This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Update Digest-SHA to CPAN version 5.72
[perl5.git] / regcomp.c
... / ...
CommitLineData
1/* regcomp.c
2 */
3
4/*
5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
6 *
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
8 */
9
10/* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
13 *
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
18 */
19
20/* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
22 */
23
24/* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
27 */
28
29/* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
32*/
33
34#ifdef PERL_EXT_RE_BUILD
35#include "re_top.h"
36#endif
37
38/*
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
40 *
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
43 *
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
47 *
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
50 * from defects in it.
51 *
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
54 *
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
57 *
58 *
59 **** Alterations to Henry's code are...
60 ****
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
64 ****
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
67
68 *
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
72 */
73#include "EXTERN.h"
74#define PERL_IN_REGCOMP_C
75#include "perl.h"
76
77#ifndef PERL_IN_XSUB_RE
78# include "INTERN.h"
79#endif
80
81#define REG_COMP_C
82#ifdef PERL_IN_XSUB_RE
83# include "re_comp.h"
84extern const struct regexp_engine my_reg_engine;
85#else
86# include "regcomp.h"
87#endif
88
89#include "dquote_static.c"
90#include "charclass_invlists.h"
91#include "inline_invlist.c"
92#include "unicode_constants.h"
93
94#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96
97#ifdef op
98#undef op
99#endif /* op */
100
101#ifdef MSDOS
102# if defined(BUGGY_MSC6)
103 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
104# pragma optimize("a",off)
105 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
106# pragma optimize("w",on )
107# endif /* BUGGY_MSC6 */
108#endif /* MSDOS */
109
110#ifndef STATIC
111#define STATIC static
112#endif
113
114
115typedef struct RExC_state_t {
116 U32 flags; /* RXf_* are we folding, multilining? */
117 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
118 char *precomp; /* uncompiled string. */
119 REGEXP *rx_sv; /* The SV that is the regexp. */
120 regexp *rx; /* perl core regexp structure */
121 regexp_internal *rxi; /* internal data for regexp object pprivate field */
122 char *start; /* Start of input for compile */
123 char *end; /* End of input for compile */
124 char *parse; /* Input-scan pointer. */
125 I32 whilem_seen; /* number of WHILEM in this expr */
126 regnode *emit_start; /* Start of emitted-code area */
127 regnode *emit_bound; /* First regnode outside of the allocated space */
128 regnode *emit; /* Code-emit pointer; &regdummy = don't = compiling */
129 I32 naughty; /* How bad is this pattern? */
130 I32 sawback; /* Did we see \1, ...? */
131 U32 seen;
132 I32 size; /* Code size. */
133 I32 npar; /* Capture buffer count, (OPEN). */
134 I32 cpar; /* Capture buffer count, (CLOSE). */
135 I32 nestroot; /* root parens we are in - used by accept */
136 I32 extralen;
137 I32 seen_zerolen;
138 regnode **open_parens; /* pointers to open parens */
139 regnode **close_parens; /* pointers to close parens */
140 regnode *opend; /* END node in program */
141 I32 utf8; /* whether the pattern is utf8 or not */
142 I32 orig_utf8; /* whether the pattern was originally in utf8 */
143 /* XXX use this for future optimisation of case
144 * where pattern must be upgraded to utf8. */
145 I32 uni_semantics; /* If a d charset modifier should use unicode
146 rules, even if the pattern is not in
147 utf8 */
148 HV *paren_names; /* Paren names */
149
150 regnode **recurse; /* Recurse regops */
151 I32 recurse_count; /* Number of recurse regops */
152 I32 in_lookbehind;
153 I32 contains_locale;
154 I32 override_recoding;
155 struct reg_code_block *code_blocks; /* positions of literal (?{})
156 within pattern */
157 int num_code_blocks; /* size of code_blocks[] */
158 int code_index; /* next code_blocks[] slot */
159#if ADD_TO_REGEXEC
160 char *starttry; /* -Dr: where regtry was called. */
161#define RExC_starttry (pRExC_state->starttry)
162#endif
163 SV *runtime_code_qr; /* qr with the runtime code blocks */
164#ifdef DEBUGGING
165 const char *lastparse;
166 I32 lastnum;
167 AV *paren_name_list; /* idx -> name */
168#define RExC_lastparse (pRExC_state->lastparse)
169#define RExC_lastnum (pRExC_state->lastnum)
170#define RExC_paren_name_list (pRExC_state->paren_name_list)
171#endif
172} RExC_state_t;
173
174#define RExC_flags (pRExC_state->flags)
175#define RExC_pm_flags (pRExC_state->pm_flags)
176#define RExC_precomp (pRExC_state->precomp)
177#define RExC_rx_sv (pRExC_state->rx_sv)
178#define RExC_rx (pRExC_state->rx)
179#define RExC_rxi (pRExC_state->rxi)
180#define RExC_start (pRExC_state->start)
181#define RExC_end (pRExC_state->end)
182#define RExC_parse (pRExC_state->parse)
183#define RExC_whilem_seen (pRExC_state->whilem_seen)
184#ifdef RE_TRACK_PATTERN_OFFSETS
185#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
186#endif
187#define RExC_emit (pRExC_state->emit)
188#define RExC_emit_start (pRExC_state->emit_start)
189#define RExC_emit_bound (pRExC_state->emit_bound)
190#define RExC_naughty (pRExC_state->naughty)
191#define RExC_sawback (pRExC_state->sawback)
192#define RExC_seen (pRExC_state->seen)
193#define RExC_size (pRExC_state->size)
194#define RExC_npar (pRExC_state->npar)
195#define RExC_nestroot (pRExC_state->nestroot)
196#define RExC_extralen (pRExC_state->extralen)
197#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
198#define RExC_utf8 (pRExC_state->utf8)
199#define RExC_uni_semantics (pRExC_state->uni_semantics)
200#define RExC_orig_utf8 (pRExC_state->orig_utf8)
201#define RExC_open_parens (pRExC_state->open_parens)
202#define RExC_close_parens (pRExC_state->close_parens)
203#define RExC_opend (pRExC_state->opend)
204#define RExC_paren_names (pRExC_state->paren_names)
205#define RExC_recurse (pRExC_state->recurse)
206#define RExC_recurse_count (pRExC_state->recurse_count)
207#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
208#define RExC_contains_locale (pRExC_state->contains_locale)
209#define RExC_override_recoding (pRExC_state->override_recoding)
210
211
212#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
213#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
214 ((*s) == '{' && regcurly(s)))
215
216#ifdef SPSTART
217#undef SPSTART /* dratted cpp namespace... */
218#endif
219/*
220 * Flags to be passed up and down.
221 */
222#define WORST 0 /* Worst case. */
223#define HASWIDTH 0x01 /* Known to match non-null strings. */
224
225/* Simple enough to be STAR/PLUS operand; in an EXACT node must be a single
226 * character, and if utf8, must be invariant. Note that this is not the same
227 * thing as REGNODE_SIMPLE */
228#define SIMPLE 0x02
229#define SPSTART 0x04 /* Starts with * or +. */
230#define TRYAGAIN 0x08 /* Weeded out a declaration. */
231#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
232
233#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
234
235/* whether trie related optimizations are enabled */
236#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
237#define TRIE_STUDY_OPT
238#define FULL_TRIE_STUDY
239#define TRIE_STCLASS
240#endif
241
242
243
244#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
245#define PBITVAL(paren) (1 << ((paren) & 7))
246#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
247#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
248#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
249
250/* If not already in utf8, do a longjmp back to the beginning */
251#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
252#define REQUIRE_UTF8 STMT_START { \
253 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
254 } STMT_END
255
256/* About scan_data_t.
257
258 During optimisation we recurse through the regexp program performing
259 various inplace (keyhole style) optimisations. In addition study_chunk
260 and scan_commit populate this data structure with information about
261 what strings MUST appear in the pattern. We look for the longest
262 string that must appear at a fixed location, and we look for the
263 longest string that may appear at a floating location. So for instance
264 in the pattern:
265
266 /FOO[xX]A.*B[xX]BAR/
267
268 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
269 strings (because they follow a .* construct). study_chunk will identify
270 both FOO and BAR as being the longest fixed and floating strings respectively.
271
272 The strings can be composites, for instance
273
274 /(f)(o)(o)/
275
276 will result in a composite fixed substring 'foo'.
277
278 For each string some basic information is maintained:
279
280 - offset or min_offset
281 This is the position the string must appear at, or not before.
282 It also implicitly (when combined with minlenp) tells us how many
283 characters must match before the string we are searching for.
284 Likewise when combined with minlenp and the length of the string it
285 tells us how many characters must appear after the string we have
286 found.
287
288 - max_offset
289 Only used for floating strings. This is the rightmost point that
290 the string can appear at. If set to I32 max it indicates that the
291 string can occur infinitely far to the right.
292
293 - minlenp
294 A pointer to the minimum length of the pattern that the string
295 was found inside. This is important as in the case of positive
296 lookahead or positive lookbehind we can have multiple patterns
297 involved. Consider
298
299 /(?=FOO).*F/
300
301 The minimum length of the pattern overall is 3, the minimum length
302 of the lookahead part is 3, but the minimum length of the part that
303 will actually match is 1. So 'FOO's minimum length is 3, but the
304 minimum length for the F is 1. This is important as the minimum length
305 is used to determine offsets in front of and behind the string being
306 looked for. Since strings can be composites this is the length of the
307 pattern at the time it was committed with a scan_commit. Note that
308 the length is calculated by study_chunk, so that the minimum lengths
309 are not known until the full pattern has been compiled, thus the
310 pointer to the value.
311
312 - lookbehind
313
314 In the case of lookbehind the string being searched for can be
315 offset past the start point of the final matching string.
316 If this value was just blithely removed from the min_offset it would
317 invalidate some of the calculations for how many chars must match
318 before or after (as they are derived from min_offset and minlen and
319 the length of the string being searched for).
320 When the final pattern is compiled and the data is moved from the
321 scan_data_t structure into the regexp structure the information
322 about lookbehind is factored in, with the information that would
323 have been lost precalculated in the end_shift field for the
324 associated string.
325
326 The fields pos_min and pos_delta are used to store the minimum offset
327 and the delta to the maximum offset at the current point in the pattern.
328
329*/
330
331typedef struct scan_data_t {
332 /*I32 len_min; unused */
333 /*I32 len_delta; unused */
334 I32 pos_min;
335 I32 pos_delta;
336 SV *last_found;
337 I32 last_end; /* min value, <0 unless valid. */
338 I32 last_start_min;
339 I32 last_start_max;
340 SV **longest; /* Either &l_fixed, or &l_float. */
341 SV *longest_fixed; /* longest fixed string found in pattern */
342 I32 offset_fixed; /* offset where it starts */
343 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
344 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
345 SV *longest_float; /* longest floating string found in pattern */
346 I32 offset_float_min; /* earliest point in string it can appear */
347 I32 offset_float_max; /* latest point in string it can appear */
348 I32 *minlen_float; /* pointer to the minlen relevant to the string */
349 I32 lookbehind_float; /* is the position of the string modified by LB */
350 I32 flags;
351 I32 whilem_c;
352 I32 *last_closep;
353 struct regnode_charclass_class *start_class;
354} scan_data_t;
355
356/*
357 * Forward declarations for pregcomp()'s friends.
358 */
359
360static const scan_data_t zero_scan_data =
361 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
362
363#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
364#define SF_BEFORE_SEOL 0x0001
365#define SF_BEFORE_MEOL 0x0002
366#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
367#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
368
369#ifdef NO_UNARY_PLUS
370# define SF_FIX_SHIFT_EOL (0+2)
371# define SF_FL_SHIFT_EOL (0+4)
372#else
373# define SF_FIX_SHIFT_EOL (+2)
374# define SF_FL_SHIFT_EOL (+4)
375#endif
376
377#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
378#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
379
380#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
381#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
382#define SF_IS_INF 0x0040
383#define SF_HAS_PAR 0x0080
384#define SF_IN_PAR 0x0100
385#define SF_HAS_EVAL 0x0200
386#define SCF_DO_SUBSTR 0x0400
387#define SCF_DO_STCLASS_AND 0x0800
388#define SCF_DO_STCLASS_OR 0x1000
389#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
390#define SCF_WHILEM_VISITED_POS 0x2000
391
392#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
393#define SCF_SEEN_ACCEPT 0x8000
394
395#define UTF cBOOL(RExC_utf8)
396
397/* The enums for all these are ordered so things work out correctly */
398#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
399#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
400#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
401#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
402#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
403#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
404#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
405
406#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
407
408#define OOB_NAMEDCLASS -1
409
410/* There is no code point that is out-of-bounds, so this is problematic. But
411 * its only current use is to initialize a variable that is always set before
412 * looked at. */
413#define OOB_UNICODE 0xDEADBEEF
414
415#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
416#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
417
418
419/* length of regex to show in messages that don't mark a position within */
420#define RegexLengthToShowInErrorMessages 127
421
422/*
423 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
424 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
425 * op/pragma/warn/regcomp.
426 */
427#define MARKER1 "<-- HERE" /* marker as it appears in the description */
428#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
429
430#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
431
432/*
433 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
434 * arg. Show regex, up to a maximum length. If it's too long, chop and add
435 * "...".
436 */
437#define _FAIL(code) STMT_START { \
438 const char *ellipses = ""; \
439 IV len = RExC_end - RExC_precomp; \
440 \
441 if (!SIZE_ONLY) \
442 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
443 if (len > RegexLengthToShowInErrorMessages) { \
444 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
445 len = RegexLengthToShowInErrorMessages - 10; \
446 ellipses = "..."; \
447 } \
448 code; \
449} STMT_END
450
451#define FAIL(msg) _FAIL( \
452 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
453 msg, (int)len, RExC_precomp, ellipses))
454
455#define FAIL2(msg,arg) _FAIL( \
456 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
457 arg, (int)len, RExC_precomp, ellipses))
458
459/*
460 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
461 */
462#define Simple_vFAIL(m) STMT_START { \
463 const IV offset = RExC_parse - RExC_precomp; \
464 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
465 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
466} STMT_END
467
468/*
469 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
470 */
471#define vFAIL(m) STMT_START { \
472 if (!SIZE_ONLY) \
473 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
474 Simple_vFAIL(m); \
475} STMT_END
476
477/*
478 * Like Simple_vFAIL(), but accepts two arguments.
479 */
480#define Simple_vFAIL2(m,a1) STMT_START { \
481 const IV offset = RExC_parse - RExC_precomp; \
482 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
483 (int)offset, RExC_precomp, RExC_precomp + offset); \
484} STMT_END
485
486/*
487 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
488 */
489#define vFAIL2(m,a1) STMT_START { \
490 if (!SIZE_ONLY) \
491 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
492 Simple_vFAIL2(m, a1); \
493} STMT_END
494
495
496/*
497 * Like Simple_vFAIL(), but accepts three arguments.
498 */
499#define Simple_vFAIL3(m, a1, a2) STMT_START { \
500 const IV offset = RExC_parse - RExC_precomp; \
501 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
502 (int)offset, RExC_precomp, RExC_precomp + offset); \
503} STMT_END
504
505/*
506 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
507 */
508#define vFAIL3(m,a1,a2) STMT_START { \
509 if (!SIZE_ONLY) \
510 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
511 Simple_vFAIL3(m, a1, a2); \
512} STMT_END
513
514/*
515 * Like Simple_vFAIL(), but accepts four arguments.
516 */
517#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
518 const IV offset = RExC_parse - RExC_precomp; \
519 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
520 (int)offset, RExC_precomp, RExC_precomp + offset); \
521} STMT_END
522
523#define ckWARNreg(loc,m) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 (int)offset, RExC_precomp, RExC_precomp + offset); \
527} STMT_END
528
529#define ckWARNregdep(loc,m) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
532 m REPORT_LOCATION, \
533 (int)offset, RExC_precomp, RExC_precomp + offset); \
534} STMT_END
535
536#define ckWARN2regdep(loc,m, a1) STMT_START { \
537 const IV offset = loc - RExC_precomp; \
538 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
539 m REPORT_LOCATION, \
540 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
541} STMT_END
542
543#define ckWARN2reg(loc, m, a1) STMT_START { \
544 const IV offset = loc - RExC_precomp; \
545 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
546 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
547} STMT_END
548
549#define vWARN3(loc, m, a1, a2) STMT_START { \
550 const IV offset = loc - RExC_precomp; \
551 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
552 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
553} STMT_END
554
555#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
556 const IV offset = loc - RExC_precomp; \
557 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
558 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
559} STMT_END
560
561#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
562 const IV offset = loc - RExC_precomp; \
563 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
564 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
565} STMT_END
566
567#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
568 const IV offset = loc - RExC_precomp; \
569 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
570 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
571} STMT_END
572
573#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
574 const IV offset = loc - RExC_precomp; \
575 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
576 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
577} STMT_END
578
579
580/* Allow for side effects in s */
581#define REGC(c,s) STMT_START { \
582 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
583} STMT_END
584
585/* Macros for recording node offsets. 20001227 mjd@plover.com
586 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
587 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
588 * Element 0 holds the number n.
589 * Position is 1 indexed.
590 */
591#ifndef RE_TRACK_PATTERN_OFFSETS
592#define Set_Node_Offset_To_R(node,byte)
593#define Set_Node_Offset(node,byte)
594#define Set_Cur_Node_Offset
595#define Set_Node_Length_To_R(node,len)
596#define Set_Node_Length(node,len)
597#define Set_Node_Cur_Length(node)
598#define Node_Offset(n)
599#define Node_Length(n)
600#define Set_Node_Offset_Length(node,offset,len)
601#define ProgLen(ri) ri->u.proglen
602#define SetProgLen(ri,x) ri->u.proglen = x
603#else
604#define ProgLen(ri) ri->u.offsets[0]
605#define SetProgLen(ri,x) ri->u.offsets[0] = x
606#define Set_Node_Offset_To_R(node,byte) STMT_START { \
607 if (! SIZE_ONLY) { \
608 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
609 __LINE__, (int)(node), (int)(byte))); \
610 if((node) < 0) { \
611 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
612 } else { \
613 RExC_offsets[2*(node)-1] = (byte); \
614 } \
615 } \
616} STMT_END
617
618#define Set_Node_Offset(node,byte) \
619 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
620#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
621
622#define Set_Node_Length_To_R(node,len) STMT_START { \
623 if (! SIZE_ONLY) { \
624 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
625 __LINE__, (int)(node), (int)(len))); \
626 if((node) < 0) { \
627 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
628 } else { \
629 RExC_offsets[2*(node)] = (len); \
630 } \
631 } \
632} STMT_END
633
634#define Set_Node_Length(node,len) \
635 Set_Node_Length_To_R((node)-RExC_emit_start, len)
636#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
637#define Set_Node_Cur_Length(node) \
638 Set_Node_Length(node, RExC_parse - parse_start)
639
640/* Get offsets and lengths */
641#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
642#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
643
644#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
645 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
646 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
647} STMT_END
648#endif
649
650#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
651#define EXPERIMENTAL_INPLACESCAN
652#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
653
654#define DEBUG_STUDYDATA(str,data,depth) \
655DEBUG_OPTIMISE_MORE_r(if(data){ \
656 PerlIO_printf(Perl_debug_log, \
657 "%*s" str "Pos:%"IVdf"/%"IVdf \
658 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
659 (int)(depth)*2, "", \
660 (IV)((data)->pos_min), \
661 (IV)((data)->pos_delta), \
662 (UV)((data)->flags), \
663 (IV)((data)->whilem_c), \
664 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
665 is_inf ? "INF " : "" \
666 ); \
667 if ((data)->last_found) \
668 PerlIO_printf(Perl_debug_log, \
669 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
670 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
671 SvPVX_const((data)->last_found), \
672 (IV)((data)->last_end), \
673 (IV)((data)->last_start_min), \
674 (IV)((data)->last_start_max), \
675 ((data)->longest && \
676 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
677 SvPVX_const((data)->longest_fixed), \
678 (IV)((data)->offset_fixed), \
679 ((data)->longest && \
680 (data)->longest==&((data)->longest_float)) ? "*" : "", \
681 SvPVX_const((data)->longest_float), \
682 (IV)((data)->offset_float_min), \
683 (IV)((data)->offset_float_max) \
684 ); \
685 PerlIO_printf(Perl_debug_log,"\n"); \
686});
687
688static void clear_re(pTHX_ void *r);
689
690/* Mark that we cannot extend a found fixed substring at this point.
691 Update the longest found anchored substring and the longest found
692 floating substrings if needed. */
693
694STATIC void
695S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
696{
697 const STRLEN l = CHR_SVLEN(data->last_found);
698 const STRLEN old_l = CHR_SVLEN(*data->longest);
699 GET_RE_DEBUG_FLAGS_DECL;
700
701 PERL_ARGS_ASSERT_SCAN_COMMIT;
702
703 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
704 SvSetMagicSV(*data->longest, data->last_found);
705 if (*data->longest == data->longest_fixed) {
706 data->offset_fixed = l ? data->last_start_min : data->pos_min;
707 if (data->flags & SF_BEFORE_EOL)
708 data->flags
709 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
710 else
711 data->flags &= ~SF_FIX_BEFORE_EOL;
712 data->minlen_fixed=minlenp;
713 data->lookbehind_fixed=0;
714 }
715 else { /* *data->longest == data->longest_float */
716 data->offset_float_min = l ? data->last_start_min : data->pos_min;
717 data->offset_float_max = (l
718 ? data->last_start_max
719 : data->pos_min + data->pos_delta);
720 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
721 data->offset_float_max = I32_MAX;
722 if (data->flags & SF_BEFORE_EOL)
723 data->flags
724 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
725 else
726 data->flags &= ~SF_FL_BEFORE_EOL;
727 data->minlen_float=minlenp;
728 data->lookbehind_float=0;
729 }
730 }
731 SvCUR_set(data->last_found, 0);
732 {
733 SV * const sv = data->last_found;
734 if (SvUTF8(sv) && SvMAGICAL(sv)) {
735 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
736 if (mg)
737 mg->mg_len = 0;
738 }
739 }
740 data->last_end = -1;
741 data->flags &= ~SF_BEFORE_EOL;
742 DEBUG_STUDYDATA("commit: ",data,0);
743}
744
745/* Can match anything (initialization) */
746STATIC void
747S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
748{
749 PERL_ARGS_ASSERT_CL_ANYTHING;
750
751 ANYOF_BITMAP_SETALL(cl);
752 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
753 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
754
755 /* If any portion of the regex is to operate under locale rules,
756 * initialization includes it. The reason this isn't done for all regexes
757 * is that the optimizer was written under the assumption that locale was
758 * all-or-nothing. Given the complexity and lack of documentation in the
759 * optimizer, and that there are inadequate test cases for locale, so many
760 * parts of it may not work properly, it is safest to avoid locale unless
761 * necessary. */
762 if (RExC_contains_locale) {
763 ANYOF_CLASS_SETALL(cl); /* /l uses class */
764 cl->flags |= ANYOF_LOCALE;
765 }
766 else {
767 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
768 }
769}
770
771/* Can match anything (initialization) */
772STATIC int
773S_cl_is_anything(const struct regnode_charclass_class *cl)
774{
775 int value;
776
777 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
778
779 for (value = 0; value <= ANYOF_MAX; value += 2)
780 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
781 return 1;
782 if (!(cl->flags & ANYOF_UNICODE_ALL))
783 return 0;
784 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
785 return 0;
786 return 1;
787}
788
789/* Can match anything (initialization) */
790STATIC void
791S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
792{
793 PERL_ARGS_ASSERT_CL_INIT;
794
795 Zero(cl, 1, struct regnode_charclass_class);
796 cl->type = ANYOF;
797 cl_anything(pRExC_state, cl);
798 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
799}
800
801/* These two functions currently do the exact same thing */
802#define cl_init_zero S_cl_init
803
804/* 'AND' a given class with another one. Can create false positives. 'cl'
805 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
806 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
807STATIC void
808S_cl_and(struct regnode_charclass_class *cl,
809 const struct regnode_charclass_class *and_with)
810{
811 PERL_ARGS_ASSERT_CL_AND;
812
813 assert(and_with->type == ANYOF);
814
815 /* I (khw) am not sure all these restrictions are necessary XXX */
816 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
817 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
818 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
819 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
820 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
821 int i;
822
823 if (and_with->flags & ANYOF_INVERT)
824 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
825 cl->bitmap[i] &= ~and_with->bitmap[i];
826 else
827 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
828 cl->bitmap[i] &= and_with->bitmap[i];
829 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
830
831 if (and_with->flags & ANYOF_INVERT) {
832
833 /* Here, the and'ed node is inverted. Get the AND of the flags that
834 * aren't affected by the inversion. Those that are affected are
835 * handled individually below */
836 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
837 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
838 cl->flags |= affected_flags;
839
840 /* We currently don't know how to deal with things that aren't in the
841 * bitmap, but we know that the intersection is no greater than what
842 * is already in cl, so let there be false positives that get sorted
843 * out after the synthetic start class succeeds, and the node is
844 * matched for real. */
845
846 /* The inversion of these two flags indicate that the resulting
847 * intersection doesn't have them */
848 if (and_with->flags & ANYOF_UNICODE_ALL) {
849 cl->flags &= ~ANYOF_UNICODE_ALL;
850 }
851 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
852 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
853 }
854 }
855 else { /* and'd node is not inverted */
856 U8 outside_bitmap_but_not_utf8; /* Temp variable */
857
858 if (! ANYOF_NONBITMAP(and_with)) {
859
860 /* Here 'and_with' doesn't match anything outside the bitmap
861 * (except possibly ANYOF_UNICODE_ALL), which means the
862 * intersection can't either, except for ANYOF_UNICODE_ALL, in
863 * which case we don't know what the intersection is, but it's no
864 * greater than what cl already has, so can just leave it alone,
865 * with possible false positives */
866 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
867 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
868 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
869 }
870 }
871 else if (! ANYOF_NONBITMAP(cl)) {
872
873 /* Here, 'and_with' does match something outside the bitmap, and cl
874 * doesn't have a list of things to match outside the bitmap. If
875 * cl can match all code points above 255, the intersection will
876 * be those above-255 code points that 'and_with' matches. If cl
877 * can't match all Unicode code points, it means that it can't
878 * match anything outside the bitmap (since the 'if' that got us
879 * into this block tested for that), so we leave the bitmap empty.
880 */
881 if (cl->flags & ANYOF_UNICODE_ALL) {
882 ARG_SET(cl, ARG(and_with));
883
884 /* and_with's ARG may match things that don't require UTF8.
885 * And now cl's will too, in spite of this being an 'and'. See
886 * the comments below about the kludge */
887 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
888 }
889 }
890 else {
891 /* Here, both 'and_with' and cl match something outside the
892 * bitmap. Currently we do not do the intersection, so just match
893 * whatever cl had at the beginning. */
894 }
895
896
897 /* Take the intersection of the two sets of flags. However, the
898 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
899 * kludge around the fact that this flag is not treated like the others
900 * which are initialized in cl_anything(). The way the optimizer works
901 * is that the synthetic start class (SSC) is initialized to match
902 * anything, and then the first time a real node is encountered, its
903 * values are AND'd with the SSC's with the result being the values of
904 * the real node. However, there are paths through the optimizer where
905 * the AND never gets called, so those initialized bits are set
906 * inappropriately, which is not usually a big deal, as they just cause
907 * false positives in the SSC, which will just mean a probably
908 * imperceptible slow down in execution. However this bit has a
909 * higher false positive consequence in that it can cause utf8.pm,
910 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
911 * bigger slowdown and also causes significant extra memory to be used.
912 * In order to prevent this, the code now takes a different tack. The
913 * bit isn't set unless some part of the regular expression needs it,
914 * but once set it won't get cleared. This means that these extra
915 * modules won't get loaded unless there was some path through the
916 * pattern that would have required them anyway, and so any false
917 * positives that occur by not ANDing them out when they could be
918 * aren't as severe as they would be if we treated this bit like all
919 * the others */
920 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
921 & ANYOF_NONBITMAP_NON_UTF8;
922 cl->flags &= and_with->flags;
923 cl->flags |= outside_bitmap_but_not_utf8;
924 }
925}
926
927/* 'OR' a given class with another one. Can create false positives. 'cl'
928 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
929 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
930STATIC void
931S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
932{
933 PERL_ARGS_ASSERT_CL_OR;
934
935 if (or_with->flags & ANYOF_INVERT) {
936
937 /* Here, the or'd node is to be inverted. This means we take the
938 * complement of everything not in the bitmap, but currently we don't
939 * know what that is, so give up and match anything */
940 if (ANYOF_NONBITMAP(or_with)) {
941 cl_anything(pRExC_state, cl);
942 }
943 /* We do not use
944 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
945 * <= (B1 | !B2) | (CL1 | !CL2)
946 * which is wasteful if CL2 is small, but we ignore CL2:
947 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
948 * XXXX Can we handle case-fold? Unclear:
949 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
950 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
951 */
952 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
953 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
954 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
955 int i;
956
957 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
958 cl->bitmap[i] |= ~or_with->bitmap[i];
959 } /* XXXX: logic is complicated otherwise */
960 else {
961 cl_anything(pRExC_state, cl);
962 }
963
964 /* And, we can just take the union of the flags that aren't affected
965 * by the inversion */
966 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
967
968 /* For the remaining flags:
969 ANYOF_UNICODE_ALL and inverted means to not match anything above
970 255, which means that the union with cl should just be
971 what cl has in it, so can ignore this flag
972 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
973 is 127-255 to match them, but then invert that, so the
974 union with cl should just be what cl has in it, so can
975 ignore this flag
976 */
977 } else { /* 'or_with' is not inverted */
978 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
979 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
980 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
981 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
982 int i;
983
984 /* OR char bitmap and class bitmap separately */
985 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
986 cl->bitmap[i] |= or_with->bitmap[i];
987 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
988 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
989 cl->classflags[i] |= or_with->classflags[i];
990 cl->flags |= ANYOF_CLASS;
991 }
992 }
993 else { /* XXXX: logic is complicated, leave it along for a moment. */
994 cl_anything(pRExC_state, cl);
995 }
996
997 if (ANYOF_NONBITMAP(or_with)) {
998
999 /* Use the added node's outside-the-bit-map match if there isn't a
1000 * conflict. If there is a conflict (both nodes match something
1001 * outside the bitmap, but what they match outside is not the same
1002 * pointer, and hence not easily compared until XXX we extend
1003 * inversion lists this far), give up and allow the start class to
1004 * match everything outside the bitmap. If that stuff is all above
1005 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1006 if (! ANYOF_NONBITMAP(cl)) {
1007 ARG_SET(cl, ARG(or_with));
1008 }
1009 else if (ARG(cl) != ARG(or_with)) {
1010
1011 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1012 cl_anything(pRExC_state, cl);
1013 }
1014 else {
1015 cl->flags |= ANYOF_UNICODE_ALL;
1016 }
1017 }
1018 }
1019
1020 /* Take the union */
1021 cl->flags |= or_with->flags;
1022 }
1023}
1024
1025#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1026#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1027#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1028#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1029
1030
1031#ifdef DEBUGGING
1032/*
1033 dump_trie(trie,widecharmap,revcharmap)
1034 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1035 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1036
1037 These routines dump out a trie in a somewhat readable format.
1038 The _interim_ variants are used for debugging the interim
1039 tables that are used to generate the final compressed
1040 representation which is what dump_trie expects.
1041
1042 Part of the reason for their existence is to provide a form
1043 of documentation as to how the different representations function.
1044
1045*/
1046
1047/*
1048 Dumps the final compressed table form of the trie to Perl_debug_log.
1049 Used for debugging make_trie().
1050*/
1051
1052STATIC void
1053S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1054 AV *revcharmap, U32 depth)
1055{
1056 U32 state;
1057 SV *sv=sv_newmortal();
1058 int colwidth= widecharmap ? 6 : 4;
1059 U16 word;
1060 GET_RE_DEBUG_FLAGS_DECL;
1061
1062 PERL_ARGS_ASSERT_DUMP_TRIE;
1063
1064 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1065 (int)depth * 2 + 2,"",
1066 "Match","Base","Ofs" );
1067
1068 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1069 SV ** const tmp = av_fetch( revcharmap, state, 0);
1070 if ( tmp ) {
1071 PerlIO_printf( Perl_debug_log, "%*s",
1072 colwidth,
1073 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1074 PL_colors[0], PL_colors[1],
1075 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1076 PERL_PV_ESCAPE_FIRSTCHAR
1077 )
1078 );
1079 }
1080 }
1081 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1082 (int)depth * 2 + 2,"");
1083
1084 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1085 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1086 PerlIO_printf( Perl_debug_log, "\n");
1087
1088 for( state = 1 ; state < trie->statecount ; state++ ) {
1089 const U32 base = trie->states[ state ].trans.base;
1090
1091 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1092
1093 if ( trie->states[ state ].wordnum ) {
1094 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1095 } else {
1096 PerlIO_printf( Perl_debug_log, "%6s", "" );
1097 }
1098
1099 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1100
1101 if ( base ) {
1102 U32 ofs = 0;
1103
1104 while( ( base + ofs < trie->uniquecharcount ) ||
1105 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1106 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1107 ofs++;
1108
1109 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1110
1111 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1112 if ( ( base + ofs >= trie->uniquecharcount ) &&
1113 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1114 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1115 {
1116 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1117 colwidth,
1118 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1119 } else {
1120 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1121 }
1122 }
1123
1124 PerlIO_printf( Perl_debug_log, "]");
1125
1126 }
1127 PerlIO_printf( Perl_debug_log, "\n" );
1128 }
1129 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1130 for (word=1; word <= trie->wordcount; word++) {
1131 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1132 (int)word, (int)(trie->wordinfo[word].prev),
1133 (int)(trie->wordinfo[word].len));
1134 }
1135 PerlIO_printf(Perl_debug_log, "\n" );
1136}
1137/*
1138 Dumps a fully constructed but uncompressed trie in list form.
1139 List tries normally only are used for construction when the number of
1140 possible chars (trie->uniquecharcount) is very high.
1141 Used for debugging make_trie().
1142*/
1143STATIC void
1144S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1145 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1146 U32 depth)
1147{
1148 U32 state;
1149 SV *sv=sv_newmortal();
1150 int colwidth= widecharmap ? 6 : 4;
1151 GET_RE_DEBUG_FLAGS_DECL;
1152
1153 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1154
1155 /* print out the table precompression. */
1156 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1157 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1158 "------:-----+-----------------\n" );
1159
1160 for( state=1 ; state < next_alloc ; state ++ ) {
1161 U16 charid;
1162
1163 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1164 (int)depth * 2 + 2,"", (UV)state );
1165 if ( ! trie->states[ state ].wordnum ) {
1166 PerlIO_printf( Perl_debug_log, "%5s| ","");
1167 } else {
1168 PerlIO_printf( Perl_debug_log, "W%4x| ",
1169 trie->states[ state ].wordnum
1170 );
1171 }
1172 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1173 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1174 if ( tmp ) {
1175 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1176 colwidth,
1177 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1178 PL_colors[0], PL_colors[1],
1179 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1180 PERL_PV_ESCAPE_FIRSTCHAR
1181 ) ,
1182 TRIE_LIST_ITEM(state,charid).forid,
1183 (UV)TRIE_LIST_ITEM(state,charid).newstate
1184 );
1185 if (!(charid % 10))
1186 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1187 (int)((depth * 2) + 14), "");
1188 }
1189 }
1190 PerlIO_printf( Perl_debug_log, "\n");
1191 }
1192}
1193
1194/*
1195 Dumps a fully constructed but uncompressed trie in table form.
1196 This is the normal DFA style state transition table, with a few
1197 twists to facilitate compression later.
1198 Used for debugging make_trie().
1199*/
1200STATIC void
1201S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1202 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1203 U32 depth)
1204{
1205 U32 state;
1206 U16 charid;
1207 SV *sv=sv_newmortal();
1208 int colwidth= widecharmap ? 6 : 4;
1209 GET_RE_DEBUG_FLAGS_DECL;
1210
1211 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1212
1213 /*
1214 print out the table precompression so that we can do a visual check
1215 that they are identical.
1216 */
1217
1218 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1219
1220 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1221 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1222 if ( tmp ) {
1223 PerlIO_printf( Perl_debug_log, "%*s",
1224 colwidth,
1225 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1226 PL_colors[0], PL_colors[1],
1227 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1228 PERL_PV_ESCAPE_FIRSTCHAR
1229 )
1230 );
1231 }
1232 }
1233
1234 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1235
1236 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1237 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1238 }
1239
1240 PerlIO_printf( Perl_debug_log, "\n" );
1241
1242 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1243
1244 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1245 (int)depth * 2 + 2,"",
1246 (UV)TRIE_NODENUM( state ) );
1247
1248 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1249 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1250 if (v)
1251 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1252 else
1253 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1254 }
1255 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1256 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1257 } else {
1258 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1259 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1260 }
1261 }
1262}
1263
1264#endif
1265
1266
1267/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1268 startbranch: the first branch in the whole branch sequence
1269 first : start branch of sequence of branch-exact nodes.
1270 May be the same as startbranch
1271 last : Thing following the last branch.
1272 May be the same as tail.
1273 tail : item following the branch sequence
1274 count : words in the sequence
1275 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1276 depth : indent depth
1277
1278Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1279
1280A trie is an N'ary tree where the branches are determined by digital
1281decomposition of the key. IE, at the root node you look up the 1st character and
1282follow that branch repeat until you find the end of the branches. Nodes can be
1283marked as "accepting" meaning they represent a complete word. Eg:
1284
1285 /he|she|his|hers/
1286
1287would convert into the following structure. Numbers represent states, letters
1288following numbers represent valid transitions on the letter from that state, if
1289the number is in square brackets it represents an accepting state, otherwise it
1290will be in parenthesis.
1291
1292 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1293 | |
1294 | (2)
1295 | |
1296 (1) +-i->(6)-+-s->[7]
1297 |
1298 +-s->(3)-+-h->(4)-+-e->[5]
1299
1300 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1301
1302This shows that when matching against the string 'hers' we will begin at state 1
1303read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1304then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1305is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1306single traverse. We store a mapping from accepting to state to which word was
1307matched, and then when we have multiple possibilities we try to complete the
1308rest of the regex in the order in which they occured in the alternation.
1309
1310The only prior NFA like behaviour that would be changed by the TRIE support is
1311the silent ignoring of duplicate alternations which are of the form:
1312
1313 / (DUPE|DUPE) X? (?{ ... }) Y /x
1314
1315Thus EVAL blocks following a trie may be called a different number of times with
1316and without the optimisation. With the optimisations dupes will be silently
1317ignored. This inconsistent behaviour of EVAL type nodes is well established as
1318the following demonstrates:
1319
1320 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1321
1322which prints out 'word' three times, but
1323
1324 'words'=~/(word|word|word)(?{ print $1 })S/
1325
1326which doesnt print it out at all. This is due to other optimisations kicking in.
1327
1328Example of what happens on a structural level:
1329
1330The regexp /(ac|ad|ab)+/ will produce the following debug output:
1331
1332 1: CURLYM[1] {1,32767}(18)
1333 5: BRANCH(8)
1334 6: EXACT <ac>(16)
1335 8: BRANCH(11)
1336 9: EXACT <ad>(16)
1337 11: BRANCH(14)
1338 12: EXACT <ab>(16)
1339 16: SUCCEED(0)
1340 17: NOTHING(18)
1341 18: END(0)
1342
1343This would be optimizable with startbranch=5, first=5, last=16, tail=16
1344and should turn into:
1345
1346 1: CURLYM[1] {1,32767}(18)
1347 5: TRIE(16)
1348 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1349 <ac>
1350 <ad>
1351 <ab>
1352 16: SUCCEED(0)
1353 17: NOTHING(18)
1354 18: END(0)
1355
1356Cases where tail != last would be like /(?foo|bar)baz/:
1357
1358 1: BRANCH(4)
1359 2: EXACT <foo>(8)
1360 4: BRANCH(7)
1361 5: EXACT <bar>(8)
1362 7: TAIL(8)
1363 8: EXACT <baz>(10)
1364 10: END(0)
1365
1366which would be optimizable with startbranch=1, first=1, last=7, tail=8
1367and would end up looking like:
1368
1369 1: TRIE(8)
1370 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1371 <foo>
1372 <bar>
1373 7: TAIL(8)
1374 8: EXACT <baz>(10)
1375 10: END(0)
1376
1377 d = uvuni_to_utf8_flags(d, uv, 0);
1378
1379is the recommended Unicode-aware way of saying
1380
1381 *(d++) = uv;
1382*/
1383
1384#define TRIE_STORE_REVCHAR(val) \
1385 STMT_START { \
1386 if (UTF) { \
1387 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1388 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1389 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1390 SvCUR_set(zlopp, kapow - flrbbbbb); \
1391 SvPOK_on(zlopp); \
1392 SvUTF8_on(zlopp); \
1393 av_push(revcharmap, zlopp); \
1394 } else { \
1395 char ooooff = (char)val; \
1396 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1397 } \
1398 } STMT_END
1399
1400#define TRIE_READ_CHAR STMT_START { \
1401 wordlen++; \
1402 if ( UTF ) { \
1403 /* if it is UTF then it is either already folded, or does not need folding */ \
1404 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1405 } \
1406 else if (folder == PL_fold_latin1) { \
1407 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1408 if ( foldlen > 0 ) { \
1409 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1410 foldlen -= len; \
1411 scan += len; \
1412 len = 0; \
1413 } else { \
1414 len = 1; \
1415 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1416 skiplen = UNISKIP(uvc); \
1417 foldlen -= skiplen; \
1418 scan = foldbuf + skiplen; \
1419 } \
1420 } else { \
1421 /* raw data, will be folded later if needed */ \
1422 uvc = (U32)*uc; \
1423 len = 1; \
1424 } \
1425} STMT_END
1426
1427
1428
1429#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1430 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1431 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1432 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1433 } \
1434 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1435 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1436 TRIE_LIST_CUR( state )++; \
1437} STMT_END
1438
1439#define TRIE_LIST_NEW(state) STMT_START { \
1440 Newxz( trie->states[ state ].trans.list, \
1441 4, reg_trie_trans_le ); \
1442 TRIE_LIST_CUR( state ) = 1; \
1443 TRIE_LIST_LEN( state ) = 4; \
1444} STMT_END
1445
1446#define TRIE_HANDLE_WORD(state) STMT_START { \
1447 U16 dupe= trie->states[ state ].wordnum; \
1448 regnode * const noper_next = regnext( noper ); \
1449 \
1450 DEBUG_r({ \
1451 /* store the word for dumping */ \
1452 SV* tmp; \
1453 if (OP(noper) != NOTHING) \
1454 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1455 else \
1456 tmp = newSVpvn_utf8( "", 0, UTF ); \
1457 av_push( trie_words, tmp ); \
1458 }); \
1459 \
1460 curword++; \
1461 trie->wordinfo[curword].prev = 0; \
1462 trie->wordinfo[curword].len = wordlen; \
1463 trie->wordinfo[curword].accept = state; \
1464 \
1465 if ( noper_next < tail ) { \
1466 if (!trie->jump) \
1467 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1468 trie->jump[curword] = (U16)(noper_next - convert); \
1469 if (!jumper) \
1470 jumper = noper_next; \
1471 if (!nextbranch) \
1472 nextbranch= regnext(cur); \
1473 } \
1474 \
1475 if ( dupe ) { \
1476 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1477 /* chain, so that when the bits of chain are later */\
1478 /* linked together, the dups appear in the chain */\
1479 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1480 trie->wordinfo[dupe].prev = curword; \
1481 } else { \
1482 /* we haven't inserted this word yet. */ \
1483 trie->states[ state ].wordnum = curword; \
1484 } \
1485} STMT_END
1486
1487
1488#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1489 ( ( base + charid >= ucharcount \
1490 && base + charid < ubound \
1491 && state == trie->trans[ base - ucharcount + charid ].check \
1492 && trie->trans[ base - ucharcount + charid ].next ) \
1493 ? trie->trans[ base - ucharcount + charid ].next \
1494 : ( state==1 ? special : 0 ) \
1495 )
1496
1497#define MADE_TRIE 1
1498#define MADE_JUMP_TRIE 2
1499#define MADE_EXACT_TRIE 4
1500
1501STATIC I32
1502S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1503{
1504 dVAR;
1505 /* first pass, loop through and scan words */
1506 reg_trie_data *trie;
1507 HV *widecharmap = NULL;
1508 AV *revcharmap = newAV();
1509 regnode *cur;
1510 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1511 STRLEN len = 0;
1512 UV uvc = 0;
1513 U16 curword = 0;
1514 U32 next_alloc = 0;
1515 regnode *jumper = NULL;
1516 regnode *nextbranch = NULL;
1517 regnode *convert = NULL;
1518 U32 *prev_states; /* temp array mapping each state to previous one */
1519 /* we just use folder as a flag in utf8 */
1520 const U8 * folder = NULL;
1521
1522#ifdef DEBUGGING
1523 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1524 AV *trie_words = NULL;
1525 /* along with revcharmap, this only used during construction but both are
1526 * useful during debugging so we store them in the struct when debugging.
1527 */
1528#else
1529 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1530 STRLEN trie_charcount=0;
1531#endif
1532 SV *re_trie_maxbuff;
1533 GET_RE_DEBUG_FLAGS_DECL;
1534
1535 PERL_ARGS_ASSERT_MAKE_TRIE;
1536#ifndef DEBUGGING
1537 PERL_UNUSED_ARG(depth);
1538#endif
1539
1540 switch (flags) {
1541 case EXACT: break;
1542 case EXACTFA:
1543 case EXACTFU_SS:
1544 case EXACTFU_TRICKYFOLD:
1545 case EXACTFU: folder = PL_fold_latin1; break;
1546 case EXACTF: folder = PL_fold; break;
1547 case EXACTFL: folder = PL_fold_locale; break;
1548 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1549 }
1550
1551 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1552 trie->refcount = 1;
1553 trie->startstate = 1;
1554 trie->wordcount = word_count;
1555 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1556 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1557 if (flags == EXACT)
1558 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1559 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1560 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1561
1562 DEBUG_r({
1563 trie_words = newAV();
1564 });
1565
1566 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1567 if (!SvIOK(re_trie_maxbuff)) {
1568 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1569 }
1570 DEBUG_TRIE_COMPILE_r({
1571 PerlIO_printf( Perl_debug_log,
1572 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1573 (int)depth * 2 + 2, "",
1574 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1575 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1576 (int)depth);
1577 });
1578
1579 /* Find the node we are going to overwrite */
1580 if ( first == startbranch && OP( last ) != BRANCH ) {
1581 /* whole branch chain */
1582 convert = first;
1583 } else {
1584 /* branch sub-chain */
1585 convert = NEXTOPER( first );
1586 }
1587
1588 /* -- First loop and Setup --
1589
1590 We first traverse the branches and scan each word to determine if it
1591 contains widechars, and how many unique chars there are, this is
1592 important as we have to build a table with at least as many columns as we
1593 have unique chars.
1594
1595 We use an array of integers to represent the character codes 0..255
1596 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1597 native representation of the character value as the key and IV's for the
1598 coded index.
1599
1600 *TODO* If we keep track of how many times each character is used we can
1601 remap the columns so that the table compression later on is more
1602 efficient in terms of memory by ensuring the most common value is in the
1603 middle and the least common are on the outside. IMO this would be better
1604 than a most to least common mapping as theres a decent chance the most
1605 common letter will share a node with the least common, meaning the node
1606 will not be compressible. With a middle is most common approach the worst
1607 case is when we have the least common nodes twice.
1608
1609 */
1610
1611 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1612 regnode *noper = NEXTOPER( cur );
1613 const U8 *uc = (U8*)STRING( noper );
1614 const U8 *e = uc + STR_LEN( noper );
1615 STRLEN foldlen = 0;
1616 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1617 STRLEN skiplen = 0;
1618 const U8 *scan = (U8*)NULL;
1619 U32 wordlen = 0; /* required init */
1620 STRLEN chars = 0;
1621 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1622
1623 if (OP(noper) == NOTHING) {
1624 regnode *noper_next= regnext(noper);
1625 if (noper_next != tail && OP(noper_next) == flags) {
1626 noper = noper_next;
1627 uc= (U8*)STRING(noper);
1628 e= uc + STR_LEN(noper);
1629 trie->minlen= STR_LEN(noper);
1630 } else {
1631 trie->minlen= 0;
1632 continue;
1633 }
1634 }
1635
1636 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1637 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1638 regardless of encoding */
1639 if (OP( noper ) == EXACTFU_SS) {
1640 /* false positives are ok, so just set this */
1641 TRIE_BITMAP_SET(trie,0xDF);
1642 }
1643 }
1644 for ( ; uc < e ; uc += len ) {
1645 TRIE_CHARCOUNT(trie)++;
1646 TRIE_READ_CHAR;
1647 chars++;
1648 if ( uvc < 256 ) {
1649 if ( folder ) {
1650 U8 folded= folder[ (U8) uvc ];
1651 if ( !trie->charmap[ folded ] ) {
1652 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1653 TRIE_STORE_REVCHAR( folded );
1654 }
1655 }
1656 if ( !trie->charmap[ uvc ] ) {
1657 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1658 TRIE_STORE_REVCHAR( uvc );
1659 }
1660 if ( set_bit ) {
1661 /* store the codepoint in the bitmap, and its folded
1662 * equivalent. */
1663 TRIE_BITMAP_SET(trie, uvc);
1664
1665 /* store the folded codepoint */
1666 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1667
1668 if ( !UTF ) {
1669 /* store first byte of utf8 representation of
1670 variant codepoints */
1671 if (! UNI_IS_INVARIANT(uvc)) {
1672 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1673 }
1674 }
1675 set_bit = 0; /* We've done our bit :-) */
1676 }
1677 } else {
1678 SV** svpp;
1679 if ( !widecharmap )
1680 widecharmap = newHV();
1681
1682 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1683
1684 if ( !svpp )
1685 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1686
1687 if ( !SvTRUE( *svpp ) ) {
1688 sv_setiv( *svpp, ++trie->uniquecharcount );
1689 TRIE_STORE_REVCHAR(uvc);
1690 }
1691 }
1692 }
1693 if( cur == first ) {
1694 trie->minlen = chars;
1695 trie->maxlen = chars;
1696 } else if (chars < trie->minlen) {
1697 trie->minlen = chars;
1698 } else if (chars > trie->maxlen) {
1699 trie->maxlen = chars;
1700 }
1701 if (OP( noper ) == EXACTFU_SS) {
1702 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1703 if (trie->minlen > 1)
1704 trie->minlen= 1;
1705 }
1706 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1707 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1708 * - We assume that any such sequence might match a 2 byte string */
1709 if (trie->minlen > 2 )
1710 trie->minlen= 2;
1711 }
1712
1713 } /* end first pass */
1714 DEBUG_TRIE_COMPILE_r(
1715 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1716 (int)depth * 2 + 2,"",
1717 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1718 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1719 (int)trie->minlen, (int)trie->maxlen )
1720 );
1721
1722 /*
1723 We now know what we are dealing with in terms of unique chars and
1724 string sizes so we can calculate how much memory a naive
1725 representation using a flat table will take. If it's over a reasonable
1726 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1727 conservative but potentially much slower representation using an array
1728 of lists.
1729
1730 At the end we convert both representations into the same compressed
1731 form that will be used in regexec.c for matching with. The latter
1732 is a form that cannot be used to construct with but has memory
1733 properties similar to the list form and access properties similar
1734 to the table form making it both suitable for fast searches and
1735 small enough that its feasable to store for the duration of a program.
1736
1737 See the comment in the code where the compressed table is produced
1738 inplace from the flat tabe representation for an explanation of how
1739 the compression works.
1740
1741 */
1742
1743
1744 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1745 prev_states[1] = 0;
1746
1747 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1748 /*
1749 Second Pass -- Array Of Lists Representation
1750
1751 Each state will be represented by a list of charid:state records
1752 (reg_trie_trans_le) the first such element holds the CUR and LEN
1753 points of the allocated array. (See defines above).
1754
1755 We build the initial structure using the lists, and then convert
1756 it into the compressed table form which allows faster lookups
1757 (but cant be modified once converted).
1758 */
1759
1760 STRLEN transcount = 1;
1761
1762 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1763 "%*sCompiling trie using list compiler\n",
1764 (int)depth * 2 + 2, ""));
1765
1766 trie->states = (reg_trie_state *)
1767 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1768 sizeof(reg_trie_state) );
1769 TRIE_LIST_NEW(1);
1770 next_alloc = 2;
1771
1772 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1773
1774 regnode *noper = NEXTOPER( cur );
1775 U8 *uc = (U8*)STRING( noper );
1776 const U8 *e = uc + STR_LEN( noper );
1777 U32 state = 1; /* required init */
1778 U16 charid = 0; /* sanity init */
1779 U8 *scan = (U8*)NULL; /* sanity init */
1780 STRLEN foldlen = 0; /* required init */
1781 U32 wordlen = 0; /* required init */
1782 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1783 STRLEN skiplen = 0;
1784
1785 if (OP(noper) == NOTHING) {
1786 regnode *noper_next= regnext(noper);
1787 if (noper_next != tail && OP(noper_next) == flags) {
1788 noper = noper_next;
1789 uc= (U8*)STRING(noper);
1790 e= uc + STR_LEN(noper);
1791 }
1792 }
1793
1794 if (OP(noper) != NOTHING) {
1795 for ( ; uc < e ; uc += len ) {
1796
1797 TRIE_READ_CHAR;
1798
1799 if ( uvc < 256 ) {
1800 charid = trie->charmap[ uvc ];
1801 } else {
1802 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1803 if ( !svpp ) {
1804 charid = 0;
1805 } else {
1806 charid=(U16)SvIV( *svpp );
1807 }
1808 }
1809 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1810 if ( charid ) {
1811
1812 U16 check;
1813 U32 newstate = 0;
1814
1815 charid--;
1816 if ( !trie->states[ state ].trans.list ) {
1817 TRIE_LIST_NEW( state );
1818 }
1819 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1820 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1821 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1822 break;
1823 }
1824 }
1825 if ( ! newstate ) {
1826 newstate = next_alloc++;
1827 prev_states[newstate] = state;
1828 TRIE_LIST_PUSH( state, charid, newstate );
1829 transcount++;
1830 }
1831 state = newstate;
1832 } else {
1833 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1834 }
1835 }
1836 }
1837 TRIE_HANDLE_WORD(state);
1838
1839 } /* end second pass */
1840
1841 /* next alloc is the NEXT state to be allocated */
1842 trie->statecount = next_alloc;
1843 trie->states = (reg_trie_state *)
1844 PerlMemShared_realloc( trie->states,
1845 next_alloc
1846 * sizeof(reg_trie_state) );
1847
1848 /* and now dump it out before we compress it */
1849 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1850 revcharmap, next_alloc,
1851 depth+1)
1852 );
1853
1854 trie->trans = (reg_trie_trans *)
1855 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1856 {
1857 U32 state;
1858 U32 tp = 0;
1859 U32 zp = 0;
1860
1861
1862 for( state=1 ; state < next_alloc ; state ++ ) {
1863 U32 base=0;
1864
1865 /*
1866 DEBUG_TRIE_COMPILE_MORE_r(
1867 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1868 );
1869 */
1870
1871 if (trie->states[state].trans.list) {
1872 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1873 U16 maxid=minid;
1874 U16 idx;
1875
1876 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1877 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1878 if ( forid < minid ) {
1879 minid=forid;
1880 } else if ( forid > maxid ) {
1881 maxid=forid;
1882 }
1883 }
1884 if ( transcount < tp + maxid - minid + 1) {
1885 transcount *= 2;
1886 trie->trans = (reg_trie_trans *)
1887 PerlMemShared_realloc( trie->trans,
1888 transcount
1889 * sizeof(reg_trie_trans) );
1890 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1891 }
1892 base = trie->uniquecharcount + tp - minid;
1893 if ( maxid == minid ) {
1894 U32 set = 0;
1895 for ( ; zp < tp ; zp++ ) {
1896 if ( ! trie->trans[ zp ].next ) {
1897 base = trie->uniquecharcount + zp - minid;
1898 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1899 trie->trans[ zp ].check = state;
1900 set = 1;
1901 break;
1902 }
1903 }
1904 if ( !set ) {
1905 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1906 trie->trans[ tp ].check = state;
1907 tp++;
1908 zp = tp;
1909 }
1910 } else {
1911 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1912 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1913 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1914 trie->trans[ tid ].check = state;
1915 }
1916 tp += ( maxid - minid + 1 );
1917 }
1918 Safefree(trie->states[ state ].trans.list);
1919 }
1920 /*
1921 DEBUG_TRIE_COMPILE_MORE_r(
1922 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1923 );
1924 */
1925 trie->states[ state ].trans.base=base;
1926 }
1927 trie->lasttrans = tp + 1;
1928 }
1929 } else {
1930 /*
1931 Second Pass -- Flat Table Representation.
1932
1933 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1934 We know that we will need Charcount+1 trans at most to store the data
1935 (one row per char at worst case) So we preallocate both structures
1936 assuming worst case.
1937
1938 We then construct the trie using only the .next slots of the entry
1939 structs.
1940
1941 We use the .check field of the first entry of the node temporarily to
1942 make compression both faster and easier by keeping track of how many non
1943 zero fields are in the node.
1944
1945 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1946 transition.
1947
1948 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1949 number representing the first entry of the node, and state as a
1950 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1951 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1952 are 2 entrys per node. eg:
1953
1954 A B A B
1955 1. 2 4 1. 3 7
1956 2. 0 3 3. 0 5
1957 3. 0 0 5. 0 0
1958 4. 0 0 7. 0 0
1959
1960 The table is internally in the right hand, idx form. However as we also
1961 have to deal with the states array which is indexed by nodenum we have to
1962 use TRIE_NODENUM() to convert.
1963
1964 */
1965 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1966 "%*sCompiling trie using table compiler\n",
1967 (int)depth * 2 + 2, ""));
1968
1969 trie->trans = (reg_trie_trans *)
1970 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1971 * trie->uniquecharcount + 1,
1972 sizeof(reg_trie_trans) );
1973 trie->states = (reg_trie_state *)
1974 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1975 sizeof(reg_trie_state) );
1976 next_alloc = trie->uniquecharcount + 1;
1977
1978
1979 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1980
1981 regnode *noper = NEXTOPER( cur );
1982 const U8 *uc = (U8*)STRING( noper );
1983 const U8 *e = uc + STR_LEN( noper );
1984
1985 U32 state = 1; /* required init */
1986
1987 U16 charid = 0; /* sanity init */
1988 U32 accept_state = 0; /* sanity init */
1989 U8 *scan = (U8*)NULL; /* sanity init */
1990
1991 STRLEN foldlen = 0; /* required init */
1992 U32 wordlen = 0; /* required init */
1993 STRLEN skiplen = 0;
1994 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1995
1996 if (OP(noper) == NOTHING) {
1997 regnode *noper_next= regnext(noper);
1998 if (noper_next != tail && OP(noper_next) == flags) {
1999 noper = noper_next;
2000 uc= (U8*)STRING(noper);
2001 e= uc + STR_LEN(noper);
2002 }
2003 }
2004
2005 if ( OP(noper) != NOTHING ) {
2006 for ( ; uc < e ; uc += len ) {
2007
2008 TRIE_READ_CHAR;
2009
2010 if ( uvc < 256 ) {
2011 charid = trie->charmap[ uvc ];
2012 } else {
2013 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2014 charid = svpp ? (U16)SvIV(*svpp) : 0;
2015 }
2016 if ( charid ) {
2017 charid--;
2018 if ( !trie->trans[ state + charid ].next ) {
2019 trie->trans[ state + charid ].next = next_alloc;
2020 trie->trans[ state ].check++;
2021 prev_states[TRIE_NODENUM(next_alloc)]
2022 = TRIE_NODENUM(state);
2023 next_alloc += trie->uniquecharcount;
2024 }
2025 state = trie->trans[ state + charid ].next;
2026 } else {
2027 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2028 }
2029 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2030 }
2031 }
2032 accept_state = TRIE_NODENUM( state );
2033 TRIE_HANDLE_WORD(accept_state);
2034
2035 } /* end second pass */
2036
2037 /* and now dump it out before we compress it */
2038 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2039 revcharmap,
2040 next_alloc, depth+1));
2041
2042 {
2043 /*
2044 * Inplace compress the table.*
2045
2046 For sparse data sets the table constructed by the trie algorithm will
2047 be mostly 0/FAIL transitions or to put it another way mostly empty.
