This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
add boolean context support to several ops
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char malformed_text[] = "Malformed UTF-8 character";
37static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39static const char cp_above_legal_max[] =
40 "Use of code point 0x%" UVXf " is not allowed; the"
41 " permissible max is 0x%" UVXf;
42
43#define MAX_EXTERNALLY_LEGAL_CP ((UV) (IV_MAX))
44
45/*
46=head1 Unicode Support
47These are various utility functions for manipulating UTF8-encoded
48strings. For the uninitiated, this is a method of representing arbitrary
49Unicode characters as a variable number of bytes, in such a way that
50characters in the ASCII range are unmodified, and a zero byte never appears
51within non-zero characters.
52
53=cut
54*/
55
56void
57Perl__force_out_malformed_utf8_message(pTHX_
58 const U8 *const p, /* First byte in UTF-8 sequence */
59 const U8 * const e, /* Final byte in sequence (may include
60 multiple chars */
61 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
62 usually 0, or some DISALLOW flags */
63 const bool die_here) /* If TRUE, this function does not return */
64{
65 /* This core-only function is to be called when a malformed UTF-8 character
66 * is found, in order to output the detailed information about the
67 * malformation before dieing. The reason it exists is for the occasions
68 * when such a malformation is fatal, but warnings might be turned off, so
69 * that normally they would not be actually output. This ensures that they
70 * do get output. Because a sequence may be malformed in more than one
71 * way, multiple messages may be generated, so we can't make them fatal, as
72 * that would cause the first one to die.
73 *
74 * Instead we pretend -W was passed to perl, then die afterwards. The
75 * flexibility is here to return to the caller so they can finish up and
76 * die themselves */
77 U32 errors;
78
79 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
80
81 ENTER;
82 SAVEI8(PL_dowarn);
83 SAVESPTR(PL_curcop);
84
85 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 if (PL_curcop) {
87 PL_curcop->cop_warnings = pWARN_ALL;
88 }
89
90 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
91
92 LEAVE;
93
94 if (! errors) {
95 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
96 " be called only when there are errors found");
97 }
98
99 if (die_here) {
100 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
101 }
102}
103
104/*
105=for apidoc uvoffuni_to_utf8_flags
106
107THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
108Instead, B<Almost all code should use L</uvchr_to_utf8> or
109L</uvchr_to_utf8_flags>>.
110
111This function is like them, but the input is a strict Unicode
112(as opposed to native) code point. Only in very rare circumstances should code
113not be using the native code point.
114
115For details, see the description for L</uvchr_to_utf8_flags>.
116
117=cut
118*/
119
120/* All these formats take a single UV code point argument */
121const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
122const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
123 " is not recommended for open interchange";
124const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
125 " may not be portable";
126const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
127 " Unicode, requires a Perl extension," \
128 " and so is not portable";
129
130#define HANDLE_UNICODE_SURROGATE(uv, flags) \
131 STMT_START { \
132 if (flags & UNICODE_WARN_SURROGATE) { \
133 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
134 surrogate_cp_format, uv); \
135 } \
136 if (flags & UNICODE_DISALLOW_SURROGATE) { \
137 return NULL; \
138 } \
139 } STMT_END;
140
141#define HANDLE_UNICODE_NONCHAR(uv, flags) \
142 STMT_START { \
143 if (flags & UNICODE_WARN_NONCHAR) { \
144 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
145 nonchar_cp_format, uv); \
146 } \
147 if (flags & UNICODE_DISALLOW_NONCHAR) { \
148 return NULL; \
149 } \
150 } STMT_END;
151
152/* Use shorter names internally in this file */
153#define SHIFT UTF_ACCUMULATION_SHIFT
154#undef MARK
155#define MARK UTF_CONTINUATION_MARK
156#define MASK UTF_CONTINUATION_MASK
157
158U8 *
159Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
160{
161 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
162
163 if (OFFUNI_IS_INVARIANT(uv)) {
164 *d++ = LATIN1_TO_NATIVE(uv);
165 return d;
166 }
167
168 if (uv <= MAX_UTF8_TWO_BYTE) {
169 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
170 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
171 return d;
172 }
173
174 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
175 * below, the 16 is for start bytes E0-EF (which are all the possible ones
176 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
177 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
178 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
179 * 0x800-0xFFFF on ASCII */
180 if (uv < (16 * (1U << (2 * SHIFT)))) {
181 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
182 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
183 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
184
185#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
186 aren't tested here */
187 /* The most likely code points in this range are below the surrogates.
188 * Do an extra test to quickly exclude those. */
189 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
190 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
191 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
192 {
193 HANDLE_UNICODE_NONCHAR(uv, flags);
194 }
195 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
196 HANDLE_UNICODE_SURROGATE(uv, flags);
197 }
198 }
199#endif
200 return d;
201 }
202
203 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
204 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
205 * happen starting with 4-byte characters on ASCII platforms. We unify the
206 * code for these with EBCDIC, even though some of them require 5-bytes on
207 * those, because khw believes the code saving is worth the very slight
208 * performance hit on these high EBCDIC code points. */
209
210 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
211 if (UNLIKELY(uv > MAX_EXTERNALLY_LEGAL_CP)) {
212 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_EXTERNALLY_LEGAL_CP);
213 }
214 if ( (flags & UNICODE_WARN_SUPER)
215 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
216 && UNICODE_IS_PERL_EXTENDED(uv)))
217 {
218 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
219
220 /* Choose the more dire applicable warning */
221 (UNICODE_IS_PERL_EXTENDED(uv))
222 ? perl_extended_cp_format
223 : super_cp_format,
224 uv);
225 }
226 if ( (flags & UNICODE_DISALLOW_SUPER)
227 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
228 && UNICODE_IS_PERL_EXTENDED(uv)))
229 {
230 return NULL;
231 }
232 }
233 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
234 HANDLE_UNICODE_NONCHAR(uv, flags);
235 }
236
237 /* Test for and handle 4-byte result. In the test immediately below, the
238 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
239 * characters). The 3 is for 3 continuation bytes; these each contribute
240 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
241 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
242 * 0x1_0000-0x1F_FFFF on ASCII */
243 if (uv < (8 * (1U << (3 * SHIFT)))) {
244 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
245 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
246 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
247 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
248
249#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
250 characters. The end-plane non-characters for EBCDIC were
251 handled just above */
252 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
253 HANDLE_UNICODE_NONCHAR(uv, flags);
254 }
255 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
256 HANDLE_UNICODE_SURROGATE(uv, flags);
257 }
258#endif
259
260 return d;
261 }
262
263 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
264 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
265 * format. The unrolled version above turns out to not save all that much
266 * time, and at these high code points (well above the legal Unicode range
267 * on ASCII platforms, and well above anything in common use in EBCDIC),
268 * khw believes that less code outweighs slight performance gains. */
269
270 {
271 STRLEN len = OFFUNISKIP(uv);
272 U8 *p = d+len-1;
273 while (p > d) {
274 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
275 uv >>= UTF_ACCUMULATION_SHIFT;
276 }
277 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
278 return d+len;
279 }
280}
281
282/*
283=for apidoc uvchr_to_utf8
284
285Adds the UTF-8 representation of the native code point C<uv> to the end
286of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
287C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
288the byte after the end of the new character. In other words,
289
290 d = uvchr_to_utf8(d, uv);
291
292is the recommended wide native character-aware way of saying
293
294 *(d++) = uv;
295
296This function accepts any code point from 0..C<IV_MAX> as input.
297C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
298
299It is possible to forbid or warn on non-Unicode code points, or those that may
300be problematic by using L</uvchr_to_utf8_flags>.
301
302=cut
303*/
304
305/* This is also a macro */
306PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
307
308U8 *
309Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
310{
311 return uvchr_to_utf8(d, uv);
312}
313
314/*
315=for apidoc uvchr_to_utf8_flags
316
317Adds the UTF-8 representation of the native code point C<uv> to the end
318of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
319C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
320the byte after the end of the new character. In other words,
321
322 d = uvchr_to_utf8_flags(d, uv, flags);
323
324or, in most cases,
325
326 d = uvchr_to_utf8_flags(d, uv, 0);
327
328This is the Unicode-aware way of saying
329
330 *(d++) = uv;
331
332If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
333input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
334
335Specifying C<flags> can further restrict what is allowed and not warned on, as
336follows:
337
338If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
339the function will raise a warning, provided UTF8 warnings are enabled. If
340instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
341NULL. If both flags are set, the function will both warn and return NULL.
342
343Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
344affect how the function handles a Unicode non-character.
345
346And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
347affect the handling of code points that are above the Unicode maximum of
3480x10FFFF. Languages other than Perl may not be able to accept files that
349contain these.
350
351The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
352the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
353three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
354allowed inputs to the strict UTF-8 traditionally defined by Unicode.
355Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
356C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
357above-Unicode and surrogate flags, but not the non-character ones, as
358defined in
359L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
360See L<perlunicode/Noncharacter code points>.
361
362Extremely high code points were never specified in any standard, and require an
363extension to UTF-8 to express, which Perl does. It is likely that programs
364written in something other than Perl would not be able to read files that
365contain these; nor would Perl understand files written by something that uses a
366different extension. For these reasons, there is a separate set of flags that
367can warn and/or disallow these extremely high code points, even if other
368above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
369and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
370L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
371treat all above-Unicode code points, including these, as malformations. (Note
372that the Unicode standard considers anything above 0x10FFFF to be illegal, but
373there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
374
375A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
376retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
377C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
378C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because these
379flags can apply to code points that actually do fit in 31 bits. This happens
380on EBCDIC platforms, and sometimes when the L<overlong
381malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
382describe the situation in all cases.
383
384=cut
385*/
386
387/* This is also a macro */
388PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
389
390U8 *
391Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
392{
393 return uvchr_to_utf8_flags(d, uv, flags);
394}
395
396#ifndef UV_IS_QUAD
397
398STATIC int
399S_is_utf8_cp_above_31_bits(const U8 * const s,
400 const U8 * const e,
401 const bool consider_overlongs)
402{
403 /* Returns TRUE if the first code point represented by the Perl-extended-
404 * UTF-8-encoded string starting at 's', and looking no further than 'e -
405 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
406 *
407 * The function handles the case where the input bytes do not include all
408 * the ones necessary to represent a full character. That is, they may be
409 * the intial bytes of the representation of a code point, but possibly
410 * the final ones necessary for the complete representation may be beyond
411 * 'e - 1'.
412 *
413 * The function also can handle the case where the input is an overlong
414 * sequence. If 'consider_overlongs' is 0, the function assumes the
415 * input is not overlong, without checking, and will return based on that
416 * assumption. If this parameter is 1, the function will go to the trouble
417 * of figuring out if it actually evaluates to above or below 31 bits.
418 *
419 * The sequence is otherwise assumed to be well-formed, without checking.
420 */
421
422 const STRLEN len = e - s;
423 int is_overlong;
424
425 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
426
427 assert(! UTF8_IS_INVARIANT(*s) && e > s);
428
429#ifdef EBCDIC
430
431 PERL_UNUSED_ARG(consider_overlongs);
432
433 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
434 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
435 * also be the start byte for a 31-bit code point; we need at least 2
436 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
437 * the start byte for an overlong sequence, but for 30-bit or smaller code
438 * points, so we don't have to worry about overlongs on EBCDIC.) */
439 if (*s != 0xFE) {
440 return 0;
441 }
442
443 if (len == 1) {
444 return -1;
445 }
446
447#else
448
449 /* On ASCII, FE and FF are the only start bytes that can evaluate to
450 * needing more than 31 bits. */
451 if (LIKELY(*s < 0xFE)) {
452 return 0;
453 }
454
455 /* What we have left are FE and FF. Both of these require more than 31
456 * bits unless they are for overlongs. */
457 if (! consider_overlongs) {
458 return 1;
459 }
460
461 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
462 * above 31 bits. But we need more than one byte to discern this, so if
463 * passed just the start byte, it could be an overlong evaluating to
464 * smaller */
465 if (len == 1) {
466 return -1;
467 }
468
469 /* Having excluded len==1, and knowing that FE and FF are both valid start
470 * bytes, we can call the function below to see if the sequence is
471 * overlong. (We don't need the full generality of the called function,
472 * but for these huge code points, speed shouldn't be a consideration, and
473 * the compiler does have enough information, since it's static to this
474 * file, to optimize to just the needed parts.) */
475 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
476
477 /* If it isn't overlong, more than 31 bits are required. */
478 if (is_overlong == 0) {
479 return 1;
480 }
481
482 /* If it is indeterminate if it is overlong, return that */
483 if (is_overlong < 0) {
484 return -1;
485 }
486
487 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
488 * the max it can be is 2**31 - 1 */
489 if (*s == 0xFE) {
490 return 0;
491 }
492
493#endif
494
495 /* Here, ASCII and EBCDIC rejoin:
496 * On ASCII: We have an overlong sequence starting with FF
497 * On EBCDIC: We have a sequence starting with FE. */
498
499 { /* For C89, use a block so the declaration can be close to its use */
500
501#ifdef EBCDIC
502
503 /* U+7FFFFFFF (2 ** 31 - 1)
504 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
505 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
506 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
507 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
508 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
509 * U+80000000 (2 ** 31):
510 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
511 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
512 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
513 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
514 *
515 * and since we know that *s = \xfe, any continuation sequcence
516 * following it that is gt the below is above 31 bits
517 [0] [1] [2] [3] [4] [5] [6] */
518 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
519
520#else
521
522 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
523 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
524 * FF overlong for U+80000000 (2 ** 31):
525 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
526 * and since we know that *s = \xff, any continuation sequcence
527 * following it that is gt the below is above 30 bits
528 [0] [1] [2] [3] [4] [5] [6] */
529 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
530
531
532#endif
533 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
534 const STRLEN cmp_len = MIN(conts_len, len - 1);
535
536 /* Now compare the continuation bytes in s with the ones we have
537 * compiled in that are for the largest 30 bit code point. If we have
538 * enough bytes available to determine the answer, or the bytes we do
539 * have differ from them, we can compare the two to get a definitive
540 * answer (Note that in UTF-EBCDIC, the two lowest possible
541 * continuation bytes are \x41 and \x42.) */
542 if (cmp_len >= conts_len || memNE(s + 1,
543 conts_for_highest_30_bit,
544 cmp_len))
545 {
546 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
547 }
548
549 /* Here, all the bytes we have are the same as the highest 30-bit code
550 * point, but we are missing so many bytes that we can't make the
551 * determination */
552 return -1;
553 }
554}
555
556#endif
557
558PERL_STATIC_INLINE int
559S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
560{
561 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
562 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
563 * it isn't, and -1 if there isn't enough information to tell. This last
564 * return value can happen if the sequence is incomplete, missing some
565 * trailing bytes that would form a complete character. If there are
566 * enough bytes to make a definitive decision, this function does so.
567 * Usually 2 bytes sufficient.
568 *
569 * Overlongs can occur whenever the number of continuation bytes changes.
570 * That means whenever the number of leading 1 bits in a start byte
571 * increases from the next lower start byte. That happens for start bytes
572 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
573 * start bytes have already been excluded, so don't need to be tested here;
574 * ASCII platforms: C0, C1
575 * EBCDIC platforms C0, C1, C2, C3, C4, E0
576 */
577
578 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
579 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
580
581 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
582 assert(len > 1 && UTF8_IS_START(*s));
583
584 /* Each platform has overlongs after the start bytes given above (expressed
585 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
586 * the logic is the same, except the E0 overlong has already been excluded
587 * on EBCDIC platforms. The values below were found by manually
588 * inspecting the UTF-8 patterns. See the tables in utf8.h and
589 * utfebcdic.h. */
590
591# ifdef EBCDIC
592# define F0_ABOVE_OVERLONG 0xB0
593# define F8_ABOVE_OVERLONG 0xA8
594# define FC_ABOVE_OVERLONG 0xA4
595# define FE_ABOVE_OVERLONG 0xA2
596# define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
597 /* I8(0xfe) is FF */
598# else
599
600 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
601 return 1;
602 }
603
604# define F0_ABOVE_OVERLONG 0x90
605# define F8_ABOVE_OVERLONG 0x88
606# define FC_ABOVE_OVERLONG 0x84
607# define FE_ABOVE_OVERLONG 0x82
608# define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
609# endif
610
611
612 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
613 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
614 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
615 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
616 {
617 return 1;
618 }
619
620 /* Check for the FF overlong */
621 return isFF_OVERLONG(s, len);
622}
623
624PERL_STATIC_INLINE int
625S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
626{
627 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
628 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
629 * it isn't, and -1 if there isn't enough information to tell. This last
630 * return value can happen if the sequence is incomplete, missing some
631 * trailing bytes that would form a complete character. If there are
632 * enough bytes to make a definitive decision, this function does so. */
633
634 PERL_ARGS_ASSERT_ISFF_OVERLONG;
635
636 /* To be an FF overlong, all the available bytes must match */
637 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
638 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
639 {
640 return 0;
641 }
642
643 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
644 * be there; what comes after them doesn't matter. See tables in utf8.h,
645 * utfebcdic.h. */
646 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
647 return 1;
648 }
649
650 /* The missing bytes could cause the result to go one way or the other, so
651 * the result is indeterminate */
652 return -1;
653}
654
655#if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
656# ifdef EBCDIC /* Actually is I8 */
657# define HIGHEST_REPRESENTABLE_UTF8 \
658 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
659# else
660# define HIGHEST_REPRESENTABLE_UTF8 \
661 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
662# endif
663#endif
664
665PERL_STATIC_INLINE int
666S_does_utf8_overflow(const U8 * const s,
667 const U8 * e,
668 const bool consider_overlongs)
669{
670 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
671 * 'e' - 1 would overflow an IV on this platform; that is if it represents
672 * a code point larger than the highest representable code point. It
673 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
674 * enough information to tell. This last return value can happen if the
675 * sequence is incomplete, missing some trailing bytes that would form a
676 * complete character. If there are enough bytes to make a definitive
677 * decision, this function does so.
678 *
679 * If 'consider_overlongs' is TRUE, the function checks for the possibility
680 * that the sequence is an overlong that doesn't overflow. Otherwise, it
681 * assumes the sequence is not an overlong. This can give different
682 * results only on ASCII 32-bit platforms.
683 *
684 * (For ASCII platforms, we could use memcmp() because we don't have to
685 * convert each byte to I8, but it's very rare input indeed that would
686 * approach overflow, so the loop below will likely only get executed once.)
687 *
688 * 'e' - 1 must not be beyond a full character. */
689
690
691 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
692 assert(s <= e && s + UTF8SKIP(s) >= e);
693
694#if ! defined(UV_IS_QUAD)
695
696 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
697
698#else
699
700 PERL_UNUSED_ARG(consider_overlongs);
701
702 {
703 const STRLEN len = e - s;
704 const U8 *x;
705 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
706
707 for (x = s; x < e; x++, y++) {
708
709 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
710 continue;
711 }
712
713 /* If this byte is larger than the corresponding highest UTF-8
714 * byte, the sequence overflow; otherwise the byte is less than,
715 * and so the sequence doesn't overflow */
716 return NATIVE_UTF8_TO_I8(*x) > *y;
717
718 }
719
720 /* Got to the end and all bytes are the same. If the input is a whole
721 * character, it doesn't overflow. And if it is a partial character,
722 * there's not enough information to tell */
723 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
724 return -1;
725 }
726
727 return 0;
728 }
729
730#endif
731
732}
733
734#if 0
735
736/* This is the portions of the above function that deal with UV_MAX instead of
737 * IV_MAX. They are left here in case we want to combine them so that internal
738 * uses can have larger code points. The only logic difference is that the
739 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
740 * different logic.
741 */
742
743/* Anything larger than this will overflow the word if it were converted into a UV */
744#if defined(UV_IS_QUAD)
745# ifdef EBCDIC /* Actually is I8 */
746# define HIGHEST_REPRESENTABLE_UTF8 \
747 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
748# else
749# define HIGHEST_REPRESENTABLE_UTF8 \
750 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
751# endif
752#else /* 32-bit */
753# ifdef EBCDIC
754# define HIGHEST_REPRESENTABLE_UTF8 \
755 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
756# else
757# define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
758# endif
759#endif
760
761#if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
762
763 /* On 32 bit ASCII machines, many overlongs that start with FF don't
764 * overflow */
765 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
766
767 /* To be such an overlong, the first bytes of 's' must match
768 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
769 * don't have any additional bytes available, the sequence, when
770 * completed might or might not fit in 32 bits. But if we have that
771 * next byte, we can tell for sure. If it is <= 0x83, then it does
772 * fit. */
773 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
774 return -1;
775 }
776
777 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
778 }
779
780/* Starting with the #else, the rest of the function is identical except
781 * 1. we need to move the 'len' declaration to be global to the function
782 * 2. the endif move to just after the UNUSED_ARG.
783 * An empty endif is given just below to satisfy the preprocessor
784 */
785#endif
786
787#endif
788
789#undef F0_ABOVE_OVERLONG
790#undef F8_ABOVE_OVERLONG
791#undef FC_ABOVE_OVERLONG
792#undef FE_ABOVE_OVERLONG
793#undef FF_OVERLONG_PREFIX
794
795STRLEN
796Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
797{
798 STRLEN len;
799 const U8 *x;
800
801 /* A helper function that should not be called directly.
