This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
RMG: fix typo, clarify instructions a bit
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char unees[] =
37 "Malformed UTF-8 character (unexpected end of string)";
38static const char cp_above_legal_max[] =
39 "Use of code point 0x%"UVXf" is deprecated; the permissible max is 0x%"UVXf"";
40
41#define MAX_NON_DEPRECATED_CP (IV_MAX)
42
43/*
44=head1 Unicode Support
45These are various utility functions for manipulating UTF8-encoded
46strings. For the uninitiated, this is a method of representing arbitrary
47Unicode characters as a variable number of bytes, in such a way that
48characters in the ASCII range are unmodified, and a zero byte never appears
49within non-zero characters.
50
51=cut
52*/
53
54/*
55=for apidoc is_invariant_string
56
57Returns true iff the first C<len> bytes of the string C<s> are the same
58regardless of the UTF-8 encoding of the string (or UTF-EBCDIC encoding on
59EBCDIC machines). That is, if they are UTF-8 invariant. On ASCII-ish
60machines, all the ASCII characters and only the ASCII characters fit this
61definition. On EBCDIC machines, the ASCII-range characters are invariant, but
62so also are the C1 controls and C<\c?> (which isn't in the ASCII range on
63EBCDIC).
64
65If C<len> is 0, it will be calculated using C<strlen(s)>, (which means if you
66use this option, that C<s> can't have embedded C<NUL> characters and has to
67have a terminating C<NUL> byte).
68
69See also L</is_utf8_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
70
71=cut
72*/
73
74bool
75Perl_is_invariant_string(const U8 *s, STRLEN len)
76{
77 const U8* const send = s + (len ? len : strlen((const char *)s));
78 const U8* x = s;
79
80 PERL_ARGS_ASSERT_IS_INVARIANT_STRING;
81
82 for (; x < send; ++x) {
83 if (!UTF8_IS_INVARIANT(*x))
84 break;
85 }
86
87 return x == send;
88}
89
90/*
91=for apidoc uvoffuni_to_utf8_flags
92
93THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
94Instead, B<Almost all code should use L</uvchr_to_utf8> or
95L</uvchr_to_utf8_flags>>.
96
97This function is like them, but the input is a strict Unicode
98(as opposed to native) code point. Only in very rare circumstances should code
99not be using the native code point.
100
101For details, see the description for L</uvchr_to_utf8_flags>.
102
103=cut
104*/
105
106#define HANDLE_UNICODE_SURROGATE(uv, flags) \
107 STMT_START { \
108 if (flags & UNICODE_WARN_SURROGATE) { \
109 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
110 "UTF-16 surrogate U+%04"UVXf, uv); \
111 } \
112 if (flags & UNICODE_DISALLOW_SURROGATE) { \
113 return NULL; \
114 } \
115 } STMT_END;
116
117#define HANDLE_UNICODE_NONCHAR(uv, flags) \
118 STMT_START { \
119 if (flags & UNICODE_WARN_NONCHAR) { \
120 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
121 "Unicode non-character U+%04"UVXf" is not " \
122 "recommended for open interchange", uv); \
123 } \
124 if (flags & UNICODE_DISALLOW_NONCHAR) { \
125 return NULL; \
126 } \
127 } STMT_END;
128
129/* Use shorter names internally in this file */
130#define SHIFT UTF_ACCUMULATION_SHIFT
131#undef MARK
132#define MARK UTF_CONTINUATION_MARK
133#define MASK UTF_CONTINUATION_MASK
134
135U8 *
136Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
137{
138 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
139
140 if (OFFUNI_IS_INVARIANT(uv)) {
141 *d++ = LATIN1_TO_NATIVE(uv);
142 return d;
143 }
144
145 if (uv <= MAX_UTF8_TWO_BYTE) {
146 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
147 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
148 return d;
149 }
150
151 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
152 * below, the 16 is for start bytes E0-EF (which are all the possible ones
153 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
154 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
155 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
156 * 0x800-0xFFFF on ASCII */
157 if (uv < (16 * (1U << (2 * SHIFT)))) {
158 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
159 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
160 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
161
162#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
163 aren't tested here */
164 /* The most likely code points in this range are below the surrogates.
165 * Do an extra test to quickly exclude those. */
166 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
167 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
168 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
169 {
170 HANDLE_UNICODE_NONCHAR(uv, flags);
171 }
172 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
173 HANDLE_UNICODE_SURROGATE(uv, flags);
174 }
175 }
176#endif
177 return d;
178 }
179
180 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
181 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
182 * happen starting with 4-byte characters on ASCII platforms. We unify the
183 * code for these with EBCDIC, even though some of them require 5-bytes on
184 * those, because khw believes the code saving is worth the very slight
185 * performance hit on these high EBCDIC code points. */
186
187 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
188 if ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
189 && ckWARN_d(WARN_DEPRECATED))
190 {
191 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
192 cp_above_legal_max, uv, MAX_NON_DEPRECATED_CP);
193 }
194 if ( (flags & UNICODE_WARN_SUPER)
195 || ( UNICODE_IS_ABOVE_31_BIT(uv)
196 && (flags & UNICODE_WARN_ABOVE_31_BIT)))
197 {
198 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
199
200 /* Choose the more dire applicable warning */
201 (UNICODE_IS_ABOVE_31_BIT(uv))
202 ? "Code point 0x%"UVXf" is not Unicode, and not portable"
203 : "Code point 0x%"UVXf" is not Unicode, may not be portable",
204 uv);
205 }
206 if (flags & UNICODE_DISALLOW_SUPER
207 || ( UNICODE_IS_ABOVE_31_BIT(uv)
208 && (flags & UNICODE_DISALLOW_ABOVE_31_BIT)))
209 {
210 return NULL;
211 }
212 }
213 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
214 HANDLE_UNICODE_NONCHAR(uv, flags);
215 }
216
217 /* Test for and handle 4-byte result. In the test immediately below, the
218 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
219 * characters). The 3 is for 3 continuation bytes; these each contribute
220 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
221 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
222 * 0x1_0000-0x1F_FFFF on ASCII */
223 if (uv < (8 * (1U << (3 * SHIFT)))) {
224 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
225 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
226 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
227 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
228
229#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
230 characters. The end-plane non-characters for EBCDIC were
231 handled just above */
232 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
233 HANDLE_UNICODE_NONCHAR(uv, flags);
234 }
235 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
236 HANDLE_UNICODE_SURROGATE(uv, flags);
237 }
238#endif
239
240 return d;
241 }
242
243 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
244 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
245 * format. The unrolled version above turns out to not save all that much
246 * time, and at these high code points (well above the legal Unicode range
247 * on ASCII platforms, and well above anything in common use in EBCDIC),
248 * khw believes that less code outweighs slight performance gains. */
249
250 {
251 STRLEN len = OFFUNISKIP(uv);
252 U8 *p = d+len-1;
253 while (p > d) {
254 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
255 uv >>= UTF_ACCUMULATION_SHIFT;
256 }
257 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
258 return d+len;
259 }
260}
261
262/*
263=for apidoc uvchr_to_utf8
264
265Adds the UTF-8 representation of the native code point C<uv> to the end
266of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
267C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
268the byte after the end of the new character. In other words,
269
270 d = uvchr_to_utf8(d, uv);
271
272is the recommended wide native character-aware way of saying
273
274 *(d++) = uv;
275
276This function accepts any UV as input, but very high code points (above
277C<IV_MAX> on the platform) will raise a deprecation warning. This is
278typically 0x7FFF_FFFF in a 32-bit word.
279
280It is possible to forbid or warn on non-Unicode code points, or those that may
281be problematic by using L</uvchr_to_utf8_flags>.
282
283=cut
284*/
285
286/* This is also a macro */
287PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
288
289U8 *
290Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
291{
292 return uvchr_to_utf8(d, uv);
293}
294
295/*
296=for apidoc uvchr_to_utf8_flags
297
298Adds the UTF-8 representation of the native code point C<uv> to the end
299of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
300C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
301the byte after the end of the new character. In other words,
302
303 d = uvchr_to_utf8_flags(d, uv, flags);
304
305or, in most cases,
306
307 d = uvchr_to_utf8_flags(d, uv, 0);
308
309This is the Unicode-aware way of saying
310
311 *(d++) = uv;
312
313If C<flags> is 0, this function accepts any UV as input, but very high code
314points (above C<IV_MAX> for the platform) will raise a deprecation warning.
315This is typically 0x7FFF_FFFF in a 32-bit word.
316
317Specifying C<flags> can further restrict what is allowed and not warned on, as
318follows:
319
320If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
321the function will raise a warning, provided UTF8 warnings are enabled. If
322instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
323NULL. If both flags are set, the function will both warn and return NULL.
324
325Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
326affect how the function handles a Unicode non-character.
327
328And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
329affect the handling of code points that are above the Unicode maximum of
3300x10FFFF. Languages other than Perl may not be able to accept files that
331contain these.
332
333The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
334the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
335three DISALLOW flags.
336
337Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
338so using them is more problematic than other above-Unicode code points. Perl
339invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
340likely that non-Perl languages will not be able to read files that contain
341these that written by the perl interpreter; nor would Perl understand files
342written by something that uses a different extension. For these reasons, there
343is a separate set of flags that can warn and/or disallow these extremely high
344code points, even if other above-Unicode ones are accepted. These are the
345C<UNICODE_WARN_ABOVE_31_BIT> and C<UNICODE_DISALLOW_ABOVE_31_BIT> flags. These
346are entirely independent from the deprecation warning for code points above
347C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
348code point that needs more than 31 bits to represent. When that happens,
349effectively the C<UNICODE_DISALLOW_ABOVE_31_BIT> flag will always be set on
35032-bit machines. (Of course C<UNICODE_DISALLOW_SUPER> will treat all
351above-Unicode code points, including these, as malformations; and
352C<UNICODE_WARN_SUPER> warns on these.)
353
354On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
355extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
356than on ASCII. Prior to that, code points 2**31 and higher were simply
357unrepresentable, and a different, incompatible method was used to represent
358code points between 2**30 and 2**31 - 1. The flags C<UNICODE_WARN_ABOVE_31_BIT>
359and C<UNICODE_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
360platforms, warning and disallowing 2**31 and higher.
361
362=cut
363*/
364
365/* This is also a macro */
366PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
367
368U8 *
369Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
370{
371 return uvchr_to_utf8_flags(d, uv, flags);
372}
373
374/*
375=for apidoc is_utf8_string
376
377Returns true if the first C<len> bytes of string C<s> form a valid
378UTF-8 string, false otherwise. If C<len> is 0, it will be calculated
379using C<strlen(s)> (which means if you use this option, that C<s> can't have
380embedded C<NUL> characters and has to have a terminating C<NUL> byte). Note
381that all characters being ASCII constitute 'a valid UTF-8 string'.
382
383See also L</is_invariant_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
384
385=cut
386*/
387
388bool
389Perl_is_utf8_string(const U8 *s, STRLEN len)
390{
391 const U8* const send = s + (len ? len : strlen((const char *)s));
392 const U8* x = s;
393
394 PERL_ARGS_ASSERT_IS_UTF8_STRING;
395
396 while (x < send) {
397 STRLEN len = isUTF8_CHAR(x, send);
398 if (UNLIKELY(! len)) {
399 return FALSE;
400 }
401 x += len;
402 }
403
404 return TRUE;
405}
406
407/*
408Implemented as a macro in utf8.h
409
410=for apidoc is_utf8_string_loc
411
412Like L</is_utf8_string> but stores the location of the failure (in the
413case of "utf8ness failure") or the location C<s>+C<len> (in the case of
414"utf8ness success") in the C<ep>.
415
416See also L</is_utf8_string_loclen>() and L</is_utf8_string>().
417
418=for apidoc is_utf8_string_loclen
419
420Like L</is_utf8_string>() but stores the location of the failure (in the
421case of "utf8ness failure") or the location C<s>+C<len> (in the case of
422"utf8ness success") in the C<ep>, and the number of UTF-8
423encoded characters in the C<el>.
424
425See also L</is_utf8_string_loc>() and L</is_utf8_string>().
426
427=cut
428*/
429
430bool
431Perl_is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)
432{
433 const U8* const send = s + (len ? len : strlen((const char *)s));
434 const U8* x = s;
435 STRLEN outlen = 0;
436
437 PERL_ARGS_ASSERT_IS_UTF8_STRING_LOCLEN;
438
439 while (x < send) {
440 STRLEN len = isUTF8_CHAR(x, send);
441 if (UNLIKELY(! len)) {
442 goto out;
443 }
444 x += len;
445 outlen++;
446 }
447
448 out:
449 if (el)
450 *el = outlen;
451
452 if (ep)
453 *ep = x;
454 return (x == send);
455}
456
457/*
458
459=for apidoc utf8n_to_uvchr
460
461THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
462Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
463
464Bottom level UTF-8 decode routine.
465Returns the native code point value of the first character in the string C<s>,
466which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
467C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
468the length, in bytes, of that character.
469
470The value of C<flags> determines the behavior when C<s> does not point to a
471well-formed UTF-8 character. If C<flags> is 0, when a malformation is found,
472zero is returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) is the
473next possible position in C<s> that could begin a non-malformed character.
474Also, if UTF-8 warnings haven't been lexically disabled, a warning is raised.
475
476Various ALLOW flags can be set in C<flags> to allow (and not warn on)
477individual types of malformations, such as the sequence being overlong (that
478is, when there is a shorter sequence that can express the same code point;
479overlong sequences are expressly forbidden in the UTF-8 standard due to
480potential security issues). Another malformation example is the first byte of
481a character not being a legal first byte. See F<utf8.h> for the list of such
482flags. For allowed 0 length strings, this function returns 0; for allowed
483overlong sequences, the computed code point is returned; for all other allowed
484malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
485determinable reasonable value.
486
487The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
488flags) malformation is found. If this flag is set, the routine assumes that
489the caller will raise a warning, and this function will silently just set
490C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
491
492Note that this API requires disambiguation between successful decoding a C<NUL>
493character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
494in both cases, 0 is returned. To disambiguate, upon a zero return, see if the
495first byte of C<s> is 0 as well. If so, the input was a C<NUL>; if not, the
496input had an error.
497
498Certain code points are considered problematic. These are Unicode surrogates,
499Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
500By default these are considered regular code points, but certain situations
501warrant special handling for them. If C<flags> contains
502C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all three classes are treated as
503malformations and handled as such. The flags C<UTF8_DISALLOW_SURROGATE>,
504C<UTF8_DISALLOW_NONCHAR>, and C<UTF8_DISALLOW_SUPER> (meaning above the legal
505Unicode maximum) can be set to disallow these categories individually.
506
507The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
508C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
509raised for their respective categories, but otherwise the code points are
510considered valid (not malformations). To get a category to both be treated as
511a malformation and raise a warning, specify both the WARN and DISALLOW flags.
512(But note that warnings are not raised if lexically disabled nor if
513C<UTF8_CHECK_ONLY> is also specified.)
514
515It is now deprecated to have very high code points (above C<IV_MAX> on the
516platforms) and this function will raise a deprecation warning for these (unless
517such warnings are turned off). This value, is typically 0x7FFF_FFFF (2**31 -1)
518in a 32-bit word.
519
520Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
521so using them is more problematic than other above-Unicode code points. Perl
522invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
523likely that non-Perl languages will not be able to read files that contain
524these that written by the perl interpreter; nor would Perl understand files
525written by something that uses a different extension. For these reasons, there
526is a separate set of flags that can warn and/or disallow these extremely high
527code points, even if other above-Unicode ones are accepted. These are the
528C<UTF8_WARN_ABOVE_31_BIT> and C<UTF8_DISALLOW_ABOVE_31_BIT> flags. These
529are entirely independent from the deprecation warning for code points above
530C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
531code point that needs more than 31 bits to represent. When that happens,
532effectively the C<UTF8_DISALLOW_ABOVE_31_BIT> flag will always be set on
53332-bit machines. (Of course C<UTF8_DISALLOW_SUPER> will treat all
534above-Unicode code points, including these, as malformations; and
535C<UTF8_WARN_SUPER> warns on these.)
536
537On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
538extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
539than on ASCII. Prior to that, code points 2**31 and higher were simply
540unrepresentable, and a different, incompatible method was used to represent
541code points between 2**30 and 2**31 - 1. The flags C<UTF8_WARN_ABOVE_31_BIT>
542and C<UTF8_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
543platforms, warning and disallowing 2**31 and higher.
544
545All other code points corresponding to Unicode characters, including private
546use and those yet to be assigned, are never considered malformed and never
547warn.
548
549=cut
550*/
551
552UV
553Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
554{
555 const U8 * const s0 = s;
556 U8 overflow_byte = '\0'; /* Save byte in case of overflow */
557 U8 * send;
558 UV uv = *s;
559 STRLEN expectlen;
560 SV* sv = NULL;
561 UV outlier_ret = 0; /* return value when input is in error or problematic
562 */
563 UV pack_warn = 0; /* Save result of packWARN() for later */
564 bool unexpected_non_continuation = FALSE;
565 bool overflowed = FALSE;
566 bool do_overlong_test = TRUE; /* May have to skip this test */
567
568 const char* const malformed_text = "Malformed UTF-8 character";
569
570 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
571
572 /* The order of malformation tests here is important. We should consume as
573 * few bytes as possible in order to not skip any valid character. This is
574 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
575 * http://unicode.org/reports/tr36 for more discussion as to why. For
576 * example, once we've done a UTF8SKIP, we can tell the expected number of
577 * bytes, and could fail right off the bat if the input parameters indicate
578 * that there are too few available. But it could be that just that first
579 * byte is garbled, and the intended character occupies fewer bytes. If we
580 * blindly assumed that the first byte is correct, and skipped based on
581 * that number, we could skip over a valid input character. So instead, we
582 * always examine the sequence byte-by-byte.
