This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Unbreak Concise glob output
[perl5.git] / pp_sort.c
... / ...
CommitLineData
1/* pp_sort.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16 */
17
18/* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
29#include "EXTERN.h"
30#define PERL_IN_PP_SORT_C
31#include "perl.h"
32
33#if defined(UNDER_CE)
34/* looks like 'small' is reserved word for WINCE (or somesuch)*/
35#define small xsmall
36#endif
37
38#define sv_cmp_static Perl_sv_cmp
39#define sv_cmp_locale_static Perl_sv_cmp_locale
40
41#ifndef SMALLSORT
42#define SMALLSORT (200)
43#endif
44
45/* Flags for qsortsv and mergesortsv */
46#define SORTf_DESC 1
47#define SORTf_STABLE 2
48#define SORTf_QSORT 4
49
50/*
51 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
52 *
53 * The original code was written in conjunction with BSD Computer Software
54 * Research Group at University of California, Berkeley.
55 *
56 * See also: "Optimistic Merge Sort" (SODA '92)
57 *
58 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
59 *
60 * The code can be distributed under the same terms as Perl itself.
61 *
62 */
63
64
65typedef char * aptr; /* pointer for arithmetic on sizes */
66typedef SV * gptr; /* pointers in our lists */
67
68/* Binary merge internal sort, with a few special mods
69** for the special perl environment it now finds itself in.
70**
71** Things that were once options have been hotwired
72** to values suitable for this use. In particular, we'll always
73** initialize looking for natural runs, we'll always produce stable
74** output, and we'll always do Peter McIlroy's binary merge.
75*/
76
77/* Pointer types for arithmetic and storage and convenience casts */
78
79#define APTR(P) ((aptr)(P))
80#define GPTP(P) ((gptr *)(P))
81#define GPPP(P) ((gptr **)(P))
82
83
84/* byte offset from pointer P to (larger) pointer Q */
85#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
86
87#define PSIZE sizeof(gptr)
88
89/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
90
91#ifdef PSHIFT
92#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
93#define PNBYTE(N) ((N) << (PSHIFT))
94#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
95#else
96/* Leave optimization to compiler */
97#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
98#define PNBYTE(N) ((N) * (PSIZE))
99#define PINDEX(P, N) (GPTP(P) + (N))
100#endif
101
102/* Pointer into other corresponding to pointer into this */
103#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
104
105#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
106
107
108/* Runs are identified by a pointer in the auxiliary list.
109** The pointer is at the start of the list,
110** and it points to the start of the next list.
111** NEXT is used as an lvalue, too.
112*/
113
114#define NEXT(P) (*GPPP(P))
115
116
117/* PTHRESH is the minimum number of pairs with the same sense to justify
118** checking for a run and extending it. Note that PTHRESH counts PAIRS,
119** not just elements, so PTHRESH == 8 means a run of 16.
120*/
121
122#define PTHRESH (8)
123
124/* RTHRESH is the number of elements in a run that must compare low
125** to the low element from the opposing run before we justify
126** doing a binary rampup instead of single stepping.
127** In random input, N in a row low should only happen with
128** probability 2^(1-N), so we can risk that we are dealing
129** with orderly input without paying much when we aren't.
130*/
131
132#define RTHRESH (6)
133
134
135/*
136** Overview of algorithm and variables.
137** The array of elements at list1 will be organized into runs of length 2,
138** or runs of length >= 2 * PTHRESH. We only try to form long runs when
139** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
140**
141** Unless otherwise specified, pair pointers address the first of two elements.
142**
143** b and b+1 are a pair that compare with sense "sense".
144** b is the "bottom" of adjacent pairs that might form a longer run.
145**
146** p2 parallels b in the list2 array, where runs are defined by
147** a pointer chain.
148**
149** t represents the "top" of the adjacent pairs that might extend
150** the run beginning at b. Usually, t addresses a pair
151** that compares with opposite sense from (b,b+1).
152** However, it may also address a singleton element at the end of list1,
153** or it may be equal to "last", the first element beyond list1.
154**
155** r addresses the Nth pair following b. If this would be beyond t,
156** we back it off to t. Only when r is less than t do we consider the
157** run long enough to consider checking.
158**
159** q addresses a pair such that the pairs at b through q already form a run.
160** Often, q will equal b, indicating we only are sure of the pair itself.
161** However, a search on the previous cycle may have revealed a longer run,
162** so q may be greater than b.
163**
164** p is used to work back from a candidate r, trying to reach q,
165** which would mean b through r would be a run. If we discover such a run,
166** we start q at r and try to push it further towards t.
167** If b through r is NOT a run, we detect the wrong order at (p-1,p).
168** In any event, after the check (if any), we have two main cases.
169**
170** 1) Short run. b <= q < p <= r <= t.
171** b through q is a run (perhaps trivial)
172** q through p are uninteresting pairs
173** p through r is a run
174**
175** 2) Long run. b < r <= q < t.
176** b through q is a run (of length >= 2 * PTHRESH)
177**
178** Note that degenerate cases are not only possible, but likely.
179** For example, if the pair following b compares with opposite sense,
180** then b == q < p == r == t.
181*/
182
183
184static IV
185dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
186{
187 I32 sense;
188 gptr *b, *p, *q, *t, *p2;
189 gptr *last, *r;
190 IV runs = 0;
191
192 b = list1;
193 last = PINDEX(b, nmemb);
194 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
195 for (p2 = list2; b < last; ) {
196 /* We just started, or just reversed sense.
197 ** Set t at end of pairs with the prevailing sense.
198 */
199 for (p = b+2, t = p; ++p < last; t = ++p) {
200 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
201 }
202 q = b;
203 /* Having laid out the playing field, look for long runs */
204 do {
205 p = r = b + (2 * PTHRESH);
206 if (r >= t) p = r = t; /* too short to care about */
207 else {
208 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
209 ((p -= 2) > q)) {}
210 if (p <= q) {
211 /* b through r is a (long) run.
212 ** Extend it as far as possible.
213 */
214 p = q = r;
215 while (((p += 2) < t) &&
216 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
217 r = p = q + 2; /* no simple pairs, no after-run */
218 }
219 }
220 if (q > b) { /* run of greater than 2 at b */
221 gptr *savep = p;
222
223 p = q += 2;
224 /* pick up singleton, if possible */
225 if ((p == t) &&
226 ((t + 1) == last) &&
227 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
228 savep = r = p = q = last;
229 p2 = NEXT(p2) = p2 + (p - b); ++runs;
230 if (sense)
231 while (b < --p) {
232 const gptr c = *b;
233 *b++ = *p;
234 *p = c;
235 }
236 p = savep;
237 }
238 while (q < p) { /* simple pairs */
239 p2 = NEXT(p2) = p2 + 2; ++runs;
240 if (sense) {
241 const gptr c = *q++;
242 *(q-1) = *q;
243 *q++ = c;
244 } else q += 2;
245 }
246 if (((b = p) == t) && ((t+1) == last)) {
247 NEXT(p2) = p2 + 1; ++runs;
248 b++;
249 }
250 q = r;
251 } while (b < t);
252 sense = !sense;
253 }
254 return runs;
255}
256
257
258/* The original merge sort, in use since 5.7, was as fast as, or faster than,
259 * qsort on many platforms, but slower than qsort, conspicuously so,
260 * on others. The most likely explanation was platform-specific
261 * differences in cache sizes and relative speeds.
262 *
263 * The quicksort divide-and-conquer algorithm guarantees that, as the
264 * problem is subdivided into smaller and smaller parts, the parts
265 * fit into smaller (and faster) caches. So it doesn't matter how
266 * many levels of cache exist, quicksort will "find" them, and,
267 * as long as smaller is faster, take advantage of them.
268 *
269 * By contrast, consider how the original mergesort algorithm worked.
270 * Suppose we have five runs (each typically of length 2 after dynprep).
271 *
272 * pass base aux
273 * 0 1 2 3 4 5
274 * 1 12 34 5
275 * 2 1234 5
276 * 3 12345
277 * 4 12345
278 *
279 * Adjacent pairs are merged in "grand sweeps" through the input.
280 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
281 * runs 3 and 4 are merged and the runs from run 5 have been copied.
282 * The only cache that matters is one large enough to hold *all* the input.
283 * On some platforms, this may be many times slower than smaller caches.
