This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
POPLOOP: call LEAVE_SCOPE()
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21A HV structure represents a Perl hash. It consists mainly of an array
22of pointers, each of which points to a linked list of HE structures. The
23array is indexed by the hash function of the key, so each linked list
24represents all the hash entries with the same hash value. Each HE contains
25a pointer to the actual value, plus a pointer to a HEK structure which
26holds the key and hash value.
27
28=cut
29
30*/
31
32#include "EXTERN.h"
33#define PERL_IN_HV_C
34#define PERL_HASH_INTERNAL_ACCESS
35#include "perl.h"
36
37#define DO_HSPLIT(xhv) ((xhv)->xhv_keys > (xhv)->xhv_max) /* HvTOTALKEYS(hv) > HvMAX(hv) */
38#define HV_FILL_THRESHOLD 31
39
40static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
42
43#ifdef PURIFY
44
45#define new_HE() (HE*)safemalloc(sizeof(HE))
46#define del_HE(p) safefree((char*)p)
47
48#else
49
50STATIC HE*
51S_new_he(pTHX)
52{
53 HE* he;
54 void ** const root = &PL_body_roots[HE_SVSLOT];
55
56 if (!*root)
57 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
58 he = (HE*) *root;
59 assert(he);
60 *root = HeNEXT(he);
61 return he;
62}
63
64#define new_HE() new_he()
65#define del_HE(p) \
66 STMT_START { \
67 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
68 PL_body_roots[HE_SVSLOT] = p; \
69 } STMT_END
70
71
72
73#endif
74
75STATIC HEK *
76S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
77{
78 const int flags_masked = flags & HVhek_MASK;
79 char *k;
80 HEK *hek;
81
82 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
83
84 Newx(k, HEK_BASESIZE + len + 2, char);
85 hek = (HEK*)k;
86 Copy(str, HEK_KEY(hek), len, char);
87 HEK_KEY(hek)[len] = 0;
88 HEK_LEN(hek) = len;
89 HEK_HASH(hek) = hash;
90 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
91
92 if (flags & HVhek_FREEKEY)
93 Safefree(str);
94 return hek;
95}
96
97/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
98 * for tied hashes */
99
100void
101Perl_free_tied_hv_pool(pTHX)
102{
103 HE *he = PL_hv_fetch_ent_mh;
104 while (he) {
105 HE * const ohe = he;
106 Safefree(HeKEY_hek(he));
107 he = HeNEXT(he);
108 del_HE(ohe);
109 }
110 PL_hv_fetch_ent_mh = NULL;
111}
112
113#if defined(USE_ITHREADS)
114HEK *
115Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
116{
117 HEK *shared;
118
119 PERL_ARGS_ASSERT_HEK_DUP;
120 PERL_UNUSED_ARG(param);
121
122 if (!source)
123 return NULL;
124
125 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
126 if (shared) {
127 /* We already shared this hash key. */
128 (void)share_hek_hek(shared);
129 }
130 else {
131 shared
132 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
133 HEK_HASH(source), HEK_FLAGS(source));
134 ptr_table_store(PL_ptr_table, source, shared);
135 }
136 return shared;
137}
138
139HE *
140Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
141{
142 HE *ret;
143
144 PERL_ARGS_ASSERT_HE_DUP;
145
146 if (!e)
147 return NULL;
148 /* look for it in the table first */
149 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
150 if (ret)
151 return ret;
152
153 /* create anew and remember what it is */
154 ret = new_HE();
155 ptr_table_store(PL_ptr_table, e, ret);
156
157 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
158 if (HeKLEN(e) == HEf_SVKEY) {
159 char *k;
160 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
161 HeKEY_hek(ret) = (HEK*)k;
162 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
163 }
164 else if (shared) {
165 /* This is hek_dup inlined, which seems to be important for speed
166 reasons. */
167 HEK * const source = HeKEY_hek(e);
168 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
169
170 if (shared) {
171 /* We already shared this hash key. */
172 (void)share_hek_hek(shared);
173 }
174 else {
175 shared
176 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
177 HEK_HASH(source), HEK_FLAGS(source));
178 ptr_table_store(PL_ptr_table, source, shared);
179 }
180 HeKEY_hek(ret) = shared;
181 }
182 else
183 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
184 HeKFLAGS(e));
185 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
186 return ret;
187}
188#endif /* USE_ITHREADS */
189
190static void
191S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
192 const char *msg)
193{
194 SV * const sv = sv_newmortal();
195
196 PERL_ARGS_ASSERT_HV_NOTALLOWED;
197
198 if (!(flags & HVhek_FREEKEY)) {
199 sv_setpvn(sv, key, klen);
200 }
201 else {
202 /* Need to free saved eventually assign to mortal SV */
203 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
204 sv_usepvn(sv, (char *) key, klen);
205 }
206 if (flags & HVhek_UTF8) {
207 SvUTF8_on(sv);
208 }
209 Perl_croak(aTHX_ msg, SVfARG(sv));
210}
211
212/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
213 * contains an SV* */
214
215/*
216=for apidoc hv_store
217
218Stores an SV in a hash. The hash key is specified as C<key> and the
219absolute value of C<klen> is the length of the key. If C<klen> is
220negative the key is assumed to be in UTF-8-encoded Unicode. The
221C<hash> parameter is the precomputed hash value; if it is zero then
222Perl will compute it.
223
224The return value will be
225C<NULL> if the operation failed or if the value did not need to be actually
226stored within the hash (as in the case of tied hashes). Otherwise it can
227be dereferenced to get the original C<SV*>. Note that the caller is
228responsible for suitably incrementing the reference count of C<val> before
229the call, and decrementing it if the function returned C<NULL>. Effectively
230a successful C<hv_store> takes ownership of one reference to C<val>. This is
231usually what you want; a newly created SV has a reference count of one, so
232if all your code does is create SVs then store them in a hash, C<hv_store>
233will own the only reference to the new SV, and your code doesn't need to do
234anything further to tidy up. C<hv_store> is not implemented as a call to
235C<hv_store_ent>, and does not create a temporary SV for the key, so if your
236key data is not already in SV form then use C<hv_store> in preference to
237C<hv_store_ent>.
238
239See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
240information on how to use this function on tied hashes.
241
242=for apidoc hv_store_ent
243
244Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
245parameter is the precomputed hash value; if it is zero then Perl will
246compute it. The return value is the new hash entry so created. It will be
247C<NULL> if the operation failed or if the value did not need to be actually
248stored within the hash (as in the case of tied hashes). Otherwise the
249contents of the return value can be accessed using the C<He?> macros
250described here. Note that the caller is responsible for suitably
251incrementing the reference count of C<val> before the call, and
252decrementing it if the function returned NULL. Effectively a successful
253C<hv_store_ent> takes ownership of one reference to C<val>. This is
254usually what you want; a newly created SV has a reference count of one, so
255if all your code does is create SVs then store them in a hash, C<hv_store>
256will own the only reference to the new SV, and your code doesn't need to do
257anything further to tidy up. Note that C<hv_store_ent> only reads the C<key>;
258unlike C<val> it does not take ownership of it, so maintaining the correct
259reference count on C<key> is entirely the caller's responsibility. C<hv_store>
260is not implemented as a call to C<hv_store_ent>, and does not create a temporary
261SV for the key, so if your key data is not already in SV form then use
262C<hv_store> in preference to C<hv_store_ent>.
263
264See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
265information on how to use this function on tied hashes.
266
267=for apidoc hv_exists
268
269Returns a boolean indicating whether the specified hash key exists. The
270absolute value of C<klen> is the length of the key. If C<klen> is
271negative the key is assumed to be in UTF-8-encoded Unicode.
272
273=for apidoc hv_fetch
274
275Returns the SV which corresponds to the specified key in the hash.
276The absolute value of C<klen> is the length of the key. If C<klen> is
277negative the key is assumed to be in UTF-8-encoded Unicode. If
278C<lval> is set then the fetch will be part of a store. This means that if
279there is no value in the hash associated with the given key, then one is
280created and a pointer to it is returned. The C<SV*> it points to can be
281assigned to. But always check that the
282return value is non-null before dereferencing it to an C<SV*>.
283
284See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
285information on how to use this function on tied hashes.
286
287=for apidoc hv_exists_ent
288
289Returns a boolean indicating whether
290the specified hash key exists. C<hash>
291can be a valid precomputed hash value, or 0 to ask for it to be
292computed.
293
294=cut
295*/
296
297/* returns an HE * structure with the all fields set */
298/* note that hent_val will be a mortal sv for MAGICAL hashes */
299/*
300=for apidoc hv_fetch_ent
301
302Returns the hash entry which corresponds to the specified key in the hash.
303C<hash> must be a valid precomputed hash number for the given C<key>, or 0
304if you want the function to compute it. IF C<lval> is set then the fetch
305will be part of a store. Make sure the return value is non-null before
306accessing it. The return value when C<hv> is a tied hash is a pointer to a
307static location, so be sure to make a copy of the structure if you need to
308store it somewhere.
309
310See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
311information on how to use this function on tied hashes.