583 *
584 * We also should not consume too few bytes, otherwise someone could inject
585 * things. For example, an input could be deliberately designed to
586 * overflow, and if this code bailed out immediately upon discovering that,
587 * returning to the caller C<*retlen> pointing to the very next byte (one
588 * which is actually part of of the overflowing sequence), that could look
589 * legitimate to the caller, which could discard the initial partial
590 * sequence and process the rest, inappropriately */
591
592 /* Zero length strings, if allowed, of necessity are zero */
593 if (UNLIKELY(curlen == 0)) {
594 if (retlen) {
595 *retlen = 0;
596 }
597
598 if (flags & UTF8_ALLOW_EMPTY) {
599 return 0;
600 }
601 if (! (flags & UTF8_CHECK_ONLY)) {
602 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (empty string)", malformed_text));
603 }
604 goto malformed;
605 }
606
607 expectlen = UTF8SKIP(s);
608
609 /* A well-formed UTF-8 character, as the vast majority of calls to this
610 * function will be for, has this expected length. For efficiency, set
611 * things up here to return it. It will be overriden only in those rare
612 * cases where a malformation is found */
613 if (retlen) {
614 *retlen = expectlen;
615 }
616
617 /* An invariant is trivially well-formed */
618 if (UTF8_IS_INVARIANT(uv)) {
619 return uv;
620 }
621
622 /* A continuation character can't start a valid sequence */
623 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
624 if (flags & UTF8_ALLOW_CONTINUATION) {
625 if (retlen) {
626 *retlen = 1;
627 }
628 return UNICODE_REPLACEMENT;
629 }
630
631 if (! (flags & UTF8_CHECK_ONLY)) {
632 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected continuation byte 0x%02x, with no preceding start byte)", malformed_text, *s0));
633 }
634 curlen = 1;
635 goto malformed;
636 }
637
638 /* Here is not a continuation byte, nor an invariant. The only thing left
639 * is a start byte (possibly for an overlong) */
640
641#ifdef EBCDIC
642 uv = NATIVE_UTF8_TO_I8(uv);
643#endif
644
645 /* Remove the leading bits that indicate the number of bytes in the
646 * character's whole UTF-8 sequence, leaving just the bits that are part of
647 * the value */
648 uv &= UTF_START_MASK(expectlen);
649
650 /* Now, loop through the remaining bytes in the character's sequence,
651 * accumulating each into the working value as we go. Be sure to not look
652 * past the end of the input string */
653 send = (U8*) s0 + ((expectlen <= curlen) ? expectlen : curlen);
654
655 for (s = s0 + 1; s < send; s++) {
656 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
657 if (uv & UTF_ACCUMULATION_OVERFLOW_MASK) {
658
659 /* The original implementors viewed this malformation as more
660 * serious than the others (though I, khw, don't understand
661 * why, since other malformations also give very very wrong
662 * results), so there is no way to turn off checking for it.
663 * Set a flag, but keep going in the loop, so that we absorb
664 * the rest of the bytes that comprise the character. */
665 overflowed = TRUE;
666 overflow_byte = *s; /* Save for warning message's use */
667 }
668 uv = UTF8_ACCUMULATE(uv, *s);
669 }
670 else {
671 /* Here, found a non-continuation before processing all expected
672 * bytes. This byte begins a new character, so quit, even if
673 * allowing this malformation. */
674 unexpected_non_continuation = TRUE;
675 break;
676 }
677 } /* End of loop through the character's bytes */
678
679 /* Save how many bytes were actually in the character */
680 curlen = s - s0;
681
682 /* The loop above finds two types of malformations: non-continuation and/or
683 * overflow. The non-continuation malformation is really a too-short
684 * malformation, as it means that the current character ended before it was
685 * expected to (being terminated prematurely by the beginning of the next
686 * character, whereas in the too-short malformation there just are too few
687 * bytes available to hold the character. In both cases, the check below
688 * that we have found the expected number of bytes would fail if executed.)
689 * Thus the non-continuation malformation is really unnecessary, being a
690 * subset of the too-short malformation. But there may be existing
691 * applications that are expecting the non-continuation type, so we retain
692 * it, and return it in preference to the too-short malformation. (If this
693 * code were being written from scratch, the two types might be collapsed
694 * into one.) I, khw, am also giving priority to returning the
695 * non-continuation and too-short malformations over overflow when multiple
696 * ones are present. I don't know of any real reason to prefer one over
697 * the other, except that it seems to me that multiple-byte errors trumps
698 * errors from a single byte */
699 if (UNLIKELY(unexpected_non_continuation)) {
700 if (!(flags & UTF8_ALLOW_NON_CONTINUATION)) {
701 if (! (flags & UTF8_CHECK_ONLY)) {
702 if (curlen == 1) {
703 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, immediately after start byte 0x%02x)", malformed_text, *s, *s0));
704 }
705 else {
706 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, %d bytes after start byte 0x%02x, expected %d bytes)", malformed_text, *s, (int) curlen, *s0, (int)expectlen));
707 }
708 }
709 goto malformed;
710 }
711 uv = UNICODE_REPLACEMENT;
712
713 /* Skip testing for overlongs, as the REPLACEMENT may not be the same
714 * as what the original expectations were. */
715 do_overlong_test = FALSE;
716 if (retlen) {
717 *retlen = curlen;
718 }
719 }
720 else if (UNLIKELY(curlen < expectlen)) {
721 if (! (flags & UTF8_ALLOW_SHORT)) {
722 if (! (flags & UTF8_CHECK_ONLY)) {
723 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)curlen, curlen == 1 ? "" : "s", (int)expectlen, *s0));
724 }
725 goto malformed;
726 }
727 uv = UNICODE_REPLACEMENT;
728 do_overlong_test = FALSE;
729 if (retlen) {
730 *retlen = curlen;
731 }
732 }
733
734 if (UNLIKELY(overflowed)) {
735 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (overflow at byte 0x%02x, after start byte 0x%02x)", malformed_text, overflow_byte, *s0));
736 goto malformed;
737 }
738
739 if (do_overlong_test
740 && expectlen > (STRLEN) OFFUNISKIP(uv)
741 && ! (flags & UTF8_ALLOW_LONG))
742 {
743 /* The overlong malformation has lower precedence than the others.
744 * Note that if this malformation is allowed, we return the actual
745 * value, instead of the replacement character. This is because this
746 * value is actually well-defined. */
747 if (! (flags & UTF8_CHECK_ONLY)) {
748 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)expectlen, expectlen == 1 ? "": "s", OFFUNISKIP(uv), *s0));
749 }
750 goto malformed;
751 }
752
753 /* Here, the input is considered to be well-formed, but it still could be a
754 * problematic code point that is not allowed by the input parameters. */
755 if (uv >= UNICODE_SURROGATE_FIRST /* isn't problematic if < this */
756 && ((flags & ( UTF8_DISALLOW_NONCHAR
757 |UTF8_DISALLOW_SURROGATE
758 |UTF8_DISALLOW_SUPER
759 |UTF8_DISALLOW_ABOVE_31_BIT
760 |UTF8_WARN_NONCHAR
761 |UTF8_WARN_SURROGATE
762 |UTF8_WARN_SUPER
763 |UTF8_WARN_ABOVE_31_BIT))
764 || ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
765 && ckWARN_d(WARN_DEPRECATED))))
766 {
767 if (UNICODE_IS_SURROGATE(uv)) {
768
769 /* By adding UTF8_CHECK_ONLY to the test, we avoid unnecessary
770 * generation of the sv, since no warnings are raised under CHECK */
771 if ((flags & (UTF8_WARN_SURROGATE|UTF8_CHECK_ONLY)) == UTF8_WARN_SURROGATE
772 && ckWARN_d(WARN_SURROGATE))
773 {
774 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "UTF-16 surrogate U+%04"UVXf"", uv));
775 pack_warn = packWARN(WARN_SURROGATE);
776 }
777 if (flags & UTF8_DISALLOW_SURROGATE) {
778 goto disallowed;
779 }
780 }
781 else if ((uv > PERL_UNICODE_MAX)) {
782 if ((flags & (UTF8_WARN_SUPER|UTF8_CHECK_ONLY)) == UTF8_WARN_SUPER
783 && ckWARN_d(WARN_NON_UNICODE))
784 {
785 sv = sv_2mortal(Perl_newSVpvf(aTHX_
786 "Code point 0x%04"UVXf" is not Unicode, may not be portable",
787 uv));
788 pack_warn = packWARN(WARN_NON_UNICODE);
789 }
790
791 /* The maximum code point ever specified by a standard was
792 * 2**31 - 1. Anything larger than that is a Perl extension that
793 * very well may not be understood by other applications (including
794 * earlier perl versions on EBCDIC platforms). On ASCII platforms,
795 * these code points are indicated by the first UTF-8 byte being
796 * 0xFE or 0xFF. We test for these after the regular SUPER ones,
797 * and before possibly bailing out, so that the slightly more dire
798 * warning will override the regular one. */
799 if (
800#ifndef EBCDIC
801 (*s0 & 0xFE) == 0xFE /* matches both FE, FF */
802#else
803 /* The I8 for 2**31 (U+80000000) is
804 * \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
805 * and it turns out that on all EBCDIC pages recognized that
806 * the UTF-EBCDIC for that code point is
807 * \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
808 * For the next lower code point, the 1047 UTF-EBCDIC is
809 * \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
810 * The other code pages differ only in the bytes following
811 * \x42. Thus the following works (the minimum continuation
812 * byte is \x41). */
813 *s0 == 0xFE && send - s0 > 7 && ( s0[1] > 0x41
814 || s0[2] > 0x41
815 || s0[3] > 0x41
816 || s0[4] > 0x41
817 || s0[5] > 0x41
818 || s0[6] > 0x41
819 || s0[7] > 0x42)
820#endif
821 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER
822 |UTF8_DISALLOW_ABOVE_31_BIT)))
823 {
824 if ( ! (flags & UTF8_CHECK_ONLY)
825 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER))
826 && ckWARN_d(WARN_UTF8))
827 {
828 sv = sv_2mortal(Perl_newSVpvf(aTHX_
829 "Code point 0x%"UVXf" is not Unicode, and not portable",
830 uv));
831 pack_warn = packWARN(WARN_UTF8);
832 }
833 if (flags & UTF8_DISALLOW_ABOVE_31_BIT) {
834 goto disallowed;
835 }
836 }
837
838 if (flags & UTF8_DISALLOW_SUPER) {
839 goto disallowed;
840 }
841
842 /* The deprecated warning overrides any non-deprecated one */
843 if (UNLIKELY(uv > MAX_NON_DEPRECATED_CP) && ckWARN_d(WARN_DEPRECATED))
844 {
845 sv = sv_2mortal(Perl_newSVpvf(aTHX_ cp_above_legal_max,
846 uv, MAX_NON_DEPRECATED_CP));
847 pack_warn = packWARN(WARN_DEPRECATED);
848 }
849 }
850 else if (UNICODE_IS_NONCHAR(uv)) {
851 if ((flags & (UTF8_WARN_NONCHAR|UTF8_CHECK_ONLY)) == UTF8_WARN_NONCHAR
852 && ckWARN_d(WARN_NONCHAR))
853 {
854 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Unicode non-character U+%04"UVXf" is not recommended for open interchange", uv));
855 pack_warn = packWARN(WARN_NONCHAR);
856 }
857 if (flags & UTF8_DISALLOW_NONCHAR) {
858 goto disallowed;
859 }
860 }
861
862 if (sv) {
863 outlier_ret = uv; /* Note we don't bother to convert to native,
864 as all the outlier code points are the same
865 in both ASCII and EBCDIC */
866 goto do_warn;
867 }
868
869 /* Here, this is not considered a malformed character, so drop through
870 * to return it */
871 }
872
873 return UNI_TO_NATIVE(uv);
874
875 /* There are three cases which get to beyond this point. In all 3 cases:
876 * <sv> if not null points to a string to print as a warning.
877 * <curlen> is what <*retlen> should be set to if UTF8_CHECK_ONLY isn't
878 * set.
879 * <outlier_ret> is what return value to use if UTF8_CHECK_ONLY isn't set.
880 * This is done by initializing it to 0, and changing it only
881 * for case 1).
882 * The 3 cases are:
883 * 1) The input is valid but problematic, and to be warned about. The
884 * return value is the resultant code point; <*retlen> is set to
885 * <curlen>, the number of bytes that comprise the code point.
886 * <pack_warn> contains the result of packWARN() for the warning
887 * types. The entry point for this case is the label <do_warn>;
888 * 2) The input is a valid code point but disallowed by the parameters to
889 * this function. The return value is 0. If UTF8_CHECK_ONLY is set,
890 * <*relen> is -1; otherwise it is <curlen>, the number of bytes that
891 * comprise the code point. <pack_warn> contains the result of
892 * packWARN() for the warning types. The entry point for this case is
893 * the label <disallowed>.
894 * 3) The input is malformed. The return value is 0. If UTF8_CHECK_ONLY
895 * is set, <*relen> is -1; otherwise it is <curlen>, the number of
896 * bytes that comprise the malformation. All such malformations are
897 * assumed to be warning type <utf8>. The entry point for this case
898 * is the label <malformed>.
899 */
900
901 malformed:
902
903 if (sv && ckWARN_d(WARN_UTF8)) {
904 pack_warn = packWARN(WARN_UTF8);
905 }
906
907 disallowed:
908
909 if (flags & UTF8_CHECK_ONLY) {
910 if (retlen)
911 *retlen = ((STRLEN) -1);
912 return 0;
913 }
914
915 do_warn:
916
917 if (pack_warn) { /* <pack_warn> was initialized to 0, and changed only
918 if warnings are to be raised. */
919 const char * const string = SvPVX_const(sv);
920
921 if (PL_op)
922 Perl_warner(aTHX_ pack_warn, "%s in %s", string, OP_DESC(PL_op));
923 else
924 Perl_warner(aTHX_ pack_warn, "%s", string);
925 }
926
927 if (retlen) {
928 *retlen = curlen;
929 }
930
931 return outlier_ret;
932}
933
934/*
935=for apidoc utf8_to_uvchr_buf
936
937Returns the native code point of the first character in the string C<s> which
938is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
939C<*retlen> will be set to the length, in bytes, of that character.
940
941If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
942enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
943C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
944(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
945C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
946the next possible position in C<s> that could begin a non-malformed character.
947See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
948returned.
949
950Code points above the platform's C<IV_MAX> will raise a deprecation warning,
951unless those are turned off.
952
953=cut
954*/
955
956
957UV
958Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
959{
960 assert(s < send);
961
962 return utf8n_to_uvchr(s, send - s, retlen,
963 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
964}
965
966/* Like L</utf8_to_uvchr_buf>(), but should only be called when it is known that
967 * there are no malformations in the input UTF-8 string C<s>. surrogates,
968 * non-character code points, and non-Unicode code points are allowed. */
969
970UV
971Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
972{
973 UV expectlen = UTF8SKIP(s);
974 const U8* send = s + expectlen;
975 UV uv = *s;
976
977 PERL_ARGS_ASSERT_VALID_UTF8_TO_UVCHR;
978 PERL_UNUSED_CONTEXT;
979
980 if (retlen) {
981 *retlen = expectlen;
982 }
983
984 /* An invariant is trivially returned */
985 if (expectlen == 1) {
986 return uv;
987 }
988
989#ifdef EBCDIC
990 uv = NATIVE_UTF8_TO_I8(uv);
991#endif
992
993 /* Remove the leading bits that indicate the number of bytes, leaving just
994 * the bits that are part of the value */
995 uv &= UTF_START_MASK(expectlen);
996
997 /* Now, loop through the remaining bytes, accumulating each into the
998 * working total as we go. (I khw tried unrolling the loop for up to 4
999 * bytes, but there was no performance improvement) */
1000 for (++s; s < send; s++) {
1001 uv = UTF8_ACCUMULATE(uv, *s);
1002 }
1003
1004 return UNI_TO_NATIVE(uv);
1005
1006}
1007
1008/*
1009=for apidoc utf8_to_uvuni_buf
1010
1011Only in very rare circumstances should code need to be dealing in Unicode
1012(as opposed to native) code points. In those few cases, use
1013C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1014
1015Returns the Unicode (not-native) code point of the first character in the
1016string C<s> which
1017is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1018C<retlen> will be set to the length, in bytes, of that character.
1019
1020If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1021enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1022NULL) to -1. If those warnings are off, the computed value if well-defined (or
1023the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1024is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1025next possible position in C<s> that could begin a non-malformed character.
1026See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1027
1028Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1029unless those are turned off.
1030
1031=cut
1032*/
1033
1034UV
1035Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1036{
1037 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1038
1039 assert(send > s);
1040
1041 /* Call the low level routine asking for checks */
1042 return NATIVE_TO_UNI(Perl_utf8n_to_uvchr(aTHX_ s, send -s, retlen,
1043 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY));
1044}
1045
1046/*
1047=for apidoc utf8_length
1048
1049Return the length of the UTF-8 char encoded string C<s> in characters.
1050Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1051up past C<e>, croaks.