2048 (Note that leaf nodes will not contain any transitions.)
2049
2050 This algorithm compresses the tables by eliminating most such
2051 transitions, at the cost of a modest bit of extra work during lookup:
2052
2053 - Each states[] entry contains a .base field which indicates the
2054 index in the state[] array wheres its transition data is stored.
2055
2056 - If .base is 0 there are no valid transitions from that node.
2057
2058 - If .base is nonzero then charid is added to it to find an entry in
2059 the trans array.
2060
2061 -If trans[states[state].base+charid].check!=state then the
2062 transition is taken to be a 0/Fail transition. Thus if there are fail
2063 transitions at the front of the node then the .base offset will point
2064 somewhere inside the previous nodes data (or maybe even into a node
2065 even earlier), but the .check field determines if the transition is
2066 valid.
2067
2068 XXX - wrong maybe?
2069 The following process inplace converts the table to the compressed
2070 table: We first do not compress the root node 1,and mark all its
2071 .check pointers as 1 and set its .base pointer as 1 as well. This
2072 allows us to do a DFA construction from the compressed table later,
2073 and ensures that any .base pointers we calculate later are greater
2074 than 0.
2075
2076 - We set 'pos' to indicate the first entry of the second node.
2077
2078 - We then iterate over the columns of the node, finding the first and
2079 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2080 and set the .check pointers accordingly, and advance pos
2081 appropriately and repreat for the next node. Note that when we copy
2082 the next pointers we have to convert them from the original
2083 NODEIDX form to NODENUM form as the former is not valid post
2084 compression.
2085
2086 - If a node has no transitions used we mark its base as 0 and do not
2087 advance the pos pointer.
2088
2089 - If a node only has one transition we use a second pointer into the
2090 structure to fill in allocated fail transitions from other states.
2091 This pointer is independent of the main pointer and scans forward
2092 looking for null transitions that are allocated to a state. When it
2093 finds one it writes the single transition into the "hole". If the
2094 pointer doesnt find one the single transition is appended as normal.
2095
2096 - Once compressed we can Renew/realloc the structures to release the
2097 excess space.
2098
2099 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2100 specifically Fig 3.47 and the associated pseudocode.
2101
2102 demq
2103 */
2104 const U32 laststate = TRIE_NODENUM( next_alloc );
2105 U32 state, charid;
2106 U32 pos = 0, zp=0;
2107 trie->statecount = laststate;
2108
2109 for ( state = 1 ; state < laststate ; state++ ) {
2110 U8 flag = 0;
2111 const U32 stateidx = TRIE_NODEIDX( state );
2112 const U32 o_used = trie->trans[ stateidx ].check;
2113 U32 used = trie->trans[ stateidx ].check;
2114 trie->trans[ stateidx ].check = 0;
2115
2116 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2117 if ( flag || trie->trans[ stateidx + charid ].next ) {
2118 if ( trie->trans[ stateidx + charid ].next ) {
2119 if (o_used == 1) {
2120 for ( ; zp < pos ; zp++ ) {
2121 if ( ! trie->trans[ zp ].next ) {
2122 break;
2123 }
2124 }
2125 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2126 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2127 trie->trans[ zp ].check = state;
2128 if ( ++zp > pos ) pos = zp;
2129 break;
2130 }
2131 used--;
2132 }
2133 if ( !flag ) {
2134 flag = 1;
2135 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2136 }
2137 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2138 trie->trans[ pos ].check = state;
2139 pos++;
2140 }
2141 }
2142 }
2143 trie->lasttrans = pos + 1;
2144 trie->states = (reg_trie_state *)
2145 PerlMemShared_realloc( trie->states, laststate
2146 * sizeof(reg_trie_state) );
2147 DEBUG_TRIE_COMPILE_MORE_r(
2148 PerlIO_printf( Perl_debug_log,
2149 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2150 (int)depth * 2 + 2,"",
2151 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2152 (IV)next_alloc,
2153 (IV)pos,
2154 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2155 );
2156
2157 } /* end table compress */
2158 }
2159 DEBUG_TRIE_COMPILE_MORE_r(
2160 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2161 (int)depth * 2 + 2, "",
2162 (UV)trie->statecount,
2163 (UV)trie->lasttrans)
2164 );
2165 /* resize the trans array to remove unused space */
2166 trie->trans = (reg_trie_trans *)
2167 PerlMemShared_realloc( trie->trans, trie->lasttrans
2168 * sizeof(reg_trie_trans) );
2169
2170 { /* Modify the program and insert the new TRIE node */
2171 U8 nodetype =(U8)(flags & 0xFF);
2172 char *str=NULL;
2173
2174#ifdef DEBUGGING
2175 regnode *optimize = NULL;
2176#ifdef RE_TRACK_PATTERN_OFFSETS
2177
2178 U32 mjd_offset = 0;
2179 U32 mjd_nodelen = 0;
2180#endif /* RE_TRACK_PATTERN_OFFSETS */
2181#endif /* DEBUGGING */
2182 /*
2183 This means we convert either the first branch or the first Exact,
2184 depending on whether the thing following (in 'last') is a branch
2185 or not and whther first is the startbranch (ie is it a sub part of
2186 the alternation or is it the whole thing.)
2187 Assuming its a sub part we convert the EXACT otherwise we convert
2188 the whole branch sequence, including the first.
2189 */
2190 /* Find the node we are going to overwrite */
2191 if ( first != startbranch || OP( last ) == BRANCH ) {
2192 /* branch sub-chain */
2193 NEXT_OFF( first ) = (U16)(last - first);
2194#ifdef RE_TRACK_PATTERN_OFFSETS
2195 DEBUG_r({
2196 mjd_offset= Node_Offset((convert));
2197 mjd_nodelen= Node_Length((convert));
2198 });
2199#endif
2200 /* whole branch chain */
2201 }
2202#ifdef RE_TRACK_PATTERN_OFFSETS
2203 else {
2204 DEBUG_r({
2205 const regnode *nop = NEXTOPER( convert );
2206 mjd_offset= Node_Offset((nop));
2207 mjd_nodelen= Node_Length((nop));
2208 });
2209 }
2210 DEBUG_OPTIMISE_r(
2211 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2212 (int)depth * 2 + 2, "",
2213 (UV)mjd_offset, (UV)mjd_nodelen)
2214 );
2215#endif
2216 /* But first we check to see if there is a common prefix we can
2217 split out as an EXACT and put in front of the TRIE node. */
2218 trie->startstate= 1;
2219 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2220 U32 state;
2221 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2222 U32 ofs = 0;
2223 I32 idx = -1;
2224 U32 count = 0;
2225 const U32 base = trie->states[ state ].trans.base;
2226
2227 if ( trie->states[state].wordnum )
2228 count = 1;
2229
2230 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2231 if ( ( base + ofs >= trie->uniquecharcount ) &&
2232 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2233 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2234 {
2235 if ( ++count > 1 ) {
2236 SV **tmp = av_fetch( revcharmap, ofs, 0);
2237 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2238 if ( state == 1 ) break;
2239 if ( count == 2 ) {
2240 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2241 DEBUG_OPTIMISE_r(
2242 PerlIO_printf(Perl_debug_log,
2243 "%*sNew Start State=%"UVuf" Class: [",
2244 (int)depth * 2 + 2, "",
2245 (UV)state));
2246 if (idx >= 0) {
2247 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2248 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2249
2250 TRIE_BITMAP_SET(trie,*ch);
2251 if ( folder )
2252 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2253 DEBUG_OPTIMISE_r(
2254 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2255 );
2256 }
2257 }
2258 TRIE_BITMAP_SET(trie,*ch);
2259 if ( folder )
2260 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2261 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2262 }
2263 idx = ofs;
2264 }
2265 }
2266 if ( count == 1 ) {
2267 SV **tmp = av_fetch( revcharmap, idx, 0);
2268 STRLEN len;
2269 char *ch = SvPV( *tmp, len );
2270 DEBUG_OPTIMISE_r({
2271 SV *sv=sv_newmortal();
2272 PerlIO_printf( Perl_debug_log,
2273 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2274 (int)depth * 2 + 2, "",
2275 (UV)state, (UV)idx,
2276 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2277 PL_colors[0], PL_colors[1],
2278 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2279 PERL_PV_ESCAPE_FIRSTCHAR
2280 )
2281 );
2282 });
2283 if ( state==1 ) {
2284 OP( convert ) = nodetype;
2285 str=STRING(convert);
2286 STR_LEN(convert)=0;
2287 }
2288 STR_LEN(convert) += len;
2289 while (len--)
2290 *str++ = *ch++;
2291 } else {
2292#ifdef DEBUGGING
2293 if (state>1)
2294 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2295#endif
2296 break;
2297 }
2298 }
2299 trie->prefixlen = (state-1);
2300 if (str) {
2301 regnode *n = convert+NODE_SZ_STR(convert);
2302 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2303 trie->startstate = state;
2304 trie->minlen -= (state - 1);
2305 trie->maxlen -= (state - 1);
2306#ifdef DEBUGGING
2307 /* At least the UNICOS C compiler choked on this
2308 * being argument to DEBUG_r(), so let's just have
2309 * it right here. */
2310 if (
2311#ifdef PERL_EXT_RE_BUILD
2312 1
2313#else
2314 DEBUG_r_TEST
2315#endif
2316 ) {
2317 regnode *fix = convert;
2318 U32 word = trie->wordcount;
2319 mjd_nodelen++;
2320 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2321 while( ++fix < n ) {
2322 Set_Node_Offset_Length(fix, 0, 0);
2323 }
2324 while (word--) {
2325 SV ** const tmp = av_fetch( trie_words, word, 0 );
2326 if (tmp) {
2327 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2328 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2329 else
2330 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2331 }
2332 }
2333 }
2334#endif
2335 if (trie->maxlen) {
2336 convert = n;
2337 } else {
2338 NEXT_OFF(convert) = (U16)(tail - convert);
2339 DEBUG_r(optimize= n);
2340 }
2341 }
2342 }
2343 if (!jumper)
2344 jumper = last;
2345 if ( trie->maxlen ) {
2346 NEXT_OFF( convert ) = (U16)(tail - convert);
2347 ARG_SET( convert, data_slot );
2348 /* Store the offset to the first unabsorbed branch in
2349 jump[0], which is otherwise unused by the jump logic.
2350 We use this when dumping a trie and during optimisation. */
2351 if (trie->jump)
2352 trie->jump[0] = (U16)(nextbranch - convert);
2353
2354 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2355 * and there is a bitmap
2356 * and the first "jump target" node we found leaves enough room
2357 * then convert the TRIE node into a TRIEC node, with the bitmap
2358 * embedded inline in the opcode - this is hypothetically faster.
2359 */
2360 if ( !trie->states[trie->startstate].wordnum
2361 && trie->bitmap
2362 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2363 {
2364 OP( convert ) = TRIEC;
2365 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2366 PerlMemShared_free(trie->bitmap);
2367 trie->bitmap= NULL;
2368 } else
2369 OP( convert ) = TRIE;
2370
2371 /* store the type in the flags */
2372 convert->flags = nodetype;
2373 DEBUG_r({
2374 optimize = convert
2375 + NODE_STEP_REGNODE
2376 + regarglen[ OP( convert ) ];
2377 });
2378 /* XXX We really should free up the resource in trie now,
2379 as we won't use them - (which resources?) dmq */
2380 }
2381 /* needed for dumping*/
2382 DEBUG_r(if (optimize) {
2383 regnode *opt = convert;
2384
2385 while ( ++opt < optimize) {
2386 Set_Node_Offset_Length(opt,0,0);
2387 }
2388 /*
2389 Try to clean up some of the debris left after the
2390 optimisation.
2391 */
2392 while( optimize < jumper ) {
2393 mjd_nodelen += Node_Length((optimize));
2394 OP( optimize ) = OPTIMIZED;
2395 Set_Node_Offset_Length(optimize,0,0);
2396 optimize++;
2397 }
2398 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2399 });
2400 } /* end node insert */
2401
2402 /* Finish populating the prev field of the wordinfo array. Walk back
2403 * from each accept state until we find another accept state, and if
2404 * so, point the first word's .prev field at the second word. If the
2405 * second already has a .prev field set, stop now. This will be the
2406 * case either if we've already processed that word's accept state,
2407 * or that state had multiple words, and the overspill words were
2408 * already linked up earlier.
2409 */
2410 {
2411 U16 word;
2412 U32 state;
2413 U16 prev;
2414
2415 for (word=1; word <= trie->wordcount; word++) {
2416 prev = 0;
2417 if (trie->wordinfo[word].prev)
2418 continue;
2419 state = trie->wordinfo[word].accept;
2420 while (state) {
2421 state = prev_states[state];
2422 if (!state)
2423 break;
2424 prev = trie->states[state].wordnum;
2425 if (prev)
2426 break;
2427 }
2428 trie->wordinfo[word].prev = prev;
2429 }
2430 Safefree(prev_states);
2431 }
2432
2433
2434 /* and now dump out the compressed format */
2435 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2436
2437 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2438#ifdef DEBUGGING
2439 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2440 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2441#else
2442 SvREFCNT_dec(revcharmap);
2443#endif
2444 return trie->jump
2445 ? MADE_JUMP_TRIE
2446 : trie->startstate>1
2447 ? MADE_EXACT_TRIE
2448 : MADE_TRIE;
2449}
2450
2451STATIC void
2452S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2453{
2454/* The Trie is constructed and compressed now so we can build a fail array if it's needed
2455
2456 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2457 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2458 ISBN 0-201-10088-6
2459
2460 We find the fail state for each state in the trie, this state is the longest proper
2461 suffix of the current state's 'word' that is also a proper prefix of another word in our
2462 trie. State 1 represents the word '' and is thus the default fail state. This allows
2463 the DFA not to have to restart after its tried and failed a word at a given point, it
2464 simply continues as though it had been matching the other word in the first place.
2465 Consider
2466 'abcdgu'=~/abcdefg|cdgu/
2467 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2468 fail, which would bring us to the state representing 'd' in the second word where we would
2469 try 'g' and succeed, proceeding to match 'cdgu'.
2470 */
2471 /* add a fail transition */
2472 const U32 trie_offset = ARG(source);
2473 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2474 U32 *q;
2475 const U32 ucharcount = trie->uniquecharcount;
2476 const U32 numstates = trie->statecount;
2477 const U32 ubound = trie->lasttrans + ucharcount;
2478 U32 q_read = 0;
2479 U32 q_write = 0;
2480 U32 charid;
2481 U32 base = trie->states[ 1 ].trans.base;
2482 U32 *fail;
2483 reg_ac_data *aho;
2484 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2485 GET_RE_DEBUG_FLAGS_DECL;
2486
2487 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2488#ifndef DEBUGGING
2489 PERL_UNUSED_ARG(depth);
2490#endif
2491
2492
2493 ARG_SET( stclass, data_slot );
2494 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2495 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2496 aho->trie=trie_offset;
2497 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2498 Copy( trie->states, aho->states, numstates, reg_trie_state );
2499 Newxz( q, numstates, U32);
2500 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2501 aho->refcount = 1;
2502 fail = aho->fail;
2503 /* initialize fail[0..1] to be 1 so that we always have
2504 a valid final fail state */
2505 fail[ 0 ] = fail[ 1 ] = 1;
2506
2507 for ( charid = 0; charid < ucharcount ; charid++ ) {
2508 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2509 if ( newstate ) {
2510 q[ q_write ] = newstate;
2511 /* set to point at the root */
2512 fail[ q[ q_write++ ] ]=1;
2513 }
2514 }
2515 while ( q_read < q_write) {
2516 const U32 cur = q[ q_read++ % numstates ];
2517 base = trie->states[ cur ].trans.base;
2518
2519 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2520 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2521 if (ch_state) {
2522 U32 fail_state = cur;
2523 U32 fail_base;
2524 do {
2525 fail_state = fail[ fail_state ];
2526 fail_base = aho->states[ fail_state ].trans.base;
2527 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2528
2529 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2530 fail[ ch_state ] = fail_state;
2531 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2532 {
2533 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2534 }
2535 q[ q_write++ % numstates] = ch_state;
2536 }
2537 }
2538 }
2539 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2540 when we fail in state 1, this allows us to use the
2541 charclass scan to find a valid start char. This is based on the principle
2542 that theres a good chance the string being searched contains lots of stuff
2543 that cant be a start char.
2544 */
2545 fail[ 0 ] = fail[ 1 ] = 0;
2546 DEBUG_TRIE_COMPILE_r({
2547 PerlIO_printf(Perl_debug_log,
2548 "%*sStclass Failtable (%"UVuf" states): 0",
2549 (int)(depth * 2), "", (UV)numstates
2550 );
2551 for( q_read=1; q_read<numstates; q_read++ ) {
2552 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2553 }
2554 PerlIO_printf(Perl_debug_log, "\n");
2555 });
2556 Safefree(q);
2557 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2558}
2559
2560
2561/*
2562 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2563 * These need to be revisited when a newer toolchain becomes available.
2564 */
2565#if defined(__sparc64__) && defined(__GNUC__)
2566# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2567# undef SPARC64_GCC_WORKAROUND
2568# define SPARC64_GCC_WORKAROUND 1
2569# endif
2570#endif
2571
2572#define DEBUG_PEEP(str,scan,depth) \
2573 DEBUG_OPTIMISE_r({if (scan){ \
2574 SV * const mysv=sv_newmortal(); \
2575 regnode *Next = regnext(scan); \
2576 regprop(RExC_rx, mysv, scan); \
2577 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2578 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2579 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2580 }});
2581
2582
2583/* The below joins as many adjacent EXACTish nodes as possible into a single
2584 * one, and looks for problematic sequences of characters whose folds vs.
2585 * non-folds have sufficiently different lengths, that the optimizer would be
2586 * fooled into rejecting legitimate matches of them, and the trie construction
2587 * code needs to handle specially. The joining is only done if:
2588 * 1) there is room in the current conglomerated node to entirely contain the
2589 * next one.
2590 * 2) they are the exact same node type
2591 *
2592 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2593 * these get optimized out
2594 *
2595 * If there are problematic code sequences, *min_subtract is set to the delta
2596 * that the minimum size of the node can be less than its actual size. And,
2597 * the node type of the result is changed to reflect that it contains these
2598 * sequences.
2599 *
2600 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2601 * and contains LATIN SMALL LETTER SHARP S
2602 *
2603 * This is as good a place as any to discuss the design of handling these
2604 * problematic sequences. It's been wrong in Perl for a very long time. There
2605 * are three code points currently in Unicode whose folded lengths differ so
2606 * much from the un-folded lengths that it causes problems for the optimizer
2607 * and trie construction. Why only these are problematic, and not others where
2608 * lengths also differ is something I (khw) do not understand. New versions of
2609 * Unicode might add more such code points. Hopefully the logic in
2610 * fold_grind.t that figures out what to test (in part by verifying that each
2611 * size-combination gets tested) will catch any that do come along, so they can
2612 * be added to the special handling below. The chances of new ones are
2613 * actually rather small, as most, if not all, of the world's scripts that have
2614 * casefolding have already been encoded by Unicode. Also, a number of
2615 * Unicode's decisions were made to allow compatibility with pre-existing
2616 * standards, and almost all of those have already been dealt with. These
2617 * would otherwise be the most likely candidates for generating further tricky
2618 * sequences. In other words, Unicode by itself is unlikely to add new ones
2619 * unless it is for compatibility with pre-existing standards, and there aren't
2620 * many of those left.
2621 *
2622 * The previous designs for dealing with these involved assigning a special
2623 * node for them. This approach doesn't work, as evidenced by this example:
2624 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2625 * Both these fold to "sss", but if the pattern is parsed to create a node
2626 * that would match just the \xDF, it won't be able to handle the case where a
2627 * successful match would have to cross the node's boundary. The new approach
2628 * that hopefully generally solves the problem generates an EXACTFU_SS node
2629 * that is "sss".
2630 *
2631 * There are a number of components to the approach (a lot of work for just
2632 * three code points!):
2633 * 1) This routine examines each EXACTFish node that could contain the
2634 * problematic sequences. It returns in *min_subtract how much to
2635 * subtract from the the actual length of the string to get a real minimum
2636 * for one that could match it. This number is usually 0 except for the
2637 * problematic sequences. This delta is used by the caller to adjust the
2638 * min length of the match, and the delta between min and max, so that the
2639 * optimizer doesn't reject these possibilities based on size constraints.
2640 * 2) These sequences require special handling by the trie code, so this code
2641 * changes the joined node type to special ops: EXACTFU_TRICKYFOLD and
2642 * EXACTFU_SS.
2643 * 3) This is sufficient for the two Greek sequences (described below), but
2644 * the one involving the Sharp s (\xDF) needs more. The node type
2645 * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
2646 * sequence in it. For non-UTF-8 patterns and strings, this is the only
2647 * case where there is a possible fold length change. That means that a
2648 * regular EXACTFU node without UTF-8 involvement doesn't have to concern
2649 * itself with length changes, and so can be processed faster. regexec.c
2650 * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
2651 * is pre-folded by regcomp.c. This saves effort in regex matching.
2652 * However, the pre-folding isn't done for non-UTF8 patterns because the
2653 * fold of the MICRO SIGN requires UTF-8. Also what EXACTF and EXACTFL
2654 * nodes fold to isn't known until runtime. The fold possibilities for
2655 * the non-UTF8 patterns are quite simple, except for the sharp s. All
2656 * the ones that don't involve a UTF-8 target string are members of a
2657 * fold-pair, and arrays are set up for all of them so that the other
2658 * member of the pair can be found quickly. Code elsewhere in this file
2659 * makes sure that in EXACTFU nodes, the sharp s gets folded to 'ss', even
2660 * if the pattern isn't UTF-8. This avoids the issues described in the
2661 * next item.
2662 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2663 * 'ss' or not is not knowable at compile time. It will match iff the
2664 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2665 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2666 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2667 * described in item 3). An assumption that the optimizer part of
2668 * regexec.c (probably unwittingly) makes is that a character in the
2669 * pattern corresponds to at most a single character in the target string.
2670 * (And I do mean character, and not byte here, unlike other parts of the
2671 * documentation that have never been updated to account for multibyte
2672 * Unicode.) This assumption is wrong only in this case, as all other
2673 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2674 * virtue of having this file pre-fold UTF-8 patterns. I'm
2675 * reluctant to try to change this assumption, so instead the code punts.
2676 * This routine examines EXACTF nodes for the sharp s, and returns a
2677 * boolean indicating whether or not the node is an EXACTF node that
2678 * contains a sharp s. When it is true, the caller sets a flag that later
2679 * causes the optimizer in this file to not set values for the floating
2680 * and fixed string lengths, and thus avoids the optimizer code in
2681 * regexec.c that makes the invalid assumption. Thus, there is no
2682 * optimization based on string lengths for EXACTF nodes that contain the
2683 * sharp s. This only happens for /id rules (which means the pattern
2684 * isn't in UTF-8).
2685 */
2686
2687#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2688 if (PL_regkind[OP(scan)] == EXACT) \
2689 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2690
2691STATIC U32
2692S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2693 /* Merge several consecutive EXACTish nodes into one. */
2694 regnode *n = regnext(scan);
2695 U32 stringok = 1;
2696 regnode *next = scan + NODE_SZ_STR(scan);
2697 U32 merged = 0;
2698 U32 stopnow = 0;
2699#ifdef DEBUGGING
2700 regnode *stop = scan;
2701 GET_RE_DEBUG_FLAGS_DECL;
2702#else
2703 PERL_UNUSED_ARG(depth);
2704#endif
2705
2706 PERL_ARGS_ASSERT_JOIN_EXACT;
2707#ifndef EXPERIMENTAL_INPLACESCAN
2708 PERL_UNUSED_ARG(flags);
2709 PERL_UNUSED_ARG(val);
2710#endif
2711 DEBUG_PEEP("join",scan,depth);
2712
2713 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2714 * EXACT ones that are mergeable to the current one. */
2715 while (n
2716 && (PL_regkind[OP(n)] == NOTHING
2717 || (stringok && OP(n) == OP(scan)))
2718 && NEXT_OFF(n)
2719 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2720 {
2721
2722 if (OP(n) == TAIL || n > next)
2723 stringok = 0;
2724 if (PL_regkind[OP(n)] == NOTHING) {
2725 DEBUG_PEEP("skip:",n,depth);
2726 NEXT_OFF(scan) += NEXT_OFF(n);
2727 next = n + NODE_STEP_REGNODE;
2728#ifdef DEBUGGING
2729 if (stringok)
2730 stop = n;
2731#endif
2732 n = regnext(n);
2733 }
2734 else if (stringok) {
2735 const unsigned int oldl = STR_LEN(scan);
2736 regnode * const nnext = regnext(n);
2737
2738 /* XXX I (khw) kind of doubt that this works on platforms where
2739 * U8_MAX is above 255 because of lots of other assumptions */
2740 if (oldl + STR_LEN(n) > U8_MAX)
2741 break;
2742
2743 DEBUG_PEEP("merg",n,depth);
2744 merged++;
2745
2746 NEXT_OFF(scan) += NEXT_OFF(n);
2747 STR_LEN(scan) += STR_LEN(n);
2748 next = n + NODE_SZ_STR(n);
2749 /* Now we can overwrite *n : */
2750 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2751#ifdef DEBUGGING
2752 stop = next - 1;
2753#endif
2754 n = nnext;
2755 if (stopnow) break;
2756 }
2757
2758#ifdef EXPERIMENTAL_INPLACESCAN
2759 if (flags && !NEXT_OFF(n)) {
2760 DEBUG_PEEP("atch", val, depth);
2761 if (reg_off_by_arg[OP(n)]) {
2762 ARG_SET(n, val - n);
2763 }
2764 else {
2765 NEXT_OFF(n) = val - n;
2766 }
2767 stopnow = 1;
2768 }
2769#endif
2770 }
2771
2772 *min_subtract = 0;
2773 *has_exactf_sharp_s = FALSE;
2774
2775 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2776 * can now analyze for sequences of problematic code points. (Prior to
2777 * this final joining, sequences could have been split over boundaries, and
2778 * hence missed). The sequences only happen in folding, hence for any
2779 * non-EXACT EXACTish node */
2780 if (OP(scan) != EXACT) {
2781 U8 *s;
2782 U8 * s0 = (U8*) STRING(scan);
2783 U8 * const s_end = s0 + STR_LEN(scan);
2784
2785 /* The below is perhaps overboard, but this allows us to save a test
2786 * each time through the loop at the expense of a mask. This is
2787 * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
2788 * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
2789 * This uses an exclusive 'or' to find that bit and then inverts it to
2790 * form a mask, with just a single 0, in the bit position where 'S' and
2791 * 's' differ. */
2792 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2793 const U8 s_masked = 's' & S_or_s_mask;
2794
2795 /* One pass is made over the node's string looking for all the
2796 * possibilities. to avoid some tests in the loop, there are two main
2797 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2798 * non-UTF-8 */
2799 if (UTF) {
2800
2801 /* There are two problematic Greek code points in Unicode
2802 * casefolding
2803 *
2804 * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2805 * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2806 *
2807 * which casefold to
2808 *
2809 * Unicode UTF-8
2810 *
2811 * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2812 * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2813 *
2814 * This means that in case-insensitive matching (or "loose
2815 * matching", as Unicode calls it), an EXACTF of length six (the
2816 * UTF-8 encoded byte length of the above casefolded versions) can
2817 * match a target string of length two (the byte length of UTF-8
2818 * encoded U+0390 or U+03B0). This would rather mess up the
2819 * minimum length computation. (there are other code points that
2820 * also fold to these two sequences, but the delta is smaller)
2821 *
2822 * If these sequences are found, the minimum length is decreased by
2823 * four (six minus two).
2824 *
2825 * Similarly, 'ss' may match the single char and byte LATIN SMALL
2826 * LETTER SHARP S. We decrease the min length by 1 for each
2827 * occurrence of 'ss' found */
2828
2829#define U390_FIRST_BYTE GREEK_SMALL_LETTER_IOTA_UTF8_FIRST_BYTE
2830#define U3B0_FIRST_BYTE GREEK_SMALL_LETTER_UPSILON_UTF8_FIRST_BYTE
2831 const U8 U390_tail[] = GREEK_SMALL_LETTER_IOTA_UTF8_TAIL
2832 COMBINING_DIAERESIS_UTF8
2833 COMBINING_ACUTE_ACCENT_UTF8;
2834 const U8 U3B0_tail[] = GREEK_SMALL_LETTER_UPSILON_UTF8_TAIL
2835 COMBINING_DIAERESIS_UTF8
2836 COMBINING_ACUTE_ACCENT_UTF8;
2837 const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
2838 yields a net of 0 */
2839 /* Examine the string for one of the problematic sequences */
2840 for (s = s0;
2841 s < s_end - 1; /* Can stop 1 before the end, as minimum length
2842 * sequence we are looking for is 2 */
2843 s += UTF8SKIP(s))
2844 {
2845
2846 /* Look for the first byte in each problematic sequence */
2847 switch (*s) {
2848 /* We don't have to worry about other things that fold to
2849 * 's' (such as the long s, U+017F), as all above-latin1
2850 * code points have been pre-folded */
2851 case 's':
2852 case 'S':
2853
2854 /* Current character is an 's' or 'S'. If next one is
2855 * as well, we have the dreaded sequence */
2856 if (((*(s+1) & S_or_s_mask) == s_masked)
2857 /* These two node types don't have special handling
2858 * for 'ss' */
2859 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2860 {
2861 *min_subtract += 1;
2862 OP(scan) = EXACTFU_SS;
2863 s++; /* No need to look at this character again */
2864 }
2865 break;
2866
2867 case U390_FIRST_BYTE:
2868 if (s_end - s >= len
2869
2870 /* The 1's are because are skipping comparing the
2871 * first byte */
2872 && memEQ(s + 1, U390_tail, len - 1))
2873 {
2874 goto greek_sequence;
2875 }
2876 break;
2877
2878 case U3B0_FIRST_BYTE:
2879 if (! (s_end - s >= len
2880 && memEQ(s + 1, U3B0_tail, len - 1)))
2881 {
2882 break;
2883 }
2884 greek_sequence:
2885 *min_subtract += 4;
2886
2887 /* This requires special handling by trie's, so change
2888 * the node type to indicate this. If EXACTFA and
2889 * EXACTFL were ever to be handled by trie's, this
2890 * would have to be changed. If this node has already
2891 * been changed to EXACTFU_SS in this loop, leave it as
2892 * is. (I (khw) think it doesn't matter in regexec.c
2893 * for UTF patterns, but no need to change it */
2894 if (OP(scan) == EXACTFU) {
2895 OP(scan) = EXACTFU_TRICKYFOLD;
2896 }
2897 s += 6; /* We already know what this sequence is. Skip
2898 the rest of it */
2899 break;
2900 }
2901 }
2902 }
2903 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2904
2905 /* Here, the pattern is not UTF-8. We need to look only for the
2906 * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
2907 * in the final position. Otherwise we can stop looking 1 byte
2908 * earlier because have to find both the first and second 's' */
2909 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2910
2911 for (s = s0; s < upper; s++) {
2912 switch (*s) {
2913 case 'S':
2914 case 's':
2915 if (s_end - s > 1
2916 && ((*(s+1) & S_or_s_mask) == s_masked))
2917 {
2918 *min_subtract += 1;
2919
2920 /* EXACTF nodes need to know that the minimum
2921 * length changed so that a sharp s in the string
2922 * can match this ss in the pattern, but they
2923 * remain EXACTF nodes, as they won't match this
2924 * unless the target string is is UTF-8, which we
2925 * don't know until runtime */
2926 if (OP(scan) != EXACTF) {
2927 OP(scan) = EXACTFU_SS;
2928 }
2929 s++;
2930 }
2931 break;
2932 case LATIN_SMALL_LETTER_SHARP_S:
2933 if (OP(scan) == EXACTF) {
2934 *has_exactf_sharp_s = TRUE;
2935 }
2936 break;
2937 }
2938 }
2939 }
2940 }
2941
2942#ifdef DEBUGGING
2943 /* Allow dumping but overwriting the collection of skipped
2944 * ops and/or strings with fake optimized ops */
2945 n = scan + NODE_SZ_STR(scan);
2946 while (n <= stop) {
2947 OP(n) = OPTIMIZED;
2948 FLAGS(n) = 0;
2949 NEXT_OFF(n) = 0;
2950 n++;
2951 }
2952#endif
2953 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2954 return stopnow;
2955}
2956
2957/* REx optimizer. Converts nodes into quicker variants "in place".
2958 Finds fixed substrings. */
2959
2960/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2961 to the position after last scanned or to NULL. */
2962
2963#define INIT_AND_WITHP \
2964 assert(!and_withp); \
2965 Newx(and_withp,1,struct regnode_charclass_class); \
2966 SAVEFREEPV(and_withp)
2967
2968/* this is a chain of data about sub patterns we are processing that
2969 need to be handled separately/specially in study_chunk. Its so
2970 we can simulate recursion without losing state. */
2971struct scan_frame;
2972typedef struct scan_frame {
2973 regnode *last; /* last node to process in this frame */
2974 regnode *next; /* next node to process when last is reached */
2975 struct scan_frame *prev; /*previous frame*/
2976 I32 stop; /* what stopparen do we use */
2977} scan_frame;
2978
2979
2980#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2981
2982#define CASE_SYNST_FNC(nAmE) \
2983case nAmE: \
2984 if (flags & SCF_DO_STCLASS_AND) { \
2985 for (value = 0; value < 256; value++) \
2986 if (!is_ ## nAmE ## _cp(value)) \
2987 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2988 } \
2989 else { \
2990 for (value = 0; value < 256; value++) \
2991 if (is_ ## nAmE ## _cp(value)) \
2992 ANYOF_BITMAP_SET(data->start_class, value); \
2993 } \
2994 break; \
2995case N ## nAmE: \
2996 if (flags & SCF_DO_STCLASS_AND) { \
2997 for (value = 0; value < 256; value++) \
2998 if (is_ ## nAmE ## _cp(value)) \
2999 ANYOF_BITMAP_CLEAR(data->start_class, value); \
3000 } \
3001 else { \
3002 for (value = 0; value < 256; value++) \
3003 if (!is_ ## nAmE ## _cp(value)) \
3004 ANYOF_BITMAP_SET(data->start_class, value); \
3005 } \
3006 break
3007
3008
3009
3010STATIC I32
3011S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3012 I32 *minlenp, I32 *deltap,
3013 regnode *last,
3014 scan_data_t *data,
3015 I32 stopparen,
3016 U8* recursed,
3017 struct regnode_charclass_class *and_withp,
3018 U32 flags, U32 depth)
3019 /* scanp: Start here (read-write). */
3020 /* deltap: Write maxlen-minlen here. */
3021 /* last: Stop before this one. */
3022 /* data: string data about the pattern */
3023 /* stopparen: treat close N as END */
3024 /* recursed: which subroutines have we recursed into */
3025 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3026{
3027 dVAR;
3028 I32 min = 0, pars = 0, code;
3029 regnode *scan = *scanp, *next;
3030 I32 delta = 0;
3031 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3032 int is_inf_internal = 0; /* The studied chunk is infinite */
3033 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3034 scan_data_t data_fake;
3035 SV *re_trie_maxbuff = NULL;
3036 regnode *first_non_open = scan;
3037 I32 stopmin = I32_MAX;
3038 scan_frame *frame = NULL;
3039 GET_RE_DEBUG_FLAGS_DECL;
3040
3041 PERL_ARGS_ASSERT_STUDY_CHUNK;
3042
3043#ifdef DEBUGGING
3044 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3045#endif
3046
3047 if ( depth == 0 ) {
3048 while (first_non_open && OP(first_non_open) == OPEN)
3049 first_non_open=regnext(first_non_open);
3050 }
3051
3052
3053 fake_study_recurse:
3054 while ( scan && OP(scan) != END && scan < last ){
3055 UV min_subtract = 0; /* How much to subtract from the minimum node
3056 length to get a real minimum (because the
3057 folded version may be shorter) */
3058 bool has_exactf_sharp_s = FALSE;
3059 /* Peephole optimizer: */
3060 DEBUG_STUDYDATA("Peep:", data,depth);
3061 DEBUG_PEEP("Peep",scan,depth);
3062
3063 /* Its not clear to khw or hv why this is done here, and not in the
3064 * clauses that deal with EXACT nodes. khw's guess is that it's
3065 * because of a previous design */
3066 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3067
3068 /* Follow the next-chain of the current node and optimize
3069 away all the NOTHINGs from it. */
3070 if (OP(scan) != CURLYX) {
3071 const int max = (reg_off_by_arg[OP(scan)]
3072 ? I32_MAX
3073 /* I32 may be smaller than U16 on CRAYs! */
3074 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3075 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3076 int noff;
3077 regnode *n = scan;
3078
3079 /* Skip NOTHING and LONGJMP. */
3080 while ((n = regnext(n))
3081 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3082 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3083 && off + noff < max)
3084 off += noff;
3085 if (reg_off_by_arg[OP(scan)])
3086 ARG(scan) = off;
3087 else
3088 NEXT_OFF(scan) = off;
3089 }
3090
3091
3092
3093 /* The principal pseudo-switch. Cannot be a switch, since we
3094 look into several different things. */
3095 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3096 || OP(scan) == IFTHEN) {
3097 next = regnext(scan);
3098 code = OP(scan);
3099 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3100
3101 if (OP(next) == code || code == IFTHEN) {
3102 /* NOTE - There is similar code to this block below for handling
3103 TRIE nodes on a re-study. If you change stuff here check there
3104 too. */
3105 I32 max1 = 0, min1 = I32_MAX, num = 0;
3106 struct regnode_charclass_class accum;
3107 regnode * const startbranch=scan;
3108
3109 if (flags & SCF_DO_SUBSTR)
3110 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3111 if (flags & SCF_DO_STCLASS)
3112 cl_init_zero(pRExC_state, &accum);
3113
3114 while (OP(scan) == code) {
3115 I32 deltanext, minnext, f = 0, fake;
3116 struct regnode_charclass_class this_class;
3117
3118 num++;
3119 data_fake.flags = 0;
3120 if (data) {
3121 data_fake.whilem_c = data->whilem_c;
3122 data_fake.last_closep = data->last_closep;
3123 }
3124 else
3125 data_fake.last_closep = &fake;
3126
3127 data_fake.pos_delta = delta;
3128 next = regnext(scan);
3129 scan = NEXTOPER(scan);
3130 if (code != BRANCH)
3131 scan = NEXTOPER(scan);
3132 if (flags & SCF_DO_STCLASS) {
3133 cl_init(pRExC_state, &this_class);
3134 data_fake.start_class = &this_class;
3135 f = SCF_DO_STCLASS_AND;
3136 }
3137 if (flags & SCF_WHILEM_VISITED_POS)
3138 f |= SCF_WHILEM_VISITED_POS;
3139
3140 /* we suppose the run is continuous, last=next...*/
3141 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3142 next, &data_fake,
3143 stopparen, recursed, NULL, f,depth+1);
3144 if (min1 > minnext)
3145 min1 = minnext;
3146 if (max1 < minnext + deltanext)
3147 max1 = minnext + deltanext;
3148 if (deltanext == I32_MAX)
3149 is_inf = is_inf_internal = 1;
3150 scan = next;
3151 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3152 pars++;
3153 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3154 if ( stopmin > minnext)
3155 stopmin = min + min1;
3156 flags &= ~SCF_DO_SUBSTR;
3157 if (data)
3158 data->flags |= SCF_SEEN_ACCEPT;
3159 }
3160 if (data) {
3161 if (data_fake.flags & SF_HAS_EVAL)
3162 data->flags |= SF_HAS_EVAL;
3163 data->whilem_c = data_fake.whilem_c;
3164 }
3165 if (flags & SCF_DO_STCLASS)
3166 cl_or(pRExC_state, &accum, &this_class);
3167 }
3168 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3169 min1 = 0;
3170 if (flags & SCF_DO_SUBSTR) {
3171 data->pos_min += min1;
3172 data->pos_delta += max1 - min1;
3173 if (max1 != min1 || is_inf)
3174 data->longest = &(data->longest_float);
3175 }
3176 min += min1;
3177 delta += max1 - min1;
3178 if (flags & SCF_DO_STCLASS_OR) {
3179 cl_or(pRExC_state, data->start_class, &accum);
3180 if (min1) {
3181 cl_and(data->start_class, and_withp);
3182 flags &= ~SCF_DO_STCLASS;
3183 }
3184 }
3185 else if (flags & SCF_DO_STCLASS_AND) {
3186 if (min1) {
3187 cl_and(data->start_class, &accum);
3188 flags &= ~SCF_DO_STCLASS;
3189 }
3190 else {
3191 /* Switch to OR mode: cache the old value of
3192 * data->start_class */
3193 INIT_AND_WITHP;
3194 StructCopy(data->start_class, and_withp,
3195 struct regnode_charclass_class);
3196 flags &= ~SCF_DO_STCLASS_AND;
3197 StructCopy(&accum, data->start_class,
3198 struct regnode_charclass_class);
3199 flags |= SCF_DO_STCLASS_OR;
3200 data->start_class->flags |= ANYOF_EOS;
3201 }
3202 }
3203
3204 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3205 /* demq.
3206
3207 Assuming this was/is a branch we are dealing with: 'scan' now
3208 points at the item that follows the branch sequence, whatever
3209 it is. We now start at the beginning of the sequence and look
3210 for subsequences of
3211
3212 BRANCH->EXACT=>x1
3213 BRANCH->EXACT=>x2
3214 tail
3215
3216 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3217
3218 If we can find such a subsequence we need to turn the first
3219 element into a trie and then add the subsequent branch exact
3220 strings to the trie.
3221
3222 We have two cases
3223
3224 1. patterns where the whole set of branches can be converted.
3225
3226 2. patterns where only a subset can be converted.
3227
3228 In case 1 we can replace the whole set with a single regop
3229 for the trie. In case 2 we need to keep the start and end
3230 branches so
3231
3232 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3233 becomes BRANCH TRIE; BRANCH X;
3234
3235 There is an additional case, that being where there is a
3236 common prefix, which gets split out into an EXACT like node
3237 preceding the TRIE node.
3238
3239 If x(1..n)==tail then we can do a simple trie, if not we make
3240 a "jump" trie, such that when we match the appropriate word
3241 we "jump" to the appropriate tail node. Essentially we turn
3242 a nested if into a case structure of sorts.
3243
3244 */
3245
3246 int made=0;
3247 if (!re_trie_maxbuff) {
3248 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3249 if (!SvIOK(re_trie_maxbuff))
3250 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3251 }
3252 if ( SvIV(re_trie_maxbuff)>=0 ) {
3253 regnode *cur;
3254 regnode *first = (regnode *)NULL;
3255 regnode *last = (regnode *)NULL;
3256 regnode *tail = scan;
3257 U8 trietype = 0;
3258 U32 count=0;
3259
3260#ifdef DEBUGGING
3261 SV * const mysv = sv_newmortal(); /* for dumping */
3262#endif
3263 /* var tail is used because there may be a TAIL
3264 regop in the way. Ie, the exacts will point to the
3265 thing following the TAIL, but the last branch will
3266 point at the TAIL. So we advance tail. If we
3267 have nested (?:) we may have to move through several
3268 tails.
3269 */
3270
3271 while ( OP( tail ) == TAIL ) {
3272 /* this is the TAIL generated by (?:) */
3273 tail = regnext( tail );
3274 }
3275
3276
3277 DEBUG_TRIE_COMPILE_r({
3278 regprop(RExC_rx, mysv, tail );
3279 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3280 (int)depth * 2 + 2, "",
3281 "Looking for TRIE'able sequences. Tail node is: ",
3282 SvPV_nolen_const( mysv )
3283 );
3284 });
3285
3286 /*
3287
3288 Step through the branches
3289 cur represents each branch,
3290 noper is the first thing to be matched as part of that branch
3291 noper_next is the regnext() of that node.
3292
3293 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3294 via a "jump trie" but we also support building with NOJUMPTRIE,
3295 which restricts the trie logic to structures like /FOO|BAR/.
3296
3297 If noper is a trieable nodetype then the branch is a possible optimization
3298 target. If we are building under NOJUMPTRIE then we require that noper_next
3299 is the same as scan (our current position in the regex program).
3300
3301 Once we have two or more consecutive such branches we can create a
3302 trie of the EXACT's contents and stitch it in place into the program.
3303
3304 If the sequence represents all of the branches in the alternation we
3305 replace the entire thing with a single TRIE node.
3306
3307 Otherwise when it is a subsequence we need to stitch it in place and
3308 replace only the relevant branches. This means the first branch has
3309 to remain as it is used by the alternation logic, and its next pointer,
3310 and needs to be repointed at the item on the branch chain following
3311 the last branch we have optimized away.
3312
3313 This could be either a BRANCH, in which case the subsequence is internal,
3314 or it could be the item following the branch sequence in which case the
3315 subsequence is at the end (which does not necessarily mean the first node
3316 is the start of the alternation).
3317
3318 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3319
3320 optype | trietype
3321 ----------------+-----------
3322 NOTHING | NOTHING
3323 EXACT | EXACT
3324 EXACTFU | EXACTFU
3325 EXACTFU_SS | EXACTFU
3326 EXACTFU_TRICKYFOLD | EXACTFU
3327 EXACTFA | 0
3328
3329
3330 */
3331#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3332 ( EXACT == (X) ) ? EXACT : \
3333 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3334 0 )
3335
3336 /* dont use tail as the end marker for this traverse */
3337 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3338 regnode * const noper = NEXTOPER( cur );
3339 U8 noper_type = OP( noper );
3340 U8 noper_trietype = TRIE_TYPE( noper_type );
3341#if defined(DEBUGGING) || defined(NOJUMPTRIE)
3342 regnode * const noper_next = regnext( noper );
3343 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3344 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3345#endif
3346
3347 DEBUG_TRIE_COMPILE_r({
3348 regprop(RExC_rx, mysv, cur);
3349 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3350 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3351
3352 regprop(RExC_rx, mysv, noper);
3353 PerlIO_printf( Perl_debug_log, " -> %s",
3354 SvPV_nolen_const(mysv));
3355
3356 if ( noper_next ) {
3357 regprop(RExC_rx, mysv, noper_next );
3358 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3359 SvPV_nolen_const(mysv));
3360 }
3361 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3362 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3363 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3364 );
3365 });
3366
3367 /* Is noper a trieable nodetype that can be merged with the
3368 * current trie (if there is one)? */
3369 if ( noper_trietype
3370 &&
3371 (
3372 ( noper_trietype == NOTHING)
3373 || ( trietype == NOTHING )
3374 || ( trietype == noper_trietype )
3375 )
3376#ifdef NOJUMPTRIE
3377 && noper_next == tail
3378#endif
3379 && count < U16_MAX)
3380 {
3381 /* Handle mergable triable node
3382 * Either we are the first node in a new trieable sequence,
3383 * in which case we do some bookkeeping, otherwise we update
3384 * the end pointer. */
3385 if ( !first ) {
3386 first = cur;
3387 if ( noper_trietype == NOTHING ) {
3388#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3389 regnode * const noper_next = regnext( noper );
3390 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3391 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3392#endif
3393
3394 if ( noper_next_trietype ) {
3395 trietype = noper_next_trietype;
3396 } else if (noper_next_type) {
3397 /* a NOTHING regop is 1 regop wide. We need at least two
3398 * for a trie so we can't merge this in */
3399 first = NULL;
3400 }
3401 } else {
3402 trietype = noper_trietype;
3403 }
3404 } else {
3405 if ( trietype == NOTHING )
3406 trietype = noper_trietype;
3407 last = cur;
3408 }
3409 if (first)
3410 count++;
3411 } /* end handle mergable triable node */
3412 else {
3413 /* handle unmergable node -
3414 * noper may either be a triable node which can not be tried
3415 * together with the current trie, or a non triable node */
3416 if ( last ) {
3417 /* If last is set and trietype is not NOTHING then we have found
3418 * at least two triable branch sequences in a row of a similar
3419 * trietype so we can turn them into a trie. If/when we
3420 * allow NOTHING to start a trie sequence this condition will be
3421 * required, and it isn't expensive so we leave it in for now. */
3422 if ( trietype != NOTHING )
3423 make_trie( pRExC_state,
3424 startbranch, first, cur, tail, count,
3425 trietype, depth+1 );
3426 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3427 }
3428 if ( noper_trietype
3429#ifdef NOJUMPTRIE
3430 && noper_next == tail
3431#endif
3432 ){
3433 /* noper is triable, so we can start a new trie sequence */
3434 count = 1;
3435 first = cur;
3436 trietype = noper_trietype;
3437 } else if (first) {
3438 /* if we already saw a first but the current node is not triable then we have
3439 * to reset the first information. */
3440 count = 0;
3441 first = NULL;
3442 trietype = 0;
3443 }
3444 } /* end handle unmergable node */
3445 } /* loop over branches */
3446 DEBUG_TRIE_COMPILE_r({
3447 regprop(RExC_rx, mysv, cur);
3448 PerlIO_printf( Perl_debug_log,
3449 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3450 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3451
3452 });
3453 if ( last ) {
3454 if ( trietype != NOTHING ) {
3455 /* the last branch of the sequence was part of a trie,
3456 * so we have to construct it here outside of the loop
3457 */
3458 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3459#ifdef TRIE_STUDY_OPT
3460 if ( ((made == MADE_EXACT_TRIE &&
3461 startbranch == first)
3462 || ( first_non_open == first )) &&
3463 depth==0 ) {
3464 flags |= SCF_TRIE_RESTUDY;
3465 if ( startbranch == first
3466 && scan == tail )
3467 {
3468 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3469 }
3470 }
3471#endif
3472 } else {
3473 /* at this point we know whatever we have is a NOTHING sequence/branch
3474 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3475 */
3476 if ( startbranch == first ) {
3477 regnode *opt;
3478 /* the entire thing is a NOTHING sequence, something like this:
3479 * (?:|) So we can turn it into a plain NOTHING op. */
3480 DEBUG_TRIE_COMPILE_r({
3481 regprop(RExC_rx, mysv, cur);
3482 PerlIO_printf( Perl_debug_log,
3483 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3484 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3485
3486 });
3487 OP(startbranch)= NOTHING;
3488 NEXT_OFF(startbranch)= tail - startbranch;
3489 for ( opt= startbranch + 1; opt < tail ; opt++ )
3490 OP(opt)= OPTIMIZED;
3491 }
3492 }
3493 } /* end if ( last) */
3494 } /* TRIE_MAXBUF is non zero */
3495
3496 } /* do trie */
3497
3498 }
3499 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3500 scan = NEXTOPER(NEXTOPER(scan));
3501 } else /* single branch is optimized. */
3502 scan = NEXTOPER(scan);
3503 continue;
3504 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3505 scan_frame *newframe = NULL;
3506 I32 paren;
3507 regnode *start;
3508 regnode *end;
3509
3510 if (OP(scan) != SUSPEND) {
3511 /* set the pointer */
3512 if (OP(scan) == GOSUB) {
3513 paren = ARG(scan);
3514 RExC_recurse[ARG2L(scan)] = scan;
3515 start = RExC_open_parens[paren-1];
3516 end = RExC_close_parens[paren-1];
3517 } else {
3518 paren = 0;
3519 start = RExC_rxi->program + 1;
3520 end = RExC_opend;
3521 }
3522 if (!recursed) {
3523 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3524 SAVEFREEPV(recursed);
3525 }
3526 if (!PAREN_TEST(recursed,paren+1)) {
3527 PAREN_SET(recursed,paren+1);
3528 Newx(newframe,1,scan_frame);
3529 } else {
3530 if (flags & SCF_DO_SUBSTR) {
3531 SCAN_COMMIT(pRExC_state,data,minlenp);
3532 data->longest = &(data->longest_float);
3533 }
3534 is_inf = is_inf_internal = 1;
3535 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3536 cl_anything(pRExC_state, data->start_class);
3537 flags &= ~SCF_DO_STCLASS;
3538 }
3539 } else {
3540 Newx(newframe,1,scan_frame);
3541 paren = stopparen;
3542 start = scan+2;
3543 end = regnext(scan);
3544 }
3545 if (newframe) {
3546 assert(start);
3547 assert(end);
3548 SAVEFREEPV(newframe);
3549 newframe->next = regnext(scan);
3550 newframe->last = last;
3551 newframe->stop = stopparen;
3552 newframe->prev = frame;
3553
3554 frame = newframe;
3555 scan = start;
3556 stopparen = paren;
3557 last = end;
3558
3559 continue;
3560 }
3561 }
3562 else if (OP(scan) == EXACT) {
3563 I32 l = STR_LEN(scan);
3564 UV uc;
3565 if (UTF) {
3566 const U8 * const s = (U8*)STRING(scan);
3567 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3568 l = utf8_length(s, s + l);
3569 } else {
3570 uc = *((U8*)STRING(scan));
3571 }
3572 min += l;
3573 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3574 /* The code below prefers earlier match for fixed
3575 offset, later match for variable offset. */
3576 if (data->last_end == -1) { /* Update the start info. */
3577 data->last_start_min = data->pos_min;
3578 data->last_start_max = is_inf
3579 ? I32_MAX : data->pos_min + data->pos_delta;
3580 }
3581 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3582 if (UTF)
3583 SvUTF8_on(data->last_found);
3584 {
3585 SV * const sv = data->last_found;
3586 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3587 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3588 if (mg && mg->mg_len >= 0)
3589 mg->mg_len += utf8_length((U8*)STRING(scan),
3590 (U8*)STRING(scan)+STR_LEN(scan));
3591 }
3592 data->last_end = data->pos_min + l;
3593 data->pos_min += l; /* As in the first entry. */
3594 data->flags &= ~SF_BEFORE_EOL;
3595 }
3596 if (flags & SCF_DO_STCLASS_AND) {
3597 /* Check whether it is compatible with what we know already! */
3598 int compat = 1;
3599
3600
3601 /* If compatible, we or it in below. It is compatible if is
3602 * in the bitmp and either 1) its bit or its fold is set, or 2)
3603 * it's for a locale. Even if there isn't unicode semantics
3604 * here, at runtime there may be because of matching against a
3605 * utf8 string, so accept a possible false positive for
3606 * latin1-range folds */
3607 if (uc >= 0x100 ||
3608 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3609 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3610 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3611 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3612 )
3613 {
3614 compat = 0;
3615 }
3616 ANYOF_CLASS_ZERO(data->start_class);
3617 ANYOF_BITMAP_ZERO(data->start_class);
3618 if (compat)
3619 ANYOF_BITMAP_SET(data->start_class, uc);
3620 else if (uc >= 0x100) {
3621 int i;
3622
3623 /* Some Unicode code points fold to the Latin1 range; as
3624 * XXX temporary code, instead of figuring out if this is
3625 * one, just assume it is and set all the start class bits
3626 * that could be some such above 255 code point's fold
3627 * which will generate fals positives. As the code
3628 * elsewhere that does compute the fold settles down, it
3629 * can be extracted out and re-used here */
3630 for (i = 0; i < 256; i++){
3631 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3632 ANYOF_BITMAP_SET(data->start_class, i);
3633 }
3634 }
3635 }
3636 data->start_class->flags &= ~ANYOF_EOS;
3637 if (uc < 0x100)
3638 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3639 }
3640 else if (flags & SCF_DO_STCLASS_OR) {
3641 /* false positive possible if the class is case-folded */
3642 if (uc < 0x100)
3643 ANYOF_BITMAP_SET(data->start_class, uc);
3644 else
3645 data->start_class->flags |= ANYOF_UNICODE_ALL;
3646 data->start_class->flags &= ~ANYOF_EOS;
3647 cl_and(data->start_class, and_withp);
3648 }
3649 flags &= ~SCF_DO_STCLASS;
3650 }
3651 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3652 I32 l = STR_LEN(scan);
3653 UV uc = *((U8*)STRING(scan));
3654
3655 /* Search for fixed substrings supports EXACT only. */
3656 if (flags & SCF_DO_SUBSTR) {
3657 assert(data);
3658 SCAN_COMMIT(pRExC_state, data, minlenp);
3659 }
3660 if (UTF) {
3661 const U8 * const s = (U8 *)STRING(scan);
3662 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3663 l = utf8_length(s, s + l);
3664 }
3665 if (has_exactf_sharp_s) {
3666 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3667 }
3668 min += l - min_subtract;
3669 if (min < 0) {
3670 min = 0;
3671 }
3672 delta += min_subtract;
3673 if (flags & SCF_DO_SUBSTR) {
3674 data->pos_min += l - min_subtract;
3675 if (data->pos_min < 0) {
3676 data->pos_min = 0;
3677 }
3678 data->pos_delta += min_subtract;
3679 if (min_subtract) {
3680 data->longest = &(data->longest_float);
3681 }
3682 }
3683 if (flags & SCF_DO_STCLASS_AND) {
3684 /* Check whether it is compatible with what we know already! */
3685 int compat = 1;
3686 if (uc >= 0x100 ||
3687 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3688 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3689 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3690 {
3691 compat = 0;
3692 }
3693 ANYOF_CLASS_ZERO(data->start_class);
3694 ANYOF_BITMAP_ZERO(data->start_class);
3695 if (compat) {
3696 ANYOF_BITMAP_SET(data->start_class, uc);
3697 data->start_class->flags &= ~ANYOF_EOS;
3698 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3699 if (OP(scan) == EXACTFL) {
3700 /* XXX This set is probably no longer necessary, and
3701 * probably wrong as LOCALE now is on in the initial
3702 * state */
3703 data->start_class->flags |= ANYOF_LOCALE;
3704 }
3705 else {
3706
3707 /* Also set the other member of the fold pair. In case
3708 * that unicode semantics is called for at runtime, use
3709 * the full latin1 fold. (Can't do this for locale,
3710 * because not known until runtime) */
3711 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3712
3713 /* All other (EXACTFL handled above) folds except under
3714 * /iaa that include s, S, and sharp_s also may include
3715 * the others */
3716 if (OP(scan) != EXACTFA) {
3717 if (uc == 's' || uc == 'S') {
3718 ANYOF_BITMAP_SET(data->start_class,
3719 LATIN_SMALL_LETTER_SHARP_S);
3720 }
3721 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3722 ANYOF_BITMAP_SET(data->start_class, 's');
3723 ANYOF_BITMAP_SET(data->start_class, 'S');
3724 }
3725 }
3726 }
3727 }
3728 else if (uc >= 0x100) {
3729 int i;
3730 for (i = 0; i < 256; i++){
3731 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3732 ANYOF_BITMAP_SET(data->start_class, i);
3733 }
3734 }
3735 }
3736 }
3737 else if (flags & SCF_DO_STCLASS_OR) {
3738 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3739 /* false positive possible if the class is case-folded.