802 *
803 * This function returns non-zero if the string beginning at 's' and
804 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
805 * code point; otherwise it returns 0. The examination stops after the
806 * first code point in 's' is validated, not looking at the rest of the
807 * input. If 'e' is such that there are not enough bytes to represent a
808 * complete code point, this function will return non-zero anyway, if the
809 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
810 * excluded by 'flags'.
811 *
812 * A non-zero return gives the number of bytes required to represent the
813 * code point. Be aware that if the input is for a partial character, the
814 * return will be larger than 'e - s'.
815 *
816 * This function assumes that the code point represented is UTF-8 variant.
817 * The caller should have excluded the possibility of it being invariant
818 * before calling this function.
819 *
820 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
821 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
822 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
823 * disallowed by the flags. If the input is only for a partial character,
824 * the function will return non-zero if there is any sequence of
825 * well-formed UTF-8 that, when appended to the input sequence, could
826 * result in an allowed code point; otherwise it returns 0. Non characters
827 * cannot be determined based on partial character input. But many of the
828 * other excluded types can be determined with just the first one or two
829 * bytes.
830 *
831 */
832
833 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
834
835 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
836 |UTF8_DISALLOW_PERL_EXTENDED)));
837 assert(! UTF8_IS_INVARIANT(*s));
838
839 /* A variant char must begin with a start byte */
840 if (UNLIKELY(! UTF8_IS_START(*s))) {
841 return 0;
842 }
843
844 /* Examine a maximum of a single whole code point */
845 if (e - s > UTF8SKIP(s)) {
846 e = s + UTF8SKIP(s);
847 }
848
849 len = e - s;
850
851 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
852 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
853
854 /* Here, we are disallowing some set of largish code points, and the
855 * first byte indicates the sequence is for a code point that could be
856 * in the excluded set. We generally don't have to look beyond this or
857 * the second byte to see if the sequence is actually for one of the
858 * excluded classes. The code below is derived from this table:
859 *
860 * UTF-8 UTF-EBCDIC I8
861 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
862 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
863 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
864 *
865 * Keep in mind that legal continuation bytes range between \x80..\xBF
866 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
867 * continuation bytes. Hence, we don't have to test the upper edge
868 * because if any of those is encountered, the sequence is malformed,
869 * and would fail elsewhere in this function.
870 *
871 * The code here likewise assumes that there aren't other
872 * malformations; again the function should fail elsewhere because of
873 * these. For example, an overlong beginning with FC doesn't actually
874 * have to be a super; it could actually represent a small code point,
875 * even U+0000. But, since overlongs (and other malformations) are
876 * illegal, the function should return FALSE in either case.
877 */
878
879#ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
880# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
881# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
882
883# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
884 /* B6 and B7 */ \
885 && ((s1) & 0xFE ) == 0xB6)
886# define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
887#else
888# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
889# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
890# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
891# define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
892#endif
893
894 if ( (flags & UTF8_DISALLOW_SUPER)
895 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
896 {
897 return 0; /* Above Unicode */
898 }
899
900 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
901 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
902 {
903 return 0;
904 }
905
906 if (len > 1) {
907 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
908
909 if ( (flags & UTF8_DISALLOW_SUPER)
910 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
911 {
912 return 0; /* Above Unicode */
913 }
914
915 if ( (flags & UTF8_DISALLOW_SURROGATE)
916 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
917 {
918 return 0; /* Surrogate */
919 }
920
921 if ( (flags & UTF8_DISALLOW_NONCHAR)
922 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
923 {
924 return 0; /* Noncharacter code point */
925 }
926 }
927 }
928
929 /* Make sure that all that follows are continuation bytes */
930 for (x = s + 1; x < e; x++) {
931 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
932 return 0;
933 }
934 }
935
936 /* Here is syntactically valid. Next, make sure this isn't the start of an
937 * overlong. */
938 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
939 return 0;
940 }
941
942 /* And finally, that the code point represented fits in a word on this
943 * platform */
944 if (0 < does_utf8_overflow(s, e,
945 0 /* Don't consider overlongs */
946 ))
947 {
948 return 0;
949 }
950
951 return UTF8SKIP(s);
952}
953
954char *
955Perl__byte_dump_string(pTHX_ const U8 * s, const STRLEN len, const bool format)
956{
957 /* Returns a mortalized C string that is a displayable copy of the 'len'
958 * bytes starting at 's'. 'format' gives how to display each byte.
959 * Currently, there are only two formats, so it is currently a bool:
960 * 0 \xab
961 * 1 ab (that is a space between two hex digit bytes)
962 */
963
964 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
965 trailing NUL */
966 const U8 * const e = s + len;
967 char * output;
968 char * d;
969
970 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
971
972 Newx(output, output_len, char);
973 SAVEFREEPV(output);
974
975 d = output;
976 for (; s < e; s++) {
977 const unsigned high_nibble = (*s & 0xF0) >> 4;
978 const unsigned low_nibble = (*s & 0x0F);
979
980 if (format) {
981 *d++ = ' ';
982 }
983 else {
984 *d++ = '\\';
985 *d++ = 'x';
986 }
987
988 if (high_nibble < 10) {
989 *d++ = high_nibble + '0';
990 }
991 else {
992 *d++ = high_nibble - 10 + 'a';
993 }
994
995 if (low_nibble < 10) {
996 *d++ = low_nibble + '0';
997 }
998 else {
999 *d++ = low_nibble - 10 + 'a';
1000 }
1001 }
1002
1003 *d = '\0';
1004 return output;
1005}
1006
1007PERL_STATIC_INLINE char *
1008S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1009
1010 /* How many bytes to print */
1011 STRLEN print_len,
1012
1013 /* Which one is the non-continuation */
1014 const STRLEN non_cont_byte_pos,
1015
1016 /* How many bytes should there be? */
1017 const STRLEN expect_len)
1018{
1019 /* Return the malformation warning text for an unexpected continuation
1020 * byte. */
1021
1022 const char * const where = (non_cont_byte_pos == 1)
1023 ? "immediately"
1024 : Perl_form(aTHX_ "%d bytes",
1025 (int) non_cont_byte_pos);
1026
1027 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1028
1029 /* We don't need to pass this parameter, but since it has already been
1030 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1031 assert(expect_len == UTF8SKIP(s));
1032
1033 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1034 " %s after start byte 0x%02x; need %d bytes, got %d)",
1035 malformed_text,
1036 _byte_dump_string(s, print_len, 0),
1037 *(s + non_cont_byte_pos),
1038 where,
1039 *s,
1040 (int) expect_len,
1041 (int) non_cont_byte_pos);
1042}
1043
1044/*
1045
1046=for apidoc utf8n_to_uvchr
1047
1048THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1049Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1050
1051Bottom level UTF-8 decode routine.
1052Returns the native code point value of the first character in the string C<s>,
1053which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1054C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1055the length, in bytes, of that character.
1056
1057The value of C<flags> determines the behavior when C<s> does not point to a
1058well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1059causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1060is the next possible position in C<s> that could begin a non-malformed
1061character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1062is raised. Some UTF-8 input sequences may contain multiple malformations.
1063This function tries to find every possible one in each call, so multiple
1064warnings can be raised for the same sequence.
1065
1066Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1067individual types of malformations, such as the sequence being overlong (that
1068is, when there is a shorter sequence that can express the same code point;
1069overlong sequences are expressly forbidden in the UTF-8 standard due to
1070potential security issues). Another malformation example is the first byte of
1071a character not being a legal first byte. See F<utf8.h> for the list of such
1072flags. Even if allowed, this function generally returns the Unicode
1073REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1074F<utf8.h> to override this behavior for the overlong malformations, but don't
1075do that except for very specialized purposes.
1076
1077The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1078flags) malformation is found. If this flag is set, the routine assumes that
1079the caller will raise a warning, and this function will silently just set
1080C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1081
1082Note that this API requires disambiguation between successful decoding a C<NUL>
1083character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1084in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1085be set to 1. To disambiguate, upon a zero return, see if the first byte of
1086C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1087error. Or you can use C<L</utf8n_to_uvchr_error>>.
1088
1089Certain code points are considered problematic. These are Unicode surrogates,
1090Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1091By default these are considered regular code points, but certain situations
1092warrant special handling for them, which can be specified using the C<flags>
1093parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1094three classes are treated as malformations and handled as such. The flags
1095C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1096C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1097disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1098restricts the allowed inputs to the strict UTF-8 traditionally defined by
1099Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1100definition given by
1101L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
1102The difference between traditional strictness and C9 strictness is that the
1103latter does not forbid non-character code points. (They are still discouraged,
1104however.) For more discussion see L<perlunicode/Noncharacter code points>.
1105
1106The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1107C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1108C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1109raised for their respective categories, but otherwise the code points are
1110considered valid (not malformations). To get a category to both be treated as
1111a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1112(But note that warnings are not raised if lexically disabled nor if
1113C<UTF8_CHECK_ONLY> is also specified.)
1114
1115Extremely high code points were never specified in any standard, and require an
1116extension to UTF-8 to express, which Perl does. It is likely that programs
1117written in something other than Perl would not be able to read files that
1118contain these; nor would Perl understand files written by something that uses a
1119different extension. For these reasons, there is a separate set of flags that
1120can warn and/or disallow these extremely high code points, even if other
1121above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1122C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1123L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1124above-Unicode code points, including these, as malformations.
1125(Note that the Unicode standard considers anything above 0x10FFFF to be
1126illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1127(2**31 -1))
1128
1129A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1130retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1131C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1132C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1133can apply to code points that actually do fit in 31 bits. This happens on
1134EBCDIC platforms, and sometimes when the L<overlong
1135malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1136describe the situation in all cases.
1137
1138
1139All other code points corresponding to Unicode characters, including private
1140use and those yet to be assigned, are never considered malformed and never
1141warn.
1142
1143=cut
1144
1145Also implemented as a macro in utf8.h
1146*/
1147
1148UV
1149Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
1150 STRLEN curlen,
1151 STRLEN *retlen,
1152 const U32 flags)
1153{
1154 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1155
1156 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1157}
1158
1159/*
1160
1161=for apidoc utf8n_to_uvchr_error
1162
1163THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1164Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1165
1166This function is for code that needs to know what the precise malformation(s)
1167are when an error is found.
1168
1169It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1170all the others, C<errors>. If this parameter is 0, this function behaves
1171identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1172to a C<U32> variable, which this function sets to indicate any errors found.
1173Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1174C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1175of these bits will be set if a malformation is found, even if the input
1176C<flags> parameter indicates that the given malformation is allowed; those
1177exceptions are noted:
1178
1179=over 4
1180
1181=item C<UTF8_GOT_PERL_EXTENDED>
1182
1183The input sequence is not standard UTF-8, but a Perl extension. This bit is
1184set only if the input C<flags> parameter contains either the
1185C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1186
1187Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1188and so some extension must be used to express them. Perl uses a natural
1189extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1190extension to represent even higher ones, so that any code point that fits in a
119164-bit word can be represented. Text using these extensions is not likely to
1192be portable to non-Perl code. We lump both of these extensions together and
1193refer to them as Perl extended UTF-8. There exist other extensions that people
1194have invented, incompatible with Perl's.
1195
1196On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1197extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1198than on ASCII. Prior to that, code points 2**31 and higher were simply
1199unrepresentable, and a different, incompatible method was used to represent
1200code points between 2**30 and 2**31 - 1.
1201
1202On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1203Perl extended UTF-8 is used.
1204
1205In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1206may use for backward compatibility. That name is misleading, as this flag may
1207be set when the code point actually does fit in 31 bits. This happens on
1208EBCDIC platforms, and sometimes when the L<overlong
1209malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1210describes the situation in all cases.
1211
1212=item C<UTF8_GOT_CONTINUATION>
1213
1214The input sequence was malformed in that the first byte was a a UTF-8
1215continuation byte.
1216
1217=item C<UTF8_GOT_EMPTY>
1218
1219The input C<curlen> parameter was 0.
1220
1221=item C<UTF8_GOT_LONG>
1222
1223The input sequence was malformed in that there is some other sequence that
1224evaluates to the same code point, but that sequence is shorter than this one.
1225
1226Until Unicode 3.1, it was legal for programs to accept this malformation, but
1227it was discovered that this created security issues.
1228
1229=item C<UTF8_GOT_NONCHAR>
1230
1231The code point represented by the input UTF-8 sequence is for a Unicode
1232non-character code point.
1233This bit is set only if the input C<flags> parameter contains either the
1234C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1235
1236=item C<UTF8_GOT_NON_CONTINUATION>
1237
1238The input sequence was malformed in that a non-continuation type byte was found
1239in a position where only a continuation type one should be.
1240
1241=item C<UTF8_GOT_OVERFLOW>
1242
1243The input sequence was malformed in that it is for a code point that is not
1244representable in the number of bits available in an IV on the current platform.
1245
1246=item C<UTF8_GOT_SHORT>
1247
1248The input sequence was malformed in that C<curlen> is smaller than required for
1249a complete sequence. In other words, the input is for a partial character
1250sequence.
1251
1252=item C<UTF8_GOT_SUPER>
1253
1254The input sequence was malformed in that it is for a non-Unicode code point;
1255that is, one above the legal Unicode maximum.
1256This bit is set only if the input C<flags> parameter contains either the
1257C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1258
1259=item C<UTF8_GOT_SURROGATE>
1260
1261The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1262code point.
1263This bit is set only if the input C<flags> parameter contains either the
1264C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1265
1266=back
1267
1268To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1269flag to suppress any warnings, and then examine the C<*errors> return.
1270
1271=cut
1272*/
1273
1274UV
1275Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
1276 STRLEN curlen,
1277 STRLEN *retlen,
1278 const U32 flags,
1279 U32 * errors)
1280{
1281 const U8 * const s0 = s;
1282 U8 * send = NULL; /* (initialized to silence compilers' wrong
1283 warning) */
1284 U32 possible_problems = 0; /* A bit is set here for each potential problem
1285 found as we go along */
1286 UV uv = *s;
1287 STRLEN expectlen = 0; /* How long should this sequence be?
1288 (initialized to silence compilers' wrong
1289 warning) */
1290 STRLEN avail_len = 0; /* When input is too short, gives what that is */
1291 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
1292 this gets set and discarded */
1293
1294 /* The below are used only if there is both an overlong malformation and a
1295 * too short one. Otherwise the first two are set to 's0' and 'send', and
1296 * the third not used at all */
1297 U8 * adjusted_s0 = (U8 *) s0;
1298 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1299 routine; see [perl #130921] */
1300 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1301
1302 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1303
1304 if (errors) {
1305 *errors = 0;
1306 }
1307 else {
1308 errors = &discard_errors;
1309 }
1310
1311 /* The order of malformation tests here is important. We should consume as
1312 * few bytes as possible in order to not skip any valid character. This is
1313 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1314 * http://unicode.org/reports/tr36 for more discussion as to why. For
1315 * example, once we've done a UTF8SKIP, we can tell the expected number of
1316 * bytes, and could fail right off the bat if the input parameters indicate
1317 * that there are too few available. But it could be that just that first
1318 * byte is garbled, and the intended character occupies fewer bytes. If we
1319 * blindly assumed that the first byte is correct, and skipped based on
1320 * that number, we could skip over a valid input character. So instead, we
1321 * always examine the sequence byte-by-byte.
1322 *
1323 * We also should not consume too few bytes, otherwise someone could inject
1324 * things. For example, an input could be deliberately designed to
1325 * overflow, and if this code bailed out immediately upon discovering that,
1326 * returning to the caller C<*retlen> pointing to the very next byte (one
1327 * which is actually part of of the overflowing sequence), that could look
1328 * legitimate to the caller, which could discard the initial partial
1329 * sequence and process the rest, inappropriately.
1330 *
1331 * Some possible input sequences are malformed in more than one way. This
1332 * function goes to lengths to try to find all of them. This is necessary
1333 * for correctness, as the inputs may allow one malformation but not
1334 * another, and if we abandon searching for others after finding the
1335 * allowed one, we could allow in something that shouldn't have been.
1336 */
1337
1338 if (UNLIKELY(curlen == 0)) {
1339 possible_problems |= UTF8_GOT_EMPTY;
1340 curlen = 0;
1341 uv = UNICODE_REPLACEMENT;
1342 goto ready_to_handle_errors;
1343 }
1344
1345 expectlen = UTF8SKIP(s);
1346
1347 /* A well-formed UTF-8 character, as the vast majority of calls to this
1348 * function will be for, has this expected length. For efficiency, set
1349 * things up here to return it. It will be overriden only in those rare
1350 * cases where a malformation is found */
1351 if (retlen) {
1352 *retlen = expectlen;
1353 }
1354
1355 /* An invariant is trivially well-formed */
1356 if (UTF8_IS_INVARIANT(uv)) {
1357 return uv;
1358 }
1359
1360 /* A continuation character can't start a valid sequence */
1361 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1362 possible_problems |= UTF8_GOT_CONTINUATION;
1363 curlen = 1;
1364 uv = UNICODE_REPLACEMENT;
1365 goto ready_to_handle_errors;
1366 }
1367
1368 /* Here is not a continuation byte, nor an invariant. The only thing left
1369 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1370 * because it excludes start bytes like \xC0 that always lead to
1371 * overlongs.) */
1372
1373 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1374 * that indicate the number of bytes in the character's whole UTF-8
1375 * sequence, leaving just the bits that are part of the value. */
1376 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1377
1378 /* Setup the loop end point, making sure to not look past the end of the
1379 * input string, and flag it as too short if the size isn't big enough. */
1380 send = (U8*) s0;
1381 if (UNLIKELY(curlen < expectlen)) {
1382 possible_problems |= UTF8_GOT_SHORT;
1383 avail_len = curlen;
1384 send += curlen;
1385 }
1386 else {
1387 send += expectlen;
1388 }
1389
1390 /* Now, loop through the remaining bytes in the character's sequence,
1391 * accumulating each into the working value as we go. */
1392 for (s = s0 + 1; s < send; s++) {
1393 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1394 uv = UTF8_ACCUMULATE(uv, *s);
1395 continue;
1396 }
1397
1398 /* Here, found a non-continuation before processing all expected bytes.
1399 * This byte indicates the beginning of a new character, so quit, even
1400 * if allowing this malformation. */
1401 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1402 break;
1403 } /* End of loop through the character's bytes */
1404
1405 /* Save how many bytes were actually in the character */
1406 curlen = s - s0;
1407
1408 /* Note that there are two types of too-short malformation. One is when
1409 * there is actual wrong data before the normal termination of the
1410 * sequence. The other is that the sequence wasn't complete before the end
1411 * of the data we are allowed to look at, based on the input 'curlen'.
1412 * This means that we were passed data for a partial character, but it is
1413 * valid as far as we saw. The other is definitely invalid. This
1414 * distinction could be important to a caller, so the two types are kept
1415 * separate.
1416 *
1417 * A convenience macro that matches either of the too-short conditions. */
1418# define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1419
1420 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1421 uv_so_far = uv;
1422 uv = UNICODE_REPLACEMENT;
1423 }
1424
1425 /* Check for overflow. The algorithm requires us to not look past the end
1426 * of the current character, even if partial, so the upper limit is 's' */
1427 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1428 1 /* Do consider overlongs */
1429 )))
1430 {
1431 possible_problems |= UTF8_GOT_OVERFLOW;
1432 uv = UNICODE_REPLACEMENT;
1433 }
1434
1435 /* Check for overlong. If no problems so far, 'uv' is the correct code
1436 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1437 * we must look at the UTF-8 byte sequence itself to see if it is for an
1438 * overlong */
1439 if ( ( LIKELY(! possible_problems)
1440 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1441 || ( UNLIKELY(possible_problems)
1442 && ( UNLIKELY(! UTF8_IS_START(*s0))
1443 || ( curlen > 1
1444 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1445 s - s0))))))
1446 {
1447 possible_problems |= UTF8_GOT_LONG;
1448
1449 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1450
1451 /* The calculation in the 'true' branch of this 'if'
1452 * below won't work if overflows, and isn't needed
1453 * anyway. Further below we handle all overflow
1454 * cases */
1455 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1456 {
1457 UV min_uv = uv_so_far;
1458 STRLEN i;
1459
1460 /* Here, the input is both overlong and is missing some trailing
1461 * bytes. There is no single code point it could be for, but there
1462 * may be enough information present to determine if what we have
1463 * so far is for an unallowed code point, such as for a surrogate.