1052
1053=cut
1054*/
1055
1056STRLEN
1057Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1058{
1059 STRLEN len = 0;
1060
1061 PERL_ARGS_ASSERT_UTF8_LENGTH;
1062
1063 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1064 * the bitops (especially ~) can create illegal UTF-8.
1065 * In other words: in Perl UTF-8 is not just for Unicode. */
1066
1067 if (e < s)
1068 goto warn_and_return;
1069 while (s < e) {
1070 s += UTF8SKIP(s);
1071 len++;
1072 }
1073
1074 if (e != s) {
1075 len--;
1076 warn_and_return:
1077 if (PL_op)
1078 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1079 "%s in %s", unees, OP_DESC(PL_op));
1080 else
1081 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1082 }
1083
1084 return len;
1085}
1086
1087/*
1088=for apidoc utf8_distance
1089
1090Returns the number of UTF-8 characters between the UTF-8 pointers C<a>
1091and C<b>.
1092
1093WARNING: use only if you *know* that the pointers point inside the
1094same UTF-8 buffer.
1095
1096=cut
1097*/
1098
1099IV
1100Perl_utf8_distance(pTHX_ const U8 *a, const U8 *b)
1101{
1102 PERL_ARGS_ASSERT_UTF8_DISTANCE;
1103
1104 return (a < b) ? -1 * (IV) utf8_length(a, b) : (IV) utf8_length(b, a);
1105}
1106
1107/*
1108=for apidoc utf8_hop
1109
1110Return the UTF-8 pointer C<s> displaced by C<off> characters, either
1111forward or backward.
1112
1113WARNING: do not use the following unless you *know* C<off> is within
1114the UTF-8 data pointed to by C<s> *and* that on entry C<s> is aligned
1115on the first byte of character or just after the last byte of a character.
1116
1117=cut
1118*/
1119
1120U8 *
1121Perl_utf8_hop(const U8 *s, I32 off)
1122{
1123 PERL_ARGS_ASSERT_UTF8_HOP;
1124
1125 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g
1126 * the bitops (especially ~) can create illegal UTF-8.
1127 * In other words: in Perl UTF-8 is not just for Unicode. */
1128
1129 if (off >= 0) {
1130 while (off--)
1131 s += UTF8SKIP(s);
1132 }
1133 else {
1134 while (off++) {
1135 s--;
1136 while (UTF8_IS_CONTINUATION(*s))
1137 s--;
1138 }
1139 }
1140 return (U8 *)s;
1141}
1142
1143/*
1144=for apidoc bytes_cmp_utf8
1145
1146Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1147sequence of characters (stored as UTF-8)
1148in C<u>, C<ulen>. Returns 0 if they are
1149equal, -1 or -2 if the first string is less than the second string, +1 or +2
1150if the first string is greater than the second string.
1151
1152-1 or +1 is returned if the shorter string was identical to the start of the
1153longer string. -2 or +2 is returned if
1154there was a difference between characters
1155within the strings.
1156
1157=cut
1158*/
1159
1160int
1161Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1162{
1163 const U8 *const bend = b + blen;
1164 const U8 *const uend = u + ulen;
1165
1166 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1167
1168 while (b < bend && u < uend) {
1169 U8 c = *u++;
1170 if (!UTF8_IS_INVARIANT(c)) {
1171 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1172 if (u < uend) {
1173 U8 c1 = *u++;
1174 if (UTF8_IS_CONTINUATION(c1)) {
1175 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
1176 } else {
1177 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1178 "Malformed UTF-8 character "
1179 "(unexpected non-continuation byte 0x%02x"
1180 ", immediately after start byte 0x%02x)"
1181 /* Dear diag.t, it's in the pod. */
1182 "%s%s", c1, c,
1183 PL_op ? " in " : "",
1184 PL_op ? OP_DESC(PL_op) : "");
1185 return -2;
1186 }
1187 } else {
1188 if (PL_op)
1189 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1190 "%s in %s", unees, OP_DESC(PL_op));
1191 else
1192 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1193 return -2; /* Really want to return undef :-) */
1194 }
1195 } else {
1196 return -2;
1197 }
1198 }
1199 if (*b != c) {
1200 return *b < c ? -2 : +2;
1201 }
1202 ++b;
1203 }
1204
1205 if (b == bend && u == uend)
1206 return 0;
1207
1208 return b < bend ? +1 : -1;
1209}
1210
1211/*
1212=for apidoc utf8_to_bytes
1213
1214Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1215Unlike L</bytes_to_utf8>, this over-writes the original string, and
1216updates C<len> to contain the new length.
1217Returns zero on failure, setting C<len> to -1.
1218
1219If you need a copy of the string, see L</bytes_from_utf8>.
1220
1221=cut
1222*/
1223
1224U8 *
1225Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1226{
1227 U8 * const save = s;
1228 U8 * const send = s + *len;
1229 U8 *d;
1230
1231 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1232 PERL_UNUSED_CONTEXT;
1233
1234 /* ensure valid UTF-8 and chars < 256 before updating string */
1235 while (s < send) {
1236 if (! UTF8_IS_INVARIANT(*s)) {
1237 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1238 *len = ((STRLEN) -1);
1239 return 0;
1240 }
1241 s++;
1242 }
1243 s++;
1244 }
1245
1246 d = s = save;
1247 while (s < send) {
1248 U8 c = *s++;
1249 if (! UTF8_IS_INVARIANT(c)) {
1250 /* Then it is two-byte encoded */
1251 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1252 s++;
1253 }
1254 *d++ = c;
1255 }
1256 *d = '\0';
1257 *len = d - save;
1258 return save;
1259}
1260
1261/*
1262=for apidoc bytes_from_utf8
1263
1264Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1265Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1266the newly-created string, and updates C<len> to contain the new
1267length. Returns the original string if no conversion occurs, C<len>
1268is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
12690 if C<s> is converted or consisted entirely of characters that are invariant
1270in UTF-8 (i.e., US-ASCII on non-EBCDIC machines).
1271
1272=cut
1273*/
1274
1275U8 *
1276Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1277{
1278 U8 *d;
1279 const U8 *start = s;
1280 const U8 *send;
1281 I32 count = 0;
1282
1283 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1284 PERL_UNUSED_CONTEXT;
1285 if (!*is_utf8)
1286 return (U8 *)start;
1287
1288 /* ensure valid UTF-8 and chars < 256 before converting string */
1289 for (send = s + *len; s < send;) {
1290 if (! UTF8_IS_INVARIANT(*s)) {
1291 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1292 return (U8 *)start;
1293 }
1294 count++;
1295 s++;
1296 }
1297 s++;
1298 }
1299
1300 *is_utf8 = FALSE;
1301
1302 Newx(d, (*len) - count + 1, U8);
1303 s = start; start = d;
1304 while (s < send) {
1305 U8 c = *s++;
1306 if (! UTF8_IS_INVARIANT(c)) {
1307 /* Then it is two-byte encoded */
1308 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1309 s++;
1310 }
1311 *d++ = c;
1312 }
1313 *d = '\0';
1314 *len = d - start;
1315 return (U8 *)start;
1316}
1317
1318/*
1319=for apidoc bytes_to_utf8
1320
1321Converts a string C<s> of length C<len> bytes from the native encoding into
1322UTF-8.
1323Returns a pointer to the newly-created string, and sets C<len> to
1324reflect the new length in bytes.
1325
1326A C<NUL> character will be written after the end of the string.
1327
1328If you want to convert to UTF-8 from encodings other than
1329the native (Latin1 or EBCDIC),
1330see L</sv_recode_to_utf8>().
1331
1332=cut
1333*/
1334
1335/* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1336 likewise need duplication. */
1337
1338U8*
1339Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1340{
1341 const U8 * const send = s + (*len);
1342 U8 *d;
1343 U8 *dst;
1344
1345 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1346 PERL_UNUSED_CONTEXT;
1347
1348 Newx(d, (*len) * 2 + 1, U8);
1349 dst = d;
1350
1351 while (s < send) {
1352 append_utf8_from_native_byte(*s, &d);
1353 s++;
1354 }
1355 *d = '\0';
1356 *len = d-dst;
1357 return dst;
1358}
1359
1360/*
1361 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1362 *
1363 * Destination must be pre-extended to 3/2 source. Do not use in-place.
1364 * We optimize for native, for obvious reasons. */
1365
1366U8*
1367Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1368{
1369 U8* pend;
1370 U8* dstart = d;
1371
1372 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1373
1374 if (bytelen & 1)
1375 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1376
1377 pend = p + bytelen;
1378
1379 while (p < pend) {
1380 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1381 p += 2;
1382 if (OFFUNI_IS_INVARIANT(uv)) {
1383 *d++ = LATIN1_TO_NATIVE((U8) uv);
1384 continue;
1385 }
1386 if (uv <= MAX_UTF8_TWO_BYTE) {
1387 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
1388 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
1389 continue;
1390 }
1391#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
1392#define LAST_HIGH_SURROGATE 0xDBFF
1393#define FIRST_LOW_SURROGATE 0xDC00
1394#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
1395
1396 /* This assumes that most uses will be in the first Unicode plane, not
1397 * needing surrogates */
1398 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
1399 && uv <= UNICODE_SURROGATE_LAST))
1400 {
1401 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
1402 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1403 }
1404 else {
1405 UV low = (p[0] << 8) + p[1];
1406 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
1407 || UNLIKELY(low > LAST_LOW_SURROGATE))
1408 {
1409 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1410 }
1411 p += 2;
1412 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
1413 + (low - FIRST_LOW_SURROGATE) + 0x10000;
1414 }
1415 }
1416#ifdef EBCDIC
1417 d = uvoffuni_to_utf8_flags(d, uv, 0);
1418#else
1419 if (uv < 0x10000) {
1420 *d++ = (U8)(( uv >> 12) | 0xe0);
1421 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1422 *d++ = (U8)(( uv & 0x3f) | 0x80);
1423 continue;
1424 }
1425 else {
1426 *d++ = (U8)(( uv >> 18) | 0xf0);
1427 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1428 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1429 *d++ = (U8)(( uv & 0x3f) | 0x80);
1430 continue;
1431 }
1432#endif
1433 }
1434 *newlen = d - dstart;
1435 return d;
1436}
1437
1438/* Note: this one is slightly destructive of the source. */
1439
1440U8*
1441Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1442{
1443 U8* s = (U8*)p;
1444 U8* const send = s + bytelen;
1445
1446 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
1447
1448 if (bytelen & 1)
1449 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
1450 (UV)bytelen);
1451
1452 while (s < send) {
1453 const U8 tmp = s[0];
1454 s[0] = s[1];
1455 s[1] = tmp;
1456 s += 2;
1457 }
1458 return utf16_to_utf8(p, d, bytelen, newlen);
1459}
1460
1461bool
1462Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
1463{
1464 U8 tmpbuf[UTF8_MAXBYTES+1];
1465 uvchr_to_utf8(tmpbuf, c);
1466 return _is_utf8_FOO(classnum, tmpbuf);
1467}
1468
1469/* Internal function so we can deprecate the external one, and call
1470 this one from other deprecated functions in this file */
1471
1472bool
1473Perl__is_utf8_idstart(pTHX_ const U8 *p)
1474{
1475 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
1476
1477 if (*p == '_')
1478 return TRUE;
1479 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
1480}
1481
1482bool
1483Perl__is_uni_perl_idcont(pTHX_ UV c)
1484{
1485 U8 tmpbuf[UTF8_MAXBYTES+1];
1486 uvchr_to_utf8(tmpbuf, c);
1487 return _is_utf8_perl_idcont(tmpbuf);
1488}
1489
1490bool
1491Perl__is_uni_perl_idstart(pTHX_ UV c)
1492{
1493 U8 tmpbuf[UTF8_MAXBYTES+1];
1494 uvchr_to_utf8(tmpbuf, c);
1495 return _is_utf8_perl_idstart(tmpbuf);
1496}
1497
1498UV
1499Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
1500{
1501 /* We have the latin1-range values compiled into the core, so just use
1502 * those, converting the result to UTF-8. The only difference between upper
1503 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
1504 * either "SS" or "Ss". Which one to use is passed into the routine in
1505 * 'S_or_s' to avoid a test */
1506
1507 UV converted = toUPPER_LATIN1_MOD(c);
1508
1509 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
1510
1511 assert(S_or_s == 'S' || S_or_s == 's');
1512
1513 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
1514 characters in this range */
1515 *p = (U8) converted;
1516 *lenp = 1;
1517 return converted;
1518 }
1519
1520 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
1521 * which it maps to one of them, so as to only have to have one check for
1522 * it in the main case */
1523 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
1524 switch (c) {
1525 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
1526 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
1527 break;
1528 case MICRO_SIGN:
1529 converted = GREEK_CAPITAL_LETTER_MU;
1530 break;
1531#if UNICODE_MAJOR_VERSION > 2 \
1532 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
1533 && UNICODE_DOT_DOT_VERSION >= 8)
1534 case LATIN_SMALL_LETTER_SHARP_S:
1535 *(p)++ = 'S';
1536 *p = S_or_s;
1537 *lenp = 2;
1538 return 'S';
1539#endif
1540 default:
1541 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
1542 NOT_REACHED; /* NOTREACHED */
1543 }
1544 }
1545
1546 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1547 *p = UTF8_TWO_BYTE_LO(converted);
1548 *lenp = 2;
1549
1550 return converted;
1551}
1552
1553/* Call the function to convert a UTF-8 encoded character to the specified case.
1554 * Note that there may be more than one character in the result.
1555 * INP is a pointer to the first byte of the input character
1556 * OUTP will be set to the first byte of the string of changed characters. It
1557 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
1558 * LENP will be set to the length in bytes of the string of changed characters
1559 *
1560 * The functions return the ordinal of the first character in the string of OUTP */
1561#define CALL_UPPER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
1562#define CALL_TITLE_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
1563#define CALL_LOWER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
1564
1565/* This additionally has the input parameter 'specials', which if non-zero will
1566 * cause this to use the specials hash for folding (meaning get full case
1567 * folding); otherwise, when zero, this implies a simple case fold */
1568#define CALL_FOLD_CASE(uv, s, d, lenp, specials) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
1569
1570UV
1571Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
1572{
1573 /* Convert the Unicode character whose ordinal is <c> to its uppercase
1574 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
1575 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
1576 * the changed version may be longer than the original character.
1577 *
1578 * The ordinal of the first character of the changed version is returned
1579 * (but note, as explained above, that there may be more.) */
1580
1581 PERL_ARGS_ASSERT_TO_UNI_UPPER;
1582
1583 if (c < 256) {
1584 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
1585 }
1586
1587 uvchr_to_utf8(p, c);
1588 return CALL_UPPER_CASE(c, p, p, lenp);
1589}
1590
1591UV
1592Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
1593{
1594 PERL_ARGS_ASSERT_TO_UNI_TITLE;
1595
1596 if (c < 256) {
1597 return _to_upper_title_latin1((U8) c, p, lenp, 's');
1598 }
1599
1600 uvchr_to_utf8(p, c);
1601 return CALL_TITLE_CASE(c, p, p, lenp);
1602}
1603
1604STATIC U8
1605S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp)
1606{
1607 /* We have the latin1-range values compiled into the core, so just use
1608 * those, converting the result to UTF-8. Since the result is always just
1609 * one character, we allow <p> to be NULL */
1610
1611 U8 converted = toLOWER_LATIN1(c);
1612
1613 if (p != NULL) {
1614 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
1615 *p = converted;
1616 *lenp = 1;
1617 }
1618 else {
1619 /* Result is known to always be < 256, so can use the EIGHT_BIT
1620 * macros */
1621 *p = UTF8_EIGHT_BIT_HI(converted);
1622 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
1623 *lenp = 2;
1624 }
1625 }
1626 return converted;
1627}
1628
1629UV
1630Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
1631{
1632 PERL_ARGS_ASSERT_TO_UNI_LOWER;
1633
1634 if (c < 256) {
1635 return to_lower_latin1((U8) c, p, lenp);
1636 }
1637
1638 uvchr_to_utf8(p, c);
1639 return CALL_LOWER_CASE(c, p, p, lenp);
1640}
1641
1642UV
1643Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
1644{
1645 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
1646 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1647 * FOLD_FLAGS_FULL iff full folding is to be used;
1648 *
1649 * Not to be used for locale folds
1650 */
1651
1652 UV converted;
1653
1654 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
1655 PERL_UNUSED_CONTEXT;
1656
1657 assert (! (flags & FOLD_FLAGS_LOCALE));
1658
1659 if (UNLIKELY(c == MICRO_SIGN)) {
1660 converted = GREEK_SMALL_LETTER_MU;
1661 }
1662#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
1663 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
1664 || UNICODE_DOT_DOT_VERSION > 0)
1665 else if ( (flags & FOLD_FLAGS_FULL)
1666 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
1667 {
1668 /* If can't cross 127/128 boundary, can't return "ss"; instead return
1669 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
1670 * under those circumstances. */
1671 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
1672 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
1673 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
1674 p, *lenp, U8);
1675 return LATIN_SMALL_LETTER_LONG_S;
1676 }
1677 else {
1678 *(p)++ = 's';
1679 *p = 's';
1680 *lenp = 2;
1681 return 's';
1682 }
1683 }
1684#endif
1685 else { /* In this range the fold of all other characters is their lower
1686 case */
1687 converted = toLOWER_LATIN1(c);
1688 }
1689
1690 if (UVCHR_IS_INVARIANT(converted)) {
1691 *p = (U8) converted;
1692 *lenp = 1;
1693 }
1694 else {
1695 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1696 *p = UTF8_TWO_BYTE_LO(converted);
1697 *lenp = 2;
1698 }
1699
1700 return converted;
1701}
1702
1703UV
1704Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
1705{
1706
1707 /* Not currently externally documented, and subject to change
1708 * <flags> bits meanings:
1709 * FOLD_FLAGS_FULL iff full folding is to be used;
1710 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
1711 * locale are to be used.