312
313=cut
314*/
315
316/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
317void *
318Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
319 const int action, SV *val, const U32 hash)
320{
321 STRLEN klen;
322 int flags;
323
324 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
325
326 if (klen_i32 < 0) {
327 klen = -klen_i32;
328 flags = HVhek_UTF8;
329 } else {
330 klen = klen_i32;
331 flags = 0;
332 }
333 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
334}
335
336void *
337Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
338 int flags, int action, SV *val, U32 hash)
339{
340 dVAR;
341 XPVHV* xhv;
342 HE *entry;
343 HE **oentry;
344 SV *sv;
345 bool is_utf8;
346 int masked_flags;
347 const int return_svp = action & HV_FETCH_JUST_SV;
348 HEK *keysv_hek = NULL;
349
350 if (!hv)
351 return NULL;
352 if (SvTYPE(hv) == (svtype)SVTYPEMASK)
353 return NULL;
354
355 assert(SvTYPE(hv) == SVt_PVHV);
356
357 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
358 MAGIC* mg;
359 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
360 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
361 if (uf->uf_set == NULL) {
362 SV* obj = mg->mg_obj;
363
364 if (!keysv) {
365 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
366 ((flags & HVhek_UTF8)
367 ? SVf_UTF8 : 0));
368 }
369
370 mg->mg_obj = keysv; /* pass key */
371 uf->uf_index = action; /* pass action */
372 magic_getuvar(MUTABLE_SV(hv), mg);
373 keysv = mg->mg_obj; /* may have changed */
374 mg->mg_obj = obj;
375
376 /* If the key may have changed, then we need to invalidate
377 any passed-in computed hash value. */
378 hash = 0;
379 }
380 }
381 }
382 if (keysv) {
383 if (flags & HVhek_FREEKEY)
384 Safefree(key);
385 key = SvPV_const(keysv, klen);
386 is_utf8 = (SvUTF8(keysv) != 0);
387 if (SvIsCOW_shared_hash(keysv)) {
388 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
389 } else {
390 flags = is_utf8 ? HVhek_UTF8 : 0;
391 }
392 } else {
393 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
394 }
395
396 if (action & HV_DELETE) {
397 return (void *) hv_delete_common(hv, keysv, key, klen,
398 flags, action, hash);
399 }
400
401 xhv = (XPVHV*)SvANY(hv);
402 if (SvMAGICAL(hv)) {
403 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
404 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
405 || SvGMAGICAL((const SV *)hv))
406 {
407 /* FIXME should be able to skimp on the HE/HEK here when
408 HV_FETCH_JUST_SV is true. */
409 if (!keysv) {
410 keysv = newSVpvn_utf8(key, klen, is_utf8);
411 } else {
412 keysv = newSVsv(keysv);
413 }
414 sv = sv_newmortal();
415 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
416
417 /* grab a fake HE/HEK pair from the pool or make a new one */
418 entry = PL_hv_fetch_ent_mh;
419 if (entry)
420 PL_hv_fetch_ent_mh = HeNEXT(entry);
421 else {
422 char *k;
423 entry = new_HE();
424 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
425 HeKEY_hek(entry) = (HEK*)k;
426 }
427 HeNEXT(entry) = NULL;
428 HeSVKEY_set(entry, keysv);
429 HeVAL(entry) = sv;
430 sv_upgrade(sv, SVt_PVLV);
431 LvTYPE(sv) = 'T';
432 /* so we can free entry when freeing sv */
433 LvTARG(sv) = MUTABLE_SV(entry);
434
435 /* XXX remove at some point? */
436 if (flags & HVhek_FREEKEY)
437 Safefree(key);
438
439 if (return_svp) {
440 return entry ? (void *) &HeVAL(entry) : NULL;
441 }
442 return (void *) entry;
443 }
444#ifdef ENV_IS_CASELESS
445 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
446 U32 i;
447 for (i = 0; i < klen; ++i)
448 if (isLOWER(key[i])) {
449 /* Would be nice if we had a routine to do the
450 copy and upercase in a single pass through. */
451 const char * const nkey = strupr(savepvn(key,klen));
452 /* Note that this fetch is for nkey (the uppercased
453 key) whereas the store is for key (the original) */
454 void *result = hv_common(hv, NULL, nkey, klen,
455 HVhek_FREEKEY, /* free nkey */
456 0 /* non-LVAL fetch */
457 | HV_DISABLE_UVAR_XKEY
458 | return_svp,
459 NULL /* no value */,
460 0 /* compute hash */);
461 if (!result && (action & HV_FETCH_LVALUE)) {
462 /* This call will free key if necessary.
463 Do it this way to encourage compiler to tail
464 call optimise. */
465 result = hv_common(hv, keysv, key, klen, flags,
466 HV_FETCH_ISSTORE
467 | HV_DISABLE_UVAR_XKEY
468 | return_svp,
469 newSV(0), hash);
470 } else {
471 if (flags & HVhek_FREEKEY)
472 Safefree(key);
473 }
474 return result;
475 }
476 }
477#endif
478 } /* ISFETCH */
479 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
480 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
481 || SvGMAGICAL((const SV *)hv)) {
482 /* I don't understand why hv_exists_ent has svret and sv,
483 whereas hv_exists only had one. */
484 SV * const svret = sv_newmortal();
485 sv = sv_newmortal();
486
487 if (keysv || is_utf8) {
488 if (!keysv) {
489 keysv = newSVpvn_utf8(key, klen, TRUE);
490 } else {
491 keysv = newSVsv(keysv);
492 }
493 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
494 } else {
495 mg_copy(MUTABLE_SV(hv), sv, key, klen);
496 }
497 if (flags & HVhek_FREEKEY)
498 Safefree(key);
499 {
500 MAGIC * const mg = mg_find(sv, PERL_MAGIC_tiedelem);
501 if (mg)
502 magic_existspack(svret, mg);
503 }
504 /* This cast somewhat evil, but I'm merely using NULL/
505 not NULL to return the boolean exists.
506 And I know hv is not NULL. */
507 return SvTRUE(svret) ? (void *)hv : NULL;
508 }
509#ifdef ENV_IS_CASELESS
510 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
511 /* XXX This code isn't UTF8 clean. */
512 char * const keysave = (char * const)key;
513 /* Will need to free this, so set FREEKEY flag. */
514 key = savepvn(key,klen);
515 key = (const char*)strupr((char*)key);
516 is_utf8 = FALSE;
517 hash = 0;
518 keysv = 0;
519
520 if (flags & HVhek_FREEKEY) {
521 Safefree(keysave);
522 }
523 flags |= HVhek_FREEKEY;
524 }
525#endif
526 } /* ISEXISTS */
527 else if (action & HV_FETCH_ISSTORE) {
528 bool needs_copy;
529 bool needs_store;
530 hv_magic_check (hv, &needs_copy, &needs_store);
531 if (needs_copy) {
532 const bool save_taint = TAINT_get;
533 if (keysv || is_utf8) {
534 if (!keysv) {
535 keysv = newSVpvn_utf8(key, klen, TRUE);
536 }
537 if (TAINTING_get)
538 TAINT_set(SvTAINTED(keysv));
539 keysv = sv_2mortal(newSVsv(keysv));
540 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
541 } else {
542 mg_copy(MUTABLE_SV(hv), val, key, klen);
543 }
544
545 TAINT_IF(save_taint);
546#ifdef NO_TAINT_SUPPORT
547 PERL_UNUSED_VAR(save_taint);
548#endif
549 if (!needs_store) {
550 if (flags & HVhek_FREEKEY)
551 Safefree(key);
552 return NULL;
553 }
554#ifdef ENV_IS_CASELESS
555 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
556 /* XXX This code isn't UTF8 clean. */
557 const char *keysave = key;
558 /* Will need to free this, so set FREEKEY flag. */
559 key = savepvn(key,klen);
560 key = (const char*)strupr((char*)key);
561 is_utf8 = FALSE;
562 hash = 0;
563 keysv = 0;
564
565 if (flags & HVhek_FREEKEY) {
566 Safefree(keysave);
567 }
568 flags |= HVhek_FREEKEY;
569 }
570#endif
571 }
572 } /* ISSTORE */
573 } /* SvMAGICAL */
574
575 if (!HvARRAY(hv)) {
576 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
577#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
578 || (SvRMAGICAL((const SV *)hv)
579 && mg_find((const SV *)hv, PERL_MAGIC_env))
580#endif
581 ) {
582 char *array;
583 Newxz(array,
584 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
585 char);
586 HvARRAY(hv) = (HE**)array;
587 }
588#ifdef DYNAMIC_ENV_FETCH
589 else if (action & HV_FETCH_ISEXISTS) {
590 /* for an %ENV exists, if we do an insert it's by a recursive
591 store call, so avoid creating HvARRAY(hv) right now. */
592 }
593#endif
594 else {
595 /* XXX remove at some point? */
596 if (flags & HVhek_FREEKEY)
597 Safefree(key);
598
599 return NULL;
600 }
601 }
602
603 if (is_utf8 && !(flags & HVhek_KEYCANONICAL)) {
604 char * const keysave = (char *)key;
605 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
606 if (is_utf8)
607 flags |= HVhek_UTF8;
608 else
609 flags &= ~HVhek_UTF8;
610 if (key != keysave) {
611 if (flags & HVhek_FREEKEY)
612 Safefree(keysave);
613 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
614 /* If the caller calculated a hash, it was on the sequence of
615 octets that are the UTF-8 form. We've now changed the sequence
616 of octets stored to that of the equivalent byte representation,
617 so the hash we need is different. */
618 hash = 0;
619 }
620 }
621
622 if (keysv && (SvIsCOW_shared_hash(keysv))) {
623 if (HvSHAREKEYS(hv))
624 keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv));
625 hash = SvSHARED_HASH(keysv);
626 }
627 else if (!hash)
628 PERL_HASH(hash, key, klen);
629
630 masked_flags = (flags & HVhek_MASK);
631
632#ifdef DYNAMIC_ENV_FETCH
633 if (!HvARRAY(hv)) entry = NULL;
634 else
635#endif
636 {
637 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
638 }
639
640 if (!entry)
641 goto not_found;
642
643 if (keysv_hek) {
644 /* keysv is actually a HEK in disguise, so we can match just by
645 * comparing the HEK pointers in the HE chain. There is a slight
646 * caveat: on something like "\x80", which has both plain and utf8
647 * representations, perl's hashes do encoding-insensitive lookups,
648 * but preserve the encoding of the stored key. Thus a particular
649 * key could map to two different HEKs in PL_strtab. We only
650 * conclude 'not found' if all the flags are the same; otherwise
651 * we fall back to a full search (this should only happen in rare
652 * cases).
