 Once I do a compare, I squeeze every ounce of juice out of it. I
853 never do compare calls I don't have to do, and I certainly never
854 do redundant calls.
855
856 I also never swap any elements unless I can prove there is a
857 good reason. Many sort algorithms will swap a known value with
858 an uncompared value just to get things in the right place (or
859 avoid complexity :-), but that uncompared value, once it gets
860 compared, may then have to be swapped again. A lot of the
861 complexity of this code is due to the fact that it never swaps
862 anything except compared values, and it only swaps them when the
863 compare shows they are out of position.
864 */
865 int pc_left, pc_right;
866 int u_right, u_left;
867
868 int s;
869
870 pc_left = ((part_left + part_right) / 2);
871 pc_right = pc_left;
872 u_right = pc_left - 1;
873 u_left = pc_right + 1;
874
875 /* Qsort works best when the pivot value is also the median value
876 in the partition (unfortunately you can't find the median value
877 without first sorting :-), so to give the algorithm a helping
878 hand, we pick 3 elements and sort them and use the median value
879 of that tiny set as the pivot value.
880
881 Some versions of qsort like to use the left middle and right as
882 the 3 elements to sort so they can insure the ends of the
883 partition will contain values which will stop the scan in the
884 compare loop, but when you have to call an arbitrarily complex
885 routine to do a compare, its really better to just keep track of
886 array index values to know when you hit the edge of the
887 partition and avoid the extra compare. An even better reason to
888 avoid using a compare call is the fact that you can drop off the
889 edge of the array if someone foolishly provides you with an
890 unstable compare function that doesn't always provide consistent
891 results.
892
893 So, since it is simpler for us to compare the three adjacent
894 elements in the middle of the partition, those are the ones we
895 pick here (conveniently pointed at by u_right, pc_left, and
896 u_left). The values of the left, center, and right elements
897 are referred to as l c and r in the following comments.
898 */
899
900#ifdef QSORT_ORDER_GUESS
901 swapped = 0;
902#endif
903 s = qsort_cmp(u_right, pc_left);
904 if (s < 0) {
905 /* l < c */
906 s = qsort_cmp(pc_left, u_left);
907 /* if l < c, c < r - already in order - nothing to do */
908 if (s == 0) {
909 /* l < c, c == r - already in order, pc grows */
910 ++pc_right;
911 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
912 } else if (s > 0) {
913 /* l < c, c > r - need to know more */
914 s = qsort_cmp(u_right, u_left);
915 if (s < 0) {
916 /* l < c, c > r, l < r - swap c & r to get ordered */
917 qsort_swap(pc_left, u_left);
918 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
919 } else if (s == 0) {
920 /* l < c, c > r, l == r - swap c&r, grow pc */
921 qsort_swap(pc_left, u_left);
922 --pc_left;
923 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
924 } else {
925 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
926 qsort_rotate(pc_left, u_right, u_left);
927 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
928 }
929 }
930 } else if (s == 0) {
931 /* l == c */
932 s = qsort_cmp(pc_left, u_left);
933 if (s < 0) {
934 /* l == c, c < r - already in order, grow pc */
935 --pc_left;
936 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
937 } else if (s == 0) {
938 /* l == c, c == r - already in order, grow pc both ways */
939 --pc_left;
940 ++pc_right;
941 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
942 } else {
943 /* l == c, c > r - swap l & r, grow pc */
944 qsort_swap(u_right, u_left);
945 ++pc_right;
946 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
947 }
948 } else {
949 /* l > c */
950 s = qsort_cmp(pc_left, u_left);
951 if (s < 0) {
952 /* l > c, c < r - need to know more */
953 s = qsort_cmp(u_right, u_left);
954 if (s < 0) {
955 /* l > c, c < r, l < r - swap l & c to get ordered */
956 qsort_swap(u_right, pc_left);
957 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
958 } else if (s == 0) {
959 /* l > c, c < r, l == r - swap l & c, grow pc */
960 qsort_swap(u_right, pc_left);
961 ++pc_right;
962 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
963 } else {
964 /* l > c, c < r, l > r - rotate lcr into crl to order */
965 qsort_rotate(u_right, pc_left, u_left);
966 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
967 }
968 } else if (s == 0) {
969 /* l > c, c == r - swap ends, grow pc */
970 qsort_swap(u_right, u_left);
971 --pc_left;
972 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
973 } else {
974 /* l > c, c > r - swap ends to get in order */
975 qsort_swap(u_right, u_left);
976 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
977 }
978 }
979 /* We now know the 3 middle elements have been compared and
980 arranged in the desired order, so we can shrink the uncompared
981 sets on both sides
982 */
983 --u_right;
984 ++u_left;
985 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
986
987 /* The above massive nested if was the simple part :-). We now have
988 the middle 3 elements ordered and we need to scan through the
989 uncompared sets on either side, swapping elements that are on
990 the wrong side or simply shuffling equal elements around to get
991 all equal elements into the pivot chunk.