284 *
285 * The following pseudo-code uses the same basic merge algorithm,
286 * but in a divide-and-conquer way.
287 *
288 * # merge $runs runs at offset $offset of list $list1 into $list2.
289 * # all unmerged runs ($runs == 1) originate in list $base.
290 * sub mgsort2 {
291 * my ($offset, $runs, $base, $list1, $list2) = @_;
292 *
293 * if ($runs == 1) {
294 * if ($list1 is $base) copy run to $list2
295 * return offset of end of list (or copy)
296 * } else {
297 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
298 * mgsort2($off2, $runs/2, $base, $list2, $list1)
299 * merge the adjacent runs at $offset of $list1 into $list2
300 * return the offset of the end of the merged runs
301 * }
302 * }
303 * mgsort2(0, $runs, $base, $aux, $base);
304 *
305 * For our 5 runs, the tree of calls looks like
306 *
307 * 5
308 * 3 2
309 * 2 1 1 1
310 * 1 1
311 *
312 * 1 2 3 4 5
313 *
314 * and the corresponding activity looks like
315 *
316 * copy runs 1 and 2 from base to aux
317 * merge runs 1 and 2 from aux to base
318 * (run 3 is where it belongs, no copy needed)
319 * merge runs 12 and 3 from base to aux
320 * (runs 4 and 5 are where they belong, no copy needed)
321 * merge runs 4 and 5 from base to aux
322 * merge runs 123 and 45 from aux to base
323 *
324 * Note that we merge runs 1 and 2 immediately after copying them,
325 * while they are still likely to be in fast cache. Similarly,
326 * run 3 is merged with run 12 while it still may be lingering in cache.
327 * This implementation should therefore enjoy much of the cache-friendly
328 * behavior that quicksort does. In addition, it does less copying
329 * than the original mergesort implementation (only runs 1 and 2 are copied)
330 * and the "balancing" of merges is better (merged runs comprise more nearly
331 * equal numbers of original runs).
332 *
333 * The actual cache-friendly implementation will use a pseudo-stack
334 * to avoid recursion, and will unroll processing of runs of length 2,
335 * but it is otherwise similar to the recursive implementation.
336 */
337
338typedef struct {
339 IV offset; /* offset of 1st of 2 runs at this level */
340 IV runs; /* how many runs must be combined into 1 */
341} off_runs; /* pseudo-stack element */
342
343
344static I32
345cmp_desc(pTHX_ gptr const a, gptr const b)
346{
347 dVAR;
348 return -PL_sort_RealCmp(aTHX_ a, b);
349}
350
351STATIC void
352S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
353{
354 dVAR;
355 IV i, run, offset;
356 I32 sense, level;
357 gptr *f1, *f2, *t, *b, *p;
358 int iwhich;
359 gptr *aux;
360 gptr *p1;
361 gptr small[SMALLSORT];
362 gptr *which[3];
363 off_runs stack[60], *stackp;
364 SVCOMPARE_t savecmp = NULL;
365
366 if (nmemb <= 1) return; /* sorted trivially */
367
368 if ((flags & SORTf_DESC) != 0) {
369 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
370 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
371 cmp = cmp_desc;
372 }
373
374 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
375 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
376 level = 0;
377 stackp = stack;
378 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
379 stackp->offset = offset = 0;
380 which[0] = which[2] = base;
381 which[1] = aux;
382 for (;;) {
383 /* On levels where both runs have be constructed (stackp->runs == 0),
384 * merge them, and note the offset of their end, in case the offset
385 * is needed at the next level up. Hop up a level, and,
386 * as long as stackp->runs is 0, keep merging.
387 */
388 IV runs = stackp->runs;
389 if (runs == 0) {
390 gptr *list1, *list2;
391 iwhich = level & 1;
392 list1 = which[iwhich]; /* area where runs are now */
393 list2 = which[++iwhich]; /* area for merged runs */
394 do {
395 gptr *l1, *l2, *tp2;
396 offset = stackp->offset;
397 f1 = p1 = list1 + offset; /* start of first run */
398 p = tp2 = list2 + offset; /* where merged run will go */
399 t = NEXT(p); /* where first run ends */
400 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
401 t = NEXT(t); /* where second runs ends */
402 l2 = POTHER(t, list2, list1); /* ... on the other side */
403 offset = PNELEM(list2, t);
404 while (f1 < l1 && f2 < l2) {
405 /* If head 1 is larger than head 2, find ALL the elements
406 ** in list 2 strictly less than head1, write them all,
407 ** then head 1. Then compare the new heads, and repeat,
408 ** until one or both lists are exhausted.
409 **
410 ** In all comparisons (after establishing
411 ** which head to merge) the item to merge
412 ** (at pointer q) is the first operand of
413 ** the comparison. When we want to know
414 ** if "q is strictly less than the other",
415 ** we can't just do
416 ** cmp(q, other) < 0
417 ** because stability demands that we treat equality
418 ** as high when q comes from l2, and as low when
419 ** q was from l1. So we ask the question by doing
420 ** cmp(q, other) <= sense
421 ** and make sense == 0 when equality should look low,
422 ** and -1 when equality should look high.
423 */
424
425 gptr *q;
426 if (cmp(aTHX_ *f1, *f2) <= 0) {
427 q = f2; b = f1; t = l1;
428 sense = -1;
429 } else {
430 q = f1; b = f2; t = l2;
431 sense = 0;
432 }
433
434
435 /* ramp up
436 **
437 ** Leave t at something strictly
438 ** greater than q (or at the end of the list),
439 ** and b at something strictly less than q.
440 */
441 for (i = 1, run = 0 ;;) {
442 if ((p = PINDEX(b, i)) >= t) {
443 /* off the end */
444 if (((p = PINDEX(t, -1)) > b) &&
445 (cmp(aTHX_ *q, *p) <= sense))
446 t = p;
447 else b = p;
448 break;
449 } else if (cmp(aTHX_ *q, *p) <= sense) {
450 t = p;
451 break;
452 } else b = p;
453 if (++run >= RTHRESH) i += i;
454 }
455
456
457 /* q is known to follow b and must be inserted before t.
458 ** Increment b, so the range of possibilities is [b,t).
459 ** Round binary split down, to favor early appearance.
460 ** Adjust b and t until q belongs just before t.
461 */
462
463 b++;
464 while (b < t) {
465 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
466 if (cmp(aTHX_ *q, *p) <= sense) {
467 t = p;
468 } else b = p + 1;
469 }
470
471
472 /* Copy all the strictly low elements */
473
474 if (q == f1) {
475 FROMTOUPTO(f2, tp2, t);
476 *tp2++ = *f1++;
477 } else {
478 FROMTOUPTO(f1, tp2, t);
479 *tp2++ = *f2++;
480 }
481 }
482
483
484 /* Run out remaining list */
485 if (f1 == l1) {
486 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
487 } else FROMTOUPTO(f1, tp2, l1);
488 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
489
490 if (--level == 0) goto done;
491 --stackp;
492 t = list1; list1 = list2; list2 = t; /* swap lists */
493 } while ((runs = stackp->runs) == 0);
494 }
495
496
497 stackp->runs = 0; /* current run will finish level */
498 /* While there are more than 2 runs remaining,
499 * turn them into exactly 2 runs (at the "other" level),
500 * each made up of approximately half the runs.
501 * Stack the second half for later processing,
502 * and set about producing the first half now.
503 */
504 while (runs > 2) {
505 ++level;
506 ++stackp;
507 stackp->offset = offset;
508 runs -= stackp->runs = runs / 2;
509 }
510 /* We must construct a single run from 1 or 2 runs.
511 * All the original runs are in which[0] == base.
512 * The run we construct must end up in which[level&1].
513 */
514 iwhich = level & 1;
515 if (runs == 1) {
516 /* Constructing a single run from a single run.
517 * If it's where it belongs already, there's nothing to do.
518 * Otherwise, copy it to where it belongs.
519 * A run of 1 is either a singleton at level 0,
520 * or the second half of a split 3. In neither event
521 * is it necessary to set offset. It will be set by the merge
522 * that immediately follows.