653 */
654 int keysv_flags = HEK_FLAGS(keysv_hek);
655 HE *orig_entry = entry;
656
657 for (; entry; entry = HeNEXT(entry)) {
658 HEK *hek = HeKEY_hek(entry);
659 if (hek == keysv_hek)
660 goto found;
661 if (HEK_FLAGS(hek) != keysv_flags)
662 break; /* need to do full match */
663 }
664 if (!entry)
665 goto not_found;
666 /* failed on shortcut - do full search loop */
667 entry = orig_entry;
668 }
669
670 for (; entry; entry = HeNEXT(entry)) {
671 if (HeHASH(entry) != hash) /* strings can't be equal */
672 continue;
673 if (HeKLEN(entry) != (I32)klen)
674 continue;
675 if (memNE(HeKEY(entry),key,klen)) /* is this it? */
676 continue;
677 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
678 continue;
679
680 found:
681 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
682 if (HeKFLAGS(entry) != masked_flags) {
683 /* We match if HVhek_UTF8 bit in our flags and hash key's
684 match. But if entry was set previously with HVhek_WASUTF8
685 and key now doesn't (or vice versa) then we should change
686 the key's flag, as this is assignment. */
687 if (HvSHAREKEYS(hv)) {
688 /* Need to swap the key we have for a key with the flags we
689 need. As keys are shared we can't just write to the
690 flag, so we share the new one, unshare the old one. */
691 HEK * const new_hek = share_hek_flags(key, klen, hash,
692 masked_flags);
693 unshare_hek (HeKEY_hek(entry));
694 HeKEY_hek(entry) = new_hek;
695 }
696 else if (hv == PL_strtab) {
697 /* PL_strtab is usually the only hash without HvSHAREKEYS,
698 so putting this test here is cheap */
699 if (flags & HVhek_FREEKEY)
700 Safefree(key);
701 Perl_croak(aTHX_ S_strtab_error,
702 action & HV_FETCH_LVALUE ? "fetch" : "store");
703 }
704 else
705 HeKFLAGS(entry) = masked_flags;
706 if (masked_flags & HVhek_ENABLEHVKFLAGS)
707 HvHASKFLAGS_on(hv);
708 }
709 if (HeVAL(entry) == &PL_sv_placeholder) {
710 /* yes, can store into placeholder slot */
711 if (action & HV_FETCH_LVALUE) {
712 if (SvMAGICAL(hv)) {
713 /* This preserves behaviour with the old hv_fetch
714 implementation which at this point would bail out
715 with a break; (at "if we find a placeholder, we
716 pretend we haven't found anything")
717
718 That break mean that if a placeholder were found, it
719 caused a call into hv_store, which in turn would
720 check magic, and if there is no magic end up pretty
721 much back at this point (in hv_store's code). */
722 break;
723 }
724 /* LVAL fetch which actually needs a store. */
725 val = newSV(0);
726 HvPLACEHOLDERS(hv)--;
727 } else {
728 /* store */
729 if (val != &PL_sv_placeholder)
730 HvPLACEHOLDERS(hv)--;
731 }
732 HeVAL(entry) = val;
733 } else if (action & HV_FETCH_ISSTORE) {
734 SvREFCNT_dec(HeVAL(entry));
735 HeVAL(entry) = val;
736 }
737 } else if (HeVAL(entry) == &PL_sv_placeholder) {
738 /* if we find a placeholder, we pretend we haven't found
739 anything */
740 break;
741 }
742 if (flags & HVhek_FREEKEY)
743 Safefree(key);
744 if (return_svp) {
745 return (void *) &HeVAL(entry);
746 }
747 return entry;
748 }
749
750 not_found:
751#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
752 if (!(action & HV_FETCH_ISSTORE)
753 && SvRMAGICAL((const SV *)hv)
754 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
755 unsigned long len;
756 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
757 if (env) {
758 sv = newSVpvn(env,len);
759 SvTAINTED_on(sv);
760 return hv_common(hv, keysv, key, klen, flags,
761 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
762 sv, hash);
763 }
764 }
765#endif
766
767 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
768 hv_notallowed(flags, key, klen,
769 "Attempt to access disallowed key '%"SVf"' in"
770 " a restricted hash");
771 }
772 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
773 /* Not doing some form of store, so return failure. */
774 if (flags & HVhek_FREEKEY)
775 Safefree(key);
776 return NULL;
777 }
778 if (action & HV_FETCH_LVALUE) {
779 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
780 if (SvMAGICAL(hv)) {
781 /* At this point the old hv_fetch code would call to hv_store,
782 which in turn might do some tied magic. So we need to make that
783 magic check happen. */
784 /* gonna assign to this, so it better be there */
785 /* If a fetch-as-store fails on the fetch, then the action is to
786 recurse once into "hv_store". If we didn't do this, then that
787 recursive call would call the key conversion routine again.
788 However, as we replace the original key with the converted
789 key, this would result in a double conversion, which would show
790 up as a bug if the conversion routine is not idempotent.
791 Hence the use of HV_DISABLE_UVAR_XKEY. */
792 return hv_common(hv, keysv, key, klen, flags,
793 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
794 val, hash);
795 /* XXX Surely that could leak if the fetch-was-store fails?
796 Just like the hv_fetch. */
797 }
798 }
799
800 /* Welcome to hv_store... */
801
802 if (!HvARRAY(hv)) {
803 /* Not sure if we can get here. I think the only case of oentry being
804 NULL is for %ENV with dynamic env fetch. But that should disappear
805 with magic in the previous code. */
806 char *array;
807 Newxz(array,
808 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
809 char);
810 HvARRAY(hv) = (HE**)array;
811 }
812
813 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
814
815 entry = new_HE();
816 /* share_hek_flags will do the free for us. This might be considered
817 bad API design. */
818 if (HvSHAREKEYS(hv))
819 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
820 else if (hv == PL_strtab) {
821 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
822 this test here is cheap */
823 if (flags & HVhek_FREEKEY)
824 Safefree(key);
825 Perl_croak(aTHX_ S_strtab_error,
826 action & HV_FETCH_LVALUE ? "fetch" : "store");
827 }
828 else /* gotta do the real thing */
829 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
830 HeVAL(entry) = val;
831
832 if (!*oentry && SvOOK(hv)) {
833 /* initial entry, and aux struct present. */
834 struct xpvhv_aux *const aux = HvAUX(hv);
835 if (aux->xhv_fill_lazy)
836 ++aux->xhv_fill_lazy;
837 }
838
839#ifdef PERL_HASH_RANDOMIZE_KEYS
840 /* This logic semi-randomizes the insert order in a bucket.
841 * Either we insert into the top, or the slot below the top,
842 * making it harder to see if there is a collision. We also
843 * reset the iterator randomizer if there is one.
844 */
845 if ( *oentry && PL_HASH_RAND_BITS_ENABLED) {
846 PL_hash_rand_bits++;
847 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
848 if ( PL_hash_rand_bits & 1 ) {
849 HeNEXT(entry) = HeNEXT(*oentry);
850 HeNEXT(*oentry) = entry;
851 } else {
852 HeNEXT(entry) = *oentry;
853 *oentry = entry;
854 }
855 } else
856#endif
857 {
858 HeNEXT(entry) = *oentry;
859 *oentry = entry;
860 }
861#ifdef PERL_HASH_RANDOMIZE_KEYS
862 if (SvOOK(hv)) {
863 /* Currently this makes various tests warn in annoying ways.