992 */
993
994 for ( ; ; ) {
995 int still_work_on_left;
996 int still_work_on_right;
997
998 /* Scan the uncompared values on the left. If I find a value
999 equal to the pivot value, move it over so it is adjacent to
1000 the pivot chunk and expand the pivot chunk. If I find a value
1001 less than the pivot value, then just leave it - its already
1002 on the correct side of the partition. If I find a greater
1003 value, then stop the scan.
1004 */
1005 while ((still_work_on_left = (u_right >= part_left))) {
1006 s = qsort_cmp(u_right, pc_left);
1007 if (s < 0) {
1008 --u_right;
1009 } else if (s == 0) {
1010 --pc_left;
1011 if (pc_left != u_right) {
1012 qsort_swap(u_right, pc_left);
1013 }
1014 --u_right;
1015 } else {
1016 break;
1017 }
1018 qsort_assert(u_right < pc_left);
1019 qsort_assert(pc_left <= pc_right);
1020 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1021 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1022 }
1023
1024 /* Do a mirror image scan of uncompared values on the right
1025 */
1026 while ((still_work_on_right = (u_left <= part_right))) {
1027 s = qsort_cmp(pc_right, u_left);
1028 if (s < 0) {
1029 ++u_left;
1030 } else if (s == 0) {
1031 ++pc_right;
1032 if (pc_right != u_left) {
1033 qsort_swap(pc_right, u_left);
1034 }
1035 ++u_left;
1036 } else {
1037 break;
1038 }
1039 qsort_assert(u_left > pc_right);
1040 qsort_assert(pc_left <= pc_right);
1041 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1042 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1043 }
1044
1045 if (still_work_on_left) {
1046 /* I know I have a value on the left side which needs to be
1047 on the right side, but I need to know more to decide
1048 exactly the best thing to do with it.
1049 */
1050 if (still_work_on_right) {
1051 /* I know I have values on both side which are out of
1052 position. This is a big win because I kill two birds
1053 with one swap (so to speak). I can advance the
1054 uncompared pointers on both sides after swapping both
1055 of them into the right place.
1056 */
1057 qsort_swap(u_right, u_left);
1058 --u_right;
1059 ++u_left;
1060 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1061 } else {
1062 /* I have an out of position value on the left, but the
1063 right is fully scanned, so I "slide" the pivot chunk
1064 and any less-than values left one to make room for the
1065 greater value over on the right. If the out of position
1066 value is immediately adjacent to the pivot chunk (there
1067 are no less-than values), I can do that with a swap,
1068 otherwise, I have to rotate one of the less than values
1069 into the former position of the out of position value
1070 and the right end of the pivot chunk into the left end
1071 (got all that?).
1072 */
1073 --pc_left;
1074 if (pc_left == u_right) {
1075 qsort_swap(u_right, pc_right);
1076 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1077 } else {
1078 qsort_rotate(u_right, pc_left, pc_right);
1079 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1080 }
1081 --pc_right;
1082 --u_right;
1083 }
1084 } else if (still_work_on_right) {
1085 /* Mirror image of complex case above: I have an out of
1086 position value on the right, but the left is fully
1087 scanned, so I need to shuffle things around to make room
1088 for the right value on the left.
1089 */
1090 ++pc_right;
1091 if (pc_right == u_left) {
1092 qsort_swap(u_left, pc_left);
1093 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1094 } else {
1095 qsort_rotate(pc_right, pc_left, u_left);
1096 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1097 }
1098 ++pc_left;
1099 ++u_left;
1100 } else {
1101 /* No more scanning required on either side of partition,
1102 break out of loop and figure out next set of partitions
1103 */
1104 break;
1105 }
1106 }
1107
1108 /* The elements in the pivot chunk are now in the right place. They
1109 will never move or be compared again. All I have to do is decide
1110 what to do with the stuff to the left and right of the pivot
1111 chunk.
1112
1113 Notes on the QSORT_ORDER_GUESS ifdef code:
1114
1115 1. If I just built these partitions without swapping any (or
1116 very many) elements, there is a chance that the elements are
1117 already ordered properly (being properly ordered will
1118 certainly result in no swapping, but the converse can't be
1119 proved :-).
1120
1121 2. A (properly written) insertion sort will run faster on
1122 already ordered data than qsort will.
1123
1124 3. Perhaps there is some way to make a good guess about
1125 switching to an insertion sort earlier than partition size 6
1126 (for instance - we could save the partition size on the stack
1127 and increase the size each time we find we didn't swap, thus
1128 switching to insertion sort earlier for partitions with a
1129 history of not swapping).