1712 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1713 */
1714
1715 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
1716
1717 if (flags & FOLD_FLAGS_LOCALE) {
1718 /* Treat a UTF-8 locale as not being in locale at all */
1719 if (IN_UTF8_CTYPE_LOCALE) {
1720 flags &= ~FOLD_FLAGS_LOCALE;
1721 }
1722 else {
1723 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1724 goto needs_full_generality;
1725 }
1726 }
1727
1728 if (c < 256) {
1729 return _to_fold_latin1((U8) c, p, lenp,
1730 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
1731 }
1732
1733 /* Here, above 255. If no special needs, just use the macro */
1734 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
1735 uvchr_to_utf8(p, c);
1736 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
1737 }
1738 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
1739 the special flags. */
1740 U8 utf8_c[UTF8_MAXBYTES + 1];
1741
1742 needs_full_generality:
1743 uvchr_to_utf8(utf8_c, c);
1744 return _to_utf8_fold_flags(utf8_c, p, lenp, flags);
1745 }
1746}
1747
1748PERL_STATIC_INLINE bool
1749S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
1750 const char *const swashname, SV* const invlist)
1751{
1752 /* returns a boolean giving whether or not the UTF8-encoded character that
1753 * starts at <p> is in the swash indicated by <swashname>. <swash>
1754 * contains a pointer to where the swash indicated by <swashname>
1755 * is to be stored; which this routine will do, so that future calls will
1756 * look at <*swash> and only generate a swash if it is not null. <invlist>
1757 * is NULL or an inversion list that defines the swash. If not null, it
1758 * saves time during initialization of the swash.
1759 *
1760 * Note that it is assumed that the buffer length of <p> is enough to
1761 * contain all the bytes that comprise the character. Thus, <*p> should
1762 * have been checked before this call for mal-formedness enough to assure
1763 * that. */
1764
1765 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
1766
1767 /* The API should have included a length for the UTF-8 character in <p>,
1768 * but it doesn't. We therefore assume that p has been validated at least
1769 * as far as there being enough bytes available in it to accommodate the
1770 * character without reading beyond the end, and pass that number on to the
1771 * validating routine */
1772 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
1773 if (ckWARN_d(WARN_UTF8)) {
1774 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED,WARN_UTF8),
1775 "Passing malformed UTF-8 to \"%s\" is deprecated", swashname);
1776 if (ckWARN(WARN_UTF8)) { /* This will output details as to the
1777 what the malformation is */
1778 utf8_to_uvchr_buf(p, p + UTF8SKIP(p), NULL);
1779 }
1780 }
1781 return FALSE;
1782 }
1783 if (!*swash) {
1784 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
1785 *swash = _core_swash_init("utf8",
1786
1787 /* Only use the name if there is no inversion
1788 * list; otherwise will go out to disk */
1789 (invlist) ? "" : swashname,
1790
1791 &PL_sv_undef, 1, 0, invlist, &flags);
1792 }
1793
1794 return swash_fetch(*swash, p, TRUE) != 0;
1795}
1796
1797bool
1798Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p)
1799{
1800 PERL_ARGS_ASSERT__IS_UTF8_FOO;
1801
1802 assert(classnum < _FIRST_NON_SWASH_CC);
1803
1804 return is_utf8_common(p,
1805 &PL_utf8_swash_ptrs[classnum],
1806 swash_property_names[classnum],
1807 PL_XPosix_ptrs[classnum]);
1808}
1809
1810bool
1811Perl__is_utf8_perl_idstart(pTHX_ const U8 *p)
1812{
1813 SV* invlist = NULL;
1814
1815 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
1816
1817 if (! PL_utf8_perl_idstart) {
1818 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
1819 }
1820 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart", invlist);
1821}
1822
1823bool
1824Perl__is_utf8_xidstart(pTHX_ const U8 *p)
1825{
1826 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
1827
1828 if (*p == '_')
1829 return TRUE;
1830 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
1831}
1832
1833bool
1834Perl__is_utf8_perl_idcont(pTHX_ const U8 *p)
1835{
1836 SV* invlist = NULL;
1837
1838 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
1839
1840 if (! PL_utf8_perl_idcont) {
1841 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
1842 }
1843 return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont", invlist);
1844}
1845
1846bool
1847Perl__is_utf8_idcont(pTHX_ const U8 *p)
1848{
1849 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
1850
1851 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
1852}
1853
1854bool
1855Perl__is_utf8_xidcont(pTHX_ const U8 *p)
1856{
1857 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
1858
1859 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
1860}
1861
1862bool
1863Perl__is_utf8_mark(pTHX_ const U8 *p)
1864{
1865 PERL_ARGS_ASSERT__IS_UTF8_MARK;
1866
1867 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
1868}
1869
1870/*
1871=for apidoc to_utf8_case
1872
1873Instead use the appropriate one of L</toUPPER_utf8>,
1874L</toTITLE_utf8>,
1875L</toLOWER_utf8>,
1876or L</toFOLD_utf8>.
1877
1878C<p> contains the pointer to the UTF-8 string encoding
1879the character that is being converted. This routine assumes that the character
1880at C<p> is well-formed.
1881
1882C<ustrp> is a pointer to the character buffer to put the
1883conversion result to. C<lenp> is a pointer to the length
1884of the result.
1885
1886C<swashp> is a pointer to the swash to use.
1887
1888Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
1889and loaded by C<SWASHNEW>, using F<lib/utf8_heavy.pl>. C<special> (usually,
1890but not always, a multicharacter mapping), is tried first.
1891
1892C<special> is a string, normally C<NULL> or C<"">. C<NULL> means to not use
1893any special mappings; C<""> means to use the special mappings. Values other
1894than these two are treated as the name of the hash containing the special
1895mappings, like C<"utf8::ToSpecLower">.
1896
1897C<normal> is a string like C<"ToLower"> which means the swash
1898C<%utf8::ToLower>.
1899
1900Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1901unless those are turned off.
1902
1903=cut */
1904
1905UV
1906Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
1907 SV **swashp, const char *normal, const char *special)
1908{
1909 PERL_ARGS_ASSERT_TO_UTF8_CASE;
1910
1911 return _to_utf8_case(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, swashp, normal, special);
1912}
1913
1914 /* change namve uv1 to 'from' */
1915UV
1916S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
1917 SV **swashp, const char *normal, const char *special)
1918{
1919 STRLEN len = 0;
1920
1921 PERL_ARGS_ASSERT__TO_UTF8_CASE;
1922
1923 /* For code points that don't change case, we already know that the output
1924 * of this function is the unchanged input, so we can skip doing look-ups
1925 * for them. Unfortunately the case-changing code points are scattered
1926 * around. But there are some long consecutive ranges where there are no
1927 * case changing code points. By adding tests, we can eliminate the lookup
1928 * for all the ones in such ranges. This is currently done here only for
1929 * just a few cases where the scripts are in common use in modern commerce
1930 * (and scripts adjacent to those which can be included without additional
1931 * tests). */
1932
1933 if (uv1 >= 0x0590) {
1934 /* This keeps from needing further processing the code points most
1935 * likely to be used in the following non-cased scripts: Hebrew,
1936 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
1937 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
1938 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
1939 if (uv1 < 0x10A0) {
1940 goto cases_to_self;
1941 }
1942
1943 /* The following largish code point ranges also don't have case
1944 * changes, but khw didn't think they warranted extra tests to speed
1945 * them up (which would slightly slow down everything else above them):
1946 * 1100..139F Hangul Jamo, Ethiopic
1947 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
1948 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
1949 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
1950 * Combining Diacritical Marks Extended, Balinese,
1951 * Sundanese, Batak, Lepcha, Ol Chiki
1952 * 2000..206F General Punctuation
1953 */
1954
1955 if (uv1 >= 0x2D30) {
1956
1957 /* This keeps the from needing further processing the code points
1958 * most likely to be used in the following non-cased major scripts:
1959 * CJK, Katakana, Hiragana, plus some less-likely scripts.
1960 *
1961 * (0x2D30 above might have to be changed to 2F00 in the unlikely
1962 * event that Unicode eventually allocates the unused block as of
1963 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
1964 * that the test suite will start having failures to alert you
1965 * should that happen) */
1966 if (uv1 < 0xA640) {
1967 goto cases_to_self;
1968 }
1969
1970 if (uv1 >= 0xAC00) {
1971 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
1972 if (ckWARN_d(WARN_SURROGATE)) {
1973 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
1974 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
1975 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
1976 }
1977 goto cases_to_self;
1978 }
1979
1980 /* AC00..FAFF Catches Hangul syllables and private use, plus
1981 * some others */
1982 if (uv1 < 0xFB00) {
1983 goto cases_to_self;
1984
1985 }
1986
1987 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
1988 if ( UNLIKELY(uv1 > MAX_NON_DEPRECATED_CP)
1989 && ckWARN_d(WARN_DEPRECATED))
1990 {
1991 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
1992 cp_above_legal_max, uv1, MAX_NON_DEPRECATED_CP);
1993 }
1994 if (ckWARN_d(WARN_NON_UNICODE)) {
1995 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
1996 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
1997 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
1998 }
1999 goto cases_to_self;
2000 }
2001#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
2002 if (UNLIKELY(uv1
2003 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
2004 {
2005
2006 /* As of this writing, this means we avoid swash creation
2007 * for anything beyond low Plane 1 */
2008 goto cases_to_self;
2009 }
2010#endif
2011 }
2012 }
2013
2014 /* Note that non-characters are perfectly legal, so no warning should
2015 * be given. There are so few of them, that it isn't worth the extra
2016 * tests to avoid swash creation */
2017 }
2018
2019 if (!*swashp) /* load on-demand */
2020 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2021
2022 if (special) {
2023 /* It might be "special" (sometimes, but not always,
2024 * a multicharacter mapping) */
2025 HV *hv = NULL;
2026 SV **svp;
2027
2028 /* If passed in the specials name, use that; otherwise use any
2029 * given in the swash */
2030 if (*special != '\0') {
2031 hv = get_hv(special, 0);
2032 }
2033 else {
2034 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
2035 if (svp) {
2036 hv = MUTABLE_HV(SvRV(*svp));
2037 }
2038 }
2039
2040 if (hv
2041 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
2042 && (*svp))
2043 {
2044 const char *s;
2045
2046 s = SvPV_const(*svp, len);
2047 if (len == 1)
2048 /* EIGHTBIT */
2049 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
2050 else {
2051 Copy(s, ustrp, len, U8);
2052 }
2053 }
2054 }
2055
2056 if (!len && *swashp) {
2057 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
2058
2059 if (uv2) {
2060 /* It was "normal" (a single character mapping). */
2061 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
2062 }
2063 }
2064
2065 if (len) {
2066 if (lenp) {
2067 *lenp = len;
2068 }
2069 return valid_utf8_to_uvchr(ustrp, 0);
2070 }
2071
2072 /* Here, there was no mapping defined, which means that the code point maps
2073 * to itself. Return the inputs */
2074 cases_to_self:
2075 len = UTF8SKIP(p);
2076 if (p != ustrp) { /* Don't copy onto itself */
2077 Copy(p, ustrp, len, U8);
2078 }
2079
2080 if (lenp)
2081 *lenp = len;
2082
2083 return uv1;
2084
2085}
2086
2087STATIC UV
2088S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2089{
2090 /* This is called when changing the case of a UTF-8-encoded character above
2091 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
2092 * result contains a character that crosses the 255/256 boundary, disallow
2093 * the change, and return the original code point. See L<perlfunc/lc> for
2094 * why;
2095 *
2096 * p points to the original string whose case was changed; assumed
2097 * by this routine to be well-formed
2098 * result the code point of the first character in the changed-case string
2099 * ustrp points to the changed-case string (<result> represents its first char)
2100 * lenp points to the length of <ustrp> */
2101
2102 UV original; /* To store the first code point of <p> */
2103
2104 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2105
2106 assert(UTF8_IS_ABOVE_LATIN1(*p));
2107
2108 /* We know immediately if the first character in the string crosses the
2109 * boundary, so can skip */
2110 if (result > 255) {
2111
2112 /* Look at every character in the result; if any cross the
2113 * boundary, the whole thing is disallowed */
2114 U8* s = ustrp + UTF8SKIP(ustrp);
2115 U8* e = ustrp + *lenp;
2116 while (s < e) {
2117 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
2118 goto bad_crossing;
2119 }
2120 s += UTF8SKIP(s);
2121 }
2122
2123 /* Here, no characters crossed, result is ok as-is, but we warn. */
2124 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
2125 return result;
2126 }
2127
2128 bad_crossing:
2129
2130 /* Failed, have to return the original */
2131 original = valid_utf8_to_uvchr(p, lenp);
2132
2133 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2134 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2135 "Can't do %s(\"\\x{%"UVXf"}\") on non-UTF-8 locale; "
2136 "resolved to \"\\x{%"UVXf"}\".",
2137 OP_DESC(PL_op),
2138 original,
2139 original);
2140 Copy(p, ustrp, *lenp, char);
2141 return original;
2142}
2143
2144/*
2145=for apidoc to_utf8_upper
2146
2147Instead use L</toUPPER_utf8>.
2148
2149=cut */
2150
2151/* Not currently externally documented, and subject to change:
2152 * <flags> is set iff iff the rules from the current underlying locale are to
2153 * be used. */
2154
2155UV
2156Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2157{
2158 UV result;
2159
2160 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2161
2162 if (flags) {
2163 /* Treat a UTF-8 locale as not being in locale at all */
2164 if (IN_UTF8_CTYPE_LOCALE) {
2165 flags = FALSE;
2166 }
2167 else {
2168 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2169 }
2170 }
2171
2172 if (UTF8_IS_INVARIANT(*p)) {
2173 if (flags) {
2174 result = toUPPER_LC(*p);
2175 }
2176 else {
2177 return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2178 }
2179 }
2180 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2181 if (flags) {
2182 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2183 result = toUPPER_LC(c);
2184 }
2185 else {
2186 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2187 ustrp, lenp, 'S');
2188 }
2189 }
2190 else { /* UTF-8, ord above 255 */
2191 result = CALL_UPPER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2192
2193 if (flags) {
2194 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2195 }
2196 return result;
2197 }
2198
2199 /* Here, used locale rules. Convert back to UTF-8 */
2200 if (UTF8_IS_INVARIANT(result)) {
2201 *ustrp = (U8) result;
2202 *lenp = 1;
2203 }
2204 else {
2205 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2206 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2207 *lenp = 2;
2208 }
2209
2210 return result;
2211}
2212
2213/*
2214=for apidoc to_utf8_title
2215
2216Instead use L</toTITLE_utf8>.
2217
2218=cut */
2219
2220/* Not currently externally documented, and subject to change:
2221 * <flags> is set iff the rules from the current underlying locale are to be
2222 * used. Since titlecase is not defined in POSIX, for other than a
2223 * UTF-8 locale, uppercase is used instead for code points < 256.
2224 */
2225
2226UV
2227Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2228{
2229 UV result;
2230
2231 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2232
2233 if (flags) {
2234 /* Treat a UTF-8 locale as not being in locale at all */
2235 if (IN_UTF8_CTYPE_LOCALE) {
2236 flags = FALSE;
2237 }
2238 else {
2239 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2240 }
2241 }
2242
2243 if (UTF8_IS_INVARIANT(*p)) {
2244 if (flags) {
2245 result = toUPPER_LC(*p);
2246 }
2247 else {
2248 return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2249 }
2250 }
2251 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2252 if (flags) {
2253 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2254 result = toUPPER_LC(c);
2255 }
2256 else {
2257 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2258 ustrp, lenp, 's');
2259 }
2260 }
2261 else { /* UTF-8, ord above 255 */
2262 result = CALL_TITLE_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2263
2264 if (flags) {
2265 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2266 }
2267 return result;
2268 }
2269
2270 /* Here, used locale rules. Convert back to UTF-8 */
2271 if (UTF8_IS_INVARIANT(result)) {
2272 *ustrp = (U8) result;
2273 *lenp = 1;
2274 }
2275 else {
2276 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2277 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2278 *lenp = 2;
2279 }
2280
2281 return result;
2282}
2283
2284/*
2285=for apidoc to_utf8_lower
2286
2287Instead use L</toLOWER_utf8>.
2288
2289=cut */
2290
2291/* Not currently externally documented, and subject to change:
2292 * <flags> is set iff iff the rules from the current underlying locale are to
2293 * be used.
2294 */
2295
2296UV
2297Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2298{
2299 UV result;
2300
2301 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2302
2303 if (flags) {
2304 /* Treat a UTF-8 locale as not being in locale at all */
2305 if (IN_UTF8_CTYPE_LOCALE) {
2306 flags = FALSE;
2307 }
2308 else {
2309 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2310 }
2311 }
2312
2313 if (UTF8_IS_INVARIANT(*p)) {
2314 if (flags) {
2315 result = toLOWER_LC(*p);
2316 }
2317 else {
2318 return to_lower_latin1(*p, ustrp, lenp);
2319 }
2320 }
2321 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2322 if (flags) {
2323 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2324 result = toLOWER_LC(c);
2325 }
2326 else {
2327 return to_lower_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2328 ustrp, lenp);
2329 }
2330 }
2331 else { /* UTF-8, ord above 255 */
2332 result = CALL_LOWER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2333
2334 if (flags) {
2335 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2336 }
2337
2338 return result;
2339 }
2340
2341 /* Here, used locale rules. Convert back to UTF-8 */
2342 if (UTF8_IS_INVARIANT(result)) {
2343 *ustrp = (U8) result;
2344 *lenp = 1;
2345 }
2346 else {
2347 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2348 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2349 *lenp = 2;
2350 }
2351
2352 return result;
2353}
2354
2355/*
2356=for apidoc to_utf8_fold
2357
2358Instead use L</toFOLD_utf8>.