1464 * The code further below has the intelligence to determine this,
1465 * but just for non-overlong UTF-8 sequences. What we do here is
1466 * calculate the smallest code point the input could represent if
1467 * there were no too short malformation. Then we compute and save
1468 * the UTF-8 for that, which is what the code below looks at
1469 * instead of the raw input. It turns out that the smallest such
1470 * code point is all we need. */
1471 for (i = curlen; i < expectlen; i++) {
1472 min_uv = UTF8_ACCUMULATE(min_uv,
1473 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1474 }
1475
1476 adjusted_s0 = temp_char_buf;
1477 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1478 }
1479 }
1480
1481 /* Here, we have found all the possible problems, except for when the input
1482 * is for a problematic code point not allowed by the input parameters. */
1483
1484 /* uv is valid for overlongs */
1485 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1486
1487 /* isn't problematic if < this */
1488 && uv >= UNICODE_SURROGATE_FIRST)
1489 || ( UNLIKELY(possible_problems)
1490
1491 /* if overflow, we know without looking further
1492 * precisely which of the problematic types it is,
1493 * and we deal with those in the overflow handling
1494 * code */
1495 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1496 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1497 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1498 && ((flags & ( UTF8_DISALLOW_NONCHAR
1499 |UTF8_DISALLOW_SURROGATE
1500 |UTF8_DISALLOW_SUPER
1501 |UTF8_DISALLOW_PERL_EXTENDED
1502 |UTF8_WARN_NONCHAR
1503 |UTF8_WARN_SURROGATE
1504 |UTF8_WARN_SUPER
1505 |UTF8_WARN_PERL_EXTENDED))))
1506 {
1507 /* If there were no malformations, or the only malformation is an
1508 * overlong, 'uv' is valid */
1509 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1510 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1511 possible_problems |= UTF8_GOT_SURROGATE;
1512 }
1513 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1514 possible_problems |= UTF8_GOT_SUPER;
1515 }
1516 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1517 possible_problems |= UTF8_GOT_NONCHAR;
1518 }
1519 }
1520 else { /* Otherwise, need to look at the source UTF-8, possibly
1521 adjusted to be non-overlong */
1522
1523 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1524 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1525 {
1526 possible_problems |= UTF8_GOT_SUPER;
1527 }
1528 else if (curlen > 1) {
1529 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1530 NATIVE_UTF8_TO_I8(*adjusted_s0),
1531 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1532 {
1533 possible_problems |= UTF8_GOT_SUPER;
1534 }
1535 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1536 NATIVE_UTF8_TO_I8(*adjusted_s0),
1537 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1538 {
1539 possible_problems |= UTF8_GOT_SURROGATE;
1540 }
1541 }
1542
1543 /* We need a complete well-formed UTF-8 character to discern
1544 * non-characters, so can't look for them here */
1545 }
1546 }
1547
1548 ready_to_handle_errors:
1549
1550 /* At this point:
1551 * curlen contains the number of bytes in the sequence that
1552 * this call should advance the input by.
1553 * avail_len gives the available number of bytes passed in, but
1554 * only if this is less than the expected number of
1555 * bytes, based on the code point's start byte.
1556 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1557 * is set in it for each potential problem found.
1558 * uv contains the code point the input sequence
1559 * represents; or if there is a problem that prevents
1560 * a well-defined value from being computed, it is
1561 * some subsitute value, typically the REPLACEMENT
1562 * CHARACTER.
1563 * s0 points to the first byte of the character
1564 * s points to just after were we left off processing
1565 * the character
1566 * send points to just after where that character should
1567 * end, based on how many bytes the start byte tells
1568 * us should be in it, but no further than s0 +
1569 * avail_len
1570 */
1571
1572 if (UNLIKELY(possible_problems)) {
1573 bool disallowed = FALSE;
1574 const U32 orig_problems = possible_problems;
1575
1576 while (possible_problems) { /* Handle each possible problem */
1577 UV pack_warn = 0;
1578 char * message = NULL;
1579
1580 /* Each 'if' clause handles one problem. They are ordered so that
1581 * the first ones' messages will be displayed before the later
1582 * ones; this is kinda in decreasing severity order. But the
1583 * overlong must come last, as it changes 'uv' looked at by the
1584 * others */
1585 if (possible_problems & UTF8_GOT_OVERFLOW) {
1586
1587 /* Overflow means also got a super and are using Perl's
1588 * extended UTF-8, but we handle all three cases here */
1589 possible_problems
1590 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1591 *errors |= UTF8_GOT_OVERFLOW;
1592
1593 /* But the API says we flag all errors found */
1594 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1595 *errors |= UTF8_GOT_SUPER;
1596 }
1597 if (flags
1598 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1599 {
1600 *errors |= UTF8_GOT_PERL_EXTENDED;
1601 }
1602
1603 /* Disallow if any of the three categories say to */
1604 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1605 || (flags & ( UTF8_DISALLOW_SUPER
1606 |UTF8_DISALLOW_PERL_EXTENDED)))
1607 {
1608 disallowed = TRUE;
1609 }
1610
1611 /* Likewise, warn if any say to */
1612 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1613 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1614 {
1615
1616 /* The warnings code explicitly says it doesn't handle the
1617 * case of packWARN2 and two categories which have
1618 * parent-child relationship. Even if it works now to
1619 * raise the warning if either is enabled, it wouldn't
1620 * necessarily do so in the future. We output (only) the
1621 * most dire warning */
1622 if (! (flags & UTF8_CHECK_ONLY)) {
1623 if (ckWARN_d(WARN_UTF8)) {
1624 pack_warn = packWARN(WARN_UTF8);
1625 }
1626 else if (ckWARN_d(WARN_NON_UNICODE)) {
1627 pack_warn = packWARN(WARN_NON_UNICODE);
1628 }
1629 if (pack_warn) {
1630 message = Perl_form(aTHX_ "%s: %s (overflows)",
1631 malformed_text,
1632 _byte_dump_string(s0, curlen, 0));
1633 }
1634 }
1635 }
1636 }
1637 else if (possible_problems & UTF8_GOT_EMPTY) {
1638 possible_problems &= ~UTF8_GOT_EMPTY;
1639 *errors |= UTF8_GOT_EMPTY;
1640
1641 if (! (flags & UTF8_ALLOW_EMPTY)) {
1642
1643 /* This so-called malformation is now treated as a bug in
1644 * the caller. If you have nothing to decode, skip calling
1645 * this function */
1646 assert(0);
1647
1648 disallowed = TRUE;
1649 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1650 pack_warn = packWARN(WARN_UTF8);
1651 message = Perl_form(aTHX_ "%s (empty string)",
1652 malformed_text);
1653 }
1654 }
1655 }
1656 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1657 possible_problems &= ~UTF8_GOT_CONTINUATION;
1658 *errors |= UTF8_GOT_CONTINUATION;
1659
1660 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1661 disallowed = TRUE;
1662 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1663 pack_warn = packWARN(WARN_UTF8);
1664 message = Perl_form(aTHX_
1665 "%s: %s (unexpected continuation byte 0x%02x,"
1666 " with no preceding start byte)",
1667 malformed_text,
1668 _byte_dump_string(s0, 1, 0), *s0);
1669 }
1670 }
1671 }
1672 else if (possible_problems & UTF8_GOT_SHORT) {
1673 possible_problems &= ~UTF8_GOT_SHORT;
1674 *errors |= UTF8_GOT_SHORT;
1675
1676 if (! (flags & UTF8_ALLOW_SHORT)) {
1677 disallowed = TRUE;
1678 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1679 pack_warn = packWARN(WARN_UTF8);
1680 message = Perl_form(aTHX_
1681 "%s: %s (too short; %d byte%s available, need %d)",
1682 malformed_text,
1683 _byte_dump_string(s0, send - s0, 0),
1684 (int)avail_len,
1685 avail_len == 1 ? "" : "s",
1686 (int)expectlen);
1687 }
1688 }
1689
1690 }
1691 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1692 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1693 *errors |= UTF8_GOT_NON_CONTINUATION;
1694
1695 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1696 disallowed = TRUE;
1697 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1698
1699 /* If we don't know for sure that the input length is
1700 * valid, avoid as much as possible reading past the
1701 * end of the buffer */
1702 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
1703 ? s - s0
1704 : send - s0;
1705 pack_warn = packWARN(WARN_UTF8);
1706 message = Perl_form(aTHX_ "%s",
1707 unexpected_non_continuation_text(s0,
1708 printlen,
1709 s - s0,
1710 (int) expectlen));
1711 }
1712 }
1713 }
1714 else if (possible_problems & UTF8_GOT_SURROGATE) {
1715 possible_problems &= ~UTF8_GOT_SURROGATE;
1716
1717 if (flags & UTF8_WARN_SURROGATE) {
1718 *errors |= UTF8_GOT_SURROGATE;
1719
1720 if ( ! (flags & UTF8_CHECK_ONLY)
1721 && ckWARN_d(WARN_SURROGATE))
1722 {
1723 pack_warn = packWARN(WARN_SURROGATE);
1724
1725 /* These are the only errors that can occur with a
1726 * surrogate when the 'uv' isn't valid */
1727 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1728 message = Perl_form(aTHX_
1729 "UTF-16 surrogate (any UTF-8 sequence that"
1730 " starts with \"%s\" is for a surrogate)",
1731 _byte_dump_string(s0, curlen, 0));
1732 }
1733 else {
1734 message = Perl_form(aTHX_ surrogate_cp_format, uv);
1735 }
1736 }
1737 }
1738
1739 if (flags & UTF8_DISALLOW_SURROGATE) {
1740 disallowed = TRUE;
1741 *errors |= UTF8_GOT_SURROGATE;
1742 }
1743 }
1744 else if (possible_problems & UTF8_GOT_SUPER) {
1745 possible_problems &= ~UTF8_GOT_SUPER;
1746
1747 if (flags & UTF8_WARN_SUPER) {
1748 *errors |= UTF8_GOT_SUPER;
1749
1750 if ( ! (flags & UTF8_CHECK_ONLY)
1751 && ckWARN_d(WARN_NON_UNICODE))
1752 {
1753 pack_warn = packWARN(WARN_NON_UNICODE);
1754
1755 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1756 message = Perl_form(aTHX_
1757 "Any UTF-8 sequence that starts with"
1758 " \"%s\" is for a non-Unicode code point,"
1759 " may not be portable",
1760 _byte_dump_string(s0, curlen, 0));
1761 }
1762 else {
1763 message = Perl_form(aTHX_ super_cp_format, uv);
1764 }
1765 }
1766 }
1767
1768 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
1769 * and before possibly bailing out, so that the more dire
1770 * warning will override the regular one. */
1771 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
1772 if ( ! (flags & UTF8_CHECK_ONLY)
1773 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
1774 && ckWARN_d(WARN_NON_UNICODE))
1775 {
1776 pack_warn = packWARN(WARN_NON_UNICODE);
1777
1778 /* If it is an overlong that evaluates to a code point
1779 * that doesn't have to use the Perl extended UTF-8, it
1780 * still used it, and so we output a message that
1781 * doesn't refer to the code point. The same is true
1782 * if there was a SHORT malformation where the code
1783 * point is not valid. In that case, 'uv' will have
1784 * been set to the REPLACEMENT CHAR, and the message
1785 * below without the code point in it will be selected
1786 * */
1787 if (UNICODE_IS_PERL_EXTENDED(uv)) {
1788 message = Perl_form(aTHX_
1789 perl_extended_cp_format, uv);
1790 }
1791 else {
1792 message = Perl_form(aTHX_
1793 "Any UTF-8 sequence that starts with"
1794 " \"%s\" is a Perl extension, and"
1795 " so is not portable",
1796 _byte_dump_string(s0, curlen, 0));
1797 }
1798 }
1799
1800 if (flags & ( UTF8_WARN_PERL_EXTENDED
1801 |UTF8_DISALLOW_PERL_EXTENDED))
1802 {
1803 *errors |= UTF8_GOT_PERL_EXTENDED;
1804
1805 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
1806 disallowed = TRUE;
1807 }
1808 }
1809 }
1810
1811 if (flags & UTF8_DISALLOW_SUPER) {
1812 *errors |= UTF8_GOT_SUPER;
1813 disallowed = TRUE;
1814 }
1815 }
1816 else if (possible_problems & UTF8_GOT_NONCHAR) {
1817 possible_problems &= ~UTF8_GOT_NONCHAR;
1818
1819 if (flags & UTF8_WARN_NONCHAR) {
1820 *errors |= UTF8_GOT_NONCHAR;
1821
1822 if ( ! (flags & UTF8_CHECK_ONLY)
1823 && ckWARN_d(WARN_NONCHAR))
1824 {
1825 /* The code above should have guaranteed that we don't
1826 * get here with errors other than overlong */
1827 assert (! (orig_problems
1828 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
1829
1830 pack_warn = packWARN(WARN_NONCHAR);
1831 message = Perl_form(aTHX_ nonchar_cp_format, uv);
1832 }
1833 }
1834
1835 if (flags & UTF8_DISALLOW_NONCHAR) {
1836 disallowed = TRUE;
1837 *errors |= UTF8_GOT_NONCHAR;
1838 }
1839 }
1840 else if (possible_problems & UTF8_GOT_LONG) {
1841 possible_problems &= ~UTF8_GOT_LONG;
1842 *errors |= UTF8_GOT_LONG;
1843
1844 if (flags & UTF8_ALLOW_LONG) {
1845
1846 /* We don't allow the actual overlong value, unless the
1847 * special extra bit is also set */
1848 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
1849 & ~UTF8_ALLOW_LONG)))
1850 {
1851 uv = UNICODE_REPLACEMENT;
1852 }
1853 }
1854 else {
1855 disallowed = TRUE;
1856
1857 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1858 pack_warn = packWARN(WARN_UTF8);
1859
1860 /* These error types cause 'uv' to be something that
1861 * isn't what was intended, so can't use it in the
1862 * message. The other error types either can't
1863 * generate an overlong, or else the 'uv' is valid */
1864 if (orig_problems &
1865 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1866 {
1867 message = Perl_form(aTHX_
1868 "%s: %s (any UTF-8 sequence that starts"
1869 " with \"%s\" is overlong which can and"
1870 " should be represented with a"
1871 " different, shorter sequence)",
1872 malformed_text,
1873 _byte_dump_string(s0, send - s0, 0),
1874 _byte_dump_string(s0, curlen, 0));
1875 }
1876 else {
1877 U8 tmpbuf[UTF8_MAXBYTES+1];
1878 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
1879 uv, 0);
1880 const char * preface = (uv <= PERL_UNICODE_MAX)
1881 ? "U+"
1882 : "0x";
1883 message = Perl_form(aTHX_
1884 "%s: %s (overlong; instead use %s to represent"
1885 " %s%0*" UVXf ")",
1886 malformed_text,
1887 _byte_dump_string(s0, send - s0, 0),
1888 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
1889 preface,
1890 ((uv < 256) ? 2 : 4), /* Field width of 2 for
1891 small code points */
1892 uv);
1893 }
1894 }
1895 }
1896 } /* End of looking through the possible flags */
1897
1898 /* Display the message (if any) for the problem being handled in
1899 * this iteration of the loop */
1900 if (message) {
1901 if (PL_op)
1902 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
1903 OP_DESC(PL_op));
1904 else
1905 Perl_warner(aTHX_ pack_warn, "%s", message);
1906 }
1907 } /* End of 'while (possible_problems)' */
1908
1909 /* Since there was a possible problem, the returned length may need to
1910 * be changed from the one stored at the beginning of this function.
1911 * Instead of trying to figure out if that's needed, just do it. */
1912 if (retlen) {
1913 *retlen = curlen;
1914 }
1915
1916 if (disallowed) {
1917 if (flags & UTF8_CHECK_ONLY && retlen) {
1918 *retlen = ((STRLEN) -1);
1919 }
1920 return 0;
1921 }
1922 }
1923
1924 return UNI_TO_NATIVE(uv);
1925}
1926
1927/*
1928=for apidoc utf8_to_uvchr_buf
1929
1930Returns the native code point of the first character in the string C<s> which
1931is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1932C<*retlen> will be set to the length, in bytes, of that character.
1933
1934If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1935enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1936C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1937(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1938C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1939the next possible position in C<s> that could begin a non-malformed character.
1940See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1941returned.
1942
1943=cut
1944
1945Also implemented as a macro in utf8.h
1946
1947*/
1948
1949
1950UV
1951Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1952{
1953 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
1954
1955 assert(s < send);
1956
1957 return utf8n_to_uvchr(s, send - s, retlen,
1958 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1959}
1960
1961/* This is marked as deprecated
1962 *
1963=for apidoc utf8_to_uvuni_buf
1964
1965Only in very rare circumstances should code need to be dealing in Unicode
1966(as opposed to native) code points. In those few cases, use
1967C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1968
1969Returns the Unicode (not-native) code point of the first character in the
1970string C<s> which
1971is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1972C<retlen> will be set to the length, in bytes, of that character.
1973
1974If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1975enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1976NULL) to -1. If those warnings are off, the computed value if well-defined (or
1977the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1978is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1979next possible position in C<s> that could begin a non-malformed character.
1980See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1981
1982=cut
1983*/
1984
1985UV
1986Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1987{
1988 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1989
1990 assert(send > s);
1991
1992 /* Call the low level routine, asking for checks */
1993 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
1994}
1995
1996/*
1997=for apidoc utf8_length
1998
1999Return the length of the UTF-8 char encoded string C<s> in characters.
2000Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
2001up past C<e>, croaks.
2002
2003=cut
2004*/
2005
2006STRLEN
2007Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2008{
2009 STRLEN len = 0;
2010
2011 PERL_ARGS_ASSERT_UTF8_LENGTH;
2012
2013 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2014 * the bitops (especially ~) can create illegal UTF-8.
2015 * In other words: in Perl UTF-8 is not just for Unicode. */
2016
2017 if (e < s)
2018 goto warn_and_return;
2019 while (s < e) {
2020 s += UTF8SKIP(s);
2021 len++;
2022 }
2023
2024 if (e != s) {
2025 len--;
2026 warn_and_return:
2027 if (PL_op)
2028 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2029 "%s in %s", unees, OP_DESC(PL_op));
2030 else
2031 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2032 }
2033
2034 return len;
2035}
2036
2037/*
2038=for apidoc bytes_cmp_utf8
2039
2040Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2041sequence of characters (stored as UTF-8)
2042in C<u>, C<ulen>. Returns 0 if they are
2043equal, -1 or -2 if the first string is less than the second string, +1 or +2
2044if the first string is greater than the second string.
2045
2046-1 or +1 is returned if the shorter string was identical to the start of the
2047longer string. -2 or +2 is returned if
2048there was a difference between characters
2049within the strings.
2050
2051=cut
2052*/
2053
2054int
2055Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2056{
2057 const U8 *const bend = b + blen;
2058 const U8 *const uend = u + ulen;
2059
2060 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2061
2062 while (b < bend && u < uend) {
2063 U8 c = *u++;
2064 if (!UTF8_IS_INVARIANT(c)) {
2065 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2066 if (u < uend) {
2067 U8 c1 = *u++;
2068 if (UTF8_IS_CONTINUATION(c1)) {
2069 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2070 } else {
2071 /* diag_listed_as: Malformed UTF-8 character%s */
2072 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2073 "%s %s%s",
2074 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2075 PL_op ? " in " : "",
2076 PL_op ? OP_DESC(PL_op) : "");
2077 return -2;
2078 }
2079 } else {
2080 if (PL_op)
2081 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2082 "%s in %s", unees, OP_DESC(PL_op));
2083 else
2084 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2085 return -2; /* Really want to return undef :-) */
2086 }
2087 } else {
2088 return -2;
2089 }
2090 }
2091 if (*b != c) {
2092 return *b < c ? -2 : +2;
2093 }
2094 ++b;
2095 }
2096
2097 if (b == bend && u == uend)
2098 return 0;
2099
2100 return b < bend ? +1 : -1;
2101}
2102
2103/*
2104=for apidoc utf8_to_bytes
2105
2106Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2107Unlike L</bytes_to_utf8>, this over-writes the original string, and
2108updates C<*lenp> to contain the new length.
2109Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2110
2111Upon successful return, the number of variants in the string can be computed by
2112having saved the value of C<*lenp> before the call, and subtracting the
2113after-call value of C<*lenp> from it.
2114
2115If you need a copy of the string, see L</bytes_from_utf8>.
2116
2117=cut
2118*/
2119
2120U8 *
2121Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2122{
2123 U8 * first_variant;
2124
2125 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2126 PERL_UNUSED_CONTEXT;
2127
2128 /* This is a no-op if no variants at all in the input */
2129 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2130 return s;
2131 }
2132
2133 {
2134 U8 * const save = s;
2135 U8 * const send = s + *lenp;
2136 U8 * d;
2137
2138 /* Nothing before the first variant needs to be changed, so start the real
2139 * work there */
2140 s = first_variant;
2141 while (s < send) {
2142 if (! UTF8_IS_INVARIANT(*s)) {
2143 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2144 *lenp = ((STRLEN) -1);
2145 return 0;
2146 }
2147 s++;
2148 }
2149 s++;
2150 }
2151
2152 /* Is downgradable, so do it */
2153 d = s = first_variant;
2154 while (s < send) {
2155 U8 c = *s++;
2156 if (! UVCHR_IS_INVARIANT(c)) {
2157 /* Then it is two-byte encoded */
2158 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2159 s++;
2160 }
2161 *d++ = c;
2162 }
2163 *d = '\0';
2164 *lenp = d - save;
2165
2166 return save;
2167 }
2168}
2169
2170/*
2171=for apidoc bytes_from_utf8
2172
2173Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2174byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2175actually encoded in UTF-8.
2176
2177Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2178the input string.
2179
2180Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2181not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2182C<*lenp> are unchanged, and the return value is the original C<s>.
2183
2184Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2185newly created string containing a downgraded copy of C<s>, and whose length is
2186returned in C<*lenp>, updated. The new string is C<NUL>-terminated.
2187
2188Upon successful return, the number of variants in the string can be computed by
2189having saved the value of C<*lenp> before the call, and subtracting the
2190after-call value of C<*lenp> from it.