523 */
524 if (iwhich) { /* Belongs in aux, currently in base */
525 f1 = b = PINDEX(base, offset); /* where list starts */
526 f2 = PINDEX(aux, offset); /* where list goes */
527 t = NEXT(f2); /* where list will end */
528 offset = PNELEM(aux, t); /* offset thereof */
529 t = PINDEX(base, offset); /* where it currently ends */
530 FROMTOUPTO(f1, f2, t); /* copy */
531 NEXT(b) = t; /* set up parallel pointer */
532 } else if (level == 0) goto done; /* single run at level 0 */
533 } else {
534 /* Constructing a single run from two runs.
535 * The merge code at the top will do that.
536 * We need only make sure the two runs are in the "other" array,
537 * so they'll end up in the correct array after the merge.
538 */
539 ++level;
540 ++stackp;
541 stackp->offset = offset;
542 stackp->runs = 0; /* take care of both runs, trigger merge */
543 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
544 f1 = b = PINDEX(base, offset); /* where first run starts */
545 f2 = PINDEX(aux, offset); /* where it will be copied */
546 t = NEXT(f2); /* where first run will end */
547 offset = PNELEM(aux, t); /* offset thereof */
548 p = PINDEX(base, offset); /* end of first run */
549 t = NEXT(t); /* where second run will end */
550 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
551 FROMTOUPTO(f1, f2, t); /* copy both runs */
552 NEXT(b) = p; /* paralleled pointer for 1st */
553 NEXT(p) = t; /* ... and for second */
554 }
555 }
556 }
557done:
558 if (aux != small) Safefree(aux); /* free iff allocated */
559 if (flags) {
560 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
561 }
562 return;
563}
564
565/*
566 * The quicksort implementation was derived from source code contributed
567 * by Tom Horsley.
568 *
569 * NOTE: this code was derived from Tom Horsley's qsort replacement
570 * and should not be confused with the original code.
571 */
572
573/* Copyright (C) Tom Horsley, 1997. All rights reserved.
574
575 Permission granted to distribute under the same terms as perl which are
576 (briefly):
577
578 This program is free software; you can redistribute it and/or modify
579 it under the terms of either:
580
581 a) the GNU General Public License as published by the Free
582 Software Foundation; either version 1, or (at your option) any
583 later version, or
584
585 b) the "Artistic License" which comes with this Kit.
586
587 Details on the perl license can be found in the perl source code which
588 may be located via the www.perl.com web page.
589
590 This is the most wonderfulest possible qsort I can come up with (and
591 still be mostly portable) My (limited) tests indicate it consistently
592 does about 20% fewer calls to compare than does the qsort in the Visual
593 C++ library, other vendors may vary.
594
595 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
596 others I invented myself (or more likely re-invented since they seemed
597 pretty obvious once I watched the algorithm operate for a while).
598
599 Most of this code was written while watching the Marlins sweep the Giants
600 in the 1997 National League Playoffs - no Braves fans allowed to use this
601 code (just kidding :-).
602
603 I realize that if I wanted to be true to the perl tradition, the only
604 comment in this file would be something like:
605
606 ...they shuffled back towards the rear of the line. 'No, not at the
607 rear!' the slave-driver shouted. 'Three files up. And stay there...
608
609 However, I really needed to violate that tradition just so I could keep
610 track of what happens myself, not to mention some poor fool trying to
611 understand this years from now :-).
612*/
613
614/* ********************************************************** Configuration */
615
616#ifndef QSORT_ORDER_GUESS
617#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
618#endif
619
620/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
621 future processing - a good max upper bound is log base 2 of memory size
622 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
623 safely be smaller than that since the program is taking up some space and
624 most operating systems only let you grab some subset of contiguous
625 memory (not to mention that you are normally sorting data larger than
626 1 byte element size :-).
627*/
628#ifndef QSORT_MAX_STACK
629#define QSORT_MAX_STACK 32
630#endif
631
632/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
633 Anything bigger and we use qsort. If you make this too small, the qsort
634 will probably break (or become less efficient), because it doesn't expect
635 the middle element of a partition to be the same as the right or left -
636 you have been warned).
637*/
638#ifndef QSORT_BREAK_EVEN
639#define QSORT_BREAK_EVEN 6
640#endif
641
642/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
643 to go quadratic on. We innoculate larger partitions against
644 quadratic behavior by shuffling them before sorting. This is not
645 an absolute guarantee of non-quadratic behavior, but it would take
646 staggeringly bad luck to pick extreme elements as the pivot
647 from randomized data.
648*/
649#ifndef QSORT_PLAY_SAFE
650#define QSORT_PLAY_SAFE 255
651#endif
652
653/* ************************************************************* Data Types */
654
655/* hold left and right index values of a partition waiting to be sorted (the
656 partition includes both left and right - right is NOT one past the end or
657 anything like that).
658*/
659struct partition_stack_entry {
660 int left;
661 int right;
662#ifdef QSORT_ORDER_GUESS
663 int qsort_break_even;
664#endif
665};
666
667/* ******************************************************* Shorthand Macros */
668
669/* Note that these macros will be used from inside the qsort function where
670 we happen to know that the variable 'elt_size' contains the size of an
671 array element and the variable 'temp' points to enough space to hold a
672 temp element and the variable 'array' points to the array being sorted
673 and 'compare' is the pointer to the compare routine.
674
675 Also note that there are very many highly architecture specific ways
676 these might be sped up, but this is simply the most generally portable
677 code I could think of.
678*/
679
680/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
681*/
682#define qsort_cmp(elt1, elt2) \
683 ((*compare)(aTHX_ array[elt1], array[elt2]))
684
685#ifdef QSORT_ORDER_GUESS
686#define QSORT_NOTICE_SWAP swapped++;
687#else
688#define QSORT_NOTICE_SWAP
689#endif
690
691/* swaps contents of array elements elt1, elt2.
692*/
693#define qsort_swap(elt1, elt2) \
694 STMT_START { \
695 QSORT_NOTICE_SWAP \
696 temp = array[elt1]; \
697 array[elt1] = array[elt2]; \
698 array[elt2] = temp; \
699 } STMT_END
700
701/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
702 elt3 and elt3 gets elt1.
703*/
704#define qsort_rotate(elt1, elt2, elt3) \
705 STMT_START { \
706 QSORT_NOTICE_SWAP \
707 temp = array[elt1]; \
708 array[elt1] = array[elt2]; \
709 array[elt2] = array[elt3]; \
710 array[elt3] = temp; \
711 } STMT_END
712
713/* ************************************************************ Debug stuff */
714
715#ifdef QSORT_DEBUG
716
717static void
718break_here()
719{
720 return; /* good place to set a breakpoint */
721}
722
723#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
724
725static void
726doqsort_all_asserts(
727 void * array,
728 size_t num_elts,
729 size_t elt_size,
730 int (*compare)(const void * elt1, const void * elt2),
731 int pc_left, int pc_right, int u_left, int u_right)
732{
733 int i;
734
735 qsort_assert(pc_left <= pc_right);
736 qsort_assert(u_right < pc_left);
737 qsort_assert(pc_right < u_left);
738 for (i = u_right + 1; i < pc_left; ++i) {
739 qsort_assert(qsort_cmp(i, pc_left) < 0);
740 }
741 for (i = pc_left; i < pc_right; ++i) {
742 qsort_assert(qsort_cmp(i, pc_right) == 0);
743 }
744 for (i = pc_right + 1; i < u_left; ++i) {
745 qsort_assert(qsort_cmp(pc_right, i) < 0);
746 }
747}
748
749#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
750 doqsort_all_asserts(array, num_elts, elt_size, compare, \
751 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
752
753#else
754
755#define qsort_assert(t) ((void)0)
756
757#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
758
759#endif
760
761/* ****************************************************************** qsort */
762
763STATIC void /* the standard unstable (u) quicksort (qsort) */
764S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
765{
766 SV * temp;
767 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
768 int next_stack_entry = 0;
769 int part_left;
770 int part_right;
771#ifdef QSORT_ORDER_GUESS
772 int qsort_break_even;
773 int swapped;
774#endif
775
776 PERL_ARGS_ASSERT_QSORTSVU;
777
778 /* Make sure we actually have work to do.