3740 Assume that the locale settings are the same... */
3741 if (uc < 0x100) {
3742 ANYOF_BITMAP_SET(data->start_class, uc);
3743 if (OP(scan) != EXACTFL) {
3744
3745 /* And set the other member of the fold pair, but
3746 * can't do that in locale because not known until
3747 * run-time */
3748 ANYOF_BITMAP_SET(data->start_class,
3749 PL_fold_latin1[uc]);
3750
3751 /* All folds except under /iaa that include s, S,
3752 * and sharp_s also may include the others */
3753 if (OP(scan) != EXACTFA) {
3754 if (uc == 's' || uc == 'S') {
3755 ANYOF_BITMAP_SET(data->start_class,
3756 LATIN_SMALL_LETTER_SHARP_S);
3757 }
3758 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3759 ANYOF_BITMAP_SET(data->start_class, 's');
3760 ANYOF_BITMAP_SET(data->start_class, 'S');
3761 }
3762 }
3763 }
3764 }
3765 data->start_class->flags &= ~ANYOF_EOS;
3766 }
3767 cl_and(data->start_class, and_withp);
3768 }
3769 flags &= ~SCF_DO_STCLASS;
3770 }
3771 else if (REGNODE_VARIES(OP(scan))) {
3772 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3773 I32 f = flags, pos_before = 0;
3774 regnode * const oscan = scan;
3775 struct regnode_charclass_class this_class;
3776 struct regnode_charclass_class *oclass = NULL;
3777 I32 next_is_eval = 0;
3778
3779 switch (PL_regkind[OP(scan)]) {
3780 case WHILEM: /* End of (?:...)* . */
3781 scan = NEXTOPER(scan);
3782 goto finish;
3783 case PLUS:
3784 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3785 next = NEXTOPER(scan);
3786 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3787 mincount = 1;
3788 maxcount = REG_INFTY;
3789 next = regnext(scan);
3790 scan = NEXTOPER(scan);
3791 goto do_curly;
3792 }
3793 }
3794 if (flags & SCF_DO_SUBSTR)
3795 data->pos_min++;
3796 min++;
3797 /* Fall through. */
3798 case STAR:
3799 if (flags & SCF_DO_STCLASS) {
3800 mincount = 0;
3801 maxcount = REG_INFTY;
3802 next = regnext(scan);
3803 scan = NEXTOPER(scan);
3804 goto do_curly;
3805 }
3806 is_inf = is_inf_internal = 1;
3807 scan = regnext(scan);
3808 if (flags & SCF_DO_SUBSTR) {
3809 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3810 data->longest = &(data->longest_float);
3811 }
3812 goto optimize_curly_tail;
3813 case CURLY:
3814 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3815 && (scan->flags == stopparen))
3816 {
3817 mincount = 1;
3818 maxcount = 1;
3819 } else {
3820 mincount = ARG1(scan);
3821 maxcount = ARG2(scan);
3822 }
3823 next = regnext(scan);
3824 if (OP(scan) == CURLYX) {
3825 I32 lp = (data ? *(data->last_closep) : 0);
3826 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3827 }
3828 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3829 next_is_eval = (OP(scan) == EVAL);
3830 do_curly:
3831 if (flags & SCF_DO_SUBSTR) {
3832 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3833 pos_before = data->pos_min;
3834 }
3835 if (data) {
3836 fl = data->flags;
3837 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3838 if (is_inf)
3839 data->flags |= SF_IS_INF;
3840 }
3841 if (flags & SCF_DO_STCLASS) {
3842 cl_init(pRExC_state, &this_class);
3843 oclass = data->start_class;
3844 data->start_class = &this_class;
3845 f |= SCF_DO_STCLASS_AND;
3846 f &= ~SCF_DO_STCLASS_OR;
3847 }
3848 /* Exclude from super-linear cache processing any {n,m}
3849 regops for which the combination of input pos and regex
3850 pos is not enough information to determine if a match
3851 will be possible.
3852
3853 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3854 regex pos at the \s*, the prospects for a match depend not
3855 only on the input position but also on how many (bar\s*)
3856 repeats into the {4,8} we are. */
3857 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3858 f &= ~SCF_WHILEM_VISITED_POS;
3859
3860 /* This will finish on WHILEM, setting scan, or on NULL: */
3861 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3862 last, data, stopparen, recursed, NULL,
3863 (mincount == 0
3864 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3865
3866 if (flags & SCF_DO_STCLASS)
3867 data->start_class = oclass;
3868 if (mincount == 0 || minnext == 0) {
3869 if (flags & SCF_DO_STCLASS_OR) {
3870 cl_or(pRExC_state, data->start_class, &this_class);
3871 }
3872 else if (flags & SCF_DO_STCLASS_AND) {
3873 /* Switch to OR mode: cache the old value of
3874 * data->start_class */
3875 INIT_AND_WITHP;
3876 StructCopy(data->start_class, and_withp,
3877 struct regnode_charclass_class);
3878 flags &= ~SCF_DO_STCLASS_AND;
3879 StructCopy(&this_class, data->start_class,
3880 struct regnode_charclass_class);
3881 flags |= SCF_DO_STCLASS_OR;
3882 data->start_class->flags |= ANYOF_EOS;
3883 }
3884 } else { /* Non-zero len */
3885 if (flags & SCF_DO_STCLASS_OR) {
3886 cl_or(pRExC_state, data->start_class, &this_class);
3887 cl_and(data->start_class, and_withp);
3888 }
3889 else if (flags & SCF_DO_STCLASS_AND)
3890 cl_and(data->start_class, &this_class);
3891 flags &= ~SCF_DO_STCLASS;
3892 }
3893 if (!scan) /* It was not CURLYX, but CURLY. */
3894 scan = next;
3895 if ( /* ? quantifier ok, except for (?{ ... }) */
3896 (next_is_eval || !(mincount == 0 && maxcount == 1))
3897 && (minnext == 0) && (deltanext == 0)
3898 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3899 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3900 {
3901 ckWARNreg(RExC_parse,
3902 "Quantifier unexpected on zero-length expression");
3903 }
3904
3905 min += minnext * mincount;
3906 is_inf_internal |= ((maxcount == REG_INFTY
3907 && (minnext + deltanext) > 0)
3908 || deltanext == I32_MAX);
3909 is_inf |= is_inf_internal;
3910 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3911
3912 /* Try powerful optimization CURLYX => CURLYN. */
3913 if ( OP(oscan) == CURLYX && data
3914 && data->flags & SF_IN_PAR
3915 && !(data->flags & SF_HAS_EVAL)
3916 && !deltanext && minnext == 1 ) {
3917 /* Try to optimize to CURLYN. */
3918 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3919 regnode * const nxt1 = nxt;
3920#ifdef DEBUGGING
3921 regnode *nxt2;
3922#endif
3923
3924 /* Skip open. */
3925 nxt = regnext(nxt);
3926 if (!REGNODE_SIMPLE(OP(nxt))
3927 && !(PL_regkind[OP(nxt)] == EXACT
3928 && STR_LEN(nxt) == 1))
3929 goto nogo;
3930#ifdef DEBUGGING
3931 nxt2 = nxt;
3932#endif
3933 nxt = regnext(nxt);
3934 if (OP(nxt) != CLOSE)
3935 goto nogo;
3936 if (RExC_open_parens) {
3937 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3938 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3939 }
3940 /* Now we know that nxt2 is the only contents: */
3941 oscan->flags = (U8)ARG(nxt);
3942 OP(oscan) = CURLYN;
3943 OP(nxt1) = NOTHING; /* was OPEN. */
3944
3945#ifdef DEBUGGING
3946 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3947 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3948 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3949 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3950 OP(nxt + 1) = OPTIMIZED; /* was count. */
3951 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3952#endif
3953 }
3954 nogo:
3955
3956 /* Try optimization CURLYX => CURLYM. */
3957 if ( OP(oscan) == CURLYX && data
3958 && !(data->flags & SF_HAS_PAR)
3959 && !(data->flags & SF_HAS_EVAL)
3960 && !deltanext /* atom is fixed width */
3961 && minnext != 0 /* CURLYM can't handle zero width */
3962 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3963 ) {
3964 /* XXXX How to optimize if data == 0? */
3965 /* Optimize to a simpler form. */
3966 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3967 regnode *nxt2;
3968
3969 OP(oscan) = CURLYM;
3970 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3971 && (OP(nxt2) != WHILEM))
3972 nxt = nxt2;
3973 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3974 /* Need to optimize away parenths. */
3975 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3976 /* Set the parenth number. */
3977 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3978
3979 oscan->flags = (U8)ARG(nxt);
3980 if (RExC_open_parens) {
3981 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3982 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3983 }
3984 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3985 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3986
3987#ifdef DEBUGGING
3988 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3989 OP(nxt + 1) = OPTIMIZED; /* was count. */
3990 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3991 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3992#endif
3993#if 0
3994 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3995 regnode *nnxt = regnext(nxt1);
3996 if (nnxt == nxt) {
3997 if (reg_off_by_arg[OP(nxt1)])
3998 ARG_SET(nxt1, nxt2 - nxt1);
3999 else if (nxt2 - nxt1 < U16_MAX)
4000 NEXT_OFF(nxt1) = nxt2 - nxt1;
4001 else
4002 OP(nxt) = NOTHING; /* Cannot beautify */
4003 }
4004 nxt1 = nnxt;
4005 }
4006#endif
4007 /* Optimize again: */
4008 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4009 NULL, stopparen, recursed, NULL, 0,depth+1);
4010 }
4011 else
4012 oscan->flags = 0;
4013 }
4014 else if ((OP(oscan) == CURLYX)
4015 && (flags & SCF_WHILEM_VISITED_POS)
4016 /* See the comment on a similar expression above.
4017 However, this time it's not a subexpression
4018 we care about, but the expression itself. */
4019 && (maxcount == REG_INFTY)
4020 && data && ++data->whilem_c < 16) {
4021 /* This stays as CURLYX, we can put the count/of pair. */
4022 /* Find WHILEM (as in regexec.c) */
4023 regnode *nxt = oscan + NEXT_OFF(oscan);
4024
4025 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4026 nxt += ARG(nxt);
4027 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4028 | (RExC_whilem_seen << 4)); /* On WHILEM */
4029 }
4030 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4031 pars++;
4032 if (flags & SCF_DO_SUBSTR) {
4033 SV *last_str = NULL;
4034 int counted = mincount != 0;
4035
4036 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4037#if defined(SPARC64_GCC_WORKAROUND)
4038 I32 b = 0;
4039 STRLEN l = 0;
4040 const char *s = NULL;
4041 I32 old = 0;
4042
4043 if (pos_before >= data->last_start_min)
4044 b = pos_before;
4045 else
4046 b = data->last_start_min;
4047
4048 l = 0;
4049 s = SvPV_const(data->last_found, l);
4050 old = b - data->last_start_min;
4051
4052#else
4053 I32 b = pos_before >= data->last_start_min
4054 ? pos_before : data->last_start_min;
4055 STRLEN l;
4056 const char * const s = SvPV_const(data->last_found, l);
4057 I32 old = b - data->last_start_min;
4058#endif
4059
4060 if (UTF)
4061 old = utf8_hop((U8*)s, old) - (U8*)s;
4062 l -= old;
4063 /* Get the added string: */
4064 last_str = newSVpvn_utf8(s + old, l, UTF);
4065 if (deltanext == 0 && pos_before == b) {
4066 /* What was added is a constant string */
4067 if (mincount > 1) {
4068 SvGROW(last_str, (mincount * l) + 1);
4069 repeatcpy(SvPVX(last_str) + l,
4070 SvPVX_const(last_str), l, mincount - 1);
4071 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4072 /* Add additional parts. */
4073 SvCUR_set(data->last_found,
4074 SvCUR(data->last_found) - l);
4075 sv_catsv(data->last_found, last_str);
4076 {
4077 SV * sv = data->last_found;
4078 MAGIC *mg =
4079 SvUTF8(sv) && SvMAGICAL(sv) ?
4080 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4081 if (mg && mg->mg_len >= 0)
4082 mg->mg_len += CHR_SVLEN(last_str) - l;
4083 }
4084 data->last_end += l * (mincount - 1);
4085 }
4086 } else {
4087 /* start offset must point into the last copy */
4088 data->last_start_min += minnext * (mincount - 1);
4089 data->last_start_max += is_inf ? I32_MAX
4090 : (maxcount - 1) * (minnext + data->pos_delta);
4091 }
4092 }
4093 /* It is counted once already... */
4094 data->pos_min += minnext * (mincount - counted);
4095 data->pos_delta += - counted * deltanext +
4096 (minnext + deltanext) * maxcount - minnext * mincount;
4097 if (mincount != maxcount) {
4098 /* Cannot extend fixed substrings found inside
4099 the group. */
4100 SCAN_COMMIT(pRExC_state,data,minlenp);
4101 if (mincount && last_str) {
4102 SV * const sv = data->last_found;
4103 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4104 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4105
4106 if (mg)
4107 mg->mg_len = -1;
4108 sv_setsv(sv, last_str);
4109 data->last_end = data->pos_min;
4110 data->last_start_min =
4111 data->pos_min - CHR_SVLEN(last_str);
4112 data->last_start_max = is_inf
4113 ? I32_MAX
4114 : data->pos_min + data->pos_delta
4115 - CHR_SVLEN(last_str);
4116 }
4117 data->longest = &(data->longest_float);
4118 }
4119 SvREFCNT_dec(last_str);
4120 }
4121 if (data && (fl & SF_HAS_EVAL))
4122 data->flags |= SF_HAS_EVAL;
4123 optimize_curly_tail:
4124 if (OP(oscan) != CURLYX) {
4125 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4126 && NEXT_OFF(next))
4127 NEXT_OFF(oscan) += NEXT_OFF(next);
4128 }
4129 continue;
4130 default: /* REF, ANYOFV, and CLUMP only? */
4131 if (flags & SCF_DO_SUBSTR) {
4132 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4133 data->longest = &(data->longest_float);
4134 }
4135 is_inf = is_inf_internal = 1;
4136 if (flags & SCF_DO_STCLASS_OR)
4137 cl_anything(pRExC_state, data->start_class);
4138 flags &= ~SCF_DO_STCLASS;
4139 break;
4140 }
4141 }
4142 else if (OP(scan) == LNBREAK) {
4143 if (flags & SCF_DO_STCLASS) {
4144 int value = 0;
4145 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
4146 if (flags & SCF_DO_STCLASS_AND) {
4147 for (value = 0; value < 256; value++)
4148 if (!is_VERTWS_cp(value))
4149 ANYOF_BITMAP_CLEAR(data->start_class, value);
4150 }
4151 else {
4152 for (value = 0; value < 256; value++)
4153 if (is_VERTWS_cp(value))
4154 ANYOF_BITMAP_SET(data->start_class, value);
4155 }
4156 if (flags & SCF_DO_STCLASS_OR)
4157 cl_and(data->start_class, and_withp);
4158 flags &= ~SCF_DO_STCLASS;
4159 }
4160 min += 1;
4161 delta += 1;
4162 if (flags & SCF_DO_SUBSTR) {
4163 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4164 data->pos_min += 1;
4165 data->pos_delta += 1;
4166 data->longest = &(data->longest_float);
4167 }
4168 }
4169 else if (REGNODE_SIMPLE(OP(scan))) {
4170 int value = 0;
4171
4172 if (flags & SCF_DO_SUBSTR) {
4173 SCAN_COMMIT(pRExC_state,data,minlenp);
4174 data->pos_min++;
4175 }
4176 min++;
4177 if (flags & SCF_DO_STCLASS) {
4178 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
4179
4180 /* Some of the logic below assumes that switching
4181 locale on will only add false positives. */
4182 switch (PL_regkind[OP(scan)]) {
4183 case SANY:
4184 default:
4185 do_default:
4186 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
4187 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4188 cl_anything(pRExC_state, data->start_class);
4189 break;
4190 case REG_ANY:
4191 if (OP(scan) == SANY)
4192 goto do_default;
4193 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4194 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4195 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4196 cl_anything(pRExC_state, data->start_class);
4197 }
4198 if (flags & SCF_DO_STCLASS_AND || !value)
4199 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4200 break;
4201 case ANYOF:
4202 if (flags & SCF_DO_STCLASS_AND)
4203 cl_and(data->start_class,
4204 (struct regnode_charclass_class*)scan);
4205 else
4206 cl_or(pRExC_state, data->start_class,
4207 (struct regnode_charclass_class*)scan);
4208 break;
4209 case ALNUM:
4210 if (flags & SCF_DO_STCLASS_AND) {
4211 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4212 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
4213 if (OP(scan) == ALNUMU) {
4214 for (value = 0; value < 256; value++) {
4215 if (!isWORDCHAR_L1(value)) {
4216 ANYOF_BITMAP_CLEAR(data->start_class, value);
4217 }
4218 }
4219 } else {
4220 for (value = 0; value < 256; value++) {
4221 if (!isALNUM(value)) {
4222 ANYOF_BITMAP_CLEAR(data->start_class, value);
4223 }
4224 }
4225 }
4226 }
4227 }
4228 else {
4229 if (data->start_class->flags & ANYOF_LOCALE)
4230 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
4231
4232 /* Even if under locale, set the bits for non-locale
4233 * in case it isn't a true locale-node. This will
4234 * create false positives if it truly is locale */
4235 if (OP(scan) == ALNUMU) {
4236 for (value = 0; value < 256; value++) {
4237 if (isWORDCHAR_L1(value)) {
4238 ANYOF_BITMAP_SET(data->start_class, value);
4239 }
4240 }
4241 } else {
4242 for (value = 0; value < 256; value++) {
4243 if (isALNUM(value)) {
4244 ANYOF_BITMAP_SET(data->start_class, value);
4245 }
4246 }
4247 }
4248 }
4249 break;
4250 case NALNUM:
4251 if (flags & SCF_DO_STCLASS_AND) {
4252 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4253 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
4254 if (OP(scan) == NALNUMU) {
4255 for (value = 0; value < 256; value++) {
4256 if (isWORDCHAR_L1(value)) {
4257 ANYOF_BITMAP_CLEAR(data->start_class, value);
4258 }
4259 }
4260 } else {
4261 for (value = 0; value < 256; value++) {
4262 if (isALNUM(value)) {
4263 ANYOF_BITMAP_CLEAR(data->start_class, value);
4264 }
4265 }
4266 }
4267 }
4268 }
4269 else {
4270 if (data->start_class->flags & ANYOF_LOCALE)
4271 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
4272
4273 /* Even if under locale, set the bits for non-locale in
4274 * case it isn't a true locale-node. This will create
4275 * false positives if it truly is locale */
4276 if (OP(scan) == NALNUMU) {
4277 for (value = 0; value < 256; value++) {
4278 if (! isWORDCHAR_L1(value)) {
4279 ANYOF_BITMAP_SET(data->start_class, value);
4280 }
4281 }
4282 } else {
4283 for (value = 0; value < 256; value++) {
4284 if (! isALNUM(value)) {
4285 ANYOF_BITMAP_SET(data->start_class, value);
4286 }
4287 }
4288 }
4289 }
4290 break;
4291 case SPACE:
4292 if (flags & SCF_DO_STCLASS_AND) {
4293 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4294 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
4295 if (OP(scan) == SPACEU) {
4296 for (value = 0; value < 256; value++) {
4297 if (!isSPACE_L1(value)) {
4298 ANYOF_BITMAP_CLEAR(data->start_class, value);
4299 }
4300 }
4301 } else {
4302 for (value = 0; value < 256; value++) {
4303 if (!isSPACE(value)) {
4304 ANYOF_BITMAP_CLEAR(data->start_class, value);
4305 }
4306 }
4307 }
4308 }
4309 }
4310 else {
4311 if (data->start_class->flags & ANYOF_LOCALE) {
4312 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
4313 }
4314 if (OP(scan) == SPACEU) {
4315 for (value = 0; value < 256; value++) {
4316 if (isSPACE_L1(value)) {
4317 ANYOF_BITMAP_SET(data->start_class, value);
4318 }
4319 }
4320 } else {
4321 for (value = 0; value < 256; value++) {
4322 if (isSPACE(value)) {
4323 ANYOF_BITMAP_SET(data->start_class, value);
4324 }
4325 }
4326 }
4327 }
4328 break;
4329 case NSPACE:
4330 if (flags & SCF_DO_STCLASS_AND) {
4331 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4332 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
4333 if (OP(scan) == NSPACEU) {
4334 for (value = 0; value < 256; value++) {
4335 if (isSPACE_L1(value)) {
4336 ANYOF_BITMAP_CLEAR(data->start_class, value);
4337 }
4338 }
4339 } else {
4340 for (value = 0; value < 256; value++) {
4341 if (isSPACE(value)) {
4342 ANYOF_BITMAP_CLEAR(data->start_class, value);
4343 }
4344 }
4345 }
4346 }
4347 }
4348 else {
4349 if (data->start_class->flags & ANYOF_LOCALE)
4350 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
4351 if (OP(scan) == NSPACEU) {
4352 for (value = 0; value < 256; value++) {
4353 if (!isSPACE_L1(value)) {
4354 ANYOF_BITMAP_SET(data->start_class, value);
4355 }
4356 }
4357 }
4358 else {
4359 for (value = 0; value < 256; value++) {
4360 if (!isSPACE(value)) {
4361 ANYOF_BITMAP_SET(data->start_class, value);
4362 }
4363 }
4364 }
4365 }
4366 break;
4367 case DIGIT:
4368 if (flags & SCF_DO_STCLASS_AND) {
4369 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4370 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
4371 for (value = 0; value < 256; value++)
4372 if (!isDIGIT(value))
4373 ANYOF_BITMAP_CLEAR(data->start_class, value);
4374 }
4375 }
4376 else {
4377 if (data->start_class->flags & ANYOF_LOCALE)
4378 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
4379 for (value = 0; value < 256; value++)
4380 if (isDIGIT(value))
4381 ANYOF_BITMAP_SET(data->start_class, value);
4382 }
4383 break;
4384 case NDIGIT:
4385 if (flags & SCF_DO_STCLASS_AND) {
4386 if (!(data->start_class->flags & ANYOF_LOCALE))
4387 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
4388 for (value = 0; value < 256; value++)
4389 if (isDIGIT(value))
4390 ANYOF_BITMAP_CLEAR(data->start_class, value);
4391 }
4392 else {
4393 if (data->start_class->flags & ANYOF_LOCALE)
4394 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
4395 for (value = 0; value < 256; value++)
4396 if (!isDIGIT(value))
4397 ANYOF_BITMAP_SET(data->start_class, value);
4398 }
4399 break;
4400 CASE_SYNST_FNC(VERTWS);
4401 CASE_SYNST_FNC(HORIZWS);
4402
4403 }
4404 if (flags & SCF_DO_STCLASS_OR)
4405 cl_and(data->start_class, and_withp);
4406 flags &= ~SCF_DO_STCLASS;
4407 }
4408 }
4409 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4410 data->flags |= (OP(scan) == MEOL
4411 ? SF_BEFORE_MEOL
4412 : SF_BEFORE_SEOL);
4413 SCAN_COMMIT(pRExC_state, data, minlenp);
4414
4415 }
4416 else if ( PL_regkind[OP(scan)] == BRANCHJ
4417 /* Lookbehind, or need to calculate parens/evals/stclass: */
4418 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4419 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4420 if ( OP(scan) == UNLESSM &&
4421 scan->flags == 0 &&
4422 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4423 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4424 ) {
4425 regnode *opt;
4426 regnode *upto= regnext(scan);
4427 DEBUG_PARSE_r({
4428 SV * const mysv_val=sv_newmortal();
4429 DEBUG_STUDYDATA("OPFAIL",data,depth);
4430
4431 /*DEBUG_PARSE_MSG("opfail");*/
4432 regprop(RExC_rx, mysv_val, upto);
4433 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4434 SvPV_nolen_const(mysv_val),
4435 (IV)REG_NODE_NUM(upto),
4436 (IV)(upto - scan)
4437 );
4438 });
4439 OP(scan) = OPFAIL;
4440 NEXT_OFF(scan) = upto - scan;
4441 for (opt= scan + 1; opt < upto ; opt++)
4442 OP(opt) = OPTIMIZED;
4443 scan= upto;
4444 continue;
4445 }
4446 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4447 || OP(scan) == UNLESSM )
4448 {
4449 /* Negative Lookahead/lookbehind
4450 In this case we can't do fixed string optimisation.
4451 */
4452
4453 I32 deltanext, minnext, fake = 0;
4454 regnode *nscan;
4455 struct regnode_charclass_class intrnl;
4456 int f = 0;
4457
4458 data_fake.flags = 0;
4459 if (data) {
4460 data_fake.whilem_c = data->whilem_c;
4461 data_fake.last_closep = data->last_closep;
4462 }
4463 else
4464 data_fake.last_closep = &fake;
4465 data_fake.pos_delta = delta;
4466 if ( flags & SCF_DO_STCLASS && !scan->flags
4467 && OP(scan) == IFMATCH ) { /* Lookahead */
4468 cl_init(pRExC_state, &intrnl);
4469 data_fake.start_class = &intrnl;
4470 f |= SCF_DO_STCLASS_AND;
4471 }
4472 if (flags & SCF_WHILEM_VISITED_POS)
4473 f |= SCF_WHILEM_VISITED_POS;
4474 next = regnext(scan);
4475 nscan = NEXTOPER(NEXTOPER(scan));
4476 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4477 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4478 if (scan->flags) {
4479 if (deltanext) {
4480 FAIL("Variable length lookbehind not implemented");
4481 }
4482 else if (minnext > (I32)U8_MAX) {
4483 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4484 }
4485 scan->flags = (U8)minnext;
4486 }
4487 if (data) {
4488 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4489 pars++;
4490 if (data_fake.flags & SF_HAS_EVAL)
4491 data->flags |= SF_HAS_EVAL;
4492 data->whilem_c = data_fake.whilem_c;
4493 }
4494 if (f & SCF_DO_STCLASS_AND) {
4495 if (flags & SCF_DO_STCLASS_OR) {
4496 /* OR before, AND after: ideally we would recurse with
4497 * data_fake to get the AND applied by study of the
4498 * remainder of the pattern, and then derecurse;
4499 * *** HACK *** for now just treat as "no information".
4500 * See [perl #56690].
4501 */
4502 cl_init(pRExC_state, data->start_class);
4503 } else {
4504 /* AND before and after: combine and continue */
4505 const int was = (data->start_class->flags & ANYOF_EOS);
4506
4507 cl_and(data->start_class, &intrnl);
4508 if (was)
4509 data->start_class->flags |= ANYOF_EOS;
4510 }
4511 }
4512 }
4513#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4514 else {
4515 /* Positive Lookahead/lookbehind
4516 In this case we can do fixed string optimisation,
4517 but we must be careful about it. Note in the case of
4518 lookbehind the positions will be offset by the minimum
4519 length of the pattern, something we won't know about
4520 until after the recurse.
4521 */
4522 I32 deltanext, fake = 0;
4523 regnode *nscan;
4524 struct regnode_charclass_class intrnl;
4525 int f = 0;
4526 /* We use SAVEFREEPV so that when the full compile
4527 is finished perl will clean up the allocated
4528 minlens when it's all done. This way we don't
4529 have to worry about freeing them when we know
4530 they wont be used, which would be a pain.
4531 */
4532 I32 *minnextp;
4533 Newx( minnextp, 1, I32 );
4534 SAVEFREEPV(minnextp);
4535
4536 if (data) {
4537 StructCopy(data, &data_fake, scan_data_t);
4538 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4539 f |= SCF_DO_SUBSTR;
4540 if (scan->flags)
4541 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4542 data_fake.last_found=newSVsv(data->last_found);
4543 }
4544 }
4545 else
4546 data_fake.last_closep = &fake;
4547 data_fake.flags = 0;
4548 data_fake.pos_delta = delta;
4549 if (is_inf)
4550 data_fake.flags |= SF_IS_INF;
4551 if ( flags & SCF_DO_STCLASS && !scan->flags
4552 && OP(scan) == IFMATCH ) { /* Lookahead */
4553 cl_init(pRExC_state, &intrnl);
4554 data_fake.start_class = &intrnl;
4555 f |= SCF_DO_STCLASS_AND;
4556 }
4557 if (flags & SCF_WHILEM_VISITED_POS)
4558 f |= SCF_WHILEM_VISITED_POS;
4559 next = regnext(scan);
4560 nscan = NEXTOPER(NEXTOPER(scan));
4561
4562 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4563 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4564 if (scan->flags) {
4565 if (deltanext) {
4566 FAIL("Variable length lookbehind not implemented");
4567 }
4568 else if (*minnextp > (I32)U8_MAX) {
4569 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4570 }
4571 scan->flags = (U8)*minnextp;
4572 }
4573
4574 *minnextp += min;
4575
4576 if (f & SCF_DO_STCLASS_AND) {
4577 const int was = (data->start_class->flags & ANYOF_EOS);
4578
4579 cl_and(data->start_class, &intrnl);
4580 if (was)
4581 data->start_class->flags |= ANYOF_EOS;
4582 }
4583 if (data) {
4584 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4585 pars++;
4586 if (data_fake.flags & SF_HAS_EVAL)
4587 data->flags |= SF_HAS_EVAL;
4588 data->whilem_c = data_fake.whilem_c;
4589 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4590 if (RExC_rx->minlen<*minnextp)
4591 RExC_rx->minlen=*minnextp;
4592 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4593 SvREFCNT_dec(data_fake.last_found);
4594
4595 if ( data_fake.minlen_fixed != minlenp )
4596 {
4597 data->offset_fixed= data_fake.offset_fixed;
4598 data->minlen_fixed= data_fake.minlen_fixed;
4599 data->lookbehind_fixed+= scan->flags;
4600 }
4601 if ( data_fake.minlen_float != minlenp )
4602 {
4603 data->minlen_float= data_fake.minlen_float;
4604 data->offset_float_min=data_fake.offset_float_min;
4605 data->offset_float_max=data_fake.offset_float_max;
4606 data->lookbehind_float+= scan->flags;
4607 }
4608 }
4609 }
4610 }
4611#endif
4612 }
4613 else if (OP(scan) == OPEN) {
4614 if (stopparen != (I32)ARG(scan))
4615 pars++;
4616 }
4617 else if (OP(scan) == CLOSE) {
4618 if (stopparen == (I32)ARG(scan)) {
4619 break;
4620 }
4621 if ((I32)ARG(scan) == is_par) {
4622 next = regnext(scan);
4623
4624 if ( next && (OP(next) != WHILEM) && next < last)
4625 is_par = 0; /* Disable optimization */
4626 }
4627 if (data)
4628 *(data->last_closep) = ARG(scan);
4629 }
4630 else if (OP(scan) == EVAL) {
4631 if (data)
4632 data->flags |= SF_HAS_EVAL;
4633 }
4634 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4635 if (flags & SCF_DO_SUBSTR) {
4636 SCAN_COMMIT(pRExC_state,data,minlenp);
4637 flags &= ~SCF_DO_SUBSTR;
4638 }
4639 if (data && OP(scan)==ACCEPT) {
4640 data->flags |= SCF_SEEN_ACCEPT;
4641 if (stopmin > min)
4642 stopmin = min;
4643 }
4644 }
4645 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4646 {
4647 if (flags & SCF_DO_SUBSTR) {
4648 SCAN_COMMIT(pRExC_state,data,minlenp);
4649 data->longest = &(data->longest_float);
4650 }
4651 is_inf = is_inf_internal = 1;
4652 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4653 cl_anything(pRExC_state, data->start_class);
4654 flags &= ~SCF_DO_STCLASS;
4655 }
4656 else if (OP(scan) == GPOS) {
4657 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4658 !(delta || is_inf || (data && data->pos_delta)))
4659 {
4660 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4661 RExC_rx->extflags |= RXf_ANCH_GPOS;
4662 if (RExC_rx->gofs < (U32)min)
4663 RExC_rx->gofs = min;
4664 } else {
4665 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4666 RExC_rx->gofs = 0;
4667 }
4668 }
4669#ifdef TRIE_STUDY_OPT
4670#ifdef FULL_TRIE_STUDY
4671 else if (PL_regkind[OP(scan)] == TRIE) {
4672 /* NOTE - There is similar code to this block above for handling
4673 BRANCH nodes on the initial study. If you change stuff here
4674 check there too. */
4675 regnode *trie_node= scan;
4676 regnode *tail= regnext(scan);
4677 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4678 I32 max1 = 0, min1 = I32_MAX;
4679 struct regnode_charclass_class accum;
4680
4681 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4682 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4683 if (flags & SCF_DO_STCLASS)
4684 cl_init_zero(pRExC_state, &accum);
4685
4686 if (!trie->jump) {
4687 min1= trie->minlen;
4688 max1= trie->maxlen;
4689 } else {
4690 const regnode *nextbranch= NULL;
4691 U32 word;
4692
4693 for ( word=1 ; word <= trie->wordcount ; word++)
4694 {
4695 I32 deltanext=0, minnext=0, f = 0, fake;
4696 struct regnode_charclass_class this_class;
4697
4698 data_fake.flags = 0;
4699 if (data) {
4700 data_fake.whilem_c = data->whilem_c;
4701 data_fake.last_closep = data->last_closep;
4702 }
4703 else
4704 data_fake.last_closep = &fake;
4705 data_fake.pos_delta = delta;
4706 if (flags & SCF_DO_STCLASS) {
4707 cl_init(pRExC_state, &this_class);
4708 data_fake.start_class = &this_class;
4709 f = SCF_DO_STCLASS_AND;
4710 }
4711 if (flags & SCF_WHILEM_VISITED_POS)
4712 f |= SCF_WHILEM_VISITED_POS;
4713
4714 if (trie->jump[word]) {
4715 if (!nextbranch)
4716 nextbranch = trie_node + trie->jump[0];
4717 scan= trie_node + trie->jump[word];
4718 /* We go from the jump point to the branch that follows
4719 it. Note this means we need the vestigal unused branches
4720 even though they arent otherwise used.
4721 */
4722 minnext = study_chunk(pRExC_state, &scan, minlenp,
4723 &deltanext, (regnode *)nextbranch, &data_fake,
4724 stopparen, recursed, NULL, f,depth+1);
4725 }
4726 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4727 nextbranch= regnext((regnode*)nextbranch);
4728
4729 if (min1 > (I32)(minnext + trie->minlen))
4730 min1 = minnext + trie->minlen;
4731 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4732 max1 = minnext + deltanext + trie->maxlen;
4733 if (deltanext == I32_MAX)
4734 is_inf = is_inf_internal = 1;
4735
4736 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4737 pars++;
4738 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4739 if ( stopmin > min + min1)
4740 stopmin = min + min1;
4741 flags &= ~SCF_DO_SUBSTR;
4742 if (data)
4743 data->flags |= SCF_SEEN_ACCEPT;
4744 }
4745 if (data) {
4746 if (data_fake.flags & SF_HAS_EVAL)
4747 data->flags |= SF_HAS_EVAL;
4748 data->whilem_c = data_fake.whilem_c;
4749 }
4750 if (flags & SCF_DO_STCLASS)
4751 cl_or(pRExC_state, &accum, &this_class);
4752 }
4753 }
4754 if (flags & SCF_DO_SUBSTR) {
4755 data->pos_min += min1;
4756 data->pos_delta += max1 - min1;
4757 if (max1 != min1 || is_inf)
4758 data->longest = &(data->longest_float);
4759 }
4760 min += min1;
4761 delta += max1 - min1;
4762 if (flags & SCF_DO_STCLASS_OR) {
4763 cl_or(pRExC_state, data->start_class, &accum);
4764 if (min1) {
4765 cl_and(data->start_class, and_withp);
4766 flags &= ~SCF_DO_STCLASS;
4767 }
4768 }
4769 else if (flags & SCF_DO_STCLASS_AND) {
4770 if (min1) {
4771 cl_and(data->start_class, &accum);
4772 flags &= ~SCF_DO_STCLASS;
4773 }
4774 else {
4775 /* Switch to OR mode: cache the old value of
4776 * data->start_class */
4777 INIT_AND_WITHP;
4778 StructCopy(data->start_class, and_withp,
4779 struct regnode_charclass_class);
4780 flags &= ~SCF_DO_STCLASS_AND;
4781 StructCopy(&accum, data->start_class,
4782 struct regnode_charclass_class);
4783 flags |= SCF_DO_STCLASS_OR;
4784 data->start_class->flags |= ANYOF_EOS;
4785 }
4786 }
4787 scan= tail;
4788 continue;
4789 }
4790#else
4791 else if (PL_regkind[OP(scan)] == TRIE) {
4792 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4793 U8*bang=NULL;
4794
4795 min += trie->minlen;
4796 delta += (trie->maxlen - trie->minlen);
4797 flags &= ~SCF_DO_STCLASS; /* xxx */
4798 if (flags & SCF_DO_SUBSTR) {
4799 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4800 data->pos_min += trie->minlen;
4801 data->pos_delta += (trie->maxlen - trie->minlen);
4802 if (trie->maxlen != trie->minlen)
4803 data->longest = &(data->longest_float);
4804 }
4805 if (trie->jump) /* no more substrings -- for now /grr*/
4806 flags &= ~SCF_DO_SUBSTR;
4807 }
4808#endif /* old or new */
4809#endif /* TRIE_STUDY_OPT */
4810
4811 /* Else: zero-length, ignore. */
4812 scan = regnext(scan);
4813 }
4814 if (frame) {
4815 last = frame->last;
4816 scan = frame->next;
4817 stopparen = frame->stop;
4818 frame = frame->prev;
4819 goto fake_study_recurse;
4820 }
4821
4822 finish:
4823 assert(!frame);
4824 DEBUG_STUDYDATA("pre-fin:",data,depth);
4825
4826 *scanp = scan;
4827 *deltap = is_inf_internal ? I32_MAX : delta;
4828 if (flags & SCF_DO_SUBSTR && is_inf)
4829 data->pos_delta = I32_MAX - data->pos_min;
4830 if (is_par > (I32)U8_MAX)
4831 is_par = 0;
4832 if (is_par && pars==1 && data) {
4833 data->flags |= SF_IN_PAR;
4834 data->flags &= ~SF_HAS_PAR;
4835 }
4836 else if (pars && data) {
4837 data->flags |= SF_HAS_PAR;
4838 data->flags &= ~SF_IN_PAR;
4839 }
4840 if (flags & SCF_DO_STCLASS_OR)
4841 cl_and(data->start_class, and_withp);
4842 if (flags & SCF_TRIE_RESTUDY)
4843 data->flags |= SCF_TRIE_RESTUDY;
4844
4845 DEBUG_STUDYDATA("post-fin:",data,depth);
4846
4847 return min < stopmin ? min : stopmin;
4848}
4849
4850STATIC U32
4851S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4852{
4853 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4854
4855 PERL_ARGS_ASSERT_ADD_DATA;
4856
4857 Renewc(RExC_rxi->data,
4858 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4859 char, struct reg_data);
4860 if(count)
4861 Renew(RExC_rxi->data->what, count + n, U8);
4862 else
4863 Newx(RExC_rxi->data->what, n, U8);
4864 RExC_rxi->data->count = count + n;
4865 Copy(s, RExC_rxi->data->what + count, n, U8);
4866 return count;
4867}
4868
4869/*XXX: todo make this not included in a non debugging perl */
4870#ifndef PERL_IN_XSUB_RE
4871void
4872Perl_reginitcolors(pTHX)
4873{
4874 dVAR;
4875 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4876 if (s) {
4877 char *t = savepv(s);
4878 int i = 0;
4879 PL_colors[0] = t;
4880 while (++i < 6) {
4881 t = strchr(t, '\t');
4882 if (t) {
4883 *t = '\0';
4884 PL_colors[i] = ++t;
4885 }
4886 else
4887 PL_colors[i] = t = (char *)"";
4888 }
4889 } else {
4890 int i = 0;
4891 while (i < 6)
4892 PL_colors[i++] = (char *)"";
4893 }
4894 PL_colorset = 1;
4895}
4896#endif
4897
4898
4899#ifdef TRIE_STUDY_OPT
4900#define CHECK_RESTUDY_GOTO \
4901 if ( \
4902 (data.flags & SCF_TRIE_RESTUDY) \
4903 && ! restudied++ \
4904 ) goto reStudy
4905#else
4906#define CHECK_RESTUDY_GOTO
4907#endif
4908
4909/*
4910 * pregcomp - compile a regular expression into internal code
4911 *
4912 * Decides which engine's compiler to call based on the hint currently in
4913 * scope
4914 */
4915
4916#ifndef PERL_IN_XSUB_RE
4917
4918/* return the currently in-scope regex engine (or the default if none) */
4919
4920regexp_engine const *
4921Perl_current_re_engine(pTHX)
4922{
4923 dVAR;
4924
4925 if (IN_PERL_COMPILETIME) {
4926 HV * const table = GvHV(PL_hintgv);
4927 SV **ptr;
4928
4929 if (!table)
4930 return &PL_core_reg_engine;
4931 ptr = hv_fetchs(table, "regcomp", FALSE);
4932 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4933 return &PL_core_reg_engine;
4934 return INT2PTR(regexp_engine*,SvIV(*ptr));
4935 }
4936 else {
4937 SV *ptr;
4938 if (!PL_curcop->cop_hints_hash)
4939 return &PL_core_reg_engine;
4940 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4941 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4942 return &PL_core_reg_engine;
4943 return INT2PTR(regexp_engine*,SvIV(ptr));
4944 }
4945}
4946
4947
4948REGEXP *
4949Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4950{
4951 dVAR;
4952 regexp_engine const *eng = current_re_engine();
4953 GET_RE_DEBUG_FLAGS_DECL;
4954
4955 PERL_ARGS_ASSERT_PREGCOMP;
4956
4957 /* Dispatch a request to compile a regexp to correct regexp engine. */
4958 DEBUG_COMPILE_r({
4959 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4960 PTR2UV(eng));
4961 });
4962 return CALLREGCOMP_ENG(eng, pattern, flags);
4963}
4964#endif
4965
4966/* public(ish) entry point for the perl core's own regex compiling code.
4967 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4968 * pattern rather than a list of OPs, and uses the internal engine rather
4969 * than the current one */
4970
4971REGEXP *
4972Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4973{
4974 SV *pat = pattern; /* defeat constness! */
4975 PERL_ARGS_ASSERT_RE_COMPILE;
4976 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4977#ifdef PERL_IN_XSUB_RE
4978 &my_reg_engine,
4979#else
4980 &PL_core_reg_engine,
4981#endif
4982 NULL, NULL, rx_flags, 0);
4983}
4984
4985/* see if there are any run-time code blocks in the pattern.
4986 * False positives are allowed */
4987
4988static bool
4989S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state, OP *expr,
4990 U32 pm_flags, char *pat, STRLEN plen)
4991{
4992 int n = 0;
4993 STRLEN s;
4994
4995 /* avoid infinitely recursing when we recompile the pattern parcelled up
4996 * as qr'...'. A single constant qr// string can't have have any
4997 * run-time component in it, and thus, no runtime code. (A non-qr
4998 * string, however, can, e.g. $x =~ '(?{})') */
4999 if ((pm_flags & PMf_IS_QR) && expr && expr->op_type == OP_CONST)
5000 return 0;
5001
5002 for (s = 0; s < plen; s++) {
5003 if (n < pRExC_state->num_code_blocks
5004 && s == pRExC_state->code_blocks[n].start)
5005 {
5006 s = pRExC_state->code_blocks[n].end;
5007 n++;
5008 continue;
5009 }
5010 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
5011 * positives here */
5012 if (pat[s] == '(' && pat[s+1] == '?' &&
5013 (pat[s+2] == '{' || (pat[s+2] == '?' && pat[s+3] == '{'))
5014 )
5015 return 1;
5016 }
5017 return 0;
5018}
5019
5020/* Handle run-time code blocks. We will already have compiled any direct
5021 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5022 * copy of it, but with any literal code blocks blanked out and
5023 * appropriate chars escaped; then feed it into
5024 *
5025 * eval "qr'modified_pattern'"
5026 *
5027 * For example,
5028 *
5029 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5030 *
5031 * becomes
5032 *
5033 * qr'a\\bc def\'ghi\\\\jkl(?{"this is runtime"})mno'
5034 *
5035 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5036 * and merge them with any code blocks of the original regexp.
5037 *
5038 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5039 * instead, just save the qr and return FALSE; this tells our caller that
5040 * the original pattern needs upgrading to utf8.
5041 */
5042
5043static bool
5044S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5045 char *pat, STRLEN plen)
5046{
5047 SV *qr;
5048
5049 GET_RE_DEBUG_FLAGS_DECL;
5050
5051 if (pRExC_state->runtime_code_qr) {
5052 /* this is the second time we've been called; this should
5053 * only happen if the main pattern got upgraded to utf8
5054 * during compilation; re-use the qr we compiled first time
5055 * round (which should be utf8 too)
5056 */
5057 qr = pRExC_state->runtime_code_qr;
5058 pRExC_state->runtime_code_qr = NULL;
5059 assert(RExC_utf8 && SvUTF8(qr));
5060 }
5061 else {
5062 int n = 0;
5063 STRLEN s;
5064 char *p, *newpat;
5065 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5066 SV *sv, *qr_ref;
5067 dSP;
5068
5069 /* determine how many extra chars we need for ' and \ escaping */
5070 for (s = 0; s < plen; s++) {
5071 if (pat[s] == '\'' || pat[s] == '\\')
5072 newlen++;
5073 }
5074
5075 Newx(newpat, newlen, char);
5076 p = newpat;
5077 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5078
5079 for (s = 0; s < plen; s++) {
5080 if (n < pRExC_state->num_code_blocks
5081 && s == pRExC_state->code_blocks[n].start)
5082 {
5083 /* blank out literal code block */
5084 assert(pat[s] == '(');
5085 while (s <= pRExC_state->code_blocks[n].end) {
5086 *p++ = ' ';
5087 s++;
5088 }
5089 s--;
5090 n++;
5091 continue;
5092 }
5093 if (pat[s] == '\'' || pat[s] == '\\')
5094 *p++ = '\\';
5095 *p++ = pat[s];
5096 }
5097 *p++ = '\'';
5098 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5099 *p++ = 'x';
5100 *p++ = '\0';
5101 DEBUG_COMPILE_r({
5102 PerlIO_printf(Perl_debug_log,
5103 "%sre-parsing pattern for runtime code:%s %s\n",
5104 PL_colors[4],PL_colors[5],newpat);
5105 });
5106
5107 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5108 Safefree(newpat);
5109
5110 ENTER;
5111 SAVETMPS;
5112 save_re_context();
5113 PUSHSTACKi(PERLSI_REQUIRE);
5114 /* this causes the toker to collapse \\ into \ when parsing
5115 * qr''; normally only q'' does this. It also alters hints
5116 * handling */
5117 PL_reg_state.re_reparsing = TRUE;
5118 eval_sv(sv, G_SCALAR);
5119 SvREFCNT_dec(sv);
5120 SPAGAIN;
5121 qr_ref = POPs;
5122 PUTBACK;
5123 if (SvTRUE(ERRSV))
5124 Perl_croak(aTHX_ "%s", SvPVx_nolen_const(ERRSV));
5125 assert(SvROK(qr_ref));
5126 qr = SvRV(qr_ref);
5127 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5128 /* the leaving below frees the tmp qr_ref.
5129 * Give qr a life of its own */
5130 SvREFCNT_inc(qr);
5131 POPSTACK;
5132 FREETMPS;
5133 LEAVE;
5134
5135 }
5136
5137 if (!RExC_utf8 && SvUTF8(qr)) {
5138 /* first time through; the pattern got upgraded; save the
5139 * qr for the next time through */
5140 assert(!pRExC_state->runtime_code_qr);
5141 pRExC_state->runtime_code_qr = qr;
5142 return 0;
5143 }
5144
5145
5146 /* extract any code blocks within the returned qr// */
5147
5148
5149 /* merge the main (r1) and run-time (r2) code blocks into one */
5150 {
5151 RXi_GET_DECL(((struct regexp*)SvANY(qr)), r2);
5152 struct reg_code_block *new_block, *dst;
5153 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5154 int i1 = 0, i2 = 0;
5155
5156 if (!r2->num_code_blocks) /* we guessed wrong */
5157 return 1;
5158
5159 Newx(new_block,
5160 r1->num_code_blocks + r2->num_code_blocks,
5161 struct reg_code_block);
5162 dst = new_block;
5163
5164 while ( i1 < r1->num_code_blocks
5165 || i2 < r2->num_code_blocks)
5166 {
5167 struct reg_code_block *src;
5168 bool is_qr = 0;
5169
5170 if (i1 == r1->num_code_blocks) {
5171 src = &r2->code_blocks[i2++];
5172 is_qr = 1;
5173 }
5174 else if (i2 == r2->num_code_blocks)
5175 src = &r1->code_blocks[i1++];
5176 else if ( r1->code_blocks[i1].start
5177 < r2->code_blocks[i2].start)
5178 {
5179 src = &r1->code_blocks[i1++];
5180 assert(src->end < r2->code_blocks[i2].start);
5181 }
5182 else {
5183 assert( r1->code_blocks[i1].start
5184 > r2->code_blocks[i2].start);
5185 src = &r2->code_blocks[i2++];
5186 is_qr = 1;
5187 assert(src->end < r1->code_blocks[i1].start);
5188 }
5189
5190 assert(pat[src->start] == '(');
5191 assert(pat[src->end] == ')');
5192 dst->start = src->start;
5193 dst->end = src->end;
5194 dst->block = src->block;
5195 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5196 : src->src_regex;
5197 dst++;
5198 }
5199 r1->num_code_blocks += r2->num_code_blocks;
5200 Safefree(r1->code_blocks);
5201 r1->code_blocks = new_block;
5202 }
5203
5204 SvREFCNT_dec(qr);
5205 return 1;
5206}
5207
5208
5209STATIC bool
5210S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5211{
5212 /* This is the common code for setting up the floating and fixed length
5213 * string data extracted from Perlre_op_compile() below. Returns a boolean
5214 * as to whether succeeded or not */
5215
5216 I32 t,ml;
5217
5218 if (! (longest_length
5219 || (eol /* Can't have SEOL and MULTI */
5220 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5221 )
5222 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5223 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5224 {
5225 return FALSE;
5226 }
5227
5228 /* copy the information about the longest from the reg_scan_data
5229 over to the program. */
5230 if (SvUTF8(sv_longest)) {
5231 *rx_utf8 = sv_longest;
5232 *rx_substr = NULL;
5233 } else {
5234 *rx_substr = sv_longest;
5235 *rx_utf8 = NULL;
5236 }
5237 /* end_shift is how many chars that must be matched that
5238 follow this item. We calculate it ahead of time as once the
5239 lookbehind offset is added in we lose the ability to correctly
5240 calculate it.*/
5241 ml = minlen ? *(minlen) : (I32)longest_length;
5242 *rx_end_shift = ml - offset
5243 - longest_length + (SvTAIL(sv_longest) != 0)
5244 + lookbehind;
5245
5246 t = (eol/* Can't have SEOL and MULTI */
5247 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5248 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5249
5250 return TRUE;
5251}
5252
5253/*
5254 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5255 * regular expression into internal code.
5256 * The pattern may be passed either as:
5257 * a list of SVs (patternp plus pat_count)
5258 * a list of OPs (expr)
5259 * If both are passed, the SV list is used, but the OP list indicates
5260 * which SVs are actually pre-compiled code blocks
5261 *
5262 * The SVs in the list have magic and qr overloading applied to them (and
5263 * the list may be modified in-place with replacement SVs in the latter
5264 * case).
5265 *
5266 * If the pattern hasn't changed from old_re, then old_re will be
5267 * returned.
5268 *
5269 * eng is the current engine. If that engine has an op_comp method, then
5270 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5271 * do the initial concatenation of arguments and pass on to the external
5272 * engine.
5273 *
5274 * If is_bare_re is not null, set it to a boolean indicating whether the
5275 * arg list reduced (after overloading) to a single bare regex which has
5276 * been returned (i.e. /$qr/).
5277 *
5278 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5279 *
5280 * pm_flags contains the PMf_* flags, typically based on those from the
5281 * pm_flags field of the related PMOP. Currently we're only interested in
5282 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5283 *
5284 * We can't allocate space until we know how big the compiled form will be,
5285 * but we can't compile it (and thus know how big it is) until we've got a
5286 * place to put the code. So we cheat: we compile it twice, once with code
5287 * generation turned off and size counting turned on, and once "for real".
5288 * This also means that we don't allocate space until we are sure that the
5289 * thing really will compile successfully, and we never have to move the
5290 * code and thus invalidate pointers into it. (Note that it has to be in
5291 * one piece because free() must be able to free it all.) [NB: not true in perl]
5292 *
5293 * Beware that the optimization-preparation code in here knows about some
5294 * of the structure of the compiled regexp. [I'll say.]
5295 */
5296
5297REGEXP *
5298Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5299 OP *expr, const regexp_engine* eng, REGEXP *VOL old_re,
5300 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5301{
5302 dVAR;
5303 REGEXP *rx;
5304 struct regexp *r;
5305 regexp_internal *ri;
5306 STRLEN plen;
5307 char * VOL exp;
5308 char* xend;
5309 regnode *scan;
5310 I32 flags;
5311 I32 minlen = 0;
5312 U32 rx_flags;
5313 SV * VOL pat;
5314
5315 /* these are all flags - maybe they should be turned
5316 * into a single int with different bit masks */
5317 I32 sawlookahead = 0;
5318 I32 sawplus = 0;
5319 I32 sawopen = 0;
5320 bool used_setjump = FALSE;
5321 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5322 bool code_is_utf8 = 0;
5323 bool VOL recompile = 0;
5324 bool runtime_code = 0;
5325 U8 jump_ret = 0;
5326 dJMPENV;
5327 scan_data_t data;
5328 RExC_state_t RExC_state;
5329 RExC_state_t * const pRExC_state = &RExC_state;
5330#ifdef TRIE_STUDY_OPT
5331 int restudied;
5332 RExC_state_t copyRExC_state;
5333#endif
5334 GET_RE_DEBUG_FLAGS_DECL;
5335
5336 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5337
5338 DEBUG_r(if (!PL_colorset) reginitcolors());
5339
5340#ifndef PERL_IN_XSUB_RE
5341 /* Initialize these here instead of as-needed, as is quick and avoids
5342 * having to test them each time otherwise */
5343 if (! PL_AboveLatin1) {
5344 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5345 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5346 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5347
5348 PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
5349 PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
5350
5351 PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
5352 PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
5353
5354 PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
5355 PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
5356
5357 PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
5358
5359 PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
5360 PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
5361
5362 PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
5363
5364 PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
5365 PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
5366
5367 PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
5368 PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
5369
5370 PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
5371 PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
5372
5373 PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
5374 PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
5375
5376 PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
5377 PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
5378
5379 PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
5380 PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
5381
5382 PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
5383 PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
5384
5385 PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
5386
5387 PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
5388 PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
5389
5390 PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
5391 PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
5392 }
5393#endif
5394
5395 pRExC_state->code_blocks = NULL;
5396 pRExC_state->num_code_blocks = 0;
5397
5398 if (is_bare_re)
5399 *is_bare_re = FALSE;
5400
5401 if (expr && (expr->op_type == OP_LIST ||
5402 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5403
5404 /* is the source UTF8, and how many code blocks are there? */
5405 OP *o;
5406 int ncode = 0;
5407
5408 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5409 if (o->op_type == OP_CONST && SvUTF8(cSVOPo_sv))
5410 code_is_utf8 = 1;
5411 else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5412 /* count of DO blocks */
5413 ncode++;
5414 }
5415 if (ncode) {
5416 pRExC_state->num_code_blocks = ncode;
5417 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5418 }
5419 }
5420
5421 if (pat_count) {
5422 /* handle a list of SVs */
5423
5424 SV **svp;
5425
5426 /* apply magic and RE overloading to each arg */
5427 for (svp = patternp; svp < patternp + pat_count; svp++) {
5428 SV *rx = *svp;
5429 SvGETMAGIC(rx);
5430 if (SvROK(rx) && SvAMAGIC(rx)) {
5431 SV *sv = AMG_CALLunary(rx, regexp_amg);
5432 if (sv) {
5433 if (SvROK(sv))
5434 sv = SvRV(sv);
5435 if (SvTYPE(sv) != SVt_REGEXP)
5436 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5437 *svp = sv;
5438 }
5439 }
5440 }
5441
5442 if (pat_count > 1) {
5443 /* concat multiple args and find any code block indexes */
5444
5445 OP *o = NULL;
5446 int n = 0;
5447 bool utf8 = 0;
5448 STRLEN orig_patlen = 0;
5449
5450 if (pRExC_state->num_code_blocks) {
5451 o = cLISTOPx(expr)->op_first;
5452 assert(o->op_type == OP_PUSHMARK);
5453 o = o->op_sibling;
5454 }
5455
5456 pat = newSVpvn("", 0);
5457 SAVEFREESV(pat);
5458
5459 /* determine if the pattern is going to be utf8 (needed
5460 * in advance to align code block indices correctly).