2191
2192=cut
2193
2194There is a macro that avoids this function call, but this is retained for
2195anyone who calls it with the Perl_ prefix */
2196
2197U8 *
2198Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2199{
2200 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2201 PERL_UNUSED_CONTEXT;
2202
2203 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2204}
2205
2206/*
2207No = here because currently externally undocumented
2208for apidoc bytes_from_utf8_loc
2209
2210Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2211to store the location of the first character in C<"s"> that cannot be
2212converted to non-UTF8.
2213
2214If that parameter is C<NULL>, this function behaves identically to
2215C<bytes_from_utf8>.
2216
2217Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2218C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2219
2220Otherwise, the function returns a newly created C<NUL>-terminated string
2221containing the non-UTF8 equivalent of the convertible first portion of
2222C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2223If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2224and C<*first_non_downgradable> is set to C<NULL>.
2225
2226Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2227first character in the original string that wasn't converted. C<*is_utf8p> is
2228unchanged. Note that the new string may have length 0.
2229
2230Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2231C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2232converts as many characters in it as possible stopping at the first one it
2233finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2234set to point to that. The function returns the portion that could be converted
2235in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2236not including the terminating C<NUL>. If the very first character in the
2237original could not be converted, C<*lenp> will be 0, and the new string will
2238contain just a single C<NUL>. If the entire input string was converted,
2239C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2240
2241Upon successful return, the number of variants in the converted portion of the
2242string can be computed by having saved the value of C<*lenp> before the call,
2243and subtracting the after-call value of C<*lenp> from it.
2244
2245=cut
2246
2247
2248*/
2249
2250U8 *
2251Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2252{
2253 U8 *d;
2254 const U8 *original = s;
2255 U8 *converted_start;
2256 const U8 *send = s + *lenp;
2257
2258 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2259
2260 if (! *is_utf8p) {
2261 if (first_unconverted) {
2262 *first_unconverted = NULL;
2263 }
2264
2265 return (U8 *) original;
2266 }
2267
2268 Newx(d, (*lenp) + 1, U8);
2269
2270 converted_start = d;
2271 while (s < send) {
2272 U8 c = *s++;
2273 if (! UTF8_IS_INVARIANT(c)) {
2274
2275 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2276 * have to stop now */
2277 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2278 if (first_unconverted) {
2279 *first_unconverted = s - 1;
2280 goto finish_and_return;
2281 }
2282 else {
2283 Safefree(converted_start);
2284 return (U8 *) original;
2285 }
2286 }
2287
2288 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2289 s++;
2290 }
2291 *d++ = c;
2292 }
2293
2294 /* Here, converted the whole of the input */
2295 *is_utf8p = FALSE;
2296 if (first_unconverted) {
2297 *first_unconverted = NULL;
2298 }
2299
2300 finish_and_return:
2301 *d = '\0';
2302 *lenp = d - converted_start;
2303
2304 /* Trim unused space */
2305 Renew(converted_start, *lenp + 1, U8);
2306
2307 return converted_start;
2308}
2309
2310/*
2311=for apidoc bytes_to_utf8
2312
2313Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2314UTF-8.
2315Returns a pointer to the newly-created string, and sets C<*lenp> to
2316reflect the new length in bytes.
2317
2318Upon successful return, the number of variants in the string can be computed by
2319having saved the value of C<*lenp> before the call, and subtracting it from the
2320after-call value of C<*lenp>.
2321
2322A C<NUL> character will be written after the end of the string.
2323
2324If you want to convert to UTF-8 from encodings other than
2325the native (Latin1 or EBCDIC),
2326see L</sv_recode_to_utf8>().
2327
2328=cut
2329*/
2330
2331U8*
2332Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2333{
2334 const U8 * const send = s + (*lenp);
2335 U8 *d;
2336 U8 *dst;
2337
2338 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2339 PERL_UNUSED_CONTEXT;
2340
2341 Newx(d, (*lenp) * 2 + 1, U8);
2342 dst = d;
2343
2344 while (s < send) {
2345 append_utf8_from_native_byte(*s, &d);
2346 s++;
2347 }
2348 *d = '\0';
2349 *lenp = d-dst;
2350 return dst;
2351}
2352
2353/*
2354 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
2355 *
2356 * Destination must be pre-extended to 3/2 source. Do not use in-place.
2357 * We optimize for native, for obvious reasons. */
2358
2359U8*
2360Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2361{
2362 U8* pend;
2363 U8* dstart = d;
2364
2365 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2366
2367 if (bytelen & 1)
2368 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2369 (UV)bytelen);
2370
2371 pend = p + bytelen;
2372
2373 while (p < pend) {
2374 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2375 p += 2;
2376 if (OFFUNI_IS_INVARIANT(uv)) {
2377 *d++ = LATIN1_TO_NATIVE((U8) uv);
2378 continue;
2379 }
2380 if (uv <= MAX_UTF8_TWO_BYTE) {
2381 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2382 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2383 continue;
2384 }
2385#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2386#define LAST_HIGH_SURROGATE 0xDBFF
2387#define FIRST_LOW_SURROGATE 0xDC00
2388#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2389
2390 /* This assumes that most uses will be in the first Unicode plane, not
2391 * needing surrogates */
2392 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2393 && uv <= UNICODE_SURROGATE_LAST))
2394 {
2395 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2396 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2397 }
2398 else {
2399 UV low = (p[0] << 8) + p[1];
2400 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2401 || UNLIKELY(low > LAST_LOW_SURROGATE))
2402 {
2403 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2404 }
2405 p += 2;
2406 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2407 + (low - FIRST_LOW_SURROGATE) + 0x10000;
2408 }
2409 }
2410#ifdef EBCDIC
2411 d = uvoffuni_to_utf8_flags(d, uv, 0);
2412#else
2413 if (uv < 0x10000) {
2414 *d++ = (U8)(( uv >> 12) | 0xe0);
2415 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2416 *d++ = (U8)(( uv & 0x3f) | 0x80);
2417 continue;
2418 }
2419 else {
2420 *d++ = (U8)(( uv >> 18) | 0xf0);
2421 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2422 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2423 *d++ = (U8)(( uv & 0x3f) | 0x80);
2424 continue;
2425 }
2426#endif
2427 }
2428 *newlen = d - dstart;
2429 return d;
2430}
2431
2432/* Note: this one is slightly destructive of the source. */
2433
2434U8*
2435Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2436{
2437 U8* s = (U8*)p;
2438 U8* const send = s + bytelen;
2439
2440 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2441
2442 if (bytelen & 1)
2443 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2444 (UV)bytelen);
2445
2446 while (s < send) {
2447 const U8 tmp = s[0];
2448 s[0] = s[1];
2449 s[1] = tmp;
2450 s += 2;
2451 }
2452 return utf16_to_utf8(p, d, bytelen, newlen);
2453}
2454
2455bool
2456Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2457{
2458 U8 tmpbuf[UTF8_MAXBYTES+1];
2459 uvchr_to_utf8(tmpbuf, c);
2460 return _is_utf8_FOO_with_len(classnum, tmpbuf, tmpbuf + sizeof(tmpbuf));
2461}
2462
2463/* Internal function so we can deprecate the external one, and call
2464 this one from other deprecated functions in this file */
2465
2466bool
2467Perl__is_utf8_idstart(pTHX_ const U8 *p)
2468{
2469 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2470
2471 if (*p == '_')
2472 return TRUE;
2473 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2474}
2475
2476bool
2477Perl__is_uni_perl_idcont(pTHX_ UV c)
2478{
2479 U8 tmpbuf[UTF8_MAXBYTES+1];
2480 uvchr_to_utf8(tmpbuf, c);
2481 return _is_utf8_perl_idcont_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2482}
2483
2484bool
2485Perl__is_uni_perl_idstart(pTHX_ UV c)
2486{
2487 U8 tmpbuf[UTF8_MAXBYTES+1];
2488 uvchr_to_utf8(tmpbuf, c);
2489 return _is_utf8_perl_idstart_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2490}
2491
2492UV
2493Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2494 const char S_or_s)
2495{
2496 /* We have the latin1-range values compiled into the core, so just use
2497 * those, converting the result to UTF-8. The only difference between upper
2498 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2499 * either "SS" or "Ss". Which one to use is passed into the routine in
2500 * 'S_or_s' to avoid a test */
2501
2502 UV converted = toUPPER_LATIN1_MOD(c);
2503
2504 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2505
2506 assert(S_or_s == 'S' || S_or_s == 's');
2507
2508 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2509 characters in this range */
2510 *p = (U8) converted;
2511 *lenp = 1;
2512 return converted;
2513 }
2514
2515 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2516 * which it maps to one of them, so as to only have to have one check for
2517 * it in the main case */
2518 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2519 switch (c) {
2520 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2521 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2522 break;
2523 case MICRO_SIGN:
2524 converted = GREEK_CAPITAL_LETTER_MU;
2525 break;
2526#if UNICODE_MAJOR_VERSION > 2 \
2527 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2528 && UNICODE_DOT_DOT_VERSION >= 8)
2529 case LATIN_SMALL_LETTER_SHARP_S:
2530 *(p)++ = 'S';
2531 *p = S_or_s;
2532 *lenp = 2;
2533 return 'S';
2534#endif
2535 default:
2536 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2537 " '%c' to map to '%c'",
2538 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2539 NOT_REACHED; /* NOTREACHED */
2540 }
2541 }
2542
2543 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2544 *p = UTF8_TWO_BYTE_LO(converted);
2545 *lenp = 2;
2546
2547 return converted;
2548}
2549
2550/* Call the function to convert a UTF-8 encoded character to the specified case.
2551 * Note that there may be more than one character in the result.
2552 * INP is a pointer to the first byte of the input character
2553 * OUTP will be set to the first byte of the string of changed characters. It
2554 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2555 * LENP will be set to the length in bytes of the string of changed characters
2556 *
2557 * The functions return the ordinal of the first character in the string of
2558 * OUTP */
2559#define CALL_UPPER_CASE(uv, s, d, lenp) \
2560 _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2561#define CALL_TITLE_CASE(uv, s, d, lenp) \
2562 _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2563#define CALL_LOWER_CASE(uv, s, d, lenp) \
2564 _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2565
2566/* This additionally has the input parameter 'specials', which if non-zero will
2567 * cause this to use the specials hash for folding (meaning get full case
2568 * folding); otherwise, when zero, this implies a simple case fold */
2569#define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2570_to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2571
2572UV
2573Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2574{
2575 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2576 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2577 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2578 * the changed version may be longer than the original character.
2579 *
2580 * The ordinal of the first character of the changed version is returned
2581 * (but note, as explained above, that there may be more.) */
2582
2583 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2584
2585 if (c < 256) {
2586 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2587 }
2588
2589 uvchr_to_utf8(p, c);
2590 return CALL_UPPER_CASE(c, p, p, lenp);
2591}
2592
2593UV
2594Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2595{
2596 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2597
2598 if (c < 256) {
2599 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2600 }
2601
2602 uvchr_to_utf8(p, c);
2603 return CALL_TITLE_CASE(c, p, p, lenp);
2604}
2605
2606STATIC U8
2607S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2608{
2609 /* We have the latin1-range values compiled into the core, so just use
2610 * those, converting the result to UTF-8. Since the result is always just
2611 * one character, we allow <p> to be NULL */
2612
2613 U8 converted = toLOWER_LATIN1(c);
2614
2615 PERL_UNUSED_ARG(dummy);
2616
2617 if (p != NULL) {
2618 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2619 *p = converted;
2620 *lenp = 1;
2621 }
2622 else {
2623 /* Result is known to always be < 256, so can use the EIGHT_BIT
2624 * macros */
2625 *p = UTF8_EIGHT_BIT_HI(converted);
2626 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2627 *lenp = 2;
2628 }
2629 }
2630 return converted;
2631}
2632
2633UV
2634Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2635{
2636 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2637
2638 if (c < 256) {
2639 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
2640 }
2641
2642 uvchr_to_utf8(p, c);
2643 return CALL_LOWER_CASE(c, p, p, lenp);
2644}
2645
2646UV
2647Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2648 const unsigned int flags)
2649{
2650 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
2651 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2652 * FOLD_FLAGS_FULL iff full folding is to be used;
2653 *
2654 * Not to be used for locale folds
2655 */
2656
2657 UV converted;
2658
2659 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
2660 PERL_UNUSED_CONTEXT;
2661
2662 assert (! (flags & FOLD_FLAGS_LOCALE));
2663
2664 if (UNLIKELY(c == MICRO_SIGN)) {
2665 converted = GREEK_SMALL_LETTER_MU;
2666 }
2667#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
2668 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
2669 || UNICODE_DOT_DOT_VERSION > 0)
2670 else if ( (flags & FOLD_FLAGS_FULL)
2671 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
2672 {
2673 /* If can't cross 127/128 boundary, can't return "ss"; instead return
2674 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
2675 * under those circumstances. */
2676 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
2677 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2678 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2679 p, *lenp, U8);
2680 return LATIN_SMALL_LETTER_LONG_S;
2681 }
2682 else {
2683 *(p)++ = 's';
2684 *p = 's';
2685 *lenp = 2;
2686 return 's';
2687 }
2688 }
2689#endif
2690 else { /* In this range the fold of all other characters is their lower
2691 case */
2692 converted = toLOWER_LATIN1(c);
2693 }
2694
2695 if (UVCHR_IS_INVARIANT(converted)) {
2696 *p = (U8) converted;
2697 *lenp = 1;
2698 }
2699 else {
2700 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2701 *p = UTF8_TWO_BYTE_LO(converted);
2702 *lenp = 2;
2703 }
2704
2705 return converted;
2706}
2707
2708UV
2709Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
2710{
2711
2712 /* Not currently externally documented, and subject to change
2713 * <flags> bits meanings:
2714 * FOLD_FLAGS_FULL iff full folding is to be used;
2715 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2716 * locale are to be used.
2717 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2718 */
2719
2720 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
2721
2722 if (flags & FOLD_FLAGS_LOCALE) {
2723 /* Treat a UTF-8 locale as not being in locale at all */
2724 if (IN_UTF8_CTYPE_LOCALE) {
2725 flags &= ~FOLD_FLAGS_LOCALE;
2726 }
2727 else {
2728 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2729 goto needs_full_generality;
2730 }
2731 }
2732
2733 if (c < 256) {
2734 return _to_fold_latin1((U8) c, p, lenp,
2735 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2736 }
2737
2738 /* Here, above 255. If no special needs, just use the macro */
2739 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
2740 uvchr_to_utf8(p, c);
2741 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
2742 }
2743 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
2744 the special flags. */
2745 U8 utf8_c[UTF8_MAXBYTES + 1];
2746
2747 needs_full_generality:
2748 uvchr_to_utf8(utf8_c, c);
2749 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
2750 p, lenp, flags);
2751 }
2752}
2753
2754PERL_STATIC_INLINE bool
2755S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2756 const char *const swashname, SV* const invlist)
2757{
2758 /* returns a boolean giving whether or not the UTF8-encoded character that
2759 * starts at <p> is in the swash indicated by <swashname>. <swash>
2760 * contains a pointer to where the swash indicated by <swashname>
2761 * is to be stored; which this routine will do, so that future calls will
2762 * look at <*swash> and only generate a swash if it is not null. <invlist>
2763 * is NULL or an inversion list that defines the swash. If not null, it
2764 * saves time during initialization of the swash.
2765 *
2766 * Note that it is assumed that the buffer length of <p> is enough to
2767 * contain all the bytes that comprise the character. Thus, <*p> should
2768 * have been checked before this call for mal-formedness enough to assure
2769 * that. */
2770
2771 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2772
2773 /* The API should have included a length for the UTF-8 character in <p>,
2774 * but it doesn't. We therefore assume that p has been validated at least
2775 * as far as there being enough bytes available in it to accommodate the
2776 * character without reading beyond the end, and pass that number on to the
2777 * validating routine */
2778 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
2779 _force_out_malformed_utf8_message(p, p + UTF8SKIP(p),
2780 _UTF8_NO_CONFIDENCE_IN_CURLEN,
2781 1 /* Die */ );
2782 NOT_REACHED; /* NOTREACHED */
2783 }
2784
2785 if (!*swash) {
2786 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2787 *swash = _core_swash_init("utf8",
2788
2789 /* Only use the name if there is no inversion
2790 * list; otherwise will go out to disk */
2791 (invlist) ? "" : swashname,
2792
2793 &PL_sv_undef, 1, 0, invlist, &flags);
2794 }
2795
2796 return swash_fetch(*swash, p, TRUE) != 0;
2797}
2798
2799PERL_STATIC_INLINE bool
2800S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e,
2801 SV **swash, const char *const swashname,
2802 SV* const invlist)
2803{
2804 /* returns a boolean giving whether or not the UTF8-encoded character that
2805 * starts at <p>, and extending no further than <e - 1> is in the swash
2806 * indicated by <swashname>. <swash> contains a pointer to where the swash
2807 * indicated by <swashname> is to be stored; which this routine will do, so
2808 * that future calls will look at <*swash> and only generate a swash if it
2809 * is not null. <invlist> is NULL or an inversion list that defines the
2810 * swash. If not null, it saves time during initialization of the swash.