864 * So Silenced for now. - Yves | bogus end of comment =>* /
865 if (HvAUX(hv)->xhv_riter != -1) {
866 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
867 "[TESTING] Inserting into a hash during each() traversal results in undefined behavior"
868 pTHX__FORMAT
869 pTHX__VALUE);
870 }
871 */
872 if (PL_HASH_RAND_BITS_ENABLED) {
873 if (PL_HASH_RAND_BITS_ENABLED == 1)
874 PL_hash_rand_bits += (PTRV)entry + 1; /* we don't bother to use ptr_hash here */
875 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
876 }
877 HvAUX(hv)->xhv_rand= (U32)PL_hash_rand_bits;
878 }
879#endif
880
881 if (val == &PL_sv_placeholder)
882 HvPLACEHOLDERS(hv)++;
883 if (masked_flags & HVhek_ENABLEHVKFLAGS)
884 HvHASKFLAGS_on(hv);
885
886 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
887 if ( DO_HSPLIT(xhv) ) {
888 const STRLEN oldsize = xhv->xhv_max + 1;
889 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
890
891 if (items /* hash has placeholders */
892 && !SvREADONLY(hv) /* but is not a restricted hash */) {
893 /* If this hash previously was a "restricted hash" and had
894 placeholders, but the "restricted" flag has been turned off,
895 then the placeholders no longer serve any useful purpose.
896 However, they have the downsides of taking up RAM, and adding
897 extra steps when finding used values. It's safe to clear them
898 at this point, even though Storable rebuilds restricted hashes by
899 putting in all the placeholders (first) before turning on the
900 readonly flag, because Storable always pre-splits the hash.
901 If we're lucky, then we may clear sufficient placeholders to
902 avoid needing to split the hash at all. */
903 clear_placeholders(hv, items);
904 if (DO_HSPLIT(xhv))
905 hsplit(hv, oldsize, oldsize * 2);
906 } else
907 hsplit(hv, oldsize, oldsize * 2);
908 }
909
910 if (return_svp) {
911 return entry ? (void *) &HeVAL(entry) : NULL;
912 }
913 return (void *) entry;
914}
915
916STATIC void
917S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
918{
919 const MAGIC *mg = SvMAGIC(hv);
920
921 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
922
923 *needs_copy = FALSE;
924 *needs_store = TRUE;
925 while (mg) {
926 if (isUPPER(mg->mg_type)) {
927 *needs_copy = TRUE;
928 if (mg->mg_type == PERL_MAGIC_tied) {
929 *needs_store = FALSE;
930 return; /* We've set all there is to set. */
931 }
932 }
933 mg = mg->mg_moremagic;
934 }
935}
936
937/*
938=for apidoc hv_scalar
939
940Evaluates the hash in scalar context and returns the result. Handles magic
941when the hash is tied.
942
943=cut
944*/
945
946SV *
947Perl_hv_scalar(pTHX_ HV *hv)
948{
949 SV *sv;
950
951 PERL_ARGS_ASSERT_HV_SCALAR;
952
953 if (SvRMAGICAL(hv)) {
954 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
955 if (mg)
956 return magic_scalarpack(hv, mg);
957 }
958
959 sv = sv_newmortal();
960 if (HvTOTALKEYS((const HV *)hv))
961 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
962 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
963 else
964 sv_setiv(sv, 0);
965
966 return sv;
967}
968
969/*
970=for apidoc hv_delete
971
972Deletes a key/value pair in the hash. The value's SV is removed from
973the hash, made mortal, and returned to the caller. The absolute
974value of C<klen> is the length of the key. If C<klen> is negative the
975key is assumed to be in UTF-8-encoded Unicode. The C<flags> value
976will normally be zero; if set to C<G_DISCARD> then C<NULL> will be returned.
977C<NULL> will also be returned if the key is not found.
978
979=for apidoc hv_delete_ent
980
981Deletes a key/value pair in the hash. The value SV is removed from the hash,
982made mortal, and returned to the caller. The C<flags> value will normally be
983zero; if set to C<G_DISCARD> then C<NULL> will be returned. C<NULL> will also
984be returned if the key is not found. C<hash> can be a valid precomputed hash
985value, or 0 to ask for it to be computed.
986
987=cut
988*/
989
990STATIC SV *
991S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
992 int k_flags, I32 d_flags, U32 hash)
993{
994 dVAR;
995 XPVHV* xhv;
996 HE *entry;
997 HE **oentry;
998 HE **first_entry;
999 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
1000 int masked_flags;
1001 HEK *keysv_hek = NULL;
1002 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
1003 SV *sv;
1004 GV *gv = NULL;
1005 HV *stash = NULL;
1006
1007 if (SvRMAGICAL(hv)) {
1008 bool needs_copy;
1009 bool needs_store;
1010 hv_magic_check (hv, &needs_copy, &needs_store);
1011
1012 if (needs_copy) {
1013 SV *sv;
1014 entry = (HE *) hv_common(hv, keysv, key, klen,
1015 k_flags & ~HVhek_FREEKEY,
1016 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
1017 NULL, hash);
1018 sv = entry ? HeVAL(entry) : NULL;
1019 if (sv) {
1020 if (SvMAGICAL(sv)) {
1021 mg_clear(sv);
1022 }
1023 if (!needs_store) {
1024 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
1025 /* No longer an element */
1026 sv_unmagic(sv, PERL_MAGIC_tiedelem);
1027 return sv;
1028 }
1029 return NULL; /* element cannot be deleted */
1030 }
1031#ifdef ENV_IS_CASELESS
1032 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
1033 /* XXX This code isn't UTF8 clean. */
1034 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
1035 if (k_flags & HVhek_FREEKEY) {
1036 Safefree(key);
1037 }
1038 key = strupr(SvPVX(keysv));
1039 is_utf8 = 0;
1040 k_flags = 0;
1041 hash = 0;
1042 }
1043#endif
1044 }
1045 }
1046 }
1047 xhv = (XPVHV*)SvANY(hv);
1048 if (!HvARRAY(hv))
1049 return NULL;
1050
1051 if (is_utf8 && !(k_flags & HVhek_KEYCANONICAL)) {
1052 const char * const keysave = key;
1053 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
1054
1055 if (is_utf8)
1056 k_flags |= HVhek_UTF8;
1057 else
1058 k_flags &= ~HVhek_UTF8;
1059 if (key != keysave) {
1060 if (k_flags & HVhek_FREEKEY) {
1061 /* This shouldn't happen if our caller does what we expect,
1062 but strictly the API allows it. */
1063 Safefree(keysave);
1064 }
1065 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
1066 }
1067 HvHASKFLAGS_on(MUTABLE_SV(hv));
1068 }
1069
1070 if (keysv && (SvIsCOW_shared_hash(keysv))) {
1071 if (HvSHAREKEYS(hv))
1072 keysv_hek = SvSHARED_HEK_FROM_PV(SvPVX_const(keysv));
1073 hash = SvSHARED_HASH(keysv);
1074 }
1075 else if (!hash)
1076 PERL_HASH(hash, key, klen);
1077
1078 masked_flags = (k_flags & HVhek_MASK);
1079
1080 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1081 entry = *oentry;
1082
1083 if (!entry)
1084 goto not_found;
1085
1086 if (keysv_hek) {
1087 /* keysv is actually a HEK in disguise, so we can match just by
1088 * comparing the HEK pointers in the HE chain. There is a slight
1089 * caveat: on something like "\x80", which has both plain and utf8
1090 * representations, perl's hashes do encoding-insensitive lookups,
1091 * but preserve the encoding of the stored key. Thus a particular
1092 * key could map to two different HEKs in PL_strtab. We only
1093 * conclude 'not found' if all the flags are the same; otherwise
1094 * we fall back to a full search (this should only happen in rare
1095 * cases).
1096 */
1097 int keysv_flags = HEK_FLAGS(keysv_hek);
1098
1099 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1100 HEK *hek = HeKEY_hek(entry);
1101 if (hek == keysv_hek)
1102 goto found;
1103 if (HEK_FLAGS(hek) != keysv_flags)
1104 break; /* need to do full match */
1105 }
1106 if (!entry)
1107 goto not_found;
1108 /* failed on shortcut - do full search loop */
1109 oentry = first_entry;
1110 entry = *oentry;
1111 }
1112
1113 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1114 if (HeHASH(entry) != hash) /* strings can't be equal */
1115 continue;
1116 if (HeKLEN(entry) != (I32)klen)
1117 continue;
1118 if (memNE(HeKEY(entry),key,klen)) /* is this it? */
1119 continue;
1120 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1121 continue;
1122
1123 found:
1124 if (hv == PL_strtab) {
1125 if (k_flags & HVhek_FREEKEY)
1126 Safefree(key);
1127 Perl_croak(aTHX_ S_strtab_error, "delete");
1128 }
1129
1130 /* if placeholder is here, it's already been deleted.... */
1131 if (HeVAL(entry) == &PL_sv_placeholder) {
1132 if (k_flags & HVhek_FREEKEY)
1133 Safefree(key);
1134 return NULL;
1135 }
1136 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1137 hv_notallowed(k_flags, key, klen,
1138 "Attempt to delete readonly key '%"SVf"' from"
1139 " a restricted hash");
1140 }
1141 if (k_flags & HVhek_FREEKEY)
1142 Safefree(key);
1143
1144 /* If this is a stash and the key ends with ::, then someone is
1145 * deleting a package.