5461 * XXX This could fail to be detected for an arg with
5462 * overloading but not concat overloading; but the main effect
5463 * in this obscure case is to need a 'use re eval' for a
5464 * literal code block */
5465 for (svp = patternp; svp < patternp + pat_count; svp++) {
5466 if (SvUTF8(*svp))
5467 utf8 = 1;
5468 }
5469 if (utf8)
5470 SvUTF8_on(pat);
5471
5472 for (svp = patternp; svp < patternp + pat_count; svp++) {
5473 SV *sv, *msv = *svp;
5474 SV *rx;
5475 bool code = 0;
5476 if (o) {
5477 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) {
5478 assert(n < pRExC_state->num_code_blocks);
5479 pRExC_state->code_blocks[n].start = SvCUR(pat);
5480 pRExC_state->code_blocks[n].block = o;
5481 pRExC_state->code_blocks[n].src_regex = NULL;
5482 n++;
5483 code = 1;
5484 o = o->op_sibling; /* skip CONST */
5485 assert(o);
5486 }
5487 o = o->op_sibling;;
5488 }
5489
5490 if ((SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5491 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5492 {
5493 sv_setsv(pat, sv);
5494 /* overloading involved: all bets are off over literal
5495 * code. Pretend we haven't seen it */
5496 pRExC_state->num_code_blocks -= n;
5497 n = 0;
5498 rx = NULL;
5499
5500 }
5501 else {
5502 while (SvAMAGIC(msv)
5503 && (sv = AMG_CALLunary(msv, string_amg))
5504 && sv != msv
5505 && !( SvROK(msv)
5506 && SvROK(sv)
5507 && SvRV(msv) == SvRV(sv))
5508 ) {
5509 msv = sv;
5510 SvGETMAGIC(msv);
5511 }
5512 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5513 msv = SvRV(msv);
5514 orig_patlen = SvCUR(pat);
5515 sv_catsv_nomg(pat, msv);
5516 rx = msv;
5517 if (code)
5518 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5519 }
5520
5521 /* extract any code blocks within any embedded qr//'s */
5522 if (rx && SvTYPE(rx) == SVt_REGEXP
5523 && RX_ENGINE((REGEXP*)rx)->op_comp)
5524 {
5525
5526 RXi_GET_DECL(((struct regexp*)SvANY(rx)), ri);
5527 if (ri->num_code_blocks) {
5528 int i;
5529 /* the presence of an embedded qr// with code means
5530 * we should always recompile: the text of the
5531 * qr// may not have changed, but it may be a
5532 * different closure than last time */
5533 recompile = 1;
5534 Renew(pRExC_state->code_blocks,
5535 pRExC_state->num_code_blocks + ri->num_code_blocks,
5536 struct reg_code_block);
5537 pRExC_state->num_code_blocks += ri->num_code_blocks;
5538 for (i=0; i < ri->num_code_blocks; i++) {
5539 struct reg_code_block *src, *dst;
5540 STRLEN offset = orig_patlen
5541 + ((struct regexp *)SvANY(rx))->pre_prefix;
5542 assert(n < pRExC_state->num_code_blocks);
5543 src = &ri->code_blocks[i];
5544 dst = &pRExC_state->code_blocks[n];
5545 dst->start = src->start + offset;
5546 dst->end = src->end + offset;
5547 dst->block = src->block;
5548 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5549 src->src_regex
5550 ? src->src_regex
5551 : (REGEXP*)rx);
5552 n++;
5553 }
5554 }
5555 }
5556 }
5557 SvSETMAGIC(pat);
5558 }
5559 else {
5560 SV *sv;
5561 pat = *patternp;
5562 while (SvAMAGIC(pat)
5563 && (sv = AMG_CALLunary(pat, string_amg))
5564 && sv != pat)
5565 {
5566 pat = sv;
5567 SvGETMAGIC(pat);
5568 }
5569 }
5570
5571 /* handle bare regex: foo =~ $re */
5572 {
5573 SV *re = pat;
5574 if (SvROK(re))
5575 re = SvRV(re);
5576 if (SvTYPE(re) == SVt_REGEXP) {
5577 if (is_bare_re)
5578 *is_bare_re = TRUE;
5579 SvREFCNT_inc(re);
5580 Safefree(pRExC_state->code_blocks);
5581 return (REGEXP*)re;
5582 }
5583 }
5584 }
5585 else {
5586 /* not a list of SVs, so must be a list of OPs */
5587 assert(expr);
5588 if (expr->op_type == OP_LIST) {
5589 int i = -1;
5590 bool is_code = 0;
5591 OP *o;
5592
5593 pat = newSVpvn("", 0);
5594 SAVEFREESV(pat);
5595 if (code_is_utf8)
5596 SvUTF8_on(pat);
5597
5598 /* given a list of CONSTs and DO blocks in expr, append all
5599 * the CONSTs to pat, and record the start and end of each
5600 * code block in code_blocks[] (each DO{} op is followed by an
5601 * OP_CONST containing the corresponding literal '(?{...})
5602 * text)
5603 */
5604 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5605 if (o->op_type == OP_CONST) {
5606 sv_catsv(pat, cSVOPo_sv);
5607 if (is_code) {
5608 pRExC_state->code_blocks[i].end = SvCUR(pat)-1;
5609 is_code = 0;
5610 }
5611 }
5612 else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) {
5613 assert(i+1 < pRExC_state->num_code_blocks);
5614 pRExC_state->code_blocks[++i].start = SvCUR(pat);
5615 pRExC_state->code_blocks[i].block = o;
5616 pRExC_state->code_blocks[i].src_regex = NULL;
5617 is_code = 1;
5618 }
5619 }
5620 }
5621 else {
5622 assert(expr->op_type == OP_CONST);
5623 pat = cSVOPx_sv(expr);
5624 }
5625 }
5626
5627 exp = SvPV_nomg(pat, plen);
5628
5629 if (!eng->op_comp) {
5630 if ((SvUTF8(pat) && IN_BYTES)
5631 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5632 {
5633 /* make a temporary copy; either to convert to bytes,
5634 * or to avoid repeating get-magic / overloaded stringify */
5635 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5636 (IN_BYTES ? 0 : SvUTF8(pat)));
5637 }
5638 Safefree(pRExC_state->code_blocks);
5639 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5640 }
5641
5642 /* ignore the utf8ness if the pattern is 0 length */
5643 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5644 RExC_uni_semantics = 0;
5645 RExC_contains_locale = 0;
5646 pRExC_state->runtime_code_qr = NULL;
5647
5648 /****************** LONG JUMP TARGET HERE***********************/
5649 /* Longjmp back to here if have to switch in midstream to utf8 */
5650 if (! RExC_orig_utf8) {
5651 JMPENV_PUSH(jump_ret);
5652 used_setjump = TRUE;
5653 }
5654
5655 if (jump_ret == 0) { /* First time through */
5656 xend = exp + plen;
5657
5658 DEBUG_COMPILE_r({
5659 SV *dsv= sv_newmortal();
5660 RE_PV_QUOTED_DECL(s, RExC_utf8,
5661 dsv, exp, plen, 60);
5662 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5663 PL_colors[4],PL_colors[5],s);
5664 });
5665 }
5666 else { /* longjumped back */
5667 U8 *src, *dst;
5668 int n=0;
5669 STRLEN s = 0, d = 0;
5670 bool do_end = 0;
5671
5672 /* If the cause for the longjmp was other than changing to utf8, pop
5673 * our own setjmp, and longjmp to the correct handler */
5674 if (jump_ret != UTF8_LONGJMP) {
5675 JMPENV_POP;
5676 JMPENV_JUMP(jump_ret);
5677 }
5678
5679 GET_RE_DEBUG_FLAGS;
5680
5681 /* It's possible to write a regexp in ascii that represents Unicode
5682 codepoints outside of the byte range, such as via \x{100}. If we
5683 detect such a sequence we have to convert the entire pattern to utf8
5684 and then recompile, as our sizing calculation will have been based
5685 on 1 byte == 1 character, but we will need to use utf8 to encode
5686 at least some part of the pattern, and therefore must convert the whole
5687 thing.
5688 -- dmq */
5689 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5690 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
5691
5692 /* upgrade pattern to UTF8, and if there are code blocks,
5693 * recalculate the indices.
5694 * This is essentially an unrolled Perl_bytes_to_utf8() */
5695
5696 src = (U8*)SvPV_nomg(pat, plen);
5697 Newx(dst, plen * 2 + 1, U8);
5698
5699 while (s < plen) {
5700 const UV uv = NATIVE_TO_ASCII(src[s]);
5701 if (UNI_IS_INVARIANT(uv))
5702 dst[d] = (U8)UTF_TO_NATIVE(uv);
5703 else {
5704 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
5705 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
5706 }
5707 if (n < pRExC_state->num_code_blocks) {
5708 if (!do_end && pRExC_state->code_blocks[n].start == s) {
5709 pRExC_state->code_blocks[n].start = d;
5710 assert(dst[d] == '(');
5711 do_end = 1;
5712 }
5713 else if (do_end && pRExC_state->code_blocks[n].end == s) {
5714 pRExC_state->code_blocks[n].end = d;
5715 assert(dst[d] == ')');
5716 do_end = 0;
5717 n++;
5718 }
5719 }
5720 s++;
5721 d++;
5722 }
5723 dst[d] = '\0';
5724 plen = d;
5725 exp = (char*) dst;
5726 xend = exp + plen;
5727 SAVEFREEPV(exp);
5728 RExC_orig_utf8 = RExC_utf8 = 1;
5729 }
5730
5731 /* return old regex if pattern hasn't changed */
5732
5733 if ( old_re
5734 && !recompile
5735 && !!RX_UTF8(old_re) == !!RExC_utf8
5736 && RX_PRECOMP(old_re)
5737 && RX_PRELEN(old_re) == plen
5738 && memEQ(RX_PRECOMP(old_re), exp, plen))
5739 {
5740 /* with runtime code, always recompile */
5741 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags,
5742 exp, plen);
5743 if (!runtime_code) {
5744 if (used_setjump) {
5745 JMPENV_POP;
5746 }
5747 Safefree(pRExC_state->code_blocks);
5748 return old_re;
5749 }
5750 }
5751 else if ((pm_flags & PMf_USE_RE_EVAL)
5752 /* this second condition covers the non-regex literal case,
5753 * i.e. $foo =~ '(?{})'. */
5754 || ( !PL_reg_state.re_reparsing && IN_PERL_COMPILETIME
5755 && (PL_hints & HINT_RE_EVAL))
5756 )
5757 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags,
5758 exp, plen);
5759
5760#ifdef TRIE_STUDY_OPT
5761 restudied = 0;
5762#endif
5763
5764 rx_flags = orig_rx_flags;
5765
5766 if (initial_charset == REGEX_LOCALE_CHARSET) {
5767 RExC_contains_locale = 1;
5768 }
5769 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5770
5771 /* Set to use unicode semantics if the pattern is in utf8 and has the
5772 * 'depends' charset specified, as it means unicode when utf8 */
5773 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5774 }
5775
5776 RExC_precomp = exp;
5777 RExC_flags = rx_flags;
5778 RExC_pm_flags = pm_flags;
5779
5780 if (runtime_code) {
5781 if (PL_tainting && PL_tainted)
5782 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5783
5784 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5785 /* whoops, we have a non-utf8 pattern, whilst run-time code
5786 * got compiled as utf8. Try again with a utf8 pattern */
5787 JMPENV_JUMP(UTF8_LONGJMP);
5788 }
5789 }
5790 assert(!pRExC_state->runtime_code_qr);
5791
5792 RExC_sawback = 0;
5793
5794 RExC_seen = 0;
5795 RExC_in_lookbehind = 0;
5796 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5797 RExC_extralen = 0;
5798 RExC_override_recoding = 0;
5799
5800 /* First pass: determine size, legality. */
5801 RExC_parse = exp;
5802 RExC_start = exp;
5803 RExC_end = xend;
5804 RExC_naughty = 0;
5805 RExC_npar = 1;
5806 RExC_nestroot = 0;
5807 RExC_size = 0L;
5808 RExC_emit = &PL_regdummy;
5809 RExC_whilem_seen = 0;
5810 RExC_open_parens = NULL;
5811 RExC_close_parens = NULL;
5812 RExC_opend = NULL;
5813 RExC_paren_names = NULL;
5814#ifdef DEBUGGING
5815 RExC_paren_name_list = NULL;
5816#endif
5817 RExC_recurse = NULL;
5818 RExC_recurse_count = 0;
5819 pRExC_state->code_index = 0;
5820
5821#if 0 /* REGC() is (currently) a NOP at the first pass.
5822 * Clever compilers notice this and complain. --jhi */
5823 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5824#endif
5825 DEBUG_PARSE_r(
5826 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5827 RExC_lastnum=0;
5828 RExC_lastparse=NULL;
5829 );
5830 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5831 RExC_precomp = NULL;
5832 Safefree(pRExC_state->code_blocks);
5833 return(NULL);
5834 }
5835
5836 /* Here, finished first pass. Get rid of any added setjmp */
5837 if (used_setjump) {
5838 JMPENV_POP;
5839 }
5840
5841 DEBUG_PARSE_r({
5842 PerlIO_printf(Perl_debug_log,
5843 "Required size %"IVdf" nodes\n"
5844 "Starting second pass (creation)\n",
5845 (IV)RExC_size);
5846 RExC_lastnum=0;
5847 RExC_lastparse=NULL;
5848 });
5849
5850 /* The first pass could have found things that force Unicode semantics */
5851 if ((RExC_utf8 || RExC_uni_semantics)
5852 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5853 {
5854 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5855 }
5856
5857 /* Small enough for pointer-storage convention?
5858 If extralen==0, this means that we will not need long jumps. */
5859 if (RExC_size >= 0x10000L && RExC_extralen)
5860 RExC_size += RExC_extralen;
5861 else
5862 RExC_extralen = 0;
5863 if (RExC_whilem_seen > 15)
5864 RExC_whilem_seen = 15;
5865
5866 /* Allocate space and zero-initialize. Note, the two step process
5867 of zeroing when in debug mode, thus anything assigned has to
5868 happen after that */
5869 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5870 r = (struct regexp*)SvANY(rx);
5871 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5872 char, regexp_internal);
5873 if ( r == NULL || ri == NULL )
5874 FAIL("Regexp out of space");
5875#ifdef DEBUGGING
5876 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5877 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5878#else
5879 /* bulk initialize base fields with 0. */
5880 Zero(ri, sizeof(regexp_internal), char);
5881#endif
5882
5883 /* non-zero initialization begins here */
5884 RXi_SET( r, ri );
5885 r->engine= eng;
5886 r->extflags = rx_flags;
5887 if (pm_flags & PMf_IS_QR) {
5888 ri->code_blocks = pRExC_state->code_blocks;
5889 ri->num_code_blocks = pRExC_state->num_code_blocks;
5890 }
5891 else
5892 SAVEFREEPV(pRExC_state->code_blocks);
5893
5894 {
5895 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5896 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5897
5898 /* The caret is output if there are any defaults: if not all the STD
5899 * flags are set, or if no character set specifier is needed */
5900 bool has_default =
5901 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5902 || ! has_charset);
5903 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5904 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5905 >> RXf_PMf_STD_PMMOD_SHIFT);
5906 const char *fptr = STD_PAT_MODS; /*"msix"*/
5907 char *p;
5908 /* Allocate for the worst case, which is all the std flags are turned
5909 * on. If more precision is desired, we could do a population count of
5910 * the flags set. This could be done with a small lookup table, or by
5911 * shifting, masking and adding, or even, when available, assembly
5912 * language for a machine-language population count.
5913 * We never output a minus, as all those are defaults, so are
5914 * covered by the caret */
5915 const STRLEN wraplen = plen + has_p + has_runon
5916 + has_default /* If needs a caret */
5917
5918 /* If needs a character set specifier */
5919 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5920 + (sizeof(STD_PAT_MODS) - 1)
5921 + (sizeof("(?:)") - 1);
5922
5923 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
5924 SvPOK_on(rx);
5925 if (RExC_utf8)
5926 SvFLAGS(rx) |= SVf_UTF8;
5927 *p++='('; *p++='?';
5928
5929 /* If a default, cover it using the caret */
5930 if (has_default) {
5931 *p++= DEFAULT_PAT_MOD;
5932 }
5933 if (has_charset) {
5934 STRLEN len;
5935 const char* const name = get_regex_charset_name(r->extflags, &len);
5936 Copy(name, p, len, char);
5937 p += len;
5938 }
5939 if (has_p)
5940 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5941 {
5942 char ch;
5943 while((ch = *fptr++)) {
5944 if(reganch & 1)
5945 *p++ = ch;
5946 reganch >>= 1;
5947 }
5948 }
5949
5950 *p++ = ':';
5951 Copy(RExC_precomp, p, plen, char);
5952 assert ((RX_WRAPPED(rx) - p) < 16);
5953 r->pre_prefix = p - RX_WRAPPED(rx);
5954 p += plen;
5955 if (has_runon)
5956 *p++ = '\n';
5957 *p++ = ')';
5958 *p = 0;
5959 SvCUR_set(rx, p - SvPVX_const(rx));
5960 }
5961
5962 r->intflags = 0;
5963 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5964
5965 if (RExC_seen & REG_SEEN_RECURSE) {
5966 Newxz(RExC_open_parens, RExC_npar,regnode *);
5967 SAVEFREEPV(RExC_open_parens);
5968 Newxz(RExC_close_parens,RExC_npar,regnode *);
5969 SAVEFREEPV(RExC_close_parens);
5970 }
5971
5972 /* Useful during FAIL. */
5973#ifdef RE_TRACK_PATTERN_OFFSETS
5974 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5975 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5976 "%s %"UVuf" bytes for offset annotations.\n",
5977 ri->u.offsets ? "Got" : "Couldn't get",
5978 (UV)((2*RExC_size+1) * sizeof(U32))));
5979#endif
5980 SetProgLen(ri,RExC_size);
5981 RExC_rx_sv = rx;
5982 RExC_rx = r;
5983 RExC_rxi = ri;
5984
5985 /* Second pass: emit code. */
5986 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5987 RExC_pm_flags = pm_flags;
5988 RExC_parse = exp;
5989 RExC_end = xend;
5990 RExC_naughty = 0;
5991 RExC_npar = 1;
5992 RExC_emit_start = ri->program;
5993 RExC_emit = ri->program;
5994 RExC_emit_bound = ri->program + RExC_size + 1;
5995 pRExC_state->code_index = 0;
5996
5997 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5998 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5999 ReREFCNT_dec(rx);
6000 return(NULL);
6001 }
6002 /* XXXX To minimize changes to RE engine we always allocate
6003 3-units-long substrs field. */
6004 Newx(r->substrs, 1, struct reg_substr_data);
6005 if (RExC_recurse_count) {
6006 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
6007 SAVEFREEPV(RExC_recurse);
6008 }
6009
6010reStudy:
6011 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6012 Zero(r->substrs, 1, struct reg_substr_data);
6013
6014#ifdef TRIE_STUDY_OPT
6015 if (!restudied) {
6016 StructCopy(&zero_scan_data, &data, scan_data_t);
6017 copyRExC_state = RExC_state;
6018 } else {
6019 U32 seen=RExC_seen;
6020 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6021
6022 RExC_state = copyRExC_state;
6023 if (seen & REG_TOP_LEVEL_BRANCHES)
6024 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6025 else
6026 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6027 if (data.last_found) {
6028 SvREFCNT_dec(data.longest_fixed);
6029 SvREFCNT_dec(data.longest_float);
6030 SvREFCNT_dec(data.last_found);
6031 }
6032 StructCopy(&zero_scan_data, &data, scan_data_t);
6033 }
6034#else
6035 StructCopy(&zero_scan_data, &data, scan_data_t);
6036#endif
6037
6038 /* Dig out information for optimizations. */
6039 r->extflags = RExC_flags; /* was pm_op */
6040 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6041
6042 if (UTF)
6043 SvUTF8_on(rx); /* Unicode in it? */
6044 ri->regstclass = NULL;
6045 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
6046 r->intflags |= PREGf_NAUGHTY;
6047 scan = ri->program + 1; /* First BRANCH. */
6048
6049 /* testing for BRANCH here tells us whether there is "must appear"
6050 data in the pattern. If there is then we can use it for optimisations */
6051 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
6052 I32 fake;
6053 STRLEN longest_float_length, longest_fixed_length;
6054 struct regnode_charclass_class ch_class; /* pointed to by data */
6055 int stclass_flag;
6056 I32 last_close = 0; /* pointed to by data */
6057 regnode *first= scan;
6058 regnode *first_next= regnext(first);
6059 /*
6060 * Skip introductions and multiplicators >= 1
6061 * so that we can extract the 'meat' of the pattern that must
6062 * match in the large if() sequence following.
6063 * NOTE that EXACT is NOT covered here, as it is normally
6064 * picked up by the optimiser separately.
6065 *
6066 * This is unfortunate as the optimiser isnt handling lookahead
6067 * properly currently.
6068 *
6069 */
6070 while ((OP(first) == OPEN && (sawopen = 1)) ||
6071 /* An OR of *one* alternative - should not happen now. */
6072 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6073 /* for now we can't handle lookbehind IFMATCH*/
6074 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6075 (OP(first) == PLUS) ||
6076 (OP(first) == MINMOD) ||
6077 /* An {n,m} with n>0 */
6078 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6079 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6080 {
6081 /*
6082 * the only op that could be a regnode is PLUS, all the rest
6083 * will be regnode_1 or regnode_2.
6084 *
6085 */
6086 if (OP(first) == PLUS)
6087 sawplus = 1;
6088 else
6089 first += regarglen[OP(first)];
6090
6091 first = NEXTOPER(first);
6092 first_next= regnext(first);
6093 }
6094
6095 /* Starting-point info. */
6096 again:
6097 DEBUG_PEEP("first:",first,0);
6098 /* Ignore EXACT as we deal with it later. */
6099 if (PL_regkind[OP(first)] == EXACT) {
6100 if (OP(first) == EXACT)
6101 NOOP; /* Empty, get anchored substr later. */
6102 else
6103 ri->regstclass = first;
6104 }
6105#ifdef TRIE_STCLASS
6106 else if (PL_regkind[OP(first)] == TRIE &&
6107 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6108 {
6109 regnode *trie_op;
6110 /* this can happen only on restudy */
6111 if ( OP(first) == TRIE ) {
6112 struct regnode_1 *trieop = (struct regnode_1 *)
6113 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6114 StructCopy(first,trieop,struct regnode_1);
6115 trie_op=(regnode *)trieop;
6116 } else {
6117 struct regnode_charclass *trieop = (struct regnode_charclass *)
6118 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6119 StructCopy(first,trieop,struct regnode_charclass);
6120 trie_op=(regnode *)trieop;
6121 }
6122 OP(trie_op)+=2;
6123 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6124 ri->regstclass = trie_op;
6125 }
6126#endif
6127 else if (REGNODE_SIMPLE(OP(first)))
6128 ri->regstclass = first;
6129 else if (PL_regkind[OP(first)] == BOUND ||
6130 PL_regkind[OP(first)] == NBOUND)
6131 ri->regstclass = first;
6132 else if (PL_regkind[OP(first)] == BOL) {
6133 r->extflags |= (OP(first) == MBOL
6134 ? RXf_ANCH_MBOL
6135 : (OP(first) == SBOL
6136 ? RXf_ANCH_SBOL
6137 : RXf_ANCH_BOL));
6138 first = NEXTOPER(first);
6139 goto again;
6140 }
6141 else if (OP(first) == GPOS) {
6142 r->extflags |= RXf_ANCH_GPOS;
6143 first = NEXTOPER(first);
6144 goto again;
6145 }
6146 else if ((!sawopen || !RExC_sawback) &&
6147 (OP(first) == STAR &&
6148 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6149 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6150 {
6151 /* turn .* into ^.* with an implied $*=1 */
6152 const int type =
6153 (OP(NEXTOPER(first)) == REG_ANY)
6154 ? RXf_ANCH_MBOL
6155 : RXf_ANCH_SBOL;
6156 r->extflags |= type;
6157 r->intflags |= PREGf_IMPLICIT;
6158 first = NEXTOPER(first);
6159 goto again;
6160 }
6161 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6162 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6163 /* x+ must match at the 1st pos of run of x's */
6164 r->intflags |= PREGf_SKIP;
6165
6166 /* Scan is after the zeroth branch, first is atomic matcher. */
6167#ifdef TRIE_STUDY_OPT
6168 DEBUG_PARSE_r(
6169 if (!restudied)
6170 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6171 (IV)(first - scan + 1))
6172 );
6173#else
6174 DEBUG_PARSE_r(
6175 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6176 (IV)(first - scan + 1))
6177 );
6178#endif
6179
6180
6181 /*
6182 * If there's something expensive in the r.e., find the
6183 * longest literal string that must appear and make it the
6184 * regmust. Resolve ties in favor of later strings, since
6185 * the regstart check works with the beginning of the r.e.
6186 * and avoiding duplication strengthens checking. Not a
6187 * strong reason, but sufficient in the absence of others.
6188 * [Now we resolve ties in favor of the earlier string if
6189 * it happens that c_offset_min has been invalidated, since the
6190 * earlier string may buy us something the later one won't.]
6191 */
6192
6193 data.longest_fixed = newSVpvs("");
6194 data.longest_float = newSVpvs("");
6195 data.last_found = newSVpvs("");
6196 data.longest = &(data.longest_fixed);
6197 first = scan;
6198 if (!ri->regstclass) {
6199 cl_init(pRExC_state, &ch_class);
6200 data.start_class = &ch_class;
6201 stclass_flag = SCF_DO_STCLASS_AND;
6202 } else /* XXXX Check for BOUND? */
6203 stclass_flag = 0;
6204 data.last_closep = &last_close;
6205
6206 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6207 &data, -1, NULL, NULL,
6208 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6209
6210
6211 CHECK_RESTUDY_GOTO;
6212
6213
6214 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6215 && data.last_start_min == 0 && data.last_end > 0
6216 && !RExC_seen_zerolen
6217 && !(RExC_seen & REG_SEEN_VERBARG)
6218 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6219 r->extflags |= RXf_CHECK_ALL;
6220 scan_commit(pRExC_state, &data,&minlen,0);
6221 SvREFCNT_dec(data.last_found);
6222
6223 longest_float_length = CHR_SVLEN(data.longest_float);
6224
6225 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6226 && data.offset_fixed == data.offset_float_min
6227 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6228 && S_setup_longest (aTHX_ pRExC_state,
6229 data.longest_float,
6230 &(r->float_utf8),
6231 &(r->float_substr),
6232 &(r->float_end_shift),
6233 data.lookbehind_float,
6234 data.offset_float_min,
6235 data.minlen_float,
6236 longest_float_length,
6237 data.flags & SF_FL_BEFORE_EOL,
6238 data.flags & SF_FL_BEFORE_MEOL))
6239 {
6240 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6241 r->float_max_offset = data.offset_float_max;
6242 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6243 r->float_max_offset -= data.lookbehind_float;
6244 }
6245 else {
6246 r->float_substr = r->float_utf8 = NULL;
6247 SvREFCNT_dec(data.longest_float);
6248 longest_float_length = 0;
6249 }
6250
6251 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6252
6253 if (S_setup_longest (aTHX_ pRExC_state,
6254 data.longest_fixed,
6255 &(r->anchored_utf8),
6256 &(r->anchored_substr),
6257 &(r->anchored_end_shift),
6258 data.lookbehind_fixed,
6259 data.offset_fixed,
6260 data.minlen_fixed,
6261 longest_fixed_length,
6262 data.flags & SF_FIX_BEFORE_EOL,
6263 data.flags & SF_FIX_BEFORE_MEOL))
6264 {
6265 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6266 }
6267 else {
6268 r->anchored_substr = r->anchored_utf8 = NULL;
6269 SvREFCNT_dec(data.longest_fixed);
6270 longest_fixed_length = 0;
6271 }
6272
6273 if (ri->regstclass
6274 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6275 ri->regstclass = NULL;
6276
6277 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6278 && stclass_flag
6279 && !(data.start_class->flags & ANYOF_EOS)
6280 && !cl_is_anything(data.start_class))
6281 {
6282 const U32 n = add_data(pRExC_state, 1, "f");
6283 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
6284
6285 Newx(RExC_rxi->data->data[n], 1,
6286 struct regnode_charclass_class);
6287 StructCopy(data.start_class,
6288 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6289 struct regnode_charclass_class);
6290 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6291 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6292 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6293 regprop(r, sv, (regnode*)data.start_class);
6294 PerlIO_printf(Perl_debug_log,
6295 "synthetic stclass \"%s\".\n",
6296 SvPVX_const(sv));});
6297 }
6298
6299 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6300 if (longest_fixed_length > longest_float_length) {
6301 r->check_end_shift = r->anchored_end_shift;
6302 r->check_substr = r->anchored_substr;
6303 r->check_utf8 = r->anchored_utf8;
6304 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6305 if (r->extflags & RXf_ANCH_SINGLE)
6306 r->extflags |= RXf_NOSCAN;
6307 }
6308 else {
6309 r->check_end_shift = r->float_end_shift;
6310 r->check_substr = r->float_substr;
6311 r->check_utf8 = r->float_utf8;
6312 r->check_offset_min = r->float_min_offset;
6313 r->check_offset_max = r->float_max_offset;
6314 }
6315 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6316 This should be changed ASAP! */
6317 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6318 r->extflags |= RXf_USE_INTUIT;
6319 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6320 r->extflags |= RXf_INTUIT_TAIL;
6321 }
6322 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6323 if ( (STRLEN)minlen < longest_float_length )
6324 minlen= longest_float_length;
6325 if ( (STRLEN)minlen < longest_fixed_length )
6326 minlen= longest_fixed_length;
6327 */
6328 }
6329 else {
6330 /* Several toplevels. Best we can is to set minlen. */
6331 I32 fake;
6332 struct regnode_charclass_class ch_class;
6333 I32 last_close = 0;
6334
6335 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6336
6337 scan = ri->program + 1;
6338 cl_init(pRExC_state, &ch_class);
6339 data.start_class = &ch_class;
6340 data.last_closep = &last_close;
6341
6342
6343 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6344 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6345
6346 CHECK_RESTUDY_GOTO;
6347
6348 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6349 = r->float_substr = r->float_utf8 = NULL;
6350
6351 if (!(data.start_class->flags & ANYOF_EOS)
6352 && !cl_is_anything(data.start_class))
6353 {
6354 const U32 n = add_data(pRExC_state, 1, "f");
6355 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
6356
6357 Newx(RExC_rxi->data->data[n], 1,
6358 struct regnode_charclass_class);
6359 StructCopy(data.start_class,
6360 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6361 struct regnode_charclass_class);
6362 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6363 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6364 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6365 regprop(r, sv, (regnode*)data.start_class);
6366 PerlIO_printf(Perl_debug_log,
6367 "synthetic stclass \"%s\".\n",
6368 SvPVX_const(sv));});
6369 }
6370 }
6371
6372 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6373 the "real" pattern. */
6374 DEBUG_OPTIMISE_r({
6375 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6376 (IV)minlen, (IV)r->minlen);
6377 });
6378 r->minlenret = minlen;
6379 if (r->minlen < minlen)
6380 r->minlen = minlen;
6381
6382 if (RExC_seen & REG_SEEN_GPOS)
6383 r->extflags |= RXf_GPOS_SEEN;
6384 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6385 r->extflags |= RXf_LOOKBEHIND_SEEN;
6386 if (pRExC_state->num_code_blocks)
6387 r->extflags |= RXf_EVAL_SEEN;
6388 if (RExC_seen & REG_SEEN_CANY)
6389 r->extflags |= RXf_CANY_SEEN;
6390 if (RExC_seen & REG_SEEN_VERBARG)
6391 r->intflags |= PREGf_VERBARG_SEEN;
6392 if (RExC_seen & REG_SEEN_CUTGROUP)
6393 r->intflags |= PREGf_CUTGROUP_SEEN;
6394 if (pm_flags & PMf_USE_RE_EVAL)
6395 r->intflags |= PREGf_USE_RE_EVAL;
6396 if (RExC_paren_names)
6397 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6398 else
6399 RXp_PAREN_NAMES(r) = NULL;
6400
6401#ifdef STUPID_PATTERN_CHECKS
6402 if (RX_PRELEN(rx) == 0)
6403 r->extflags |= RXf_NULL;
6404 if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
6405 r->extflags |= RXf_WHITE;
6406 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
6407 r->extflags |= RXf_START_ONLY;
6408#else
6409 {
6410 regnode *first = ri->program + 1;
6411 U8 fop = OP(first);
6412
6413 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
6414 r->extflags |= RXf_NULL;
6415 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
6416 r->extflags |= RXf_START_ONLY;
6417 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
6418 && OP(regnext(first)) == END)
6419 r->extflags |= RXf_WHITE;
6420 }
6421#endif
6422#ifdef DEBUGGING
6423 if (RExC_paren_names) {
6424 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6425 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6426 } else
6427#endif
6428 ri->name_list_idx = 0;
6429
6430 if (RExC_recurse_count) {
6431 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6432 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6433 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6434 }
6435 }
6436 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6437 /* assume we don't need to swap parens around before we match */
6438
6439 DEBUG_DUMP_r({
6440 PerlIO_printf(Perl_debug_log,"Final program:\n");
6441 regdump(r);
6442 });
6443#ifdef RE_TRACK_PATTERN_OFFSETS
6444 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6445 const U32 len = ri->u.offsets[0];
6446 U32 i;
6447 GET_RE_DEBUG_FLAGS_DECL;
6448 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6449 for (i = 1; i <= len; i++) {
6450 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6451 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6452 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6453 }
6454 PerlIO_printf(Perl_debug_log, "\n");
6455 });
6456#endif
6457 return rx;
6458}
6459
6460
6461SV*
6462Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6463 const U32 flags)
6464{
6465 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6466
6467 PERL_UNUSED_ARG(value);
6468
6469 if (flags & RXapif_FETCH) {
6470 return reg_named_buff_fetch(rx, key, flags);
6471 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6472 Perl_croak_no_modify(aTHX);
6473 return NULL;
6474 } else if (flags & RXapif_EXISTS) {
6475 return reg_named_buff_exists(rx, key, flags)
6476 ? &PL_sv_yes
6477 : &PL_sv_no;
6478 } else if (flags & RXapif_REGNAMES) {
6479 return reg_named_buff_all(rx, flags);
6480 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6481 return reg_named_buff_scalar(rx, flags);
6482 } else {
6483 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6484 return NULL;
6485 }
6486}
6487
6488SV*
6489Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6490 const U32 flags)
6491{
6492 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6493 PERL_UNUSED_ARG(lastkey);
6494
6495 if (flags & RXapif_FIRSTKEY)
6496 return reg_named_buff_firstkey(rx, flags);
6497 else if (flags & RXapif_NEXTKEY)
6498 return reg_named_buff_nextkey(rx, flags);
6499 else {
6500 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6501 return NULL;
6502 }
6503}
6504
6505SV*
6506Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6507 const U32 flags)
6508{
6509 AV *retarray = NULL;
6510 SV *ret;
6511 struct regexp *const rx = (struct regexp *)SvANY(r);
6512
6513 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6514
6515 if (flags & RXapif_ALL)
6516 retarray=newAV();
6517
6518 if (rx && RXp_PAREN_NAMES(rx)) {
6519 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6520 if (he_str) {
6521 IV i;
6522 SV* sv_dat=HeVAL(he_str);
6523 I32 *nums=(I32*)SvPVX(sv_dat);
6524 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6525 if ((I32)(rx->nparens) >= nums[i]
6526 && rx->offs[nums[i]].start != -1
6527 && rx->offs[nums[i]].end != -1)
6528 {
6529 ret = newSVpvs("");
6530 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6531 if (!retarray)
6532 return ret;
6533 } else {
6534 if (retarray)
6535 ret = newSVsv(&PL_sv_undef);
6536 }
6537 if (retarray)
6538 av_push(retarray, ret);
6539 }
6540 if (retarray)
6541 return newRV_noinc(MUTABLE_SV(retarray));
6542 }
6543 }
6544 return NULL;
6545}
6546
6547bool
6548Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6549 const U32 flags)
6550{
6551 struct regexp *const rx = (struct regexp *)SvANY(r);
6552
6553 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6554
6555 if (rx && RXp_PAREN_NAMES(rx)) {
6556 if (flags & RXapif_ALL) {
6557 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6558 } else {
6559 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6560 if (sv) {
6561 SvREFCNT_dec(sv);
6562 return TRUE;
6563 } else {
6564 return FALSE;
6565 }
6566 }
6567 } else {
6568 return FALSE;
6569 }
6570}
6571
6572SV*
6573Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6574{
6575 struct regexp *const rx = (struct regexp *)SvANY(r);
6576
6577 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6578
6579 if ( rx && RXp_PAREN_NAMES(rx) ) {
6580 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6581
6582 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6583 } else {
6584 return FALSE;
6585 }
6586}
6587
6588SV*
6589Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6590{
6591 struct regexp *const rx = (struct regexp *)SvANY(r);
6592 GET_RE_DEBUG_FLAGS_DECL;
6593
6594 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6595
6596 if (rx && RXp_PAREN_NAMES(rx)) {
6597 HV *hv = RXp_PAREN_NAMES(rx);
6598 HE *temphe;
6599 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6600 IV i;
6601 IV parno = 0;
6602 SV* sv_dat = HeVAL(temphe);
6603 I32 *nums = (I32*)SvPVX(sv_dat);
6604 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6605 if ((I32)(rx->lastparen) >= nums[i] &&
6606 rx->offs[nums[i]].start != -1 &&
6607 rx->offs[nums[i]].end != -1)
6608 {
6609 parno = nums[i];
6610 break;
6611 }
6612 }
6613 if (parno || flags & RXapif_ALL) {
6614 return newSVhek(HeKEY_hek(temphe));
6615 }
6616 }
6617 }
6618 return NULL;
6619}
6620
6621SV*
6622Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6623{
6624 SV *ret;
6625 AV *av;
6626 I32 length;
6627 struct regexp *const rx = (struct regexp *)SvANY(r);
6628
6629 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6630
6631 if (rx && RXp_PAREN_NAMES(rx)) {
6632 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6633 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6634 } else if (flags & RXapif_ONE) {
6635 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6636 av = MUTABLE_AV(SvRV(ret));
6637 length = av_len(av);
6638 SvREFCNT_dec(ret);
6639 return newSViv(length + 1);
6640 } else {
6641 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6642 return NULL;
6643 }
6644 }
6645 return &PL_sv_undef;
6646}
6647
6648SV*
6649Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6650{
6651 struct regexp *const rx = (struct regexp *)SvANY(r);
6652 AV *av = newAV();
6653
6654 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6655
6656 if (rx && RXp_PAREN_NAMES(rx)) {
6657 HV *hv= RXp_PAREN_NAMES(rx);
6658 HE *temphe;
6659 (void)hv_iterinit(hv);
6660 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6661 IV i;
6662 IV parno = 0;
6663 SV* sv_dat = HeVAL(temphe);
6664 I32 *nums = (I32*)SvPVX(sv_dat);
6665 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6666 if ((I32)(rx->lastparen) >= nums[i] &&
6667 rx->offs[nums[i]].start != -1 &&
6668 rx->offs[nums[i]].end != -1)
6669 {
6670 parno = nums[i];
6671 break;
6672 }
6673 }
6674 if (parno || flags & RXapif_ALL) {
6675 av_push(av, newSVhek(HeKEY_hek(temphe)));
6676 }
6677 }
6678 }
6679
6680 return newRV_noinc(MUTABLE_SV(av));
6681}
6682
6683void
6684Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6685 SV * const sv)
6686{
6687 struct regexp *const rx = (struct regexp *)SvANY(r);
6688 char *s = NULL;
6689 I32 i = 0;
6690 I32 s1, t1;
6691 I32 n = paren;
6692
6693 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6694
6695 if ( ( n == RX_BUFF_IDX_CARET_PREMATCH
6696 || n == RX_BUFF_IDX_CARET_FULLMATCH
6697 || n == RX_BUFF_IDX_CARET_POSTMATCH
6698 )
6699 && !(rx->extflags & RXf_PMf_KEEPCOPY)
6700 )
6701 goto ret_undef;
6702
6703 if (!rx->subbeg)
6704 goto ret_undef;
6705
6706 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6707 /* no need to distinguish between them any more */
6708 n = RX_BUFF_IDX_FULLMATCH;
6709
6710 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6711 && rx->offs[0].start != -1)
6712 {
6713 /* $`, ${^PREMATCH} */
6714 i = rx->offs[0].start;
6715 s = rx->subbeg;
6716 }
6717 else
6718 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6719 && rx->offs[0].end != -1)
6720 {
6721 /* $', ${^POSTMATCH} */
6722 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6723 i = rx->sublen + rx->suboffset - rx->offs[0].end;
6724 }
6725 else
6726 if ( 0 <= n && n <= (I32)rx->nparens &&
6727 (s1 = rx->offs[n].start) != -1 &&
6728 (t1 = rx->offs[n].end) != -1)
6729 {
6730 /* $&, ${^MATCH}, $1 ... */
6731 i = t1 - s1;
6732 s = rx->subbeg + s1 - rx->suboffset;
6733 } else {
6734 goto ret_undef;
6735 }
6736
6737 assert(s >= rx->subbeg);
6738 assert(rx->sublen >= (s - rx->subbeg) + i );
6739 if (i >= 0) {
6740 const int oldtainted = PL_tainted;
6741 TAINT_NOT;
6742 sv_setpvn(sv, s, i);
6743 PL_tainted = oldtainted;
6744 if ( (rx->extflags & RXf_CANY_SEEN)
6745 ? (RXp_MATCH_UTF8(rx)
6746 && (!i || is_utf8_string((U8*)s, i)))
6747 : (RXp_MATCH_UTF8(rx)) )
6748 {
6749 SvUTF8_on(sv);
6750 }
6751 else
6752 SvUTF8_off(sv);
6753 if (PL_tainting) {
6754 if (RXp_MATCH_TAINTED(rx)) {
6755 if (SvTYPE(sv) >= SVt_PVMG) {
6756 MAGIC* const mg = SvMAGIC(sv);
6757 MAGIC* mgt;
6758 PL_tainted = 1;
6759 SvMAGIC_set(sv, mg->mg_moremagic);
6760 SvTAINT(sv);
6761 if ((mgt = SvMAGIC(sv))) {
6762 mg->mg_moremagic = mgt;
6763 SvMAGIC_set(sv, mg);
6764 }
6765 } else {
6766 PL_tainted = 1;
6767 SvTAINT(sv);
6768 }
6769 } else
6770 SvTAINTED_off(sv);
6771 }
6772 } else {
6773 ret_undef:
6774 sv_setsv(sv,&PL_sv_undef);
6775 return;
6776 }
6777}
6778
6779void
6780Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6781 SV const * const value)
6782{
6783 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6784
6785 PERL_UNUSED_ARG(rx);
6786 PERL_UNUSED_ARG(paren);
6787 PERL_UNUSED_ARG(value);
6788
6789 if (!PL_localizing)
6790 Perl_croak_no_modify(aTHX);
6791}
6792
6793I32
6794Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6795 const I32 paren)
6796{
6797 struct regexp *const rx = (struct regexp *)SvANY(r);
6798 I32 i;
6799 I32 s1, t1;
6800
6801 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6802
6803 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6804 switch (paren) {
6805 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6806 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6807 goto warn_undef;
6808 /*FALLTHROUGH*/
6809
6810 case RX_BUFF_IDX_PREMATCH: /* $` */
6811 if (rx->offs[0].start != -1) {
6812 i = rx->offs[0].start;
6813 if (i > 0) {
6814 s1 = 0;
6815 t1 = i;
6816 goto getlen;
6817 }
6818 }
6819 return 0;
6820
6821 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6822 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6823 goto warn_undef;
6824 case RX_BUFF_IDX_POSTMATCH: /* $' */
6825 if (rx->offs[0].end != -1) {
6826 i = rx->sublen - rx->offs[0].end;
6827 if (i > 0) {
6828 s1 = rx->offs[0].end;
6829 t1 = rx->sublen;
6830 goto getlen;
6831 }
6832 }
6833 return 0;
6834
6835 case RX_BUFF_IDX_CARET_FULLMATCH: /* ${^MATCH} */
6836 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6837 goto warn_undef;
6838 /*FALLTHROUGH*/
6839
6840 /* $& / ${^MATCH}, $1, $2, ... */
6841 default:
6842 if (paren <= (I32)rx->nparens &&
6843 (s1 = rx->offs[paren].start) != -1 &&
6844 (t1 = rx->offs[paren].end) != -1)
6845 {
6846 i = t1 - s1;
6847 goto getlen;
6848 } else {
6849 warn_undef:
6850 if (ckWARN(WARN_UNINITIALIZED))
6851 report_uninit((const SV *)sv);
6852 return 0;
6853 }
6854 }
6855 getlen:
6856 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6857 const char * const s = rx->subbeg - rx->suboffset + s1;
6858 const U8 *ep;
6859 STRLEN el;
6860
6861 i = t1 - s1;
6862 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6863 i = el;
6864 }
6865 return i;
6866}
6867
6868SV*
6869Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6870{
6871 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6872 PERL_UNUSED_ARG(rx);
6873 if (0)
6874 return NULL;
6875 else
6876 return newSVpvs("Regexp");
6877}
6878
6879/* Scans the name of a named buffer from the pattern.
6880 * If flags is REG_RSN_RETURN_NULL returns null.
6881 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6882 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6883 * to the parsed name as looked up in the RExC_paren_names hash.
6884 * If there is an error throws a vFAIL().. type exception.
6885 */
6886
6887#define REG_RSN_RETURN_NULL 0
6888#define REG_RSN_RETURN_NAME 1
6889#define REG_RSN_RETURN_DATA 2
6890
6891STATIC SV*
6892S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6893{
6894 char *name_start = RExC_parse;
6895
6896 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6897
6898 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6899 /* skip IDFIRST by using do...while */
6900 if (UTF)
6901 do {
6902 RExC_parse += UTF8SKIP(RExC_parse);
6903 } while (isALNUM_utf8((U8*)RExC_parse));
6904 else
6905 do {
6906 RExC_parse++;
6907 } while (isALNUM(*RExC_parse));
6908 } else {
6909 RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6910 vFAIL("Group name must start with a non-digit word character");
6911 }
6912 if ( flags ) {
6913 SV* sv_name
6914 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6915 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6916 if ( flags == REG_RSN_RETURN_NAME)
6917 return sv_name;
6918 else if (flags==REG_RSN_RETURN_DATA) {
6919 HE *he_str = NULL;
6920 SV *sv_dat = NULL;
6921 if ( ! sv_name ) /* should not happen*/
6922 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6923 if (RExC_paren_names)
6924 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6925 if ( he_str )
6926 sv_dat = HeVAL(he_str);
6927 if ( ! sv_dat )
6928 vFAIL("Reference to nonexistent named group");
6929 return sv_dat;
6930 }
6931 else {
6932 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6933 (unsigned long) flags);
6934 }
6935 assert(0); /* NOT REACHED */
6936 }
6937 return NULL;
6938}
6939
6940#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6941 int rem=(int)(RExC_end - RExC_parse); \
6942 int cut; \
6943 int num; \
6944 int iscut=0; \
6945 if (rem>10) { \
6946 rem=10; \
6947 iscut=1; \
6948 } \
6949 cut=10-rem; \
6950 if (RExC_lastparse!=RExC_parse) \
6951 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6952 rem, RExC_parse, \
6953 cut + 4, \
6954 iscut ? "..." : "<" \
6955 ); \
6956 else \
6957 PerlIO_printf(Perl_debug_log,"%16s",""); \
6958 \
6959 if (SIZE_ONLY) \
6960 num = RExC_size + 1; \
6961 else \
6962 num=REG_NODE_NUM(RExC_emit); \
6963 if (RExC_lastnum!=num) \
6964 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6965 else \
6966 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6967 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6968 (int)((depth*2)), "", \
6969 (funcname) \
6970 ); \
6971 RExC_lastnum=num; \
6972 RExC_lastparse=RExC_parse; \
6973})
6974
6975
6976
6977#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6978 DEBUG_PARSE_MSG((funcname)); \
6979 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6980})
6981#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6982 DEBUG_PARSE_MSG((funcname)); \
6983 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
6984})
6985
6986/* This section of code defines the inversion list object and its methods. The
6987 * interfaces are highly subject to change, so as much as possible is static to
6988 * this file. An inversion list is here implemented as a malloc'd C UV array
6989 * with some added info that is placed as UVs at the beginning in a header
6990 * portion. An inversion list for Unicode is an array of code points, sorted
6991 * by ordinal number. The zeroth element is the first code point in the list.
6992 * The 1th element is the first element beyond that not in the list. In other
6993 * words, the first range is
6994 * invlist[0]..(invlist[1]-1)
6995 * The other ranges follow. Thus every element whose index is divisible by two
6996 * marks the beginning of a range that is in the list, and every element not
6997 * divisible by two marks the beginning of a range not in the list. A single
6998 * element inversion list that contains the single code point N generally
6999 * consists of two elements
7000 * invlist[0] == N
7001 * invlist[1] == N+1
7002 * (The exception is when N is the highest representable value on the
7003 * machine, in which case the list containing just it would be a single
7004 * element, itself. By extension, if the last range in the list extends to
7005 * infinity, then the first element of that range will be in the inversion list
7006 * at a position that is divisible by two, and is the final element in the
7007 * list.)
7008 * Taking the complement (inverting) an inversion list is quite simple, if the
7009 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7010 * This implementation reserves an element at the beginning of each inversion
7011 * list to contain 0 when the list contains 0, and contains 1 otherwise. The
7012 * actual beginning of the list is either that element if 0, or the next one if
7013 * 1.
7014 *
7015 * More about inversion lists can be found in "Unicode Demystified"
7016 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7017 * More will be coming when functionality is added later.
7018 *
7019 * The inversion list data structure is currently implemented as an SV pointing
7020 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7021 * array of UV whose memory management is automatically handled by the existing
7022 * facilities for SV's.
7023 *
7024 * Some of the methods should always be private to the implementation, and some
7025 * should eventually be made public */
7026
7027/* The header definitions are in F<inline_invlist.c> */
7028
7029#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
7030#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
7031
7032#define INVLIST_INITIAL_LEN 10
7033
7034PERL_STATIC_INLINE UV*
7035S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7036{
7037 /* Returns a pointer to the first element in the inversion list's array.
7038 * This is called upon initialization of an inversion list. Where the
7039 * array begins depends on whether the list has the code point U+0000
7040 * in it or not. The other parameter tells it whether the code that
7041 * follows this call is about to put a 0 in the inversion list or not.
7042 * The first element is either the element with 0, if 0, or the next one,
7043 * if 1 */
7044
7045 UV* zero = get_invlist_zero_addr(invlist);
7046
7047 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7048
7049 /* Must be empty */
7050 assert(! *_get_invlist_len_addr(invlist));
7051
7052 /* 1^1 = 0; 1^0 = 1 */
7053 *zero = 1 ^ will_have_0;
7054 return zero + *zero;
7055}
7056
7057PERL_STATIC_INLINE UV*
7058S_invlist_array(pTHX_ SV* const invlist)
7059{
7060 /* Returns the pointer to the inversion list's array. Every time the
7061 * length changes, this needs to be called in case malloc or realloc moved
7062 * it */
7063
7064 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7065
7066 /* Must not be empty. If these fail, you probably didn't check for <len>
7067 * being non-zero before trying to get the array */
7068 assert(*_get_invlist_len_addr(invlist));
7069 assert(*get_invlist_zero_addr(invlist) == 0
7070 || *get_invlist_zero_addr(invlist) == 1);
7071
7072 /* The array begins either at the element reserved for zero if the
7073 * list contains 0 (that element will be set to 0), or otherwise the next
7074 * element (in which case the reserved element will be set to 1). */
7075 return (UV *) (get_invlist_zero_addr(invlist)
7076 + *get_invlist_zero_addr(invlist));
7077}
7078
7079PERL_STATIC_INLINE void
7080S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7081{
7082 /* Sets the current number of elements stored in the inversion list */
7083
7084 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7085
7086 *_get_invlist_len_addr(invlist) = len;
7087
7088 assert(len <= SvLEN(invlist));
7089
7090 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7091 /* If the list contains U+0000, that element is part of the header,
7092 * and should not be counted as part of the array. It will contain
7093 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7094 * subtract:
7095 * SvCUR_set(invlist,
7096 * TO_INTERNAL_SIZE(len
7097 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7098 * But, this is only valid if len is not 0. The consequences of not doing
7099 * this is that the memory allocation code may think that 1 more UV is
7100 * being used than actually is, and so might do an unnecessary grow. That
7101 * seems worth not bothering to make this the precise amount.
7102 *
7103 * Note that when inverting, SvCUR shouldn't change */
7104}
7105
7106PERL_STATIC_INLINE IV*
7107S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7108{
7109 /* Return the address of the UV that is reserved to hold the cached index
7110 * */
7111
7112 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7113
7114 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7115}
7116
7117PERL_STATIC_INLINE IV
7118S_invlist_previous_index(pTHX_ SV* const invlist)
7119{
7120 /* Returns cached index of previous search */
7121
7122 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7123
7124 return *get_invlist_previous_index_addr(invlist);
7125}
7126
7127PERL_STATIC_INLINE void
7128S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7129{
7130 /* Caches <index> for later retrieval */
7131
7132 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7133
7134 assert(index == 0 || index < (int) _invlist_len(invlist));
7135
7136 *get_invlist_previous_index_addr(invlist) = index;
7137}
7138
7139PERL_STATIC_INLINE UV
7140S_invlist_max(pTHX_ SV* const invlist)
7141{
7142 /* Returns the maximum number of elements storable in the inversion list's
7143 * array, without having to realloc() */
7144
7145 PERL_ARGS_ASSERT_INVLIST_MAX;
7146
7147 return FROM_INTERNAL_SIZE(SvLEN(invlist));
7148}
7149
7150PERL_STATIC_INLINE UV*
7151S_get_invlist_zero_addr(pTHX_ SV* invlist)
7152{
7153 /* Return the address of the UV that is reserved to hold 0 if the inversion
7154 * list contains 0. This has to be the last element of the heading, as the
7155 * list proper starts with either it if 0, or the next element if not.
7156 * (But we force it to contain either 0 or 1) */
7157
7158 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7159
7160 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7161}
7162
7163#ifndef PERL_IN_XSUB_RE
7164SV*
7165Perl__new_invlist(pTHX_ IV initial_size)
7166{
7167
7168 /* Return a pointer to a newly constructed inversion list, with enough
7169 * space to store 'initial_size' elements. If that number is negative, a
7170 * system default is used instead */
7171
7172 SV* new_list;
7173
7174 if (initial_size < 0) {
7175 initial_size = INVLIST_INITIAL_LEN;
7176 }
7177
7178 /* Allocate the initial space */
7179 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7180 invlist_set_len(new_list, 0);
7181
7182 /* Force iterinit() to be used to get iteration to work */
7183 *get_invlist_iter_addr(new_list) = UV_MAX;
7184
7185 /* This should force a segfault if a method doesn't initialize this
7186 * properly */
7187 *get_invlist_zero_addr(new_list) = UV_MAX;
7188
7189 *get_invlist_previous_index_addr(new_list) = 0;
7190 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7191#if HEADER_LENGTH != 5
7192# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7193#endif
7194
7195 return new_list;
7196}
7197#endif
7198
7199STATIC SV*
7200S__new_invlist_C_array(pTHX_ UV* list)
7201{
7202 /* Return a pointer to a newly constructed inversion list, initialized to
7203 * point to <list>, which has to be in the exact correct inversion list
7204 * form, including internal fields. Thus this is a dangerous routine that
7205 * should not be used in the wrong hands */
7206
7207 SV* invlist = newSV_type(SVt_PV);
7208
7209 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7210
7211 SvPV_set(invlist, (char *) list);
7212 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7213 shouldn't touch it */
7214 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7215
7216 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7217 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7218 }
7219
7220 return invlist;
7221}
7222
7223STATIC void
7224S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7225{
7226 /* Grow the maximum size of an inversion list */
7227
7228 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7229
7230 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7231}
7232
7233PERL_STATIC_INLINE void
7234S_invlist_trim(pTHX_ SV* const invlist)
7235{
7236 PERL_ARGS_ASSERT_INVLIST_TRIM;
7237
7238 /* Change the length of the inversion list to how many entries it currently
7239 * has */
7240
7241 SvPV_shrink_to_cur((SV *) invlist);
7242}
7243
7244#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7245
7246STATIC void
7247S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7248{
7249 /* Subject to change or removal. Append the range from 'start' to 'end' at
7250 * the end of the inversion list. The range must be above any existing
7251 * ones. */
7252
7253 UV* array;
7254 UV max = invlist_max(invlist);
7255 UV len = _invlist_len(invlist);
7256
7257 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7258
7259 if (len == 0) { /* Empty lists must be initialized */
7260 array = _invlist_array_init(invlist, start == 0);
7261 }
7262 else {
7263 /* Here, the existing list is non-empty. The current max entry in the
7264 * list is generally the first value not in the set, except when the
7265 * set extends to the end of permissible values, in which case it is
7266 * the first entry in that final set, and so this call is an attempt to
7267 * append out-of-order */
7268
7269 UV final_element = len - 1;
7270 array = invlist_array(invlist);
7271 if (array[final_element] > start
7272 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7273 {
7274 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7275 array[final_element], start,
7276 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7277 }
7278
7279 /* Here, it is a legal append. If the new range begins with the first
7280 * value not in the set, it is extending the set, so the new first
7281 * value not in the set is one greater than the newly extended range.
7282 * */
7283 if (array[final_element] == start) {
7284 if (end != UV_MAX) {
7285 array[final_element] = end + 1;
7286 }
7287 else {
7288 /* But if the end is the maximum representable on the machine,
7289 * just let the range that this would extend to have no end */
7290 invlist_set_len(invlist, len - 1);
7291 }
7292 return;
7293 }
7294 }
7295
7296 /* Here the new range doesn't extend any existing set. Add it */
7297
7298 len += 2; /* Includes an element each for the start and end of range */
7299
7300 /* If overflows the existing space, extend, which may cause the array to be
7301 * moved */
7302 if (max < len) {
7303 invlist_extend(invlist, len);
7304 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7305 failure in invlist_array() */
7306 array = invlist_array(invlist);
7307 }
7308 else {
7309 invlist_set_len(invlist, len);
7310 }
7311
7312 /* The next item on the list starts the range, the one after that is
7313 * one past the new range. */
7314 array[len - 2] = start;
7315 if (end != UV_MAX) {
7316 array[len - 1] = end + 1;
7317 }
7318 else {
7319 /* But if the end is the maximum representable on the machine, just let
7320 * the range have no end */
7321 invlist_set_len(invlist, len - 1);
7322 }
7323}
7324
7325#ifndef PERL_IN_XSUB_RE
7326
7327IV
7328Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7329{
7330 /* Searches the inversion list for the entry that contains the input code
7331 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7332 * return value is the index into the list's array of the range that
7333 * contains <cp> */
7334
7335 IV low = 0;
7336 IV mid;
7337 IV high = _invlist_len(invlist);
7338 const IV highest_element = high - 1;
7339 const UV* array;
7340
7341 PERL_ARGS_ASSERT__INVLIST_SEARCH;
7342
7343 /* If list is empty, return failure. */
7344 if (high == 0) {
7345 return -1;
7346 }
7347
7348 /* If the code point is before the first element, return failure. (We
7349 * can't combine this with the test above, because we can't get the array
7350 * unless we know the list is non-empty) */
7351 array = invlist_array(invlist);
7352
7353 mid = invlist_previous_index(invlist);
7354 assert(mid >=0 && mid <= highest_element);
7355
7356 /* <mid> contains the cache of the result of the previous call to this
7357 * function (0 the first time). See if this call is for the same result,
7358 * or if it is for mid-1. This is under the theory that calls to this
7359 * function will often be for related code points that are near each other.
7360 * And benchmarks show that caching gives better results. We also test
7361 * here if the code point is within the bounds of the list. These tests
7362 * replace others that would have had to be made anyway to make sure that
7363 * the array bounds were not exceeded, and give us extra information at the
7364 * same time */
7365 if (cp >= array[mid]) {
7366 if (cp >= array[highest_element]) {
7367 return highest_element;
7368 }
7369
7370 /* Here, array[mid] <= cp < array[highest_element]. This means that
7371 * the final element is not the answer, so can exclude it; it also
7372 * means that <mid> is not the final element, so can refer to 'mid + 1'
7373 * safely */
7374 if (cp < array[mid + 1]) {
7375 return mid;
7376 }
7377 high--;
7378 low = mid + 1;
7379 }
7380 else { /* cp < aray[mid] */
7381 if (cp < array[0]) { /* Fail if outside the array */
7382 return -1;
7383 }
7384 high = mid;
7385 if (cp >= array[mid - 1]) {
7386 goto found_entry;
7387 }
7388 }
7389
7390 /* Binary search. What we are looking for is <i> such that
7391 * array[i] <= cp < array[i+1]
7392 * The loop below converges on the i+1. Note that there may not be an
7393 * (i+1)th element in the array, and things work nonetheless */
7394 while (low < high) {
7395 mid = (low + high) / 2;
7396 assert(mid <= highest_element);
7397 if (array[mid] <= cp) { /* cp >= array[mid] */
7398 low = mid + 1;
7399
7400 /* We could do this extra test to exit the loop early.