2811 */
2812
2813 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
2814
2815 if (! isUTF8_CHAR(p, e)) {
2816 _force_out_malformed_utf8_message(p, e, 0, 1);
2817 NOT_REACHED; /* NOTREACHED */
2818 }
2819
2820 if (!*swash) {
2821 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2822 *swash = _core_swash_init("utf8",
2823
2824 /* Only use the name if there is no inversion
2825 * list; otherwise will go out to disk */
2826 (invlist) ? "" : swashname,
2827
2828 &PL_sv_undef, 1, 0, invlist, &flags);
2829 }
2830
2831 return swash_fetch(*swash, p, TRUE) != 0;
2832}
2833
2834STATIC void
2835S_warn_on_first_deprecated_use(pTHX_ const char * const name,
2836 const char * const alternative,
2837 const bool use_locale,
2838 const char * const file,
2839 const unsigned line)
2840{
2841 const char * key;
2842
2843 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
2844
2845 if (ckWARN_d(WARN_DEPRECATED)) {
2846
2847 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
2848 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
2849 if (! PL_seen_deprecated_macro) {
2850 PL_seen_deprecated_macro = newHV();
2851 }
2852 if (! hv_store(PL_seen_deprecated_macro, key,
2853 strlen(key), &PL_sv_undef, 0))
2854 {
2855 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
2856 }
2857
2858 if (instr(file, "mathoms.c")) {
2859 Perl_warner(aTHX_ WARN_DEPRECATED,
2860 "In %s, line %d, starting in Perl v5.30, %s()"
2861 " will be removed. Avoid this message by"
2862 " converting to use %s().\n",
2863 file, line, name, alternative);
2864 }
2865 else {
2866 Perl_warner(aTHX_ WARN_DEPRECATED,
2867 "In %s, line %d, starting in Perl v5.30, %s() will"
2868 " require an additional parameter. Avoid this"
2869 " message by converting to use %s().\n",
2870 file, line, name, alternative);
2871 }
2872 }
2873 }
2874}
2875
2876bool
2877Perl__is_utf8_FOO(pTHX_ U8 classnum,
2878 const U8 * const p,
2879 const char * const name,
2880 const char * const alternative,
2881 const bool use_utf8,
2882 const bool use_locale,
2883 const char * const file,
2884 const unsigned line)
2885{
2886 PERL_ARGS_ASSERT__IS_UTF8_FOO;
2887
2888 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
2889
2890 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
2891
2892 switch (classnum) {
2893 case _CC_WORDCHAR:
2894 case _CC_DIGIT:
2895 case _CC_ALPHA:
2896 case _CC_LOWER:
2897 case _CC_UPPER:
2898 case _CC_PUNCT:
2899 case _CC_PRINT:
2900 case _CC_ALPHANUMERIC:
2901 case _CC_GRAPH:
2902 case _CC_CASED:
2903
2904 return is_utf8_common(p,
2905 &PL_utf8_swash_ptrs[classnum],
2906 swash_property_names[classnum],
2907 PL_XPosix_ptrs[classnum]);
2908
2909 case _CC_SPACE:
2910 return is_XPERLSPACE_high(p);
2911 case _CC_BLANK:
2912 return is_HORIZWS_high(p);
2913 case _CC_XDIGIT:
2914 return is_XDIGIT_high(p);
2915 case _CC_CNTRL:
2916 return 0;
2917 case _CC_ASCII:
2918 return 0;
2919 case _CC_VERTSPACE:
2920 return is_VERTWS_high(p);
2921 case _CC_IDFIRST:
2922 if (! PL_utf8_perl_idstart) {
2923 PL_utf8_perl_idstart
2924 = _new_invlist_C_array(_Perl_IDStart_invlist);
2925 }
2926 return is_utf8_common(p, &PL_utf8_perl_idstart,
2927 "_Perl_IDStart", NULL);
2928 case _CC_IDCONT:
2929 if (! PL_utf8_perl_idcont) {
2930 PL_utf8_perl_idcont
2931 = _new_invlist_C_array(_Perl_IDCont_invlist);
2932 }
2933 return is_utf8_common(p, &PL_utf8_perl_idcont,
2934 "_Perl_IDCont", NULL);
2935 }
2936 }
2937
2938 /* idcont is the same as wordchar below 256 */
2939 if (classnum == _CC_IDCONT) {
2940 classnum = _CC_WORDCHAR;
2941 }
2942 else if (classnum == _CC_IDFIRST) {
2943 if (*p == '_') {
2944 return TRUE;
2945 }
2946 classnum = _CC_ALPHA;
2947 }
2948
2949 if (! use_locale) {
2950 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2951 return _generic_isCC(*p, classnum);
2952 }
2953
2954 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
2955 }
2956 else {
2957 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2958 return isFOO_lc(classnum, *p);
2959 }
2960
2961 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
2962 }
2963
2964 NOT_REACHED; /* NOTREACHED */
2965}
2966
2967bool
2968Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
2969 const U8 * const e)
2970{
2971 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
2972
2973 assert(classnum < _FIRST_NON_SWASH_CC);
2974
2975 return is_utf8_common_with_len(p,
2976 e,
2977 &PL_utf8_swash_ptrs[classnum],
2978 swash_property_names[classnum],
2979 PL_XPosix_ptrs[classnum]);
2980}
2981
2982bool
2983Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
2984{
2985 SV* invlist = NULL;
2986
2987 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
2988
2989 if (! PL_utf8_perl_idstart) {
2990 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2991 }
2992 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idstart,
2993 "_Perl_IDStart", invlist);
2994}
2995
2996bool
2997Perl__is_utf8_xidstart(pTHX_ const U8 *p)
2998{
2999 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
3000
3001 if (*p == '_')
3002 return TRUE;
3003 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
3004}
3005
3006bool
3007Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
3008{
3009 SV* invlist = NULL;
3010
3011 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
3012
3013 if (! PL_utf8_perl_idcont) {
3014 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
3015 }
3016 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idcont,
3017 "_Perl_IDCont", invlist);
3018}
3019
3020bool
3021Perl__is_utf8_idcont(pTHX_ const U8 *p)
3022{
3023 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
3024
3025 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
3026}
3027
3028bool
3029Perl__is_utf8_xidcont(pTHX_ const U8 *p)
3030{
3031 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
3032
3033 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
3034}
3035
3036bool
3037Perl__is_utf8_mark(pTHX_ const U8 *p)
3038{
3039 PERL_ARGS_ASSERT__IS_UTF8_MARK;
3040
3041 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
3042}
3043
3044 /* change namve uv1 to 'from' */
3045STATIC UV
3046S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
3047 SV **swashp, const char *normal, const char *special)
3048{
3049 STRLEN len = 0;
3050
3051 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3052
3053 /* For code points that don't change case, we already know that the output
3054 * of this function is the unchanged input, so we can skip doing look-ups
3055 * for them. Unfortunately the case-changing code points are scattered
3056 * around. But there are some long consecutive ranges where there are no
3057 * case changing code points. By adding tests, we can eliminate the lookup
3058 * for all the ones in such ranges. This is currently done here only for
3059 * just a few cases where the scripts are in common use in modern commerce
3060 * (and scripts adjacent to those which can be included without additional
3061 * tests). */
3062
3063 if (uv1 >= 0x0590) {
3064 /* This keeps from needing further processing the code points most
3065 * likely to be used in the following non-cased scripts: Hebrew,
3066 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3067 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3068 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3069 if (uv1 < 0x10A0) {
3070 goto cases_to_self;
3071 }
3072
3073 /* The following largish code point ranges also don't have case
3074 * changes, but khw didn't think they warranted extra tests to speed
3075 * them up (which would slightly slow down everything else above them):
3076 * 1100..139F Hangul Jamo, Ethiopic
3077 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3078 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3079 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3080 * Combining Diacritical Marks Extended, Balinese,
3081 * Sundanese, Batak, Lepcha, Ol Chiki
3082 * 2000..206F General Punctuation
3083 */
3084
3085 if (uv1 >= 0x2D30) {
3086
3087 /* This keeps the from needing further processing the code points
3088 * most likely to be used in the following non-cased major scripts:
3089 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3090 *
3091 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3092 * event that Unicode eventually allocates the unused block as of
3093 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3094 * that the test suite will start having failures to alert you
3095 * should that happen) */
3096 if (uv1 < 0xA640) {
3097 goto cases_to_self;
3098 }
3099
3100 if (uv1 >= 0xAC00) {
3101 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3102 if (ckWARN_d(WARN_SURROGATE)) {
3103 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3104 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3105 "Operation \"%s\" returns its argument for"
3106 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3107 }
3108 goto cases_to_self;
3109 }
3110
3111 /* AC00..FAFF Catches Hangul syllables and private use, plus
3112 * some others */
3113 if (uv1 < 0xFB00) {
3114 goto cases_to_self;
3115
3116 }
3117
3118 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3119 if (UNLIKELY(uv1 > MAX_EXTERNALLY_LEGAL_CP)) {
3120 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3121 MAX_EXTERNALLY_LEGAL_CP);
3122 }
3123 if (ckWARN_d(WARN_NON_UNICODE)) {
3124 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3125 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3126 "Operation \"%s\" returns its argument for"
3127 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3128 }
3129 goto cases_to_self;
3130 }
3131#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3132 if (UNLIKELY(uv1
3133 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3134 {
3135
3136 /* As of Unicode 10.0, this means we avoid swash creation
3137 * for anything beyond high Plane 1 (below emojis) */
3138 goto cases_to_self;
3139 }
3140#endif
3141 }
3142 }
3143
3144 /* Note that non-characters are perfectly legal, so no warning should
3145 * be given. There are so few of them, that it isn't worth the extra
3146 * tests to avoid swash creation */
3147 }
3148
3149 if (!*swashp) /* load on-demand */
3150 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef,
3151 4, 0, NULL, NULL);
3152
3153 if (special) {
3154 /* It might be "special" (sometimes, but not always,
3155 * a multicharacter mapping) */
3156 HV *hv = NULL;
3157 SV **svp;
3158
3159 /* If passed in the specials name, use that; otherwise use any
3160 * given in the swash */
3161 if (*special != '\0') {
3162 hv = get_hv(special, 0);
3163 }
3164 else {
3165 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
3166 if (svp) {
3167 hv = MUTABLE_HV(SvRV(*svp));
3168 }
3169 }
3170
3171 if (hv
3172 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
3173 && (*svp))
3174 {
3175 const char *s;
3176
3177 s = SvPV_const(*svp, len);
3178 if (len == 1)
3179 /* EIGHTBIT */
3180 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
3181 else {
3182 Copy(s, ustrp, len, U8);
3183 }
3184 }
3185 }
3186
3187 if (!len && *swashp) {
3188 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
3189
3190 if (uv2) {
3191 /* It was "normal" (a single character mapping). */
3192 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
3193 }
3194 }
3195
3196 if (len) {
3197 if (lenp) {
3198 *lenp = len;
3199 }
3200 return valid_utf8_to_uvchr(ustrp, 0);
3201 }
3202
3203 /* Here, there was no mapping defined, which means that the code point maps
3204 * to itself. Return the inputs */
3205 cases_to_self:
3206 len = UTF8SKIP(p);
3207 if (p != ustrp) { /* Don't copy onto itself */
3208 Copy(p, ustrp, len, U8);
3209 }
3210
3211 if (lenp)
3212 *lenp = len;
3213
3214 return uv1;
3215
3216}
3217
3218STATIC UV
3219S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3220 U8* const ustrp, STRLEN *lenp)
3221{
3222 /* This is called when changing the case of a UTF-8-encoded character above
3223 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3224 * result contains a character that crosses the 255/256 boundary, disallow
3225 * the change, and return the original code point. See L<perlfunc/lc> for
3226 * why;
3227 *
3228 * p points to the original string whose case was changed; assumed
3229 * by this routine to be well-formed
3230 * result the code point of the first character in the changed-case string
3231 * ustrp points to the changed-case string (<result> represents its
3232 * first char)
3233 * lenp points to the length of <ustrp> */
3234
3235 UV original; /* To store the first code point of <p> */
3236
3237 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3238
3239 assert(UTF8_IS_ABOVE_LATIN1(*p));
3240
3241 /* We know immediately if the first character in the string crosses the
3242 * boundary, so can skip */
3243 if (result > 255) {
3244
3245 /* Look at every character in the result; if any cross the
3246 * boundary, the whole thing is disallowed */
3247 U8* s = ustrp + UTF8SKIP(ustrp);
3248 U8* e = ustrp + *lenp;
3249 while (s < e) {
3250 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3251 goto bad_crossing;
3252 }
3253 s += UTF8SKIP(s);
3254 }
3255
3256 /* Here, no characters crossed, result is ok as-is, but we warn. */
3257 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3258 return result;
3259 }
3260
3261 bad_crossing:
3262
3263 /* Failed, have to return the original */
3264 original = valid_utf8_to_uvchr(p, lenp);
3265
3266 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3267 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3268 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3269 " locale; resolved to \"\\x{%" UVXf "}\".",
3270 OP_DESC(PL_op),
3271 original,
3272 original);
3273 Copy(p, ustrp, *lenp, char);
3274 return original;
3275}
3276
3277STATIC U32
3278S_check_and_deprecate(pTHX_ const U8 *p,
3279 const U8 **e,
3280 const unsigned int type, /* See below */
3281 const bool use_locale, /* Is this a 'LC_'
3282 macro call? */
3283 const char * const file,
3284 const unsigned line)
3285{
3286 /* This is a temporary function to deprecate the unsafe calls to the case
3287 * changing macros and functions. It keeps all the special stuff in just
3288 * one place.
3289 *
3290 * It updates *e with the pointer to the end of the input string. If using
3291 * the old-style macros, *e is NULL on input, and so this function assumes
3292 * the input string is long enough to hold the entire UTF-8 sequence, and
3293 * sets *e accordingly, but it then returns a flag to pass the
3294 * utf8n_to_uvchr(), to tell it that this size is a guess, and to avoid
3295 * using the full length if possible.
3296 *
3297 * It also does the assert that *e > p when *e is not NULL. This should be
3298 * migrated to the callers when this function gets deleted.
3299 *
3300 * The 'type' parameter is used for the caller to specify which case
3301 * changing function this is called from: */
3302
3303# define DEPRECATE_TO_UPPER 0
3304# define DEPRECATE_TO_TITLE 1
3305# define DEPRECATE_TO_LOWER 2
3306# define DEPRECATE_TO_FOLD 3
3307
3308 U32 utf8n_flags = 0;
3309 const char * name;
3310 const char * alternative;
3311
3312 PERL_ARGS_ASSERT_CHECK_AND_DEPRECATE;
3313
3314 if (*e == NULL) {
3315 utf8n_flags = _UTF8_NO_CONFIDENCE_IN_CURLEN;
3316 *e = p + UTF8SKIP(p);
3317
3318 /* For mathoms.c calls, we use the function name we know is stored
3319 * there. It could be part of a larger path */
3320 if (type == DEPRECATE_TO_UPPER) {
3321 name = instr(file, "mathoms.c")
3322 ? "to_utf8_upper"
3323 : "toUPPER_utf8";
3324 alternative = "toUPPER_utf8_safe";
3325 }
3326 else if (type == DEPRECATE_TO_TITLE) {
3327 name = instr(file, "mathoms.c")
3328 ? "to_utf8_title"
3329 : "toTITLE_utf8";
3330 alternative = "toTITLE_utf8_safe";
3331 }
3332 else if (type == DEPRECATE_TO_LOWER) {
3333 name = instr(file, "mathoms.c")
3334 ? "to_utf8_lower"
3335 : "toLOWER_utf8";
3336 alternative = "toLOWER_utf8_safe";
3337 }
3338 else if (type == DEPRECATE_TO_FOLD) {
3339 name = instr(file, "mathoms.c")
3340 ? "to_utf8_fold"
3341 : "toFOLD_utf8";
3342 alternative = "toFOLD_utf8_safe";
3343 }
3344 else Perl_croak(aTHX_ "panic: Unexpected case change type");
3345
3346 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3347 }
3348 else {
3349 assert (p < *e);
3350 }
3351
3352 return utf8n_flags;
3353}
3354
3355/* The process for changing the case is essentially the same for the four case
3356 * change types, except there are complications for folding. Otherwise the
3357 * difference is only which case to change to. To make sure that they all do
3358 * the same thing, the bodies of the functions are extracted out into the
3359 * following two macros. The functions are written with the same variable
3360 * names, and these are known and used inside these macros. It would be
3361 * better, of course, to have inline functions to do it, but since different
3362 * macros are called, depending on which case is being changed to, this is not
3363 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3364 * function can start with the common start macro, then finish with its special
3365 * handling; while the other three cases can just use the common end macro.
3366 *
3367 * The algorithm is to use the proper (passed in) macro or function to change
3368 * the case for code points that are below 256. The macro is used if using
3369 * locale rules for the case change; the function if not. If the code point is
3370 * above 255, it is computed from the input UTF-8, and another macro is called
3371 * to do the conversion. If necessary, the output is converted to UTF-8. If
3372 * using a locale, we have to check that the change did not cross the 255/256
3373 * boundary, see check_locale_boundary_crossing() for further details.
3374 *
3375 * The macros are split with the correct case change for the below-256 case
3376 * stored into 'result', and in the middle of an else clause for the above-255
3377 * case. At that point in the 'else', 'result' is not the final result, but is
3378 * the input code point calculated from the UTF-8. The fold code needs to
3379 * realize all this and take it from there.
3380 *
3381 * If you read the two macros as sequential, it's easier to understand what's
3382 * going on. */
3383#define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3384 L1_func_extra_param) \
3385 \
3386 if (flags & (locale_flags)) { \
3387 /* Treat a UTF-8 locale as not being in locale at all */ \
3388 if (IN_UTF8_CTYPE_LOCALE) { \
3389 flags &= ~(locale_flags); \
3390 } \
3391 else { \
3392 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3393 } \
3394 } \
3395 \
3396 if (UTF8_IS_INVARIANT(*p)) { \
3397 if (flags & (locale_flags)) { \
3398 result = LC_L1_change_macro(*p); \
3399 } \
3400 else { \
3401 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3402 } \
3403 } \
3404 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3405 if (flags & (locale_flags)) { \
3406 result = LC_L1_change_macro(EIGHT_BIT_UTF8_TO_NATIVE(*p, \
3407 *(p+1))); \
3408 } \
3409 else { \
3410 return L1_func(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)), \
3411 ustrp, lenp, L1_func_extra_param); \
3412 } \
3413 } \
3414 else { /* malformed UTF-8 or ord above 255 */ \
3415 STRLEN len_result; \
3416 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3417 if (len_result == (STRLEN) -1) { \
3418 _force_out_malformed_utf8_message(p, e, utf8n_flags, \
3419 1 /* Die */ ); \
3420 }
3421
3422#define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3423 result = change_macro(result, p, ustrp, lenp); \
3424 \
3425 if (flags & (locale_flags)) { \
3426 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3427 } \
3428 return result; \
3429 } \
3430 \
3431 /* Here, used locale rules. Convert back to UTF-8 */ \
3432 if (UTF8_IS_INVARIANT(result)) { \
3433 *ustrp = (U8) result; \
3434 *lenp = 1; \
3435 } \
3436 else { \
3437 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3438 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3439 *lenp = 2; \
3440 } \
3441 \
3442 return result;
3443
3444/*
3445=for apidoc to_utf8_upper
3446
3447Instead use L</toUPPER_utf8_safe>.
3448
3449=cut */
3450
3451/* Not currently externally documented, and subject to change:
3452 * <flags> is set iff iff the rules from the current underlying locale are to
3453 * be used. */
3454
3455UV
3456Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3457 const U8 *e,
3458 U8* ustrp,
3459 STRLEN *lenp,
3460 bool flags,
3461 const char * const file,
3462 const int line)
3463{
3464 UV result;
3465 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_UPPER,
3466 cBOOL(flags), file, line);
3467
3468 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3469
3470 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3471 /* 2nd char of uc(U+DF) is 'S' */
3472 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
3473 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3474}
3475
3476/*
3477=for apidoc to_utf8_title
3478
3479Instead use L</toTITLE_utf8_safe>.
3480
3481=cut */
3482
3483/* Not currently externally documented, and subject to change:
3484 * <flags> is set iff the rules from the current underlying locale are to be
3485 * used. Since titlecase is not defined in POSIX, for other than a
3486 * UTF-8 locale, uppercase is used instead for code points < 256.
3487 */
3488
3489UV
3490Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3491 const U8 *e,
3492 U8* ustrp,
3493 STRLEN *lenp,
3494 bool flags,
3495 const char * const file,
3496 const int line)
3497{
3498 UV result;
3499 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_TITLE,
3500 cBOOL(flags), file, line);
3501
3502 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3503
3504 /* 2nd char of ucfirst(U+DF) is 's' */
3505 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3506 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3507}
3508
3509/*
3510=for apidoc to_utf8_lower
3511
3512Instead use L</toLOWER_utf8_safe>.
3513
3514=cut */
3515
3516/* Not currently externally documented, and subject to change:
3517 * <flags> is set iff iff the rules from the current underlying locale are to
3518 * be used.
3519 */
3520
3521UV
3522Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3523 const U8 *e,
3524 U8* ustrp,
3525 STRLEN *lenp,
3526 bool flags,
3527 const char * const file,
3528 const int line)
3529{
3530 UV result;
3531 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_LOWER,
3532 cBOOL(flags), file, line);
3533
3534 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3535
3536 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3537 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3538}
3539
3540/*
3541=for apidoc to_utf8_fold
3542
3543Instead use L</toFOLD_utf8_safe>.
3544
3545=cut */
3546
3547/* Not currently externally documented, and subject to change,
3548 * in <flags>
3549 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3550 * locale are to be used.
3551 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3552 * otherwise simple folds
3553 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3554 * prohibited
3555 */
3556
3557UV
3558Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3559 const U8 *e,
3560 U8* ustrp,
3561 STRLEN *lenp,
3562 U8 flags,
3563 const char * const file,
3564 const int line)
3565{
3566 UV result;
3567 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_FOLD,
3568 cBOOL(flags), file, line);
3569
3570 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3571
3572 /* These are mutually exclusive */
3573 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3574
3575 assert(p != ustrp); /* Otherwise overwrites */
3576
3577 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3578 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3579
3580 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3581
3582 if (flags & FOLD_FLAGS_LOCALE) {
3583
3584# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3585 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
3586
3587# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3588# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3589
3590 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
3591
3592 /* Special case these two characters, as what normally gets
3593 * returned under locale doesn't work */
3594 if (UTF8SKIP(p) == cap_sharp_s_len
3595 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
3596 {
3597 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3598 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3599 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3600 "resolved to \"\\x{17F}\\x{17F}\".");
3601 goto return_long_s;
3602 }
3603 else
3604#endif
3605 if (UTF8SKIP(p) == long_s_t_len
3606 && memEQ((char *) p, LONG_S_T, long_s_t_len))
3607 {
3608 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3609 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3610 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3611 "resolved to \"\\x{FB06}\".");
3612 goto return_ligature_st;
3613 }
3614
3615#if UNICODE_MAJOR_VERSION == 3 \
3616 && UNICODE_DOT_VERSION == 0 \
3617 && UNICODE_DOT_DOT_VERSION == 1
3618# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3619
3620 /* And special case this on this Unicode version only, for the same
3621 * reaons the other two are special cased. They would cross the
3622 * 255/256 boundary which is forbidden under /l, and so the code
3623 * wouldn't catch that they are equivalent (which they are only in
3624 * this release) */
3625 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
3626 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
3627 {
3628 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3629 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3630 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3631 "resolved to \"\\x{0131}\".");
3632 goto return_dotless_i;
3633 }
3634#endif
3635
3636 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3637 }
3638 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3639 return result;
3640 }
3641 else {
3642 /* This is called when changing the case of a UTF-8-encoded
3643 * character above the ASCII range, and the result should not
3644 * contain an ASCII character. */
3645
3646 UV original; /* To store the first code point of <p> */
3647
3648 /* Look at every character in the result; if any cross the
3649 * boundary, the whole thing is disallowed */
3650 U8* s = ustrp;
3651 U8* e = ustrp + *lenp;
3652 while (s < e) {
3653 if (isASCII(*s)) {
3654 /* Crossed, have to return the original */
3655 original = valid_utf8_to_uvchr(p, lenp);
3656
3657 /* But in these instances, there is an alternative we can
3658 * return that is valid */
3659 if (original == LATIN_SMALL_LETTER_SHARP_S
3660#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3661 || original == LATIN_CAPITAL_LETTER_SHARP_S
3662#endif
3663 ) {
3664 goto return_long_s;
3665 }
3666 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3667 goto return_ligature_st;
3668 }
3669#if UNICODE_MAJOR_VERSION == 3 \
3670 && UNICODE_DOT_VERSION == 0 \
3671 && UNICODE_DOT_DOT_VERSION == 1
3672
3673 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3674 goto return_dotless_i;
3675 }
3676#endif
3677 Copy(p, ustrp, *lenp, char);
3678 return original;
3679 }
3680 s += UTF8SKIP(s);
3681 }
3682
3683 /* Here, no characters crossed, result is ok as-is */
3684 return result;
3685 }
3686 }
3687
3688 /* Here, used locale rules. Convert back to UTF-8 */
3689 if (UTF8_IS_INVARIANT(result)) {
3690 *ustrp = (U8) result;
3691 *lenp = 1;
3692 }
3693 else {
3694 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3695 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3696 *lenp = 2;
3697 }
3698
3699 return result;
3700
3701 return_long_s:
3702 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3703 * folds to a string of two of these characters. By returning this
3704 * instead, then, e.g.,
3705 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3706 * works. */
3707
3708 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3709 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3710 ustrp, *lenp, U8);
3711 return LATIN_SMALL_LETTER_LONG_S;
3712
3713 return_ligature_st:
3714 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3715 * have the other one fold to it */
3716
3717 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3718 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3719 return LATIN_SMALL_LIGATURE_ST;
3720
3721#if UNICODE_MAJOR_VERSION == 3 \
3722 && UNICODE_DOT_VERSION == 0 \
3723 && UNICODE_DOT_DOT_VERSION == 1
3724
3725 return_dotless_i:
3726 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3727 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3728 return LATIN_SMALL_LETTER_DOTLESS_I;
3729
3730#endif
3731
3732}
3733
3734/* Note:
3735 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
3736 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
3737 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
3738 */
3739
3740SV*
3741Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
3742 I32 minbits, I32 none)
3743{
3744 PERL_ARGS_ASSERT_SWASH_INIT;
3745
3746 /* Returns a copy of a swash initiated by the called function. This is the
3747 * public interface, and returning a copy prevents others from doing
3748 * mischief on the original */
3749
3750 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none,
3751 NULL, NULL));
3752}
3753
3754SV*
3755Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
3756 I32 minbits, I32 none, SV* invlist,
3757 U8* const flags_p)
3758{
3759
3760 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
3761 * use the following define */
3762
3763#define CORE_SWASH_INIT_RETURN(x) \
3764 PL_curpm= old_PL_curpm; \
3765 return x
3766
3767 /* Initialize and return a swash, creating it if necessary. It does this
3768 * by calling utf8_heavy.pl in the general case. The returned value may be
3769 * the swash's inversion list instead if the input parameters allow it.