2359
2360=cut */
2361
2362/* Not currently externally documented, and subject to change,
2363 * in <flags>
2364 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2365 * locale are to be used.
2366 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
2367 * otherwise simple folds
2368 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2369 * prohibited
2370 */
2371
2372UV
2373Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags)
2374{
2375 UV result;
2376
2377 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2378
2379 /* These are mutually exclusive */
2380 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2381
2382 assert(p != ustrp); /* Otherwise overwrites */
2383
2384 if (flags & FOLD_FLAGS_LOCALE) {
2385 /* Treat a UTF-8 locale as not being in locale at all */
2386 if (IN_UTF8_CTYPE_LOCALE) {
2387 flags &= ~FOLD_FLAGS_LOCALE;
2388 }
2389 else {
2390 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2391 }
2392 }
2393
2394 if (UTF8_IS_INVARIANT(*p)) {
2395 if (flags & FOLD_FLAGS_LOCALE) {
2396 result = toFOLD_LC(*p);
2397 }
2398 else {
2399 return _to_fold_latin1(*p, ustrp, lenp,
2400 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2401 }
2402 }
2403 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2404 if (flags & FOLD_FLAGS_LOCALE) {
2405 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2406 result = toFOLD_LC(c);
2407 }
2408 else {
2409 return _to_fold_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2410 ustrp, lenp,
2411 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2412 }
2413 }
2414 else { /* UTF-8, ord above 255 */
2415 result = CALL_FOLD_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2416
2417 if (flags & FOLD_FLAGS_LOCALE) {
2418
2419# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
2420 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
2421
2422# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2423# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2424
2425 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
2426
2427 /* Special case these two characters, as what normally gets
2428 * returned under locale doesn't work */
2429 if (UTF8SKIP(p) == cap_sharp_s_len
2430 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
2431 {
2432 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2433 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2434 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
2435 "resolved to \"\\x{17F}\\x{17F}\".");
2436 goto return_long_s;
2437 }
2438 else
2439#endif
2440 if (UTF8SKIP(p) == long_s_t_len
2441 && memEQ((char *) p, LONG_S_T, long_s_t_len))
2442 {
2443 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2444 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2445 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
2446 "resolved to \"\\x{FB06}\".");
2447 goto return_ligature_st;
2448 }
2449
2450#if UNICODE_MAJOR_VERSION == 3 \
2451 && UNICODE_DOT_VERSION == 0 \
2452 && UNICODE_DOT_DOT_VERSION == 1
2453# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
2454
2455 /* And special case this on this Unicode version only, for the same
2456 * reaons the other two are special cased. They would cross the
2457 * 255/256 boundary which is forbidden under /l, and so the code
2458 * wouldn't catch that they are equivalent (which they are only in
2459 * this release) */
2460 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
2461 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
2462 {
2463 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2464 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2465 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
2466 "resolved to \"\\x{0131}\".");
2467 goto return_dotless_i;
2468 }
2469#endif
2470
2471 return check_locale_boundary_crossing(p, result, ustrp, lenp);
2472 }
2473 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
2474 return result;
2475 }
2476 else {
2477 /* This is called when changing the case of a UTF-8-encoded
2478 * character above the ASCII range, and the result should not
2479 * contain an ASCII character. */
2480
2481 UV original; /* To store the first code point of <p> */
2482
2483 /* Look at every character in the result; if any cross the
2484 * boundary, the whole thing is disallowed */
2485 U8* s = ustrp;
2486 U8* e = ustrp + *lenp;
2487 while (s < e) {
2488 if (isASCII(*s)) {
2489 /* Crossed, have to return the original */
2490 original = valid_utf8_to_uvchr(p, lenp);
2491
2492 /* But in these instances, there is an alternative we can
2493 * return that is valid */
2494 if (original == LATIN_SMALL_LETTER_SHARP_S
2495#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
2496 || original == LATIN_CAPITAL_LETTER_SHARP_S
2497#endif
2498 ) {
2499 goto return_long_s;
2500 }
2501 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
2502 goto return_ligature_st;
2503 }
2504#if UNICODE_MAJOR_VERSION == 3 \
2505 && UNICODE_DOT_VERSION == 0 \
2506 && UNICODE_DOT_DOT_VERSION == 1
2507
2508 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
2509 goto return_dotless_i;
2510 }
2511#endif
2512 Copy(p, ustrp, *lenp, char);
2513 return original;
2514 }
2515 s += UTF8SKIP(s);
2516 }
2517
2518 /* Here, no characters crossed, result is ok as-is */
2519 return result;
2520 }
2521 }
2522
2523 /* Here, used locale rules. Convert back to UTF-8 */
2524 if (UTF8_IS_INVARIANT(result)) {
2525 *ustrp = (U8) result;
2526 *lenp = 1;
2527 }
2528 else {
2529 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2530 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2531 *lenp = 2;
2532 }
2533
2534 return result;
2535
2536 return_long_s:
2537 /* Certain folds to 'ss' are prohibited by the options, but they do allow
2538 * folds to a string of two of these characters. By returning this
2539 * instead, then, e.g.,
2540 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
2541 * works. */
2542
2543 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2544 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2545 ustrp, *lenp, U8);
2546 return LATIN_SMALL_LETTER_LONG_S;
2547
2548 return_ligature_st:
2549 /* Two folds to 'st' are prohibited by the options; instead we pick one and
2550 * have the other one fold to it */
2551
2552 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
2553 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
2554 return LATIN_SMALL_LIGATURE_ST;
2555
2556#if UNICODE_MAJOR_VERSION == 3 \
2557 && UNICODE_DOT_VERSION == 0 \
2558 && UNICODE_DOT_DOT_VERSION == 1
2559
2560 return_dotless_i:
2561 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
2562 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
2563 return LATIN_SMALL_LETTER_DOTLESS_I;
2564
2565#endif
2566
2567}
2568
2569/* Note:
2570 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
2571 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
2572 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
2573 */
2574
2575SV*
2576Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
2577{
2578 PERL_ARGS_ASSERT_SWASH_INIT;
2579
2580 /* Returns a copy of a swash initiated by the called function. This is the
2581 * public interface, and returning a copy prevents others from doing
2582 * mischief on the original */
2583
2584 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
2585}
2586
2587SV*
2588Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
2589{
2590
2591 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
2592 * use the following define */
2593
2594#define CORE_SWASH_INIT_RETURN(x) \
2595 PL_curpm= old_PL_curpm; \
2596 return x
2597
2598 /* Initialize and return a swash, creating it if necessary. It does this
2599 * by calling utf8_heavy.pl in the general case. The returned value may be
2600 * the swash's inversion list instead if the input parameters allow it.
2601 * Which is returned should be immaterial to callers, as the only
2602 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
2603 * and swash_to_invlist() handle both these transparently.
2604 *
2605 * This interface should only be used by functions that won't destroy or
2606 * adversely change the swash, as doing so affects all other uses of the
2607 * swash in the program; the general public should use 'Perl_swash_init'
2608 * instead.
2609 *
2610 * pkg is the name of the package that <name> should be in.
2611 * name is the name of the swash to find. Typically it is a Unicode
2612 * property name, including user-defined ones
2613 * listsv is a string to initialize the swash with. It must be of the form
2614 * documented as the subroutine return value in
2615 * L<perlunicode/User-Defined Character Properties>
2616 * minbits is the number of bits required to represent each data element.
2617 * It is '1' for binary properties.
2618 * none I (khw) do not understand this one, but it is used only in tr///.
2619 * invlist is an inversion list to initialize the swash with (or NULL)
2620 * flags_p if non-NULL is the address of various input and output flag bits
2621 * to the routine, as follows: ('I' means is input to the routine;
2622 * 'O' means output from the routine. Only flags marked O are
2623 * meaningful on return.)
2624 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
2625 * came from a user-defined property. (I O)
2626 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
2627 * when the swash cannot be located, to simply return NULL. (I)
2628 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
2629 * return of an inversion list instead of a swash hash if this routine
2630 * thinks that would result in faster execution of swash_fetch() later
2631 * on. (I)
2632 *
2633 * Thus there are three possible inputs to find the swash: <name>,
2634 * <listsv>, and <invlist>. At least one must be specified. The result
2635 * will be the union of the specified ones, although <listsv>'s various
2636 * actions can intersect, etc. what <name> gives. To avoid going out to
2637 * disk at all, <invlist> should specify completely what the swash should
2638 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
2639 *
2640 * <invlist> is only valid for binary properties */
2641
2642 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
2643
2644 SV* retval = &PL_sv_undef;
2645 HV* swash_hv = NULL;
2646 const int invlist_swash_boundary =
2647 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
2648 ? 512 /* Based on some benchmarking, but not extensive, see commit
2649 message */
2650 : -1; /* Never return just an inversion list */
2651
2652 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
2653 assert(! invlist || minbits == 1);
2654
2655 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the regex
2656 that triggered the swash init and the swash init perl logic itself.
2657 See perl #122747 */
2658
2659 /* If data was passed in to go out to utf8_heavy to find the swash of, do
2660 * so */
2661 if (listsv != &PL_sv_undef || strNE(name, "")) {
2662 dSP;
2663 const size_t pkg_len = strlen(pkg);
2664 const size_t name_len = strlen(name);
2665 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
2666 SV* errsv_save;
2667 GV *method;
2668
2669 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
2670
2671 PUSHSTACKi(PERLSI_MAGIC);
2672 ENTER;
2673 SAVEHINTS();
2674 save_re_context();
2675 /* We might get here via a subroutine signature which uses a utf8
2676 * parameter name, at which point PL_subname will have been set
2677 * but not yet used. */
2678 save_item(PL_subname);
2679 if (PL_parser && PL_parser->error_count)
2680 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
2681 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
2682 if (!method) { /* demand load UTF-8 */
2683 ENTER;
2684 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
2685 GvSV(PL_errgv) = NULL;
2686#ifndef NO_TAINT_SUPPORT
2687 /* It is assumed that callers of this routine are not passing in
2688 * any user derived data. */
2689 /* Need to do this after save_re_context() as it will set
2690 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
2691 * in Perl_magic_get). Even line to create errsv_save can turn on
2692 * PL_tainted. */
2693 SAVEBOOL(TAINT_get);
2694 TAINT_NOT;
2695#endif
2696 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
2697 NULL);
2698 {
2699 /* Not ERRSV, as there is no need to vivify a scalar we are
2700 about to discard. */
2701 SV * const errsv = GvSV(PL_errgv);
2702 if (!SvTRUE(errsv)) {
2703 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
2704 SvREFCNT_dec(errsv);
2705 }
2706 }
2707 LEAVE;
2708 }
2709 SPAGAIN;
2710 PUSHMARK(SP);
2711 EXTEND(SP,5);
2712 mPUSHp(pkg, pkg_len);
2713 mPUSHp(name, name_len);
2714 PUSHs(listsv);
2715 mPUSHi(minbits);
2716 mPUSHi(none);
2717 PUTBACK;
2718 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
2719 GvSV(PL_errgv) = NULL;
2720 /* If we already have a pointer to the method, no need to use
2721 * call_method() to repeat the lookup. */
2722 if (method
2723 ? call_sv(MUTABLE_SV(method), G_SCALAR)
2724 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
2725 {
2726 retval = *PL_stack_sp--;
2727 SvREFCNT_inc(retval);
2728 }
2729 {
2730 /* Not ERRSV. See above. */
2731 SV * const errsv = GvSV(PL_errgv);
2732 if (!SvTRUE(errsv)) {
2733 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
2734 SvREFCNT_dec(errsv);
2735 }
2736 }
2737 LEAVE;
2738 POPSTACK;
2739 if (IN_PERL_COMPILETIME) {
2740 CopHINTS_set(PL_curcop, PL_hints);
2741 }
2742 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
2743 if (SvPOK(retval))
2744
2745 /* If caller wants to handle missing properties, let them */
2746 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
2747 CORE_SWASH_INIT_RETURN(NULL);
2748 }
2749 Perl_croak(aTHX_
2750 "Can't find Unicode property definition \"%"SVf"\"",
2751 SVfARG(retval));
2752 NOT_REACHED; /* NOTREACHED */
2753 }
2754 } /* End of calling the module to find the swash */
2755
2756 /* If this operation fetched a swash, and we will need it later, get it */
2757 if (retval != &PL_sv_undef
2758 && (minbits == 1 || (flags_p
2759 && ! (*flags_p
2760 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
2761 {
2762 swash_hv = MUTABLE_HV(SvRV(retval));
2763
2764 /* If we don't already know that there is a user-defined component to
2765 * this swash, and the user has indicated they wish to know if there is
2766 * one (by passing <flags_p>), find out */
2767 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
2768 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
2769 if (user_defined && SvUV(*user_defined)) {
2770 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
2771 }
2772 }
2773 }
2774
2775 /* Make sure there is an inversion list for binary properties */
2776 if (minbits == 1) {
2777 SV** swash_invlistsvp = NULL;
2778 SV* swash_invlist = NULL;
2779 bool invlist_in_swash_is_valid = FALSE;
2780 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
2781 an unclaimed reference count */
2782
2783 /* If this operation fetched a swash, get its already existing
2784 * inversion list, or create one for it */
2785
2786 if (swash_hv) {
2787 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
2788 if (swash_invlistsvp) {
2789 swash_invlist = *swash_invlistsvp;
2790 invlist_in_swash_is_valid = TRUE;
2791 }
2792 else {
2793 swash_invlist = _swash_to_invlist(retval);
2794 swash_invlist_unclaimed = TRUE;
2795 }
2796 }
2797
2798 /* If an inversion list was passed in, have to include it */
2799 if (invlist) {
2800
2801 /* Any fetched swash will by now have an inversion list in it;
2802 * otherwise <swash_invlist> will be NULL, indicating that we
2803 * didn't fetch a swash */
2804 if (swash_invlist) {
2805
2806 /* Add the passed-in inversion list, which invalidates the one
2807 * already stored in the swash */
2808 invlist_in_swash_is_valid = FALSE;
2809 _invlist_union(invlist, swash_invlist, &swash_invlist);
2810 }
2811 else {
2812
2813 /* Here, there is no swash already. Set up a minimal one, if
2814 * we are going to return a swash */
2815 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
2816 swash_hv = newHV();
2817 retval = newRV_noinc(MUTABLE_SV(swash_hv));
2818 }
2819 swash_invlist = invlist;
2820 }
2821 }
2822
2823 /* Here, we have computed the union of all the passed-in data. It may
2824 * be that there was an inversion list in the swash which didn't get
2825 * touched; otherwise save the computed one */
2826 if (! invlist_in_swash_is_valid
2827 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
2828 {
2829 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
2830 {
2831 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
2832 }
2833 /* We just stole a reference count. */
2834 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
2835 else SvREFCNT_inc_simple_void_NN(swash_invlist);
2836 }
2837
2838 SvREADONLY_on(swash_invlist);
2839
2840 /* Use the inversion list stand-alone if small enough */
2841 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
2842 SvREFCNT_dec(retval);
2843 if (!swash_invlist_unclaimed)
2844 SvREFCNT_inc_simple_void_NN(swash_invlist);
2845 retval = newRV_noinc(swash_invlist);
2846 }
2847 }
2848
2849 CORE_SWASH_INIT_RETURN(retval);
2850#undef CORE_SWASH_INIT_RETURN
2851}
2852
2853
2854/* This API is wrong for special case conversions since we may need to
2855 * return several Unicode characters for a single Unicode character
2856 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
2857 * the lower-level routine, and it is similarly broken for returning
2858 * multiple values. --jhi
2859 * For those, you should use S__to_utf8_case() instead */
2860/* Now SWASHGET is recasted into S_swatch_get in this file. */
2861
2862/* Note:
2863 * Returns the value of property/mapping C<swash> for the first character
2864 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
2865 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
2866 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
2867 *
2868 * A "swash" is a hash which contains initially the keys/values set up by
2869 * SWASHNEW. The purpose is to be able to completely represent a Unicode
2870 * property for all possible code points. Things are stored in a compact form
2871 * (see utf8_heavy.pl) so that calculation is required to find the actual
2872 * property value for a given code point. As code points are looked up, new
2873 * key/value pairs are added to the hash, so that the calculation doesn't have
2874 * to ever be re-done. Further, each calculation is done, not just for the
2875 * desired one, but for a whole block of code points adjacent to that one.
2876 * For binary properties on ASCII machines, the block is usually for 64 code
2877 * points, starting with a code point evenly divisible by 64. Thus if the
2878 * property value for code point 257 is requested, the code goes out and
2879 * calculates the property values for all 64 code points between 256 and 319,
2880 * and stores these as a single 64-bit long bit vector, called a "swatch",
2881 * under the key for code point 256. The key is the UTF-8 encoding for code
2882 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
2883 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
2884 * for code point 258 is then requested, this code realizes that it would be
2885 * stored under the key for 256, and would find that value and extract the
2886 * relevant bit, offset from 256.