1146 */
1147 if (HeVAL(entry) && HvENAME_get(hv)) {
1148 gv = (GV *)HeVAL(entry);
1149 if (keysv) key = SvPV(keysv, klen);
1150 if ((
1151 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1152 ||
1153 (klen == 1 && key[0] == ':')
1154 )
1155 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1156 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1157 && HvENAME_get(stash)) {
1158 /* A previous version of this code checked that the
1159 * GV was still in the symbol table by fetching the
1160 * GV with its name. That is not necessary (and
1161 * sometimes incorrect), as HvENAME cannot be set
1162 * on hv if it is not in the symtab. */
1163 mro_changes = 2;
1164 /* Hang on to it for a bit. */
1165 SvREFCNT_inc_simple_void_NN(
1166 sv_2mortal((SV *)gv)
1167 );
1168 }
1169 else if (klen == 3 && strnEQ(key, "ISA", 3) && GvAV(gv)) {
1170 AV *isa = GvAV(gv);
1171 MAGIC *mg = mg_find((SV*)isa, PERL_MAGIC_isa);
1172
1173 mro_changes = 1;
1174 if (mg) {
1175 if (mg->mg_obj == (SV*)gv) {
1176 /* This is the only stash this ISA was used for.
1177 * The isaelem magic asserts if there's no
1178 * isa magic on the array, so explicitly
1179 * remove the magic on both the array and its
1180 * elements. @ISA shouldn't be /too/ large.
1181 */
1182 SV **svp, **end;
1183 strip_magic:
1184 svp = AvARRAY(isa);
1185 end = svp + AvFILLp(isa)+1;
1186 while (svp < end) {
1187 if (*svp)
1188 mg_free_type(*svp, PERL_MAGIC_isaelem);
1189 ++svp;
1190 }
1191 mg_free_type((SV*)GvAV(gv), PERL_MAGIC_isa);
1192 }
1193 else {
1194 /* mg_obj is an array of stashes
1195 Note that the array doesn't keep a reference
1196 count on the stashes.
1197 */
1198 AV *av = (AV*)mg->mg_obj;
1199 SV **svp, **arrayp;
1200 SSize_t index;
1201 SSize_t items;
1202
1203 assert(SvTYPE(mg->mg_obj) == SVt_PVAV);
1204
1205 /* remove the stash from the magic array */
1206 arrayp = svp = AvARRAY(av);
1207 items = AvFILLp(av) + 1;
1208 if (items == 1) {
1209 assert(*arrayp == (SV *)gv);
1210 mg->mg_obj = NULL;
1211 /* avoid a double free on the last stash */
1212 AvFILLp(av) = -1;
1213 /* The magic isn't MGf_REFCOUNTED, so release
1214 * the array manually.
1215 */
1216 SvREFCNT_dec_NN(av);
1217 goto strip_magic;
1218 }
1219 else {
1220 while (items--) {
1221 if (*svp == (SV*)gv)
1222 break;
1223 ++svp;
1224 }
1225 index = svp - arrayp;
1226 assert(index >= 0 && index <= AvFILLp(av));
1227 if (index < AvFILLp(av)) {
1228 arrayp[index] = arrayp[AvFILLp(av)];
1229 }
1230 arrayp[AvFILLp(av)] = NULL;
1231 --AvFILLp(av);
1232 }
1233 }
1234 }
1235 }
1236 }
1237
1238 sv = d_flags & G_DISCARD ? HeVAL(entry) : sv_2mortal(HeVAL(entry));
1239 HeVAL(entry) = &PL_sv_placeholder;
1240 if (sv) {
1241 /* deletion of method from stash */
1242 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1243 && HvENAME_get(hv))
1244 mro_method_changed_in(hv);
1245 }
1246
1247 /*
1248 * If a restricted hash, rather than really deleting the entry, put
1249 * a placeholder there. This marks the key as being "approved", so
1250 * we can still access via not-really-existing key without raising
1251 * an error.
1252 */
1253 if (SvREADONLY(hv))
1254 /* We'll be saving this slot, so the number of allocated keys
1255 * doesn't go down, but the number placeholders goes up */
1256 HvPLACEHOLDERS(hv)++;
1257 else {
1258 *oentry = HeNEXT(entry);
1259 if(!*first_entry && SvOOK(hv)) {
1260 /* removed last entry, and aux struct present. */
1261 struct xpvhv_aux *const aux = HvAUX(hv);
1262 if (aux->xhv_fill_lazy)
1263 --aux->xhv_fill_lazy;
1264 }
1265 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1266 HvLAZYDEL_on(hv);
1267 else {
1268 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1269 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1270 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1271 hv_free_ent(hv, entry);
1272 }
1273 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1274 if (xhv->xhv_keys == 0)
1275 HvHASKFLAGS_off(hv);
1276 }
1277
1278 if (d_flags & G_DISCARD) {
1279 SvREFCNT_dec(sv);
1280 sv = NULL;
1281 }
1282
1283 if (mro_changes == 1) mro_isa_changed_in(hv);
1284 else if (mro_changes == 2)
1285 mro_package_moved(NULL, stash, gv, 1);
1286
1287 return sv;
1288 }
1289
1290 not_found:
1291 if (SvREADONLY(hv)) {
1292 hv_notallowed(k_flags, key, klen,
1293 "Attempt to delete disallowed key '%"SVf"' from"
1294 " a restricted hash");
1295 }
1296
1297 if (k_flags & HVhek_FREEKEY)
1298 Safefree(key);
1299 return NULL;
1300}
1301
1302
1303STATIC void
1304S_hsplit(pTHX_ HV *hv, STRLEN const oldsize, STRLEN newsize)
1305{
1306 STRLEN i = 0;
1307 char *a = (char*) HvARRAY(hv);
1308 HE **aep;
1309
1310 bool do_aux= (
1311 /* already have an HvAUX(hv) so we have to move it */
1312 SvOOK(hv) ||
1313 /* no HvAUX() but array we are going to allocate is large enough
1314 * there is no point in saving the space for the iterator, and
1315 * speeds up later traversals. */
1316 ( ( hv != PL_strtab ) && ( newsize >= PERL_HV_ALLOC_AUX_SIZE ) )
1317 );
1318
1319 PERL_ARGS_ASSERT_HSPLIT;
1320
1321 PL_nomemok = TRUE;
1322 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1323 + (do_aux ? sizeof(struct xpvhv_aux) : 0), char);
1324 PL_nomemok = FALSE;
1325 if (!a) {
1326 return;
1327 }
1328
1329#ifdef PERL_HASH_RANDOMIZE_KEYS
1330 /* the idea of this is that we create a "random" value by hashing the address of
1331 * the array, we then use the low bit to decide if we insert at the top, or insert
1332 * second from top. After each such insert we rotate the hashed value. So we can
1333 * use the same hashed value over and over, and in normal build environments use
1334 * very few ops to do so. ROTL32() should produce a single machine operation. */
1335 if (PL_HASH_RAND_BITS_ENABLED) {
1336 if (PL_HASH_RAND_BITS_ENABLED == 1)
1337 PL_hash_rand_bits += ptr_hash((PTRV)a);
1338 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1339 }
1340#endif
1341 HvARRAY(hv) = (HE**) a;
1342 HvMAX(hv) = newsize - 1;
1343 /* before we zero the newly added memory, we
1344 * need to deal with the aux struct that may be there
1345 * or have been allocated by us*/
1346 if (do_aux) {
1347 struct xpvhv_aux *const dest
1348 = (struct xpvhv_aux*) &a[newsize * sizeof(HE*)];
1349 if (SvOOK(hv)) {
1350 /* alread have an aux, copy the old one in place. */
1351 Move(&a[oldsize * sizeof(HE*)], dest, 1, struct xpvhv_aux);
1352 /* we reset the iterator's xhv_rand as well, so they get a totally new ordering */
1353#ifdef PERL_HASH_RANDOMIZE_KEYS
1354 dest->xhv_rand = (U32)PL_hash_rand_bits;
1355#endif
1356 /* For now, just reset the lazy fill counter.