1130
1131 4. Naturally, if I just switch right away, it will make
1132 artificial benchmarks with pure ascending (or descending)
1133 data look really good, but is that a good reason in general?
1134 Hard to say...
1135 */
1136
1137#ifdef QSORT_ORDER_GUESS
1138 if (swapped < 3) {
1139#if QSORT_ORDER_GUESS == 1
1140 qsort_break_even = (part_right - part_left) + 1;
1141#endif
1142#if QSORT_ORDER_GUESS == 2
1143 qsort_break_even *= 2;
1144#endif
1145#if QSORT_ORDER_GUESS == 3
1146 const int prev_break = qsort_break_even;
1147 qsort_break_even *= qsort_break_even;
1148 if (qsort_break_even < prev_break) {
1149 qsort_break_even = (part_right - part_left) + 1;
1150 }
1151#endif
1152 } else {
1153 qsort_break_even = QSORT_BREAK_EVEN;
1154 }
1155#endif
1156
1157 if (part_left < pc_left) {
1158 /* There are elements on the left which need more processing.
1159 Check the right as well before deciding what to do.
1160 */
1161 if (pc_right < part_right) {
1162 /* We have two partitions to be sorted. Stack the biggest one
1163 and process the smallest one on the next iteration. This
1164 minimizes the stack height by insuring that any additional
1165 stack entries must come from the smallest partition which
1166 (because it is smallest) will have the fewest
1167 opportunities to generate additional stack entries.
1168 */
1169 if ((part_right - pc_right) > (pc_left - part_left)) {
1170 /* stack the right partition, process the left */
1171 partition_stack[next_stack_entry].left = pc_right + 1;
1172 partition_stack[next_stack_entry].right = part_right;
1173#ifdef QSORT_ORDER_GUESS
1174 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1175#endif
1176 part_right = pc_left - 1;
1177 } else {
1178 /* stack the left partition, process the right */
1179 partition_stack[next_stack_entry].left = part_left;
1180 partition_stack[next_stack_entry].right = pc_left - 1;
1181#ifdef QSORT_ORDER_GUESS
1182 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1183#endif
1184 part_left = pc_right + 1;
1185 }
1186 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1187 ++next_stack_entry;
1188 } else {
1189 /* The elements on the left are the only remaining elements
1190 that need sorting, arrange for them to be processed as the
1191 next partition.
1192 */
1193 part_right = pc_left - 1;
1194 }
1195 } else if (pc_right < part_right) {
1196 /* There is only one chunk on the right to be sorted, make it
1197 the new partition and loop back around.
1198 */
1199 part_left = pc_right + 1;
1200 } else {
1201 /* This whole partition wound up in the pivot chunk, so
1202 we need to get a new partition off the stack.
1203 */
1204 if (next_stack_entry == 0) {
1205 /* the stack is empty - we are done */
1206 break;
1207 }
1208 --next_stack_entry;
1209 part_left = partition_stack[next_stack_entry].left;
1210 part_right = partition_stack[next_stack_entry].right;
1211#ifdef QSORT_ORDER_GUESS
1212 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1213#endif
1214 }
1215 } else {
1216 /* This partition is too small to fool with qsort complexity, just
1217 do an ordinary insertion sort to minimize overhead.
1218 */
1219 int i;
1220 /* Assume 1st element is in right place already, and start checking
1221 at 2nd element to see where it should be inserted.
1222 */
1223 for (i = part_left + 1; i <= part_right; ++i) {
1224 int j;
1225 /* Scan (backwards - just in case 'i' is already in right place)
1226 through the elements already sorted to see if the ith element
1227 belongs ahead of one of them.
1228 */
1229 for (j = i - 1; j >= part_left; --j) {
1230 if (qsort_cmp(i, j) >= 0) {
1231 /* i belongs right after j
1232 */
1233 break;
1234 }
1235 }
1236 ++j;
1237 if (j != i) {
1238 /* Looks like we really need to move some things
1239 */
1240 int k;
1241 temp = array[i];
1242 for (k = i - 1; k >= j; --k)
1243 array[k + 1] = array[k];
1244 array[j] = temp;
1245 }
1246 }
1247
1248 /* That partition is now sorted, grab the next one, or get out
1249 of the loop if there aren't any more.
1250 */
1251
1252 if (next_stack_entry == 0) {
1253 /* the stack is empty - we are done */
1254 break;
1255 }
1256 --next_stack_entry;
1257 part_left = partition_stack[next_stack_entry].left;
1258 part_right = partition_stack[next_stack_entry].right;
1259#ifdef QSORT_ORDER_GUESS
1260 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1261#endif
1262 }
1263 }
1264
1265 /* Believe it or not, the array is sorted at this point! */
1266}
1267
1268/* Stabilize what is, presumably, an otherwise unstable sort method.