2887 *
2888 * Non-binary properties are stored in as many bits as necessary to represent
2889 * their values (32 currently, though the code is more general than that), not
2890 * as single bits, but the principal is the same: the value for each key is a
2891 * vector that encompasses the property values for all code points whose UTF-8
2892 * representations are represented by the key. That is, for all code points
2893 * whose UTF-8 representations are length N bytes, and the key is the first N-1
2894 * bytes of that.
2895 */
2896UV
2897Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
2898{
2899 HV *const hv = MUTABLE_HV(SvRV(swash));
2900 U32 klen;
2901 U32 off;
2902 STRLEN slen = 0;
2903 STRLEN needents;
2904 const U8 *tmps = NULL;
2905 SV *swatch;
2906 const U8 c = *ptr;
2907
2908 PERL_ARGS_ASSERT_SWASH_FETCH;
2909
2910 /* If it really isn't a hash, it isn't really swash; must be an inversion
2911 * list */
2912 if (SvTYPE(hv) != SVt_PVHV) {
2913 return _invlist_contains_cp((SV*)hv,
2914 (do_utf8)
2915 ? valid_utf8_to_uvchr(ptr, NULL)
2916 : c);
2917 }
2918
2919 /* We store the values in a "swatch" which is a vec() value in a swash
2920 * hash. Code points 0-255 are a single vec() stored with key length
2921 * (klen) 0. All other code points have a UTF-8 representation
2922 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
2923 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
2924 * length for them is the length of the encoded char - 1. ptr[klen] is the
2925 * final byte in the sequence representing the character */
2926 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
2927 klen = 0;
2928 needents = 256;
2929 off = c;
2930 }
2931 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2932 klen = 0;
2933 needents = 256;
2934 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
2935 }
2936 else {
2937 klen = UTF8SKIP(ptr) - 1;
2938
2939 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
2940 * the vec is the final byte in the sequence. (In EBCDIC this is
2941 * converted to I8 to get consecutive values.) To help you visualize
2942 * all this:
2943 * Straight 1047 After final byte
2944 * UTF-8 UTF-EBCDIC I8 transform
2945 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
2946 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
2947 * ...
2948 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
2949 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
2950 * ...
2951 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
2952 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
2953 * ...
2954 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
2955 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
2956 * ...
2957 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
2958 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
2959 *
2960 * (There are no discontinuities in the elided (...) entries.)
2961 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
2962 * key for the next 31, up through U+043F, whose UTF-8 final byte is
2963 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
2964 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
2965 * index into the vec() swatch (after subtracting 0x80, which we
2966 * actually do with an '&').
2967 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
2968 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
2969 * dicontinuities which go away by transforming it into I8, and we
2970 * effectively subtract 0xA0 to get the index. */
2971 needents = (1 << UTF_ACCUMULATION_SHIFT);
2972 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
2973 }
2974
2975 /*
2976 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
2977 * suite. (That is, only 7-8% overall over just a hash cache. Still,
2978 * it's nothing to sniff at.) Pity we usually come through at least
2979 * two function calls to get here...
2980 *
2981 * NB: this code assumes that swatches are never modified, once generated!
2982 */
2983
2984 if (hv == PL_last_swash_hv &&
2985 klen == PL_last_swash_klen &&
2986 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
2987 {
2988 tmps = PL_last_swash_tmps;
2989 slen = PL_last_swash_slen;
2990 }
2991 else {
2992 /* Try our second-level swatch cache, kept in a hash. */
2993 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
2994
2995 /* If not cached, generate it via swatch_get */
2996 if (!svp || !SvPOK(*svp)
2997 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
2998 {
2999 if (klen) {
3000 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
3001 swatch = swatch_get(swash,
3002 code_point & ~((UV)needents - 1),
3003 needents);
3004 }
3005 else { /* For the first 256 code points, the swatch has a key of
3006 length 0 */
3007 swatch = swatch_get(swash, 0, needents);
3008 }
3009
3010 if (IN_PERL_COMPILETIME)
3011 CopHINTS_set(PL_curcop, PL_hints);
3012
3013 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3014
3015 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3016 || (slen << 3) < needents)
3017 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3018 "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3019 svp, tmps, (UV)slen, (UV)needents);
3020 }
3021
3022 PL_last_swash_hv = hv;
3023 assert(klen <= sizeof(PL_last_swash_key));
3024 PL_last_swash_klen = (U8)klen;
3025 /* FIXME change interpvar.h? */
3026 PL_last_swash_tmps = (U8 *) tmps;
3027 PL_last_swash_slen = slen;
3028 if (klen)
3029 Copy(ptr, PL_last_swash_key, klen, U8);
3030 }
3031
3032 switch ((int)((slen << 3) / needents)) {
3033 case 1:
3034 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
3035 case 8:
3036 return ((UV) tmps[off]);
3037 case 16:
3038 off <<= 1;
3039 return
3040 ((UV) tmps[off ] << 8) +
3041 ((UV) tmps[off + 1]);
3042 case 32:
3043 off <<= 2;
3044 return
3045 ((UV) tmps[off ] << 24) +
3046 ((UV) tmps[off + 1] << 16) +
3047 ((UV) tmps[off + 2] << 8) +
3048 ((UV) tmps[off + 3]);
3049 }
3050 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3051 "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3052 NORETURN_FUNCTION_END;
3053}
3054
3055/* Read a single line of the main body of the swash input text. These are of
3056 * the form:
3057 * 0053 0056 0073
3058 * where each number is hex. The first two numbers form the minimum and
3059 * maximum of a range, and the third is the value associated with the range.
3060 * Not all swashes should have a third number
3061 *
3062 * On input: l points to the beginning of the line to be examined; it points
3063 * to somewhere in the string of the whole input text, and is
3064 * terminated by a \n or the null string terminator.
3065 * lend points to the null terminator of that string
3066 * wants_value is non-zero if the swash expects a third number
3067 * typestr is the name of the swash's mapping, like 'ToLower'
3068 * On output: *min, *max, and *val are set to the values read from the line.
3069 * returns a pointer just beyond the line examined. If there was no
3070 * valid min number on the line, returns lend+1
3071 */
3072
3073STATIC U8*
3074S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3075 const bool wants_value, const U8* const typestr)
3076{
3077 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3078 STRLEN numlen; /* Length of the number */
3079 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3080 | PERL_SCAN_DISALLOW_PREFIX
3081 | PERL_SCAN_SILENT_NON_PORTABLE;
3082
3083 /* nl points to the next \n in the scan */
3084 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3085
3086 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
3087
3088 /* Get the first number on the line: the range minimum */
3089 numlen = lend - l;
3090 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3091 *max = *min; /* So can never return without setting max */
3092 if (numlen) /* If found a hex number, position past it */
3093 l += numlen;
3094 else if (nl) { /* Else, go handle next line, if any */
3095 return nl + 1; /* 1 is length of "\n" */
3096 }
3097 else { /* Else, no next line */
3098 return lend + 1; /* to LIST's end at which \n is not found */
3099 }
3100
3101 /* The max range value follows, separated by a BLANK */
3102 if (isBLANK(*l)) {
3103 ++l;
3104 flags = PERL_SCAN_SILENT_ILLDIGIT
3105 | PERL_SCAN_DISALLOW_PREFIX
3106 | PERL_SCAN_SILENT_NON_PORTABLE;
3107 numlen = lend - l;
3108 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3109 if (numlen)
3110 l += numlen;
3111 else /* If no value here, it is a single element range */
3112 *max = *min;
3113
3114 /* Non-binary tables have a third entry: what the first element of the
3115 * range maps to. The map for those currently read here is in hex */
3116 if (wants_value) {
3117 if (isBLANK(*l)) {
3118 ++l;
3119 flags = PERL_SCAN_SILENT_ILLDIGIT
3120 | PERL_SCAN_DISALLOW_PREFIX
3121 | PERL_SCAN_SILENT_NON_PORTABLE;
3122 numlen = lend - l;
3123 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3124 if (numlen)
3125 l += numlen;
3126 else
3127 *val = 0;
3128 }
3129 else {
3130 *val = 0;
3131 if (typeto) {
3132 /* diag_listed_as: To%s: illegal mapping '%s' */
3133 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3134 typestr, l);
3135 }
3136 }
3137 }
3138 else
3139 *val = 0; /* bits == 1, then any val should be ignored */
3140 }
3141 else { /* Nothing following range min, should be single element with no
3142 mapping expected */
3143 if (wants_value) {
3144 *val = 0;
3145 if (typeto) {
3146 /* diag_listed_as: To%s: illegal mapping '%s' */
3147 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3148 }
3149 }
3150 else
3151 *val = 0; /* bits == 1, then val should be ignored */
3152 }
3153
3154 /* Position to next line if any, or EOF */
3155 if (nl)
3156 l = nl + 1;
3157 else
3158 l = lend;
3159
3160 return l;
3161}
3162
3163/* Note:
3164 * Returns a swatch (a bit vector string) for a code point sequence
3165 * that starts from the value C<start> and comprises the number C<span>.
3166 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3167 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3168 */
3169STATIC SV*
3170S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3171{
3172 SV *swatch;
3173 U8 *l, *lend, *x, *xend, *s, *send;
3174 STRLEN lcur, xcur, scur;
3175 HV *const hv = MUTABLE_HV(SvRV(swash));
3176 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3177
3178 SV** listsvp = NULL; /* The string containing the main body of the table */
3179 SV** extssvp = NULL;
3180 SV** invert_it_svp = NULL;
3181 U8* typestr = NULL;
3182 STRLEN bits;
3183 STRLEN octets; /* if bits == 1, then octets == 0 */
3184 UV none;
3185 UV end = start + span;
3186
3187 if (invlistsvp == NULL) {
3188 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3189 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3190 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3191 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3192 listsvp = hv_fetchs(hv, "LIST", FALSE);
3193 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3194
3195 bits = SvUV(*bitssvp);
3196 none = SvUV(*nonesvp);
3197 typestr = (U8*)SvPV_nolen(*typesvp);
3198 }
3199 else {
3200 bits = 1;
3201 none = 0;
3202 }
3203 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3204
3205 PERL_ARGS_ASSERT_SWATCH_GET;
3206
3207 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3208 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3209 (UV)bits);
3210 }
3211
3212 /* If overflowed, use the max possible */
3213 if (end < start) {
3214 end = UV_MAX;
3215 span = end - start;
3216 }
3217
3218 /* create and initialize $swatch */
3219 scur = octets ? (span * octets) : (span + 7) / 8;
3220 swatch = newSV(scur);
3221 SvPOK_on(swatch);
3222 s = (U8*)SvPVX(swatch);
3223 if (octets && none) {
3224 const U8* const e = s + scur;
3225 while (s < e) {
3226 if (bits == 8)
3227 *s++ = (U8)(none & 0xff);
3228 else if (bits == 16) {
3229 *s++ = (U8)((none >> 8) & 0xff);
3230 *s++ = (U8)( none & 0xff);
3231 }
3232 else if (bits == 32) {
3233 *s++ = (U8)((none >> 24) & 0xff);
3234 *s++ = (U8)((none >> 16) & 0xff);
3235 *s++ = (U8)((none >> 8) & 0xff);
3236 *s++ = (U8)( none & 0xff);
3237 }
3238 }
3239 *s = '\0';
3240 }
3241 else {
3242 (void)memzero((U8*)s, scur + 1);
3243 }
3244 SvCUR_set(swatch, scur);
3245 s = (U8*)SvPVX(swatch);
3246
3247 if (invlistsvp) { /* If has an inversion list set up use that */
3248 _invlist_populate_swatch(*invlistsvp, start, end, s);
3249 return swatch;
3250 }
3251
3252 /* read $swash->{LIST} */
3253 l = (U8*)SvPV(*listsvp, lcur);
3254 lend = l + lcur;
3255 while (l < lend) {
3256 UV min, max, val, upper;
3257 l = swash_scan_list_line(l, lend, &min, &max, &val,
3258 cBOOL(octets), typestr);
3259 if (l > lend) {
3260 break;
3261 }
3262
3263 /* If looking for something beyond this range, go try the next one */
3264 if (max < start)
3265 continue;
3266
3267 /* <end> is generally 1 beyond where we want to set things, but at the
3268 * platform's infinity, where we can't go any higher, we want to
3269 * include the code point at <end> */
3270 upper = (max < end)
3271 ? max
3272 : (max != UV_MAX || end != UV_MAX)
3273 ? end - 1
3274 : end;
3275
3276 if (octets) {
3277 UV key;
3278 if (min < start) {
3279 if (!none || val < none) {
3280 val += start - min;
3281 }
3282 min = start;
3283 }
3284 for (key = min; key <= upper; key++) {
3285 STRLEN offset;
3286 /* offset must be non-negative (start <= min <= key < end) */
3287 offset = octets * (key - start);
3288 if (bits == 8)
3289 s[offset] = (U8)(val & 0xff);
3290 else if (bits == 16) {
3291 s[offset ] = (U8)((val >> 8) & 0xff);
3292 s[offset + 1] = (U8)( val & 0xff);
3293 }
3294 else if (bits == 32) {
3295 s[offset ] = (U8)((val >> 24) & 0xff);
3296 s[offset + 1] = (U8)((val >> 16) & 0xff);
3297 s[offset + 2] = (U8)((val >> 8) & 0xff);
3298 s[offset + 3] = (U8)( val & 0xff);
3299 }
3300
3301 if (!none || val < none)
3302 ++val;
3303 }
3304 }
3305 else { /* bits == 1, then val should be ignored */
3306 UV key;
3307 if (min < start)
3308 min = start;
3309
3310 for (key = min; key <= upper; key++) {
3311 const STRLEN offset = (STRLEN)(key - start);
3312 s[offset >> 3] |= 1 << (offset & 7);
3313 }
3314 }
3315 } /* while */
3316
3317 /* Invert if the data says it should be. Assumes that bits == 1 */
3318 if (invert_it_svp && SvUV(*invert_it_svp)) {
3319
3320 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3321 * be 0, and their inversion should also be 0, as we don't succeed any
3322 * Unicode property matches for non-Unicode code points */
3323 if (start <= PERL_UNICODE_MAX) {
3324
3325 /* The code below assumes that we never cross the
3326 * Unicode/above-Unicode boundary in a range, as otherwise we would
3327 * have to figure out where to stop flipping the bits. Since this
3328 * boundary is divisible by a large power of 2, and swatches comes
3329 * in small powers of 2, this should be a valid assumption */
3330 assert(start + span - 1 <= PERL_UNICODE_MAX);
3331
3332 send = s + scur;
3333 while (s < send) {
3334 *s = ~(*s);
3335 s++;
3336 }
3337 }
3338 }
3339
3340 /* read $swash->{EXTRAS}
3341 * This code also copied to swash_to_invlist() below */
3342 x = (U8*)SvPV(*extssvp, xcur);
3343 xend = x + xcur;
3344 while (x < xend) {
3345 STRLEN namelen;
3346 U8 *namestr;
3347 SV** othersvp;
3348 HV* otherhv;
3349 STRLEN otherbits;
3350 SV **otherbitssvp, *other;
3351 U8 *s, *o, *nl;
3352 STRLEN slen, olen;
3353
3354 const U8 opc = *x++;
3355 if (opc == '\n')
3356 continue;
3357
3358 nl = (U8*)memchr(x, '\n', xend - x);
3359
3360 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3361 if (nl) {
3362 x = nl + 1; /* 1 is length of "\n" */
3363 continue;
3364 }
3365 else {
3366 x = xend; /* to EXTRAS' end at which \n is not found */
3367 break;
3368 }
3369 }
3370
3371 namestr = x;
3372 if (nl) {
3373 namelen = nl - namestr;
3374 x = nl + 1;
3375 }
3376 else {
3377 namelen = xend - namestr;
3378 x = xend;
3379 }
3380
3381 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3382 otherhv = MUTABLE_HV(SvRV(*othersvp));
3383 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3384 otherbits = (STRLEN)SvUV(*otherbitssvp);
3385 if (bits < otherbits)
3386 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3387 "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3388
3389 /* The "other" swatch must be destroyed after. */
3390 other = swatch_get(*othersvp, start, span);
3391 o = (U8*)SvPV(other, olen);
3392
3393 if (!olen)
3394 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3395
3396 s = (U8*)SvPV(swatch, slen);
3397 if (bits == 1 && otherbits == 1) {
3398 if (slen != olen)
3399 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3400 "mismatch, slen=%"UVuf", olen=%"UVuf,
3401 (UV)slen, (UV)olen);
3402
3403 switch (opc) {
3404 case '+':
3405 while (slen--)
3406 *s++ |= *o++;
3407 break;
3408 case '!':
3409 while (slen--)
3410 *s++ |= ~*o++;
3411 break;
3412 case '-':
3413 while (slen--)
3414 *s++ &= ~*o++;
3415 break;
3416 case '&':
3417 while (slen--)
3418 *s++ &= *o++;
3419 break;
3420 default:
3421 break;
3422 }
3423 }
3424 else {
3425 STRLEN otheroctets = otherbits >> 3;
3426 STRLEN offset = 0;
3427 U8* const send = s + slen;
3428
3429 while (s < send) {
3430 UV otherval = 0;
3431
3432 if (otherbits == 1) {
3433 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
3434 ++offset;
3435 }
3436 else {
3437 STRLEN vlen = otheroctets;
3438 otherval = *o++;
3439 while (--vlen) {
3440 otherval <<= 8;
3441 otherval |= *o++;
3442 }
3443 }
3444
3445 if (opc == '+' && otherval)
3446 NOOP; /* replace with otherval */
3447 else if (opc == '!' && !otherval)
3448 otherval = 1;
3449 else if (opc == '-' && otherval)
3450 otherval = 0;
3451 else if (opc == '&' && !otherval)
3452 otherval = 0;
3453 else {
3454 s += octets; /* no replacement */
3455 continue;
3456 }
3457
3458 if (bits == 8)
3459 *s++ = (U8)( otherval & 0xff);
3460 else if (bits == 16) {
3461 *s++ = (U8)((otherval >> 8) & 0xff);
3462 *s++ = (U8)( otherval & 0xff);
3463 }
3464 else if (bits == 32) {
3465 *s++ = (U8)((otherval >> 24) & 0xff);
3466 *s++ = (U8)((otherval >> 16) & 0xff);
3467 *s++ = (U8)((otherval >> 8) & 0xff);
3468 *s++ = (U8)( otherval & 0xff);
3469 }
3470 }
3471 }
3472 sv_free(other); /* through with it! */
3473 } /* while */
3474 return swatch;
3475}
3476
3477HV*
3478Perl__swash_inversion_hash(pTHX_ SV* const swash)
3479{
3480
3481 /* Subject to change or removal. For use only in regcomp.c and regexec.c
3482 * Can't be used on a property that is subject to user override, as it
3483 * relies on the value of SPECIALS in the swash which would be set by
3484 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
3485 * for overridden properties
3486 *
3487 * Returns a hash which is the inversion and closure of a swash mapping.