1357 It would be possible to update the counter in the code below
1358 instead. */
1359 dest->xhv_fill_lazy = 0;
1360 } else {
1361 /* no existing aux structure, but we allocated space for one
1362 * so initialize it properly. This unrolls hv_auxinit() a bit,
1363 * since we have to do the realloc anyway. */
1364 /* first we set the iterator's xhv_rand so it can be copied into lastrand below */
1365#ifdef PERL_HASH_RANDOMIZE_KEYS
1366 dest->xhv_rand = (U32)PL_hash_rand_bits;
1367#endif
1368 /* this is the "non realloc" part of the hv_auxinit() */
1369 (void)hv_auxinit_internal(dest);
1370 /* Turn on the OOK flag */
1371 SvOOK_on(hv);
1372 }
1373 }
1374 /* now we can safely clear the second half */
1375 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1376
1377 if (!HvTOTALKEYS(hv)) /* skip rest if no entries */
1378 return;
1379
1380 newsize--;
1381 aep = (HE**)a;
1382 do {
1383 HE **oentry = aep + i;
1384 HE *entry = aep[i];
1385
1386 if (!entry) /* non-existent */
1387 continue;
1388 do {
1389 U32 j = (HeHASH(entry) & newsize);
1390 if (j != (U32)i) {
1391 *oentry = HeNEXT(entry);
1392#ifdef PERL_HASH_RANDOMIZE_KEYS
1393 /* if the target cell is empty or PL_HASH_RAND_BITS_ENABLED is false
1394 * insert to top, otherwise rotate the bucket rand 1 bit,
1395 * and use the new low bit to decide if we insert at top,
1396 * or next from top. IOW, we only rotate on a collision.*/
1397 if (aep[j] && PL_HASH_RAND_BITS_ENABLED) {
1398 PL_hash_rand_bits+= ROTL32(HeHASH(entry), 17);
1399 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
1400 if (PL_hash_rand_bits & 1) {
1401 HeNEXT(entry)= HeNEXT(aep[j]);
1402 HeNEXT(aep[j])= entry;
1403 } else {
1404 /* Note, this is structured in such a way as the optimizer
1405 * should eliminate the duplicated code here and below without
1406 * us needing to explicitly use a goto. */
1407 HeNEXT(entry) = aep[j];
1408 aep[j] = entry;
1409 }
1410 } else
1411#endif
1412 {
1413 /* see comment above about duplicated code */
1414 HeNEXT(entry) = aep[j];
1415 aep[j] = entry;
1416 }
1417 }
1418 else {
1419 oentry = &HeNEXT(entry);
1420 }
1421 entry = *oentry;
1422 } while (entry);
1423 } while (i++ < oldsize);
1424}
1425
1426void
1427Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1428{
1429 XPVHV* xhv = (XPVHV*)SvANY(hv);
1430 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1431 I32 newsize;
1432 char *a;
1433
1434 PERL_ARGS_ASSERT_HV_KSPLIT;
1435
1436 newsize = (I32) newmax; /* possible truncation here */
1437 if (newsize != newmax || newmax <= oldsize)
1438 return;
1439 while ((newsize & (1 + ~newsize)) != newsize) {
1440 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1441 }
1442 if (newsize < newmax)
1443 newsize *= 2;
1444 if (newsize < newmax)
1445 return; /* overflow detection */
1446
1447 a = (char *) HvARRAY(hv);
1448 if (a) {
1449 hsplit(hv, oldsize, newsize);
1450 } else {
1451 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1452 xhv->xhv_max = --newsize;
1453 HvARRAY(hv) = (HE **) a;
1454 }
1455}
1456
1457/* IMO this should also handle cases where hv_max is smaller than hv_keys
1458 * as tied hashes could play silly buggers and mess us around. We will
1459 * do the right thing during hv_store() afterwards, but still - Yves */
1460#define HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys) STMT_START {\
1461 /* Can we use fewer buckets? (hv_max is always 2^n-1) */ \
1462 if (hv_max < PERL_HASH_DEFAULT_HvMAX) { \
1463 hv_max = PERL_HASH_DEFAULT_HvMAX; \
1464 } else { \
1465 while (hv_max > PERL_HASH_DEFAULT_HvMAX && hv_max + 1 >= hv_keys * 2) \
1466 hv_max = hv_max / 2; \
1467 } \
1468 HvMAX(hv) = hv_max; \
1469} STMT_END
1470
1471
1472HV *
1473Perl_newHVhv(pTHX_ HV *ohv)
1474{
1475 dVAR;
1476 HV * const hv = newHV();
1477 STRLEN hv_max;
1478
1479 if (!ohv || (!HvTOTALKEYS(ohv) && !SvMAGICAL((const SV *)ohv)))
1480 return hv;
1481 hv_max = HvMAX(ohv);
1482
1483 if (!SvMAGICAL((const SV *)ohv)) {
1484 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1485 STRLEN i;
1486 const bool shared = !!HvSHAREKEYS(ohv);
1487 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1488 char *a;
1489 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1490 ents = (HE**)a;
1491
1492 /* In each bucket... */
1493 for (i = 0; i <= hv_max; i++) {
1494 HE *prev = NULL;
1495 HE *oent = oents[i];
1496
1497 if (!oent) {
1498 ents[i] = NULL;
1499 continue;
1500 }
1501
1502 /* Copy the linked list of entries. */
1503 for (; oent; oent = HeNEXT(oent)) {
1504 const U32 hash = HeHASH(oent);
1505 const char * const key = HeKEY(oent);
1506 const STRLEN len = HeKLEN(oent);
1507 const int flags = HeKFLAGS(oent);
1508 HE * const ent = new_HE();
1509 SV *const val = HeVAL(oent);
1510
1511 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1512 HeKEY_hek(ent)
1513 = shared ? share_hek_flags(key, len, hash, flags)
1514 : save_hek_flags(key, len, hash, flags);
1515 if (prev)
1516 HeNEXT(prev) = ent;
1517 else
1518 ents[i] = ent;
1519 prev = ent;
1520 HeNEXT(ent) = NULL;
1521 }
1522 }
1523
1524 HvMAX(hv) = hv_max;
1525 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1526 HvARRAY(hv) = ents;
1527 } /* not magical */
1528 else {
1529 /* Iterate over ohv, copying keys and values one at a time. */
1530 HE *entry;
1531 const I32 riter = HvRITER_get(ohv);
1532 HE * const eiter = HvEITER_get(ohv);
1533 STRLEN hv_keys = HvTOTALKEYS(ohv);
1534
1535 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1536
1537 hv_iterinit(ohv);
1538 while ((entry = hv_iternext_flags(ohv, 0))) {
1539 SV *val = hv_iterval(ohv,entry);
1540 SV * const keysv = HeSVKEY(entry);
1541 val = SvIMMORTAL(val) ? val : newSVsv(val);
1542 if (keysv)
1543 (void)hv_store_ent(hv, keysv, val, 0);
1544 else
1545 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry), val,
1546 HeHASH(entry), HeKFLAGS(entry));
1547 }
1548 HvRITER_set(ohv, riter);
1549 HvEITER_set(ohv, eiter);
1550 }
1551
1552 return hv;
1553}
1554
1555/*
1556=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1557
1558A specialised version of L</newHVhv> for copying C<%^H>. C<ohv> must be
1559a pointer to a hash (which may have C<%^H> magic, but should be generally
1560non-magical), or C<NULL> (interpreted as an empty hash). The content
1561of C<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1562added to it. A pointer to the new hash is returned.
1563
1564=cut
1565*/
1566
1567HV *
1568Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1569{
1570 HV * const hv = newHV();
1571
1572 if (ohv) {
1573 STRLEN hv_max = HvMAX(ohv);
1574 STRLEN hv_keys = HvTOTALKEYS(ohv);
1575 HE *entry;
1576 const I32 riter = HvRITER_get(ohv);
1577 HE * const eiter = HvEITER_get(ohv);
1578
1579 ENTER;
1580 SAVEFREESV(hv);
1581
1582 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1583
1584 hv_iterinit(ohv);
1585 while ((entry = hv_iternext_flags(ohv, 0))) {
1586 SV *const sv = newSVsv(hv_iterval(ohv,entry));
1587 SV *heksv = HeSVKEY(entry);
1588 if (!heksv && sv) heksv = newSVhek(HeKEY_hek(entry));
1589 if (sv) sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1590 (char *)heksv, HEf_SVKEY);
1591 if (heksv == HeSVKEY(entry))
1592 (void)hv_store_ent(hv, heksv, sv, 0);
1593 else {
1594 (void)hv_common(hv, heksv, HeKEY(entry), HeKLEN(entry),
1595 HeKFLAGS(entry), HV_FETCH_ISSTORE|HV_FETCH_JUST_SV, sv, HeHASH(entry));
1596 SvREFCNT_dec_NN(heksv);
1597 }
1598 }
1599 HvRITER_set(ohv, riter);
1600 HvEITER_set(ohv, eiter);
1601
1602 SvREFCNT_inc_simple_void_NN(hv);
1603 LEAVE;
1604 }
1605 hv_magic(hv, NULL, PERL_MAGIC_hints);
1606 return hv;
1607}
1608#undef HV_SET_MAX_ADJUSTED_FOR_KEYS
1609
1610/* like hv_free_ent, but returns the SV rather than freeing it */
1611STATIC SV*
1612S_hv_free_ent_ret(pTHX_ HV *hv, HE *entry)
1613{
1614 SV *val;
1615
1616 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1617
1618 val = HeVAL(entry);
1619 if (HeKLEN(entry) == HEf_SVKEY) {
1620 SvREFCNT_dec(HeKEY_sv(entry));
1621 Safefree(HeKEY_hek(entry));
1622 }
1623 else if (HvSHAREKEYS(hv))
1624 unshare_hek(HeKEY_hek(entry));
1625 else
1626 Safefree(HeKEY_hek(entry));
1627 del_HE(entry);
1628 return val;
1629}
1630
1631
1632void
1633Perl_hv_free_ent(pTHX_ HV *hv, HE *entry)
1634{
1635 SV *val;
1636
1637 PERL_ARGS_ASSERT_HV_FREE_ENT;
1638
1639 if (!entry)
1640 return;
1641 val = hv_free_ent_ret(hv, entry);
1642 SvREFCNT_dec(val);
1643}
1644
1645
1646void
1647Perl_hv_delayfree_ent(pTHX_ HV *hv, HE *entry)
1648{
1649 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1650
1651 if (!entry)
1652 return;
1653 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1654 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1655 if (HeKLEN(entry) == HEf_SVKEY) {
1656 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1657 }
1658 hv_free_ent(hv, entry);
1659}
1660
1661/*
1662=for apidoc hv_clear
1663
1664Frees the all the elements of a hash, leaving it empty.