1269 * We do that by allocating (or having on hand) an array of pointers
1270 * that is the same size as the original array of elements to be sorted.
1271 * We initialize this parallel array with the addresses of the original
1272 * array elements. This indirection can make you crazy.
1273 * Some pictures can help. After initializing, we have
1274 *
1275 * indir list1
1276 * +----+ +----+
1277 * | | --------------> | | ------> first element to be sorted
1278 * +----+ +----+
1279 * | | --------------> | | ------> second element to be sorted
1280 * +----+ +----+
1281 * | | --------------> | | ------> third element to be sorted
1282 * +----+ +----+
1283 * ...
1284 * +----+ +----+
1285 * | | --------------> | | ------> n-1st element to be sorted
1286 * +----+ +----+
1287 * | | --------------> | | ------> n-th element to be sorted
1288 * +----+ +----+
1289 *
1290 * During the sort phase, we leave the elements of list1 where they are,
1291 * and sort the pointers in the indirect array in the same order determined
1292 * by the original comparison routine on the elements pointed to.
1293 * Because we don't move the elements of list1 around through
1294 * this phase, we can break ties on elements that compare equal
1295 * using their address in the list1 array, ensuring stability.
1296 * This leaves us with something looking like
1297 *
1298 * indir list1
1299 * +----+ +----+
1300 * | | --+ +---> | | ------> first element to be sorted
1301 * +----+ | | +----+
1302 * | | --|-------|---> | | ------> second element to be sorted
1303 * +----+ | | +----+
1304 * | | --|-------+ +-> | | ------> third element to be sorted
1305 * +----+ | | +----+
1306 * ...
1307 * +----+ | | | | +----+
1308 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1309 * +----+ | | +----+
1310 * | | ---+ +----> | | ------> n-th element to be sorted
1311 * +----+ +----+
1312 *
1313 * where the i-th element of the indirect array points to the element
1314 * that should be i-th in the sorted array. After the sort phase,
1315 * we have to put the elements of list1 into the places
1316 * dictated by the indirect array.
1317 */
1318
1319
1320static I32
1321cmpindir(pTHX_ gptr const a, gptr const b)
1322{
1323 gptr * const ap = (gptr *)a;
1324 gptr * const bp = (gptr *)b;
1325 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1326
1327 if (sense)
1328 return sense;
1329 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1330}
1331
1332static I32
1333cmpindir_desc(pTHX_ gptr const a, gptr const b)
1334{
1335 gptr * const ap = (gptr *)a;
1336 gptr * const bp = (gptr *)b;
1337 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1338
1339 /* Reverse the default */
1340 if (sense)
1341 return -sense;
1342 /* But don't reverse the stability test. */
1343 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1344
1345}
1346
1347STATIC void
1348S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1349{
1350 if ((flags & SORTf_STABLE) != 0) {
1351 gptr **pp, *q;
1352 size_t n, j, i;
1353 gptr *small[SMALLSORT], **indir, tmp;
1354 SVCOMPARE_t savecmp;
1355 if (nmemb <= 1) return; /* sorted trivially */
1356
1357 /* Small arrays can use the stack, big ones must be allocated */
1358 if (nmemb <= SMALLSORT) indir = small;
1359 else { Newx(indir, nmemb, gptr *); }
1360
1361 /* Copy pointers to original array elements into indirect array */
1362 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
1363
1364 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1365 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
1366
1367 /* sort, with indirection */
1368 if (flags & SORTf_DESC)
1369 qsortsvu((gptr *)indir, nmemb, cmpindir_desc);
1370 else
1371 qsortsvu((gptr *)indir, nmemb, cmpindir);
1372
1373 pp = indir;
1374 q = list1;
1375 for (n = nmemb; n--; ) {
1376 /* Assert A: all elements of q with index > n are already
1377 * in place. This is vacuously true at the start, and we
1378 * put element n where it belongs below (if it wasn't
1379 * already where it belonged). Assert B: we only move
1380 * elements that aren't where they belong,
1381 * so, by A, we never tamper with elements above n.
1382 */
1383 j = pp[n] - q; /* This sets j so that q[j] is
1384 * at pp[n]. *pp[j] belongs in
1385 * q[j], by construction.
1386 */
1387 if (n != j) { /* all's well if n == j */
1388 tmp = q[j]; /* save what's in q[j] */
1389 do {
1390 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1391 i = pp[j] - q; /* the index in q of the element
1392 * just moved */
1393 pp[j] = q + j; /* this is ok now */
1394 } while ((j = i) != n);
1395 /* There are only finitely many (nmemb) addresses
1396 * in the pp array.