3770 * Which is returned should be immaterial to callers, as the only
3771 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
3772 * and swash_to_invlist() handle both these transparently.
3773 *
3774 * This interface should only be used by functions that won't destroy or
3775 * adversely change the swash, as doing so affects all other uses of the
3776 * swash in the program; the general public should use 'Perl_swash_init'
3777 * instead.
3778 *
3779 * pkg is the name of the package that <name> should be in.
3780 * name is the name of the swash to find. Typically it is a Unicode
3781 * property name, including user-defined ones
3782 * listsv is a string to initialize the swash with. It must be of the form
3783 * documented as the subroutine return value in
3784 * L<perlunicode/User-Defined Character Properties>
3785 * minbits is the number of bits required to represent each data element.
3786 * It is '1' for binary properties.
3787 * none I (khw) do not understand this one, but it is used only in tr///.
3788 * invlist is an inversion list to initialize the swash with (or NULL)
3789 * flags_p if non-NULL is the address of various input and output flag bits
3790 * to the routine, as follows: ('I' means is input to the routine;
3791 * 'O' means output from the routine. Only flags marked O are
3792 * meaningful on return.)
3793 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
3794 * came from a user-defined property. (I O)
3795 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
3796 * when the swash cannot be located, to simply return NULL. (I)
3797 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
3798 * return of an inversion list instead of a swash hash if this routine
3799 * thinks that would result in faster execution of swash_fetch() later
3800 * on. (I)
3801 *
3802 * Thus there are three possible inputs to find the swash: <name>,
3803 * <listsv>, and <invlist>. At least one must be specified. The result
3804 * will be the union of the specified ones, although <listsv>'s various
3805 * actions can intersect, etc. what <name> gives. To avoid going out to
3806 * disk at all, <invlist> should specify completely what the swash should
3807 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
3808 *
3809 * <invlist> is only valid for binary properties */
3810
3811 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
3812
3813 SV* retval = &PL_sv_undef;
3814 HV* swash_hv = NULL;
3815 const int invlist_swash_boundary =
3816 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3817 ? 512 /* Based on some benchmarking, but not extensive, see commit
3818 message */
3819 : -1; /* Never return just an inversion list */
3820
3821 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3822 assert(! invlist || minbits == 1);
3823
3824 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the
3825 regex that triggered the swash init and the swash init
3826 perl logic itself. See perl #122747 */
3827
3828 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3829 * so */
3830 if (listsv != &PL_sv_undef || strNE(name, "")) {
3831 dSP;
3832 const size_t pkg_len = strlen(pkg);
3833 const size_t name_len = strlen(name);
3834 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3835 SV* errsv_save;
3836 GV *method;
3837
3838 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3839
3840 PUSHSTACKi(PERLSI_MAGIC);
3841 ENTER;
3842 SAVEHINTS();
3843 save_re_context();
3844 /* We might get here via a subroutine signature which uses a utf8
3845 * parameter name, at which point PL_subname will have been set
3846 * but not yet used. */
3847 save_item(PL_subname);
3848 if (PL_parser && PL_parser->error_count)
3849 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3850 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3851 if (!method) { /* demand load UTF-8 */
3852 ENTER;
3853 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3854 GvSV(PL_errgv) = NULL;
3855#ifndef NO_TAINT_SUPPORT
3856 /* It is assumed that callers of this routine are not passing in
3857 * any user derived data. */
3858 /* Need to do this after save_re_context() as it will set
3859 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3860 * in Perl_magic_get). Even line to create errsv_save can turn on
3861 * PL_tainted. */
3862 SAVEBOOL(TAINT_get);
3863 TAINT_NOT;
3864#endif
3865 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3866 NULL);
3867 {
3868 /* Not ERRSV, as there is no need to vivify a scalar we are
3869 about to discard. */
3870 SV * const errsv = GvSV(PL_errgv);
3871 if (!SvTRUE(errsv)) {
3872 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3873 SvREFCNT_dec(errsv);
3874 }
3875 }
3876 LEAVE;
3877 }
3878 SPAGAIN;
3879 PUSHMARK(SP);
3880 EXTEND(SP,5);
3881 mPUSHp(pkg, pkg_len);
3882 mPUSHp(name, name_len);
3883 PUSHs(listsv);
3884 mPUSHi(minbits);
3885 mPUSHi(none);
3886 PUTBACK;
3887 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3888 GvSV(PL_errgv) = NULL;
3889 /* If we already have a pointer to the method, no need to use
3890 * call_method() to repeat the lookup. */
3891 if (method
3892 ? call_sv(MUTABLE_SV(method), G_SCALAR)
3893 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3894 {
3895 retval = *PL_stack_sp--;
3896 SvREFCNT_inc(retval);
3897 }
3898 {
3899 /* Not ERRSV. See above. */
3900 SV * const errsv = GvSV(PL_errgv);
3901 if (!SvTRUE(errsv)) {
3902 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3903 SvREFCNT_dec(errsv);
3904 }
3905 }
3906 LEAVE;
3907 POPSTACK;
3908 if (IN_PERL_COMPILETIME) {
3909 CopHINTS_set(PL_curcop, PL_hints);
3910 }
3911 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3912 if (SvPOK(retval)) {
3913
3914 /* If caller wants to handle missing properties, let them */
3915 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3916 CORE_SWASH_INIT_RETURN(NULL);
3917 }
3918 Perl_croak(aTHX_
3919 "Can't find Unicode property definition \"%" SVf "\"",
3920 SVfARG(retval));
3921 NOT_REACHED; /* NOTREACHED */
3922 }
3923 }
3924 } /* End of calling the module to find the swash */
3925
3926 /* If this operation fetched a swash, and we will need it later, get it */
3927 if (retval != &PL_sv_undef
3928 && (minbits == 1 || (flags_p
3929 && ! (*flags_p
3930 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3931 {
3932 swash_hv = MUTABLE_HV(SvRV(retval));
3933
3934 /* If we don't already know that there is a user-defined component to
3935 * this swash, and the user has indicated they wish to know if there is
3936 * one (by passing <flags_p>), find out */
3937 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3938 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3939 if (user_defined && SvUV(*user_defined)) {
3940 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3941 }
3942 }
3943 }
3944
3945 /* Make sure there is an inversion list for binary properties */
3946 if (minbits == 1) {
3947 SV** swash_invlistsvp = NULL;
3948 SV* swash_invlist = NULL;
3949 bool invlist_in_swash_is_valid = FALSE;
3950 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3951 an unclaimed reference count */
3952
3953 /* If this operation fetched a swash, get its already existing
3954 * inversion list, or create one for it */
3955
3956 if (swash_hv) {
3957 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3958 if (swash_invlistsvp) {
3959 swash_invlist = *swash_invlistsvp;
3960 invlist_in_swash_is_valid = TRUE;
3961 }
3962 else {
3963 swash_invlist = _swash_to_invlist(retval);
3964 swash_invlist_unclaimed = TRUE;
3965 }
3966 }
3967
3968 /* If an inversion list was passed in, have to include it */
3969 if (invlist) {
3970
3971 /* Any fetched swash will by now have an inversion list in it;
3972 * otherwise <swash_invlist> will be NULL, indicating that we
3973 * didn't fetch a swash */
3974 if (swash_invlist) {
3975
3976 /* Add the passed-in inversion list, which invalidates the one
3977 * already stored in the swash */
3978 invlist_in_swash_is_valid = FALSE;
3979 SvREADONLY_off(swash_invlist); /* Turned on again below */
3980 _invlist_union(invlist, swash_invlist, &swash_invlist);
3981 }
3982 else {
3983
3984 /* Here, there is no swash already. Set up a minimal one, if
3985 * we are going to return a swash */
3986 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3987 swash_hv = newHV();
3988 retval = newRV_noinc(MUTABLE_SV(swash_hv));
3989 }
3990 swash_invlist = invlist;
3991 }
3992 }
3993
3994 /* Here, we have computed the union of all the passed-in data. It may
3995 * be that there was an inversion list in the swash which didn't get
3996 * touched; otherwise save the computed one */
3997 if (! invlist_in_swash_is_valid
3998 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3999 {
4000 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
4001 {
4002 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4003 }
4004 /* We just stole a reference count. */
4005 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
4006 else SvREFCNT_inc_simple_void_NN(swash_invlist);
4007 }
4008
4009 /* The result is immutable. Forbid attempts to change it. */
4010 SvREADONLY_on(swash_invlist);
4011
4012 /* Use the inversion list stand-alone if small enough */
4013 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
4014 SvREFCNT_dec(retval);
4015 if (!swash_invlist_unclaimed)
4016 SvREFCNT_inc_simple_void_NN(swash_invlist);
4017 retval = newRV_noinc(swash_invlist);
4018 }
4019 }
4020
4021 CORE_SWASH_INIT_RETURN(retval);
4022#undef CORE_SWASH_INIT_RETURN
4023}
4024
4025
4026/* This API is wrong for special case conversions since we may need to
4027 * return several Unicode characters for a single Unicode character
4028 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
4029 * the lower-level routine, and it is similarly broken for returning
4030 * multiple values. --jhi
4031 * For those, you should use S__to_utf8_case() instead */
4032/* Now SWASHGET is recasted into S_swatch_get in this file. */
4033
4034/* Note:
4035 * Returns the value of property/mapping C<swash> for the first character
4036 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
4037 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
4038 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
4039 *
4040 * A "swash" is a hash which contains initially the keys/values set up by
4041 * SWASHNEW. The purpose is to be able to completely represent a Unicode
4042 * property for all possible code points. Things are stored in a compact form
4043 * (see utf8_heavy.pl) so that calculation is required to find the actual
4044 * property value for a given code point. As code points are looked up, new
4045 * key/value pairs are added to the hash, so that the calculation doesn't have
4046 * to ever be re-done. Further, each calculation is done, not just for the
4047 * desired one, but for a whole block of code points adjacent to that one.
4048 * For binary properties on ASCII machines, the block is usually for 64 code
4049 * points, starting with a code point evenly divisible by 64. Thus if the
4050 * property value for code point 257 is requested, the code goes out and
4051 * calculates the property values for all 64 code points between 256 and 319,
4052 * and stores these as a single 64-bit long bit vector, called a "swatch",
4053 * under the key for code point 256. The key is the UTF-8 encoding for code
4054 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
4055 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
4056 * for code point 258 is then requested, this code realizes that it would be
4057 * stored under the key for 256, and would find that value and extract the
4058 * relevant bit, offset from 256.
4059 *
4060 * Non-binary properties are stored in as many bits as necessary to represent
4061 * their values (32 currently, though the code is more general than that), not
4062 * as single bits, but the principle is the same: the value for each key is a
4063 * vector that encompasses the property values for all code points whose UTF-8
4064 * representations are represented by the key. That is, for all code points
4065 * whose UTF-8 representations are length N bytes, and the key is the first N-1
4066 * bytes of that.
4067 */
4068UV
4069Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
4070{
4071 HV *const hv = MUTABLE_HV(SvRV(swash));
4072 U32 klen;
4073 U32 off;
4074 STRLEN slen = 0;
4075 STRLEN needents;
4076 const U8 *tmps = NULL;
4077 SV *swatch;
4078 const U8 c = *ptr;
4079
4080 PERL_ARGS_ASSERT_SWASH_FETCH;
4081
4082 /* If it really isn't a hash, it isn't really swash; must be an inversion
4083 * list */
4084 if (SvTYPE(hv) != SVt_PVHV) {
4085 return _invlist_contains_cp((SV*)hv,
4086 (do_utf8)
4087 ? valid_utf8_to_uvchr(ptr, NULL)
4088 : c);
4089 }
4090
4091 /* We store the values in a "swatch" which is a vec() value in a swash
4092 * hash. Code points 0-255 are a single vec() stored with key length
4093 * (klen) 0. All other code points have a UTF-8 representation
4094 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
4095 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
4096 * length for them is the length of the encoded char - 1. ptr[klen] is the
4097 * final byte in the sequence representing the character */
4098 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
4099 klen = 0;
4100 needents = 256;
4101 off = c;
4102 }
4103 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
4104 klen = 0;
4105 needents = 256;
4106 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
4107 }
4108 else {
4109 klen = UTF8SKIP(ptr) - 1;
4110
4111 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
4112 * the vec is the final byte in the sequence. (In EBCDIC this is
4113 * converted to I8 to get consecutive values.) To help you visualize
4114 * all this:
4115 * Straight 1047 After final byte
4116 * UTF-8 UTF-EBCDIC I8 transform
4117 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
4118 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
4119 * ...
4120 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
4121 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
4122 * ...
4123 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
4124 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
4125 * ...
4126 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
4127 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
4128 * ...
4129 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
4130 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
4131 *
4132 * (There are no discontinuities in the elided (...) entries.)
4133 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
4134 * key for the next 31, up through U+043F, whose UTF-8 final byte is
4135 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
4136 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
4137 * index into the vec() swatch (after subtracting 0x80, which we
4138 * actually do with an '&').
4139 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
4140 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
4141 * dicontinuities which go away by transforming it into I8, and we
4142 * effectively subtract 0xA0 to get the index. */
4143 needents = (1 << UTF_ACCUMULATION_SHIFT);
4144 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
4145 }
4146
4147 /*
4148 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
4149 * suite. (That is, only 7-8% overall over just a hash cache. Still,
4150 * it's nothing to sniff at.) Pity we usually come through at least
4151 * two function calls to get here...
4152 *
4153 * NB: this code assumes that swatches are never modified, once generated!
4154 */
4155
4156 if (hv == PL_last_swash_hv &&
4157 klen == PL_last_swash_klen &&
4158 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
4159 {
4160 tmps = PL_last_swash_tmps;
4161 slen = PL_last_swash_slen;
4162 }
4163 else {
4164 /* Try our second-level swatch cache, kept in a hash. */
4165 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
4166
4167 /* If not cached, generate it via swatch_get */
4168 if (!svp || !SvPOK(*svp)
4169 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
4170 {
4171 if (klen) {
4172 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
4173 swatch = swatch_get(swash,
4174 code_point & ~((UV)needents - 1),
4175 needents);
4176 }
4177 else { /* For the first 256 code points, the swatch has a key of
4178 length 0 */
4179 swatch = swatch_get(swash, 0, needents);
4180 }
4181
4182 if (IN_PERL_COMPILETIME)
4183 CopHINTS_set(PL_curcop, PL_hints);
4184
4185 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
4186
4187 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
4188 || (slen << 3) < needents)
4189 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
4190 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
4191 svp, tmps, (UV)slen, (UV)needents);
4192 }
4193
4194 PL_last_swash_hv = hv;
4195 assert(klen <= sizeof(PL_last_swash_key));
4196 PL_last_swash_klen = (U8)klen;
4197 /* FIXME change interpvar.h? */
4198 PL_last_swash_tmps = (U8 *) tmps;
4199 PL_last_swash_slen = slen;
4200 if (klen)
4201 Copy(ptr, PL_last_swash_key, klen, U8);
4202 }
4203
4204 switch ((int)((slen << 3) / needents)) {
4205 case 1:
4206 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
4207 case 8:
4208 return ((UV) tmps[off]);
4209 case 16:
4210 off <<= 1;
4211 return
4212 ((UV) tmps[off ] << 8) +
4213 ((UV) tmps[off + 1]);
4214 case 32:
4215 off <<= 2;
4216 return
4217 ((UV) tmps[off ] << 24) +
4218 ((UV) tmps[off + 1] << 16) +
4219 ((UV) tmps[off + 2] << 8) +
4220 ((UV) tmps[off + 3]);
4221 }
4222 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
4223 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
4224 NORETURN_FUNCTION_END;
4225}
4226
4227/* Read a single line of the main body of the swash input text. These are of
4228 * the form:
4229 * 0053 0056 0073
4230 * where each number is hex. The first two numbers form the minimum and
4231 * maximum of a range, and the third is the value associated with the range.
4232 * Not all swashes should have a third number
4233 *
4234 * On input: l points to the beginning of the line to be examined; it points
4235 * to somewhere in the string of the whole input text, and is
4236 * terminated by a \n or the null string terminator.
4237 * lend points to the null terminator of that string
4238 * wants_value is non-zero if the swash expects a third number
4239 * typestr is the name of the swash's mapping, like 'ToLower'
4240 * On output: *min, *max, and *val are set to the values read from the line.
4241 * returns a pointer just beyond the line examined. If there was no
4242 * valid min number on the line, returns lend+1
4243 */
4244
4245STATIC U8*
4246S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
4247 const bool wants_value, const U8* const typestr)
4248{
4249 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
4250 STRLEN numlen; /* Length of the number */
4251 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
4252 | PERL_SCAN_DISALLOW_PREFIX
4253 | PERL_SCAN_SILENT_NON_PORTABLE;
4254
4255 /* nl points to the next \n in the scan */
4256 U8* const nl = (U8*)memchr(l, '\n', lend - l);
4257
4258 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
4259
4260 /* Get the first number on the line: the range minimum */
4261 numlen = lend - l;
4262 *min = grok_hex((char *)l, &numlen, &flags, NULL);
4263 *max = *min; /* So can never return without setting max */
4264 if (numlen) /* If found a hex number, position past it */
4265 l += numlen;
4266 else if (nl) { /* Else, go handle next line, if any */
4267 return nl + 1; /* 1 is length of "\n" */
4268 }
4269 else { /* Else, no next line */
4270 return lend + 1; /* to LIST's end at which \n is not found */
4271 }
4272
4273 /* The max range value follows, separated by a BLANK */
4274 if (isBLANK(*l)) {
4275 ++l;
4276 flags = PERL_SCAN_SILENT_ILLDIGIT
4277 | PERL_SCAN_DISALLOW_PREFIX
4278 | PERL_SCAN_SILENT_NON_PORTABLE;
4279 numlen = lend - l;
4280 *max = grok_hex((char *)l, &numlen, &flags, NULL);
4281 if (numlen)
4282 l += numlen;
4283 else /* If no value here, it is a single element range */
4284 *max = *min;
4285
4286 /* Non-binary tables have a third entry: what the first element of the
4287 * range maps to. The map for those currently read here is in hex */
4288 if (wants_value) {
4289 if (isBLANK(*l)) {
4290 ++l;
4291 flags = PERL_SCAN_SILENT_ILLDIGIT
4292 | PERL_SCAN_DISALLOW_PREFIX
4293 | PERL_SCAN_SILENT_NON_PORTABLE;
4294 numlen = lend - l;
4295 *val = grok_hex((char *)l, &numlen, &flags, NULL);
4296 if (numlen)
4297 l += numlen;
4298 else
4299 *val = 0;
4300 }
4301 else {
4302 *val = 0;
4303 if (typeto) {
4304 /* diag_listed_as: To%s: illegal mapping '%s' */
4305 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
4306 typestr, l);
4307 }
4308 }
4309 }
4310 else
4311 *val = 0; /* bits == 1, then any val should be ignored */
4312 }
4313 else { /* Nothing following range min, should be single element with no
4314 mapping expected */
4315 if (wants_value) {
4316 *val = 0;
4317 if (typeto) {
4318 /* diag_listed_as: To%s: illegal mapping '%s' */
4319 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
4320 }
4321 }
4322 else
4323 *val = 0; /* bits == 1, then val should be ignored */
4324 }
4325
4326 /* Position to next line if any, or EOF */
4327 if (nl)
4328 l = nl + 1;
4329 else
4330 l = lend;
4331
4332 return l;
4333}
4334
4335/* Note:
4336 * Returns a swatch (a bit vector string) for a code point sequence
4337 * that starts from the value C<start> and comprises the number C<span>.