1665The XS equivalent of C<%hash = ()>. See also L</hv_undef>.
1666
1667See L</av_clear> for a note about the hash possibly being invalid on
1668return.
1669
1670=cut
1671*/
1672
1673void
1674Perl_hv_clear(pTHX_ HV *hv)
1675{
1676 dVAR;
1677 XPVHV* xhv;
1678 if (!hv)
1679 return;
1680
1681 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1682
1683 xhv = (XPVHV*)SvANY(hv);
1684
1685 ENTER;
1686 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1687 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1688 /* restricted hash: convert all keys to placeholders */
1689 STRLEN i;
1690 for (i = 0; i <= xhv->xhv_max; i++) {
1691 HE *entry = (HvARRAY(hv))[i];
1692 for (; entry; entry = HeNEXT(entry)) {
1693 /* not already placeholder */
1694 if (HeVAL(entry) != &PL_sv_placeholder) {
1695 if (HeVAL(entry)) {
1696 if (SvREADONLY(HeVAL(entry))) {
1697 SV* const keysv = hv_iterkeysv(entry);
1698 Perl_croak_nocontext(
1699 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1700 (void*)keysv);
1701 }
1702 SvREFCNT_dec_NN(HeVAL(entry));
1703 }
1704 HeVAL(entry) = &PL_sv_placeholder;
1705 HvPLACEHOLDERS(hv)++;
1706 }
1707 }
1708 }
1709 }
1710 else {
1711 hfreeentries(hv);
1712 HvPLACEHOLDERS_set(hv, 0);
1713
1714 if (SvRMAGICAL(hv))
1715 mg_clear(MUTABLE_SV(hv));
1716
1717 HvHASKFLAGS_off(hv);
1718 }
1719 if (SvOOK(hv)) {
1720 if(HvENAME_get(hv))
1721 mro_isa_changed_in(hv);
1722 HvEITER_set(hv, NULL);
1723 }
1724 LEAVE;
1725}
1726
1727/*
1728=for apidoc hv_clear_placeholders
1729
1730Clears any placeholders from a hash. If a restricted hash has any of its keys
1731marked as readonly and the key is subsequently deleted, the key is not actually
1732deleted but is marked by assigning it a value of C<&PL_sv_placeholder>. This tags
1733it so it will be ignored by future operations such as iterating over the hash,
1734but will still allow the hash to have a value reassigned to the key at some
1735future point. This function clears any such placeholder keys from the hash.
1736See C<L<Hash::Util::lock_keys()|Hash::Util/lock_keys>> for an example of its
1737use.
1738
1739=cut
1740*/
1741
1742void
1743Perl_hv_clear_placeholders(pTHX_ HV *hv)
1744{
1745 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1746
1747 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1748
1749 if (items)
1750 clear_placeholders(hv, items);
1751}
1752
1753static void
1754S_clear_placeholders(pTHX_ HV *hv, U32 items)
1755{
1756 dVAR;
1757 I32 i;
1758
1759 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1760
1761 if (items == 0)
1762 return;
1763
1764 i = HvMAX(hv);
1765 do {
1766 /* Loop down the linked list heads */
1767 HE **oentry = &(HvARRAY(hv))[i];
1768 HE *entry;
1769
1770 while ((entry = *oentry)) {
1771 if (HeVAL(entry) == &PL_sv_placeholder) {
1772 *oentry = HeNEXT(entry);
1773 if (entry == HvEITER_get(hv))
1774 HvLAZYDEL_on(hv);
1775 else {
1776 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1777 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1778 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1779 hv_free_ent(hv, entry);
1780 }
1781
1782 if (--items == 0) {
1783 /* Finished. */
1784 I32 placeholders = HvPLACEHOLDERS_get(hv);
1785 HvTOTALKEYS(hv) -= (IV)placeholders;
1786 /* HvUSEDKEYS expanded */
1787 if ((HvTOTALKEYS(hv) - placeholders) == 0)
1788 HvHASKFLAGS_off(hv);
1789 HvPLACEHOLDERS_set(hv, 0);
1790 return;
1791 }
1792 } else {
1793 oentry = &HeNEXT(entry);
1794 }
1795 }
1796 } while (--i >= 0);
1797 /* You can't get here, hence assertion should always fail. */
1798 assert (items == 0);
1799 NOT_REACHED; /* NOTREACHED */
1800}
1801
1802STATIC void
1803S_hfreeentries(pTHX_ HV *hv)
1804{
1805 STRLEN index = 0;
1806 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1807 SV *sv;
1808
1809 PERL_ARGS_ASSERT_HFREEENTRIES;
1810
1811 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1812 SvREFCNT_dec(sv);
1813 }
1814}
1815
1816
1817/* hfree_next_entry()
1818 * For use only by S_hfreeentries() and sv_clear().
1819 * Delete the next available HE from hv and return the associated SV.
1820 * Returns null on empty hash. Nevertheless null is not a reliable
1821 * indicator that the hash is empty, as the deleted entry may have a
1822 * null value.
1823 * indexp is a pointer to the current index into HvARRAY. The index should
1824 * initially be set to 0. hfree_next_entry() may update it. */
1825
1826SV*
1827Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1828{
1829 struct xpvhv_aux *iter;
1830 HE *entry;
1831 HE ** array;
1832#ifdef DEBUGGING
1833 STRLEN orig_index = *indexp;
1834#endif
1835
1836 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1837
1838 if (SvOOK(hv) && ((iter = HvAUX(hv)))) {
1839 if ((entry = iter->xhv_eiter)) {
1840 /* the iterator may get resurrected after each
1841 * destructor call, so check each time */
1842 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1843 HvLAZYDEL_off(hv);
1844 hv_free_ent(hv, entry);
1845 /* warning: at this point HvARRAY may have been
1846 * re-allocated, HvMAX changed etc */
1847 }
1848 iter = HvAUX(hv); /* may have been realloced */
1849 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1850 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1851#ifdef PERL_HASH_RANDOMIZE_KEYS
1852 iter->xhv_last_rand = iter->xhv_rand;
1853#endif
1854 }
1855 /* Reset any cached HvFILL() to "unknown". It's unlikely that anyone
1856 will actually call HvFILL() on a hash under destruction, so it
1857 seems pointless attempting to track the number of keys remaining.
1858 But if they do, we want to reset it again. */
1859 if (iter->xhv_fill_lazy)
1860 iter->xhv_fill_lazy = 0;
1861 }
1862
1863 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1864 return NULL;
1865
1866 array = HvARRAY(hv);
1867 assert(array);
1868 while ( ! ((entry = array[*indexp])) ) {
1869 if ((*indexp)++ >= HvMAX(hv))
1870 *indexp = 0;
1871 assert(*indexp != orig_index);
1872 }
1873 array[*indexp] = HeNEXT(entry);
1874 ((XPVHV*) SvANY(hv))->xhv_keys--;
1875
1876 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1877 && HeVAL(entry) && isGV(HeVAL(entry))
1878 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1879 ) {
1880 STRLEN klen;
1881 const char * const key = HePV(entry,klen);
1882 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1883 || (klen == 1 && key[0] == ':')) {
1884 mro_package_moved(
1885 NULL, GvHV(HeVAL(entry)),
1886 (GV *)HeVAL(entry), 0
1887 );
1888 }
1889 }
1890 return hv_free_ent_ret(hv, entry);
1891}
1892
1893
1894/*
1895=for apidoc hv_undef
1896
1897Undefines the hash. The XS equivalent of C<undef(%hash)>.
1898
1899As well as freeing all the elements of the hash (like C<hv_clear()>), this
1900also frees any auxiliary data and storage associated with the hash.
1901
1902See L</av_clear> for a note about the hash possibly being invalid on
1903return.