1397 * So we must eventually revisit an index we saw before.
1398 * Suppose the first revisited index is k != n.
1399 * An index is visited because something else belongs there.
1400 * If we visit k twice, then two different elements must
1401 * belong in the same place, which cannot be.
1402 * So j must get back to n, the loop terminates,
1403 * and we put the saved element where it belongs.
1404 */
1405 q[n] = tmp; /* put what belongs into
1406 * the n-th element */
1407 }
1408 }
1409
1410 /* free iff allocated */
1411 if (indir != small) { Safefree(indir); }
1412 /* restore prevailing comparison routine */
1413 PL_sort_RealCmp = savecmp;
1414 } else if ((flags & SORTf_DESC) != 0) {
1415 const SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1416 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1417 cmp = cmp_desc;
1418 qsortsvu(list1, nmemb, cmp);
1419 /* restore prevailing comparison routine */
1420 PL_sort_RealCmp = savecmp;
1421 } else {
1422 qsortsvu(list1, nmemb, cmp);
1423 }
1424}
1425
1426/*
1427=head1 Array Manipulation Functions
1428
1429=for apidoc sortsv
1430
1431Sort an array. Here is an example:
1432
1433 sortsv(AvARRAY(av), av_top_index(av)+1, Perl_sv_cmp_locale);
1434
1435Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
1436flexible routine.
1437
1438=cut
1439*/
1440
1441void
1442Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1443{
1444 PERL_ARGS_ASSERT_SORTSV;
1445
1446 sortsv_flags(array, nmemb, cmp, 0);
1447}
1448
1449/*
1450=for apidoc sortsv_flags
1451
1452Sort an array, with various options.
1453
1454=cut
1455*/
1456void
1457Perl_sortsv_flags(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1458{
1459 PERL_ARGS_ASSERT_SORTSV_FLAGS;
1460
1461 if (flags & SORTf_QSORT)
1462 S_qsortsv(aTHX_ array, nmemb, cmp, flags);
1463 else
1464 S_mergesortsv(aTHX_ array, nmemb, cmp, flags);
1465}
1466
1467#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1468#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1469#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1470
1471PP(pp_sort)
1472{
1473 dSP; dMARK; dORIGMARK;
1474 SV **p1 = ORIGMARK+1, **p2;
1475 SSize_t max, i;
1476 AV* av = NULL;
1477 GV *gv;
1478 CV *cv = NULL;
1479 U8 gimme = GIMME_V;
1480 OP* const nextop = PL_op->op_next;
1481 I32 overloading = 0;
1482 bool hasargs = FALSE;
1483 bool copytmps;
1484 I32 is_xsub = 0;
1485 I32 sorting_av = 0;
1486 const U8 priv = PL_op->op_private;
1487 const U8 flags = PL_op->op_flags;
1488 U32 sort_flags = 0;
1489 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1490 = Perl_sortsv_flags;
1491 I32 all_SIVs = 1;
1492
1493 if ((priv & OPpSORT_DESCEND) != 0)
1494 sort_flags |= SORTf_DESC;
1495 if ((priv & OPpSORT_QSORT) != 0)
1496 sort_flags |= SORTf_QSORT;
1497 if ((priv & OPpSORT_STABLE) != 0)
1498 sort_flags |= SORTf_STABLE;
1499
1500 if (gimme != G_ARRAY) {
1501 SP = MARK;
1502 EXTEND(SP,1);
1503 RETPUSHUNDEF;
1504 }
1505
1506 ENTER;
1507 SAVEVPTR(PL_sortcop);
1508 if (flags & OPf_STACKED) {
1509 if (flags & OPf_SPECIAL) {
1510 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
1511 assert(nullop->op_type == OP_NULL);
1512 PL_sortcop = nullop->op_next;
1513 }
1514 else {
1515 GV *autogv = NULL;
1516 HV *stash;
1517 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
1518 check_cv:
1519 if (cv && SvPOK(cv)) {
1520 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
1521 if (proto && strEQ(proto, "$$")) {
1522 hasargs = TRUE;
1523 }
1524 }
1525 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
1526 is_xsub = 1;
1527 }
1528 else if (!(cv && CvROOT(cv))) {
1529 if (gv) {
1530 goto autoload;
1531 }
1532 else if (!CvANON(cv) && (gv = CvGV(cv))) {
1533 if (cv != GvCV(gv)) cv = GvCV(gv);
1534 autoload:
1535 if (!autogv && (
1536 autogv = gv_autoload_pvn(
1537 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