4338 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
4339 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
4340 */
4341STATIC SV*
4342S_swatch_get(pTHX_ SV* swash, UV start, UV span)
4343{
4344 SV *swatch;
4345 U8 *l, *lend, *x, *xend, *s, *send;
4346 STRLEN lcur, xcur, scur;
4347 HV *const hv = MUTABLE_HV(SvRV(swash));
4348 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
4349
4350 SV** listsvp = NULL; /* The string containing the main body of the table */
4351 SV** extssvp = NULL;
4352 SV** invert_it_svp = NULL;
4353 U8* typestr = NULL;
4354 STRLEN bits;
4355 STRLEN octets; /* if bits == 1, then octets == 0 */
4356 UV none;
4357 UV end = start + span;
4358
4359 if (invlistsvp == NULL) {
4360 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4361 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4362 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4363 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4364 listsvp = hv_fetchs(hv, "LIST", FALSE);
4365 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4366
4367 bits = SvUV(*bitssvp);
4368 none = SvUV(*nonesvp);
4369 typestr = (U8*)SvPV_nolen(*typesvp);
4370 }
4371 else {
4372 bits = 1;
4373 none = 0;
4374 }
4375 octets = bits >> 3; /* if bits == 1, then octets == 0 */
4376
4377 PERL_ARGS_ASSERT_SWATCH_GET;
4378
4379 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
4380 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
4381 (UV)bits);
4382 }
4383
4384 /* If overflowed, use the max possible */
4385 if (end < start) {
4386 end = UV_MAX;
4387 span = end - start;
4388 }
4389
4390 /* create and initialize $swatch */
4391 scur = octets ? (span * octets) : (span + 7) / 8;
4392 swatch = newSV(scur);
4393 SvPOK_on(swatch);
4394 s = (U8*)SvPVX(swatch);
4395 if (octets && none) {
4396 const U8* const e = s + scur;
4397 while (s < e) {
4398 if (bits == 8)
4399 *s++ = (U8)(none & 0xff);
4400 else if (bits == 16) {
4401 *s++ = (U8)((none >> 8) & 0xff);
4402 *s++ = (U8)( none & 0xff);
4403 }
4404 else if (bits == 32) {
4405 *s++ = (U8)((none >> 24) & 0xff);
4406 *s++ = (U8)((none >> 16) & 0xff);
4407 *s++ = (U8)((none >> 8) & 0xff);
4408 *s++ = (U8)( none & 0xff);
4409 }
4410 }
4411 *s = '\0';
4412 }
4413 else {
4414 (void)memzero((U8*)s, scur + 1);
4415 }
4416 SvCUR_set(swatch, scur);
4417 s = (U8*)SvPVX(swatch);
4418
4419 if (invlistsvp) { /* If has an inversion list set up use that */
4420 _invlist_populate_swatch(*invlistsvp, start, end, s);
4421 return swatch;
4422 }
4423
4424 /* read $swash->{LIST} */
4425 l = (U8*)SvPV(*listsvp, lcur);
4426 lend = l + lcur;
4427 while (l < lend) {
4428 UV min, max, val, upper;
4429 l = swash_scan_list_line(l, lend, &min, &max, &val,
4430 cBOOL(octets), typestr);
4431 if (l > lend) {
4432 break;
4433 }
4434
4435 /* If looking for something beyond this range, go try the next one */
4436 if (max < start)
4437 continue;
4438
4439 /* <end> is generally 1 beyond where we want to set things, but at the
4440 * platform's infinity, where we can't go any higher, we want to
4441 * include the code point at <end> */
4442 upper = (max < end)
4443 ? max
4444 : (max != UV_MAX || end != UV_MAX)
4445 ? end - 1
4446 : end;
4447
4448 if (octets) {
4449 UV key;
4450 if (min < start) {
4451 if (!none || val < none) {
4452 val += start - min;
4453 }
4454 min = start;
4455 }
4456 for (key = min; key <= upper; key++) {
4457 STRLEN offset;
4458 /* offset must be non-negative (start <= min <= key < end) */
4459 offset = octets * (key - start);
4460 if (bits == 8)
4461 s[offset] = (U8)(val & 0xff);
4462 else if (bits == 16) {
4463 s[offset ] = (U8)((val >> 8) & 0xff);
4464 s[offset + 1] = (U8)( val & 0xff);
4465 }
4466 else if (bits == 32) {
4467 s[offset ] = (U8)((val >> 24) & 0xff);
4468 s[offset + 1] = (U8)((val >> 16) & 0xff);
4469 s[offset + 2] = (U8)((val >> 8) & 0xff);
4470 s[offset + 3] = (U8)( val & 0xff);
4471 }
4472
4473 if (!none || val < none)
4474 ++val;
4475 }
4476 }
4477 else { /* bits == 1, then val should be ignored */
4478 UV key;
4479 if (min < start)
4480 min = start;
4481
4482 for (key = min; key <= upper; key++) {
4483 const STRLEN offset = (STRLEN)(key - start);
4484 s[offset >> 3] |= 1 << (offset & 7);
4485 }
4486 }
4487 } /* while */
4488
4489 /* Invert if the data says it should be. Assumes that bits == 1 */
4490 if (invert_it_svp && SvUV(*invert_it_svp)) {
4491
4492 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
4493 * be 0, and their inversion should also be 0, as we don't succeed any
4494 * Unicode property matches for non-Unicode code points */
4495 if (start <= PERL_UNICODE_MAX) {
4496
4497 /* The code below assumes that we never cross the
4498 * Unicode/above-Unicode boundary in a range, as otherwise we would
4499 * have to figure out where to stop flipping the bits. Since this
4500 * boundary is divisible by a large power of 2, and swatches comes
4501 * in small powers of 2, this should be a valid assumption */
4502 assert(start + span - 1 <= PERL_UNICODE_MAX);
4503
4504 send = s + scur;
4505 while (s < send) {
4506 *s = ~(*s);
4507 s++;
4508 }
4509 }
4510 }
4511
4512 /* read $swash->{EXTRAS}
4513 * This code also copied to swash_to_invlist() below */
4514 x = (U8*)SvPV(*extssvp, xcur);
4515 xend = x + xcur;
4516 while (x < xend) {
4517 STRLEN namelen;
4518 U8 *namestr;
4519 SV** othersvp;
4520 HV* otherhv;
4521 STRLEN otherbits;
4522 SV **otherbitssvp, *other;
4523 U8 *s, *o, *nl;
4524 STRLEN slen, olen;
4525
4526 const U8 opc = *x++;
4527 if (opc == '\n')
4528 continue;
4529
4530 nl = (U8*)memchr(x, '\n', xend - x);
4531
4532 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4533 if (nl) {
4534 x = nl + 1; /* 1 is length of "\n" */
4535 continue;
4536 }
4537 else {
4538 x = xend; /* to EXTRAS' end at which \n is not found */
4539 break;
4540 }
4541 }
4542
4543 namestr = x;
4544 if (nl) {
4545 namelen = nl - namestr;
4546 x = nl + 1;
4547 }
4548 else {
4549 namelen = xend - namestr;
4550 x = xend;
4551 }
4552
4553 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4554 otherhv = MUTABLE_HV(SvRV(*othersvp));
4555 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4556 otherbits = (STRLEN)SvUV(*otherbitssvp);
4557 if (bits < otherbits)
4558 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4559 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4560
4561 /* The "other" swatch must be destroyed after. */
4562 other = swatch_get(*othersvp, start, span);
4563 o = (U8*)SvPV(other, olen);
4564
4565 if (!olen)
4566 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4567
4568 s = (U8*)SvPV(swatch, slen);
4569 if (bits == 1 && otherbits == 1) {
4570 if (slen != olen)
4571 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4572 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4573 (UV)slen, (UV)olen);
4574
4575 switch (opc) {
4576 case '+':
4577 while (slen--)
4578 *s++ |= *o++;
4579 break;
4580 case '!':
4581 while (slen--)
4582 *s++ |= ~*o++;
4583 break;
4584 case '-':
4585 while (slen--)
4586 *s++ &= ~*o++;
4587 break;
4588 case '&':
4589 while (slen--)
4590 *s++ &= *o++;
4591 break;
4592 default:
4593 break;
4594 }
4595 }
4596 else {
4597 STRLEN otheroctets = otherbits >> 3;
4598 STRLEN offset = 0;
4599 U8* const send = s + slen;
4600
4601 while (s < send) {
4602 UV otherval = 0;
4603
4604 if (otherbits == 1) {
4605 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4606 ++offset;
4607 }
4608 else {
4609 STRLEN vlen = otheroctets;
4610 otherval = *o++;
4611 while (--vlen) {
4612 otherval <<= 8;
4613 otherval |= *o++;
4614 }
4615 }
4616
4617 if (opc == '+' && otherval)
4618 NOOP; /* replace with otherval */
4619 else if (opc == '!' && !otherval)
4620 otherval = 1;
4621 else if (opc == '-' && otherval)
4622 otherval = 0;
4623 else if (opc == '&' && !otherval)
4624 otherval = 0;
4625 else {
4626 s += octets; /* no replacement */
4627 continue;
4628 }
4629
4630 if (bits == 8)
4631 *s++ = (U8)( otherval & 0xff);
4632 else if (bits == 16) {
4633 *s++ = (U8)((otherval >> 8) & 0xff);
4634 *s++ = (U8)( otherval & 0xff);
4635 }
4636 else if (bits == 32) {
4637 *s++ = (U8)((otherval >> 24) & 0xff);
4638 *s++ = (U8)((otherval >> 16) & 0xff);
4639 *s++ = (U8)((otherval >> 8) & 0xff);
4640 *s++ = (U8)( otherval & 0xff);
4641 }
4642 }
4643 }
4644 sv_free(other); /* through with it! */
4645 } /* while */
4646 return swatch;
4647}
4648
4649HV*
4650Perl__swash_inversion_hash(pTHX_ SV* const swash)
4651{
4652
4653 /* Subject to change or removal. For use only in regcomp.c and regexec.c
4654 * Can't be used on a property that is subject to user override, as it
4655 * relies on the value of SPECIALS in the swash which would be set by
4656 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
4657 * for overridden properties
4658 *
4659 * Returns a hash which is the inversion and closure of a swash mapping.
4660 * For example, consider the input lines:
4661 * 004B 006B
4662 * 004C 006C
4663 * 212A 006B
4664 *
4665 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
4666 * 006C. The value for each key is an array. For 006C, the array would
4667 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
4668 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
4669 *
4670 * Note that there are no elements in the hash for 004B, 004C, 212A. The
4671 * keys are only code points that are folded-to, so it isn't a full closure.
4672 *
4673 * Essentially, for any code point, it gives all the code points that map to
4674 * it, or the list of 'froms' for that point.
4675 *
4676 * Currently it ignores any additions or deletions from other swashes,
4677 * looking at just the main body of the swash, and if there are SPECIALS
4678 * in the swash, at that hash
4679 *
4680 * The specials hash can be extra code points, and most likely consists of
4681 * maps from single code points to multiple ones (each expressed as a string
4682 * of UTF-8 characters). This function currently returns only 1-1 mappings.
4683 * However consider this possible input in the specials hash:
4684 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
4685 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
4686 *
4687 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
4688 * currently handle. But it also means that FB05 and FB06 are equivalent in
4689 * a 1-1 mapping which we should handle, and this relationship may not be in
4690 * the main table. Therefore this function examines all the multi-char
4691 * sequences and adds the 1-1 mappings that come out of that.
4692 *
4693 * XXX This function was originally intended to be multipurpose, but its
4694 * only use is quite likely to remain for constructing the inversion of
4695 * the CaseFolding (//i) property. If it were more general purpose for
4696 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
4697 * because certain folds are prohibited under /iaa and /il. As an example,
4698 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
4699 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
4700 * prohibited, so we would not figure out that they fold to each other.
4701 * Code could be written to automatically figure this out, similar to the
4702 * code that does this for multi-character folds, but this is the only case
4703 * where something like this is ever likely to happen, as all the single
4704 * char folds to the 0-255 range are now quite settled. Instead there is a
4705 * little special code that is compiled only for this Unicode version. This
4706 * is smaller and didn't require much coding time to do. But this makes
4707 * this routine strongly tied to being used just for CaseFolding. If ever
4708 * it should be generalized, this would have to be fixed */
4709
4710 U8 *l, *lend;
4711 STRLEN lcur;
4712 HV *const hv = MUTABLE_HV(SvRV(swash));
4713
4714 /* The string containing the main body of the table. This will have its
4715 * assertion fail if the swash has been converted to its inversion list */
4716 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
4717
4718 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4719 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4720 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4721 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
4722 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
4723 const STRLEN bits = SvUV(*bitssvp);
4724 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
4725 const UV none = SvUV(*nonesvp);
4726 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
4727
4728 HV* ret = newHV();
4729
4730 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
4731
4732 /* Must have at least 8 bits to get the mappings */
4733 if (bits != 8 && bits != 16 && bits != 32) {
4734 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"
4735 UVuf, (UV)bits);
4736 }
4737
4738 if (specials_p) { /* It might be "special" (sometimes, but not always, a
4739 mapping to more than one character */
4740
4741 /* Construct an inverse mapping hash for the specials */
4742 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
4743 HV * specials_inverse = newHV();
4744 char *char_from; /* the lhs of the map */
4745 I32 from_len; /* its byte length */
4746 char *char_to; /* the rhs of the map */
4747 I32 to_len; /* its byte length */
4748 SV *sv_to; /* and in a sv */
4749 AV* from_list; /* list of things that map to each 'to' */
4750
4751 hv_iterinit(specials_hv);
4752
4753 /* The keys are the characters (in UTF-8) that map to the corresponding
4754 * UTF-8 string value. Iterate through the list creating the inverse
4755 * list. */
4756 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
4757 SV** listp;
4758 if (! SvPOK(sv_to)) {
4759 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
4760 "unexpectedly is not a string, flags=%lu",
4761 (unsigned long)SvFLAGS(sv_to));
4762 }
4763 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %" UVXf ", First char of to is %" UVXf "\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
4764
4765 /* Each key in the inverse list is a mapped-to value, and the key's
4766 * hash value is a list of the strings (each in UTF-8) that map to
4767 * it. Those strings are all one character long */
4768 if ((listp = hv_fetch(specials_inverse,
4769 SvPVX(sv_to),
4770 SvCUR(sv_to), 0)))
4771 {
4772 from_list = (AV*) *listp;
4773 }
4774 else { /* No entry yet for it: create one */
4775 from_list = newAV();
4776 if (! hv_store(specials_inverse,
4777 SvPVX(sv_to),
4778 SvCUR(sv_to),
4779 (SV*) from_list, 0))
4780 {
4781 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4782 }
4783 }
4784
4785 /* Here have the list associated with this 'to' (perhaps newly
4786 * created and empty). Just add to it. Note that we ASSUME that
4787 * the input is guaranteed to not have duplications, so we don't
4788 * check for that. Duplications just slow down execution time. */
4789 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
4790 }
4791
4792 /* Here, 'specials_inverse' contains the inverse mapping. Go through
4793 * it looking for cases like the FB05/FB06 examples above. There would
4794 * be an entry in the hash like
4795 * 'st' => [ FB05, FB06 ]
4796 * In this example we will create two lists that get stored in the
4797 * returned hash, 'ret':
4798 * FB05 => [ FB05, FB06 ]
4799 * FB06 => [ FB05, FB06 ]
4800 *
4801 * Note that there is nothing to do if the array only has one element.
4802 * (In the normal 1-1 case handled below, we don't have to worry about
4803 * two lists, as everything gets tied to the single list that is
4804 * generated for the single character 'to'. But here, we are omitting
4805 * that list, ('st' in the example), so must have multiple lists.) */
4806 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
4807 &char_to, &to_len)))
4808 {
4809 if (av_tindex_skip_len_mg(from_list) > 0) {
4810 SSize_t i;
4811
4812 /* We iterate over all combinations of i,j to place each code
4813 * point on each list */
4814 for (i = 0; i <= av_tindex_skip_len_mg(from_list); i++) {
4815 SSize_t j;
4816 AV* i_list = newAV();
4817 SV** entryp = av_fetch(from_list, i, FALSE);
4818 if (entryp == NULL) {
4819 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly"
4820 " failed");
4821 }
4822 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
4823 Perl_croak(aTHX_ "panic: unexpected entry for %s",
4824 SvPVX(*entryp));
4825 }
4826 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
4827 (SV*) i_list, FALSE))
4828 {
4829 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4830 }
4831
4832 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
4833 for (j = 0; j <= av_tindex_skip_len_mg(from_list); j++) {
4834 entryp = av_fetch(from_list, j, FALSE);
4835 if (entryp == NULL) {
4836 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4837 }
4838
4839 /* When i==j this adds itself to the list */
4840 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
4841 (U8*) SvPVX(*entryp),
4842 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
4843 0)));
4844 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
4845 }
4846 }
4847 }
4848 }
4849 SvREFCNT_dec(specials_inverse); /* done with it */
4850 } /* End of specials */
4851
4852 /* read $swash->{LIST} */
4853
4854#if UNICODE_MAJOR_VERSION == 3 \
4855 && UNICODE_DOT_VERSION == 0 \
4856 && UNICODE_DOT_DOT_VERSION == 1
4857
4858 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
4859 * rule so that things work under /iaa and /il */
4860
4861 SV * mod_listsv = sv_mortalcopy(*listsvp);
4862 sv_catpv(mod_listsv, "130\t130\t131\n");
4863 l = (U8*)SvPV(mod_listsv, lcur);
4864
4865#else
4866
4867 l = (U8*)SvPV(*listsvp, lcur);
4868
4869#endif
4870
4871 lend = l + lcur;
4872
4873 /* Go through each input line */
4874 while (l < lend) {
4875 UV min, max, val;
4876 UV inverse;
4877 l = swash_scan_list_line(l, lend, &min, &max, &val,
4878 cBOOL(octets), typestr);
4879 if (l > lend) {
4880 break;
4881 }
4882
4883 /* Each element in the range is to be inverted */
4884 for (inverse = min; inverse <= max; inverse++) {
4885 AV* list;
4886 SV** listp;
4887 IV i;
4888 bool found_key = FALSE;
4889 bool found_inverse = FALSE;
4890
4891 /* The key is the inverse mapping */
4892 char key[UTF8_MAXBYTES+1];
4893 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
4894 STRLEN key_len = key_end - key;
4895
4896 /* Get the list for the map */
4897 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
4898 list = (AV*) *listp;
4899 }
4900 else { /* No entry yet for it: create one */
4901 list = newAV();
4902 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
4903 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4904 }
4905 }
4906
4907 /* Look through list to see if this inverse mapping already is
4908 * listed, or if there is a mapping to itself already */
4909 for (i = 0; i <= av_tindex_skip_len_mg(list); i++) {
4910 SV** entryp = av_fetch(list, i, FALSE);
4911 SV* entry;
4912 UV uv;
4913 if (entryp == NULL) {
4914 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4915 }
4916 entry = *entryp;
4917 uv = SvUV(entry);
4918 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %" UVXf " contains %" UVXf "\n", val, uv));*/
4919 if (uv == val) {
4920 found_key = TRUE;
4921 }
4922 if (uv == inverse) {
4923 found_inverse = TRUE;
4924 }
4925
4926 /* No need to continue searching if found everything we are
4927 * looking for */
4928 if (found_key && found_inverse) {
4929 break;
4930 }
4931 }
4932
4933 /* Make sure there is a mapping to itself on the list */
4934 if (! found_key) {
4935 av_push(list, newSVuv(val));
4936 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, val, val));*/
4937 }
4938
4939
4940 /* Simply add the value to the list */
4941 if (! found_inverse) {
4942 av_push(list, newSVuv(inverse));
4943 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, inverse, val));*/
4944 }
4945
4946 /* swatch_get() increments the value of val for each element in the
4947 * range. That makes more compact tables possible. You can
4948 * express the capitalization, for example, of all consecutive
4949 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
4950 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
4951 * and it's not documented; it appears to be used only in
4952 * implementing tr//; I copied the semantics from swatch_get(), just
4953 * in case */
4954 if (!none || val < none) {
4955 ++val;
4956 }
4957 }
4958 }
4959
4960 return ret;
4961}
4962
4963SV*
4964Perl__swash_to_invlist(pTHX_ SV* const swash)
4965{
4966
4967 /* Subject to change or removal. For use only in one place in regcomp.c.