7401 if (cp < array[low]) {
7402 return mid;
7403 }
7404 */
7405 }
7406 else { /* cp < array[mid] */
7407 high = mid;
7408 }
7409 }
7410
7411 found_entry:
7412 high--;
7413 invlist_set_previous_index(invlist, high);
7414 return high;
7415}
7416
7417void
7418Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7419{
7420 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7421 * but is used when the swash has an inversion list. This makes this much
7422 * faster, as it uses a binary search instead of a linear one. This is
7423 * intimately tied to that function, and perhaps should be in utf8.c,
7424 * except it is intimately tied to inversion lists as well. It assumes
7425 * that <swatch> is all 0's on input */
7426
7427 UV current = start;
7428 const IV len = _invlist_len(invlist);
7429 IV i;
7430 const UV * array;
7431
7432 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7433
7434 if (len == 0) { /* Empty inversion list */
7435 return;
7436 }
7437
7438 array = invlist_array(invlist);
7439
7440 /* Find which element it is */
7441 i = _invlist_search(invlist, start);
7442
7443 /* We populate from <start> to <end> */
7444 while (current < end) {
7445 UV upper;
7446
7447 /* The inversion list gives the results for every possible code point
7448 * after the first one in the list. Only those ranges whose index is
7449 * even are ones that the inversion list matches. For the odd ones,
7450 * and if the initial code point is not in the list, we have to skip
7451 * forward to the next element */
7452 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7453 i++;
7454 if (i >= len) { /* Finished if beyond the end of the array */
7455 return;
7456 }
7457 current = array[i];
7458 if (current >= end) { /* Finished if beyond the end of what we
7459 are populating */
7460 if (LIKELY(end < UV_MAX)) {
7461 return;
7462 }
7463
7464 /* We get here when the upper bound is the maximum
7465 * representable on the machine, and we are looking for just
7466 * that code point. Have to special case it */
7467 i = len;
7468 goto join_end_of_list;
7469 }
7470 }
7471 assert(current >= start);
7472
7473 /* The current range ends one below the next one, except don't go past
7474 * <end> */
7475 i++;
7476 upper = (i < len && array[i] < end) ? array[i] : end;
7477
7478 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7479 * for each code point in it */
7480 for (; current < upper; current++) {
7481 const STRLEN offset = (STRLEN)(current - start);
7482 swatch[offset >> 3] |= 1 << (offset & 7);
7483 }
7484
7485 join_end_of_list:
7486
7487 /* Quit if at the end of the list */
7488 if (i >= len) {
7489
7490 /* But first, have to deal with the highest possible code point on
7491 * the platform. The previous code assumes that <end> is one
7492 * beyond where we want to populate, but that is impossible at the
7493 * platform's infinity, so have to handle it specially */
7494 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7495 {
7496 const STRLEN offset = (STRLEN)(end - start);
7497 swatch[offset >> 3] |= 1 << (offset & 7);
7498 }
7499 return;
7500 }
7501
7502 /* Advance to the next range, which will be for code points not in the
7503 * inversion list */
7504 current = array[i];
7505 }
7506
7507 return;
7508}
7509
7510void
7511Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7512{
7513 /* Take the union of two inversion lists and point <output> to it. *output
7514 * should be defined upon input, and if it points to one of the two lists,
7515 * the reference count to that list will be decremented. The first list,
7516 * <a>, may be NULL, in which case a copy of the second list is returned.
7517 * If <complement_b> is TRUE, the union is taken of the complement
7518 * (inversion) of <b> instead of b itself.
7519 *
7520 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7521 * Richard Gillam, published by Addison-Wesley, and explained at some
7522 * length there. The preface says to incorporate its examples into your
7523 * code at your own risk.
7524 *
7525 * The algorithm is like a merge sort.
7526 *
7527 * XXX A potential performance improvement is to keep track as we go along
7528 * if only one of the inputs contributes to the result, meaning the other
7529 * is a subset of that one. In that case, we can skip the final copy and
7530 * return the larger of the input lists, but then outside code might need
7531 * to keep track of whether to free the input list or not */
7532
7533 UV* array_a; /* a's array */
7534 UV* array_b;
7535 UV len_a; /* length of a's array */
7536 UV len_b;
7537
7538 SV* u; /* the resulting union */
7539 UV* array_u;
7540 UV len_u;
7541
7542 UV i_a = 0; /* current index into a's array */
7543 UV i_b = 0;
7544 UV i_u = 0;
7545
7546 /* running count, as explained in the algorithm source book; items are
7547 * stopped accumulating and are output when the count changes to/from 0.
7548 * The count is incremented when we start a range that's in the set, and
7549 * decremented when we start a range that's not in the set. So its range
7550 * is 0 to 2. Only when the count is zero is something not in the set.
7551 */
7552 UV count = 0;
7553
7554 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7555 assert(a != b);
7556
7557 /* If either one is empty, the union is the other one */
7558 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7559 if (*output == a) {
7560 if (a != NULL) {
7561 SvREFCNT_dec(a);
7562 }
7563 }
7564 if (*output != b) {
7565 *output = invlist_clone(b);
7566 if (complement_b) {
7567 _invlist_invert(*output);
7568 }
7569 } /* else *output already = b; */
7570 return;
7571 }
7572 else if ((len_b = _invlist_len(b)) == 0) {
7573 if (*output == b) {
7574 SvREFCNT_dec(b);
7575 }
7576
7577 /* The complement of an empty list is a list that has everything in it,
7578 * so the union with <a> includes everything too */
7579 if (complement_b) {
7580 if (a == *output) {
7581 SvREFCNT_dec(a);
7582 }
7583 *output = _new_invlist(1);
7584 _append_range_to_invlist(*output, 0, UV_MAX);
7585 }
7586 else if (*output != a) {
7587 *output = invlist_clone(a);
7588 }
7589 /* else *output already = a; */
7590 return;
7591 }
7592
7593 /* Here both lists exist and are non-empty */
7594 array_a = invlist_array(a);
7595 array_b = invlist_array(b);
7596
7597 /* If are to take the union of 'a' with the complement of b, set it
7598 * up so are looking at b's complement. */
7599 if (complement_b) {
7600
7601 /* To complement, we invert: if the first element is 0, remove it. To
7602 * do this, we just pretend the array starts one later, and clear the
7603 * flag as we don't have to do anything else later */
7604 if (array_b[0] == 0) {
7605 array_b++;
7606 len_b--;
7607 complement_b = FALSE;
7608 }
7609 else {
7610
7611 /* But if the first element is not zero, we unshift a 0 before the
7612 * array. The data structure reserves a space for that 0 (which
7613 * should be a '1' right now), so physical shifting is unneeded,
7614 * but temporarily change that element to 0. Before exiting the
7615 * routine, we must restore the element to '1' */
7616 array_b--;
7617 len_b++;
7618 array_b[0] = 0;
7619 }
7620 }
7621
7622 /* Size the union for the worst case: that the sets are completely
7623 * disjoint */
7624 u = _new_invlist(len_a + len_b);
7625
7626 /* Will contain U+0000 if either component does */
7627 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7628 || (len_b > 0 && array_b[0] == 0));
7629
7630 /* Go through each list item by item, stopping when exhausted one of
7631 * them */
7632 while (i_a < len_a && i_b < len_b) {
7633 UV cp; /* The element to potentially add to the union's array */
7634 bool cp_in_set; /* is it in the the input list's set or not */
7635
7636 /* We need to take one or the other of the two inputs for the union.
7637 * Since we are merging two sorted lists, we take the smaller of the
7638 * next items. In case of a tie, we take the one that is in its set
7639 * first. If we took one not in the set first, it would decrement the
7640 * count, possibly to 0 which would cause it to be output as ending the
7641 * range, and the next time through we would take the same number, and
7642 * output it again as beginning the next range. By doing it the
7643 * opposite way, there is no possibility that the count will be
7644 * momentarily decremented to 0, and thus the two adjoining ranges will
7645 * be seamlessly merged. (In a tie and both are in the set or both not
7646 * in the set, it doesn't matter which we take first.) */
7647 if (array_a[i_a] < array_b[i_b]
7648 || (array_a[i_a] == array_b[i_b]
7649 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7650 {
7651 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7652 cp= array_a[i_a++];
7653 }
7654 else {
7655 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7656 cp= array_b[i_b++];
7657 }
7658
7659 /* Here, have chosen which of the two inputs to look at. Only output
7660 * if the running count changes to/from 0, which marks the
7661 * beginning/end of a range in that's in the set */
7662 if (cp_in_set) {
7663 if (count == 0) {
7664 array_u[i_u++] = cp;
7665 }
7666 count++;
7667 }
7668 else {
7669 count--;
7670 if (count == 0) {
7671 array_u[i_u++] = cp;
7672 }
7673 }
7674 }
7675
7676 /* Here, we are finished going through at least one of the lists, which
7677 * means there is something remaining in at most one. We check if the list
7678 * that hasn't been exhausted is positioned such that we are in the middle
7679 * of a range in its set or not. (i_a and i_b point to the element beyond
7680 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7681 * is potentially more to output.
7682 * There are four cases:
7683 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7684 * in the union is entirely from the non-exhausted set.
7685 * 2) Both were in their sets, count is 2. Nothing further should
7686 * be output, as everything that remains will be in the exhausted
7687 * list's set, hence in the union; decrementing to 1 but not 0 insures
7688 * that
7689 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7690 * Nothing further should be output because the union includes
7691 * everything from the exhausted set. Not decrementing ensures that.
7692 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7693 * decrementing to 0 insures that we look at the remainder of the
7694 * non-exhausted set */
7695 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7696 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7697 {
7698 count--;
7699 }
7700
7701 /* The final length is what we've output so far, plus what else is about to
7702 * be output. (If 'count' is non-zero, then the input list we exhausted
7703 * has everything remaining up to the machine's limit in its set, and hence
7704 * in the union, so there will be no further output. */
7705 len_u = i_u;
7706 if (count == 0) {
7707 /* At most one of the subexpressions will be non-zero */
7708 len_u += (len_a - i_a) + (len_b - i_b);
7709 }
7710
7711 /* Set result to final length, which can change the pointer to array_u, so
7712 * re-find it */
7713 if (len_u != _invlist_len(u)) {
7714 invlist_set_len(u, len_u);
7715 invlist_trim(u);
7716 array_u = invlist_array(u);
7717 }
7718
7719 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7720 * the other) ended with everything above it not in its set. That means
7721 * that the remaining part of the union is precisely the same as the
7722 * non-exhausted list, so can just copy it unchanged. (If both list were
7723 * exhausted at the same time, then the operations below will be both 0.)
7724 */
7725 if (count == 0) {
7726 IV copy_count; /* At most one will have a non-zero copy count */
7727 if ((copy_count = len_a - i_a) > 0) {
7728 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7729 }
7730 else if ((copy_count = len_b - i_b) > 0) {
7731 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7732 }
7733 }
7734
7735 /* We may be removing a reference to one of the inputs */
7736 if (a == *output || b == *output) {
7737 SvREFCNT_dec(*output);
7738 }
7739
7740 /* If we've changed b, restore it */
7741 if (complement_b) {
7742 array_b[0] = 1;
7743 }
7744
7745 *output = u;
7746 return;
7747}
7748
7749void
7750Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7751{
7752 /* Take the intersection of two inversion lists and point <i> to it. *i
7753 * should be defined upon input, and if it points to one of the two lists,
7754 * the reference count to that list will be decremented.
7755 * If <complement_b> is TRUE, the result will be the intersection of <a>
7756 * and the complement (or inversion) of <b> instead of <b> directly.
7757 *
7758 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7759 * Richard Gillam, published by Addison-Wesley, and explained at some
7760 * length there. The preface says to incorporate its examples into your
7761 * code at your own risk. In fact, it had bugs
7762 *
7763 * The algorithm is like a merge sort, and is essentially the same as the
7764 * union above
7765 */
7766
7767 UV* array_a; /* a's array */
7768 UV* array_b;
7769 UV len_a; /* length of a's array */
7770 UV len_b;
7771
7772 SV* r; /* the resulting intersection */
7773 UV* array_r;
7774 UV len_r;
7775
7776 UV i_a = 0; /* current index into a's array */
7777 UV i_b = 0;
7778 UV i_r = 0;
7779
7780 /* running count, as explained in the algorithm source book; items are
7781 * stopped accumulating and are output when the count changes to/from 2.
7782 * The count is incremented when we start a range that's in the set, and
7783 * decremented when we start a range that's not in the set. So its range
7784 * is 0 to 2. Only when the count is 2 is something in the intersection.
7785 */
7786 UV count = 0;
7787
7788 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7789 assert(a != b);
7790
7791 /* Special case if either one is empty */
7792 len_a = _invlist_len(a);
7793 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7794
7795 if (len_a != 0 && complement_b) {
7796
7797 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7798 * be empty. Here, also we are using 'b's complement, which hence
7799 * must be every possible code point. Thus the intersection is
7800 * simply 'a'. */
7801 if (*i != a) {
7802 *i = invlist_clone(a);
7803
7804 if (*i == b) {
7805 SvREFCNT_dec(b);
7806 }
7807 }
7808 /* else *i is already 'a' */
7809 return;
7810 }
7811
7812 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7813 * intersection must be empty */
7814 if (*i == a) {
7815 SvREFCNT_dec(a);
7816 }
7817 else if (*i == b) {
7818 SvREFCNT_dec(b);
7819 }
7820 *i = _new_invlist(0);
7821 return;
7822 }
7823
7824 /* Here both lists exist and are non-empty */
7825 array_a = invlist_array(a);
7826 array_b = invlist_array(b);
7827
7828 /* If are to take the intersection of 'a' with the complement of b, set it
7829 * up so are looking at b's complement. */
7830 if (complement_b) {
7831
7832 /* To complement, we invert: if the first element is 0, remove it. To
7833 * do this, we just pretend the array starts one later, and clear the
7834 * flag as we don't have to do anything else later */
7835 if (array_b[0] == 0) {
7836 array_b++;
7837 len_b--;
7838 complement_b = FALSE;
7839 }
7840 else {
7841
7842 /* But if the first element is not zero, we unshift a 0 before the
7843 * array. The data structure reserves a space for that 0 (which
7844 * should be a '1' right now), so physical shifting is unneeded,
7845 * but temporarily change that element to 0. Before exiting the
7846 * routine, we must restore the element to '1' */
7847 array_b--;
7848 len_b++;
7849 array_b[0] = 0;
7850 }
7851 }
7852
7853 /* Size the intersection for the worst case: that the intersection ends up
7854 * fragmenting everything to be completely disjoint */
7855 r= _new_invlist(len_a + len_b);
7856
7857 /* Will contain U+0000 iff both components do */
7858 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7859 && len_b > 0 && array_b[0] == 0);
7860
7861 /* Go through each list item by item, stopping when exhausted one of
7862 * them */
7863 while (i_a < len_a && i_b < len_b) {
7864 UV cp; /* The element to potentially add to the intersection's
7865 array */
7866 bool cp_in_set; /* Is it in the input list's set or not */
7867
7868 /* We need to take one or the other of the two inputs for the
7869 * intersection. Since we are merging two sorted lists, we take the
7870 * smaller of the next items. In case of a tie, we take the one that
7871 * is not in its set first (a difference from the union algorithm). If
7872 * we took one in the set first, it would increment the count, possibly
7873 * to 2 which would cause it to be output as starting a range in the
7874 * intersection, and the next time through we would take that same
7875 * number, and output it again as ending the set. By doing it the
7876 * opposite of this, there is no possibility that the count will be
7877 * momentarily incremented to 2. (In a tie and both are in the set or
7878 * both not in the set, it doesn't matter which we take first.) */
7879 if (array_a[i_a] < array_b[i_b]
7880 || (array_a[i_a] == array_b[i_b]
7881 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7882 {
7883 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7884 cp= array_a[i_a++];
7885 }
7886 else {
7887 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7888 cp= array_b[i_b++];
7889 }
7890
7891 /* Here, have chosen which of the two inputs to look at. Only output
7892 * if the running count changes to/from 2, which marks the
7893 * beginning/end of a range that's in the intersection */
7894 if (cp_in_set) {
7895 count++;
7896 if (count == 2) {
7897 array_r[i_r++] = cp;
7898 }
7899 }
7900 else {
7901 if (count == 2) {
7902 array_r[i_r++] = cp;
7903 }
7904 count--;
7905 }
7906 }
7907
7908 /* Here, we are finished going through at least one of the lists, which
7909 * means there is something remaining in at most one. We check if the list
7910 * that has been exhausted is positioned such that we are in the middle
7911 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7912 * the ones we care about.) There are four cases:
7913 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7914 * nothing left in the intersection.
7915 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7916 * above 2. What should be output is exactly that which is in the
7917 * non-exhausted set, as everything it has is also in the intersection
7918 * set, and everything it doesn't have can't be in the intersection
7919 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7920 * gets incremented to 2. Like the previous case, the intersection is
7921 * everything that remains in the non-exhausted set.
7922 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7923 * remains 1. And the intersection has nothing more. */
7924 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7925 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7926 {
7927 count++;
7928 }
7929
7930 /* The final length is what we've output so far plus what else is in the
7931 * intersection. At most one of the subexpressions below will be non-zero */
7932 len_r = i_r;
7933 if (count >= 2) {
7934 len_r += (len_a - i_a) + (len_b - i_b);
7935 }
7936
7937 /* Set result to final length, which can change the pointer to array_r, so
7938 * re-find it */
7939 if (len_r != _invlist_len(r)) {
7940 invlist_set_len(r, len_r);
7941 invlist_trim(r);
7942 array_r = invlist_array(r);
7943 }
7944
7945 /* Finish outputting any remaining */
7946 if (count >= 2) { /* At most one will have a non-zero copy count */
7947 IV copy_count;
7948 if ((copy_count = len_a - i_a) > 0) {
7949 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7950 }
7951 else if ((copy_count = len_b - i_b) > 0) {
7952 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7953 }
7954 }
7955
7956 /* We may be removing a reference to one of the inputs */
7957 if (a == *i || b == *i) {
7958 SvREFCNT_dec(*i);
7959 }
7960
7961 /* If we've changed b, restore it */
7962 if (complement_b) {
7963 array_b[0] = 1;
7964 }
7965
7966 *i = r;
7967 return;
7968}
7969
7970SV*
7971Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7972{
7973 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7974 * set. A pointer to the inversion list is returned. This may actually be
7975 * a new list, in which case the passed in one has been destroyed. The
7976 * passed in inversion list can be NULL, in which case a new one is created
7977 * with just the one range in it */
7978
7979 SV* range_invlist;
7980 UV len;
7981
7982 if (invlist == NULL) {
7983 invlist = _new_invlist(2);
7984 len = 0;
7985 }
7986 else {
7987 len = _invlist_len(invlist);
7988 }
7989
7990 /* If comes after the final entry, can just append it to the end */
7991 if (len == 0
7992 || start >= invlist_array(invlist)
7993 [_invlist_len(invlist) - 1])
7994 {
7995 _append_range_to_invlist(invlist, start, end);
7996 return invlist;
7997 }
7998
7999 /* Here, can't just append things, create and return a new inversion list
8000 * which is the union of this range and the existing inversion list */
8001 range_invlist = _new_invlist(2);
8002 _append_range_to_invlist(range_invlist, start, end);
8003
8004 _invlist_union(invlist, range_invlist, &invlist);
8005
8006 /* The temporary can be freed */
8007 SvREFCNT_dec(range_invlist);
8008
8009 return invlist;
8010}
8011
8012#endif
8013
8014PERL_STATIC_INLINE SV*
8015S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8016 return _add_range_to_invlist(invlist, cp, cp);
8017}
8018
8019#ifndef PERL_IN_XSUB_RE
8020void
8021Perl__invlist_invert(pTHX_ SV* const invlist)
8022{
8023 /* Complement the input inversion list. This adds a 0 if the list didn't
8024 * have a zero; removes it otherwise. As described above, the data
8025 * structure is set up so that this is very efficient */
8026
8027 UV* len_pos = _get_invlist_len_addr(invlist);
8028
8029 PERL_ARGS_ASSERT__INVLIST_INVERT;
8030
8031 /* The inverse of matching nothing is matching everything */
8032 if (*len_pos == 0) {
8033 _append_range_to_invlist(invlist, 0, UV_MAX);
8034 return;
8035 }
8036
8037 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
8038 * zero element was a 0, so it is being removed, so the length decrements
8039 * by 1; and vice-versa. SvCUR is unaffected */
8040 if (*get_invlist_zero_addr(invlist) ^= 1) {
8041 (*len_pos)--;
8042 }
8043 else {
8044 (*len_pos)++;
8045 }
8046}
8047
8048void
8049Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8050{
8051 /* Complement the input inversion list (which must be a Unicode property,
8052 * all of which don't match above the Unicode maximum code point.) And
8053 * Perl has chosen to not have the inversion match above that either. This
8054 * adds a 0x110000 if the list didn't end with it, and removes it if it did
8055 */
8056
8057 UV len;
8058 UV* array;
8059
8060 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8061
8062 _invlist_invert(invlist);
8063
8064 len = _invlist_len(invlist);
8065
8066 if (len != 0) { /* If empty do nothing */
8067 array = invlist_array(invlist);
8068 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8069 /* Add 0x110000. First, grow if necessary */
8070 len++;
8071 if (invlist_max(invlist) < len) {
8072 invlist_extend(invlist, len);
8073 array = invlist_array(invlist);
8074 }
8075 invlist_set_len(invlist, len);
8076 array[len - 1] = PERL_UNICODE_MAX + 1;
8077 }
8078 else { /* Remove the 0x110000 */
8079 invlist_set_len(invlist, len - 1);
8080 }
8081 }
8082
8083 return;
8084}
8085#endif
8086
8087PERL_STATIC_INLINE SV*
8088S_invlist_clone(pTHX_ SV* const invlist)
8089{
8090
8091 /* Return a new inversion list that is a copy of the input one, which is
8092 * unchanged */
8093
8094 /* Need to allocate extra space to accommodate Perl's addition of a
8095 * trailing NUL to SvPV's, since it thinks they are always strings */
8096 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8097 STRLEN length = SvCUR(invlist);
8098
8099 PERL_ARGS_ASSERT_INVLIST_CLONE;
8100
8101 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8102 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8103
8104 return new_invlist;
8105}
8106
8107PERL_STATIC_INLINE UV*
8108S_get_invlist_iter_addr(pTHX_ SV* invlist)
8109{
8110 /* Return the address of the UV that contains the current iteration
8111 * position */
8112
8113 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8114
8115 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8116}
8117
8118PERL_STATIC_INLINE UV*
8119S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8120{
8121 /* Return the address of the UV that contains the version id. */
8122
8123 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8124
8125 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8126}
8127
8128PERL_STATIC_INLINE void
8129S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8130{
8131 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8132
8133 *get_invlist_iter_addr(invlist) = 0;
8134}
8135
8136STATIC bool
8137S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8138{
8139 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8140 * This call sets in <*start> and <*end>, the next range in <invlist>.
8141 * Returns <TRUE> if successful and the next call will return the next
8142 * range; <FALSE> if was already at the end of the list. If the latter,
8143 * <*start> and <*end> are unchanged, and the next call to this function
8144 * will start over at the beginning of the list */
8145
8146 UV* pos = get_invlist_iter_addr(invlist);
8147 UV len = _invlist_len(invlist);
8148 UV *array;
8149
8150 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8151
8152 if (*pos >= len) {
8153 *pos = UV_MAX; /* Force iternit() to be required next time */
8154 return FALSE;
8155 }
8156
8157 array = invlist_array(invlist);
8158
8159 *start = array[(*pos)++];
8160
8161 if (*pos >= len) {
8162 *end = UV_MAX;
8163 }
8164 else {
8165 *end = array[(*pos)++] - 1;
8166 }
8167
8168 return TRUE;
8169}
8170
8171PERL_STATIC_INLINE UV
8172S_invlist_highest(pTHX_ SV* const invlist)
8173{
8174 /* Returns the highest code point that matches an inversion list. This API
8175 * has an ambiguity, as it returns 0 under either the highest is actually
8176 * 0, or if the list is empty. If this distinction matters to you, check
8177 * for emptiness before calling this function */
8178
8179 UV len = _invlist_len(invlist);
8180 UV *array;
8181
8182 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8183
8184 if (len == 0) {
8185 return 0;
8186 }
8187
8188 array = invlist_array(invlist);
8189
8190 /* The last element in the array in the inversion list always starts a
8191 * range that goes to infinity. That range may be for code points that are
8192 * matched in the inversion list, or it may be for ones that aren't
8193 * matched. In the latter case, the highest code point in the set is one
8194 * less than the beginning of this range; otherwise it is the final element
8195 * of this range: infinity */
8196 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8197 ? UV_MAX
8198 : array[len - 1] - 1;
8199}
8200
8201#ifndef PERL_IN_XSUB_RE
8202SV *
8203Perl__invlist_contents(pTHX_ SV* const invlist)
8204{
8205 /* Get the contents of an inversion list into a string SV so that they can
8206 * be printed out. It uses the format traditionally done for debug tracing
8207 */
8208
8209 UV start, end;
8210 SV* output = newSVpvs("\n");
8211
8212 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8213
8214 invlist_iterinit(invlist);
8215 while (invlist_iternext(invlist, &start, &end)) {
8216 if (end == UV_MAX) {
8217 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8218 }
8219 else if (end != start) {
8220 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8221 start, end);
8222 }
8223 else {
8224 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8225 }
8226 }
8227
8228 return output;
8229}
8230#endif
8231
8232#if 0
8233void
8234S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
8235{
8236 /* Dumps out the ranges in an inversion list. The string 'header'
8237 * if present is output on a line before the first range */
8238
8239 UV start, end;
8240
8241 if (header && strlen(header)) {
8242 PerlIO_printf(Perl_debug_log, "%s\n", header);
8243 }
8244 invlist_iterinit(invlist);
8245 while (invlist_iternext(invlist, &start, &end)) {
8246 if (end == UV_MAX) {
8247 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8248 }
8249 else {
8250 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
8251 }
8252 }
8253}
8254#endif
8255
8256#if 0
8257bool
8258S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8259{
8260 /* Return a boolean as to if the two passed in inversion lists are
8261 * identical. The final argument, if TRUE, says to take the complement of
8262 * the second inversion list before doing the comparison */
8263
8264 UV* array_a = invlist_array(a);
8265 UV* array_b = invlist_array(b);
8266 UV len_a = _invlist_len(a);
8267 UV len_b = _invlist_len(b);
8268
8269 UV i = 0; /* current index into the arrays */
8270 bool retval = TRUE; /* Assume are identical until proven otherwise */
8271
8272 PERL_ARGS_ASSERT__INVLISTEQ;
8273
8274 /* If are to compare 'a' with the complement of b, set it
8275 * up so are looking at b's complement. */
8276 if (complement_b) {
8277
8278 /* The complement of nothing is everything, so <a> would have to have
8279 * just one element, starting at zero (ending at infinity) */
8280 if (len_b == 0) {
8281 return (len_a == 1 && array_a[0] == 0);
8282 }
8283 else if (array_b[0] == 0) {
8284
8285 /* Otherwise, to complement, we invert. Here, the first element is
8286 * 0, just remove it. To do this, we just pretend the array starts
8287 * one later, and clear the flag as we don't have to do anything
8288 * else later */
8289
8290 array_b++;
8291 len_b--;
8292 complement_b = FALSE;
8293 }
8294 else {
8295
8296 /* But if the first element is not zero, we unshift a 0 before the
8297 * array. The data structure reserves a space for that 0 (which
8298 * should be a '1' right now), so physical shifting is unneeded,
8299 * but temporarily change that element to 0. Before exiting the
8300 * routine, we must restore the element to '1' */
8301 array_b--;
8302 len_b++;
8303 array_b[0] = 0;
8304 }
8305 }
8306
8307 /* Make sure that the lengths are the same, as well as the final element
8308 * before looping through the remainder. (Thus we test the length, final,
8309 * and first elements right off the bat) */
8310 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8311 retval = FALSE;
8312 }
8313 else for (i = 0; i < len_a - 1; i++) {
8314 if (array_a[i] != array_b[i]) {
8315 retval = FALSE;
8316 break;
8317 }
8318 }
8319
8320 if (complement_b) {
8321 array_b[0] = 1;
8322 }
8323 return retval;
8324}
8325#endif
8326
8327#undef HEADER_LENGTH
8328#undef INVLIST_INITIAL_LENGTH
8329#undef TO_INTERNAL_SIZE
8330#undef FROM_INTERNAL_SIZE
8331#undef INVLIST_LEN_OFFSET
8332#undef INVLIST_ZERO_OFFSET
8333#undef INVLIST_ITER_OFFSET
8334#undef INVLIST_VERSION_ID
8335
8336/* End of inversion list object */
8337
8338/*
8339 - reg - regular expression, i.e. main body or parenthesized thing
8340 *
8341 * Caller must absorb opening parenthesis.
8342 *
8343 * Combining parenthesis handling with the base level of regular expression
8344 * is a trifle forced, but the need to tie the tails of the branches to what
8345 * follows makes it hard to avoid.
8346 */
8347#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8348#ifdef DEBUGGING
8349#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8350#else
8351#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8352#endif
8353
8354STATIC regnode *
8355S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8356 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
8357{
8358 dVAR;
8359 regnode *ret; /* Will be the head of the group. */
8360 regnode *br;
8361 regnode *lastbr;
8362 regnode *ender = NULL;
8363 I32 parno = 0;
8364 I32 flags;
8365 U32 oregflags = RExC_flags;
8366 bool have_branch = 0;
8367 bool is_open = 0;
8368 I32 freeze_paren = 0;
8369 I32 after_freeze = 0;
8370
8371 /* for (?g), (?gc), and (?o) warnings; warning
8372 about (?c) will warn about (?g) -- japhy */
8373
8374#define WASTED_O 0x01
8375#define WASTED_G 0x02
8376#define WASTED_C 0x04
8377#define WASTED_GC (0x02|0x04)
8378 I32 wastedflags = 0x00;
8379
8380 char * parse_start = RExC_parse; /* MJD */
8381 char * const oregcomp_parse = RExC_parse;
8382
8383 GET_RE_DEBUG_FLAGS_DECL;
8384
8385 PERL_ARGS_ASSERT_REG;
8386 DEBUG_PARSE("reg ");
8387
8388 *flagp = 0; /* Tentatively. */
8389
8390
8391 /* Make an OPEN node, if parenthesized. */
8392 if (paren) {
8393 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8394 char *start_verb = RExC_parse;
8395 STRLEN verb_len = 0;
8396 char *start_arg = NULL;
8397 unsigned char op = 0;
8398 int argok = 1;
8399 int internal_argval = 0; /* internal_argval is only useful if !argok */
8400 while ( *RExC_parse && *RExC_parse != ')' ) {
8401 if ( *RExC_parse == ':' ) {
8402 start_arg = RExC_parse + 1;
8403 break;
8404 }
8405 RExC_parse++;
8406 }
8407 ++start_verb;
8408 verb_len = RExC_parse - start_verb;
8409 if ( start_arg ) {
8410 RExC_parse++;
8411 while ( *RExC_parse && *RExC_parse != ')' )
8412 RExC_parse++;
8413 if ( *RExC_parse != ')' )
8414 vFAIL("Unterminated verb pattern argument");
8415 if ( RExC_parse == start_arg )
8416 start_arg = NULL;
8417 } else {
8418 if ( *RExC_parse != ')' )
8419 vFAIL("Unterminated verb pattern");
8420 }
8421
8422 switch ( *start_verb ) {
8423 case 'A': /* (*ACCEPT) */
8424 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8425 op = ACCEPT;
8426 internal_argval = RExC_nestroot;
8427 }
8428 break;
8429 case 'C': /* (*COMMIT) */
8430 if ( memEQs(start_verb,verb_len,"COMMIT") )
8431 op = COMMIT;
8432 break;
8433 case 'F': /* (*FAIL) */
8434 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8435 op = OPFAIL;
8436 argok = 0;
8437 }
8438 break;
8439 case ':': /* (*:NAME) */
8440 case 'M': /* (*MARK:NAME) */
8441 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8442 op = MARKPOINT;
8443 argok = -1;
8444 }
8445 break;
8446 case 'P': /* (*PRUNE) */
8447 if ( memEQs(start_verb,verb_len,"PRUNE") )
8448 op = PRUNE;
8449 break;
8450 case 'S': /* (*SKIP) */
8451 if ( memEQs(start_verb,verb_len,"SKIP") )
8452 op = SKIP;
8453 break;
8454 case 'T': /* (*THEN) */
8455 /* [19:06] <TimToady> :: is then */
8456 if ( memEQs(start_verb,verb_len,"THEN") ) {
8457 op = CUTGROUP;
8458 RExC_seen |= REG_SEEN_CUTGROUP;
8459 }
8460 break;
8461 }
8462 if ( ! op ) {
8463 RExC_parse++;
8464 vFAIL3("Unknown verb pattern '%.*s'",
8465 verb_len, start_verb);
8466 }
8467 if ( argok ) {
8468 if ( start_arg && internal_argval ) {
8469 vFAIL3("Verb pattern '%.*s' may not have an argument",
8470 verb_len, start_verb);
8471 } else if ( argok < 0 && !start_arg ) {
8472 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8473 verb_len, start_verb);
8474 } else {
8475 ret = reganode(pRExC_state, op, internal_argval);
8476 if ( ! internal_argval && ! SIZE_ONLY ) {
8477 if (start_arg) {
8478 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8479 ARG(ret) = add_data( pRExC_state, 1, "S" );
8480 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8481 ret->flags = 0;
8482 } else {
8483 ret->flags = 1;
8484 }
8485 }
8486 }
8487 if (!internal_argval)
8488 RExC_seen |= REG_SEEN_VERBARG;
8489 } else if ( start_arg ) {
8490 vFAIL3("Verb pattern '%.*s' may not have an argument",
8491 verb_len, start_verb);
8492 } else {
8493 ret = reg_node(pRExC_state, op);
8494 }
8495 nextchar(pRExC_state);
8496 return ret;
8497 } else
8498 if (*RExC_parse == '?') { /* (?...) */
8499 bool is_logical = 0;
8500 const char * const seqstart = RExC_parse;
8501 bool has_use_defaults = FALSE;
8502
8503 RExC_parse++;
8504 paren = *RExC_parse++;
8505 ret = NULL; /* For look-ahead/behind. */
8506 switch (paren) {
8507
8508 case 'P': /* (?P...) variants for those used to PCRE/Python */
8509 paren = *RExC_parse++;
8510 if ( paren == '<') /* (?P<...>) named capture */
8511 goto named_capture;
8512 else if (paren == '>') { /* (?P>name) named recursion */
8513 goto named_recursion;
8514 }
8515 else if (paren == '=') { /* (?P=...) named backref */
8516 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8517 you change this make sure you change that */
8518 char* name_start = RExC_parse;
8519 U32 num = 0;
8520 SV *sv_dat = reg_scan_name(pRExC_state,
8521 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8522 if (RExC_parse == name_start || *RExC_parse != ')')
8523 vFAIL2("Sequence %.3s... not terminated",parse_start);
8524
8525 if (!SIZE_ONLY) {
8526 num = add_data( pRExC_state, 1, "S" );
8527 RExC_rxi->data->data[num]=(void*)sv_dat;
8528 SvREFCNT_inc_simple_void(sv_dat);
8529 }
8530 RExC_sawback = 1;
8531 ret = reganode(pRExC_state,
8532 ((! FOLD)
8533 ? NREF
8534 : (ASCII_FOLD_RESTRICTED)
8535 ? NREFFA
8536 : (AT_LEAST_UNI_SEMANTICS)
8537 ? NREFFU
8538 : (LOC)
8539 ? NREFFL
8540 : NREFF),
8541 num);
8542 *flagp |= HASWIDTH;
8543
8544 Set_Node_Offset(ret, parse_start+1);
8545 Set_Node_Cur_Length(ret); /* MJD */
8546
8547 nextchar(pRExC_state);
8548 return ret;
8549 }
8550 RExC_parse++;
8551 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8552 /*NOTREACHED*/
8553 case '<': /* (?<...) */
8554 if (*RExC_parse == '!')
8555 paren = ',';
8556 else if (*RExC_parse != '=')
8557 named_capture:
8558 { /* (?<...>) */
8559 char *name_start;
8560 SV *svname;
8561 paren= '>';
8562 case '\'': /* (?'...') */
8563 name_start= RExC_parse;
8564 svname = reg_scan_name(pRExC_state,
8565 SIZE_ONLY ? /* reverse test from the others */
8566 REG_RSN_RETURN_NAME :
8567 REG_RSN_RETURN_NULL);
8568 if (RExC_parse == name_start) {
8569 RExC_parse++;
8570 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8571 /*NOTREACHED*/
8572 }
8573 if (*RExC_parse != paren)
8574 vFAIL2("Sequence (?%c... not terminated",
8575 paren=='>' ? '<' : paren);
8576 if (SIZE_ONLY) {
8577 HE *he_str;
8578 SV *sv_dat = NULL;
8579 if (!svname) /* shouldn't happen */
8580 Perl_croak(aTHX_
8581 "panic: reg_scan_name returned NULL");
8582 if (!RExC_paren_names) {
8583 RExC_paren_names= newHV();
8584 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8585#ifdef DEBUGGING
8586 RExC_paren_name_list= newAV();
8587 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8588#endif
8589 }
8590 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8591 if ( he_str )
8592 sv_dat = HeVAL(he_str);
8593 if ( ! sv_dat ) {
8594 /* croak baby croak */
8595 Perl_croak(aTHX_
8596 "panic: paren_name hash element allocation failed");
8597 } else if ( SvPOK(sv_dat) ) {
8598 /* (?|...) can mean we have dupes so scan to check
8599 its already been stored. Maybe a flag indicating
8600 we are inside such a construct would be useful,
8601 but the arrays are likely to be quite small, so
8602 for now we punt -- dmq */
8603 IV count = SvIV(sv_dat);
8604 I32 *pv = (I32*)SvPVX(sv_dat);
8605 IV i;
8606 for ( i = 0 ; i < count ; i++ ) {
8607 if ( pv[i] == RExC_npar ) {
8608 count = 0;
8609 break;
8610 }
8611 }
8612 if ( count ) {
8613 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8614 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8615 pv[count] = RExC_npar;
8616 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8617 }
8618 } else {
8619 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8620 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8621 SvIOK_on(sv_dat);
8622 SvIV_set(sv_dat, 1);
8623 }
8624#ifdef DEBUGGING
8625 /* Yes this does cause a memory leak in debugging Perls */
8626 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8627 SvREFCNT_dec(svname);
8628#endif
8629
8630 /*sv_dump(sv_dat);*/
8631 }
8632 nextchar(pRExC_state);
8633 paren = 1;
8634 goto capturing_parens;
8635 }
8636 RExC_seen |= REG_SEEN_LOOKBEHIND;
8637 RExC_in_lookbehind++;
8638 RExC_parse++;
8639 case '=': /* (?=...) */
8640 RExC_seen_zerolen++;
8641 break;
8642 case '!': /* (?!...) */
8643 RExC_seen_zerolen++;
8644 if (*RExC_parse == ')') {
8645 ret=reg_node(pRExC_state, OPFAIL);
8646 nextchar(pRExC_state);
8647 return ret;
8648 }
8649 break;
8650 case '|': /* (?|...) */
8651 /* branch reset, behave like a (?:...) except that
8652 buffers in alternations share the same numbers */
8653 paren = ':';
8654 after_freeze = freeze_paren = RExC_npar;
8655 break;
8656 case ':': /* (?:...) */
8657 case '>': /* (?>...) */
8658 break;
8659 case '$': /* (?$...) */
8660 case '@': /* (?@...) */
8661 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8662 break;
8663 case '#': /* (?#...) */
8664 while (*RExC_parse && *RExC_parse != ')')
8665 RExC_parse++;
8666 if (*RExC_parse != ')')
8667 FAIL("Sequence (?#... not terminated");
8668 nextchar(pRExC_state);
8669 *flagp = TRYAGAIN;
8670 return NULL;
8671 case '0' : /* (?0) */
8672 case 'R' : /* (?R) */
8673 if (*RExC_parse != ')')
8674 FAIL("Sequence (?R) not terminated");
8675 ret = reg_node(pRExC_state, GOSTART);
8676 *flagp |= POSTPONED;
8677 nextchar(pRExC_state);
8678 return ret;
8679 /*notreached*/
8680 { /* named and numeric backreferences */
8681 I32 num;
8682 case '&': /* (?&NAME) */
8683 parse_start = RExC_parse - 1;
8684 named_recursion:
8685 {
8686 SV *sv_dat = reg_scan_name(pRExC_state,
8687 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8688 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8689 }
8690 goto gen_recurse_regop;
8691 assert(0); /* NOT REACHED */
8692 case '+':
8693 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8694 RExC_parse++;
8695 vFAIL("Illegal pattern");
8696 }
8697 goto parse_recursion;
8698 /* NOT REACHED*/
8699 case '-': /* (?-1) */
8700 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8701 RExC_parse--; /* rewind to let it be handled later */
8702 goto parse_flags;
8703 }
8704 /*FALLTHROUGH */
8705 case '1': case '2': case '3': case '4': /* (?1) */
8706 case '5': case '6': case '7': case '8': case '9':
8707 RExC_parse--;
8708 parse_recursion:
8709 num = atoi(RExC_parse);
8710 parse_start = RExC_parse - 1; /* MJD */
8711 if (*RExC_parse == '-')
8712 RExC_parse++;
8713 while (isDIGIT(*RExC_parse))
8714 RExC_parse++;
8715 if (*RExC_parse!=')')
8716 vFAIL("Expecting close bracket");
8717
8718 gen_recurse_regop:
8719 if ( paren == '-' ) {
8720 /*
8721 Diagram of capture buffer numbering.
8722 Top line is the normal capture buffer numbers
8723 Bottom line is the negative indexing as from
8724 the X (the (?-2))
8725
8726 + 1 2 3 4 5 X 6 7
8727 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
8728 - 5 4 3 2 1 X x x
8729
8730 */
8731 num = RExC_npar + num;
8732 if (num < 1) {
8733 RExC_parse++;
8734 vFAIL("Reference to nonexistent group");
8735 }
8736 } else if ( paren == '+' ) {
8737 num = RExC_npar + num - 1;
8738 }
8739
8740 ret = reganode(pRExC_state, GOSUB, num);
8741 if (!SIZE_ONLY) {
8742 if (num > (I32)RExC_rx->nparens) {
8743 RExC_parse++;
8744 vFAIL("Reference to nonexistent group");
8745 }
8746 ARG2L_SET( ret, RExC_recurse_count++);
8747 RExC_emit++;
8748 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
8749 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
8750 } else {
8751 RExC_size++;
8752 }
8753 RExC_seen |= REG_SEEN_RECURSE;
8754 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
8755 Set_Node_Offset(ret, parse_start); /* MJD */
8756
8757 *flagp |= POSTPONED;
8758 nextchar(pRExC_state);
8759 return ret;
8760 } /* named and numeric backreferences */
8761 assert(0); /* NOT REACHED */
8762
8763 case '?': /* (??...) */
8764 is_logical = 1;
8765 if (*RExC_parse != '{') {
8766 RExC_parse++;
8767 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8768 /*NOTREACHED*/
8769 }
8770 *flagp |= POSTPONED;
8771 paren = *RExC_parse++;
8772 /* FALL THROUGH */
8773 case '{': /* (?{...}) */
8774 {
8775 U32 n = 0;
8776 struct reg_code_block *cb;
8777
8778 RExC_seen_zerolen++;
8779
8780 if ( !pRExC_state->num_code_blocks
8781 || pRExC_state->code_index >= pRExC_state->num_code_blocks
8782 || pRExC_state->code_blocks[pRExC_state->code_index].start
8783 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
8784 - RExC_start)
8785 ) {
8786 if (RExC_pm_flags & PMf_USE_RE_EVAL)
8787 FAIL("panic: Sequence (?{...}): no code block found\n");
8788 FAIL("Eval-group not allowed at runtime, use re 'eval'");
8789 }
8790 /* this is a pre-compiled code block (?{...}) */
8791 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
8792 RExC_parse = RExC_start + cb->end;
8793 if (!SIZE_ONLY) {
8794 OP *o = cb->block;
8795 if (cb->src_regex) {
8796 n = add_data(pRExC_state, 2, "rl");
8797 RExC_rxi->data->data[n] =
8798 (void*)SvREFCNT_inc((SV*)cb->src_regex);
8799 RExC_rxi->data->data[n+1] = (void*)o;
8800 }
8801 else {
8802 n = add_data(pRExC_state, 1,
8803 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
8804 RExC_rxi->data->data[n] = (void*)o;
8805 }
8806 }
8807 pRExC_state->code_index++;
8808 nextchar(pRExC_state);
8809
8810 if (is_logical) {
8811 regnode *eval;
8812 ret = reg_node(pRExC_state, LOGICAL);
8813 eval = reganode(pRExC_state, EVAL, n);
8814 if (!SIZE_ONLY) {
8815 ret->flags = 2;
8816 /* for later propagation into (??{}) return value */
8817 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
8818 }
8819 REGTAIL(pRExC_state, ret, eval);
8820 /* deal with the length of this later - MJD */
8821 return ret;
8822 }
8823 ret = reganode(pRExC_state, EVAL, n);
8824 Set_Node_Length(ret, RExC_parse - parse_start + 1);
8825 Set_Node_Offset(ret, parse_start);
8826 return ret;
8827 }
8828 case '(': /* (?(?{...})...) and (?(?=...)...) */
8829 {
8830 int is_define= 0;
8831 if (RExC_parse[0] == '?') { /* (?(?...)) */
8832 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
8833 || RExC_parse[1] == '<'
8834 || RExC_parse[1] == '{') { /* Lookahead or eval. */
8835 I32 flag;
8836
8837 ret = reg_node(pRExC_state, LOGICAL);
8838 if (!SIZE_ONLY)
8839 ret->flags = 1;
8840 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
8841 goto insert_if;
8842 }
8843 }
8844 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
8845 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
8846 {
8847 char ch = RExC_parse[0] == '<' ? '>' : '\'';
8848 char *name_start= RExC_parse++;
8849 U32 num = 0;
8850 SV *sv_dat=reg_scan_name(pRExC_state,
8851 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8852 if (RExC_parse == name_start || *RExC_parse != ch)
8853 vFAIL2("Sequence (?(%c... not terminated",
8854 (ch == '>' ? '<' : ch));
8855 RExC_parse++;
8856 if (!SIZE_ONLY) {
8857 num = add_data( pRExC_state, 1, "S" );
8858 RExC_rxi->data->data[num]=(void*)sv_dat;
8859 SvREFCNT_inc_simple_void(sv_dat);
8860 }
8861 ret = reganode(pRExC_state,NGROUPP,num);
8862 goto insert_if_check_paren;
8863 }
8864 else if (RExC_parse[0] == 'D' &&
8865 RExC_parse[1] == 'E' &&
8866 RExC_parse[2] == 'F' &&
8867 RExC_parse[3] == 'I' &&
8868 RExC_parse[4] == 'N' &&
8869 RExC_parse[5] == 'E')
8870 {
8871 ret = reganode(pRExC_state,DEFINEP,0);
8872 RExC_parse +=6 ;
8873 is_define = 1;
8874 goto insert_if_check_paren;
8875 }
8876 else if (RExC_parse[0] == 'R') {
8877 RExC_parse++;
8878 parno = 0;
8879 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
8880 parno = atoi(RExC_parse++);
8881 while (isDIGIT(*RExC_parse))
8882 RExC_parse++;
8883 } else if (RExC_parse[0] == '&') {
8884 SV *sv_dat;
8885 RExC_parse++;
8886 sv_dat = reg_scan_name(pRExC_state,
8887 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8888 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8889 }
8890 ret = reganode(pRExC_state,INSUBP,parno);
8891 goto insert_if_check_paren;
8892 }
8893 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
8894 /* (?(1)...) */
8895 char c;
8896 parno = atoi(RExC_parse++);
8897
8898 while (isDIGIT(*RExC_parse))
8899 RExC_parse++;
8900 ret = reganode(pRExC_state, GROUPP, parno);
8901
8902 insert_if_check_paren:
8903 if ((c = *nextchar(pRExC_state)) != ')')
8904 vFAIL("Switch condition not recognized");
8905 insert_if:
8906 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
8907 br = regbranch(pRExC_state, &flags, 1,depth+1);
8908 if (br == NULL)
8909 br = reganode(pRExC_state, LONGJMP, 0);
8910 else
8911 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
8912 c = *nextchar(pRExC_state);
8913 if (flags&HASWIDTH)
8914 *flagp |= HASWIDTH;
8915 if (c == '|') {
8916 if (is_define)
8917 vFAIL("(?(DEFINE)....) does not allow branches");
8918 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
8919 regbranch(pRExC_state, &flags, 1,depth+1);
8920 REGTAIL(pRExC_state, ret, lastbr);
8921 if (flags&HASWIDTH)
8922 *flagp |= HASWIDTH;
8923 c = *nextchar(pRExC_state);
8924 }
8925 else
8926 lastbr = NULL;
8927 if (c != ')')
8928 vFAIL("Switch (?(condition)... contains too many branches");
8929 ender = reg_node(pRExC_state, TAIL);
8930 REGTAIL(pRExC_state, br, ender);
8931 if (lastbr) {
8932 REGTAIL(pRExC_state, lastbr, ender);
8933 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
8934 }
8935 else
8936 REGTAIL(pRExC_state, ret, ender);
8937 RExC_size++; /* XXX WHY do we need this?!!
8938 For large programs it seems to be required
8939 but I can't figure out why. -- dmq*/
8940 return ret;
8941 }
8942 else {
8943 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
8944 }
8945 }
8946 case 0:
8947 RExC_parse--; /* for vFAIL to print correctly */
8948 vFAIL("Sequence (? incomplete");
8949 break;
8950 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
8951 that follow */
8952 has_use_defaults = TRUE;
8953 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8954 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8955 ? REGEX_UNICODE_CHARSET
8956 : REGEX_DEPENDS_CHARSET);
8957 goto parse_flags;
8958 default:
8959 --RExC_parse;
8960 parse_flags: /* (?i) */
8961 {
8962 U32 posflags = 0, negflags = 0;
8963 U32 *flagsp = &posflags;
8964 char has_charset_modifier = '\0';
8965 regex_charset cs = get_regex_charset(RExC_flags);
8966 if (cs == REGEX_DEPENDS_CHARSET
8967 && (RExC_utf8 || RExC_uni_semantics))
8968 {
8969 cs = REGEX_UNICODE_CHARSET;
8970 }
8971
8972 while (*RExC_parse) {
8973 /* && strchr("iogcmsx", *RExC_parse) */
8974 /* (?g), (?gc) and (?o) are useless here
8975 and must be globally applied -- japhy */
8976 switch (*RExC_parse) {
8977 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8978 case LOCALE_PAT_MOD:
8979 if (has_charset_modifier) {
8980 goto excess_modifier;
8981 }
8982 else if (flagsp == &negflags) {
8983 goto neg_modifier;
8984 }
8985 cs = REGEX_LOCALE_CHARSET;
8986 has_charset_modifier = LOCALE_PAT_MOD;
8987 RExC_contains_locale = 1;
8988 break;
8989 case UNICODE_PAT_MOD:
8990 if (has_charset_modifier) {
8991 goto excess_modifier;
8992 }
8993 else if (flagsp == &negflags) {
8994 goto neg_modifier;
8995 }
8996 cs = REGEX_UNICODE_CHARSET;
8997 has_charset_modifier = UNICODE_PAT_MOD;
8998 break;
8999 case ASCII_RESTRICT_PAT_MOD:
9000 if (flagsp == &negflags) {
9001 goto neg_modifier;
9002 }
9003 if (has_charset_modifier) {
9004 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
9005 goto excess_modifier;
9006 }
9007 /* Doubled modifier implies more restricted */
9008 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
9009 }
9010 else {
9011 cs = REGEX_ASCII_RESTRICTED_CHARSET;
9012 }
9013 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
9014 break;
9015 case DEPENDS_PAT_MOD:
9016 if (has_use_defaults) {
9017 goto fail_modifiers;
9018 }
9019 else if (flagsp == &negflags) {
9020 goto neg_modifier;
9021 }
9022 else if (has_charset_modifier) {
9023 goto excess_modifier;
9024 }
9025
9026 /* The dual charset means unicode semantics if the
9027 * pattern (or target, not known until runtime) are
9028 * utf8, or something in the pattern indicates unicode
9029 * semantics */
9030 cs = (RExC_utf8 || RExC_uni_semantics)
9031 ? REGEX_UNICODE_CHARSET
9032 : REGEX_DEPENDS_CHARSET;
9033 has_charset_modifier = DEPENDS_PAT_MOD;
9034 break;
9035 excess_modifier:
9036 RExC_parse++;
9037 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
9038 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
9039 }
9040 else if (has_charset_modifier == *(RExC_parse - 1)) {
9041 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
9042 }
9043 else {
9044 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
9045 }
9046 /*NOTREACHED*/
9047 neg_modifier:
9048 RExC_parse++;
9049 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
9050 /*NOTREACHED*/
9051 case ONCE_PAT_MOD: /* 'o' */
9052 case GLOBAL_PAT_MOD: /* 'g' */
9053 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
9054 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
9055 if (! (wastedflags & wflagbit) ) {
9056 wastedflags |= wflagbit;
9057 vWARN5(
9058 RExC_parse + 1,
9059 "Useless (%s%c) - %suse /%c modifier",
9060 flagsp == &negflags ? "?-" : "?",
9061 *RExC_parse,
9062 flagsp == &negflags ? "don't " : "",
9063 *RExC_parse
9064 );
9065 }
9066 }
9067 break;
9068
9069 case CONTINUE_PAT_MOD: /* 'c' */
9070 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
9071 if (! (wastedflags & WASTED_C) ) {
9072 wastedflags |= WASTED_GC;
9073 vWARN3(
9074 RExC_parse + 1,
9075 "Useless (%sc) - %suse /gc modifier",
9076 flagsp == &negflags ? "?-" : "?",
9077 flagsp == &negflags ? "don't " : ""
9078 );
9079 }
9080 }
9081 break;
9082 case KEEPCOPY_PAT_MOD: /* 'p' */
9083 if (flagsp == &negflags) {
9084 if (SIZE_ONLY)
9085 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
9086 } else {
9087 *flagsp |= RXf_PMf_KEEPCOPY;
9088 }
9089 break;
9090 case '-':
9091 /* A flag is a default iff it is following a minus, so
9092 * if there is a minus, it means will be trying to
9093 * re-specify a default which is an error */
9094 if (has_use_defaults || flagsp == &negflags) {
9095 fail_modifiers:
9096 RExC_parse++;
9097 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9098 /*NOTREACHED*/
9099 }
9100 flagsp = &negflags;
9101 wastedflags = 0; /* reset so (?g-c) warns twice */
9102 break;
9103 case ':':
9104 paren = ':';
9105 /*FALLTHROUGH*/
9106 case ')':
9107 RExC_flags |= posflags;
9108 RExC_flags &= ~negflags;
9109 set_regex_charset(&RExC_flags, cs);
9110 if (paren != ':') {
9111 oregflags |= posflags;
9112 oregflags &= ~negflags;
9113 set_regex_charset(&oregflags, cs);
9114 }
9115 nextchar(pRExC_state);
9116 if (paren != ':') {
9117 *flagp = TRYAGAIN;
9118 return NULL;
9119 } else {
9120 ret = NULL;
9121 goto parse_rest;
9122 }
9123 /*NOTREACHED*/
9124 default:
9125 RExC_parse++;
9126 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9127 /*NOTREACHED*/
9128 }
9129 ++RExC_parse;
9130 }
9131 }} /* one for the default block, one for the switch */
9132 }
9133 else { /* (...) */
9134 capturing_parens:
9135 parno = RExC_npar;
9136 RExC_npar++;
9137
9138 ret = reganode(pRExC_state, OPEN, parno);
9139 if (!SIZE_ONLY ){
9140 if (!RExC_nestroot)
9141 RExC_nestroot = parno;
9142 if (RExC_seen & REG_SEEN_RECURSE
9143 && !RExC_open_parens[parno-1])
9144 {
9145 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9146 "Setting open paren #%"IVdf" to %d\n",
9147 (IV)parno, REG_NODE_NUM(ret)));
9148 RExC_open_parens[parno-1]= ret;
9149 }
9150 }
9151 Set_Node_Length(ret, 1); /* MJD */
9152 Set_Node_Offset(ret, RExC_parse); /* MJD */
9153 is_open = 1;
9154 }
9155 }
9156 else /* ! paren */
9157 ret = NULL;
9158
9159 parse_rest:
9160 /* Pick up the branches, linking them together. */
9161 parse_start = RExC_parse; /* MJD */
9162 br = regbranch(pRExC_state, &flags, 1,depth+1);
9163
9164 /* branch_len = (paren != 0); */
9165
9166 if (br == NULL)
9167 return(NULL);
9168 if (*RExC_parse == '|') {
9169 if (!SIZE_ONLY && RExC_extralen) {
9170 reginsert(pRExC_state, BRANCHJ, br, depth+1);
9171 }
9172 else { /* MJD */
9173 reginsert(pRExC_state, BRANCH, br, depth+1);
9174 Set_Node_Length(br, paren != 0);
9175 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9176 }
9177 have_branch = 1;
9178 if (SIZE_ONLY)
9179 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
9180 }
9181 else if (paren == ':') {
9182 *flagp |= flags&SIMPLE;
9183 }
9184 if (is_open) { /* Starts with OPEN. */
9185 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9186 }
9187 else if (paren != '?') /* Not Conditional */
9188 ret = br;
9189 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9190 lastbr = br;
9191 while (*RExC_parse == '|') {
9192 if (!SIZE_ONLY && RExC_extralen) {
9193 ender = reganode(pRExC_state, LONGJMP,0);
9194 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9195 }
9196 if (SIZE_ONLY)
9197 RExC_extralen += 2; /* Account for LONGJMP. */
9198 nextchar(pRExC_state);
9199 if (freeze_paren) {
9200 if (RExC_npar > after_freeze)
9201 after_freeze = RExC_npar;
9202 RExC_npar = freeze_paren;
9203 }
9204 br = regbranch(pRExC_state, &flags, 0, depth+1);
9205
9206 if (br == NULL)
9207 return(NULL);
9208 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9209 lastbr = br;
9210 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9211 }
9212
9213 if (have_branch || paren != ':') {
9214 /* Make a closing node, and hook it on the end. */
9215 switch (paren) {
9216 case ':':
9217 ender = reg_node(pRExC_state, TAIL);
9218 break;
9219 case 1:
9220 ender = reganode(pRExC_state, CLOSE, parno);
9221 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9222 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9223 "Setting close paren #%"IVdf" to %d\n",
9224 (IV)parno, REG_NODE_NUM(ender)));
9225 RExC_close_parens[parno-1]= ender;
9226 if (RExC_nestroot == parno)
9227 RExC_nestroot = 0;
9228 }
9229 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9230 Set_Node_Length(ender,1); /* MJD */
9231 break;
9232 case '<':
9233 case ',':
9234 case '=':
9235 case '!':
9236 *flagp &= ~HASWIDTH;
9237 /* FALL THROUGH */
9238 case '>':
9239 ender = reg_node(pRExC_state, SUCCEED);
9240 break;
9241 case 0:
9242 ender = reg_node(pRExC_state, END);
9243 if (!SIZE_ONLY) {
9244 assert(!RExC_opend); /* there can only be one! */
9245 RExC_opend = ender;
9246 }
9247 break;
9248 }
9249 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9250 SV * const mysv_val1=sv_newmortal();
9251 SV * const mysv_val2=sv_newmortal();
9252 DEBUG_PARSE_MSG("lsbr");
9253 regprop(RExC_rx, mysv_val1, lastbr);
9254 regprop(RExC_rx, mysv_val2, ender);
9255 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9256 SvPV_nolen_const(mysv_val1),
9257 (IV)REG_NODE_NUM(lastbr),
9258 SvPV_nolen_const(mysv_val2),
9259 (IV)REG_NODE_NUM(ender),
9260 (IV)(ender - lastbr)
9261 );
9262 });
9263 REGTAIL(pRExC_state, lastbr, ender);
9264
9265 if (have_branch && !SIZE_ONLY) {
9266 char is_nothing= 1;
9267 if (depth==1)
9268 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9269
9270 /* Hook the tails of the branches to the closing node. */
9271 for (br = ret; br; br = regnext(br)) {
9272 const U8 op = PL_regkind[OP(br)];
9273 if (op == BRANCH) {
9274 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9275 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9276 is_nothing= 0;
9277 }
9278 else if (op == BRANCHJ) {
9279 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9280 /* for now we always disable this optimisation * /
9281 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9282 */
9283 is_nothing= 0;
9284 }
9285 }
9286 if (is_nothing) {
9287 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9288 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9289 SV * const mysv_val1=sv_newmortal();
9290 SV * const mysv_val2=sv_newmortal();
9291 DEBUG_PARSE_MSG("NADA");
9292 regprop(RExC_rx, mysv_val1, ret);
9293 regprop(RExC_rx, mysv_val2, ender);
9294 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9295 SvPV_nolen_const(mysv_val1),
9296 (IV)REG_NODE_NUM(ret),
9297 SvPV_nolen_const(mysv_val2),
9298 (IV)REG_NODE_NUM(ender),
9299 (IV)(ender - ret)
9300 );
9301 });
9302 OP(br)= NOTHING;
9303 if (OP(ender) == TAIL) {
9304 NEXT_OFF(br)= 0;
9305 RExC_emit= br + 1;
9306 } else {
9307 regnode *opt;
9308 for ( opt= br + 1; opt < ender ; opt++ )
9309 OP(opt)= OPTIMIZED;
9310 NEXT_OFF(br)= ender - br;
9311 }
9312 }
9313 }
9314 }
9315
9316 {
9317 const char *p;
9318 static const char parens[] = "=!<,>";
9319
9320 if (paren && (p = strchr(parens, paren))) {
9321 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9322 int flag = (p - parens) > 1;
9323
9324 if (paren == '>')
9325 node = SUSPEND, flag = 0;
9326 reginsert(pRExC_state, node,ret, depth+1);
9327 Set_Node_Cur_Length(ret);
9328 Set_Node_Offset(ret, parse_start + 1);
9329 ret->flags = flag;
9330 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9331 }
9332 }
9333
9334 /* Check for proper termination. */
9335 if (paren) {
9336 RExC_flags = oregflags;
9337 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9338 RExC_parse = oregcomp_parse;
9339 vFAIL("Unmatched (");
9340 }
9341 }
9342 else if (!paren && RExC_parse < RExC_end) {
9343 if (*RExC_parse == ')') {
9344 RExC_parse++;
9345 vFAIL("Unmatched )");
9346 }
9347 else
9348 FAIL("Junk on end of regexp"); /* "Can't happen". */
9349 assert(0); /* NOTREACHED */
9350 }
9351
9352 if (RExC_in_lookbehind) {
9353 RExC_in_lookbehind--;
9354 }
9355 if (after_freeze > RExC_npar)
9356 RExC_npar = after_freeze;
9357 return(ret);
9358}
9359
9360/*
9361 - regbranch - one alternative of an | operator
9362 *
9363 * Implements the concatenation operator.