1538 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
1539 )
1540 )) {
1541 cv = GvCVu(autogv);
1542 goto check_cv;
1543 }
1544 else {
1545 SV *tmpstr = sv_newmortal();
1546 gv_efullname3(tmpstr, gv, NULL);
1547 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1548 SVfARG(tmpstr));
1549 }
1550 }
1551 else {
1552 DIE(aTHX_ "Undefined subroutine in sort");
1553 }
1554 }
1555
1556 if (is_xsub)
1557 PL_sortcop = (OP*)cv;
1558 else
1559 PL_sortcop = CvSTART(cv);
1560 }
1561 }
1562 else {
1563 PL_sortcop = NULL;
1564 }
1565
1566 /* optimiser converts "@a = sort @a" to "sort \@a";
1567 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1568 * result back to @a at the end of this function */
1569 if (priv & OPpSORT_INPLACE) {
1570 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1571 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1572 av = MUTABLE_AV((*SP));
1573 max = AvFILL(av) + 1;
1574 if (SvMAGICAL(av)) {
1575 MEXTEND(SP, max);
1576 for (i=0; i < max; i++) {
1577 SV **svp = av_fetch(av, i, FALSE);
1578 *SP++ = (svp) ? *svp : NULL;
1579 }
1580 SP--;
1581 p1 = p2 = SP - (max-1);
1582 }
1583 else {
1584 if (SvREADONLY(av))
1585 Perl_croak_no_modify();
1586 else
1587 {
1588 SvREADONLY_on(av);
1589 save_pushptr((void *)av, SAVEt_READONLY_OFF);
1590 }
1591 p1 = p2 = AvARRAY(av);
1592 sorting_av = 1;
1593 }
1594 }
1595 else {
1596 p2 = MARK+1;
1597 max = SP - MARK;
1598 }
1599
1600 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1601 * any nulls; also stringify or converting to integer or number as
1602 * required any args */
1603 copytmps = !sorting_av && PL_sortcop;
1604 for (i=max; i > 0 ; i--) {
1605 if ((*p1 = *p2++)) { /* Weed out nulls. */
1606 if (copytmps && SvPADTMP(*p1)) {
1607 *p1 = sv_mortalcopy(*p1);
1608 }
1609 SvTEMP_off(*p1);
1610 if (!PL_sortcop) {
1611 if (priv & OPpSORT_NUMERIC) {
1612 if (priv & OPpSORT_INTEGER) {
1613 if (!SvIOK(*p1))
1614 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1615 }
1616 else {
1617 if (!SvNSIOK(*p1))
1618 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1619 if (all_SIVs && !SvSIOK(*p1))
1620 all_SIVs = 0;
1621 }
1622 }
1623 else {
1624 if (!SvPOK(*p1))
1625 (void)sv_2pv_flags(*p1, 0,
1626 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
1627 }
1628 if (SvAMAGIC(*p1))
1629 overloading = 1;
1630 }
1631 p1++;
1632 }
1633 else
1634 max--;
1635 }
1636 if (sorting_av)
1637 AvFILLp(av) = max-1;
1638
1639 if (max > 1) {
1640 SV **start;
1641 if (PL_sortcop) {
1642 PERL_CONTEXT *cx;
1643 const bool oldcatch = CATCH_GET;
1644 I32 old_savestack_ix = PL_savestack_ix;
1645
1646 SAVEOP();
1647
1648 CATCH_SET(TRUE);
1649 PUSHSTACKi(PERLSI_SORT);
1650 if (!hasargs && !is_xsub) {
1651 SAVEGENERICSV(PL_firstgv);
1652 SAVEGENERICSV(PL_secondgv);
1653 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
1654 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
1655 ));
1656 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
1657 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
1658 ));
1659 /* make sure the GP isn't removed out from under us for
1660 * the SAVESPTR() */
1661 save_gp(PL_firstgv, 0);
1662 save_gp(PL_secondgv, 0);
1663 /* we don't want modifications localized */
1664 GvINTRO_off(PL_firstgv);
1665 GvINTRO_off(PL_secondgv);
1666 SAVESPTR(GvSV(PL_firstgv));
1667 SAVESPTR(GvSV(PL_secondgv));
1668 }
1669
1670 gimme = G_SCALAR;
1671 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
1672 if (!(flags & OPf_SPECIAL)) {
1673 cx->cx_type = CXt_SUB|CXp_MULTICALL;
1674 cx_pushsub(cx, cv, NULL, hasargs);
1675 if (!is_xsub) {
1676 PADLIST * const padlist = CvPADLIST(cv);
1677
1678 if (++CvDEPTH(cv) >= 2)
1679 pad_push(padlist, CvDEPTH(cv));
1680 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
1681
1682 if (hasargs) {
1683 /* This is mostly copied from pp_entersub */
1684 AV * const av = MUTABLE_AV(PAD_SVl(0));