4968 * Ownership is given to one reference count in the returned SV* */
4969
4970 U8 *l, *lend;
4971 char *loc;
4972 STRLEN lcur;
4973 HV *const hv = MUTABLE_HV(SvRV(swash));
4974 UV elements = 0; /* Number of elements in the inversion list */
4975 U8 empty[] = "";
4976 SV** listsvp;
4977 SV** typesvp;
4978 SV** bitssvp;
4979 SV** extssvp;
4980 SV** invert_it_svp;
4981
4982 U8* typestr;
4983 STRLEN bits;
4984 STRLEN octets; /* if bits == 1, then octets == 0 */
4985 U8 *x, *xend;
4986 STRLEN xcur;
4987
4988 SV* invlist;
4989
4990 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
4991
4992 /* If not a hash, it must be the swash's inversion list instead */
4993 if (SvTYPE(hv) != SVt_PVHV) {
4994 return SvREFCNT_inc_simple_NN((SV*) hv);
4995 }
4996
4997 /* The string containing the main body of the table */
4998 listsvp = hv_fetchs(hv, "LIST", FALSE);
4999 typesvp = hv_fetchs(hv, "TYPE", FALSE);
5000 bitssvp = hv_fetchs(hv, "BITS", FALSE);
5001 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
5002 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
5003
5004 typestr = (U8*)SvPV_nolen(*typesvp);
5005 bits = SvUV(*bitssvp);
5006 octets = bits >> 3; /* if bits == 1, then octets == 0 */
5007
5008 /* read $swash->{LIST} */
5009 if (SvPOK(*listsvp)) {
5010 l = (U8*)SvPV(*listsvp, lcur);
5011 }
5012 else {
5013 /* LIST legitimately doesn't contain a string during compilation phases
5014 * of Perl itself, before the Unicode tables are generated. In this
5015 * case, just fake things up by creating an empty list */
5016 l = empty;
5017 lcur = 0;
5018 }
5019 loc = (char *) l;
5020 lend = l + lcur;
5021
5022 if (*l == 'V') { /* Inversion list format */
5023 const char *after_atou = (char *) lend;
5024 UV element0;
5025 UV* other_elements_ptr;
5026
5027 /* The first number is a count of the rest */
5028 l++;
5029 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
5030 Perl_croak(aTHX_ "panic: Expecting a valid count of elements"
5031 " at start of inversion list");
5032 }
5033 if (elements == 0) {
5034 invlist = _new_invlist(0);
5035 }
5036 else {
5037 l = (U8 *) after_atou;
5038
5039 /* Get the 0th element, which is needed to setup the inversion list
5040 * */
5041 while (isSPACE(*l)) l++;
5042 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
5043 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for"
5044 " inversion list");
5045 }
5046 l = (U8 *) after_atou;
5047 invlist = _setup_canned_invlist(elements, element0,
5048 &other_elements_ptr);
5049 elements--;
5050
5051 /* Then just populate the rest of the input */
5052 while (elements-- > 0) {
5053 if (l > lend) {
5054 Perl_croak(aTHX_ "panic: Expecting %" UVuf " more"
5055 " elements than available", elements);
5056 }
5057 while (isSPACE(*l)) l++;
5058 if (!grok_atoUV((const char *)l, other_elements_ptr++,
5059 &after_atou))
5060 {
5061 Perl_croak(aTHX_ "panic: Expecting a valid element"
5062 " in inversion list");
5063 }
5064 l = (U8 *) after_atou;
5065 }
5066 }
5067 }
5068 else {
5069
5070 /* Scan the input to count the number of lines to preallocate array
5071 * size based on worst possible case, which is each line in the input
5072 * creates 2 elements in the inversion list: 1) the beginning of a
5073 * range in the list; 2) the beginning of a range not in the list. */
5074 while ((loc = (strchr(loc, '\n'))) != NULL) {
5075 elements += 2;
5076 loc++;
5077 }
5078
5079 /* If the ending is somehow corrupt and isn't a new line, add another
5080 * element for the final range that isn't in the inversion list */
5081 if (! (*lend == '\n'
5082 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
5083 {
5084 elements++;
5085 }
5086
5087 invlist = _new_invlist(elements);
5088
5089 /* Now go through the input again, adding each range to the list */
5090 while (l < lend) {
5091 UV start, end;
5092 UV val; /* Not used by this function */
5093
5094 l = swash_scan_list_line(l, lend, &start, &end, &val,
5095 cBOOL(octets), typestr);
5096
5097 if (l > lend) {
5098 break;
5099 }
5100
5101 invlist = _add_range_to_invlist(invlist, start, end);
5102 }
5103 }
5104
5105 /* Invert if the data says it should be */
5106 if (invert_it_svp && SvUV(*invert_it_svp)) {
5107 _invlist_invert(invlist);
5108 }
5109
5110 /* This code is copied from swatch_get()
5111 * read $swash->{EXTRAS} */
5112 x = (U8*)SvPV(*extssvp, xcur);
5113 xend = x + xcur;
5114 while (x < xend) {
5115 STRLEN namelen;
5116 U8 *namestr;
5117 SV** othersvp;
5118 HV* otherhv;
5119 STRLEN otherbits;
5120 SV **otherbitssvp, *other;
5121 U8 *nl;
5122
5123 const U8 opc = *x++;
5124 if (opc == '\n')
5125 continue;
5126
5127 nl = (U8*)memchr(x, '\n', xend - x);
5128
5129 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
5130 if (nl) {
5131 x = nl + 1; /* 1 is length of "\n" */
5132 continue;
5133 }
5134 else {
5135 x = xend; /* to EXTRAS' end at which \n is not found */
5136 break;
5137 }
5138 }
5139
5140 namestr = x;
5141 if (nl) {
5142 namelen = nl - namestr;
5143 x = nl + 1;
5144 }
5145 else {
5146 namelen = xend - namestr;
5147 x = xend;
5148 }
5149
5150 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
5151 otherhv = MUTABLE_HV(SvRV(*othersvp));
5152 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
5153 otherbits = (STRLEN)SvUV(*otherbitssvp);
5154
5155 if (bits != otherbits || bits != 1) {
5156 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
5157 "properties, bits=%" UVuf ", otherbits=%" UVuf,
5158 (UV)bits, (UV)otherbits);
5159 }
5160
5161 /* The "other" swatch must be destroyed after. */
5162 other = _swash_to_invlist((SV *)*othersvp);
5163
5164 /* End of code copied from swatch_get() */
5165 switch (opc) {
5166 case '+':
5167 _invlist_union(invlist, other, &invlist);
5168 break;
5169 case '!':
5170 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
5171 break;
5172 case '-':
5173 _invlist_subtract(invlist, other, &invlist);
5174 break;
5175 case '&':
5176 _invlist_intersection(invlist, other, &invlist);
5177 break;
5178 default:
5179 break;
5180 }
5181 sv_free(other); /* through with it! */
5182 }
5183
5184 SvREADONLY_on(invlist);
5185 return invlist;
5186}
5187
5188SV*
5189Perl__get_swash_invlist(pTHX_ SV* const swash)
5190{
5191 SV** ptr;
5192
5193 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
5194
5195 if (! SvROK(swash)) {
5196 return NULL;
5197 }
5198
5199 /* If it really isn't a hash, it isn't really swash; must be an inversion
5200 * list */
5201 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
5202 return SvRV(swash);
5203 }
5204
5205 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
5206 if (! ptr) {
5207 return NULL;
5208 }
5209
5210 return *ptr;
5211}
5212
5213bool
5214Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
5215{
5216 /* May change: warns if surrogates, non-character code points, or
5217 * non-Unicode code points are in 's' which has length 'len' bytes.
5218 * Returns TRUE if none found; FALSE otherwise. The only other validity
5219 * check is to make sure that this won't exceed the string's length nor
5220 * overflow */
5221
5222 const U8* const e = s + len;
5223 bool ok = TRUE;
5224
5225 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
5226
5227 while (s < e) {
5228 if (UTF8SKIP(s) > len) {
5229 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
5230 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
5231 return FALSE;
5232 }
5233 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
5234 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
5235 if ( ckWARN_d(WARN_NON_UNICODE)
5236 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
5237 0 /* Don't consider overlongs */
5238 )))
5239 {
5240 /* A side effect of this function will be to warn */
5241 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
5242 ok = FALSE;
5243 }
5244 }
5245 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
5246 if (ckWARN_d(WARN_SURROGATE)) {
5247 /* This has a different warning than the one the called
5248 * function would output, so can't just call it, unlike we
5249 * do for the non-chars and above-unicodes */
5250 UV uv = utf8_to_uvchr_buf(s, e, NULL);
5251 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
5252 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
5253 uv);
5254 ok = FALSE;
5255 }
5256 }
5257 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
5258 && (ckWARN_d(WARN_NONCHAR)))
5259 {
5260 /* A side effect of this function will be to warn */
5261 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
5262 ok = FALSE;
5263 }
5264 }
5265 s += UTF8SKIP(s);
5266 }
5267
5268 return ok;
5269}
5270
5271/*
5272=for apidoc pv_uni_display
5273
5274Build to the scalar C<dsv> a displayable version of the string C<spv>,
5275length C<len>, the displayable version being at most C<pvlim> bytes long
5276(if longer, the rest is truncated and C<"..."> will be appended).
5277
5278The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
5279C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
5280to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
5281(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
5282C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
5283C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
5284
5285The pointer to the PV of the C<dsv> is returned.
5286
5287See also L</sv_uni_display>.
5288
5289=cut */
5290char *
5291Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
5292 UV flags)
5293{
5294 int truncated = 0;
5295 const char *s, *e;
5296
5297 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
5298
5299 SvPVCLEAR(dsv);
5300 SvUTF8_off(dsv);
5301 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
5302 UV u;
5303 /* This serves double duty as a flag and a character to print after
5304 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
5305 */
5306 char ok = 0;
5307
5308 if (pvlim && SvCUR(dsv) >= pvlim) {
5309 truncated++;
5310 break;
5311 }
5312 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
5313 if (u < 256) {
5314 const unsigned char c = (unsigned char)u & 0xFF;
5315 if (flags & UNI_DISPLAY_BACKSLASH) {
5316 switch (c) {
5317 case '\n':
5318 ok = 'n'; break;
5319 case '\r':
5320 ok = 'r'; break;
5321 case '\t':
5322 ok = 't'; break;
5323 case '\f':
5324 ok = 'f'; break;
5325 case '\a':
5326 ok = 'a'; break;
5327 case '\\':
5328 ok = '\\'; break;
5329 default: break;
5330 }
5331 if (ok) {
5332 const char string = ok;
5333 sv_catpvs(dsv, "\\");
5334 sv_catpvn(dsv, &string, 1);
5335 }
5336 }
5337 /* isPRINT() is the locale-blind version. */
5338 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
5339 const char string = c;
5340 sv_catpvn(dsv, &string, 1);
5341 ok = 1;
5342 }
5343 }
5344 if (!ok)
5345 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
5346 }
5347 if (truncated)
5348 sv_catpvs(dsv, "...");
5349
5350 return SvPVX(dsv);
5351}
5352
5353/*
5354=for apidoc sv_uni_display
5355
5356Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
5357the displayable version being at most C<pvlim> bytes long
5358(if longer, the rest is truncated and "..." will be appended).
5359
5360The C<flags> argument is as in L</pv_uni_display>().
5361
5362The pointer to the PV of the C<dsv> is returned.
5363
5364=cut
5365*/
5366char *
5367Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
5368{
5369 const char * const ptr =
5370 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
5371
5372 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
5373
5374 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
5375 SvCUR(ssv), pvlim, flags);
5376}
5377
5378/*
5379=for apidoc foldEQ_utf8
5380
5381Returns true if the leading portions of the strings C<s1> and C<s2> (either or
5382both of which may be in UTF-8) are the same case-insensitively; false
5383otherwise. How far into the strings to compare is determined by other input
5384parameters.
5385
5386If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
5387otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
5388C<u2> with respect to C<s2>.
5389
5390If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
5391fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
5392The scan will not be considered to be a match unless the goal is reached, and
5393scanning won't continue past that goal. Correspondingly for C<l2> with respect
5394to C<s2>.
5395
5396If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
5397pointer is considered an end pointer to the position 1 byte past the maximum
5398point in C<s1> beyond which scanning will not continue under any circumstances.
5399(This routine assumes that UTF-8 encoded input strings are not malformed;
5400malformed input can cause it to read past C<pe1>). This means that if both
5401C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
5402will never be successful because it can never
5403get as far as its goal (and in fact is asserted against). Correspondingly for
5404C<pe2> with respect to C<s2>.
5405
5406At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
5407C<l2> must be non-zero), and if both do, both have to be
5408reached for a successful match. Also, if the fold of a character is multiple
5409characters, all of them must be matched (see tr21 reference below for
5410'folding').
5411
5412Upon a successful match, if C<pe1> is non-C<NULL>,
5413it will be set to point to the beginning of the I<next> character of C<s1>
5414beyond what was matched. Correspondingly for C<pe2> and C<s2>.
5415
5416For case-insensitiveness, the "casefolding" of Unicode is used
5417instead of upper/lowercasing both the characters, see
5418L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
5419
5420=cut */
5421
5422/* A flags parameter has been added which may change, and hence isn't
5423 * externally documented. Currently it is:
5424 * 0 for as-documented above
5425 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
5426 ASCII one, to not match
5427 * FOLDEQ_LOCALE is set iff the rules from the current underlying
5428 * locale are to be used.
5429 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
5430 * routine. This allows that step to be skipped.
5431 * Currently, this requires s1 to be encoded as UTF-8
5432 * (u1 must be true), which is asserted for.
5433 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
5434 * cross certain boundaries. Hence, the caller should
5435 * let this function do the folding instead of
5436 * pre-folding. This code contains an assertion to
5437 * that effect. However, if the caller knows what
5438 * it's doing, it can pass this flag to indicate that,
5439 * and the assertion is skipped.
5440 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
5441 * FOLDEQ_S2_FOLDS_SANE
5442 */
5443I32
5444Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
5445 const char *s2, char **pe2, UV l2, bool u2,
5446 U32 flags)
5447{
5448 const U8 *p1 = (const U8*)s1; /* Point to current char */
5449 const U8 *p2 = (const U8*)s2;
5450 const U8 *g1 = NULL; /* goal for s1 */
5451 const U8 *g2 = NULL;
5452 const U8 *e1 = NULL; /* Don't scan s1 past this */
5453 U8 *f1 = NULL; /* Point to current folded */
5454 const U8 *e2 = NULL;
5455 U8 *f2 = NULL;
5456 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
5457 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
5458 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
5459 U8 flags_for_folder = FOLD_FLAGS_FULL;
5460
5461 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
5462
5463 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
5464 && (((flags & FOLDEQ_S1_ALREADY_FOLDED)
5465 && !(flags & FOLDEQ_S1_FOLDS_SANE))
5466 || ((flags & FOLDEQ_S2_ALREADY_FOLDED)
5467 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
5468 /* The algorithm is to trial the folds without regard to the flags on
5469 * the first line of the above assert(), and then see if the result
5470 * violates them. This means that the inputs can't be pre-folded to a
5471 * violating result, hence the assert. This could be changed, with the
5472 * addition of extra tests here for the already-folded case, which would
5473 * slow it down. That cost is more than any possible gain for when these
5474 * flags are specified, as the flags indicate /il or /iaa matching which
5475 * is less common than /iu, and I (khw) also believe that real-world /il
5476 * and /iaa matches are most likely to involve code points 0-255, and this
5477 * function only under rare conditions gets called for 0-255. */
5478
5479 if (flags & FOLDEQ_LOCALE) {
5480 if (IN_UTF8_CTYPE_LOCALE) {
5481 flags &= ~FOLDEQ_LOCALE;
5482 }
5483 else {
5484 flags_for_folder |= FOLD_FLAGS_LOCALE;
5485 }
5486 }
5487
5488 if (pe1) {
5489 e1 = *(U8**)pe1;
5490 }
5491
5492 if (l1) {
5493 g1 = (const U8*)s1 + l1;
5494 }
5495
5496 if (pe2) {
5497 e2 = *(U8**)pe2;
5498 }
5499
5500 if (l2) {
5501 g2 = (const U8*)s2 + l2;
5502 }
5503
5504 /* Must have at least one goal */
5505 assert(g1 || g2);
5506
5507 if (g1) {
5508
5509 /* Will never match if goal is out-of-bounds */
5510 assert(! e1 || e1 >= g1);
5511
5512 /* Here, there isn't an end pointer, or it is beyond the goal. We
5513 * only go as far as the goal */
5514 e1 = g1;
5515 }
5516 else {
5517 assert(e1); /* Must have an end for looking at s1 */
5518 }
5519
5520 /* Same for goal for s2 */
5521 if (g2) {
5522 assert(! e2 || e2 >= g2);
5523 e2 = g2;
5524 }
5525 else {
5526 assert(e2);
5527 }
5528
5529 /* If both operands are already folded, we could just do a memEQ on the
5530 * whole strings at once, but it would be better if the caller realized
5531 * this and didn't even call us */
5532
5533 /* Look through both strings, a character at a time */
5534 while (p1 < e1 && p2 < e2) {
5535
5536 /* If at the beginning of a new character in s1, get its fold to use
5537 * and the length of the fold. */
5538 if (n1 == 0) {
5539 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
5540 f1 = (U8 *) p1;
5541 assert(u1);
5542 n1 = UTF8SKIP(f1);
5543 }
5544 else {
5545 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
5546
5547 /* We have to forbid mixing ASCII with non-ASCII if the
5548 * flags so indicate. And, we can short circuit having to
5549 * call the general functions for this common ASCII case,
5550 * all of whose non-locale folds are also ASCII, and hence
5551 * UTF-8 invariants, so the UTF8ness of the strings is not
5552 * relevant. */
5553 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
5554 return 0;
5555 }
5556 n1 = 1;
5557 *foldbuf1 = toFOLD(*p1);
5558 }
5559 else if (u1) {
5560 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
5561 }
5562 else { /* Not UTF-8, get UTF-8 fold */
5563 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
5564 }
5565 f1 = foldbuf1;
5566 }
5567 }
5568
5569 if (n2 == 0) { /* Same for s2 */
5570 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
5571 f2 = (U8 *) p2;
5572 assert(u2);
5573 n2 = UTF8SKIP(f2);
5574 }
5575 else {
5576 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
5577 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
5578 return 0;
5579 }
5580 n2 = 1;
5581 *foldbuf2 = toFOLD(*p2);
5582 }
5583 else if (u2) {
5584 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
5585 }
5586 else {
5587 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
5588 }
5589 f2 = foldbuf2;
5590 }
5591 }
5592
5593 /* Here f1 and f2 point to the beginning of the strings to compare.
5594 * These strings are the folds of the next character from each input
5595 * string, stored in UTF-8. */
5596
5597 /* While there is more to look for in both folds, see if they
5598 * continue to match */
5599 while (n1 && n2) {
5600 U8 fold_length = UTF8SKIP(f1);
5601 if (fold_length != UTF8SKIP(f2)
5602 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
5603 function call for single
5604 byte */
5605 || memNE((char*)f1, (char*)f2, fold_length))
5606 {
5607 return 0; /* mismatch */
5608 }
5609
5610 /* Here, they matched, advance past them */
5611 n1 -= fold_length;
5612 f1 += fold_length;
5613 n2 -= fold_length;
5614 f2 += fold_length;
5615 }
5616
5617 /* When reach the end of any fold, advance the input past it */
5618 if (n1 == 0) {
5619 p1 += u1 ? UTF8SKIP(p1) : 1;
5620 }
5621 if (n2 == 0) {
5622 p2 += u2 ? UTF8SKIP(p2) : 1;
5623 }
5624 } /* End of loop through both strings */
5625
5626 /* A match is defined by each scan that specified an explicit length
5627 * reaching its final goal, and the other not having matched a partial
5628 * character (which can happen when the fold of a character is more than one
5629 * character). */
5630 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
5631 return 0;
5632 }
5633
5634 /* Successful match. Set output pointers */
5635 if (pe1) {
5636 *pe1 = (char*)p1;
5637 }
5638 if (pe2) {
5639 *pe2 = (char*)p2;
5640 }
5641 return 1;
5642}
5643
5644/* XXX The next two functions should likely be moved to mathoms.c once all
5645 * occurrences of them are removed from the core; some cpan-upstream modules
5646 * still use them */
5647
5648U8 *
5649Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
5650{
5651 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
5652
5653 return Perl_uvoffuni_to_utf8_flags(aTHX_ d, uv, 0);
5654}
5655
5656/*
5657=for apidoc utf8n_to_uvuni
5658
5659Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
5660
5661This function was useful for code that wanted to handle both EBCDIC and
5662ASCII platforms with Unicode properties, but starting in Perl v5.20, the
5663distinctions between the platforms have mostly been made invisible to most
5664code, so this function is quite unlikely to be what you want. If you do need
5665this precise functionality, use instead
5666C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
5667or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
5668
5669=cut
5670*/
5671
5672UV
5673Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
5674{
5675 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
5676
5677 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
5678}
5679
5680/*
5681=for apidoc uvuni_to_utf8_flags
5682
5683Instead you almost certainly want to use L</uvchr_to_utf8> or
5684L</uvchr_to_utf8_flags>.
5685
5686This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
5687which itself, while not deprecated, should be used only in isolated
5688circumstances. These functions were useful for code that wanted to handle
5689both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
5690v5.20, the distinctions between the platforms have mostly been made invisible
5691to most code, so this function is quite unlikely to be what you want.
5692
5693=cut
5694*/
5695
5696U8 *
5697Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
5698{
5699 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
5700
5701 return uvoffuni_to_utf8_flags(d, uv, flags);
5702}
5703
5704/*
5705 * ex: set ts=8 sts=4 sw=4 et:
5706 */