9364 */
9365STATIC regnode *
9366S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9367{
9368 dVAR;
9369 regnode *ret;
9370 regnode *chain = NULL;
9371 regnode *latest;
9372 I32 flags = 0, c = 0;
9373 GET_RE_DEBUG_FLAGS_DECL;
9374
9375 PERL_ARGS_ASSERT_REGBRANCH;
9376
9377 DEBUG_PARSE("brnc");
9378
9379 if (first)
9380 ret = NULL;
9381 else {
9382 if (!SIZE_ONLY && RExC_extralen)
9383 ret = reganode(pRExC_state, BRANCHJ,0);
9384 else {
9385 ret = reg_node(pRExC_state, BRANCH);
9386 Set_Node_Length(ret, 1);
9387 }
9388 }
9389
9390 if (!first && SIZE_ONLY)
9391 RExC_extralen += 1; /* BRANCHJ */
9392
9393 *flagp = WORST; /* Tentatively. */
9394
9395 RExC_parse--;
9396 nextchar(pRExC_state);
9397 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9398 flags &= ~TRYAGAIN;
9399 latest = regpiece(pRExC_state, &flags,depth+1);
9400 if (latest == NULL) {
9401 if (flags & TRYAGAIN)
9402 continue;
9403 return(NULL);
9404 }
9405 else if (ret == NULL)
9406 ret = latest;
9407 *flagp |= flags&(HASWIDTH|POSTPONED);
9408 if (chain == NULL) /* First piece. */
9409 *flagp |= flags&SPSTART;
9410 else {
9411 RExC_naughty++;
9412 REGTAIL(pRExC_state, chain, latest);
9413 }
9414 chain = latest;
9415 c++;
9416 }
9417 if (chain == NULL) { /* Loop ran zero times. */
9418 chain = reg_node(pRExC_state, NOTHING);
9419 if (ret == NULL)
9420 ret = chain;
9421 }
9422 if (c == 1) {
9423 *flagp |= flags&SIMPLE;
9424 }
9425
9426 return ret;
9427}
9428
9429/*
9430 - regpiece - something followed by possible [*+?]
9431 *
9432 * Note that the branching code sequences used for ? and the general cases
9433 * of * and + are somewhat optimized: they use the same NOTHING node as
9434 * both the endmarker for their branch list and the body of the last branch.
9435 * It might seem that this node could be dispensed with entirely, but the
9436 * endmarker role is not redundant.
9437 */
9438STATIC regnode *
9439S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9440{
9441 dVAR;
9442 regnode *ret;
9443 char op;
9444 char *next;
9445 I32 flags;
9446 const char * const origparse = RExC_parse;
9447 I32 min;
9448 I32 max = REG_INFTY;
9449#ifdef RE_TRACK_PATTERN_OFFSETS
9450 char *parse_start;
9451#endif
9452 const char *maxpos = NULL;
9453
9454 /* Save the original in case we change the emitted regop to a FAIL. */
9455 regnode * const orig_emit = RExC_emit;
9456
9457 GET_RE_DEBUG_FLAGS_DECL;
9458
9459 PERL_ARGS_ASSERT_REGPIECE;
9460
9461 DEBUG_PARSE("piec");
9462
9463 ret = regatom(pRExC_state, &flags,depth+1);
9464 if (ret == NULL) {
9465 if (flags & TRYAGAIN)
9466 *flagp |= TRYAGAIN;
9467 return(NULL);
9468 }
9469
9470 op = *RExC_parse;
9471
9472 if (op == '{' && regcurly(RExC_parse)) {
9473 maxpos = NULL;
9474#ifdef RE_TRACK_PATTERN_OFFSETS
9475 parse_start = RExC_parse; /* MJD */
9476#endif
9477 next = RExC_parse + 1;
9478 while (isDIGIT(*next) || *next == ',') {
9479 if (*next == ',') {
9480 if (maxpos)
9481 break;
9482 else
9483 maxpos = next;
9484 }
9485 next++;
9486 }
9487 if (*next == '}') { /* got one */
9488 if (!maxpos)
9489 maxpos = next;
9490 RExC_parse++;
9491 min = atoi(RExC_parse);
9492 if (*maxpos == ',')
9493 maxpos++;
9494 else
9495 maxpos = RExC_parse;
9496 max = atoi(maxpos);
9497 if (!max && *maxpos != '0')
9498 max = REG_INFTY; /* meaning "infinity" */
9499 else if (max >= REG_INFTY)
9500 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9501 RExC_parse = next;
9502 nextchar(pRExC_state);
9503 if (max < min) { /* If can't match, warn and optimize to fail
9504 unconditionally */
9505 if (SIZE_ONLY) {
9506 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9507
9508 /* We can't back off the size because we have to reserve
9509 * enough space for all the things we are about to throw
9510 * away, but we can shrink it by the ammount we are about
9511 * to re-use here */
9512 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9513 }
9514 else {
9515 RExC_emit = orig_emit;
9516 }
9517 ret = reg_node(pRExC_state, OPFAIL);
9518 return ret;
9519 }
9520
9521 do_curly:
9522 if ((flags&SIMPLE)) {
9523 RExC_naughty += 2 + RExC_naughty / 2;
9524 reginsert(pRExC_state, CURLY, ret, depth+1);
9525 Set_Node_Offset(ret, parse_start+1); /* MJD */
9526 Set_Node_Cur_Length(ret);
9527 }
9528 else {
9529 regnode * const w = reg_node(pRExC_state, WHILEM);
9530
9531 w->flags = 0;
9532 REGTAIL(pRExC_state, ret, w);
9533 if (!SIZE_ONLY && RExC_extralen) {
9534 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9535 reginsert(pRExC_state, NOTHING,ret, depth+1);
9536 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9537 }
9538 reginsert(pRExC_state, CURLYX,ret, depth+1);
9539 /* MJD hk */
9540 Set_Node_Offset(ret, parse_start+1);
9541 Set_Node_Length(ret,
9542 op == '{' ? (RExC_parse - parse_start) : 1);
9543
9544 if (!SIZE_ONLY && RExC_extralen)
9545 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9546 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9547 if (SIZE_ONLY)
9548 RExC_whilem_seen++, RExC_extralen += 3;
9549 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9550 }
9551 ret->flags = 0;
9552
9553 if (min > 0)
9554 *flagp = WORST;
9555 if (max > 0)
9556 *flagp |= HASWIDTH;
9557 if (!SIZE_ONLY) {
9558 ARG1_SET(ret, (U16)min);
9559 ARG2_SET(ret, (U16)max);
9560 }
9561
9562 goto nest_check;
9563 }
9564 }
9565
9566 if (!ISMULT1(op)) {
9567 *flagp = flags;
9568 return(ret);
9569 }
9570
9571#if 0 /* Now runtime fix should be reliable. */
9572
9573 /* if this is reinstated, don't forget to put this back into perldiag:
9574
9575 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9576
9577 (F) The part of the regexp subject to either the * or + quantifier
9578 could match an empty string. The {#} shows in the regular
9579 expression about where the problem was discovered.
9580
9581 */
9582
9583 if (!(flags&HASWIDTH) && op != '?')
9584 vFAIL("Regexp *+ operand could be empty");
9585#endif
9586
9587#ifdef RE_TRACK_PATTERN_OFFSETS
9588 parse_start = RExC_parse;
9589#endif
9590 nextchar(pRExC_state);
9591
9592 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9593
9594 if (op == '*' && (flags&SIMPLE)) {
9595 reginsert(pRExC_state, STAR, ret, depth+1);
9596 ret->flags = 0;
9597 RExC_naughty += 4;
9598 }
9599 else if (op == '*') {
9600 min = 0;
9601 goto do_curly;
9602 }
9603 else if (op == '+' && (flags&SIMPLE)) {
9604 reginsert(pRExC_state, PLUS, ret, depth+1);
9605 ret->flags = 0;
9606 RExC_naughty += 3;
9607 }
9608 else if (op == '+') {
9609 min = 1;
9610 goto do_curly;
9611 }
9612 else if (op == '?') {
9613 min = 0; max = 1;
9614 goto do_curly;
9615 }
9616 nest_check:
9617 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9618 ckWARN3reg(RExC_parse,
9619 "%.*s matches null string many times",
9620 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9621 origparse);
9622 }
9623
9624 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9625 nextchar(pRExC_state);
9626 reginsert(pRExC_state, MINMOD, ret, depth+1);
9627 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9628 }
9629#ifndef REG_ALLOW_MINMOD_SUSPEND
9630 else
9631#endif
9632 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9633 regnode *ender;
9634 nextchar(pRExC_state);
9635 ender = reg_node(pRExC_state, SUCCEED);
9636 REGTAIL(pRExC_state, ret, ender);
9637 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9638 ret->flags = 0;
9639 ender = reg_node(pRExC_state, TAIL);
9640 REGTAIL(pRExC_state, ret, ender);
9641 /*ret= ender;*/
9642 }
9643
9644 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9645 RExC_parse++;
9646 vFAIL("Nested quantifiers");
9647 }
9648
9649 return(ret);
9650}
9651
9652STATIC bool
9653S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class)
9654{
9655
9656 /* This is expected to be called by a parser routine that has recognized '\N'
9657 and needs to handle the rest. RExC_parse is expected to point at the first
9658 char following the N at the time of the call. On successful return,
9659 RExC_parse has been updated to point to just after the sequence identified
9660 by this routine, and <*flagp> has been updated.
9661
9662 The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9663 character class.
9664
9665 \N may begin either a named sequence, or if outside a character class, mean
9666 to match a non-newline. For non single-quoted regexes, the tokenizer has
9667 attempted to decide which, and in the case of a named sequence, converted it
9668 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9669 where c1... are the characters in the sequence. For single-quoted regexes,
9670 the tokenizer passes the \N sequence through unchanged; this code will not
9671 attempt to determine this nor expand those, instead raising a syntax error.
9672 The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9673 or there is no '}', it signals that this \N occurrence means to match a
9674 non-newline.
9675
9676 Only the \N{U+...} form should occur in a character class, for the same
9677 reason that '.' inside a character class means to just match a period: it
9678 just doesn't make sense.
9679
9680 The function raises an error (via vFAIL), and doesn't return for various
9681 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
9682 success; it returns FALSE otherwise.
9683
9684 If <valuep> is non-null, it means the caller can accept an input sequence
9685 consisting of a just a single code point; <*valuep> is set to that value
9686 if the input is such.
9687
9688 If <node_p> is non-null it signifies that the caller can accept any other
9689 legal sequence (i.e., one that isn't just a single code point). <*node_p>
9690 is set as follows:
9691 1) \N means not-a-NL: points to a newly created REG_ANY node;
9692 2) \N{}: points to a new NOTHING node;
9693 3) otherwise: points to a new EXACT node containing the resolved
9694 string.
9695 Note that FALSE is returned for single code point sequences if <valuep> is
9696 null.
9697 */
9698
9699 char * endbrace; /* '}' following the name */
9700 char* p;
9701 char *endchar; /* Points to '.' or '}' ending cur char in the input
9702 stream */
9703 bool has_multiple_chars; /* true if the input stream contains a sequence of
9704 more than one character */
9705
9706 GET_RE_DEBUG_FLAGS_DECL;
9707
9708 PERL_ARGS_ASSERT_GROK_BSLASH_N;
9709
9710 GET_RE_DEBUG_FLAGS;
9711
9712 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
9713
9714 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9715 * modifier. The other meaning does not */
9716 p = (RExC_flags & RXf_PMf_EXTENDED)
9717 ? regwhite( pRExC_state, RExC_parse )
9718 : RExC_parse;
9719
9720 /* Disambiguate between \N meaning a named character versus \N meaning
9721 * [^\n]. The former is assumed when it can't be the latter. */
9722 if (*p != '{' || regcurly(p)) {
9723 RExC_parse = p;
9724 if (! node_p) {
9725 /* no bare \N in a charclass */
9726 if (in_char_class) {
9727 vFAIL("\\N in a character class must be a named character: \\N{...}");
9728 }
9729 return FALSE;
9730 }
9731 nextchar(pRExC_state);
9732 *node_p = reg_node(pRExC_state, REG_ANY);
9733 *flagp |= HASWIDTH|SIMPLE;
9734 RExC_naughty++;
9735 RExC_parse--;
9736 Set_Node_Length(*node_p, 1); /* MJD */
9737 return TRUE;
9738 }
9739
9740 /* Here, we have decided it should be a named character or sequence */
9741
9742 /* The test above made sure that the next real character is a '{', but
9743 * under the /x modifier, it could be separated by space (or a comment and
9744 * \n) and this is not allowed (for consistency with \x{...} and the
9745 * tokenizer handling of \N{NAME}). */
9746 if (*RExC_parse != '{') {
9747 vFAIL("Missing braces on \\N{}");
9748 }
9749
9750 RExC_parse++; /* Skip past the '{' */
9751
9752 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9753 || ! (endbrace == RExC_parse /* nothing between the {} */
9754 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9755 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9756 {
9757 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9758 vFAIL("\\N{NAME} must be resolved by the lexer");
9759 }
9760
9761 if (endbrace == RExC_parse) { /* empty: \N{} */
9762 bool ret = TRUE;
9763 if (node_p) {
9764 *node_p = reg_node(pRExC_state,NOTHING);
9765 }
9766 else if (in_char_class) {
9767 if (SIZE_ONLY && in_char_class) {
9768 ckWARNreg(RExC_parse,
9769 "Ignoring zero length \\N{} in character class"
9770 );
9771 }
9772 ret = FALSE;
9773 }
9774 else {
9775 return FALSE;
9776 }
9777 nextchar(pRExC_state);
9778 return ret;
9779 }
9780
9781 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9782 RExC_parse += 2; /* Skip past the 'U+' */
9783
9784 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9785
9786 /* Code points are separated by dots. If none, there is only one code
9787 * point, and is terminated by the brace */
9788 has_multiple_chars = (endchar < endbrace);
9789
9790 if (valuep && (! has_multiple_chars || in_char_class)) {
9791 /* We only pay attention to the first char of
9792 multichar strings being returned in char classes. I kinda wonder
9793 if this makes sense as it does change the behaviour
9794 from earlier versions, OTOH that behaviour was broken
9795 as well. XXX Solution is to recharacterize as
9796 [rest-of-class]|multi1|multi2... */
9797
9798 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9799 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9800 | PERL_SCAN_DISALLOW_PREFIX
9801 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9802
9803 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9804
9805 /* The tokenizer should have guaranteed validity, but it's possible to
9806 * bypass it by using single quoting, so check */
9807 if (length_of_hex == 0
9808 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9809 {
9810 RExC_parse += length_of_hex; /* Includes all the valid */
9811 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9812 ? UTF8SKIP(RExC_parse)
9813 : 1;
9814 /* Guard against malformed utf8 */
9815 if (RExC_parse >= endchar) {
9816 RExC_parse = endchar;
9817 }
9818 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9819 }
9820
9821 if (in_char_class && has_multiple_chars) {
9822 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9823 }
9824 RExC_parse = endbrace + 1;
9825 }
9826 else if (! node_p || ! has_multiple_chars) {
9827
9828 /* Here, the input is legal, but not according to the caller's
9829 * options. We fail without advancing the parse, so that the
9830 * caller can try again */
9831 RExC_parse = p;
9832 return FALSE;
9833 }
9834 else {
9835
9836 /* What is done here is to convert this to a sub-pattern of the form
9837 * (?:\x{char1}\x{char2}...)
9838 * and then call reg recursively. That way, it retains its atomicness,
9839 * while not having to worry about special handling that some code
9840 * points may have. toke.c has converted the original Unicode values
9841 * to native, so that we can just pass on the hex values unchanged. We
9842 * do have to set a flag to keep recoding from happening in the
9843 * recursion */
9844
9845 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
9846 STRLEN len;
9847 char *orig_end = RExC_end;
9848 I32 flags;
9849
9850 while (RExC_parse < endbrace) {
9851
9852 /* Convert to notation the rest of the code understands */
9853 sv_catpv(substitute_parse, "\\x{");
9854 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
9855 sv_catpv(substitute_parse, "}");
9856
9857 /* Point to the beginning of the next character in the sequence. */
9858 RExC_parse = endchar + 1;
9859 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9860 }
9861 sv_catpv(substitute_parse, ")");
9862
9863 RExC_parse = SvPV(substitute_parse, len);
9864
9865 /* Don't allow empty number */
9866 if (len < 8) {
9867 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9868 }
9869 RExC_end = RExC_parse + len;
9870
9871 /* The values are Unicode, and therefore not subject to recoding */
9872 RExC_override_recoding = 1;
9873
9874 *node_p = reg(pRExC_state, 1, &flags, depth+1);
9875 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
9876
9877 RExC_parse = endbrace;
9878 RExC_end = orig_end;
9879 RExC_override_recoding = 0;
9880
9881 nextchar(pRExC_state);
9882 }
9883
9884 return TRUE;
9885}
9886
9887
9888/*
9889 * reg_recode
9890 *
9891 * It returns the code point in utf8 for the value in *encp.
9892 * value: a code value in the source encoding
9893 * encp: a pointer to an Encode object
9894 *
9895 * If the result from Encode is not a single character,
9896 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
9897 */
9898STATIC UV
9899S_reg_recode(pTHX_ const char value, SV **encp)
9900{
9901 STRLEN numlen = 1;
9902 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
9903 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
9904 const STRLEN newlen = SvCUR(sv);
9905 UV uv = UNICODE_REPLACEMENT;
9906
9907 PERL_ARGS_ASSERT_REG_RECODE;
9908
9909 if (newlen)
9910 uv = SvUTF8(sv)
9911 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
9912 : *(U8*)s;
9913
9914 if (!newlen || numlen != newlen) {
9915 uv = UNICODE_REPLACEMENT;
9916 *encp = NULL;
9917 }
9918 return uv;
9919}
9920
9921PERL_STATIC_INLINE U8
9922S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
9923{
9924 U8 op;
9925
9926 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
9927
9928 if (! FOLD) {
9929 return EXACT;
9930 }
9931
9932 op = get_regex_charset(RExC_flags);
9933 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
9934 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
9935 been, so there is no hole */
9936 }
9937
9938 return op + EXACTF;
9939}
9940
9941PERL_STATIC_INLINE void
9942S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
9943{
9944 /* This knows the details about sizing an EXACTish node, setting flags for
9945 * it (by setting <*flagp>, and potentially populating it with a single
9946 * character.
9947 *
9948 * If <len> is non-zero, this function assumes that the node has already
9949 * been populated, and just does the sizing. In this case <code_point>
9950 * should be the final code point that has already been placed into the
9951 * node. This value will be ignored except that under some circumstances
9952 * <*flagp> is set based on it.
9953 *
9954 * If <len is zero, the function assumes that the node is to contain only
9955 * the single character given by <code_point> and calculates what <len>
9956 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
9957 * additionally will populate the node's STRING with <code_point>, if <len>
9958 * is 0. In both cases <*flagp> is appropriately set
9959 *
9960 * It knows that under FOLD, UTF characters and the Latin Sharp S must be
9961 * folded (the latter only when the rules indicate it can match 'ss') */
9962
9963 bool len_passed_in = cBOOL(len != 0);
9964 U8 character[UTF8_MAXBYTES_CASE+1];
9965
9966 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
9967
9968 if (! len_passed_in) {
9969 if (UTF) {
9970 if (FOLD) {
9971 to_uni_fold(NATIVE_TO_UNI(code_point), character, &len);
9972 }
9973 else {
9974 uvchr_to_utf8( character, code_point);
9975 len = UTF8SKIP(character);
9976 }
9977 }
9978 else if (! FOLD
9979 || code_point != LATIN_SMALL_LETTER_SHARP_S
9980 || ASCII_FOLD_RESTRICTED
9981 || ! AT_LEAST_UNI_SEMANTICS)
9982 {
9983 *character = (U8) code_point;
9984 len = 1;
9985 }
9986 else {
9987 *character = 's';
9988 *(character + 1) = 's';
9989 len = 2;
9990 }
9991 }
9992
9993 if (SIZE_ONLY) {
9994 RExC_size += STR_SZ(len);
9995 }
9996 else {
9997 RExC_emit += STR_SZ(len);
9998 STR_LEN(node) = len;
9999 if (! len_passed_in) {
10000 Copy((char *) character, STRING(node), len, char);
10001 }
10002 }
10003
10004 *flagp |= HASWIDTH;
10005 if (len == 1 && UNI_IS_INVARIANT(code_point))
10006 *flagp |= SIMPLE;
10007}
10008
10009/*
10010 - regatom - the lowest level
10011
10012 Try to identify anything special at the start of the pattern. If there
10013 is, then handle it as required. This may involve generating a single regop,
10014 such as for an assertion; or it may involve recursing, such as to
10015 handle a () structure.
10016
10017 If the string doesn't start with something special then we gobble up
10018 as much literal text as we can.
10019
10020 Once we have been able to handle whatever type of thing started the
10021 sequence, we return.
10022
10023 Note: we have to be careful with escapes, as they can be both literal
10024 and special, and in the case of \10 and friends, context determines which.
10025
10026 A summary of the code structure is:
10027
10028 switch (first_byte) {
10029 cases for each special:
10030 handle this special;
10031 break;
10032 case '\\':
10033 switch (2nd byte) {
10034 cases for each unambiguous special:
10035 handle this special;
10036 break;
10037 cases for each ambigous special/literal:
10038 disambiguate;
10039 if (special) handle here
10040 else goto defchar;
10041 default: // unambiguously literal:
10042 goto defchar;
10043 }
10044 default: // is a literal char
10045 // FALL THROUGH
10046 defchar:
10047 create EXACTish node for literal;
10048 while (more input and node isn't full) {
10049 switch (input_byte) {
10050 cases for each special;
10051 make sure parse pointer is set so that the next call to
10052 regatom will see this special first
10053 goto loopdone; // EXACTish node terminated by prev. char
10054 default:
10055 append char to EXACTISH node;
10056 }
10057 get next input byte;
10058 }
10059 loopdone:
10060 }
10061 return the generated node;
10062
10063 Specifically there are two separate switches for handling
10064 escape sequences, with the one for handling literal escapes requiring
10065 a dummy entry for all of the special escapes that are actually handled
10066 by the other.
10067*/
10068
10069STATIC regnode *
10070S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10071{
10072 dVAR;
10073 regnode *ret = NULL;
10074 I32 flags;
10075 char *parse_start = RExC_parse;
10076 U8 op;
10077 GET_RE_DEBUG_FLAGS_DECL;
10078 DEBUG_PARSE("atom");
10079 *flagp = WORST; /* Tentatively. */
10080
10081 PERL_ARGS_ASSERT_REGATOM;
10082
10083tryagain:
10084 switch ((U8)*RExC_parse) {
10085 case '^':
10086 RExC_seen_zerolen++;
10087 nextchar(pRExC_state);
10088 if (RExC_flags & RXf_PMf_MULTILINE)
10089 ret = reg_node(pRExC_state, MBOL);
10090 else if (RExC_flags & RXf_PMf_SINGLELINE)
10091 ret = reg_node(pRExC_state, SBOL);
10092 else
10093 ret = reg_node(pRExC_state, BOL);
10094 Set_Node_Length(ret, 1); /* MJD */
10095 break;
10096 case '$':
10097 nextchar(pRExC_state);
10098 if (*RExC_parse)
10099 RExC_seen_zerolen++;
10100 if (RExC_flags & RXf_PMf_MULTILINE)
10101 ret = reg_node(pRExC_state, MEOL);
10102 else if (RExC_flags & RXf_PMf_SINGLELINE)
10103 ret = reg_node(pRExC_state, SEOL);
10104 else
10105 ret = reg_node(pRExC_state, EOL);
10106 Set_Node_Length(ret, 1); /* MJD */
10107 break;
10108 case '.':
10109 nextchar(pRExC_state);
10110 if (RExC_flags & RXf_PMf_SINGLELINE)
10111 ret = reg_node(pRExC_state, SANY);
10112 else
10113 ret = reg_node(pRExC_state, REG_ANY);
10114 *flagp |= HASWIDTH|SIMPLE;
10115 RExC_naughty++;
10116 Set_Node_Length(ret, 1); /* MJD */
10117 break;
10118 case '[':
10119 {
10120 char * const oregcomp_parse = ++RExC_parse;
10121 ret = regclass(pRExC_state, flagp,depth+1);
10122 if (*RExC_parse != ']') {
10123 RExC_parse = oregcomp_parse;
10124 vFAIL("Unmatched [");
10125 }
10126 nextchar(pRExC_state);
10127 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10128 break;
10129 }
10130 case '(':
10131 nextchar(pRExC_state);
10132 ret = reg(pRExC_state, 1, &flags,depth+1);
10133 if (ret == NULL) {
10134 if (flags & TRYAGAIN) {
10135 if (RExC_parse == RExC_end) {
10136 /* Make parent create an empty node if needed. */
10137 *flagp |= TRYAGAIN;
10138 return(NULL);
10139 }
10140 goto tryagain;
10141 }
10142 return(NULL);
10143 }
10144 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10145 break;
10146 case '|':
10147 case ')':
10148 if (flags & TRYAGAIN) {
10149 *flagp |= TRYAGAIN;
10150 return NULL;
10151 }
10152 vFAIL("Internal urp");
10153 /* Supposed to be caught earlier. */
10154 break;
10155 case '?':
10156 case '+':
10157 case '*':
10158 RExC_parse++;
10159 vFAIL("Quantifier follows nothing");
10160 break;
10161 case '\\':
10162 /* Special Escapes
10163
10164 This switch handles escape sequences that resolve to some kind
10165 of special regop and not to literal text. Escape sequnces that
10166 resolve to literal text are handled below in the switch marked
10167 "Literal Escapes".
10168
10169 Every entry in this switch *must* have a corresponding entry
10170 in the literal escape switch. However, the opposite is not
10171 required, as the default for this switch is to jump to the
10172 literal text handling code.
10173 */
10174 switch ((U8)*++RExC_parse) {
10175 /* Special Escapes */
10176 case 'A':
10177 RExC_seen_zerolen++;
10178 ret = reg_node(pRExC_state, SBOL);
10179 *flagp |= SIMPLE;
10180 goto finish_meta_pat;
10181 case 'G':
10182 ret = reg_node(pRExC_state, GPOS);
10183 RExC_seen |= REG_SEEN_GPOS;
10184 *flagp |= SIMPLE;
10185 goto finish_meta_pat;
10186 case 'K':
10187 RExC_seen_zerolen++;
10188 ret = reg_node(pRExC_state, KEEPS);
10189 *flagp |= SIMPLE;
10190 /* XXX:dmq : disabling in-place substitution seems to
10191 * be necessary here to avoid cases of memory corruption, as
10192 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10193 */
10194 RExC_seen |= REG_SEEN_LOOKBEHIND;
10195 goto finish_meta_pat;
10196 case 'Z':
10197 ret = reg_node(pRExC_state, SEOL);
10198 *flagp |= SIMPLE;
10199 RExC_seen_zerolen++; /* Do not optimize RE away */
10200 goto finish_meta_pat;
10201 case 'z':
10202 ret = reg_node(pRExC_state, EOS);
10203 *flagp |= SIMPLE;
10204 RExC_seen_zerolen++; /* Do not optimize RE away */
10205 goto finish_meta_pat;
10206 case 'C':
10207 ret = reg_node(pRExC_state, CANY);
10208 RExC_seen |= REG_SEEN_CANY;
10209 *flagp |= HASWIDTH|SIMPLE;
10210 goto finish_meta_pat;
10211 case 'X':
10212 ret = reg_node(pRExC_state, CLUMP);
10213 *flagp |= HASWIDTH;
10214 goto finish_meta_pat;
10215 case 'w':
10216 op = ALNUM + get_regex_charset(RExC_flags);
10217 if (op > ALNUMA) { /* /aa is same as /a */
10218 op = ALNUMA;
10219 }
10220 ret = reg_node(pRExC_state, op);
10221 *flagp |= HASWIDTH|SIMPLE;
10222 goto finish_meta_pat;
10223 case 'W':
10224 op = NALNUM + get_regex_charset(RExC_flags);
10225 if (op > NALNUMA) { /* /aa is same as /a */
10226 op = NALNUMA;
10227 }
10228 ret = reg_node(pRExC_state, op);
10229 *flagp |= HASWIDTH|SIMPLE;
10230 goto finish_meta_pat;
10231 case 'b':
10232 RExC_seen_zerolen++;
10233 RExC_seen |= REG_SEEN_LOOKBEHIND;
10234 op = BOUND + get_regex_charset(RExC_flags);
10235 if (op > BOUNDA) { /* /aa is same as /a */
10236 op = BOUNDA;
10237 }
10238 ret = reg_node(pRExC_state, op);
10239 FLAGS(ret) = get_regex_charset(RExC_flags);
10240 *flagp |= SIMPLE;
10241 goto finish_meta_pat;
10242 case 'B':
10243 RExC_seen_zerolen++;
10244 RExC_seen |= REG_SEEN_LOOKBEHIND;
10245 op = NBOUND + get_regex_charset(RExC_flags);
10246 if (op > NBOUNDA) { /* /aa is same as /a */
10247 op = NBOUNDA;
10248 }
10249 ret = reg_node(pRExC_state, op);
10250 FLAGS(ret) = get_regex_charset(RExC_flags);
10251 *flagp |= SIMPLE;
10252 goto finish_meta_pat;
10253 case 's':
10254 op = SPACE + get_regex_charset(RExC_flags);
10255 if (op > SPACEA) { /* /aa is same as /a */
10256 op = SPACEA;
10257 }
10258 ret = reg_node(pRExC_state, op);
10259 *flagp |= HASWIDTH|SIMPLE;
10260 goto finish_meta_pat;
10261 case 'S':
10262 op = NSPACE + get_regex_charset(RExC_flags);
10263 if (op > NSPACEA) { /* /aa is same as /a */
10264 op = NSPACEA;
10265 }
10266 ret = reg_node(pRExC_state, op);
10267 *flagp |= HASWIDTH|SIMPLE;
10268 goto finish_meta_pat;
10269 case 'D':
10270 op = NDIGIT;
10271 goto join_D_and_d;
10272 case 'd':
10273 op = DIGIT;
10274 join_D_and_d:
10275 {
10276 U8 offset = get_regex_charset(RExC_flags);
10277 if (offset == REGEX_UNICODE_CHARSET) {
10278 offset = REGEX_DEPENDS_CHARSET;
10279 }
10280 else if (offset == REGEX_ASCII_MORE_RESTRICTED_CHARSET) {
10281 offset = REGEX_ASCII_RESTRICTED_CHARSET;
10282 }
10283 op += offset;
10284 }
10285 ret = reg_node(pRExC_state, op);
10286 *flagp |= HASWIDTH|SIMPLE;
10287 goto finish_meta_pat;
10288 case 'R':
10289 ret = reg_node(pRExC_state, LNBREAK);
10290 *flagp |= HASWIDTH|SIMPLE;
10291 goto finish_meta_pat;
10292 case 'h':
10293 ret = reg_node(pRExC_state, HORIZWS);
10294 *flagp |= HASWIDTH|SIMPLE;
10295 goto finish_meta_pat;
10296 case 'H':
10297 ret = reg_node(pRExC_state, NHORIZWS);
10298 *flagp |= HASWIDTH|SIMPLE;
10299 goto finish_meta_pat;
10300 case 'v':
10301 ret = reg_node(pRExC_state, VERTWS);
10302 *flagp |= HASWIDTH|SIMPLE;
10303 goto finish_meta_pat;
10304 case 'V':
10305 ret = reg_node(pRExC_state, NVERTWS);
10306 *flagp |= HASWIDTH|SIMPLE;
10307 finish_meta_pat:
10308 nextchar(pRExC_state);
10309 Set_Node_Length(ret, 2); /* MJD */
10310 break;
10311 case 'p':
10312 case 'P':
10313 {
10314 char* const oldregxend = RExC_end;
10315#ifdef DEBUGGING
10316 char* parse_start = RExC_parse - 2;
10317#endif
10318
10319 if (RExC_parse[1] == '{') {
10320 /* a lovely hack--pretend we saw [\pX] instead */
10321 RExC_end = strchr(RExC_parse, '}');
10322 if (!RExC_end) {
10323 const U8 c = (U8)*RExC_parse;
10324 RExC_parse += 2;
10325 RExC_end = oldregxend;
10326 vFAIL2("Missing right brace on \\%c{}", c);
10327 }
10328 RExC_end++;
10329 }
10330 else {
10331 RExC_end = RExC_parse + 2;
10332 if (RExC_end > oldregxend)
10333 RExC_end = oldregxend;
10334 }
10335 RExC_parse--;
10336
10337 ret = regclass(pRExC_state, flagp,depth+1);
10338
10339 RExC_end = oldregxend;
10340 RExC_parse--;
10341
10342 Set_Node_Offset(ret, parse_start + 2);
10343 Set_Node_Cur_Length(ret);
10344 nextchar(pRExC_state);
10345 }
10346 break;
10347 case 'N':
10348 /* Handle \N and \N{NAME} with multiple code points here and not
10349 * below because it can be multicharacter. join_exact() will join
10350 * them up later on. Also this makes sure that things like
10351 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10352 * The options to the grok function call causes it to fail if the
10353 * sequence is just a single code point. We then go treat it as
10354 * just another character in the current EXACT node, and hence it
10355 * gets uniform treatment with all the other characters. The
10356 * special treatment for quantifiers is not needed for such single
10357 * character sequences */
10358 ++RExC_parse;
10359 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE)) {
10360 RExC_parse--;
10361 goto defchar;
10362 }
10363 break;
10364 case 'k': /* Handle \k<NAME> and \k'NAME' */
10365 parse_named_seq:
10366 {
10367 char ch= RExC_parse[1];
10368 if (ch != '<' && ch != '\'' && ch != '{') {
10369 RExC_parse++;
10370 vFAIL2("Sequence %.2s... not terminated",parse_start);
10371 } else {
10372 /* this pretty much dupes the code for (?P=...) in reg(), if
10373 you change this make sure you change that */
10374 char* name_start = (RExC_parse += 2);
10375 U32 num = 0;
10376 SV *sv_dat = reg_scan_name(pRExC_state,
10377 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10378 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10379 if (RExC_parse == name_start || *RExC_parse != ch)
10380 vFAIL2("Sequence %.3s... not terminated",parse_start);
10381
10382 if (!SIZE_ONLY) {
10383 num = add_data( pRExC_state, 1, "S" );
10384 RExC_rxi->data->data[num]=(void*)sv_dat;
10385 SvREFCNT_inc_simple_void(sv_dat);
10386 }
10387
10388 RExC_sawback = 1;
10389 ret = reganode(pRExC_state,
10390 ((! FOLD)
10391 ? NREF
10392 : (ASCII_FOLD_RESTRICTED)
10393 ? NREFFA
10394 : (AT_LEAST_UNI_SEMANTICS)
10395 ? NREFFU
10396 : (LOC)
10397 ? NREFFL
10398 : NREFF),
10399 num);
10400 *flagp |= HASWIDTH;
10401
10402 /* override incorrect value set in reganode MJD */
10403 Set_Node_Offset(ret, parse_start+1);
10404 Set_Node_Cur_Length(ret); /* MJD */
10405 nextchar(pRExC_state);
10406
10407 }
10408 break;
10409 }
10410 case 'g':
10411 case '1': case '2': case '3': case '4':
10412 case '5': case '6': case '7': case '8': case '9':
10413 {
10414 I32 num;
10415 bool isg = *RExC_parse == 'g';
10416 bool isrel = 0;
10417 bool hasbrace = 0;
10418 if (isg) {
10419 RExC_parse++;
10420 if (*RExC_parse == '{') {
10421 RExC_parse++;
10422 hasbrace = 1;
10423 }
10424 if (*RExC_parse == '-') {
10425 RExC_parse++;
10426 isrel = 1;
10427 }
10428 if (hasbrace && !isDIGIT(*RExC_parse)) {
10429 if (isrel) RExC_parse--;
10430 RExC_parse -= 2;
10431 goto parse_named_seq;
10432 } }
10433 num = atoi(RExC_parse);
10434 if (isg && num == 0)
10435 vFAIL("Reference to invalid group 0");
10436 if (isrel) {
10437 num = RExC_npar - num;
10438 if (num < 1)
10439 vFAIL("Reference to nonexistent or unclosed group");
10440 }
10441 if (!isg && num > 9 && num >= RExC_npar)
10442 /* Probably a character specified in octal, e.g. \35 */
10443 goto defchar;
10444 else {
10445 char * const parse_start = RExC_parse - 1; /* MJD */
10446 while (isDIGIT(*RExC_parse))
10447 RExC_parse++;
10448 if (parse_start == RExC_parse - 1)
10449 vFAIL("Unterminated \\g... pattern");
10450 if (hasbrace) {
10451 if (*RExC_parse != '}')
10452 vFAIL("Unterminated \\g{...} pattern");
10453 RExC_parse++;
10454 }
10455 if (!SIZE_ONLY) {
10456 if (num > (I32)RExC_rx->nparens)
10457 vFAIL("Reference to nonexistent group");
10458 }
10459 RExC_sawback = 1;
10460 ret = reganode(pRExC_state,
10461 ((! FOLD)
10462 ? REF
10463 : (ASCII_FOLD_RESTRICTED)
10464 ? REFFA
10465 : (AT_LEAST_UNI_SEMANTICS)
10466 ? REFFU
10467 : (LOC)
10468 ? REFFL
10469 : REFF),
10470 num);
10471 *flagp |= HASWIDTH;
10472
10473 /* override incorrect value set in reganode MJD */
10474 Set_Node_Offset(ret, parse_start+1);
10475 Set_Node_Cur_Length(ret); /* MJD */
10476 RExC_parse--;
10477 nextchar(pRExC_state);
10478 }
10479 }
10480 break;
10481 case '\0':
10482 if (RExC_parse >= RExC_end)
10483 FAIL("Trailing \\");
10484 /* FALL THROUGH */
10485 default:
10486 /* Do not generate "unrecognized" warnings here, we fall
10487 back into the quick-grab loop below */
10488 parse_start--;
10489 goto defchar;
10490 }
10491 break;
10492
10493 case '#':
10494 if (RExC_flags & RXf_PMf_EXTENDED) {
10495 if ( reg_skipcomment( pRExC_state ) )
10496 goto tryagain;
10497 }
10498 /* FALL THROUGH */
10499
10500 default:
10501
10502 parse_start = RExC_parse - 1;
10503
10504 RExC_parse++;
10505
10506 defchar: {
10507 STRLEN len = 0;
10508 UV ender;
10509 char *p;
10510 char *s;
10511#define MAX_NODE_STRING_SIZE 127
10512 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10513 char *s0;
10514 U8 upper_parse = MAX_NODE_STRING_SIZE;
10515 STRLEN foldlen;
10516 U8 node_type;
10517 bool next_is_quantifier;
10518 char * oldp = NULL;
10519
10520 ender = 0;
10521 node_type = compute_EXACTish(pRExC_state);
10522 ret = reg_node(pRExC_state, node_type);
10523
10524 /* In pass1, folded, we use a temporary buffer instead of the
10525 * actual node, as the node doesn't exist yet */
10526 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10527
10528 s0 = s;
10529
10530 reparse:
10531
10532 /* XXX The node can hold up to 255 bytes, yet this only goes to
10533 * 127. I (khw) do not know why. Keeping it somewhat less than
10534 * 255 allows us to not have to worry about overflow due to
10535 * converting to utf8 and fold expansion, but that value is
10536 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10537 * split up by this limit into a single one using the real max of
10538 * 255. Even at 127, this breaks under rare circumstances. If
10539 * folding, we do not want to split a node at a character that is a
10540 * non-final in a multi-char fold, as an input string could just
10541 * happen to want to match across the node boundary. The join
10542 * would solve that problem if the join actually happens. But a
10543 * series of more than two nodes in a row each of 127 would cause
10544 * the first join to succeed to get to 254, but then there wouldn't
10545 * be room for the next one, which could at be one of those split
10546 * multi-char folds. I don't know of any fool-proof solution. One
10547 * could back off to end with only a code point that isn't such a
10548 * non-final, but it is possible for there not to be any in the
10549 * entire node. */
10550 for (p = RExC_parse - 1;
10551 len < upper_parse && p < RExC_end;
10552 len++)
10553 {
10554 oldp = p;
10555
10556 if (RExC_flags & RXf_PMf_EXTENDED)
10557 p = regwhite( pRExC_state, p );
10558 switch ((U8)*p) {
10559 case '^':
10560 case '$':
10561 case '.':
10562 case '[':
10563 case '(':
10564 case ')':
10565 case '|':
10566 goto loopdone;
10567 case '\\':
10568 /* Literal Escapes Switch
10569
10570 This switch is meant to handle escape sequences that
10571 resolve to a literal character.
10572
10573 Every escape sequence that represents something
10574 else, like an assertion or a char class, is handled
10575 in the switch marked 'Special Escapes' above in this
10576 routine, but also has an entry here as anything that
10577 isn't explicitly mentioned here will be treated as
10578 an unescaped equivalent literal.
10579 */
10580
10581 switch ((U8)*++p) {
10582 /* These are all the special escapes. */
10583 case 'A': /* Start assertion */
10584 case 'b': case 'B': /* Word-boundary assertion*/
10585 case 'C': /* Single char !DANGEROUS! */
10586 case 'd': case 'D': /* digit class */
10587 case 'g': case 'G': /* generic-backref, pos assertion */
10588 case 'h': case 'H': /* HORIZWS */
10589 case 'k': case 'K': /* named backref, keep marker */
10590 case 'p': case 'P': /* Unicode property */
10591 case 'R': /* LNBREAK */
10592 case 's': case 'S': /* space class */
10593 case 'v': case 'V': /* VERTWS */
10594 case 'w': case 'W': /* word class */
10595 case 'X': /* eXtended Unicode "combining character sequence" */
10596 case 'z': case 'Z': /* End of line/string assertion */
10597 --p;
10598 goto loopdone;
10599
10600 /* Anything after here is an escape that resolves to a
10601 literal. (Except digits, which may or may not)
10602 */
10603 case 'n':
10604 ender = '\n';
10605 p++;
10606 break;
10607 case 'N': /* Handle a single-code point named character. */
10608 /* The options cause it to fail if a multiple code
10609 * point sequence. Handle those in the switch() above
10610 * */
10611 RExC_parse = p + 1;
10612 if (! grok_bslash_N(pRExC_state, NULL, &ender,
10613 flagp, depth, FALSE))
10614 {
10615 RExC_parse = p = oldp;
10616 goto loopdone;
10617 }
10618 p = RExC_parse;
10619 if (ender > 0xff) {
10620 REQUIRE_UTF8;
10621 }
10622 break;
10623 case 'r':
10624 ender = '\r';
10625 p++;
10626 break;
10627 case 't':
10628 ender = '\t';
10629 p++;
10630 break;
10631 case 'f':
10632 ender = '\f';
10633 p++;
10634 break;
10635 case 'e':
10636 ender = ASCII_TO_NATIVE('\033');
10637 p++;
10638 break;
10639 case 'a':
10640 ender = ASCII_TO_NATIVE('\007');
10641 p++;
10642 break;
10643 case 'o':
10644 {
10645 STRLEN brace_len = len;
10646 UV result;
10647 const char* error_msg;
10648
10649 bool valid = grok_bslash_o(p,
10650 &result,
10651 &brace_len,
10652 &error_msg,
10653 1);
10654 p += brace_len;
10655 if (! valid) {
10656 RExC_parse = p; /* going to die anyway; point
10657 to exact spot of failure */
10658 vFAIL(error_msg);
10659 }
10660 else
10661 {
10662 ender = result;
10663 }
10664 if (PL_encoding && ender < 0x100) {
10665 goto recode_encoding;
10666 }
10667 if (ender > 0xff) {
10668 REQUIRE_UTF8;
10669 }
10670 break;
10671 }
10672 case 'x':
10673 {
10674 STRLEN brace_len = len;
10675 UV result;
10676 const char* error_msg;
10677
10678 bool valid = grok_bslash_x(p,
10679 &result,
10680 &brace_len,
10681 &error_msg,
10682 1);
10683 p += brace_len;
10684 if (! valid) {
10685 RExC_parse = p; /* going to die anyway; point
10686 to exact spot of failure */
10687 vFAIL(error_msg);
10688 }
10689 else {
10690 ender = result;
10691 }
10692 if (PL_encoding && ender < 0x100) {
10693 goto recode_encoding;
10694 }
10695 if (ender > 0xff) {
10696 REQUIRE_UTF8;
10697 }
10698 break;
10699 }
10700 case 'c':
10701 p++;
10702 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10703 break;
10704 case '0': case '1': case '2': case '3':case '4':
10705 case '5': case '6': case '7':
10706 if (*p == '0' ||
10707 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10708 {
10709 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10710 STRLEN numlen = 3;
10711 ender = grok_oct(p, &numlen, &flags, NULL);
10712 if (ender > 0xff) {
10713 REQUIRE_UTF8;
10714 }
10715 p += numlen;
10716 }
10717 else {
10718 --p;
10719 goto loopdone;
10720 }
10721 if (PL_encoding && ender < 0x100)
10722 goto recode_encoding;
10723 break;
10724 recode_encoding:
10725 if (! RExC_override_recoding) {
10726 SV* enc = PL_encoding;
10727 ender = reg_recode((const char)(U8)ender, &enc);
10728 if (!enc && SIZE_ONLY)
10729 ckWARNreg(p, "Invalid escape in the specified encoding");
10730 REQUIRE_UTF8;
10731 }
10732 break;
10733 case '\0':
10734 if (p >= RExC_end)
10735 FAIL("Trailing \\");
10736 /* FALL THROUGH */
10737 default:
10738 if (!SIZE_ONLY&& isALNUMC(*p)) {
10739 ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p);
10740 }
10741 goto normal_default;
10742 }
10743 break;
10744 case '{':
10745 /* Currently we don't warn when the lbrace is at the start
10746 * of a construct. This catches it in the middle of a
10747 * literal string, or when its the first thing after
10748 * something like "\b" */
10749 if (! SIZE_ONLY
10750 && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
10751 {
10752 ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
10753 }
10754 /*FALLTHROUGH*/
10755 default:
10756 normal_default:
10757 if (UTF8_IS_START(*p) && UTF) {
10758 STRLEN numlen;
10759 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
10760 &numlen, UTF8_ALLOW_DEFAULT);
10761 p += numlen;
10762 }
10763 else
10764 ender = (U8) *p++;
10765 break;
10766 } /* End of switch on the literal */
10767
10768 /* Here, have looked at the literal character and <ender>
10769 * contains its ordinal, <p> points to the character after it
10770 */
10771
10772 if ( RExC_flags & RXf_PMf_EXTENDED)
10773 p = regwhite( pRExC_state, p );
10774
10775 /* If the next thing is a quantifier, it applies to this
10776 * character only, which means that this character has to be in
10777 * its own node and can't just be appended to the string in an
10778 * existing node, so if there are already other characters in
10779 * the node, close the node with just them, and set up to do
10780 * this character again next time through, when it will be the
10781 * only thing in its new node */
10782 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
10783 {
10784 p = oldp;
10785 goto loopdone;
10786 }
10787
10788 if (FOLD) {
10789 if (UTF
10790 /* See comments for join_exact() as to why we fold
10791 * this non-UTF at compile time */
10792 || (node_type == EXACTFU
10793 && ender == LATIN_SMALL_LETTER_SHARP_S))
10794 {
10795
10796
10797 /* Prime the casefolded buffer. Locale rules, which
10798 * apply only to code points < 256, aren't known until
10799 * execution, so for them, just output the original
10800 * character using utf8. If we start to fold non-UTF
10801 * patterns, be sure to update join_exact() */
10802 if (LOC && ender < 256) {
10803 if (UNI_IS_INVARIANT(ender)) {
10804 *s = (U8) ender;
10805 foldlen = 1;
10806 } else {
10807 *s = UTF8_TWO_BYTE_HI(ender);
10808 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
10809 foldlen = 2;
10810 }
10811 }
10812 else {
10813 ender = _to_uni_fold_flags(ender, (U8 *) s, &foldlen,
10814 FOLD_FLAGS_FULL
10815 | ((LOC) ? FOLD_FLAGS_LOCALE
10816 : (ASCII_FOLD_RESTRICTED)
10817 ? FOLD_FLAGS_NOMIX_ASCII
10818 : 0)
10819 );
10820 }
10821 s += foldlen;
10822
10823 /* The loop increments <len> each time, as all but this
10824 * path (and the one just below for UTF) through it add
10825 * a single byte to the EXACTish node. But this one
10826 * has changed len to be the correct final value, so
10827 * subtract one to cancel out the increment that
10828 * follows */
10829 len += foldlen - 1;
10830 }
10831 else {
10832 *(s++) = ender;
10833 }
10834 }
10835 else if (UTF) {
10836 const STRLEN unilen = reguni(pRExC_state, ender, s);
10837 if (unilen > 0) {
10838 s += unilen;
10839 len += unilen;
10840 }
10841
10842 /* See comment just above for - 1 */
10843 len--;
10844 }
10845 else {
10846 REGC((char)ender, s++);
10847 }
10848
10849 if (next_is_quantifier) {
10850
10851 /* Here, the next input is a quantifier, and to get here,
10852 * the current character is the only one in the node.
10853 * Also, here <len> doesn't include the final byte for this
10854 * character */
10855 len++;
10856 goto loopdone;
10857 }
10858
10859 } /* End of loop through literal characters */
10860
10861 /* Here we have either exhausted the input or ran out of room in
10862 * the node. (If we encountered a character that can't be in the
10863 * node, transfer is made directly to <loopdone>, and so we
10864 * wouldn't have fallen off the end of the loop.) In the latter
10865 * case, we artificially have to split the node into two, because
10866 * we just don't have enough space to hold everything. This
10867 * creates a problem if the final character participates in a
10868 * multi-character fold in the non-final position, as a match that
10869 * should have occurred won't, due to the way nodes are matched,
10870 * and our artificial boundary. So back off until we find a non-
10871 * problematic character -- one that isn't at the beginning or
10872 * middle of such a fold. (Either it doesn't participate in any
10873 * folds, or appears only in the final position of all the folds it
10874 * does participate in.) A better solution with far fewer false
10875 * positives, and that would fill the nodes more completely, would
10876 * be to actually have available all the multi-character folds to
10877 * test against, and to back-off only far enough to be sure that
10878 * this node isn't ending with a partial one. <upper_parse> is set
10879 * further below (if we need to reparse the node) to include just
10880 * up through that final non-problematic character that this code
10881 * identifies, so when it is set to less than the full node, we can
10882 * skip the rest of this */
10883 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
10884
10885 const STRLEN full_len = len;
10886
10887 assert(len >= MAX_NODE_STRING_SIZE);
10888
10889 /* Here, <s> points to the final byte of the final character.
10890 * Look backwards through the string until find a non-
10891 * problematic character */
10892
10893 if (! UTF) {
10894
10895 /* These two have no multi-char folds to non-UTF characters
10896 */
10897 if (ASCII_FOLD_RESTRICTED || LOC) {
10898 goto loopdone;
10899 }
10900
10901 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
10902 len = s - s0 + 1;
10903 }
10904 else {
10905 if (! PL_NonL1NonFinalFold) {
10906 PL_NonL1NonFinalFold = _new_invlist_C_array(
10907 NonL1_Perl_Non_Final_Folds_invlist);
10908 }
10909
10910 /* Point to the first byte of the final character */
10911 s = (char *) utf8_hop((U8 *) s, -1);
10912
10913 while (s >= s0) { /* Search backwards until find
10914 non-problematic char */
10915 if (UTF8_IS_INVARIANT(*s)) {
10916
10917 /* There are no ascii characters that participate
10918 * in multi-char folds under /aa. In EBCDIC, the
10919 * non-ascii invariants are all control characters,
10920 * so don't ever participate in any folds. */
10921 if (ASCII_FOLD_RESTRICTED
10922 || ! IS_NON_FINAL_FOLD(*s))
10923 {
10924 break;
10925 }
10926 }
10927 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
10928
10929 /* No Latin1 characters participate in multi-char
10930 * folds under /l */
10931 if (LOC
10932 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
10933 *s, *(s+1))))
10934 {
10935 break;
10936 }
10937 }
10938 else if (! _invlist_contains_cp(
10939 PL_NonL1NonFinalFold,
10940 valid_utf8_to_uvchr((U8 *) s, NULL)))
10941 {
10942 break;
10943 }
10944
10945 /* Here, the current character is problematic in that
10946 * it does occur in the non-final position of some
10947 * fold, so try the character before it, but have to
10948 * special case the very first byte in the string, so
10949 * we don't read outside the string */
10950 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
10951 } /* End of loop backwards through the string */
10952
10953 /* If there were only problematic characters in the string,
10954 * <s> will point to before s0, in which case the length
10955 * should be 0, otherwise include the length of the
10956 * non-problematic character just found */
10957 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
10958 }
10959
10960 /* Here, have found the final character, if any, that is
10961 * non-problematic as far as ending the node without splitting
10962 * it across a potential multi-char fold. <len> contains the
10963 * number of bytes in the node up-to and including that
10964 * character, or is 0 if there is no such character, meaning
10965 * the whole node contains only problematic characters. In
10966 * this case, give up and just take the node as-is. We can't
10967 * do any better */
10968 if (len == 0) {
10969 len = full_len;
10970 } else {
10971
10972 /* Here, the node does contain some characters that aren't
10973 * problematic. If one such is the final character in the
10974 * node, we are done */
10975 if (len == full_len) {
10976 goto loopdone;
10977 }
10978 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
10979
10980 /* If the final character is problematic, but the
10981 * penultimate is not, back-off that last character to
10982 * later start a new node with it */
10983 p = oldp;
10984 goto loopdone;
10985 }
10986
10987 /* Here, the final non-problematic character is earlier
10988 * in the input than the penultimate character. What we do
10989 * is reparse from the beginning, going up only as far as
10990 * this final ok one, thus guaranteeing that the node ends
10991 * in an acceptable character. The reason we reparse is
10992 * that we know how far in the character is, but we don't
10993 * know how to correlate its position with the input parse.
10994 * An alternate implementation would be to build that
10995 * correlation as we go along during the original parse,
10996 * but that would entail extra work for every node, whereas
10997 * this code gets executed only when the string is too
10998 * large for the node, and the final two characters are
10999 * problematic, an infrequent occurrence. Yet another
11000 * possible strategy would be to save the tail of the
11001 * string, and the next time regatom is called, initialize
11002 * with that. The problem with this is that unless you
11003 * back off one more character, you won't be guaranteed
11004 * regatom will get called again, unless regbranch,
11005 * regpiece ... are also changed. If you do back off that
11006 * extra character, so that there is input guaranteed to
11007 * force calling regatom, you can't handle the case where
11008 * just the first character in the node is acceptable. I
11009 * (khw) decided to try this method which doesn't have that
11010 * pitfall; if performance issues are found, we can do a
11011 * combination of the current approach plus that one */
11012 upper_parse = len;
11013 len = 0;
11014 s = s0;
11015 goto reparse;
11016 }
11017 } /* End of verifying node ends with an appropriate char */
11018
11019 loopdone: /* Jumped to when encounters something that shouldn't be in
11020 the node */
11021
11022 /* I (khw) don't know if you can get here with zero length, but the
11023 * old code handled this situation by creating a zero-length EXACT
11024 * node. Might as well be NOTHING instead */
11025 if (len == 0) {
11026 OP(ret) = NOTHING;
11027 }
11028 else{
11029 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11030 }
11031
11032 RExC_parse = p - 1;
11033 Set_Node_Cur_Length(ret); /* MJD */
11034 nextchar(pRExC_state);
11035 {
11036 /* len is STRLEN which is unsigned, need to copy to signed */
11037 IV iv = len;
11038 if (iv < 0)
11039 vFAIL("Internal disaster");
11040 }
11041
11042 } /* End of label 'defchar:' */
11043 break;
11044 } /* End of giant switch on input character */
11045
11046 return(ret);
11047}
11048
11049STATIC char *
11050S_regwhite( RExC_state_t *pRExC_state, char *p )
11051{
11052 const char *e = RExC_end;
11053
11054 PERL_ARGS_ASSERT_REGWHITE;
11055
11056 while (p < e) {
11057 if (isSPACE(*p))
11058 ++p;
11059 else if (*p == '#') {
11060 bool ended = 0;
11061 do {
11062 if (*p++ == '\n') {
11063 ended = 1;
11064 break;
11065 }
11066 } while (p < e);
11067 if (!ended)
11068 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11069 }
11070 else
11071 break;
11072 }
11073 return p;
11074}
11075
11076/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11077 Character classes ([:foo:]) can also be negated ([:^foo:]).