779 */
780 if (num_elts <= 1) {
781 return;
782 }
783
784 /* Inoculate large partitions against quadratic behavior */
785 if (num_elts > QSORT_PLAY_SAFE) {
786 size_t n;
787 SV ** const q = array;
788 for (n = num_elts; n > 1; ) {
789 const size_t j = (size_t)(n-- * Drand01());
790 temp = q[j];
791 q[j] = q[n];
792 q[n] = temp;
793 }
794 }
795
796 /* Setup the initial partition definition and fall into the sorting loop
797 */
798 part_left = 0;
799 part_right = (int)(num_elts - 1);
800#ifdef QSORT_ORDER_GUESS
801 qsort_break_even = QSORT_BREAK_EVEN;
802#else
803#define qsort_break_even QSORT_BREAK_EVEN
804#endif
805 for ( ; ; ) {
806 if ((part_right - part_left) >= qsort_break_even) {
807 /* OK, this is gonna get hairy, so lets try to document all the
808 concepts and abbreviations and variables and what they keep
809 track of:
810
811 pc: pivot chunk - the set of array elements we accumulate in the
812 middle of the partition, all equal in value to the original
813 pivot element selected. The pc is defined by:
814
815 pc_left - the leftmost array index of the pc
816 pc_right - the rightmost array index of the pc
817
818 we start with pc_left == pc_right and only one element
819 in the pivot chunk (but it can grow during the scan).
820
821 u: uncompared elements - the set of elements in the partition
822 we have not yet compared to the pivot value. There are two
823 uncompared sets during the scan - one to the left of the pc
824 and one to the right.
825
826 u_right - the rightmost index of the left side's uncompared set
827 u_left - the leftmost index of the right side's uncompared set
828
829 The leftmost index of the left sides's uncompared set
830 doesn't need its own variable because it is always defined
831 by the leftmost edge of the whole partition (part_left). The
832 same goes for the rightmost edge of the right partition
833 (part_right).
834
835 We know there are no uncompared elements on the left once we
836 get u_right < part_left and no uncompared elements on the
837 right once u_left > part_right. When both these conditions
838 are met, we have completed the scan of the partition.
839
840 Any elements which are between the pivot chunk and the
841 uncompared elements should be less than the pivot value on
842 the left side and greater than the pivot value on the right
843 side (in fact, the goal of the whole algorithm is to arrange
844 for that to be true and make the groups of less-than and
845 greater-then elements into new partitions to sort again).
846
847 As you marvel at the complexity of the code and wonder why it
848 has to be so confusing. Consider some of the things this level
849 of confusion brings:
850
851 Once I do a compare, I squeeze every ounce of juice out of it. I
852 never do compare calls I don't have to do, and I certainly never
853 do redundant calls.
854
855 I also never swap any elements unless I can prove there is a
856 good reason. Many sort algorithms will swap a known value with
857 an uncompared value just to get things in the right place (or
858 avoid complexity :-), but that uncompared value, once it gets
859 compared, may then have to be swapped again. A lot of the
860 complexity of this code is due to the fact that it never swaps
861 anything except compared values, and it only swaps them when the
862 compare shows they are out of position.
863 */
864 int pc_left, pc_right;
865 int u_right, u_left;
866
867 int s;
868
869 pc_left = ((part_left + part_right) / 2);
870 pc_right = pc_left;
871 u_right = pc_left - 1;
872 u_left = pc_right + 1;
873
874 /* Qsort works best when the pivot value is also the median value
875 in the partition (unfortunately you can't find the median value
876 without first sorting :-), so to give the algorithm a helping
877 hand, we pick 3 elements and sort them and use the median value
878 of that tiny set as the pivot value.
879
880 Some versions of qsort like to use the left middle and right as
881 the 3 elements to sort so they can insure the ends of the
882 partition will contain values which will stop the scan in the
883 compare loop, but when you have to call an arbitrarily complex
884 routine to do a compare, its really better to just keep track of
885 array index values to know when you hit the edge of the
886 partition and avoid the extra compare. An even better reason to
887 avoid using a compare call is the fact that you can drop off the
888 edge of the array if someone foolishly provides you with an
889 unstable compare function that doesn't always provide consistent
890 results.
891
892 So, since it is simpler for us to compare the three adjacent
893 elements in the middle of the partition, those are the ones we
894 pick here (conveniently pointed at by u_right, pc_left, and
895 u_left). The values of the left, center, and right elements
896 are refered to as l c and r in the following comments.
897 */
898
899#ifdef QSORT_ORDER_GUESS
900 swapped = 0;
901#endif
902 s = qsort_cmp(u_right, pc_left);
903 if (s < 0) {
904 /* l < c */
905 s = qsort_cmp(pc_left, u_left);
906 /* if l < c, c < r - already in order - nothing to do */
907 if (s == 0) {
908 /* l < c, c == r - already in order, pc grows */
909 ++pc_right;
910 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
911 } else if (s > 0) {
912 /* l < c, c > r - need to know more */
913 s = qsort_cmp(u_right, u_left);
914 if (s < 0) {
915 /* l < c, c > r, l < r - swap c & r to get ordered */
916 qsort_swap(pc_left, u_left);
917 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
918 } else if (s == 0) {
919 /* l < c, c > r, l == r - swap c&r, grow pc */
920 qsort_swap(pc_left, u_left);
921 --pc_left;
922 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
923 } else {
924 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
925 qsort_rotate(pc_left, u_right, u_left);
926 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
927 }
928 }
929 } else if (s == 0) {
930 /* l == c */
931 s = qsort_cmp(pc_left, u_left);
932 if (s < 0) {
933 /* l == c, c < r - already in order, grow pc */
934 --pc_left;
935 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
936 } else if (s == 0) {
937 /* l == c, c == r - already in order, grow pc both ways */
938 --pc_left;
939 ++pc_right;
940 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
941 } else {
942 /* l == c, c > r - swap l & r, grow pc */
943 qsort_swap(u_right, u_left);
944 ++pc_right;
945 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
946 }
947 } else {
948 /* l > c */
949 s = qsort_cmp(pc_left, u_left);
950 if (s < 0) {
951 /* l > c, c < r - need to know more */
952 s = qsort_cmp(u_right, u_left);
953 if (s < 0) {
954 /* l > c, c < r, l < r - swap l & c to get ordered */
955 qsort_swap(u_right, pc_left);
956 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
957 } else if (s == 0) {
958 /* l > c, c < r, l == r - swap l & c, grow pc */
959 qsort_swap(u_right, pc_left);
960 ++pc_right;
961 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
962 } else {
963 /* l > c, c < r, l > r - rotate lcr into crl to order */
964 qsort_rotate(u_right, pc_left, u_left);
965 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
966 }
967 } else if (s == 0) {
968 /* l > c, c == r - swap ends, grow pc */
969 qsort_swap(u_right, u_left);
970 --pc_left;
971 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
972 } else {
973 /* l > c, c > r - swap ends to get in order */
974 qsort_swap(u_right, u_left);
975 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
976 }
977 }
978 /* We now know the 3 middle elements have been compared and
979 arranged in the desired order, so we can shrink the uncompared
980 sets on both sides
981 */
982 --u_right;
983 ++u_left;
984 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
985
986 /* The above massive nested if was the simple part :-). We now have
987 the middle 3 elements ordered and we need to scan through the
988 uncompared sets on either side, swapping elements that are on
989 the wrong side or simply shuffling equal elements around to get
990 all equal elements into the pivot chunk.
991 */
992
993 for ( ; ; ) {
994 int still_work_on_left;
995 int still_work_on_right;
996
997 /* Scan the uncompared values on the left. If I find a value
998 equal to the pivot value, move it over so it is adjacent to
999 the pivot chunk and expand the pivot chunk. If I find a value
1000 less than the pivot value, then just leave it - its already
1001 on the correct side of the partition. If I find a greater
1002 value, then stop the scan.