3488 * For example, consider the input lines:
3489 * 004B 006B
3490 * 004C 006C
3491 * 212A 006B
3492 *
3493 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
3494 * 006C. The value for each key is an array. For 006C, the array would
3495 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
3496 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
3497 *
3498 * Note that there are no elements in the hash for 004B, 004C, 212A. The
3499 * keys are only code points that are folded-to, so it isn't a full closure.
3500 *
3501 * Essentially, for any code point, it gives all the code points that map to
3502 * it, or the list of 'froms' for that point.
3503 *
3504 * Currently it ignores any additions or deletions from other swashes,
3505 * looking at just the main body of the swash, and if there are SPECIALS
3506 * in the swash, at that hash
3507 *
3508 * The specials hash can be extra code points, and most likely consists of
3509 * maps from single code points to multiple ones (each expressed as a string
3510 * of UTF-8 characters). This function currently returns only 1-1 mappings.
3511 * However consider this possible input in the specials hash:
3512 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
3513 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
3514 *
3515 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
3516 * currently handle. But it also means that FB05 and FB06 are equivalent in
3517 * a 1-1 mapping which we should handle, and this relationship may not be in
3518 * the main table. Therefore this function examines all the multi-char
3519 * sequences and adds the 1-1 mappings that come out of that.
3520 *
3521 * XXX This function was originally intended to be multipurpose, but its
3522 * only use is quite likely to remain for constructing the inversion of
3523 * the CaseFolding (//i) property. If it were more general purpose for
3524 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
3525 * because certain folds are prohibited under /iaa and /il. As an example,
3526 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
3527 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
3528 * prohibited, so we would not figure out that they fold to each other.
3529 * Code could be written to automatically figure this out, similar to the
3530 * code that does this for multi-character folds, but this is the only case
3531 * where something like this is ever likely to happen, as all the single
3532 * char folds to the 0-255 range are now quite settled. Instead there is a
3533 * little special code that is compiled only for this Unicode version. This
3534 * is smaller and didn't require much coding time to do. But this makes
3535 * this routine strongly tied to being used just for CaseFolding. If ever
3536 * it should be generalized, this would have to be fixed */
3537
3538 U8 *l, *lend;
3539 STRLEN lcur;
3540 HV *const hv = MUTABLE_HV(SvRV(swash));
3541
3542 /* The string containing the main body of the table. This will have its
3543 * assertion fail if the swash has been converted to its inversion list */
3544 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
3545
3546 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3547 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3548 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3549 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
3550 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
3551 const STRLEN bits = SvUV(*bitssvp);
3552 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
3553 const UV none = SvUV(*nonesvp);
3554 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
3555
3556 HV* ret = newHV();
3557
3558 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
3559
3560 /* Must have at least 8 bits to get the mappings */
3561 if (bits != 8 && bits != 16 && bits != 32) {
3562 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
3563 (UV)bits);
3564 }
3565
3566 if (specials_p) { /* It might be "special" (sometimes, but not always, a
3567 mapping to more than one character */
3568
3569 /* Construct an inverse mapping hash for the specials */
3570 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
3571 HV * specials_inverse = newHV();
3572 char *char_from; /* the lhs of the map */
3573 I32 from_len; /* its byte length */
3574 char *char_to; /* the rhs of the map */
3575 I32 to_len; /* its byte length */
3576 SV *sv_to; /* and in a sv */
3577 AV* from_list; /* list of things that map to each 'to' */
3578
3579 hv_iterinit(specials_hv);
3580
3581 /* The keys are the characters (in UTF-8) that map to the corresponding
3582 * UTF-8 string value. Iterate through the list creating the inverse
3583 * list. */
3584 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
3585 SV** listp;
3586 if (! SvPOK(sv_to)) {
3587 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
3588 "unexpectedly is not a string, flags=%lu",
3589 (unsigned long)SvFLAGS(sv_to));
3590 }
3591 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
3592
3593 /* Each key in the inverse list is a mapped-to value, and the key's
3594 * hash value is a list of the strings (each in UTF-8) that map to
3595 * it. Those strings are all one character long */
3596 if ((listp = hv_fetch(specials_inverse,
3597 SvPVX(sv_to),
3598 SvCUR(sv_to), 0)))
3599 {
3600 from_list = (AV*) *listp;
3601 }
3602 else { /* No entry yet for it: create one */
3603 from_list = newAV();
3604 if (! hv_store(specials_inverse,
3605 SvPVX(sv_to),
3606 SvCUR(sv_to),
3607 (SV*) from_list, 0))
3608 {
3609 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3610 }
3611 }
3612
3613 /* Here have the list associated with this 'to' (perhaps newly
3614 * created and empty). Just add to it. Note that we ASSUME that
3615 * the input is guaranteed to not have duplications, so we don't
3616 * check for that. Duplications just slow down execution time. */
3617 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
3618 }
3619
3620 /* Here, 'specials_inverse' contains the inverse mapping. Go through
3621 * it looking for cases like the FB05/FB06 examples above. There would
3622 * be an entry in the hash like
3623 * 'st' => [ FB05, FB06 ]
3624 * In this example we will create two lists that get stored in the
3625 * returned hash, 'ret':
3626 * FB05 => [ FB05, FB06 ]
3627 * FB06 => [ FB05, FB06 ]
3628 *
3629 * Note that there is nothing to do if the array only has one element.
3630 * (In the normal 1-1 case handled below, we don't have to worry about
3631 * two lists, as everything gets tied to the single list that is
3632 * generated for the single character 'to'. But here, we are omitting
3633 * that list, ('st' in the example), so must have multiple lists.) */
3634 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
3635 &char_to, &to_len)))
3636 {
3637 if (av_tindex(from_list) > 0) {
3638 SSize_t i;
3639
3640 /* We iterate over all combinations of i,j to place each code
3641 * point on each list */
3642 for (i = 0; i <= av_tindex(from_list); i++) {
3643 SSize_t j;
3644 AV* i_list = newAV();
3645 SV** entryp = av_fetch(from_list, i, FALSE);
3646 if (entryp == NULL) {
3647 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3648 }
3649 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
3650 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
3651 }
3652 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
3653 (SV*) i_list, FALSE))
3654 {
3655 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3656 }
3657
3658 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
3659 for (j = 0; j <= av_tindex(from_list); j++) {
3660 entryp = av_fetch(from_list, j, FALSE);
3661 if (entryp == NULL) {
3662 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3663 }
3664
3665 /* When i==j this adds itself to the list */
3666 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
3667 (U8*) SvPVX(*entryp),
3668 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
3669 0)));
3670 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
3671 }
3672 }
3673 }
3674 }
3675 SvREFCNT_dec(specials_inverse); /* done with it */
3676 } /* End of specials */
3677
3678 /* read $swash->{LIST} */
3679
3680#if UNICODE_MAJOR_VERSION == 3 \
3681 && UNICODE_DOT_VERSION == 0 \
3682 && UNICODE_DOT_DOT_VERSION == 1
3683
3684 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
3685 * rule so that things work under /iaa and /il */
3686
3687 SV * mod_listsv = sv_mortalcopy(*listsvp);
3688 sv_catpv(mod_listsv, "130\t130\t131\n");
3689 l = (U8*)SvPV(mod_listsv, lcur);
3690
3691#else
3692
3693 l = (U8*)SvPV(*listsvp, lcur);
3694
3695#endif
3696
3697 lend = l + lcur;
3698
3699 /* Go through each input line */
3700 while (l < lend) {
3701 UV min, max, val;
3702 UV inverse;
3703 l = swash_scan_list_line(l, lend, &min, &max, &val,
3704 cBOOL(octets), typestr);
3705 if (l > lend) {
3706 break;
3707 }
3708
3709 /* Each element in the range is to be inverted */
3710 for (inverse = min; inverse <= max; inverse++) {
3711 AV* list;
3712 SV** listp;
3713 IV i;
3714 bool found_key = FALSE;
3715 bool found_inverse = FALSE;
3716
3717 /* The key is the inverse mapping */
3718 char key[UTF8_MAXBYTES+1];
3719 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
3720 STRLEN key_len = key_end - key;
3721
3722 /* Get the list for the map */
3723 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
3724 list = (AV*) *listp;
3725 }
3726 else { /* No entry yet for it: create one */
3727 list = newAV();
3728 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
3729 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3730 }
3731 }
3732
3733 /* Look through list to see if this inverse mapping already is
3734 * listed, or if there is a mapping to itself already */
3735 for (i = 0; i <= av_tindex(list); i++) {
3736 SV** entryp = av_fetch(list, i, FALSE);
3737 SV* entry;
3738 UV uv;
3739 if (entryp == NULL) {
3740 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3741 }
3742 entry = *entryp;
3743 uv = SvUV(entry);
3744 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, uv));*/
3745 if (uv == val) {
3746 found_key = TRUE;
3747 }
3748 if (uv == inverse) {
3749 found_inverse = TRUE;
3750 }
3751
3752 /* No need to continue searching if found everything we are
3753 * looking for */
3754 if (found_key && found_inverse) {
3755 break;
3756 }
3757 }
3758
3759 /* Make sure there is a mapping to itself on the list */
3760 if (! found_key) {
3761 av_push(list, newSVuv(val));
3762 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
3763 }
3764
3765
3766 /* Simply add the value to the list */
3767 if (! found_inverse) {
3768 av_push(list, newSVuv(inverse));
3769 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
3770 }
3771
3772 /* swatch_get() increments the value of val for each element in the
3773 * range. That makes more compact tables possible. You can
3774 * express the capitalization, for example, of all consecutive
3775 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
3776 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
3777 * and it's not documented; it appears to be used only in
3778 * implementing tr//; I copied the semantics from swatch_get(), just
3779 * in case */
3780 if (!none || val < none) {
3781 ++val;
3782 }
3783 }
3784 }
3785
3786 return ret;
3787}
3788
3789SV*
3790Perl__swash_to_invlist(pTHX_ SV* const swash)
3791{
3792
3793 /* Subject to change or removal. For use only in one place in regcomp.c.
3794 * Ownership is given to one reference count in the returned SV* */
3795
3796 U8 *l, *lend;
3797 char *loc;
3798 STRLEN lcur;
3799 HV *const hv = MUTABLE_HV(SvRV(swash));
3800 UV elements = 0; /* Number of elements in the inversion list */
3801 U8 empty[] = "";
3802 SV** listsvp;
3803 SV** typesvp;
3804 SV** bitssvp;
3805 SV** extssvp;
3806 SV** invert_it_svp;
3807
3808 U8* typestr;
3809 STRLEN bits;
3810 STRLEN octets; /* if bits == 1, then octets == 0 */
3811 U8 *x, *xend;
3812 STRLEN xcur;
3813
3814 SV* invlist;
3815
3816 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
3817
3818 /* If not a hash, it must be the swash's inversion list instead */
3819 if (SvTYPE(hv) != SVt_PVHV) {
3820 return SvREFCNT_inc_simple_NN((SV*) hv);
3821 }
3822
3823 /* The string containing the main body of the table */
3824 listsvp = hv_fetchs(hv, "LIST", FALSE);
3825 typesvp = hv_fetchs(hv, "TYPE", FALSE);
3826 bitssvp = hv_fetchs(hv, "BITS", FALSE);
3827 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3828 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3829
3830 typestr = (U8*)SvPV_nolen(*typesvp);
3831 bits = SvUV(*bitssvp);
3832 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3833
3834 /* read $swash->{LIST} */
3835 if (SvPOK(*listsvp)) {
3836 l = (U8*)SvPV(*listsvp, lcur);
3837 }
3838 else {
3839 /* LIST legitimately doesn't contain a string during compilation phases
3840 * of Perl itself, before the Unicode tables are generated. In this
3841 * case, just fake things up by creating an empty list */
3842 l = empty;
3843 lcur = 0;
3844 }
3845 loc = (char *) l;
3846 lend = l + lcur;
3847
3848 if (*l == 'V') { /* Inversion list format */
3849 const char *after_atou = (char *) lend;
3850 UV element0;
3851 UV* other_elements_ptr;
3852
3853 /* The first number is a count of the rest */
3854 l++;
3855 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
3856 Perl_croak(aTHX_ "panic: Expecting a valid count of elements at start of inversion list");
3857 }
3858 if (elements == 0) {
3859 invlist = _new_invlist(0);
3860 }
3861 else {
3862 while (isSPACE(*l)) l++;
3863 l = (U8 *) after_atou;
3864
3865 /* Get the 0th element, which is needed to setup the inversion list */
3866 while (isSPACE(*l)) l++;
3867 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
3868 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for inversion list");
3869 }
3870 l = (U8 *) after_atou;
3871 invlist = _setup_canned_invlist(elements, element0, &other_elements_ptr);
3872 elements--;
3873
3874 /* Then just populate the rest of the input */
3875 while (elements-- > 0) {
3876 if (l > lend) {
3877 Perl_croak(aTHX_ "panic: Expecting %"UVuf" more elements than available", elements);
3878 }
3879 while (isSPACE(*l)) l++;
3880 if (!grok_atoUV((const char *)l, other_elements_ptr++, &after_atou)) {
3881 Perl_croak(aTHX_ "panic: Expecting a valid element in inversion list");
3882 }
3883 l = (U8 *) after_atou;
3884 }
3885 }
3886 }
3887 else {
3888
3889 /* Scan the input to count the number of lines to preallocate array
3890 * size based on worst possible case, which is each line in the input
3891 * creates 2 elements in the inversion list: 1) the beginning of a
3892 * range in the list; 2) the beginning of a range not in the list. */
3893 while ((loc = (strchr(loc, '\n'))) != NULL) {
3894 elements += 2;
3895 loc++;
3896 }
3897
3898 /* If the ending is somehow corrupt and isn't a new line, add another
3899 * element for the final range that isn't in the inversion list */
3900 if (! (*lend == '\n'
3901 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
3902 {
3903 elements++;
3904 }
3905
3906 invlist = _new_invlist(elements);
3907
3908 /* Now go through the input again, adding each range to the list */
3909 while (l < lend) {
3910 UV start, end;
3911 UV val; /* Not used by this function */
3912
3913 l = swash_scan_list_line(l, lend, &start, &end, &val,
3914 cBOOL(octets), typestr);
3915
3916 if (l > lend) {
3917 break;
3918 }
3919
3920 invlist = _add_range_to_invlist(invlist, start, end);
3921 }
3922 }
3923
3924 /* Invert if the data says it should be */
3925 if (invert_it_svp && SvUV(*invert_it_svp)) {
3926 _invlist_invert(invlist);
3927 }
3928
3929 /* This code is copied from swatch_get()
3930 * read $swash->{EXTRAS} */
3931 x = (U8*)SvPV(*extssvp, xcur);
3932 xend = x + xcur;
3933 while (x < xend) {
3934 STRLEN namelen;
3935 U8 *namestr;
3936 SV** othersvp;
3937 HV* otherhv;
3938 STRLEN otherbits;
3939 SV **otherbitssvp, *other;
3940 U8 *nl;
3941
3942 const U8 opc = *x++;
3943 if (opc == '\n')
3944 continue;
3945
3946 nl = (U8*)memchr(x, '\n', xend - x);
3947
3948 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3949 if (nl) {
3950 x = nl + 1; /* 1 is length of "\n" */
3951 continue;
3952 }
3953 else {
3954 x = xend; /* to EXTRAS' end at which \n is not found */
3955 break;
3956 }
3957 }
3958
3959 namestr = x;
3960 if (nl) {
3961 namelen = nl - namestr;
3962 x = nl + 1;
3963 }
3964 else {
3965 namelen = xend - namestr;
3966 x = xend;
3967 }
3968
3969 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3970 otherhv = MUTABLE_HV(SvRV(*othersvp));
3971 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3972 otherbits = (STRLEN)SvUV(*otherbitssvp);
3973
3974 if (bits != otherbits || bits != 1) {
3975 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
3976 "properties, bits=%"UVuf", otherbits=%"UVuf,
3977 (UV)bits, (UV)otherbits);
3978 }
3979
3980 /* The "other" swatch must be destroyed after. */
3981 other = _swash_to_invlist((SV *)*othersvp);
3982
3983 /* End of code copied from swatch_get() */
3984 switch (opc) {
3985 case '+':
3986 _invlist_union(invlist, other, &invlist);
3987 break;
3988 case '!':
3989 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
3990 break;
3991 case '-':
3992 _invlist_subtract(invlist, other, &invlist);
3993 break;
3994 case '&':
3995 _invlist_intersection(invlist, other, &invlist);
3996 break;
3997 default:
3998 break;
3999 }
4000 sv_free(other); /* through with it! */
4001 }
4002
4003 SvREADONLY_on(invlist);
4004 return invlist;
4005}
4006
4007SV*
4008Perl__get_swash_invlist(pTHX_ SV* const swash)
4009{
4010 SV** ptr;
4011
4012 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
4013
4014 if (! SvROK(swash)) {
4015 return NULL;
4016 }
4017
4018 /* If it really isn't a hash, it isn't really swash; must be an inversion
4019 * list */
4020 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
4021 return SvRV(swash);
4022 }
4023
4024 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
4025 if (! ptr) {
4026 return NULL;
4027 }
4028
4029 return *ptr;
4030}
4031
4032bool
4033Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
4034{
4035 /* May change: warns if surrogates, non-character code points, or
4036 * non-Unicode code points are in s which has length len bytes. Returns
4037 * TRUE if none found; FALSE otherwise. The only other validity check is
4038 * to make sure that this won't exceed the string's length.