1685
1686 cx->blk_sub.savearray = GvAV(PL_defgv);
1687 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
1688 }
1689
1690 }
1691 }
1692
1693 start = p1 - max;
1694 sortsvp(aTHX_ start, max,
1695 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1696 sort_flags);
1697
1698 /* Reset cx, in case the context stack has been reallocated. */
1699 cx = CX_CUR();
1700
1701 PL_stack_sp = PL_stack_base + cx->blk_oldsp;
1702
1703 CX_LEAVE_SCOPE(cx);
1704 if (!(flags & OPf_SPECIAL)) {
1705 assert(CxTYPE(cx) == CXt_SUB);
1706 cx_popsub(cx);
1707 }
1708 else
1709 assert(CxTYPE(cx) == CXt_NULL);
1710 /* there isn't a POPNULL ! */
1711
1712 cx_popblock(cx);
1713 CX_POP(cx);
1714 POPSTACK;
1715 CATCH_SET(oldcatch);
1716 }
1717 else {
1718 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1719 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1720 sortsvp(aTHX_ start, max,
1721 (priv & OPpSORT_NUMERIC)
1722 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
1723 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1724 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
1725 : (
1726#ifdef USE_LOCALE_COLLATE
1727 IN_LC_RUNTIME(LC_COLLATE)
1728 ? ( overloading
1729 ? (SVCOMPARE_t)S_amagic_cmp_locale
1730 : (SVCOMPARE_t)sv_cmp_locale_static)
1731 :
1732#endif
1733 ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)),
1734 sort_flags);
1735 }
1736 if ((priv & OPpSORT_REVERSE) != 0) {
1737 SV **q = start+max-1;
1738 while (start < q) {
1739 SV * const tmp = *start;
1740 *start++ = *q;
1741 *q-- = tmp;
1742 }
1743 }
1744 }
1745 if (sorting_av)
1746 SvREADONLY_off(av);
1747 else if (av && !sorting_av) {
1748 /* simulate pp_aassign of tied AV */
1749 SV** const base = MARK+1;
1750 for (i=0; i < max; i++) {
1751 base[i] = newSVsv(base[i]);
1752 }
1753 av_clear(av);
1754 av_extend(av, max);
1755 for (i=0; i < max; i++) {
1756 SV * const sv = base[i];
1757 SV ** const didstore = av_store(av, i, sv);
1758 if (SvSMAGICAL(sv))
1759 mg_set(sv);
1760 if (!didstore)
1761 sv_2mortal(sv);
1762 }
1763 }
1764 LEAVE;
1765 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
1766 return nextop;
1767}
1768
1769static I32
1770S_sortcv(pTHX_ SV *const a, SV *const b)
1771{
1772 const I32 oldsaveix = PL_savestack_ix;
1773 I32 result;
1774 PMOP * const pm = PL_curpm;
1775 COP * const cop = PL_curcop;
1776
1777 PERL_ARGS_ASSERT_SORTCV;
1778
1779 GvSV(PL_firstgv) = a;
1780 GvSV(PL_secondgv) = b;
1781 PL_stack_sp = PL_stack_base;
1782 PL_op = PL_sortcop;
1783 CALLRUNOPS(aTHX);
1784 PL_curcop = cop;
1785 /* entry zero of a stack is always PL_sv_undef, which
1786 * simplifies converting a '()' return into undef in scalar context */
1787 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1788 result = SvIV(*PL_stack_sp);
1789
1790 LEAVE_SCOPE(oldsaveix);
1791 PL_curpm = pm;
1792 return result;
1793}
1794
1795static I32
1796S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1797{
1798 const I32 oldsaveix = PL_savestack_ix;
1799 I32 result;
1800 AV * const av = GvAV(PL_defgv);
1801 PMOP * const pm = PL_curpm;
1802 COP * const cop = PL_curcop;
1803
1804 PERL_ARGS_ASSERT_SORTCV_STACKED;
1805
1806 if (AvREAL(av)) {
1807 av_clear(av);
1808 AvREAL_off(av);
1809 AvREIFY_on(av);
1810 }
1811 if (AvMAX(av) < 1) {
1812 SV **ary = AvALLOC(av);
1813 if (AvARRAY(av) != ary) {
1814 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1815 AvARRAY(av) = ary;
1816 }
1817 if (AvMAX(av) < 1) {
1818 AvMAX(av) = 1;
1819 Renew(ary,2,SV*);
1820 AvARRAY(av) = ary;
1821 AvALLOC(av) = ary;
1822 }
1823 }
1824 AvFILLp(av) = 1;
1825
1826 AvARRAY(av)[0] = a;
1827 AvARRAY(av)[1] = b;
1828 PL_stack_sp = PL_stack_base;
1829 PL_op = PL_sortcop;
1830 CALLRUNOPS(aTHX);
1831 PL_curcop = cop;
1832 /* entry zero of a stack is always PL_sv_undef, which
1833 * simplifies converting a '()' return into undef in scalar context */