1003 */
1004 while ((still_work_on_left = (u_right >= part_left))) {
1005 s = qsort_cmp(u_right, pc_left);
1006 if (s < 0) {
1007 --u_right;
1008 } else if (s == 0) {
1009 --pc_left;
1010 if (pc_left != u_right) {
1011 qsort_swap(u_right, pc_left);
1012 }
1013 --u_right;
1014 } else {
1015 break;
1016 }
1017 qsort_assert(u_right < pc_left);
1018 qsort_assert(pc_left <= pc_right);
1019 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1020 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1021 }
1022
1023 /* Do a mirror image scan of uncompared values on the right
1024 */
1025 while ((still_work_on_right = (u_left <= part_right))) {
1026 s = qsort_cmp(pc_right, u_left);
1027 if (s < 0) {
1028 ++u_left;
1029 } else if (s == 0) {
1030 ++pc_right;
1031 if (pc_right != u_left) {
1032 qsort_swap(pc_right, u_left);
1033 }
1034 ++u_left;
1035 } else {
1036 break;
1037 }
1038 qsort_assert(u_left > pc_right);
1039 qsort_assert(pc_left <= pc_right);
1040 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1041 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1042 }
1043
1044 if (still_work_on_left) {
1045 /* I know I have a value on the left side which needs to be
1046 on the right side, but I need to know more to decide
1047 exactly the best thing to do with it.
1048 */
1049 if (still_work_on_right) {
1050 /* I know I have values on both side which are out of
1051 position. This is a big win because I kill two birds
1052 with one swap (so to speak). I can advance the
1053 uncompared pointers on both sides after swapping both
1054 of them into the right place.
1055 */
1056 qsort_swap(u_right, u_left);
1057 --u_right;
1058 ++u_left;
1059 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1060 } else {
1061 /* I have an out of position value on the left, but the
1062 right is fully scanned, so I "slide" the pivot chunk
1063 and any less-than values left one to make room for the
1064 greater value over on the right. If the out of position
1065 value is immediately adjacent to the pivot chunk (there
1066 are no less-than values), I can do that with a swap,
1067 otherwise, I have to rotate one of the less than values
1068 into the former position of the out of position value
1069 and the right end of the pivot chunk into the left end
1070 (got all that?).
1071 */
1072 --pc_left;
1073 if (pc_left == u_right) {
1074 qsort_swap(u_right, pc_right);
1075 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1076 } else {
1077 qsort_rotate(u_right, pc_left, pc_right);
1078 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1079 }
1080 --pc_right;
1081 --u_right;
1082 }
1083 } else if (still_work_on_right) {
1084 /* Mirror image of complex case above: I have an out of
1085 position value on the right, but the left is fully
1086 scanned, so I need to shuffle things around to make room
1087 for the right value on the left.
1088 */
1089 ++pc_right;
1090 if (pc_right == u_left) {
1091 qsort_swap(u_left, pc_left);
1092 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1093 } else {
1094 qsort_rotate(pc_right, pc_left, u_left);
1095 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1096 }
1097 ++pc_left;
1098 ++u_left;
1099 } else {
1100 /* No more scanning required on either side of partition,
1101 break out of loop and figure out next set of partitions
1102 */
1103 break;
1104 }
1105 }
1106
1107 /* The elements in the pivot chunk are now in the right place. They
1108 will never move or be compared again. All I have to do is decide
1109 what to do with the stuff to the left and right of the pivot
1110 chunk.
1111
1112 Notes on the QSORT_ORDER_GUESS ifdef code:
1113
1114 1. If I just built these partitions without swapping any (or
1115 very many) elements, there is a chance that the elements are
1116 already ordered properly (being properly ordered will
1117 certainly result in no swapping, but the converse can't be
1118 proved :-).
1119
1120 2. A (properly written) insertion sort will run faster on
1121 already ordered data than qsort will.
1122
1123 3. Perhaps there is some way to make a good guess about
1124 switching to an insertion sort earlier than partition size 6
1125 (for instance - we could save the partition size on the stack
1126 and increase the size each time we find we didn't swap, thus
1127 switching to insertion sort earlier for partitions with a
1128 history of not swapping).
1129
1130 4. Naturally, if I just switch right away, it will make
1131 artificial benchmarks with pure ascending (or descending)
1132 data look really good, but is that a good reason in general?
1133 Hard to say...
1134 */
1135
1136#ifdef QSORT_ORDER_GUESS
1137 if (swapped < 3) {
1138#if QSORT_ORDER_GUESS == 1
1139 qsort_break_even = (part_right - part_left) + 1;
1140#endif
1141#if QSORT_ORDER_GUESS == 2
1142 qsort_break_even *= 2;
1143#endif
1144#if QSORT_ORDER_GUESS == 3
1145 const int prev_break = qsort_break_even;
1146 qsort_break_even *= qsort_break_even;
1147 if (qsort_break_even < prev_break) {
1148 qsort_break_even = (part_right - part_left) + 1;
1149 }
1150#endif
1151 } else {
1152 qsort_break_even = QSORT_BREAK_EVEN;
1153 }
1154#endif
1155
1156 if (part_left < pc_left) {
1157 /* There are elements on the left which need more processing.
1158 Check the right as well before deciding what to do.
1159 */
1160 if (pc_right < part_right) {
1161 /* We have two partitions to be sorted. Stack the biggest one
1162 and process the smallest one on the next iteration. This
1163 minimizes the stack height by insuring that any additional
1164 stack entries must come from the smallest partition which
1165 (because it is smallest) will have the fewest
1166 opportunities to generate additional stack entries.
1167 */
1168 if ((part_right - pc_right) > (pc_left - part_left)) {
1169 /* stack the right partition, process the left */
1170 partition_stack[next_stack_entry].left = pc_right + 1;
1171 partition_stack[next_stack_entry].right = part_right;
1172#ifdef QSORT_ORDER_GUESS
1173 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1174#endif
1175 part_right = pc_left - 1;
1176 } else {
1177 /* stack the left partition, process the right */
1178 partition_stack[next_stack_entry].left = part_left;
1179 partition_stack[next_stack_entry].right = pc_left - 1;
1180#ifdef QSORT_ORDER_GUESS
1181 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1182#endif
1183 part_left = pc_right + 1;
1184 }
1185 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1186 ++next_stack_entry;
1187 } else {
1188 /* The elements on the left are the only remaining elements
1189 that need sorting, arrange for them to be processed as the
1190 next partition.
1191 */
1192 part_right = pc_left - 1;
1193 }
1194 } else if (pc_right < part_right) {
1195 /* There is only one chunk on the right to be sorted, make it
1196 the new partition and loop back around.
1197 */
1198 part_left = pc_right + 1;
1199 } else {
1200 /* This whole partition wound up in the pivot chunk, so
1201 we need to get a new partition off the stack.
1202 */
1203 if (next_stack_entry == 0) {
1204 /* the stack is empty - we are done */
1205 break;
1206 }
1207 --next_stack_entry;
1208 part_left = partition_stack[next_stack_entry].left;
1209 part_right = partition_stack[next_stack_entry].right;
1210#ifdef QSORT_ORDER_GUESS
1211 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1212#endif
1213 }
1214 } else {
1215 /* This partition is too small to fool with qsort complexity, just
1216 do an ordinary insertion sort to minimize overhead.
1217 */
1218 int i;
1219 /* Assume 1st element is in right place already, and start checking
1220 at 2nd element to see where it should be inserted.
1221 */
1222 for (i = part_left + 1; i <= part_right; ++i) {
1223 int j;
1224 /* Scan (backwards - just in case 'i' is already in right place)
1225 through the elements already sorted to see if the ith element
1226 belongs ahead of one of them.
1227 */
1228 for (j = i - 1; j >= part_left; --j) {
1229 if (qsort_cmp(i, j) >= 0) {
1230 /* i belongs right after j
1231 */
1232 break;
1233 }
1234 }
1235 ++j;
1236 if (j != i) {
1237 /* Looks like we really need to move some things
1238 */
1239 int k;
1240 temp = array[i];
1241 for (k = i - 1; k >= j; --k)
1242 array[k + 1] = array[k];
1243 array[j] = temp;
1244 }
1245 }
1246
1247 /* That partition is now sorted, grab the next one, or get out
1248 of the loop if there aren't any more.
1249 */
1250
1251 if (next_stack_entry == 0) {
1252 /* the stack is empty - we are done */
1253 break;
1254 }
1255 --next_stack_entry;
1256 part_left = partition_stack[next_stack_entry].left;
1257 part_right = partition_stack[next_stack_entry].right;
1258#ifdef QSORT_ORDER_GUESS
1259 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1260#endif
1261 }
1262 }
1263
1264 /* Believe it or not, the array is sorted at this point! */
1265}
1266
1267/* Stabilize what is, presumably, an otherwise unstable sort method.
1268 * We do that by allocating (or having on hand) an array of pointers
1269 * that is the same size as the original array of elements to be sorted.