11078 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11079 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11080 but trigger failures because they are currently unimplemented. */
11081
11082#define POSIXCC_DONE(c) ((c) == ':')
11083#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11084#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11085
11086STATIC I32
11087S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
11088{
11089 dVAR;
11090 I32 namedclass = OOB_NAMEDCLASS;
11091
11092 PERL_ARGS_ASSERT_REGPPOSIXCC;
11093
11094 if (value == '[' && RExC_parse + 1 < RExC_end &&
11095 /* I smell either [: or [= or [. -- POSIX has been here, right? */
11096 POSIXCC(UCHARAT(RExC_parse))) {
11097 const char c = UCHARAT(RExC_parse);
11098 char* const s = RExC_parse++;
11099
11100 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11101 RExC_parse++;
11102 if (RExC_parse == RExC_end)
11103 /* Grandfather lone [:, [=, [. */
11104 RExC_parse = s;
11105 else {
11106 const char* const t = RExC_parse++; /* skip over the c */
11107 assert(*t == c);
11108
11109 if (UCHARAT(RExC_parse) == ']') {
11110 const char *posixcc = s + 1;
11111 RExC_parse++; /* skip over the ending ] */
11112
11113 if (*s == ':') {
11114 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11115 const I32 skip = t - posixcc;
11116
11117 /* Initially switch on the length of the name. */
11118 switch (skip) {
11119 case 4:
11120 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
11121 namedclass = ANYOF_ALNUM;
11122 break;
11123 case 5:
11124 /* Names all of length 5. */
11125 /* alnum alpha ascii blank cntrl digit graph lower
11126 print punct space upper */
11127 /* Offset 4 gives the best switch position. */
11128 switch (posixcc[4]) {
11129 case 'a':
11130 if (memEQ(posixcc, "alph", 4)) /* alpha */
11131 namedclass = ANYOF_ALPHA;
11132 break;
11133 case 'e':
11134 if (memEQ(posixcc, "spac", 4)) /* space */
11135 namedclass = ANYOF_PSXSPC;
11136 break;
11137 case 'h':
11138 if (memEQ(posixcc, "grap", 4)) /* graph */
11139 namedclass = ANYOF_GRAPH;
11140 break;
11141 case 'i':
11142 if (memEQ(posixcc, "asci", 4)) /* ascii */
11143 namedclass = ANYOF_ASCII;
11144 break;
11145 case 'k':
11146 if (memEQ(posixcc, "blan", 4)) /* blank */
11147 namedclass = ANYOF_BLANK;
11148 break;
11149 case 'l':
11150 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11151 namedclass = ANYOF_CNTRL;
11152 break;
11153 case 'm':
11154 if (memEQ(posixcc, "alnu", 4)) /* alnum */
11155 namedclass = ANYOF_ALNUMC;
11156 break;
11157 case 'r':
11158 if (memEQ(posixcc, "lowe", 4)) /* lower */
11159 namedclass = ANYOF_LOWER;
11160 else if (memEQ(posixcc, "uppe", 4)) /* upper */
11161 namedclass = ANYOF_UPPER;
11162 break;
11163 case 't':
11164 if (memEQ(posixcc, "digi", 4)) /* digit */
11165 namedclass = ANYOF_DIGIT;
11166 else if (memEQ(posixcc, "prin", 4)) /* print */
11167 namedclass = ANYOF_PRINT;
11168 else if (memEQ(posixcc, "punc", 4)) /* punct */
11169 namedclass = ANYOF_PUNCT;
11170 break;
11171 }
11172 break;
11173 case 6:
11174 if (memEQ(posixcc, "xdigit", 6))
11175 namedclass = ANYOF_XDIGIT;
11176 break;
11177 }
11178
11179 if (namedclass == OOB_NAMEDCLASS)
11180 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11181 t - s - 1, s + 1);
11182
11183 /* The #defines are structured so each complement is +1 to
11184 * the normal one */
11185 if (complement) {
11186 namedclass++;
11187 }
11188 assert (posixcc[skip] == ':');
11189 assert (posixcc[skip+1] == ']');
11190 } else if (!SIZE_ONLY) {
11191 /* [[=foo=]] and [[.foo.]] are still future. */
11192
11193 /* adjust RExC_parse so the warning shows after
11194 the class closes */
11195 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11196 RExC_parse++;
11197 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11198 }
11199 } else {
11200 /* Maternal grandfather:
11201 * "[:" ending in ":" but not in ":]" */
11202 RExC_parse = s;
11203 }
11204 }
11205 }
11206
11207 return namedclass;
11208}
11209
11210STATIC void
11211S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
11212{
11213 dVAR;
11214
11215 PERL_ARGS_ASSERT_CHECKPOSIXCC;
11216
11217 if (POSIXCC(UCHARAT(RExC_parse))) {
11218 const char *s = RExC_parse;
11219 const char c = *s++;
11220
11221 while (isALNUM(*s))
11222 s++;
11223 if (*s && c == *s && s[1] == ']') {
11224 ckWARN3reg(s+2,
11225 "POSIX syntax [%c %c] belongs inside character classes",
11226 c, c);
11227
11228 /* [[=foo=]] and [[.foo.]] are still future. */
11229 if (POSIXCC_NOTYET(c)) {
11230 /* adjust RExC_parse so the error shows after
11231 the class closes */
11232 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
11233 NOOP;
11234 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11235 }
11236 }
11237 }
11238}
11239
11240/* Generate the code to add a full posix character <class> to the bracketed
11241 * character class given by <node>. (<node> is needed only under locale rules)
11242 * destlist is the inversion list for non-locale rules that this class is
11243 * to be added to
11244 * sourcelist is the ASCII-range inversion list to add under /a rules
11245 * Xsourcelist is the full Unicode range list to use otherwise. */
11246#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
11247 if (LOC) { \
11248 SV* scratch_list = NULL; \
11249 \
11250 /* Set this class in the node for runtime matching */ \
11251 ANYOF_CLASS_SET(node, class); \
11252 \
11253 /* For above Latin1 code points, we use the full Unicode range */ \
11254 _invlist_intersection(PL_AboveLatin1, \
11255 Xsourcelist, \
11256 &scratch_list); \
11257 /* And set the output to it, adding instead if there already is an \
11258 * output. Checking if <destlist> is NULL first saves an extra \
11259 * clone. Its reference count will be decremented at the next \
11260 * union, etc, or if this is the only instance, at the end of the \
11261 * routine */ \
11262 if (! destlist) { \
11263 destlist = scratch_list; \
11264 } \
11265 else { \
11266 _invlist_union(destlist, scratch_list, &destlist); \
11267 SvREFCNT_dec(scratch_list); \
11268 } \
11269 } \
11270 else { \
11271 /* For non-locale, just add it to any existing list */ \
11272 _invlist_union(destlist, \
11273 (AT_LEAST_ASCII_RESTRICTED) \
11274 ? sourcelist \
11275 : Xsourcelist, \
11276 &destlist); \
11277 }
11278
11279/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
11280 */
11281#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
11282 if (LOC) { \
11283 SV* scratch_list = NULL; \
11284 ANYOF_CLASS_SET(node, class); \
11285 _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
11286 if (! destlist) { \
11287 destlist = scratch_list; \
11288 } \
11289 else { \
11290 _invlist_union(destlist, scratch_list, &destlist); \
11291 SvREFCNT_dec(scratch_list); \
11292 } \
11293 } \
11294 else { \
11295 _invlist_union_complement_2nd(destlist, \
11296 (AT_LEAST_ASCII_RESTRICTED) \
11297 ? sourcelist \
11298 : Xsourcelist, \
11299 &destlist); \
11300 /* Under /d, everything in the upper half of the Latin1 range \
11301 * matches this complement */ \
11302 if (DEPENDS_SEMANTICS) { \
11303 ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
11304 } \
11305 }
11306
11307/* Generate the code to add a posix character <class> to the bracketed
11308 * character class given by <node>. (<node> is needed only under locale rules)
11309 * destlist is the inversion list for non-locale rules that this class is
11310 * to be added to
11311 * sourcelist is the ASCII-range inversion list to add under /a rules
11312 * l1_sourcelist is the Latin1 range list to use otherwise.
11313 * Xpropertyname is the name to add to <run_time_list> of the property to
11314 * specify the code points above Latin1 that will have to be
11315 * determined at run-time
11316 * run_time_list is a SV* that contains text names of properties that are to
11317 * be computed at run time. This concatenates <Xpropertyname>
11318 * to it, appropriately
11319 * This is essentially DO_POSIX, but we know only the Latin1 values at compile
11320 * time */
11321#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
11322 l1_sourcelist, Xpropertyname, run_time_list) \
11323 /* First, resolve whether to use the ASCII-only list or the L1 \
11324 * list */ \
11325 DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \
11326 ((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\
11327 Xpropertyname, run_time_list)
11328
11329#define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \
11330 Xpropertyname, run_time_list) \
11331 /* If not /a matching, there are going to be code points we will have \
11332 * to defer to runtime to look-up */ \
11333 if (! AT_LEAST_ASCII_RESTRICTED) { \
11334 Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
11335 } \
11336 if (LOC) { \
11337 ANYOF_CLASS_SET(node, class); \
11338 } \
11339 else { \
11340 _invlist_union(destlist, sourcelist, &destlist); \
11341 }
11342
11343/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
11344 * this and DO_N_POSIX. Sets <matches_above_unicode> only if it can; unchanged
11345 * otherwise */
11346#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
11347 l1_sourcelist, Xpropertyname, run_time_list, matches_above_unicode) \
11348 if (AT_LEAST_ASCII_RESTRICTED) { \
11349 _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
11350 } \
11351 else { \
11352 Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
11353 matches_above_unicode = TRUE; \
11354 if (LOC) { \
11355 ANYOF_CLASS_SET(node, namedclass); \
11356 } \
11357 else { \
11358 SV* scratch_list = NULL; \
11359 _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
11360 if (! destlist) { \
11361 destlist = scratch_list; \
11362 } \
11363 else { \
11364 _invlist_union(destlist, scratch_list, &destlist); \
11365 SvREFCNT_dec(scratch_list); \
11366 } \
11367 if (DEPENDS_SEMANTICS) { \
11368 ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
11369 } \
11370 } \
11371 }
11372
11373STATIC void
11374S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
11375{
11376 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
11377 * alternate list, pointed to by 'alternate_ptr'. This is an array of
11378 * the multi-character folds of characters in the node */
11379 SV *sv;
11380
11381 PERL_ARGS_ASSERT_ADD_ALTERNATE;
11382
11383 if (! *alternate_ptr) {
11384 *alternate_ptr = newAV();
11385 }
11386 sv = newSVpvn_utf8((char*)string, len, TRUE);
11387 av_push(*alternate_ptr, sv);
11388 return;
11389}
11390
11391/* The names of properties whose definitions are not known at compile time are
11392 * stored in this SV, after a constant heading. So if the length has been
11393 * changed since initialization, then there is a run-time definition. */
11394#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
11395
11396/* This converts the named class defined in regcomp.h to its equivalent class
11397 * number defined in handy.h. */
11398#define namedclass_to_classnum(class) ((class) / 2)
11399
11400/*
11401 parse a class specification and produce either an ANYOF node that
11402 matches the pattern or perhaps will be optimized into an EXACTish node
11403 instead. The node contains a bit map for the first 256 characters, with the
11404 corresponding bit set if that character is in the list. For characters
11405 above 255, a range list is used */
11406
11407STATIC regnode *
11408S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
11409{
11410 dVAR;
11411 UV nextvalue;
11412 UV prevvalue = OOB_UNICODE;
11413 IV range = 0;
11414 UV value = 0;
11415 regnode *ret;
11416 STRLEN numlen;
11417 IV namedclass = OOB_NAMEDCLASS;
11418 char *rangebegin = NULL;
11419 bool need_class = 0;
11420 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
11421 SV *listsv = NULL;
11422 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
11423 than just initialized. */
11424 SV* properties = NULL; /* Code points that match \p{} \P{} */
11425 SV* posixes = NULL; /* Code points that match classes like, [:word:],
11426 extended beyond the Latin1 range */
11427 UV element_count = 0; /* Number of distinct elements in the class.
11428 Optimizations may be possible if this is tiny */
11429 UV n;
11430
11431 /* Unicode properties are stored in a swash; this holds the current one
11432 * being parsed. If this swash is the only above-latin1 component of the
11433 * character class, an optimization is to pass it directly on to the
11434 * execution engine. Otherwise, it is set to NULL to indicate that there
11435 * are other things in the class that have to be dealt with at execution
11436 * time */
11437 SV* swash = NULL; /* Code points that match \p{} \P{} */
11438
11439 /* Set if a component of this character class is user-defined; just passed
11440 * on to the engine */
11441 bool has_user_defined_property = FALSE;
11442
11443 /* inversion list of code points this node matches only when the target
11444 * string is in UTF-8. (Because is under /d) */
11445 SV* depends_list = NULL;
11446
11447 /* inversion list of code points this node matches. For much of the
11448 * function, it includes only those that match regardless of the utf8ness
11449 * of the target string */
11450 SV* cp_list = NULL;
11451
11452 /* List of multi-character folds that are matched by this node */
11453 AV* unicode_alternate = NULL;
11454#ifdef EBCDIC
11455 /* In a range, counts how many 0-2 of the ends of it came from literals,
11456 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */
11457 UV literal_endpoint = 0;
11458#endif
11459 bool invert = FALSE; /* Is this class to be complemented */
11460
11461 /* Is there any thing like \W or [:^digit:] that matches above the legal
11462 * Unicode range? */
11463 bool runtime_posix_matches_above_Unicode = FALSE;
11464
11465 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
11466 case we need to change the emitted regop to an EXACT. */
11467 const char * orig_parse = RExC_parse;
11468 const I32 orig_size = RExC_size;
11469 GET_RE_DEBUG_FLAGS_DECL;
11470
11471 PERL_ARGS_ASSERT_REGCLASS;
11472#ifndef DEBUGGING
11473 PERL_UNUSED_ARG(depth);
11474#endif
11475
11476 DEBUG_PARSE("clas");
11477
11478 /* Assume we are going to generate an ANYOF node. */
11479 ret = reganode(pRExC_state, ANYOF, 0);
11480
11481
11482 if (!SIZE_ONLY) {
11483 ANYOF_FLAGS(ret) = 0;
11484 }
11485
11486 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
11487 RExC_naughty++;
11488 RExC_parse++;
11489 invert = TRUE;
11490
11491 /* We have decided to not allow multi-char folds in inverted character
11492 * classes, due to the confusion that can happen, especially with
11493 * classes that are designed for a non-Unicode world: You have the
11494 * peculiar case that:
11495 "s s" =~ /^[^\xDF]+$/i => Y
11496 "ss" =~ /^[^\xDF]+$/i => N
11497 *
11498 * See [perl #89750] */
11499 allow_full_fold = FALSE;
11500 }
11501
11502 if (SIZE_ONLY) {
11503 RExC_size += ANYOF_SKIP;
11504 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
11505 }
11506 else {
11507 RExC_emit += ANYOF_SKIP;
11508 if (LOC) {
11509 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
11510 }
11511 listsv = newSVpvs("# comment\n");
11512 initial_listsv_len = SvCUR(listsv);
11513 }
11514
11515 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
11516
11517 if (!SIZE_ONLY && POSIXCC(nextvalue))
11518 checkposixcc(pRExC_state);
11519
11520 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
11521 if (UCHARAT(RExC_parse) == ']')
11522 goto charclassloop;
11523
11524parseit:
11525 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11526
11527 charclassloop:
11528
11529 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
11530
11531 if (!range) {
11532 rangebegin = RExC_parse;
11533 element_count++;
11534 }
11535 if (UTF) {
11536 value = utf8n_to_uvchr((U8*)RExC_parse,
11537 RExC_end - RExC_parse,
11538 &numlen, UTF8_ALLOW_DEFAULT);
11539 RExC_parse += numlen;
11540 }
11541 else
11542 value = UCHARAT(RExC_parse++);
11543
11544 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
11545 if (value == '[' && POSIXCC(nextvalue))
11546 namedclass = regpposixcc(pRExC_state, value);
11547 else if (value == '\\') {
11548 if (UTF) {
11549 value = utf8n_to_uvchr((U8*)RExC_parse,
11550 RExC_end - RExC_parse,
11551 &numlen, UTF8_ALLOW_DEFAULT);
11552 RExC_parse += numlen;
11553 }
11554 else
11555 value = UCHARAT(RExC_parse++);
11556 /* Some compilers cannot handle switching on 64-bit integer
11557 * values, therefore value cannot be an UV. Yes, this will
11558 * be a problem later if we want switch on Unicode.
11559 * A similar issue a little bit later when switching on
11560 * namedclass. --jhi */
11561 switch ((I32)value) {
11562 case 'w': namedclass = ANYOF_ALNUM; break;
11563 case 'W': namedclass = ANYOF_NALNUM; break;
11564 case 's': namedclass = ANYOF_SPACE; break;
11565 case 'S': namedclass = ANYOF_NSPACE; break;
11566 case 'd': namedclass = ANYOF_DIGIT; break;
11567 case 'D': namedclass = ANYOF_NDIGIT; break;
11568 case 'v': namedclass = ANYOF_VERTWS; break;
11569 case 'V': namedclass = ANYOF_NVERTWS; break;
11570 case 'h': namedclass = ANYOF_HORIZWS; break;
11571 case 'H': namedclass = ANYOF_NHORIZWS; break;
11572 case 'N': /* Handle \N{NAME} in class */
11573 {
11574 /* We only pay attention to the first char of
11575 multichar strings being returned. I kinda wonder
11576 if this makes sense as it does change the behaviour
11577 from earlier versions, OTOH that behaviour was broken
11578 as well. */
11579 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
11580 TRUE /* => charclass */))
11581 {
11582 goto parseit;
11583 }
11584 }
11585 break;
11586 case 'p':
11587 case 'P':
11588 {
11589 char *e;
11590
11591 /* This routine will handle any undefined properties */
11592 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
11593
11594 if (RExC_parse >= RExC_end)
11595 vFAIL2("Empty \\%c{}", (U8)value);
11596 if (*RExC_parse == '{') {
11597 const U8 c = (U8)value;
11598 e = strchr(RExC_parse++, '}');
11599 if (!e)
11600 vFAIL2("Missing right brace on \\%c{}", c);
11601 while (isSPACE(UCHARAT(RExC_parse)))
11602 RExC_parse++;
11603 if (e == RExC_parse)
11604 vFAIL2("Empty \\%c{}", c);
11605 n = e - RExC_parse;
11606 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
11607 n--;
11608 }
11609 else {
11610 e = RExC_parse;
11611 n = 1;
11612 }
11613 if (!SIZE_ONLY) {
11614 SV* invlist;
11615 char* name;
11616
11617 if (UCHARAT(RExC_parse) == '^') {
11618 RExC_parse++;
11619 n--;
11620 value = value == 'p' ? 'P' : 'p'; /* toggle */
11621 while (isSPACE(UCHARAT(RExC_parse))) {
11622 RExC_parse++;
11623 n--;
11624 }
11625 }
11626 /* Try to get the definition of the property into
11627 * <invlist>. If /i is in effect, the effective property
11628 * will have its name be <__NAME_i>. The design is
11629 * discussed in commit
11630 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
11631 Newx(name, n + sizeof("_i__\n"), char);
11632
11633 sprintf(name, "%s%.*s%s\n",
11634 (FOLD) ? "__" : "",
11635 (int)n,
11636 RExC_parse,
11637 (FOLD) ? "_i" : ""
11638 );
11639
11640 /* Look up the property name, and get its swash and
11641 * inversion list, if the property is found */
11642 if (swash) {
11643 SvREFCNT_dec(swash);
11644 }
11645 swash = _core_swash_init("utf8", name, &PL_sv_undef,
11646 1, /* binary */
11647 0, /* not tr/// */
11648 NULL, /* No inversion list */
11649 &swash_init_flags
11650 );
11651 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
11652 if (swash) {
11653 SvREFCNT_dec(swash);
11654 swash = NULL;
11655 }
11656
11657 /* Here didn't find it. It could be a user-defined
11658 * property that will be available at run-time. Add it
11659 * to the list to look up then */
11660 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
11661 (value == 'p' ? '+' : '!'),
11662 name);
11663 has_user_defined_property = TRUE;
11664
11665 /* We don't know yet, so have to assume that the
11666 * property could match something in the Latin1 range,
11667 * hence something that isn't utf8. Note that this
11668 * would cause things in <depends_list> to match
11669 * inappropriately, except that any \p{}, including
11670 * this one forces Unicode semantics, which means there
11671 * is <no depends_list> */
11672 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
11673 }
11674 else {
11675
11676 /* Here, did get the swash and its inversion list. If
11677 * the swash is from a user-defined property, then this
11678 * whole character class should be regarded as such */
11679 has_user_defined_property =
11680 (swash_init_flags
11681 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
11682
11683 /* Invert if asking for the complement */
11684 if (value == 'P') {
11685 _invlist_union_complement_2nd(properties,
11686 invlist,
11687 &properties);
11688
11689 /* The swash can't be used as-is, because we've
11690 * inverted things; delay removing it to here after
11691 * have copied its invlist above */
11692 SvREFCNT_dec(swash);
11693 swash = NULL;
11694 }
11695 else {
11696 _invlist_union(properties, invlist, &properties);
11697 }
11698 }
11699 Safefree(name);
11700 }
11701 RExC_parse = e + 1;
11702 namedclass = ANYOF_MAX; /* no official name, but it's named */
11703
11704 /* \p means they want Unicode semantics */
11705 RExC_uni_semantics = 1;
11706 }
11707 break;
11708 case 'n': value = '\n'; break;
11709 case 'r': value = '\r'; break;
11710 case 't': value = '\t'; break;
11711 case 'f': value = '\f'; break;
11712 case 'b': value = '\b'; break;
11713 case 'e': value = ASCII_TO_NATIVE('\033');break;
11714 case 'a': value = ASCII_TO_NATIVE('\007');break;
11715 case 'o':
11716 RExC_parse--; /* function expects to be pointed at the 'o' */
11717 {
11718 const char* error_msg;
11719 bool valid = grok_bslash_o(RExC_parse,
11720 &value,
11721 &numlen,
11722 &error_msg,
11723 SIZE_ONLY);
11724 RExC_parse += numlen;
11725 if (! valid) {
11726 vFAIL(error_msg);
11727 }
11728 }
11729 if (PL_encoding && value < 0x100) {
11730 goto recode_encoding;
11731 }
11732 break;
11733 case 'x':
11734 RExC_parse--; /* function expects to be pointed at the 'x' */
11735 {
11736 const char* error_msg;
11737 bool valid = grok_bslash_x(RExC_parse,
11738 &value,
11739 &numlen,
11740 &error_msg,
11741 1);
11742 RExC_parse += numlen;
11743 if (! valid) {
11744 vFAIL(error_msg);
11745 }
11746 }
11747 if (PL_encoding && value < 0x100)
11748 goto recode_encoding;
11749 break;
11750 case 'c':
11751 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
11752 break;
11753 case '0': case '1': case '2': case '3': case '4':
11754 case '5': case '6': case '7':
11755 {
11756 /* Take 1-3 octal digits */
11757 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
11758 numlen = 3;
11759 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
11760 RExC_parse += numlen;
11761 if (PL_encoding && value < 0x100)
11762 goto recode_encoding;
11763 break;
11764 }
11765 recode_encoding:
11766 if (! RExC_override_recoding) {
11767 SV* enc = PL_encoding;
11768 value = reg_recode((const char)(U8)value, &enc);
11769 if (!enc && SIZE_ONLY)
11770 ckWARNreg(RExC_parse,
11771 "Invalid escape in the specified encoding");
11772 break;
11773 }
11774 default:
11775 /* Allow \_ to not give an error */
11776 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
11777 ckWARN2reg(RExC_parse,
11778 "Unrecognized escape \\%c in character class passed through",
11779 (int)value);
11780 }
11781 break;
11782 }
11783 } /* end of \blah */
11784#ifdef EBCDIC
11785 else
11786 literal_endpoint++;
11787#endif
11788
11789 /* What matches in a locale is not known until runtime. This
11790 * includes what the Posix classes (like \w, [:space:]) match.
11791 * Room must be reserved (one time per class) to store such
11792 * classes, either if Perl is compiled so that locale nodes always
11793 * should have this space, or if there is such class info to be
11794 * stored. The space will contain a bit for each named class that
11795 * is to be matched against. This isn't needed for \p{} and
11796 * pseudo-classes, as they are not affected by locale, and hence
11797 * are dealt with separately */
11798 if (LOC
11799 && ! need_class
11800 && (ANYOF_LOCALE == ANYOF_CLASS
11801 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
11802 {
11803 need_class = 1;
11804 if (SIZE_ONLY) {
11805 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
11806 }
11807 else {
11808 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
11809 ANYOF_CLASS_ZERO(ret);
11810 }
11811 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
11812 }
11813
11814 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
11815
11816 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
11817 * literal, as is the character that began the false range, i.e.
11818 * the 'a' in the examples */
11819 if (range) {
11820 if (!SIZE_ONLY) {
11821 const int w =
11822 RExC_parse >= rangebegin ?
11823 RExC_parse - rangebegin : 0;
11824 ckWARN4reg(RExC_parse,
11825 "False [] range \"%*.*s\"",
11826 w, w, rangebegin);
11827 cp_list = add_cp_to_invlist(cp_list, '-');
11828 cp_list = add_cp_to_invlist(cp_list, prevvalue);
11829 }
11830
11831 range = 0; /* this was not a true range */
11832 element_count += 2; /* So counts for three values */
11833 }
11834
11835 if (! SIZE_ONLY) {
11836 switch ((I32)namedclass) {
11837
11838 case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
11839 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11840 PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
11841 break;
11842 case ANYOF_NALNUMC:
11843 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11844 PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv,
11845 runtime_posix_matches_above_Unicode);
11846 break;
11847 case ANYOF_ALPHA:
11848 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11849 PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
11850 break;
11851 case ANYOF_NALPHA:
11852 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11853 PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv,
11854 runtime_posix_matches_above_Unicode);
11855 break;
11856 case ANYOF_ASCII:
11857 if (LOC) {
11858 ANYOF_CLASS_SET(ret, namedclass);
11859 }
11860 else {
11861 _invlist_union(posixes, PL_ASCII, &posixes);
11862 }
11863 break;
11864 case ANYOF_NASCII:
11865 if (LOC) {
11866 ANYOF_CLASS_SET(ret, namedclass);
11867 }
11868 else {
11869 _invlist_union_complement_2nd(posixes,
11870 PL_ASCII, &posixes);
11871 if (DEPENDS_SEMANTICS) {
11872 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
11873 }
11874 }
11875 break;
11876 case ANYOF_BLANK:
11877 DO_POSIX(ret, namedclass, posixes,
11878 PL_PosixBlank, PL_XPosixBlank);
11879 break;
11880 case ANYOF_NBLANK:
11881 DO_N_POSIX(ret, namedclass, posixes,
11882 PL_PosixBlank, PL_XPosixBlank);
11883 break;
11884 case ANYOF_CNTRL:
11885 DO_POSIX(ret, namedclass, posixes,
11886 PL_PosixCntrl, PL_XPosixCntrl);
11887 break;
11888 case ANYOF_NCNTRL:
11889 DO_N_POSIX(ret, namedclass, posixes,
11890 PL_PosixCntrl, PL_XPosixCntrl);
11891 break;
11892 case ANYOF_DIGIT:
11893 /* There are no digits in the Latin1 range outside of
11894 * ASCII, so call the macro that doesn't have to resolve
11895 * them */
11896 DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, posixes,
11897 PL_PosixDigit, "XPosixDigit", listsv);
11898 break;
11899 case ANYOF_NDIGIT:
11900 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11901 PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv,
11902 runtime_posix_matches_above_Unicode);
11903 break;
11904 case ANYOF_GRAPH:
11905 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11906 PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
11907 break;
11908 case ANYOF_NGRAPH:
11909 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11910 PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv,
11911 runtime_posix_matches_above_Unicode);
11912 break;
11913 case ANYOF_HORIZWS:
11914 /* For these, we use the cp_list, as /d doesn't make a
11915 * difference in what these match. There would be problems
11916 * if these characters had folds other than themselves, as
11917 * cp_list is subject to folding. It turns out that \h
11918 * is just a synonym for XPosixBlank */
11919 _invlist_union(cp_list, PL_XPosixBlank, &cp_list);
11920 break;
11921 case ANYOF_NHORIZWS:
11922 _invlist_union_complement_2nd(cp_list,
11923 PL_XPosixBlank, &cp_list);
11924 break;
11925 case ANYOF_LOWER:
11926 case ANYOF_NLOWER:
11927 { /* These require special handling, as they differ under
11928 folding, matching Cased there (which in the ASCII range
11929 is the same as Alpha */
11930
11931 SV* ascii_source;
11932 SV* l1_source;
11933 const char *Xname;
11934
11935 if (FOLD && ! LOC) {
11936 ascii_source = PL_PosixAlpha;
11937 l1_source = PL_L1Cased;
11938 Xname = "Cased";
11939 }
11940 else {
11941 ascii_source = PL_PosixLower;
11942 l1_source = PL_L1PosixLower;
11943 Xname = "XPosixLower";
11944 }
11945 if (namedclass == ANYOF_LOWER) {
11946 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11947 ascii_source, l1_source, Xname, listsv);
11948 }
11949 else {
11950 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
11951 posixes, ascii_source, l1_source, Xname, listsv,
11952 runtime_posix_matches_above_Unicode);
11953 }
11954 break;
11955 }
11956 case ANYOF_PRINT:
11957 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11958 PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
11959 break;
11960 case ANYOF_NPRINT:
11961 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11962 PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv,
11963 runtime_posix_matches_above_Unicode);
11964 break;
11965 case ANYOF_PUNCT:
11966 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11967 PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
11968 break;
11969 case ANYOF_NPUNCT:
11970 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
11971 PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv,
11972 runtime_posix_matches_above_Unicode);
11973 break;
11974 case ANYOF_PSXSPC:
11975 DO_POSIX(ret, namedclass, posixes,
11976 PL_PosixSpace, PL_XPosixSpace);
11977 break;
11978 case ANYOF_NPSXSPC:
11979 DO_N_POSIX(ret, namedclass, posixes,
11980 PL_PosixSpace, PL_XPosixSpace);
11981 break;
11982 case ANYOF_SPACE:
11983 DO_POSIX(ret, namedclass, posixes,
11984 PL_PerlSpace, PL_XPerlSpace);
11985 break;
11986 case ANYOF_NSPACE:
11987 DO_N_POSIX(ret, namedclass, posixes,
11988 PL_PerlSpace, PL_XPerlSpace);
11989 break;
11990 case ANYOF_UPPER: /* Same as LOWER, above */
11991 case ANYOF_NUPPER:
11992 {
11993 SV* ascii_source;
11994 SV* l1_source;
11995 const char *Xname;
11996
11997 if (FOLD && ! LOC) {
11998 ascii_source = PL_PosixAlpha;
11999 l1_source = PL_L1Cased;
12000 Xname = "Cased";
12001 }
12002 else {
12003 ascii_source = PL_PosixUpper;
12004 l1_source = PL_L1PosixUpper;
12005 Xname = "XPosixUpper";
12006 }
12007 if (namedclass == ANYOF_UPPER) {
12008 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
12009 ascii_source, l1_source, Xname, listsv);
12010 }
12011 else {
12012 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
12013 posixes, ascii_source, l1_source, Xname, listsv,
12014 runtime_posix_matches_above_Unicode);
12015 }
12016 break;
12017 }
12018 case ANYOF_ALNUM: /* Really is 'Word' */
12019 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
12020 PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
12021 break;
12022 case ANYOF_NALNUM:
12023 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes,
12024 PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv,
12025 runtime_posix_matches_above_Unicode);
12026 break;
12027 case ANYOF_VERTWS:
12028 /* For these, we use the cp_list, as /d doesn't make a
12029 * difference in what these match. There would be problems
12030 * if these characters had folds other than themselves, as
12031 * cp_list is subject to folding */
12032 _invlist_union(cp_list, PL_VertSpace, &cp_list);
12033 break;
12034 case ANYOF_NVERTWS:
12035 _invlist_union_complement_2nd(cp_list,
12036 PL_VertSpace, &cp_list);
12037 break;
12038 case ANYOF_XDIGIT:
12039 DO_POSIX(ret, namedclass, posixes,
12040 PL_PosixXDigit, PL_XPosixXDigit);
12041 break;
12042 case ANYOF_NXDIGIT:
12043 DO_N_POSIX(ret, namedclass, posixes,
12044 PL_PosixXDigit, PL_XPosixXDigit);
12045 break;
12046 case ANYOF_MAX:
12047 /* this is to handle \p and \P */
12048 break;
12049 default:
12050 vFAIL("Invalid [::] class");
12051 break;
12052 }
12053
12054 continue; /* Go get next character */
12055 }
12056 } /* end of namedclass \blah */
12057
12058 if (range) {
12059 if (prevvalue > value) /* b-a */ {
12060 const int w = RExC_parse - rangebegin;
12061 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12062 range = 0; /* not a valid range */
12063 }
12064 }
12065 else {
12066 prevvalue = value; /* save the beginning of the potential range */
12067 if (RExC_parse+1 < RExC_end
12068 && *RExC_parse == '-'
12069 && RExC_parse[1] != ']')
12070 {
12071 RExC_parse++;
12072
12073 /* a bad range like \w-, [:word:]- ? */
12074 if (namedclass > OOB_NAMEDCLASS) {
12075 if (ckWARN(WARN_REGEXP)) {
12076 const int w =
12077 RExC_parse >= rangebegin ?
12078 RExC_parse - rangebegin : 0;
12079 vWARN4(RExC_parse,
12080 "False [] range \"%*.*s\"",
12081 w, w, rangebegin);
12082 }
12083 if (!SIZE_ONLY) {
12084 cp_list = add_cp_to_invlist(cp_list, '-');
12085 }
12086 element_count++;
12087 } else
12088 range = 1; /* yeah, it's a range! */
12089 continue; /* but do it the next time */
12090 }
12091 }
12092
12093 /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12094 * if not */
12095
12096 /* non-Latin1 code point implies unicode semantics. Must be set in
12097 * pass1 so is there for the whole of pass 2 */
12098 if (value > 255) {
12099 RExC_uni_semantics = 1;
12100 }
12101
12102 /* Ready to process either the single value, or the completed range */
12103 if (!SIZE_ONLY) {
12104#ifndef EBCDIC
12105 cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
12106#else
12107 UV* this_range = _new_invlist(1);
12108 _append_range_to_invlist(this_range, prevvalue, value);
12109
12110 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
12111 * If this range was specified using something like 'i-j', we want
12112 * to include only the 'i' and the 'j', and not anything in
12113 * between, so exclude non-ASCII, non-alphabetics from it.
12114 * However, if the range was specified with something like
12115 * [\x89-\x91] or [\x89-j], all code points within it should be
12116 * included. literal_endpoint==2 means both ends of the range used
12117 * a literal character, not \x{foo} */
12118 if (literal_endpoint == 2
12119 && (prevvalue >= 'a' && value <= 'z')
12120 || (prevvalue >= 'A' && value <= 'Z'))
12121 {
12122 _invlist_intersection(this_range, PL_ASCII, &this_range, );
12123 _invlist_intersection(this_range, PL_Alpha, &this_range, );
12124 }
12125 _invlist_union(cp_list, this_range, &cp_list);
12126 literal_endpoint = 0;
12127#endif
12128 }
12129
12130 range = 0; /* this range (if it was one) is done now */
12131 } /* End of loop through all the text within the brackets */
12132
12133 /* If the character class contains only a single element, it may be
12134 * optimizable into another node type which is smaller and runs faster.
12135 * Check if this is the case for this class */
12136 if (element_count == 1) {
12137 U8 op = END;
12138 U8 arg = 0;
12139
12140 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
12141 [:digit:] or \p{foo} */
12142
12143 /* Certain named classes have equivalents that can appear outside a
12144 * character class, e.g. \w, \H. We use these instead of a
12145 * character class. */
12146 switch ((I32)namedclass) {
12147 U8 offset;
12148
12149 /* The first group is for node types that depend on the charset
12150 * modifier to the regex. We first calculate the base node
12151 * type, and if it should be inverted */
12152
12153 case ANYOF_NALNUM:
12154 invert = ! invert;
12155 /* FALLTHROUGH */
12156 case ANYOF_ALNUM:
12157 op = ALNUM;
12158 goto join_charset_classes;
12159
12160 case ANYOF_NSPACE:
12161 invert = ! invert;
12162 /* FALLTHROUGH */
12163 case ANYOF_SPACE:
12164 op = SPACE;
12165 goto join_charset_classes;
12166
12167 case ANYOF_NDIGIT:
12168 invert = ! invert;
12169 /* FALLTHROUGH */
12170 case ANYOF_DIGIT:
12171 op = DIGIT;
12172
12173 join_charset_classes:
12174
12175 /* Now that we have the base node type, we take advantage
12176 * of the enum ordering of the charset modifiers to get the
12177 * exact node type, For example the base SPACE also has
12178 * SPACEL, SPACEU, and SPACEA */
12179
12180 offset = get_regex_charset(RExC_flags);
12181
12182 /* /aa is the same as /a for these */
12183 if (offset == REGEX_ASCII_MORE_RESTRICTED_CHARSET) {
12184 offset = REGEX_ASCII_RESTRICTED_CHARSET;
12185 }
12186 else if (op == DIGIT && offset == REGEX_UNICODE_CHARSET) {
12187 offset = REGEX_DEPENDS_CHARSET; /* There is no DIGITU */
12188 }
12189
12190 op += offset;
12191
12192 /* The number of varieties of each of these is the same,
12193 * hence, so is the delta between the normal and
12194 * complemented nodes */
12195 if (invert) {
12196 op += NALNUM - ALNUM;
12197 }
12198 *flagp |= HASWIDTH|SIMPLE;
12199 break;
12200
12201 /* The second group doesn't depend of the charset modifiers.
12202 * We just have normal and complemented */
12203 case ANYOF_NHORIZWS:
12204 invert = ! invert;
12205 /* FALLTHROUGH */
12206 case ANYOF_HORIZWS:
12207 is_horizws:
12208 op = (invert) ? NHORIZWS : HORIZWS;
12209 *flagp |= HASWIDTH|SIMPLE;
12210 break;
12211
12212 case ANYOF_NVERTWS:
12213 invert = ! invert;
12214 /* FALLTHROUGH */
12215 case ANYOF_VERTWS:
12216 op = (invert) ? NVERTWS : VERTWS;
12217 *flagp |= HASWIDTH|SIMPLE;
12218 break;
12219
12220 case ANYOF_MAX:
12221 break;
12222
12223 case ANYOF_NBLANK:
12224 invert = ! invert;
12225 /* FALLTHROUGH */
12226 case ANYOF_BLANK:
12227 if (AT_LEAST_UNI_SEMANTICS && ! AT_LEAST_ASCII_RESTRICTED) {
12228 goto is_horizws;
12229 }
12230 /* FALLTHROUGH */
12231 default:
12232 /* A generic posix class. All the /a ones can be handled
12233 * by the POSIXA opcode. And all are closed under folding
12234 * in the ASCII range, so FOLD doesn't matter */
12235 if (AT_LEAST_ASCII_RESTRICTED
12236 || (! LOC && namedclass == ANYOF_ASCII))
12237 {
12238 /* The odd numbered ones are the complements of the
12239 * next-lower even number one */
12240 if (namedclass % 2 == 1) {
12241 invert = ! invert;
12242 namedclass--;
12243 }
12244 arg = namedclass_to_classnum(namedclass);
12245 op = (invert) ? NPOSIXA : POSIXA;
12246 }
12247 break;
12248 }
12249 }
12250 else if (value == prevvalue) {
12251
12252 /* Here, the class consists of just a single code point */
12253
12254 if (invert) {
12255 if (! LOC && value == '\n') {
12256 op = REG_ANY; /* Optimize [^\n] */
12257 *flagp |= HASWIDTH|SIMPLE;
12258 RExC_naughty++;
12259 }
12260 }
12261 else if (value < 256 || UTF) {
12262
12263 /* Optimize a single value into an EXACTish node, but not if it
12264 * would require converting the pattern to UTF-8. */
12265 op = compute_EXACTish(pRExC_state);
12266 }
12267 } /* Otherwise is a range */
12268 else if (! LOC) { /* locale could vary these */
12269 if (prevvalue == '0') {
12270 if (value == '9') {
12271 op = (invert) ? NDIGITA : DIGITA;
12272 *flagp |= HASWIDTH|SIMPLE;
12273 }
12274 }
12275 }
12276
12277 /* Here, we have changed <op> away from its initial value iff we found
12278 * an optimization */
12279 if (op != END) {
12280
12281 /* Throw away this ANYOF regnode, and emit the calculated one,
12282 * which should correspond to the beginning, not current, state of
12283 * the parse */
12284 const char * cur_parse = RExC_parse;
12285 RExC_parse = (char *)orig_parse;
12286 if ( SIZE_ONLY) {
12287 if (! LOC) {
12288
12289 /* To get locale nodes to not use the full ANYOF size would
12290 * require moving the code above that writes the portions
12291 * of it that aren't in other nodes to after this point.
12292 * e.g. ANYOF_CLASS_SET */
12293 RExC_size = orig_size;
12294 }
12295 }
12296 else {
12297 RExC_emit = (regnode *)orig_emit;
12298 }
12299
12300 ret = reg_node(pRExC_state, op);
12301
12302 if (PL_regkind[op] == POSIXD) {
12303 if (! SIZE_ONLY) {
12304 FLAGS(ret) = arg;
12305 }
12306 *flagp |= HASWIDTH|SIMPLE;
12307 }
12308 else if (PL_regkind[op] == EXACT) {
12309 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
12310 }
12311
12312 RExC_parse = (char *) cur_parse;
12313
12314 SvREFCNT_dec(listsv);
12315 return ret;
12316 }
12317 }
12318
12319 if (SIZE_ONLY)
12320 return ret;
12321 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
12322
12323 /* If folding, we calculate all characters that could fold to or from the
12324 * ones already on the list */
12325 if (FOLD && cp_list) {
12326 UV start, end; /* End points of code point ranges */
12327
12328 SV* fold_intersection = NULL;
12329
12330 /* In the Latin1 range, the characters that can be folded-to or -from
12331 * are precisely the alphabetic characters. If the highest code point
12332 * is within Latin1, we can use the compiled-in list, and not have to
12333 * go out to disk. */
12334 if (invlist_highest(cp_list) < 256) {
12335 _invlist_intersection(PL_L1PosixAlpha, cp_list, &fold_intersection);
12336 }
12337 else {
12338
12339 /* Here, there are non-Latin1 code points, so we will have to go
12340 * fetch the list of all the characters that participate in folds
12341 */
12342 if (! PL_utf8_foldable) {
12343 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
12344 &PL_sv_undef, 1, 0);
12345 PL_utf8_foldable = _get_swash_invlist(swash);
12346 SvREFCNT_dec(swash);
12347 }
12348
12349 /* This is a hash that for a particular fold gives all characters
12350 * that are involved in it */
12351 if (! PL_utf8_foldclosures) {
12352
12353 /* If we were unable to find any folds, then we likely won't be
12354 * able to find the closures. So just create an empty list.
12355 * Folding will effectively be restricted to the non-Unicode
12356 * rules hard-coded into Perl. (This case happens legitimately
12357 * during compilation of Perl itself before the Unicode tables
12358 * are generated) */
12359 if (_invlist_len(PL_utf8_foldable) == 0) {
12360 PL_utf8_foldclosures = newHV();
12361 }
12362 else {
12363 /* If the folds haven't been read in, call a fold function
12364 * to force that */
12365 if (! PL_utf8_tofold) {
12366 U8 dummy[UTF8_MAXBYTES+1];
12367 STRLEN dummy_len;
12368
12369 /* This string is just a short named one above \xff */
12370 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, &dummy_len);
12371 assert(PL_utf8_tofold); /* Verify that worked */
12372 }
12373 PL_utf8_foldclosures =
12374 _swash_inversion_hash(PL_utf8_tofold);
12375 }
12376 }
12377
12378 /* Only the characters in this class that participate in folds need
12379 * be checked. Get the intersection of this class and all the
12380 * possible characters that are foldable. This can quickly narrow
12381 * down a large class */
12382 _invlist_intersection(PL_utf8_foldable, cp_list,
12383 &fold_intersection);
12384 }
12385
12386 /* Now look at the foldable characters in this class individually */
12387 invlist_iterinit(fold_intersection);
12388 while (invlist_iternext(fold_intersection, &start, &end)) {
12389 UV j;
12390
12391 /* Locale folding for Latin1 characters is deferred until runtime */
12392 if (LOC && start < 256) {
12393 start = 256;
12394 }
12395
12396 /* Look at every character in the range */
12397 for (j = start; j <= end; j++) {
12398
12399 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
12400 STRLEN foldlen;
12401 UV f;
12402
12403 if (j < 256) {
12404
12405 /* We have the latin1 folding rules hard-coded here so that
12406 * an innocent-looking character class, like /[ks]/i won't
12407 * have to go out to disk to find the possible matches.
12408 * XXX It would be better to generate these via regen, in
12409 * case a new version of the Unicode standard adds new
12410 * mappings, though that is not really likely, and may be
12411 * caught by the default: case of the switch below. */
12412
12413 if (PL_fold_latin1[j] != j) {
12414
12415 /* ASCII is always matched; non-ASCII is matched only
12416 * under Unicode rules */
12417 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
12418 cp_list =
12419 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
12420 }
12421 else {
12422 depends_list =
12423 add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
12424 }
12425 }
12426
12427 if (HAS_NONLATIN1_FOLD_CLOSURE(j)
12428 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
12429 {
12430 /* Certain Latin1 characters have matches outside
12431 * Latin1, or are multi-character. To get here, 'j' is
12432 * one of those characters. None of these matches is
12433 * valid for ASCII characters under /aa, which is why
12434 * the 'if' just above excludes those. The matches
12435 * fall into three categories:
12436 * 1) They are singly folded-to or -from an above 255
12437 * character, e.g., LATIN SMALL LETTER Y WITH
12438 * DIAERESIS and LATIN CAPITAL LETTER Y WITH
12439 * DIAERESIS;
12440 * 2) They are part of a multi-char fold with another
12441 * latin1 character; only LATIN SMALL LETTER
12442 * SHARP S => "ss" fits this;
12443 * 3) They are part of a multi-char fold with a
12444 * character outside of Latin1, such as various
12445 * ligatures.
12446 * We aren't dealing fully with multi-char folds, except
12447 * we do deal with the pattern containing a character
12448 * that has a multi-char fold (not so much the inverse).
12449 * For types 1) and 3), the matches only happen when the
12450 * target string is utf8; that's not true for 2), and we
12451 * set a flag for it.
12452 *
12453 * The code below adds the single fold closures for 'j'
12454 * to the inversion list. */
12455 switch (j) {
12456 case 'k':
12457 case 'K':
12458 cp_list =
12459 add_cp_to_invlist(cp_list, KELVIN_SIGN);
12460 break;
12461 case 's':
12462 case 'S':
12463 cp_list = add_cp_to_invlist(cp_list,
12464 LATIN_SMALL_LETTER_LONG_S);
12465 break;
12466 case MICRO_SIGN:
12467 cp_list = add_cp_to_invlist(cp_list,
12468 GREEK_CAPITAL_LETTER_MU);
12469 cp_list = add_cp_to_invlist(cp_list,
12470 GREEK_SMALL_LETTER_MU);
12471 break;
12472 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
12473 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
12474 cp_list =
12475 add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
12476 break;
12477 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
12478 cp_list = add_cp_to_invlist(cp_list,
12479 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
12480 break;
12481 case LATIN_SMALL_LETTER_SHARP_S:
12482 cp_list = add_cp_to_invlist(cp_list,
12483 LATIN_CAPITAL_LETTER_SHARP_S);
12484
12485 /* Under /a, /d, and /u, this can match the two
12486 * chars "ss" */
12487 if (! ASCII_FOLD_RESTRICTED) {
12488 add_alternate(&unicode_alternate,
12489 (U8 *) "ss", 2);
12490
12491 /* And under /u or /a, it can match even if
12492 * the target is not utf8 */
12493 if (AT_LEAST_UNI_SEMANTICS) {
12494 ANYOF_FLAGS(ret) |=
12495 ANYOF_NONBITMAP_NON_UTF8;
12496 }
12497 }
12498 break;
12499 case 'F': case 'f':
12500 case 'I': case 'i':
12501 case 'L': case 'l':
12502 case 'T': case 't':
12503 case 'A': case 'a':
12504 case 'H': case 'h':
12505 case 'J': case 'j':
12506 case 'N': case 'n':
12507 case 'W': case 'w':
12508 case 'Y': case 'y':
12509 /* These all are targets of multi-character
12510 * folds from code points that require UTF8 to
12511 * express, so they can't match unless the
12512 * target string is in UTF-8, so no action here
12513 * is necessary, as regexec.c properly handles
12514 * the general case for UTF-8 matching */
12515 break;
12516 default:
12517 /* Use deprecated warning to increase the
12518 * chances of this being output */
12519 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
12520 break;
12521 }
12522 }
12523 continue;
12524 }
12525
12526 /* Here is an above Latin1 character. We don't have the rules
12527 * hard-coded for it. First, get its fold */
12528 f = _to_uni_fold_flags(j, foldbuf, &foldlen,
12529 ((allow_full_fold) ? FOLD_FLAGS_FULL : 0)
12530 | ((LOC)
12531 ? FOLD_FLAGS_LOCALE
12532 : (ASCII_FOLD_RESTRICTED)
12533 ? FOLD_FLAGS_NOMIX_ASCII
12534 : 0));
12535
12536 if (foldlen > (STRLEN)UNISKIP(f)) {
12537
12538 /* Any multicharacter foldings (disallowed in lookbehind
12539 * patterns) require the following transform: [ABCDEF] ->
12540 * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
12541 * folds into "rst", all other characters fold to single
12542 * characters. We save away these multicharacter foldings,
12543 * to be later saved as part of the additional "s" data. */
12544 if (! RExC_in_lookbehind) {
12545 U8* loc = foldbuf;
12546 U8* e = foldbuf + foldlen;
12547
12548 /* If any of the folded characters of this are in the
12549 * Latin1 range, tell the regex engine that this can
12550 * match a non-utf8 target string. */
12551 while (loc < e) {
12552 if (UTF8_IS_INVARIANT(*loc)
12553 || UTF8_IS_DOWNGRADEABLE_START(*loc))
12554 {
12555 ANYOF_FLAGS(ret)
12556 |= ANYOF_NONBITMAP_NON_UTF8;
12557 break;
12558 }
12559 loc += UTF8SKIP(loc);
12560 }
12561
12562 add_alternate(&unicode_alternate, foldbuf, foldlen);
12563 }
12564 }
12565 else {
12566 /* Single character fold of above Latin1. Add everything
12567 * in its fold closure to the list that this node should
12568 * match */
12569 SV** listp;
12570
12571 /* The fold closures data structure is a hash with the keys
12572 * being every character that is folded to, like 'k', and
12573 * the values each an array of everything that folds to its
12574 * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
12575 if ((listp = hv_fetch(PL_utf8_foldclosures,
12576 (char *) foldbuf, foldlen, FALSE)))
12577 {
12578 AV* list = (AV*) *listp;
12579 IV k;
12580 for (k = 0; k <= av_len(list); k++) {
12581 SV** c_p = av_fetch(list, k, FALSE);
12582 UV c;
12583 if (c_p == NULL) {
12584 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
12585 }
12586 c = SvUV(*c_p);
12587
12588 /* /aa doesn't allow folds between ASCII and non-;
12589 * /l doesn't allow them between above and below
12590 * 256 */
12591 if ((ASCII_FOLD_RESTRICTED
12592 && (isASCII(c) != isASCII(j)))
12593 || (LOC && ((c < 256) != (j < 256))))
12594 {
12595 continue;
12596 }
12597
12598 /* Folds involving non-ascii Latin1 characters
12599 * under /d are added to a separate list */
12600 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
12601 {
12602 cp_list = add_cp_to_invlist(cp_list, c);
12603 }
12604 else {
12605 depends_list = add_cp_to_invlist(depends_list, c);
12606 }
12607 }
12608 }
12609 }
12610 }
12611 }
12612 SvREFCNT_dec(fold_intersection);
12613 }
12614
12615 /* And combine the result (if any) with any inversion list from posix
12616 * classes. The lists are kept separate up to now because we don't want to
12617 * fold the classes (folding of those is automatically handled by the swash
12618 * fetching code) */
12619 if (posixes) {
12620 if (! DEPENDS_SEMANTICS) {
12621 if (cp_list) {
12622 _invlist_union(cp_list, posixes, &cp_list);
12623 SvREFCNT_dec(posixes);
12624 }
12625 else {
12626 cp_list = posixes;
12627 }
12628 }
12629 else {
12630 /* Under /d, we put into a separate list the Latin1 things that
12631 * match only when the target string is utf8 */
12632 SV* nonascii_but_latin1_properties = NULL;
12633 _invlist_intersection(posixes, PL_Latin1,
12634 &nonascii_but_latin1_properties);
12635 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
12636 &nonascii_but_latin1_properties);
12637 _invlist_subtract(posixes, nonascii_but_latin1_properties,
12638 &posixes);
12639 if (cp_list) {
12640 _invlist_union(cp_list, posixes, &cp_list);
12641 SvREFCNT_dec(posixes);
12642 }
12643 else {
12644 cp_list = posixes;
12645 }
12646
12647 if (depends_list) {
12648 _invlist_union(depends_list, nonascii_but_latin1_properties,
12649 &depends_list);
12650 SvREFCNT_dec(nonascii_but_latin1_properties);
12651 }
12652 else {
12653 depends_list = nonascii_but_latin1_properties;
12654 }
12655 }
12656 }
12657
12658 /* And combine the result (if any) with any inversion list from properties.
12659 * The lists are kept separate up to now so that we can distinguish the two
12660 * in regards to matching above-Unicode. A run-time warning is generated
12661 * if a Unicode property is matched against a non-Unicode code point. But,
12662 * we allow user-defined properties to match anything, without any warning,
12663 * and we also suppress the warning if there is a portion of the character
12664 * class that isn't a Unicode property, and which matches above Unicode, \W
12665 * or [\x{110000}] for example.
12666 * (Note that in this case, unlike the Posix one above, there is no
12667 * <depends_list>, because having a Unicode property forces Unicode
12668 * semantics */
12669 if (properties) {
12670 bool warn_super = ! has_user_defined_property;
12671 if (cp_list) {
12672
12673 /* If it matters to the final outcome, see if a non-property
12674 * component of the class matches above Unicode. If so, the
12675 * warning gets suppressed. This is true even if just a single
12676 * such code point is specified, as though not strictly correct if
12677 * another such code point is matched against, the fact that they
12678 * are using above-Unicode code points indicates they should know
12679 * the issues involved */
12680 if (warn_super) {
12681 bool non_prop_matches_above_Unicode =
12682 runtime_posix_matches_above_Unicode
12683 | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
12684 if (invert) {
12685 non_prop_matches_above_Unicode =
12686 ! non_prop_matches_above_Unicode;
12687 }
12688 warn_super = ! non_prop_matches_above_Unicode;
12689 }
12690
12691 _invlist_union(properties, cp_list, &cp_list);
12692 SvREFCNT_dec(properties);
12693 }
12694 else {
12695 cp_list = properties;
12696 }
12697
12698 if (warn_super) {
12699 ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
12700 }
12701 }
12702
12703 /* Here, we have calculated what code points should be in the character
12704 * class.
12705 *
12706 * Now we can see about various optimizations. Fold calculation (which we
12707 * did above) needs to take place before inversion. Otherwise /[^k]/i
12708 * would invert to include K, which under /i would match k, which it
12709 * shouldn't. Therefore we can't invert folded locale now, as it won't be
12710 * folded until runtime */
12711
12712 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
12713 * at compile time. Besides not inverting folded locale now, we can't invert
12714 * if there are things such as \w, which aren't known until runtime */
12715 if (invert
12716 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
12717 && ! depends_list
12718 && ! unicode_alternate
12719 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
12720 {
12721 _invlist_invert(cp_list);
12722
12723 /* Any swash can't be used as-is, because we've inverted things */
12724 if (swash) {
12725 SvREFCNT_dec(swash);
12726 swash = NULL;
12727 }
12728
12729 /* Clear the invert flag since have just done it here */
12730 invert = FALSE;
12731 }
12732
12733 /* If we didn't do folding, it's because some information isn't available
12734 * until runtime; set the run-time fold flag for these. (We don't have to
12735 * worry about properties folding, as that is taken care of by the swash
12736 * fetching) */
12737 if (FOLD && (LOC || unicode_alternate))
12738 {
12739 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
12740 }
12741
12742 /* Some character classes are equivalent to other nodes. Such nodes take
12743 * up less room and generally fewer operations to execute than ANYOF nodes.
12744 * Above, we checked for and optimized into some such equivalents for
12745 * certain common classes that are easy to test. Getting to this point in
12746 * the code means that the class didn't get optimized there. Since this
12747 * code is only executed in Pass 2, it is too late to save space--it has
12748 * been allocated in Pass 1, and currently isn't given back. But turning
12749 * things into an EXACTish node can allow the optimizer to join it to any
12750 * adjacent such nodes. And if the class is equivalent to things like /./,
12751 * expensive run-time swashes can be avoided. Now that we have more
12752 * complete information, we can find things necessarily missed by the
12753 * earlier code. I (khw) am not sure how much to look for here. It would
12754 * be easy, but perhaps too slow, to check any candidates against all the
12755 * node types they could possibly match using _invlistEQ(). */
12756
12757 if (cp_list
12758 && ! unicode_alternate
12759 && ! invert
12760 && ! depends_list
12761 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
12762 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
12763 {
12764 UV start, end;
12765 U8 op = END; /* The optimzation node-type */
12766 const char * cur_parse= RExC_parse;
12767
12768 invlist_iterinit(cp_list);
12769 if (! invlist_iternext(cp_list, &start, &end)) {
12770
12771 /* Here, the list is empty. This happens, for example, when a
12772 * Unicode property is the only thing in the character class, and
12773 * it doesn't match anything. (perluniprops.pod notes such
12774 * properties) */
12775 op = OPFAIL;
12776 *flagp |= HASWIDTH|SIMPLE;
12777 }
12778 else if (start == end) { /* The range is a single code point */
12779 if (! invlist_iternext(cp_list, &start, &end)
12780
12781 /* Don't do this optimization if it would require changing
12782 * the pattern to UTF-8 */
12783 && (start < 256 || UTF))
12784 {
12785 /* Here, the list contains a single code point. Can optimize
12786 * into an EXACT node */
12787
12788 value = start;
12789
12790 if (! FOLD) {
12791 op = EXACT;
12792 }
12793 else if (LOC) {
12794
12795 /* A locale node under folding with one code point can be
12796 * an EXACTFL, as its fold won't be calculated until
12797 * runtime */
12798 op = EXACTFL;
12799 }
12800 else {
12801
12802 /* Here, we are generally folding, but there is only one
12803 * code point to match. If we have to, we use an EXACT
12804 * node, but it would be better for joining with adjacent
12805 * nodes in the optimization pass if we used the same
12806 * EXACTFish node that any such are likely to be. We can
12807 * do this iff the code point doesn't participate in any
12808 * folds. For example, an EXACTF of a colon is the same as
12809 * an EXACT one, since nothing folds to or from a colon.