1834 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1835 result = SvIV(*PL_stack_sp);
1836
1837 LEAVE_SCOPE(oldsaveix);
1838 PL_curpm = pm;
1839 return result;
1840}
1841
1842static I32
1843S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1844{
1845 dSP;
1846 const I32 oldsaveix = PL_savestack_ix;
1847 CV * const cv=MUTABLE_CV(PL_sortcop);
1848 I32 result;
1849 PMOP * const pm = PL_curpm;
1850
1851 PERL_ARGS_ASSERT_SORTCV_XSUB;
1852
1853 SP = PL_stack_base;
1854 PUSHMARK(SP);
1855 EXTEND(SP, 2);
1856 *++SP = a;
1857 *++SP = b;
1858 PUTBACK;
1859 (void)(*CvXSUB(cv))(aTHX_ cv);
1860 /* entry zero of a stack is always PL_sv_undef, which
1861 * simplifies converting a '()' return into undef in scalar context */
1862 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1863 result = SvIV(*PL_stack_sp);
1864
1865 LEAVE_SCOPE(oldsaveix);
1866 PL_curpm = pm;
1867 return result;
1868}
1869
1870
1871static I32
1872S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1873{
1874 const NV nv1 = SvNSIV(a);
1875 const NV nv2 = SvNSIV(b);
1876
1877 PERL_ARGS_ASSERT_SV_NCMP;
1878
1879#if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1880 if (Perl_isnan(nv1) || Perl_isnan(nv2)) {
1881#else
1882 if (nv1 != nv1 || nv2 != nv2) {
1883#endif
1884 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1885 return 0;
1886 }
1887 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1888}
1889
1890static I32
1891S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1892{
1893 const IV iv1 = SvIV(a);
1894 const IV iv2 = SvIV(b);
1895
1896 PERL_ARGS_ASSERT_SV_I_NCMP;
1897
1898 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1899}
1900
1901#define tryCALL_AMAGICbin(left,right,meth) \
1902 (SvAMAGIC(left)||SvAMAGIC(right)) \
1903 ? amagic_call(left, right, meth, 0) \
1904 : NULL;
1905
1906#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
1907
1908static I32
1909S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1910{
1911 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1912
1913 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1914
1915 if (tmpsv) {
1916 if (SvIOK(tmpsv)) {
1917 const I32 i = SvIVX(tmpsv);
1918 return SORT_NORMAL_RETURN_VALUE(i);
1919 }
1920 else {
1921 const NV d = SvNV(tmpsv);
1922 return SORT_NORMAL_RETURN_VALUE(d);
1923 }
1924 }
1925 return S_sv_ncmp(aTHX_ a, b);
1926}
1927
1928static I32
1929S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1930{
1931 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1932
1933 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1934
1935 if (tmpsv) {
1936 if (SvIOK(tmpsv)) {
1937 const I32 i = SvIVX(tmpsv);
1938 return SORT_NORMAL_RETURN_VALUE(i);
1939 }
1940 else {
1941 const NV d = SvNV(tmpsv);
1942 return SORT_NORMAL_RETURN_VALUE(d);
1943 }
1944 }
1945 return S_sv_i_ncmp(aTHX_ a, b);
1946}
1947
1948static I32
1949S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1950{
1951 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1952
1953 PERL_ARGS_ASSERT_AMAGIC_CMP;
1954
1955 if (tmpsv) {
1956 if (SvIOK(tmpsv)) {
1957 const I32 i = SvIVX(tmpsv);
1958 return SORT_NORMAL_RETURN_VALUE(i);
1959 }
1960 else {
1961 const NV d = SvNV(tmpsv);
1962 return SORT_NORMAL_RETURN_VALUE(d);
1963 }
1964 }
1965 return sv_cmp(str1, str2);
1966}
1967
1968#ifdef USE_LOCALE_COLLATE
1969
1970static I32
1971S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
1972{
1973 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1974
1975 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1976
1977 if (tmpsv) {
1978 if (SvIOK(tmpsv)) {
1979 const I32 i = SvIVX(tmpsv);
1980 return SORT_NORMAL_RETURN_VALUE(i);
1981 }
1982 else {
1983 const NV d = SvNV(tmpsv);
1984 return SORT_NORMAL_RETURN_VALUE(d);
1985 }
1986 }
1987 return sv_cmp_locale(str1, str2);
1988}
1989
1990#endif
1991
1992/*
1993 * ex: set ts=8 sts=4 sw=4 et:
1994 */