1270 * We initialize this parallel array with the addresses of the original
1271 * array elements. This indirection can make you crazy.
1272 * Some pictures can help. After initializing, we have
1273 *
1274 * indir list1
1275 * +----+ +----+
1276 * | | --------------> | | ------> first element to be sorted
1277 * +----+ +----+
1278 * | | --------------> | | ------> second element to be sorted
1279 * +----+ +----+
1280 * | | --------------> | | ------> third element to be sorted
1281 * +----+ +----+
1282 * ...
1283 * +----+ +----+
1284 * | | --------------> | | ------> n-1st element to be sorted
1285 * +----+ +----+
1286 * | | --------------> | | ------> n-th element to be sorted
1287 * +----+ +----+
1288 *
1289 * During the sort phase, we leave the elements of list1 where they are,
1290 * and sort the pointers in the indirect array in the same order determined
1291 * by the original comparison routine on the elements pointed to.
1292 * Because we don't move the elements of list1 around through
1293 * this phase, we can break ties on elements that compare equal
1294 * using their address in the list1 array, ensuring stability.
1295 * This leaves us with something looking like
1296 *
1297 * indir list1
1298 * +----+ +----+
1299 * | | --+ +---> | | ------> first element to be sorted
1300 * +----+ | | +----+
1301 * | | --|-------|---> | | ------> second element to be sorted
1302 * +----+ | | +----+
1303 * | | --|-------+ +-> | | ------> third element to be sorted
1304 * +----+ | | +----+
1305 * ...
1306 * +----+ | | | | +----+
1307 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1308 * +----+ | | +----+
1309 * | | ---+ +----> | | ------> n-th element to be sorted
1310 * +----+ +----+
1311 *
1312 * where the i-th element of the indirect array points to the element
1313 * that should be i-th in the sorted array. After the sort phase,
1314 * we have to put the elements of list1 into the places
1315 * dictated by the indirect array.
1316 */
1317
1318
1319static I32
1320cmpindir(pTHX_ gptr const a, gptr const b)
1321{
1322 dVAR;
1323 gptr * const ap = (gptr *)a;
1324 gptr * const bp = (gptr *)b;
1325 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1326
1327 if (sense)
1328 return sense;
1329 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1330}
1331
1332static I32
1333cmpindir_desc(pTHX_ gptr const a, gptr const b)
1334{
1335 dVAR;
1336 gptr * const ap = (gptr *)a;
1337 gptr * const bp = (gptr *)b;
1338 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
1339
1340 /* Reverse the default */
1341 if (sense)
1342 return -sense;
1343 /* But don't reverse the stability test. */
1344 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1345
1346}
1347
1348STATIC void
1349S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1350{
1351 dVAR;
1352 if ((flags & SORTf_STABLE) != 0) {
1353 gptr **pp, *q;
1354 size_t n, j, i;
1355 gptr *small[SMALLSORT], **indir, tmp;
1356 SVCOMPARE_t savecmp;
1357 if (nmemb <= 1) return; /* sorted trivially */
1358
1359 /* Small arrays can use the stack, big ones must be allocated */
1360 if (nmemb <= SMALLSORT) indir = small;
1361 else { Newx(indir, nmemb, gptr *); }
1362
1363 /* Copy pointers to original array elements into indirect array */
1364 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
1365
1366 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1367 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
1368
1369 /* sort, with indirection */
1370 if (flags & SORTf_DESC)
1371 qsortsvu((gptr *)indir, nmemb, cmpindir_desc);
1372 else
1373 qsortsvu((gptr *)indir, nmemb, cmpindir);
1374
1375 pp = indir;
1376 q = list1;
1377 for (n = nmemb; n--; ) {
1378 /* Assert A: all elements of q with index > n are already
1379 * in place. This is vacuously true at the start, and we
1380 * put element n where it belongs below (if it wasn't
1381 * already where it belonged). Assert B: we only move
1382 * elements that aren't where they belong,
1383 * so, by A, we never tamper with elements above n.
1384 */
1385 j = pp[n] - q; /* This sets j so that q[j] is
1386 * at pp[n]. *pp[j] belongs in
1387 * q[j], by construction.
1388 */
1389 if (n != j) { /* all's well if n == j */
1390 tmp = q[j]; /* save what's in q[j] */
1391 do {
1392 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1393 i = pp[j] - q; /* the index in q of the element
1394 * just moved */
1395 pp[j] = q + j; /* this is ok now */
1396 } while ((j = i) != n);
1397 /* There are only finitely many (nmemb) addresses
1398 * in the pp array.
1399 * So we must eventually revisit an index we saw before.
1400 * Suppose the first revisited index is k != n.
1401 * An index is visited because something else belongs there.
1402 * If we visit k twice, then two different elements must
1403 * belong in the same place, which cannot be.
1404 * So j must get back to n, the loop terminates,
1405 * and we put the saved element where it belongs.
1406 */
1407 q[n] = tmp; /* put what belongs into
1408 * the n-th element */
1409 }
1410 }
1411
1412 /* free iff allocated */
1413 if (indir != small) { Safefree(indir); }
1414 /* restore prevailing comparison routine */
1415 PL_sort_RealCmp = savecmp;
1416 } else if ((flags & SORTf_DESC) != 0) {
1417 const SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1418 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1419 cmp = cmp_desc;
1420 qsortsvu(list1, nmemb, cmp);
1421 /* restore prevailing comparison routine */
1422 PL_sort_RealCmp = savecmp;
1423 } else {
1424 qsortsvu(list1, nmemb, cmp);
1425 }
1426}
1427
1428/*
1429=head1 Array Manipulation Functions
1430
1431=for apidoc sortsv
1432
1433Sort an array. Here is an example:
1434
1435 sortsv(AvARRAY(av), av_top_index(av)+1, Perl_sv_cmp_locale);
1436
1437Currently this always uses mergesort. See sortsv_flags for a more
1438flexible routine.
1439
1440=cut
1441*/
1442
1443void
1444Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1445{
1446 PERL_ARGS_ASSERT_SORTSV;
1447
1448 sortsv_flags(array, nmemb, cmp, 0);
1449}
1450
1451/*
1452=for apidoc sortsv_flags
1453
1454Sort an array, with various options.