4039 *
4040 * Code points above the platform's C<IV_MAX> will raise a deprecation
4041 * warning, unless those are turned off. */
4042
4043 const U8* const e = s + len;
4044 bool ok = TRUE;
4045
4046 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4047
4048 while (s < e) {
4049 if (UTF8SKIP(s) > len) {
4050 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4051 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4052 return FALSE;
4053 }
4054 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
4055 STRLEN char_len;
4056 if (UTF8_IS_SUPER(s, e)) {
4057 if ( ckWARN_d(WARN_NON_UNICODE)
4058 || ( ckWARN_d(WARN_DEPRECATED)
4059#if defined(UV_IS_QUAD)
4060 /* 2**63 and up meet these conditions provided we have
4061 * a 64-bit word. */
4062# ifdef EBCDIC
4063 && *s == 0xFE && e - s >= UTF8_MAXBYTES
4064 && s[1] >= 0x49
4065# else
4066 && *s == 0xFF && e -s >= UTF8_MAXBYTES
4067 && s[2] >= 0x88
4068# endif
4069#else /* Below is 32-bit words */
4070 /* 2**31 and above meet these conditions on all EBCDIC
4071 * pages recognized for 32-bit platforms */
4072# ifdef EBCDIC
4073 && *s == 0xFE && e - s >= UTF8_MAXBYTES
4074 && s[6] >= 0x43
4075# else
4076 && *s >= 0xFE
4077# endif
4078#endif
4079 )) {
4080 /* A side effect of this function will be to warn */
4081 (void) utf8n_to_uvchr(s, e - s, &char_len, UTF8_WARN_SUPER);
4082 ok = FALSE;
4083 }
4084 }
4085 else if (UTF8_IS_SURROGATE(s, e)) {
4086 if (ckWARN_d(WARN_SURROGATE)) {
4087 /* This has a different warning than the one the called
4088 * function would output, so can't just call it, unlike we
4089 * do for the non-chars and above-unicodes */
4090 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4091 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4092 "Unicode surrogate U+%04"UVXf" is illegal in UTF-8", uv);
4093 ok = FALSE;
4094 }
4095 }
4096 else if ((UTF8_IS_NONCHAR(s, e)) && (ckWARN_d(WARN_NONCHAR))) {
4097 /* A side effect of this function will be to warn */
4098 (void) utf8n_to_uvchr(s, e - s, &char_len, UTF8_WARN_NONCHAR);
4099 ok = FALSE;
4100 }
4101 }
4102 s += UTF8SKIP(s);
4103 }
4104
4105 return ok;
4106}
4107
4108/*
4109=for apidoc pv_uni_display
4110
4111Build to the scalar C<dsv> a displayable version of the string C<spv>,
4112length C<len>, the displayable version being at most C<pvlim> bytes long
4113(if longer, the rest is truncated and C<"..."> will be appended).
4114
4115The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
4116C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
4117to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
4118(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
4119C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
4120C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
4121
4122The pointer to the PV of the C<dsv> is returned.
4123
4124See also L</sv_uni_display>.
4125
4126=cut */
4127char *
4128Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
4129{
4130 int truncated = 0;
4131 const char *s, *e;
4132
4133 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4134
4135 sv_setpvs(dsv, "");
4136 SvUTF8_off(dsv);
4137 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4138 UV u;
4139 /* This serves double duty as a flag and a character to print after
4140 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4141 */
4142 char ok = 0;
4143
4144 if (pvlim && SvCUR(dsv) >= pvlim) {
4145 truncated++;
4146 break;
4147 }
4148 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4149 if (u < 256) {
4150 const unsigned char c = (unsigned char)u & 0xFF;
4151 if (flags & UNI_DISPLAY_BACKSLASH) {
4152 switch (c) {
4153 case '\n':
4154 ok = 'n'; break;
4155 case '\r':
4156 ok = 'r'; break;
4157 case '\t':
4158 ok = 't'; break;
4159 case '\f':
4160 ok = 'f'; break;
4161 case '\a':
4162 ok = 'a'; break;
4163 case '\\':
4164 ok = '\\'; break;
4165 default: break;
4166 }
4167 if (ok) {
4168 const char string = ok;
4169 sv_catpvs(dsv, "\\");
4170 sv_catpvn(dsv, &string, 1);
4171 }
4172 }
4173 /* isPRINT() is the locale-blind version. */
4174 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4175 const char string = c;
4176 sv_catpvn(dsv, &string, 1);
4177 ok = 1;
4178 }
4179 }
4180 if (!ok)
4181 Perl_sv_catpvf(aTHX_ dsv, "\\x{%"UVxf"}", u);
4182 }
4183 if (truncated)
4184 sv_catpvs(dsv, "...");
4185
4186 return SvPVX(dsv);
4187}
4188
4189/*
4190=for apidoc sv_uni_display
4191
4192Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4193the displayable version being at most C<pvlim> bytes long
4194(if longer, the rest is truncated and "..." will be appended).
4195
4196The C<flags> argument is as in L</pv_uni_display>().
4197
4198The pointer to the PV of the C<dsv> is returned.
4199
4200=cut
4201*/
4202char *
4203Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4204{
4205 const char * const ptr =
4206 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
4207
4208 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4209
4210 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
4211 SvCUR(ssv), pvlim, flags);
4212}
4213
4214/*
4215=for apidoc foldEQ_utf8
4216
4217Returns true if the leading portions of the strings C<s1> and C<s2> (either or both
4218of which may be in UTF-8) are the same case-insensitively; false otherwise.
4219How far into the strings to compare is determined by other input parameters.
4220
4221If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4222otherwise it is assumed to be in native 8-bit encoding. Correspondingly for C<u2>
4223with respect to C<s2>.
4224
4225If the byte length C<l1> is non-zero, it says how far into C<s1> to check for fold
4226equality. In other words, C<s1>+C<l1> will be used as a goal to reach. The
4227scan will not be considered to be a match unless the goal is reached, and
4228scanning won't continue past that goal. Correspondingly for C<l2> with respect to
4229C<s2>.
4230
4231If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that pointer is
4232considered an end pointer to the position 1 byte past the maximum point
4233in C<s1> beyond which scanning will not continue under any circumstances.
4234(This routine assumes that UTF-8 encoded input strings are not malformed;
4235malformed input can cause it to read past C<pe1>).
4236This means that if both C<l1> and C<pe1> are specified, and C<pe1>
4237is less than C<s1>+C<l1>, the match will never be successful because it can
4238never
4239get as far as its goal (and in fact is asserted against). Correspondingly for
4240C<pe2> with respect to C<s2>.
4241
4242At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4243C<l2> must be non-zero), and if both do, both have to be
4244reached for a successful match. Also, if the fold of a character is multiple
4245characters, all of them must be matched (see tr21 reference below for
4246'folding').
4247
4248Upon a successful match, if C<pe1> is non-C<NULL>,
4249it will be set to point to the beginning of the I<next> character of C<s1>
4250beyond what was matched. Correspondingly for C<pe2> and C<s2>.
4251
4252For case-insensitiveness, the "casefolding" of Unicode is used
4253instead of upper/lowercasing both the characters, see
4254L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4255
4256=cut */
4257
4258/* A flags parameter has been added which may change, and hence isn't
4259 * externally documented. Currently it is:
4260 * 0 for as-documented above
4261 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4262 ASCII one, to not match
4263 * FOLDEQ_LOCALE is set iff the rules from the current underlying
4264 * locale are to be used.
4265 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4266 * routine. This allows that step to be skipped.
4267 * Currently, this requires s1 to be encoded as UTF-8
4268 * (u1 must be true), which is asserted for.
4269 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
4270 * cross certain boundaries. Hence, the caller should
4271 * let this function do the folding instead of
4272 * pre-folding. This code contains an assertion to
4273 * that effect. However, if the caller knows what
4274 * it's doing, it can pass this flag to indicate that,
4275 * and the assertion is skipped.
4276 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
4277 * FOLDEQ_S2_FOLDS_SANE
4278 */
4279I32
4280Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1, const char *s2, char **pe2, UV l2, bool u2, U32 flags)
4281{
4282 const U8 *p1 = (const U8*)s1; /* Point to current char */
4283 const U8 *p2 = (const U8*)s2;
4284 const U8 *g1 = NULL; /* goal for s1 */
4285 const U8 *g2 = NULL;
4286 const U8 *e1 = NULL; /* Don't scan s1 past this */
4287 U8 *f1 = NULL; /* Point to current folded */
4288 const U8 *e2 = NULL;
4289 U8 *f2 = NULL;
4290 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
4291 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4292 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4293 U8 flags_for_folder = FOLD_FLAGS_FULL;
4294
4295 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4296
4297 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
4298 && (((flags & FOLDEQ_S1_ALREADY_FOLDED)
4299 && !(flags & FOLDEQ_S1_FOLDS_SANE))
4300 || ((flags & FOLDEQ_S2_ALREADY_FOLDED)
4301 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
4302 /* The algorithm is to trial the folds without regard to the flags on
4303 * the first line of the above assert(), and then see if the result
4304 * violates them. This means that the inputs can't be pre-folded to a
4305 * violating result, hence the assert. This could be changed, with the
4306 * addition of extra tests here for the already-folded case, which would
4307 * slow it down. That cost is more than any possible gain for when these
4308 * flags are specified, as the flags indicate /il or /iaa matching which
4309 * is less common than /iu, and I (khw) also believe that real-world /il
4310 * and /iaa matches are most likely to involve code points 0-255, and this
4311 * function only under rare conditions gets called for 0-255. */
4312
4313 if (flags & FOLDEQ_LOCALE) {
4314 if (IN_UTF8_CTYPE_LOCALE) {
4315 flags &= ~FOLDEQ_LOCALE;
4316 }
4317 else {
4318 flags_for_folder |= FOLD_FLAGS_LOCALE;
4319 }
4320 }
4321
4322 if (pe1) {
4323 e1 = *(U8**)pe1;
4324 }
4325
4326 if (l1) {
4327 g1 = (const U8*)s1 + l1;
4328 }
4329
4330 if (pe2) {
4331 e2 = *(U8**)pe2;
4332 }
4333
4334 if (l2) {
4335 g2 = (const U8*)s2 + l2;
4336 }
4337
4338 /* Must have at least one goal */
4339 assert(g1 || g2);
4340
4341 if (g1) {
4342
4343 /* Will never match if goal is out-of-bounds */
4344 assert(! e1 || e1 >= g1);
4345
4346 /* Here, there isn't an end pointer, or it is beyond the goal. We
4347 * only go as far as the goal */
4348 e1 = g1;
4349 }
4350 else {
4351 assert(e1); /* Must have an end for looking at s1 */
4352 }
4353
4354 /* Same for goal for s2 */
4355 if (g2) {
4356 assert(! e2 || e2 >= g2);
4357 e2 = g2;
4358 }
4359 else {
4360 assert(e2);
4361 }
4362
4363 /* If both operands are already folded, we could just do a memEQ on the
4364 * whole strings at once, but it would be better if the caller realized
4365 * this and didn't even call us */
4366
4367 /* Look through both strings, a character at a time */
4368 while (p1 < e1 && p2 < e2) {
4369
4370 /* If at the beginning of a new character in s1, get its fold to use
4371 * and the length of the fold. */
4372 if (n1 == 0) {
4373 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4374 f1 = (U8 *) p1;
4375 assert(u1);
4376 n1 = UTF8SKIP(f1);
4377 }
4378 else {
4379 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
4380
4381 /* We have to forbid mixing ASCII with non-ASCII if the
4382 * flags so indicate. And, we can short circuit having to
4383 * call the general functions for this common ASCII case,
4384 * all of whose non-locale folds are also ASCII, and hence
4385 * UTF-8 invariants, so the UTF8ness of the strings is not
4386 * relevant. */
4387 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4388 return 0;
4389 }
4390 n1 = 1;
4391 *foldbuf1 = toFOLD(*p1);
4392 }
4393 else if (u1) {
4394 _to_utf8_fold_flags(p1, foldbuf1, &n1, flags_for_folder);
4395 }
4396 else { /* Not UTF-8, get UTF-8 fold */
4397 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
4398 }
4399 f1 = foldbuf1;
4400 }
4401 }
4402
4403 if (n2 == 0) { /* Same for s2 */
4404 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4405 f2 = (U8 *) p2;
4406 assert(u2);
4407 n2 = UTF8SKIP(f2);
4408 }
4409 else {
4410 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
4411 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4412 return 0;
4413 }
4414 n2 = 1;
4415 *foldbuf2 = toFOLD(*p2);
4416 }
4417 else if (u2) {
4418 _to_utf8_fold_flags(p2, foldbuf2, &n2, flags_for_folder);
4419 }
4420 else {
4421 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
4422 }
4423 f2 = foldbuf2;
4424 }
4425 }
4426
4427 /* Here f1 and f2 point to the beginning of the strings to compare.
4428 * These strings are the folds of the next character from each input
4429 * string, stored in UTF-8. */
4430
4431 /* While there is more to look for in both folds, see if they
4432 * continue to match */
4433 while (n1 && n2) {
4434 U8 fold_length = UTF8SKIP(f1);
4435 if (fold_length != UTF8SKIP(f2)
4436 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4437 function call for single
4438 byte */
4439 || memNE((char*)f1, (char*)f2, fold_length))
4440 {
4441 return 0; /* mismatch */
4442 }
4443
4444 /* Here, they matched, advance past them */
4445 n1 -= fold_length;
4446 f1 += fold_length;
4447 n2 -= fold_length;
4448 f2 += fold_length;
4449 }
4450
4451 /* When reach the end of any fold, advance the input past it */
4452 if (n1 == 0) {
4453 p1 += u1 ? UTF8SKIP(p1) : 1;
4454 }
4455 if (n2 == 0) {
4456 p2 += u2 ? UTF8SKIP(p2) : 1;
4457 }
4458 } /* End of loop through both strings */
4459
4460 /* A match is defined by each scan that specified an explicit length
4461 * reaching its final goal, and the other not having matched a partial
4462 * character (which can happen when the fold of a character is more than one
4463 * character). */
4464 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4465 return 0;
4466 }
4467
4468 /* Successful match. Set output pointers */
4469 if (pe1) {
4470 *pe1 = (char*)p1;
4471 }
4472 if (pe2) {
4473 *pe2 = (char*)p2;
4474 }
4475 return 1;
4476}
4477
4478/* XXX The next two functions should likely be moved to mathoms.c once all
4479 * occurrences of them are removed from the core; some cpan-upstream modules
4480 * still use them */
4481
4482U8 *
4483Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
4484{
4485 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
4486
4487 return Perl_uvoffuni_to_utf8_flags(aTHX_ d, uv, 0);
4488}
4489
4490/*
4491=for apidoc utf8n_to_uvuni
4492
4493Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
4494
4495This function was useful for code that wanted to handle both EBCDIC and
4496ASCII platforms with Unicode properties, but starting in Perl v5.20, the
4497distinctions between the platforms have mostly been made invisible to most
4498code, so this function is quite unlikely to be what you want. If you do need
4499this precise functionality, use instead
4500C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
4501or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
4502
4503=cut
4504*/
4505
4506UV
4507Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
4508{
4509 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
4510
4511 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
4512}
4513
4514/*
4515=for apidoc uvuni_to_utf8_flags
4516
4517Instead you almost certainly want to use L</uvchr_to_utf8> or
4518L</uvchr_to_utf8_flags>.
4519
4520This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
4521which itself, while not deprecated, should be used only in isolated
4522circumstances. These functions were useful for code that wanted to handle
4523both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
4524v5.20, the distinctions between the platforms have mostly been made invisible
4525to most code, so this function is quite unlikely to be what you want.
4526
4527=cut
4528*/
4529
4530U8 *
4531Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
4532{
4533 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
4534
4535 return uvoffuni_to_utf8_flags(d, uv, flags);
4536}
4537
4538/*
4539 * ex: set ts=8 sts=4 sw=4 et:
4540 */