12810 * In the Latin1 range, being an alpha means that the
12811 * character participates in a fold (except for the
12812 * feminine and masculine ordinals, which I (khw) don't
12813 * think are worrying about optimizing for). */
12814 if (value < 256) {
12815 if (isALPHA_L1(value)) {
12816 op = EXACT;
12817 }
12818 }
12819 else {
12820 if (! PL_utf8_foldable) {
12821 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
12822 &PL_sv_undef, 1, 0);
12823 PL_utf8_foldable = _get_swash_invlist(swash);
12824 SvREFCNT_dec(swash);
12825 }
12826 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
12827 op = EXACT;
12828 }
12829 }
12830
12831 /* If we haven't found the node type, above, it means we
12832 * can use the prevailing one */
12833 if (op == END) {
12834 op = compute_EXACTish(pRExC_state);
12835 }
12836 }
12837 }
12838 }
12839 else if (start == 0) {
12840 if (end == UV_MAX) {
12841 op = SANY;
12842 *flagp |= HASWIDTH|SIMPLE;
12843 RExC_naughty++;
12844 }
12845 else if (end == '\n' - 1
12846 && invlist_iternext(cp_list, &start, &end)
12847 && start == '\n' + 1 && end == UV_MAX)
12848 {
12849 op = REG_ANY;
12850 *flagp |= HASWIDTH|SIMPLE;
12851 RExC_naughty++;
12852 }
12853 }
12854
12855 if (op != END) {
12856 RExC_parse = (char *)orig_parse;
12857 RExC_emit = (regnode *)orig_emit;
12858
12859 ret = reg_node(pRExC_state, op);
12860
12861 RExC_parse = (char *)cur_parse;
12862
12863 if (PL_regkind[op] == EXACT) {
12864 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
12865 }
12866
12867 SvREFCNT_dec(listsv);
12868 return ret;
12869 }
12870 }
12871
12872 /* Here, <cp_list> contains all the code points we can determine at
12873 * compile time that match under all conditions. Go through it, and
12874 * for things that belong in the bitmap, put them there, and delete from
12875 * <cp_list>. While we are at it, see if everything above 255 is in the
12876 * list, and if so, set a flag to speed up execution */
12877 ANYOF_BITMAP_ZERO(ret);
12878 if (cp_list) {
12879
12880 /* This gets set if we actually need to modify things */
12881 bool change_invlist = FALSE;
12882
12883 UV start, end;
12884
12885 /* Start looking through <cp_list> */
12886 invlist_iterinit(cp_list);
12887 while (invlist_iternext(cp_list, &start, &end)) {
12888 UV high;
12889 int i;
12890
12891 if (end == UV_MAX && start <= 256) {
12892 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
12893 }
12894
12895 /* Quit if are above what we should change */
12896 if (start > 255) {
12897 break;
12898 }
12899
12900 change_invlist = TRUE;
12901
12902 /* Set all the bits in the range, up to the max that we are doing */
12903 high = (end < 255) ? end : 255;
12904 for (i = start; i <= (int) high; i++) {
12905 if (! ANYOF_BITMAP_TEST(ret, i)) {
12906 ANYOF_BITMAP_SET(ret, i);
12907 prevvalue = value;
12908 value = i;
12909 }
12910 }
12911 }
12912
12913 /* Done with loop; remove any code points that are in the bitmap from
12914 * <cp_list> */
12915 if (change_invlist) {
12916 _invlist_subtract(cp_list, PL_Latin1, &cp_list);
12917 }
12918
12919 /* If have completely emptied it, remove it completely */
12920 if (_invlist_len(cp_list) == 0) {
12921 SvREFCNT_dec(cp_list);
12922 cp_list = NULL;
12923 }
12924 }
12925
12926 if (invert) {
12927 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
12928 }
12929
12930 /* Here, the bitmap has been populated with all the Latin1 code points that
12931 * always match. Can now add to the overall list those that match only
12932 * when the target string is UTF-8 (<depends_list>). */
12933 if (depends_list) {
12934 if (cp_list) {
12935 _invlist_union(cp_list, depends_list, &cp_list);
12936 SvREFCNT_dec(depends_list);
12937 }
12938 else {
12939 cp_list = depends_list;
12940 }
12941 }
12942
12943 /* If there is a swash and more than one element, we can't use the swash in
12944 * the optimization below. */
12945 if (swash && element_count > 1) {
12946 SvREFCNT_dec(swash);
12947 swash = NULL;
12948 }
12949
12950 if (! cp_list
12951 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
12952 && ! unicode_alternate)
12953 {
12954 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
12955 SvREFCNT_dec(listsv);
12956 SvREFCNT_dec(unicode_alternate);
12957 }
12958 else {
12959 /* av[0] stores the character class description in its textual form:
12960 * used later (regexec.c:Perl_regclass_swash()) to initialize the
12961 * appropriate swash, and is also useful for dumping the regnode.
12962 * av[1] if NULL, is a placeholder to later contain the swash computed
12963 * from av[0]. But if no further computation need be done, the
12964 * swash is stored there now.
12965 * av[2] stores the multicharacter foldings, used later in
12966 * regexec.c:S_reginclass().
12967 * av[3] stores the cp_list inversion list for use in addition or
12968 * instead of av[0]; used only if av[1] is NULL
12969 * av[4] is set if any component of the class is from a user-defined
12970 * property; used only if av[1] is NULL */
12971 AV * const av = newAV();
12972 SV *rv;
12973
12974 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
12975 ? listsv
12976 : &PL_sv_undef);
12977 if (swash) {
12978 av_store(av, 1, swash);
12979 SvREFCNT_dec(cp_list);
12980 }
12981 else {
12982 av_store(av, 1, NULL);
12983 if (cp_list) {
12984 av_store(av, 3, cp_list);
12985 av_store(av, 4, newSVuv(has_user_defined_property));
12986 }
12987 }
12988
12989 /* Store any computed multi-char folds only if we are allowing
12990 * them */
12991 if (allow_full_fold) {
12992 av_store(av, 2, MUTABLE_SV(unicode_alternate));
12993 if (unicode_alternate) { /* This node is variable length */
12994 OP(ret) = ANYOFV;
12995 }
12996 }
12997 else {
12998 av_store(av, 2, NULL);
12999 }
13000 rv = newRV_noinc(MUTABLE_SV(av));
13001 n = add_data(pRExC_state, 1, "s");
13002 RExC_rxi->data->data[n] = (void*)rv;
13003 ARG_SET(ret, n);
13004 }
13005
13006 *flagp |= HASWIDTH|SIMPLE;
13007 return ret;
13008}
13009#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13010
13011
13012/* reg_skipcomment()
13013
13014 Absorbs an /x style # comments from the input stream.
13015 Returns true if there is more text remaining in the stream.
13016 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13017 terminates the pattern without including a newline.
13018
13019 Note its the callers responsibility to ensure that we are
13020 actually in /x mode
13021
13022*/
13023
13024STATIC bool
13025S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
13026{
13027 bool ended = 0;
13028
13029 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
13030
13031 while (RExC_parse < RExC_end)
13032 if (*RExC_parse++ == '\n') {
13033 ended = 1;
13034 break;
13035 }
13036 if (!ended) {
13037 /* we ran off the end of the pattern without ending
13038 the comment, so we have to add an \n when wrapping */
13039 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
13040 return 0;
13041 } else
13042 return 1;
13043}
13044
13045/* nextchar()
13046
13047 Advances the parse position, and optionally absorbs
13048 "whitespace" from the inputstream.
13049
13050 Without /x "whitespace" means (?#...) style comments only,
13051 with /x this means (?#...) and # comments and whitespace proper.
13052
13053 Returns the RExC_parse point from BEFORE the scan occurs.
13054
13055 This is the /x friendly way of saying RExC_parse++.
13056*/
13057
13058STATIC char*
13059S_nextchar(pTHX_ RExC_state_t *pRExC_state)
13060{
13061 char* const retval = RExC_parse++;
13062
13063 PERL_ARGS_ASSERT_NEXTCHAR;
13064
13065 for (;;) {
13066 if (RExC_end - RExC_parse >= 3
13067 && *RExC_parse == '('
13068 && RExC_parse[1] == '?'
13069 && RExC_parse[2] == '#')
13070 {
13071 while (*RExC_parse != ')') {
13072 if (RExC_parse == RExC_end)
13073 FAIL("Sequence (?#... not terminated");
13074 RExC_parse++;
13075 }
13076 RExC_parse++;
13077 continue;
13078 }
13079 if (RExC_flags & RXf_PMf_EXTENDED) {
13080 if (isSPACE(*RExC_parse)) {
13081 RExC_parse++;
13082 continue;
13083 }
13084 else if (*RExC_parse == '#') {
13085 if ( reg_skipcomment( pRExC_state ) )
13086 continue;
13087 }
13088 }
13089 return retval;
13090 }
13091}
13092
13093/*
13094- reg_node - emit a node
13095*/
13096STATIC regnode * /* Location. */
13097S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
13098{
13099 dVAR;
13100 regnode *ptr;
13101 regnode * const ret = RExC_emit;
13102 GET_RE_DEBUG_FLAGS_DECL;
13103
13104 PERL_ARGS_ASSERT_REG_NODE;
13105
13106 if (SIZE_ONLY) {
13107 SIZE_ALIGN(RExC_size);
13108 RExC_size += 1;
13109 return(ret);
13110 }
13111 if (RExC_emit >= RExC_emit_bound)
13112 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
13113 op, RExC_emit, RExC_emit_bound);
13114
13115 NODE_ALIGN_FILL(ret);
13116 ptr = ret;
13117 FILL_ADVANCE_NODE(ptr, op);
13118#ifdef RE_TRACK_PATTERN_OFFSETS
13119 if (RExC_offsets) { /* MJD */
13120 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
13121 "reg_node", __LINE__,
13122 PL_reg_name[op],
13123 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
13124 ? "Overwriting end of array!\n" : "OK",
13125 (UV)(RExC_emit - RExC_emit_start),
13126 (UV)(RExC_parse - RExC_start),
13127 (UV)RExC_offsets[0]));
13128 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
13129 }
13130#endif
13131 RExC_emit = ptr;
13132 return(ret);
13133}
13134
13135/*
13136- reganode - emit a node with an argument
13137*/
13138STATIC regnode * /* Location. */
13139S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
13140{
13141 dVAR;
13142 regnode *ptr;
13143 regnode * const ret = RExC_emit;
13144 GET_RE_DEBUG_FLAGS_DECL;
13145
13146 PERL_ARGS_ASSERT_REGANODE;
13147
13148 if (SIZE_ONLY) {
13149 SIZE_ALIGN(RExC_size);
13150 RExC_size += 2;
13151 /*
13152 We can't do this:
13153
13154 assert(2==regarglen[op]+1);
13155
13156 Anything larger than this has to allocate the extra amount.
13157 If we changed this to be:
13158
13159 RExC_size += (1 + regarglen[op]);
13160
13161 then it wouldn't matter. Its not clear what side effect
13162 might come from that so its not done so far.
13163 -- dmq
13164 */
13165 return(ret);
13166 }
13167 if (RExC_emit >= RExC_emit_bound)
13168 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
13169 op, RExC_emit, RExC_emit_bound);
13170
13171 NODE_ALIGN_FILL(ret);
13172 ptr = ret;
13173 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
13174#ifdef RE_TRACK_PATTERN_OFFSETS
13175 if (RExC_offsets) { /* MJD */
13176 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
13177 "reganode",
13178 __LINE__,
13179 PL_reg_name[op],
13180 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
13181 "Overwriting end of array!\n" : "OK",
13182 (UV)(RExC_emit - RExC_emit_start),
13183 (UV)(RExC_parse - RExC_start),
13184 (UV)RExC_offsets[0]));
13185 Set_Cur_Node_Offset;
13186 }
13187#endif
13188 RExC_emit = ptr;
13189 return(ret);
13190}
13191
13192/*
13193- reguni - emit (if appropriate) a Unicode character
13194*/
13195STATIC STRLEN
13196S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
13197{
13198 dVAR;
13199
13200 PERL_ARGS_ASSERT_REGUNI;
13201
13202 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
13203}
13204
13205/*
13206- reginsert - insert an operator in front of already-emitted operand
13207*
13208* Means relocating the operand.
13209*/
13210STATIC void
13211S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
13212{
13213 dVAR;
13214 regnode *src;
13215 regnode *dst;
13216 regnode *place;
13217 const int offset = regarglen[(U8)op];
13218 const int size = NODE_STEP_REGNODE + offset;
13219 GET_RE_DEBUG_FLAGS_DECL;
13220
13221 PERL_ARGS_ASSERT_REGINSERT;
13222 PERL_UNUSED_ARG(depth);
13223/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
13224 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
13225 if (SIZE_ONLY) {
13226 RExC_size += size;
13227 return;
13228 }
13229
13230 src = RExC_emit;
13231 RExC_emit += size;
13232 dst = RExC_emit;
13233 if (RExC_open_parens) {
13234 int paren;
13235 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
13236 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
13237 if ( RExC_open_parens[paren] >= opnd ) {
13238 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
13239 RExC_open_parens[paren] += size;
13240 } else {
13241 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
13242 }
13243 if ( RExC_close_parens[paren] >= opnd ) {
13244 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
13245 RExC_close_parens[paren] += size;
13246 } else {
13247 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
13248 }
13249 }
13250 }
13251
13252 while (src > opnd) {
13253 StructCopy(--src, --dst, regnode);
13254#ifdef RE_TRACK_PATTERN_OFFSETS
13255 if (RExC_offsets) { /* MJD 20010112 */
13256 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
13257 "reg_insert",
13258 __LINE__,
13259 PL_reg_name[op],
13260 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
13261 ? "Overwriting end of array!\n" : "OK",
13262 (UV)(src - RExC_emit_start),
13263 (UV)(dst - RExC_emit_start),
13264 (UV)RExC_offsets[0]));
13265 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
13266 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
13267 }
13268#endif
13269 }
13270
13271
13272 place = opnd; /* Op node, where operand used to be. */
13273#ifdef RE_TRACK_PATTERN_OFFSETS
13274 if (RExC_offsets) { /* MJD */
13275 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
13276 "reginsert",
13277 __LINE__,
13278 PL_reg_name[op],
13279 (UV)(place - RExC_emit_start) > RExC_offsets[0]
13280 ? "Overwriting end of array!\n" : "OK",
13281 (UV)(place - RExC_emit_start),
13282 (UV)(RExC_parse - RExC_start),
13283 (UV)RExC_offsets[0]));
13284 Set_Node_Offset(place, RExC_parse);
13285 Set_Node_Length(place, 1);
13286 }
13287#endif
13288 src = NEXTOPER(place);
13289 FILL_ADVANCE_NODE(place, op);
13290 Zero(src, offset, regnode);
13291}
13292
13293/*
13294- regtail - set the next-pointer at the end of a node chain of p to val.
13295- SEE ALSO: regtail_study
13296*/
13297/* TODO: All three parms should be const */
13298STATIC void
13299S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
13300{
13301 dVAR;
13302 regnode *scan;
13303 GET_RE_DEBUG_FLAGS_DECL;
13304
13305 PERL_ARGS_ASSERT_REGTAIL;
13306#ifndef DEBUGGING
13307 PERL_UNUSED_ARG(depth);
13308#endif
13309
13310 if (SIZE_ONLY)
13311 return;
13312
13313 /* Find last node. */
13314 scan = p;
13315 for (;;) {
13316 regnode * const temp = regnext(scan);
13317 DEBUG_PARSE_r({
13318 SV * const mysv=sv_newmortal();
13319 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
13320 regprop(RExC_rx, mysv, scan);
13321 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
13322 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
13323 (temp == NULL ? "->" : ""),
13324 (temp == NULL ? PL_reg_name[OP(val)] : "")
13325 );
13326 });
13327 if (temp == NULL)
13328 break;
13329 scan = temp;
13330 }
13331
13332 if (reg_off_by_arg[OP(scan)]) {
13333 ARG_SET(scan, val - scan);
13334 }
13335 else {
13336 NEXT_OFF(scan) = val - scan;
13337 }
13338}
13339
13340#ifdef DEBUGGING
13341/*
13342- regtail_study - set the next-pointer at the end of a node chain of p to val.
13343- Look for optimizable sequences at the same time.
13344- currently only looks for EXACT chains.
13345
13346This is experimental code. The idea is to use this routine to perform
13347in place optimizations on branches and groups as they are constructed,
13348with the long term intention of removing optimization from study_chunk so
13349that it is purely analytical.
13350
13351Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
13352to control which is which.
13353
13354*/
13355/* TODO: All four parms should be const */
13356
13357STATIC U8
13358S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
13359{
13360 dVAR;
13361 regnode *scan;
13362 U8 exact = PSEUDO;
13363#ifdef EXPERIMENTAL_INPLACESCAN
13364 I32 min = 0;
13365#endif
13366 GET_RE_DEBUG_FLAGS_DECL;
13367
13368 PERL_ARGS_ASSERT_REGTAIL_STUDY;
13369
13370
13371 if (SIZE_ONLY)
13372 return exact;
13373
13374 /* Find last node. */
13375
13376 scan = p;
13377 for (;;) {
13378 regnode * const temp = regnext(scan);
13379#ifdef EXPERIMENTAL_INPLACESCAN
13380 if (PL_regkind[OP(scan)] == EXACT) {
13381 bool has_exactf_sharp_s; /* Unexamined in this routine */
13382 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
13383 return EXACT;
13384 }
13385#endif
13386 if ( exact ) {
13387 switch (OP(scan)) {
13388 case EXACT:
13389 case EXACTF:
13390 case EXACTFA:
13391 case EXACTFU:
13392 case EXACTFU_SS:
13393 case EXACTFU_TRICKYFOLD:
13394 case EXACTFL:
13395 if( exact == PSEUDO )
13396 exact= OP(scan);
13397 else if ( exact != OP(scan) )
13398 exact= 0;
13399 case NOTHING:
13400 break;
13401 default:
13402 exact= 0;
13403 }
13404 }
13405 DEBUG_PARSE_r({
13406 SV * const mysv=sv_newmortal();
13407 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
13408 regprop(RExC_rx, mysv, scan);
13409 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
13410 SvPV_nolen_const(mysv),
13411 REG_NODE_NUM(scan),
13412 PL_reg_name[exact]);
13413 });
13414 if (temp == NULL)
13415 break;
13416 scan = temp;
13417 }
13418 DEBUG_PARSE_r({
13419 SV * const mysv_val=sv_newmortal();
13420 DEBUG_PARSE_MSG("");
13421 regprop(RExC_rx, mysv_val, val);
13422 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
13423 SvPV_nolen_const(mysv_val),
13424 (IV)REG_NODE_NUM(val),
13425 (IV)(val - scan)
13426 );
13427 });
13428 if (reg_off_by_arg[OP(scan)]) {
13429 ARG_SET(scan, val - scan);
13430 }
13431 else {
13432 NEXT_OFF(scan) = val - scan;
13433 }
13434
13435 return exact;
13436}
13437#endif
13438
13439/*
13440 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
13441 */
13442#ifdef DEBUGGING
13443static void
13444S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
13445{
13446 int bit;
13447 int set=0;
13448 regex_charset cs;
13449
13450 for (bit=0; bit<32; bit++) {
13451 if (flags & (1<<bit)) {
13452 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
13453 continue;
13454 }
13455 if (!set++ && lead)
13456 PerlIO_printf(Perl_debug_log, "%s",lead);
13457 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
13458 }
13459 }
13460 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
13461 if (!set++ && lead) {
13462 PerlIO_printf(Perl_debug_log, "%s",lead);
13463 }
13464 switch (cs) {
13465 case REGEX_UNICODE_CHARSET:
13466 PerlIO_printf(Perl_debug_log, "UNICODE");
13467 break;
13468 case REGEX_LOCALE_CHARSET:
13469 PerlIO_printf(Perl_debug_log, "LOCALE");
13470 break;
13471 case REGEX_ASCII_RESTRICTED_CHARSET:
13472 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
13473 break;
13474 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
13475 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
13476 break;
13477 default:
13478 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
13479 break;
13480 }
13481 }
13482 if (lead) {
13483 if (set)
13484 PerlIO_printf(Perl_debug_log, "\n");
13485 else
13486 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
13487 }
13488}
13489#endif
13490
13491void
13492Perl_regdump(pTHX_ const regexp *r)
13493{
13494#ifdef DEBUGGING
13495 dVAR;
13496 SV * const sv = sv_newmortal();
13497 SV *dsv= sv_newmortal();
13498 RXi_GET_DECL(r,ri);
13499 GET_RE_DEBUG_FLAGS_DECL;
13500
13501 PERL_ARGS_ASSERT_REGDUMP;
13502
13503 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
13504
13505 /* Header fields of interest. */
13506 if (r->anchored_substr) {
13507 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
13508 RE_SV_DUMPLEN(r->anchored_substr), 30);
13509 PerlIO_printf(Perl_debug_log,
13510 "anchored %s%s at %"IVdf" ",
13511 s, RE_SV_TAIL(r->anchored_substr),
13512 (IV)r->anchored_offset);
13513 } else if (r->anchored_utf8) {
13514 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
13515 RE_SV_DUMPLEN(r->anchored_utf8), 30);
13516 PerlIO_printf(Perl_debug_log,
13517 "anchored utf8 %s%s at %"IVdf" ",
13518 s, RE_SV_TAIL(r->anchored_utf8),
13519 (IV)r->anchored_offset);
13520 }
13521 if (r->float_substr) {
13522 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
13523 RE_SV_DUMPLEN(r->float_substr), 30);
13524 PerlIO_printf(Perl_debug_log,
13525 "floating %s%s at %"IVdf"..%"UVuf" ",
13526 s, RE_SV_TAIL(r->float_substr),
13527 (IV)r->float_min_offset, (UV)r->float_max_offset);
13528 } else if (r->float_utf8) {
13529 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
13530 RE_SV_DUMPLEN(r->float_utf8), 30);
13531 PerlIO_printf(Perl_debug_log,
13532 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
13533 s, RE_SV_TAIL(r->float_utf8),
13534 (IV)r->float_min_offset, (UV)r->float_max_offset);
13535 }
13536 if (r->check_substr || r->check_utf8)
13537 PerlIO_printf(Perl_debug_log,
13538 (const char *)
13539 (r->check_substr == r->float_substr
13540 && r->check_utf8 == r->float_utf8
13541 ? "(checking floating" : "(checking anchored"));
13542 if (r->extflags & RXf_NOSCAN)
13543 PerlIO_printf(Perl_debug_log, " noscan");
13544 if (r->extflags & RXf_CHECK_ALL)
13545 PerlIO_printf(Perl_debug_log, " isall");
13546 if (r->check_substr || r->check_utf8)
13547 PerlIO_printf(Perl_debug_log, ") ");
13548
13549 if (ri->regstclass) {
13550 regprop(r, sv, ri->regstclass);
13551 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
13552 }
13553 if (r->extflags & RXf_ANCH) {
13554 PerlIO_printf(Perl_debug_log, "anchored");
13555 if (r->extflags & RXf_ANCH_BOL)
13556 PerlIO_printf(Perl_debug_log, "(BOL)");
13557 if (r->extflags & RXf_ANCH_MBOL)
13558 PerlIO_printf(Perl_debug_log, "(MBOL)");
13559 if (r->extflags & RXf_ANCH_SBOL)
13560 PerlIO_printf(Perl_debug_log, "(SBOL)");
13561 if (r->extflags & RXf_ANCH_GPOS)
13562 PerlIO_printf(Perl_debug_log, "(GPOS)");
13563 PerlIO_putc(Perl_debug_log, ' ');
13564 }
13565 if (r->extflags & RXf_GPOS_SEEN)
13566 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
13567 if (r->intflags & PREGf_SKIP)
13568 PerlIO_printf(Perl_debug_log, "plus ");
13569 if (r->intflags & PREGf_IMPLICIT)
13570 PerlIO_printf(Perl_debug_log, "implicit ");
13571 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
13572 if (r->extflags & RXf_EVAL_SEEN)
13573 PerlIO_printf(Perl_debug_log, "with eval ");
13574 PerlIO_printf(Perl_debug_log, "\n");
13575 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
13576#else
13577 PERL_ARGS_ASSERT_REGDUMP;
13578 PERL_UNUSED_CONTEXT;
13579 PERL_UNUSED_ARG(r);
13580#endif /* DEBUGGING */
13581}
13582
13583/*
13584- regprop - printable representation of opcode
13585*/
13586#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
13587STMT_START { \
13588 if (do_sep) { \
13589 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
13590 if (flags & ANYOF_INVERT) \
13591 /*make sure the invert info is in each */ \
13592 sv_catpvs(sv, "^"); \
13593 do_sep = 0; \
13594 } \
13595} STMT_END
13596
13597void
13598Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
13599{
13600#ifdef DEBUGGING
13601 dVAR;
13602 int k;
13603
13604 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
13605 static const char * const anyofs[] = {
13606 "\\w",
13607 "\\W",
13608 "\\s",
13609 "\\S",
13610 "\\d",
13611 "\\D",
13612 "[:alnum:]",
13613 "[:^alnum:]",
13614 "[:alpha:]",
13615 "[:^alpha:]",
13616 "[:ascii:]",
13617 "[:^ascii:]",
13618 "[:cntrl:]",
13619 "[:^cntrl:]",
13620 "[:graph:]",
13621 "[:^graph:]",
13622 "[:lower:]",
13623 "[:^lower:]",
13624 "[:print:]",
13625 "[:^print:]",
13626 "[:punct:]",
13627 "[:^punct:]",
13628 "[:upper:]",
13629 "[:^upper:]",
13630 "[:xdigit:]",
13631 "[:^xdigit:]",
13632 "[:space:]",
13633 "[:^space:]",
13634 "[:blank:]",
13635 "[:^blank:]"
13636 };
13637 RXi_GET_DECL(prog,progi);
13638 GET_RE_DEBUG_FLAGS_DECL;
13639
13640 PERL_ARGS_ASSERT_REGPROP;
13641
13642 sv_setpvs(sv, "");
13643
13644 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
13645 /* It would be nice to FAIL() here, but this may be called from
13646 regexec.c, and it would be hard to supply pRExC_state. */
13647 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
13648 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
13649
13650 k = PL_regkind[OP(o)];
13651
13652 if (k == EXACT) {
13653 sv_catpvs(sv, " ");
13654 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
13655 * is a crude hack but it may be the best for now since
13656 * we have no flag "this EXACTish node was UTF-8"
13657 * --jhi */
13658 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
13659 PERL_PV_ESCAPE_UNI_DETECT |
13660 PERL_PV_ESCAPE_NONASCII |
13661 PERL_PV_PRETTY_ELLIPSES |
13662 PERL_PV_PRETTY_LTGT |
13663 PERL_PV_PRETTY_NOCLEAR
13664 );
13665 } else if (k == TRIE) {
13666 /* print the details of the trie in dumpuntil instead, as
13667 * progi->data isn't available here */
13668 const char op = OP(o);
13669 const U32 n = ARG(o);
13670 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
13671 (reg_ac_data *)progi->data->data[n] :
13672 NULL;
13673 const reg_trie_data * const trie
13674 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
13675
13676 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
13677 DEBUG_TRIE_COMPILE_r(
13678 Perl_sv_catpvf(aTHX_ sv,
13679 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
13680 (UV)trie->startstate,
13681 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
13682 (UV)trie->wordcount,
13683 (UV)trie->minlen,
13684 (UV)trie->maxlen,
13685 (UV)TRIE_CHARCOUNT(trie),
13686 (UV)trie->uniquecharcount
13687 )
13688 );
13689 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
13690 int i;
13691 int rangestart = -1;
13692 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
13693 sv_catpvs(sv, "[");
13694 for (i = 0; i <= 256; i++) {
13695 if (i < 256 && BITMAP_TEST(bitmap,i)) {
13696 if (rangestart == -1)
13697 rangestart = i;
13698 } else if (rangestart != -1) {
13699 if (i <= rangestart + 3)
13700 for (; rangestart < i; rangestart++)
13701 put_byte(sv, rangestart);
13702 else {
13703 put_byte(sv, rangestart);
13704 sv_catpvs(sv, "-");
13705 put_byte(sv, i - 1);
13706 }
13707 rangestart = -1;
13708 }
13709 }
13710 sv_catpvs(sv, "]");
13711 }
13712
13713 } else if (k == CURLY) {
13714 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
13715 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
13716 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
13717 }
13718 else if (k == WHILEM && o->flags) /* Ordinal/of */
13719 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
13720 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
13721 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
13722 if ( RXp_PAREN_NAMES(prog) ) {
13723 if ( k != REF || (OP(o) < NREF)) {
13724 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
13725 SV **name= av_fetch(list, ARG(o), 0 );
13726 if (name)
13727 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
13728 }
13729 else {
13730 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
13731 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
13732 I32 *nums=(I32*)SvPVX(sv_dat);
13733 SV **name= av_fetch(list, nums[0], 0 );
13734 I32 n;
13735 if (name) {
13736 for ( n=0; n<SvIVX(sv_dat); n++ ) {
13737 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
13738 (n ? "," : ""), (IV)nums[n]);
13739 }
13740 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
13741 }
13742 }
13743 }
13744 } else if (k == GOSUB)
13745 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
13746 else if (k == VERB) {
13747 if (!o->flags)
13748 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
13749 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
13750 } else if (k == LOGICAL)
13751 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
13752 else if (k == ANYOF) {
13753 int i, rangestart = -1;
13754 const U8 flags = ANYOF_FLAGS(o);
13755 int do_sep = 0;
13756
13757
13758 if (flags & ANYOF_LOCALE)
13759 sv_catpvs(sv, "{loc}");
13760 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
13761 sv_catpvs(sv, "{i}");
13762 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
13763 if (flags & ANYOF_INVERT)
13764 sv_catpvs(sv, "^");
13765
13766 /* output what the standard cp 0-255 bitmap matches */
13767 for (i = 0; i <= 256; i++) {
13768 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
13769 if (rangestart == -1)
13770 rangestart = i;
13771 } else if (rangestart != -1) {
13772 if (i <= rangestart + 3)
13773 for (; rangestart < i; rangestart++)
13774 put_byte(sv, rangestart);
13775 else {
13776 put_byte(sv, rangestart);
13777 sv_catpvs(sv, "-");
13778 put_byte(sv, i - 1);
13779 }
13780 do_sep = 1;
13781 rangestart = -1;
13782 }
13783 }
13784
13785 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
13786 /* output any special charclass tests (used entirely under use locale) */
13787 if (ANYOF_CLASS_TEST_ANY_SET(o))
13788 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
13789 if (ANYOF_CLASS_TEST(o,i)) {
13790 sv_catpv(sv, anyofs[i]);
13791 do_sep = 1;
13792 }
13793
13794 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
13795
13796 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
13797 sv_catpvs(sv, "{non-utf8-latin1-all}");
13798 }
13799
13800 /* output information about the unicode matching */
13801 if (flags & ANYOF_UNICODE_ALL)
13802 sv_catpvs(sv, "{unicode_all}");
13803 else if (ANYOF_NONBITMAP(o))
13804 sv_catpvs(sv, "{unicode}");
13805 if (flags & ANYOF_NONBITMAP_NON_UTF8)
13806 sv_catpvs(sv, "{outside bitmap}");
13807
13808 if (ANYOF_NONBITMAP(o)) {
13809 SV *lv; /* Set if there is something outside the bit map */
13810 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
13811 bool byte_output = FALSE; /* If something in the bitmap has been
13812 output */
13813
13814 if (lv && lv != &PL_sv_undef) {
13815 if (sw) {
13816 U8 s[UTF8_MAXBYTES_CASE+1];
13817
13818 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
13819 uvchr_to_utf8(s, i);
13820
13821 if (i < 256
13822 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
13823 things already
13824 output as part
13825 of the bitmap */
13826 && swash_fetch(sw, s, TRUE))
13827 {
13828 if (rangestart == -1)
13829 rangestart = i;
13830 } else if (rangestart != -1) {
13831 byte_output = TRUE;
13832 if (i <= rangestart + 3)
13833 for (; rangestart < i; rangestart++) {
13834 put_byte(sv, rangestart);
13835 }
13836 else {
13837 put_byte(sv, rangestart);
13838 sv_catpvs(sv, "-");
13839 put_byte(sv, i-1);
13840 }
13841 rangestart = -1;
13842 }
13843 }
13844 }
13845
13846 {
13847 char *s = savesvpv(lv);
13848 char * const origs = s;
13849
13850 while (*s && *s != '\n')
13851 s++;
13852
13853 if (*s == '\n') {
13854 const char * const t = ++s;
13855
13856 if (byte_output) {
13857 sv_catpvs(sv, " ");
13858 }
13859
13860 while (*s) {
13861 if (*s == '\n') {
13862
13863 /* Truncate very long output */
13864 if (s - origs > 256) {
13865 Perl_sv_catpvf(aTHX_ sv,
13866 "%.*s...",
13867 (int) (s - origs - 1),
13868 t);
13869 goto out_dump;
13870 }
13871 *s = ' ';
13872 }
13873 else if (*s == '\t') {
13874 *s = '-';
13875 }
13876 s++;
13877 }
13878 if (s[-1] == ' ')
13879 s[-1] = 0;
13880
13881 sv_catpv(sv, t);
13882 }
13883
13884 out_dump:
13885
13886 Safefree(origs);
13887 }
13888 SvREFCNT_dec(lv);
13889 }
13890 }
13891
13892 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
13893 }
13894 else if (k == POSIXD) {
13895 U8 index = FLAGS(o) * 2;
13896 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
13897 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
13898 }
13899 else {
13900 sv_catpv(sv, anyofs[index]);
13901 }
13902 }
13903 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
13904 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
13905#else
13906 PERL_UNUSED_CONTEXT;
13907 PERL_UNUSED_ARG(sv);
13908 PERL_UNUSED_ARG(o);
13909 PERL_UNUSED_ARG(prog);
13910#endif /* DEBUGGING */
13911}
13912
13913SV *
13914Perl_re_intuit_string(pTHX_ REGEXP * const r)
13915{ /* Assume that RE_INTUIT is set */
13916 dVAR;
13917 struct regexp *const prog = (struct regexp *)SvANY(r);
13918 GET_RE_DEBUG_FLAGS_DECL;
13919
13920 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
13921 PERL_UNUSED_CONTEXT;
13922
13923 DEBUG_COMPILE_r(
13924 {
13925 const char * const s = SvPV_nolen_const(prog->check_substr
13926 ? prog->check_substr : prog->check_utf8);
13927
13928 if (!PL_colorset) reginitcolors();
13929 PerlIO_printf(Perl_debug_log,
13930 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
13931 PL_colors[4],
13932 prog->check_substr ? "" : "utf8 ",
13933 PL_colors[5],PL_colors[0],
13934 s,
13935 PL_colors[1],
13936 (strlen(s) > 60 ? "..." : ""));
13937 } );
13938
13939 return prog->check_substr ? prog->check_substr : prog->check_utf8;
13940}
13941
13942/*
13943 pregfree()
13944
13945 handles refcounting and freeing the perl core regexp structure. When
13946 it is necessary to actually free the structure the first thing it
13947 does is call the 'free' method of the regexp_engine associated to
13948 the regexp, allowing the handling of the void *pprivate; member
13949 first. (This routine is not overridable by extensions, which is why
13950 the extensions free is called first.)
13951
13952 See regdupe and regdupe_internal if you change anything here.
13953*/
13954#ifndef PERL_IN_XSUB_RE
13955void
13956Perl_pregfree(pTHX_ REGEXP *r)
13957{
13958 SvREFCNT_dec(r);
13959}
13960
13961void
13962Perl_pregfree2(pTHX_ REGEXP *rx)
13963{
13964 dVAR;
13965 struct regexp *const r = (struct regexp *)SvANY(rx);
13966 GET_RE_DEBUG_FLAGS_DECL;
13967
13968 PERL_ARGS_ASSERT_PREGFREE2;
13969
13970 if (r->mother_re) {
13971 ReREFCNT_dec(r->mother_re);
13972 } else {
13973 CALLREGFREE_PVT(rx); /* free the private data */
13974 SvREFCNT_dec(RXp_PAREN_NAMES(r));
13975 }
13976 if (r->substrs) {
13977 SvREFCNT_dec(r->anchored_substr);
13978 SvREFCNT_dec(r->anchored_utf8);
13979 SvREFCNT_dec(r->float_substr);
13980 SvREFCNT_dec(r->float_utf8);
13981 Safefree(r->substrs);
13982 }
13983 RX_MATCH_COPY_FREE(rx);
13984#ifdef PERL_OLD_COPY_ON_WRITE
13985 SvREFCNT_dec(r->saved_copy);
13986#endif
13987 Safefree(r->offs);
13988 SvREFCNT_dec(r->qr_anoncv);
13989}
13990
13991/* reg_temp_copy()
13992
13993 This is a hacky workaround to the structural issue of match results
13994 being stored in the regexp structure which is in turn stored in
13995 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
13996 could be PL_curpm in multiple contexts, and could require multiple
13997 result sets being associated with the pattern simultaneously, such
13998 as when doing a recursive match with (??{$qr})
13999
14000 The solution is to make a lightweight copy of the regexp structure
14001 when a qr// is returned from the code executed by (??{$qr}) this
14002 lightweight copy doesn't actually own any of its data except for
14003 the starp/end and the actual regexp structure itself.
14004
14005*/
14006
14007
14008REGEXP *
14009Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14010{
14011 struct regexp *ret;
14012 struct regexp *const r = (struct regexp *)SvANY(rx);
14013
14014 PERL_ARGS_ASSERT_REG_TEMP_COPY;
14015
14016 if (!ret_x)
14017 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
14018 ret = (struct regexp *)SvANY(ret_x);
14019
14020 (void)ReREFCNT_inc(rx);
14021 /* We can take advantage of the existing "copied buffer" mechanism in SVs
14022 by pointing directly at the buffer, but flagging that the allocated
14023 space in the copy is zero. As we've just done a struct copy, it's now
14024 a case of zero-ing that, rather than copying the current length. */
14025 SvPV_set(ret_x, RX_WRAPPED(rx));
14026 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
14027 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
14028 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
14029 SvLEN_set(ret_x, 0);
14030 SvSTASH_set(ret_x, NULL);
14031 SvMAGIC_set(ret_x, NULL);
14032 if (r->offs) {
14033 const I32 npar = r->nparens+1;
14034 Newx(ret->offs, npar, regexp_paren_pair);
14035 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
14036 }
14037 if (r->substrs) {
14038 Newx(ret->substrs, 1, struct reg_substr_data);
14039 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
14040
14041 SvREFCNT_inc_void(ret->anchored_substr);
14042 SvREFCNT_inc_void(ret->anchored_utf8);
14043 SvREFCNT_inc_void(ret->float_substr);
14044 SvREFCNT_inc_void(ret->float_utf8);
14045
14046 /* check_substr and check_utf8, if non-NULL, point to either their
14047 anchored or float namesakes, and don't hold a second reference. */
14048 }
14049 RX_MATCH_COPIED_off(ret_x);
14050#ifdef PERL_OLD_COPY_ON_WRITE
14051 ret->saved_copy = NULL;
14052#endif
14053 ret->mother_re = rx;
14054 SvREFCNT_inc_void(ret->qr_anoncv);
14055
14056 return ret_x;
14057}
14058#endif
14059
14060/* regfree_internal()
14061
14062 Free the private data in a regexp. This is overloadable by
14063 extensions. Perl takes care of the regexp structure in pregfree(),
14064 this covers the *pprivate pointer which technically perl doesn't
14065 know about, however of course we have to handle the
14066 regexp_internal structure when no extension is in use.
14067
14068 Note this is called before freeing anything in the regexp
14069 structure.
14070 */
14071
14072void
14073Perl_regfree_internal(pTHX_ REGEXP * const rx)
14074{
14075 dVAR;
14076 struct regexp *const r = (struct regexp *)SvANY(rx);
14077 RXi_GET_DECL(r,ri);
14078 GET_RE_DEBUG_FLAGS_DECL;
14079
14080 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
14081
14082 DEBUG_COMPILE_r({
14083 if (!PL_colorset)
14084 reginitcolors();
14085 {
14086 SV *dsv= sv_newmortal();
14087 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
14088 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
14089 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
14090 PL_colors[4],PL_colors[5],s);
14091 }
14092 });
14093#ifdef RE_TRACK_PATTERN_OFFSETS
14094 if (ri->u.offsets)
14095 Safefree(ri->u.offsets); /* 20010421 MJD */
14096#endif
14097 if (ri->code_blocks) {
14098 int n;
14099 for (n = 0; n < ri->num_code_blocks; n++)
14100 SvREFCNT_dec(ri->code_blocks[n].src_regex);
14101 Safefree(ri->code_blocks);
14102 }
14103
14104 if (ri->data) {
14105 int n = ri->data->count;
14106
14107 while (--n >= 0) {
14108 /* If you add a ->what type here, update the comment in regcomp.h */
14109 switch (ri->data->what[n]) {
14110 case 'a':
14111 case 'r':
14112 case 's':
14113 case 'S':
14114 case 'u':
14115 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
14116 break;
14117 case 'f':
14118 Safefree(ri->data->data[n]);
14119 break;
14120 case 'l':
14121 case 'L':
14122 break;
14123 case 'T':
14124 { /* Aho Corasick add-on structure for a trie node.
14125 Used in stclass optimization only */
14126 U32 refcount;
14127 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
14128 OP_REFCNT_LOCK;
14129 refcount = --aho->refcount;
14130 OP_REFCNT_UNLOCK;
14131 if ( !refcount ) {
14132 PerlMemShared_free(aho->states);
14133 PerlMemShared_free(aho->fail);
14134 /* do this last!!!! */
14135 PerlMemShared_free(ri->data->data[n]);
14136 PerlMemShared_free(ri->regstclass);
14137 }
14138 }
14139 break;
14140 case 't':
14141 {
14142 /* trie structure. */
14143 U32 refcount;
14144 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
14145 OP_REFCNT_LOCK;
14146 refcount = --trie->refcount;
14147 OP_REFCNT_UNLOCK;
14148 if ( !refcount ) {
14149 PerlMemShared_free(trie->charmap);
14150 PerlMemShared_free(trie->states);
14151 PerlMemShared_free(trie->trans);
14152 if (trie->bitmap)
14153 PerlMemShared_free(trie->bitmap);
14154 if (trie->jump)
14155 PerlMemShared_free(trie->jump);
14156 PerlMemShared_free(trie->wordinfo);
14157 /* do this last!!!! */
14158 PerlMemShared_free(ri->data->data[n]);
14159 }
14160 }
14161 break;
14162 default:
14163 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
14164 }
14165 }
14166 Safefree(ri->data->what);
14167 Safefree(ri->data);
14168 }
14169
14170 Safefree(ri);
14171}
14172
14173#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
14174#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
14175#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
14176
14177/*
14178 re_dup - duplicate a regexp.
14179
14180 This routine is expected to clone a given regexp structure. It is only
14181 compiled under USE_ITHREADS.
14182
14183 After all of the core data stored in struct regexp is duplicated
14184 the regexp_engine.dupe method is used to copy any private data
14185 stored in the *pprivate pointer. This allows extensions to handle
14186 any duplication it needs to do.
14187
14188 See pregfree() and regfree_internal() if you change anything here.
14189*/
14190#if defined(USE_ITHREADS)
14191#ifndef PERL_IN_XSUB_RE
14192void
14193Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
14194{
14195 dVAR;
14196 I32 npar;
14197 const struct regexp *r = (const struct regexp *)SvANY(sstr);
14198 struct regexp *ret = (struct regexp *)SvANY(dstr);
14199
14200 PERL_ARGS_ASSERT_RE_DUP_GUTS;
14201
14202 npar = r->nparens+1;
14203 Newx(ret->offs, npar, regexp_paren_pair);
14204 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
14205 if(ret->swap) {
14206 /* no need to copy these */
14207 Newx(ret->swap, npar, regexp_paren_pair);
14208 }
14209
14210 if (ret->substrs) {
14211 /* Do it this way to avoid reading from *r after the StructCopy().
14212 That way, if any of the sv_dup_inc()s dislodge *r from the L1
14213 cache, it doesn't matter. */
14214 const bool anchored = r->check_substr
14215 ? r->check_substr == r->anchored_substr
14216 : r->check_utf8 == r->anchored_utf8;
14217 Newx(ret->substrs, 1, struct reg_substr_data);
14218 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
14219
14220 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
14221 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
14222 ret->float_substr = sv_dup_inc(ret->float_substr, param);
14223 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
14224
14225 /* check_substr and check_utf8, if non-NULL, point to either their
14226 anchored or float namesakes, and don't hold a second reference. */
14227
14228 if (ret->check_substr) {
14229 if (anchored) {
14230 assert(r->check_utf8 == r->anchored_utf8);
14231 ret->check_substr = ret->anchored_substr;
14232 ret->check_utf8 = ret->anchored_utf8;
14233 } else {
14234 assert(r->check_substr == r->float_substr);
14235 assert(r->check_utf8 == r->float_utf8);
14236 ret->check_substr = ret->float_substr;
14237 ret->check_utf8 = ret->float_utf8;
14238 }
14239 } else if (ret->check_utf8) {
14240 if (anchored) {
14241 ret->check_utf8 = ret->anchored_utf8;
14242 } else {
14243 ret->check_utf8 = ret->float_utf8;
14244 }
14245 }
14246 }
14247
14248 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
14249 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
14250
14251 if (ret->pprivate)
14252 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
14253
14254 if (RX_MATCH_COPIED(dstr))
14255 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
14256 else
14257 ret->subbeg = NULL;
14258#ifdef PERL_OLD_COPY_ON_WRITE
14259 ret->saved_copy = NULL;
14260#endif
14261
14262 if (ret->mother_re) {
14263 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
14264 /* Our storage points directly to our mother regexp, but that's
14265 1: a buffer in a different thread
14266 2: something we no longer hold a reference on
14267 so we need to copy it locally. */
14268 /* Note we need to use SvCUR(), rather than
14269 SvLEN(), on our mother_re, because it, in
14270 turn, may well be pointing to its own mother_re. */
14271 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
14272 SvCUR(ret->mother_re)+1));
14273 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
14274 }
14275 ret->mother_re = NULL;
14276 }
14277 ret->gofs = 0;
14278}
14279#endif /* PERL_IN_XSUB_RE */
14280
14281/*
14282 regdupe_internal()
14283
14284 This is the internal complement to regdupe() which is used to copy
14285 the structure pointed to by the *pprivate pointer in the regexp.
14286 This is the core version of the extension overridable cloning hook.
14287 The regexp structure being duplicated will be copied by perl prior
14288 to this and will be provided as the regexp *r argument, however
14289 with the /old/ structures pprivate pointer value. Thus this routine
14290 may override any copying normally done by perl.
14291
14292 It returns a pointer to the new regexp_internal structure.
14293*/
14294
14295void *
14296Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
14297{
14298 dVAR;
14299 struct regexp *const r = (struct regexp *)SvANY(rx);
14300 regexp_internal *reti;
14301 int len;
14302 RXi_GET_DECL(r,ri);
14303
14304 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
14305
14306 len = ProgLen(ri);
14307
14308 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
14309 Copy(ri->program, reti->program, len+1, regnode);
14310
14311 reti->num_code_blocks = ri->num_code_blocks;
14312 if (ri->code_blocks) {
14313 int n;
14314 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
14315 struct reg_code_block);
14316 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
14317 struct reg_code_block);
14318 for (n = 0; n < ri->num_code_blocks; n++)
14319 reti->code_blocks[n].src_regex = (REGEXP*)
14320 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
14321 }
14322 else
14323 reti->code_blocks = NULL;
14324
14325 reti->regstclass = NULL;
14326
14327 if (ri->data) {
14328 struct reg_data *d;
14329 const int count = ri->data->count;
14330 int i;
14331
14332 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
14333 char, struct reg_data);
14334 Newx(d->what, count, U8);
14335
14336 d->count = count;
14337 for (i = 0; i < count; i++) {
14338 d->what[i] = ri->data->what[i];
14339 switch (d->what[i]) {
14340 /* see also regcomp.h and regfree_internal() */
14341 case 'a': /* actually an AV, but the dup function is identical. */
14342 case 'r':
14343 case 's':
14344 case 'S':
14345 case 'u': /* actually an HV, but the dup function is identical. */
14346 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
14347 break;
14348 case 'f':
14349 /* This is cheating. */
14350 Newx(d->data[i], 1, struct regnode_charclass_class);
14351 StructCopy(ri->data->data[i], d->data[i],
14352 struct regnode_charclass_class);
14353 reti->regstclass = (regnode*)d->data[i];
14354 break;
14355 case 'T':
14356 /* Trie stclasses are readonly and can thus be shared
14357 * without duplication. We free the stclass in pregfree
14358 * when the corresponding reg_ac_data struct is freed.
14359 */
14360 reti->regstclass= ri->regstclass;
14361 /* Fall through */
14362 case 't':
14363 OP_REFCNT_LOCK;
14364 ((reg_trie_data*)ri->data->data[i])->refcount++;
14365 OP_REFCNT_UNLOCK;
14366 /* Fall through */
14367 case 'l':
14368 case 'L':
14369 d->data[i] = ri->data->data[i];
14370 break;
14371 default:
14372 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
14373 }
14374 }
14375
14376 reti->data = d;
14377 }
14378 else
14379 reti->data = NULL;
14380
14381 reti->name_list_idx = ri->name_list_idx;
14382
14383#ifdef RE_TRACK_PATTERN_OFFSETS
14384 if (ri->u.offsets) {
14385 Newx(reti->u.offsets, 2*len+1, U32);
14386 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
14387 }
14388#else
14389 SetProgLen(reti,len);
14390#endif
14391
14392 return (void*)reti;
14393}
14394
14395#endif /* USE_ITHREADS */
14396
14397#ifndef PERL_IN_XSUB_RE
14398
14399/*
14400 - regnext - dig the "next" pointer out of a node
14401 */
14402regnode *
14403Perl_regnext(pTHX_ register regnode *p)
14404{
14405 dVAR;
14406 I32 offset;
14407
14408 if (!p)
14409 return(NULL);
14410
14411 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
14412 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
14413 }
14414
14415 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
14416 if (offset == 0)
14417 return(NULL);
14418
14419 return(p+offset);
14420}
14421#endif
14422
14423STATIC void
14424S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
14425{
14426 va_list args;
14427 STRLEN l1 = strlen(pat1);
14428 STRLEN l2 = strlen(pat2);
14429 char buf[512];
14430 SV *msv;
14431 const char *message;
14432
14433 PERL_ARGS_ASSERT_RE_CROAK2;
14434
14435 if (l1 > 510)
14436 l1 = 510;
14437 if (l1 + l2 > 510)
14438 l2 = 510 - l1;
14439 Copy(pat1, buf, l1 , char);
14440 Copy(pat2, buf + l1, l2 , char);
14441 buf[l1 + l2] = '\n';
14442 buf[l1 + l2 + 1] = '\0';
14443#ifdef I_STDARG
14444 /* ANSI variant takes additional second argument */
14445 va_start(args, pat2);
14446#else
14447 va_start(args);
14448#endif
14449 msv = vmess(buf, &args);
14450 va_end(args);
14451 message = SvPV_const(msv,l1);
14452 if (l1 > 512)
14453 l1 = 512;
14454 Copy(message, buf, l1 , char);
14455 buf[l1-1] = '\0'; /* Overwrite \n */
14456 Perl_croak(aTHX_ "%s", buf);
14457}
14458
14459/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
14460
14461#ifndef PERL_IN_XSUB_RE
14462void
14463Perl_save_re_context(pTHX)
14464{
14465 dVAR;
14466
14467 struct re_save_state *state;
14468
14469 SAVEVPTR(PL_curcop);
14470 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
14471
14472 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
14473 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
14474 SSPUSHUV(SAVEt_RE_STATE);
14475
14476 Copy(&PL_reg_state, state, 1, struct re_save_state);
14477
14478 PL_reg_oldsaved = NULL;
14479 PL_reg_oldsavedlen = 0;
14480 PL_reg_oldsavedoffset = 0;
14481 PL_reg_oldsavedcoffset = 0;
14482 PL_reg_maxiter = 0;
14483 PL_reg_leftiter = 0;
14484 PL_reg_poscache = NULL;
14485 PL_reg_poscache_size = 0;
14486#ifdef PERL_OLD_COPY_ON_WRITE
14487 PL_nrs = NULL;
14488#endif
14489
14490 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
14491 if (PL_curpm) {
14492 const REGEXP * const rx = PM_GETRE(PL_curpm);
14493 if (rx) {
14494 U32 i;
14495 for (i = 1; i <= RX_NPARENS(rx); i++) {
14496 char digits[TYPE_CHARS(long)];
14497 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
14498 GV *const *const gvp
14499 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
14500
14501 if (gvp) {
14502 GV * const gv = *gvp;
14503 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
14504 save_scalar(gv);
14505 }
14506 }
14507 }
14508 }
14509}
14510#endif
14511
14512static void
14513clear_re(pTHX_ void *r)
14514{
14515 dVAR;
14516 ReREFCNT_dec((REGEXP *)r);
14517}
14518
14519#ifdef DEBUGGING
14520
14521STATIC void
14522S_put_byte(pTHX_ SV *sv, int c)
14523{
14524 PERL_ARGS_ASSERT_PUT_BYTE;
14525
14526 /* Our definition of isPRINT() ignores locales, so only bytes that are
14527 not part of UTF-8 are considered printable. I assume that the same
14528 holds for UTF-EBCDIC.
14529 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
14530 which Wikipedia says:
14531
14532 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
14533 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
14534 identical, to the ASCII delete (DEL) or rubout control character.
14535 ) So the old condition can be simplified to !isPRINT(c) */
14536 if (!isPRINT(c)) {
14537 if (c < 256) {
14538 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
14539 }
14540 else {
14541 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
14542 }
14543 }
14544 else {
14545 const char string = c;
14546 if (c == '-' || c == ']' || c == '\\' || c == '^')
14547 sv_catpvs(sv, "\\");
14548 sv_catpvn(sv, &string, 1);
14549 }
14550}
14551
14552
14553#define CLEAR_OPTSTART \
14554 if (optstart) STMT_START { \
14555 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
14556 optstart=NULL; \
14557 } STMT_END
14558
14559#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
14560
14561STATIC const regnode *
14562S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
14563 const regnode *last, const regnode *plast,
14564 SV* sv, I32 indent, U32 depth)
14565{
14566 dVAR;
14567 U8 op = PSEUDO; /* Arbitrary non-END op. */
14568 const regnode *next;
14569 const regnode *optstart= NULL;
14570
14571 RXi_GET_DECL(r,ri);
14572 GET_RE_DEBUG_FLAGS_DECL;
14573
14574 PERL_ARGS_ASSERT_DUMPUNTIL;
14575
14576#ifdef DEBUG_DUMPUNTIL
14577 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
14578 last ? last-start : 0,plast ? plast-start : 0);
14579#endif
14580
14581 if (plast && plast < last)
14582 last= plast;
14583
14584 while (PL_regkind[op] != END && (!last || node < last)) {
14585 /* While that wasn't END last time... */
14586 NODE_ALIGN(node);
14587 op = OP(node);
14588 if (op == CLOSE || op == WHILEM)
14589 indent--;
14590 next = regnext((regnode *)node);
14591
14592 /* Where, what. */
14593 if (OP(node) == OPTIMIZED) {
14594 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
14595 optstart = node;
14596 else
14597 goto after_print;
14598 } else
14599 CLEAR_OPTSTART;
14600
14601 regprop(r, sv, node);
14602 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
14603 (int)(2*indent + 1), "", SvPVX_const(sv));
14604
14605 if (OP(node) != OPTIMIZED) {
14606 if (next == NULL) /* Next ptr. */
14607 PerlIO_printf(Perl_debug_log, " (0)");
14608 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
14609 PerlIO_printf(Perl_debug_log, " (FAIL)");
14610 else
14611 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
14612 (void)PerlIO_putc(Perl_debug_log, '\n');
14613 }
14614
14615 after_print:
14616 if (PL_regkind[(U8)op] == BRANCHJ) {
14617 assert(next);
14618 {
14619 const regnode *nnode = (OP(next) == LONGJMP
14620 ? regnext((regnode *)next)
14621 : next);
14622 if (last && nnode > last)
14623 nnode = last;
14624 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
14625 }
14626 }
14627 else if (PL_regkind[(U8)op] == BRANCH) {
14628 assert(next);
14629 DUMPUNTIL(NEXTOPER(node), next);
14630 }
14631 else if ( PL_regkind[(U8)op] == TRIE ) {
14632 const regnode *this_trie = node;
14633 const char op = OP(node);
14634 const U32 n = ARG(node);
14635 const reg_ac_data * const ac = op>=AHOCORASICK ?
14636 (reg_ac_data *)ri->data->data[n] :
14637 NULL;
14638 const reg_trie_data * const trie =
14639 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
14640#ifdef DEBUGGING
14641 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
14642#endif
14643 const regnode *nextbranch= NULL;
14644 I32 word_idx;
14645 sv_setpvs(sv, "");
14646 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
14647 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
14648
14649 PerlIO_printf(Perl_debug_log, "%*s%s ",
14650 (int)(2*(indent+3)), "",
14651 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
14652 PL_colors[0], PL_colors[1],
14653 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
14654 PERL_PV_PRETTY_ELLIPSES |
14655 PERL_PV_PRETTY_LTGT
14656 )
14657 : "???"
14658 );
14659 if (trie->jump) {
14660 U16 dist= trie->jump[word_idx+1];
14661 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
14662 (UV)((dist ? this_trie + dist : next) - start));
14663 if (dist) {
14664 if (!nextbranch)
14665 nextbranch= this_trie + trie->jump[0];
14666 DUMPUNTIL(this_trie + dist, nextbranch);
14667 }
14668 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
14669 nextbranch= regnext((regnode *)nextbranch);
14670 } else {
14671 PerlIO_printf(Perl_debug_log, "\n");
14672 }
14673 }
14674 if (last && next > last)
14675 node= last;
14676 else
14677 node= next;
14678 }
14679 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
14680 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
14681 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
14682 }
14683 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
14684 assert(next);
14685 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
14686 }
14687 else if ( op == PLUS || op == STAR) {
14688 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
14689 }
14690 else if (PL_regkind[(U8)op] == ANYOF) {
14691 /* arglen 1 + class block */
14692 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
14693 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
14694 node = NEXTOPER(node);
14695 }
14696 else if (PL_regkind[(U8)op] == EXACT) {
14697 /* Literal string, where present. */
14698 node += NODE_SZ_STR(node) - 1;
14699 node = NEXTOPER(node);
14700 }
14701 else {
14702 node = NEXTOPER(node);
14703 node += regarglen[(U8)op];
14704 }
14705 if (op == CURLYX || op == OPEN)
14706 indent++;
14707 }
14708 CLEAR_OPTSTART;
14709#ifdef DEBUG_DUMPUNTIL
14710 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
14711#endif
14712 return node;
14713}
14714
14715#endif /* DEBUGGING */
14716
14717/*
14718 * Local variables:
14719 * c-indentation-style: bsd
14720 * c-basic-offset: 4
14721 * indent-tabs-mode: nil
14722 * End:
14723 *
14724 * ex: set ts=8 sts=4 sw=4 et:
14725 */