1455
1456=cut
1457*/
1458void
1459Perl_sortsv_flags(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1460{
1461 PERL_ARGS_ASSERT_SORTSV_FLAGS;
1462
1463 if (flags & SORTf_QSORT)
1464 S_qsortsv(aTHX_ array, nmemb, cmp, flags);
1465 else
1466 S_mergesortsv(aTHX_ array, nmemb, cmp, flags);
1467}
1468
1469#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1470#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1471#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1472
1473PP(pp_sort)
1474{
1475 dVAR; dSP; dMARK; dORIGMARK;
1476 SV **p1 = ORIGMARK+1, **p2;
1477 SSize_t max, i;
1478 AV* av = NULL;
1479 HV *stash;
1480 GV *gv;
1481 CV *cv = NULL;
1482 I32 gimme = GIMME;
1483 OP* const nextop = PL_op->op_next;
1484 I32 overloading = 0;
1485 bool hasargs = FALSE;
1486 bool copytmps;
1487 I32 is_xsub = 0;
1488 I32 sorting_av = 0;
1489 const U8 priv = PL_op->op_private;
1490 const U8 flags = PL_op->op_flags;
1491 U32 sort_flags = 0;
1492 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1493 = Perl_sortsv_flags;
1494 I32 all_SIVs = 1;
1495
1496 if ((priv & OPpSORT_DESCEND) != 0)
1497 sort_flags |= SORTf_DESC;
1498 if ((priv & OPpSORT_QSORT) != 0)
1499 sort_flags |= SORTf_QSORT;
1500 if ((priv & OPpSORT_STABLE) != 0)
1501 sort_flags |= SORTf_STABLE;
1502
1503 if (gimme != G_ARRAY) {
1504 SP = MARK;
1505 EXTEND(SP,1);
1506 RETPUSHUNDEF;
1507 }
1508
1509 ENTER;
1510 SAVEVPTR(PL_sortcop);
1511 if (flags & OPf_STACKED) {
1512 if (flags & OPf_SPECIAL) {
1513 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1514 kid = kUNOP->op_first; /* pass rv2gv */
1515 kid = kUNOP->op_first; /* pass leave */
1516 PL_sortcop = kid->op_next;
1517 stash = CopSTASH(PL_curcop);
1518 }
1519 else {
1520 GV *autogv = NULL;
1521 cv = sv_2cv(*++MARK, &stash, &gv, GV_ADD);
1522 check_cv:
1523 if (cv && SvPOK(cv)) {
1524 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
1525 if (proto && strEQ(proto, "$$")) {
1526 hasargs = TRUE;
1527 }
1528 }
1529 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
1530 is_xsub = 1;
1531 }
1532 else if (!(cv && CvROOT(cv))) {
1533 if (gv) {
1534 goto autoload;
1535 }
1536 else if (!CvANON(cv) && (gv = CvGV(cv))) {
1537 if (cv != GvCV(gv)) cv = GvCV(gv);
1538 autoload:
1539 if (!autogv && (
1540 autogv = gv_autoload_pvn(
1541 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
1542 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
1543 )
1544 )) {
1545 cv = GvCVu(autogv);
1546 goto check_cv;
1547 }
1548 else {
1549 SV *tmpstr = sv_newmortal();
1550 gv_efullname3(tmpstr, gv, NULL);
1551 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1552 SVfARG(tmpstr));
1553 }
1554 }
1555 else {
1556 DIE(aTHX_ "Undefined subroutine in sort");
1557 }
1558 }
1559
1560 if (is_xsub)
1561 PL_sortcop = (OP*)cv;
1562 else
1563 PL_sortcop = CvSTART(cv);
1564 }
1565 }
1566 else {
1567 PL_sortcop = NULL;
1568 stash = CopSTASH(PL_curcop);
1569 }
1570
1571 /* optimiser converts "@a = sort @a" to "sort \@a";
1572 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1573 * result back to @a at the end of this function */
1574 if (priv & OPpSORT_INPLACE) {
1575 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1576 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1577 av = MUTABLE_AV((*SP));
1578 max = AvFILL(av) + 1;
1579 if (SvMAGICAL(av)) {
1580 MEXTEND(SP, max);
1581 for (i=0; i < max; i++) {
1582 SV **svp = av_fetch(av, i, FALSE);
1583 *SP++ = (svp) ? *svp : NULL;
1584 }
1585 SP--;
1586 p1 = p2 = SP - (max-1);
1587 }
1588 else {
1589 if (SvREADONLY(av))
1590 Perl_croak_no_modify();
1591 else
1592 {
1593 SvREADONLY_on(av);
1594 save_pushptr((void *)av, SAVEt_READONLY_OFF);
1595 }
1596 p1 = p2 = AvARRAY(av);
1597 sorting_av = 1;
1598 }
1599 }
1600 else {
1601 p2 = MARK+1;
1602 max = SP - MARK;
1603 }
1604
1605 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1606 * any nulls; also stringify or converting to integer or number as
1607 * required any args */
1608 copytmps = !sorting_av && PL_sortcop;
1609 for (i=max; i > 0 ; i--) {
1610 if ((*p1 = *p2++)) { /* Weed out nulls. */
1611 if (copytmps && SvPADTMP(*p1) && !IS_PADGV(*p1))
1612 *p1 = sv_mortalcopy(*p1);
1613 SvTEMP_off(*p1);
1614 if (!PL_sortcop) {
1615 if (priv & OPpSORT_NUMERIC) {
1616 if (priv & OPpSORT_INTEGER) {
1617 if (!SvIOK(*p1))
1618 (void)sv_2iv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1619 }
1620 else {
1621 if (!SvNSIOK(*p1))
1622 (void)sv_2nv_flags(*p1, SV_GMAGIC|SV_SKIP_OVERLOAD);
1623 if (all_SIVs && !SvSIOK(*p1))
1624 all_SIVs = 0;
1625 }
1626 }
1627 else {
1628 if (!SvPOK(*p1))
1629 (void)sv_2pv_flags(*p1, 0,
1630 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
1631 }
1632 if (SvAMAGIC(*p1))
1633 overloading = 1;
1634 }
1635 p1++;
1636 }
1637 else
1638 max--;
1639 }
1640 if (sorting_av)
1641 AvFILLp(av) = max-1;
1642
1643 if (max > 1) {
1644 SV **start;
1645 if (PL_sortcop) {
1646 PERL_CONTEXT *cx;
1647 SV** newsp;
1648 const bool oldcatch = CATCH_GET;
1649
1650 SAVETMPS;
1651 SAVEOP();
1652
1653 CATCH_SET(TRUE);
1654 PUSHSTACKi(PERLSI_SORT);
1655 if (!hasargs && !is_xsub) {
1656 SAVESPTR(PL_firstgv);
1657 SAVESPTR(PL_secondgv);
1658 PL_firstgv = gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV);
1659 PL_secondgv = gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV);
1660 SAVESPTR(GvSV(PL_firstgv));
1661 SAVESPTR(GvSV(PL_secondgv));
1662 }
1663
1664 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1665 if (!(flags & OPf_SPECIAL)) {
1666 cx->cx_type = CXt_SUB;
1667 cx->blk_gimme = G_SCALAR;
1668 /* If our comparison routine is already active (CvDEPTH is
1669 * is not 0), then PUSHSUB does not increase the refcount,
1670 * so we have to do it ourselves, because the LEAVESUB fur-
1671 * ther down lowers it. */
1672 if (CvDEPTH(cv)) SvREFCNT_inc_simple_void_NN(cv);
1673 PUSHSUB(cx);
1674 if (!is_xsub) {
1675 PADLIST * const padlist = CvPADLIST(cv);
1676
1677 if (++CvDEPTH(cv) >= 2) {
1678 PERL_STACK_OVERFLOW_CHECK();
1679 pad_push(padlist, CvDEPTH(cv));
1680 }
1681 SAVECOMPPAD();
1682 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
1683
1684 if (hasargs) {
1685 /* This is mostly copied from pp_entersub */
1686 AV * const av = MUTABLE_AV(PAD_SVl(0));
1687
1688 cx->blk_sub.savearray = GvAV(PL_defgv);
1689 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av));
1690 CX_CURPAD_SAVE(cx->blk_sub);
1691 cx->blk_sub.argarray = av;
1692 }
1693
1694 }
1695 }
1696 cx->cx_type |= CXp_MULTICALL;
1697
1698 start = p1 - max;
1699 sortsvp(aTHX_ start, max,
1700 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1701 sort_flags);
1702
1703 if (!(flags & OPf_SPECIAL)) {
1704 SV *sv;
1705 /* Reset cx, in case the context stack has been
1706 reallocated. */
1707 cx = &cxstack[cxstack_ix];
1708 POPSUB(cx, sv);
1709 LEAVESUB(sv);
1710 }
1711 POPBLOCK(cx,PL_curpm);
1712 PL_stack_sp = newsp;
1713 POPSTACK;
1714 CATCH_SET(oldcatch);
1715 }
1716 else {
1717 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1718 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1719 sortsvp(aTHX_ start, max,
1720 (priv & OPpSORT_NUMERIC)
1721 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
1722 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1723 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
1724 : ( IN_LOCALE_RUNTIME
1725 ? ( overloading
1726 ? (SVCOMPARE_t)S_amagic_cmp_locale
1727 : (SVCOMPARE_t)sv_cmp_locale_static)
1728 : ( overloading ? (SVCOMPARE_t)S_amagic_cmp : (SVCOMPARE_t)sv_cmp_static)),
1729 sort_flags);
1730 }
1731 if ((priv & OPpSORT_REVERSE) != 0) {
1732 SV **q = start+max-1;
1733 while (start < q) {
1734 SV * const tmp = *start;
1735 *start++ = *q;
1736 *q-- = tmp;
1737 }
1738 }
1739 }
1740 if (sorting_av)
1741 SvREADONLY_off(av);
1742 else if (av && !sorting_av) {
1743 /* simulate pp_aassign of tied AV */
1744 SV** const base = MARK+1;
1745 for (i=0; i < max; i++) {
1746 base[i] = newSVsv(base[i]);
1747 }
1748 av_clear(av);
1749 av_extend(av, max);
1750 for (i=0; i < max; i++) {
1751 SV * const sv = base[i];
1752 SV ** const didstore = av_store(av, i, sv);
1753 if (SvSMAGICAL(sv))
1754 mg_set(sv);
1755 if (!didstore)
1756 sv_2mortal(sv);
1757 }
1758 }
1759 LEAVE;
1760 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
1761 return nextop;
1762}
1763
1764static I32
1765S_sortcv(pTHX_ SV *const a, SV *const b)
1766{
1767 dVAR;
1768 const I32 oldsaveix = PL_savestack_ix;
1769 const I32 oldscopeix = PL_scopestack_ix;
1770 I32 result;
1771 SV *resultsv;
1772 PMOP * const pm = PL_curpm;
1773 OP * const sortop = PL_op;
1774 COP * const cop = PL_curcop;
1775
1776 PERL_ARGS_ASSERT_SORTCV;
1777
1778 GvSV(PL_firstgv) = a;
1779 GvSV(PL_secondgv) = b;
1780 PL_stack_sp = PL_stack_base;
1781 PL_op = PL_sortcop;
1782 CALLRUNOPS(aTHX);
1783 PL_op = sortop;
1784 PL_curcop = cop;
1785 if (PL_stack_sp != PL_stack_base + 1) {
1786 assert(PL_stack_sp == PL_stack_base);
1787 resultsv = &PL_sv_undef;
1788 }
1789 else resultsv = *PL_stack_sp;
1790 if (SvNIOK_nog(resultsv)) result = SvIV(resultsv);
1791 else {
1792 ENTER;
1793 SAVEVPTR(PL_curpad);
1794 PL_curpad = 0;
1795 result = SvIV(resultsv);
1796 LEAVE;
1797 }
1798 while (PL_scopestack_ix > oldscopeix) {
1799 LEAVE;
1800 }
1801 leave_scope(oldsaveix);
1802 PL_curpm = pm;
1803 return result;
1804}
1805
1806static I32
1807S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1808{
1809 dVAR;
1810 const I32 oldsaveix = PL_savestack_ix;
1811 const I32 oldscopeix = PL_scopestack_ix;
1812 I32 result;
1813 AV * const av = GvAV(PL_defgv);
1814 PMOP * const pm = PL_curpm;
1815 OP * const sortop = PL_op;
1816 COP * const cop = PL_curcop;
1817 SV **pad;
1818
1819 PERL_ARGS_ASSERT_SORTCV_STACKED;
1820
1821 if (AvREAL(av)) {
1822 av_clear(av);
1823 AvREAL_off(av);
1824 AvREIFY_on(av);
1825 }
1826 if (AvMAX(av) < 1) {
1827 SV **ary = AvALLOC(av);
1828 if (AvARRAY(av) != ary) {
1829 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1830 AvARRAY(av) = ary;
1831 }
1832 if (AvMAX(av) < 1) {
1833 AvMAX(av) = 1;
1834 Renew(ary,2,SV*);
1835 AvARRAY(av) = ary;
1836 AvALLOC(av) = ary;
1837 }
1838 }
1839 AvFILLp(av) = 1;
1840
1841 AvARRAY(av)[0] = a;
1842 AvARRAY(av)[1] = b;
1843 PL_stack_sp = PL_stack_base;
1844 PL_op = PL_sortcop;
1845 CALLRUNOPS(aTHX);
1846 PL_op = sortop;
1847 PL_curcop = cop;
1848 pad = PL_curpad; PL_curpad = 0;
1849 if (PL_stack_sp != PL_stack_base + 1) {
1850 assert(PL_stack_sp == PL_stack_base);
1851 result = SvIV(&PL_sv_undef);
1852 }
1853 else result = SvIV(*PL_stack_sp);
1854 PL_curpad = pad;
1855 while (PL_scopestack_ix > oldscopeix) {
1856 LEAVE;
1857 }
1858 leave_scope(oldsaveix);
1859 PL_curpm = pm;
1860 return result;
1861}
1862
1863static I32
1864S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1865{
1866 dVAR; dSP;
1867 const I32 oldsaveix = PL_savestack_ix;
1868 const I32 oldscopeix = PL_scopestack_ix;
1869 CV * const cv=MUTABLE_CV(PL_sortcop);
1870 I32 result;
1871 PMOP * const pm = PL_curpm;
1872
1873 PERL_ARGS_ASSERT_SORTCV_XSUB;
1874
1875 SP = PL_stack_base;
1876 PUSHMARK(SP);
1877 EXTEND(SP, 2);
1878 *++SP = a;
1879 *++SP = b;
1880 PUTBACK;
1881 (void)(*CvXSUB(cv))(aTHX_ cv);
1882 if (PL_stack_sp != PL_stack_base + 1)
1883 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1884 result = SvIV(*PL_stack_sp);
1885 while (PL_scopestack_ix > oldscopeix) {
1886 LEAVE;
1887 }
1888 leave_scope(oldsaveix);
1889 PL_curpm = pm;
1890 return result;
1891}
1892
1893
1894static I32
1895S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1896{
1897 const NV nv1 = SvNSIV(a);
1898 const NV nv2 = SvNSIV(b);
1899
1900 PERL_ARGS_ASSERT_SV_NCMP;
1901
1902#if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1903 if (Perl_isnan(nv1) || Perl_isnan(nv2)) {
1904#else
1905 if (nv1 != nv1 || nv2 != nv2) {
1906#endif
1907 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1908 return 0;
1909 }
1910 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1911}
1912
1913static I32
1914S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1915{
1916 const IV iv1 = SvIV(a);
1917 const IV iv2 = SvIV(b);
1918
1919 PERL_ARGS_ASSERT_SV_I_NCMP;
1920
1921 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1922}
1923
1924#define tryCALL_AMAGICbin(left,right,meth) \
1925 (SvAMAGIC(left)||SvAMAGIC(right)) \
1926 ? amagic_call(left, right, meth, 0) \
1927 : NULL;
1928
1929#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
1930
1931static I32
1932S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1933{
1934 dVAR;
1935 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1936
1937 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1938
1939 if (tmpsv) {
1940 if (SvIOK(tmpsv)) {
1941 const I32 i = SvIVX(tmpsv);
1942 return SORT_NORMAL_RETURN_VALUE(i);
1943 }
1944 else {
1945 const NV d = SvNV(tmpsv);
1946 return SORT_NORMAL_RETURN_VALUE(d);
1947 }
1948 }
1949 return S_sv_ncmp(aTHX_ a, b);
1950}
1951
1952static I32
1953S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1954{
1955 dVAR;
1956 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1957
1958 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1959
1960 if (tmpsv) {
1961 if (SvIOK(tmpsv)) {
1962 const I32 i = SvIVX(tmpsv);
1963 return SORT_NORMAL_RETURN_VALUE(i);
1964 }
1965 else {
1966 const NV d = SvNV(tmpsv);
1967 return SORT_NORMAL_RETURN_VALUE(d);
1968 }
1969 }
1970 return S_sv_i_ncmp(aTHX_ a, b);
1971}
1972
1973static I32
1974S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1975{
1976 dVAR;
1977 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1978
1979 PERL_ARGS_ASSERT_AMAGIC_CMP;
1980
1981 if (tmpsv) {
1982 if (SvIOK(tmpsv)) {
1983 const I32 i = SvIVX(tmpsv);
1984 return SORT_NORMAL_RETURN_VALUE(i);
1985 }
1986 else {
1987 const NV d = SvNV(tmpsv);
1988 return SORT_NORMAL_RETURN_VALUE(d);
1989 }
1990 }
1991 return sv_cmp(str1, str2);
1992}
1993
1994static I32
1995S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
1996{
1997 dVAR;
1998 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1999
2000 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
2001
2002 if (tmpsv) {
2003 if (SvIOK(tmpsv)) {
2004 const I32 i = SvIVX(tmpsv);
2005 return SORT_NORMAL_RETURN_VALUE(i);
2006 }
2007 else {
2008 const NV d = SvNV(tmpsv);
2009 return SORT_NORMAL_RETURN_VALUE(d);
2010 }
2011 }
2012 return sv_cmp_locale(str1, str2);
2013}
2014
2015/*
2016 * Local variables:
2017 * c-indentation-style: bsd
2018 * c-basic-offset: 4
2019 * indent-tabs-mode: nil
2020 * End:
2021 *
2022 * ex: set ts=8 sts=4 sw=4 et:
2023 */