1904
1905=cut
1906*/
1907
1908void
1909Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1910{
1911 XPVHV* xhv;
1912 bool save;
1913
1914 if (!hv)
1915 return;
1916 save = !!SvREFCNT(hv);
1917 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1918 xhv = (XPVHV*)SvANY(hv);
1919
1920 /* The name must be deleted before the call to hfreeeeentries so that
1921 CVs are anonymised properly. But the effective name must be pre-
1922 served until after that call (and only deleted afterwards if the
1923 call originated from sv_clear). For stashes with one name that is
1924 both the canonical name and the effective name, hv_name_set has to
1925 allocate an array for storing the effective name. We can skip that
1926 during global destruction, as it does not matter where the CVs point
1927 if they will be freed anyway. */
1928 /* note that the code following prior to hfreeentries is duplicated
1929 * in sv_clear(), and changes here should be done there too */
1930 if (PL_phase != PERL_PHASE_DESTRUCT && HvNAME(hv)) {
1931 if (PL_stashcache) {
1932 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for '%"
1933 HEKf"'\n", HEKfARG(HvNAME_HEK(hv))));
1934 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1935 }
1936 hv_name_set(hv, NULL, 0, 0);
1937 }
1938 if (save) {
1939 ENTER;
1940 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1941 }
1942 hfreeentries(hv);
1943 if (SvOOK(hv)) {
1944 struct mro_meta *meta;
1945 const char *name;
1946
1947 if (HvENAME_get(hv)) {
1948 if (PL_phase != PERL_PHASE_DESTRUCT)
1949 mro_isa_changed_in(hv);
1950 if (PL_stashcache) {
1951 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for effective name '%"
1952 HEKf"'\n", HEKfARG(HvENAME_HEK(hv))));
1953 (void)hv_deletehek(PL_stashcache, HvENAME_HEK(hv), G_DISCARD);
1954 }
1955 }
1956
1957 /* If this call originated from sv_clear, then we must check for
1958 * effective names that need freeing, as well as the usual name. */
1959 name = HvNAME(hv);
1960 if (flags & HV_NAME_SETALL ? !!HvAUX(hv)->xhv_name_u.xhvnameu_name : !!name) {
1961 if (name && PL_stashcache) {
1962 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for name '%"
1963 HEKf"'\n", HEKfARG(HvNAME_HEK(hv))));
1964 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1965 }
1966 hv_name_set(hv, NULL, 0, flags);
1967 }
1968 if((meta = HvAUX(hv)->xhv_mro_meta)) {
1969 if (meta->mro_linear_all) {
1970 SvREFCNT_dec_NN(meta->mro_linear_all);
1971 /* mro_linear_current is just acting as a shortcut pointer,
1972 hence the else. */
1973 }
1974 else
1975 /* Only the current MRO is stored, so this owns the data.
1976 */
1977 SvREFCNT_dec(meta->mro_linear_current);
1978 SvREFCNT_dec(meta->mro_nextmethod);
1979 SvREFCNT_dec(meta->isa);
1980 SvREFCNT_dec(meta->super);
1981 Safefree(meta);
1982 HvAUX(hv)->xhv_mro_meta = NULL;
1983 }
1984 if (!HvAUX(hv)->xhv_name_u.xhvnameu_name && ! HvAUX(hv)->xhv_backreferences)
1985 SvFLAGS(hv) &= ~SVf_OOK;
1986 }
1987 if (!SvOOK(hv)) {
1988 Safefree(HvARRAY(hv));
1989 xhv->xhv_max = PERL_HASH_DEFAULT_HvMAX; /* HvMAX(hv) = 7 (it's a normal hash) */
1990 HvARRAY(hv) = 0;
1991 }
1992 /* if we're freeing the HV, the SvMAGIC field has been reused for
1993 * other purposes, and so there can't be any placeholder magic */
1994 if (SvREFCNT(hv))
1995 HvPLACEHOLDERS_set(hv, 0);
1996
1997 if (SvRMAGICAL(hv))
1998 mg_clear(MUTABLE_SV(hv));
1999 if (save) LEAVE;
2000}
2001
2002/*
2003=for apidoc hv_fill
2004
2005Returns the number of hash buckets that
2006happen to be in use. This function is
2007wrapped by the macro C<HvFILL>.
2008
2009Previously this value was always stored in the HV structure, which created an
2010overhead on every hash (and pretty much every object) for something that was
2011rarely used. Now we calculate it on demand the first
2012time that it is needed, and cache it if that calculation
2013is going to be costly to repeat. The cached
2014value is updated by insertions and deletions, but (currently) discarded if
2015the hash is split.
2016
2017=cut
2018*/
2019
2020STRLEN
2021Perl_hv_fill(pTHX_ HV *const hv)
2022{
2023 STRLEN count = 0;
2024 HE **ents = HvARRAY(hv);
2025 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : NULL;
2026
2027 PERL_ARGS_ASSERT_HV_FILL;
2028
2029 /* No keys implies no buckets used.
2030 One key can only possibly mean one bucket used. */
2031 if (HvTOTALKEYS(hv) < 2)
2032 return HvTOTALKEYS(hv);
2033
2034#ifndef DEBUGGING
2035 if (aux && aux->xhv_fill_lazy)
2036 return aux->xhv_fill_lazy;
2037#endif
2038
2039 if (ents) {
2040 HE *const *const last = ents + HvMAX(hv);
2041 count = last + 1 - ents;
2042
2043 do {
2044 if (!*ents)
2045 --count;
2046 } while (++ents <= last);
2047 }
2048 if (aux) {
2049#ifdef DEBUGGING
2050 if (aux->xhv_fill_lazy)
2051 assert(aux->xhv_fill_lazy == count);
2052#endif
2053 aux->xhv_fill_lazy = count;
2054 } else if (HvMAX(hv) >= HV_FILL_THRESHOLD) {
2055 aux = hv_auxinit(hv);
2056 aux->xhv_fill_lazy = count;
2057 }
2058 return count;
2059}
2060
2061/* hash a pointer to a U32 - Used in the hash traversal randomization
2062 * and bucket order randomization code
2063 *
2064 * this code was derived from Sereal, which was derived from autobox.
2065 */
2066
2067PERL_STATIC_INLINE U32 S_ptr_hash(PTRV u) {
2068#if PTRSIZE == 8
2069 /*
2070 * This is one of Thomas Wang's hash functions for 64-bit integers from:
2071 * http://www.concentric.net/~Ttwang/tech/inthash.htm
2072 */
2073 u = (~u) + (u << 18);
2074 u = u ^ (u >> 31);
2075 u = u * 21;
2076 u = u ^ (u >> 11);
2077 u = u + (u << 6);
2078 u = u ^ (u >> 22);
2079#else
2080 /*
2081 * This is one of Bob Jenkins' hash functions for 32-bit integers
2082 * from: http://burtleburtle.net/bob/hash/integer.html
2083 */
2084 u = (u + 0x7ed55d16) + (u << 12);
2085 u = (u ^ 0xc761c23c) ^ (u >> 19);
2086 u = (u + 0x165667b1) + (u << 5);
2087 u = (u + 0xd3a2646c) ^ (u << 9);
2088 u = (u + 0xfd7046c5) + (u << 3);
2089 u = (u ^ 0xb55a4f09) ^ (u >> 16);
2090#endif
2091 return (U32)u;
2092}
2093
2094static struct xpvhv_aux*
2095S_hv_auxinit_internal(struct xpvhv_aux *iter) {
2096 PERL_ARGS_ASSERT_HV_AUXINIT_INTERNAL;
2097 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2098 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2099#ifdef PERL_HASH_RANDOMIZE_KEYS
2100 iter->xhv_last_rand = iter->xhv_rand;
2101#endif
2102 iter->xhv_fill_lazy = 0;
2103 iter->xhv_name_u.xhvnameu_name = 0;
2104 iter->xhv_name_count = 0;
2105 iter->xhv_backreferences = 0;
2106 iter->xhv_mro_meta = NULL;
2107 iter->xhv_aux_flags = 0;
2108 return iter;
2109}
2110
2111
2112static struct xpvhv_aux*
2113S_hv_auxinit(pTHX_ HV *hv) {
2114 struct xpvhv_aux *iter;
2115 char *array;
2116
2117 PERL_ARGS_ASSERT_HV_AUXINIT;
2118
2119 if (!SvOOK(hv)) {
2120 if (!HvARRAY(hv)) {
2121 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
2122 + sizeof(struct xpvhv_aux), char);
2123 } else {
2124 array = (char *) HvARRAY(hv);
2125 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
2126 + sizeof(struct xpvhv_aux), char);
2127 }
2128 HvARRAY(hv) = (HE**)array;
2129 SvOOK_on(hv);
2130 iter = HvAUX(hv);
2131#ifdef PERL_HASH_RANDOMIZE_KEYS
2132 if (PL_HASH_RAND_BITS_ENABLED) {
2133 /* mix in some new state to PL_hash_rand_bits to "randomize" the traversal order*/
2134 if (PL_HASH_RAND_BITS_ENABLED == 1)
2135 PL_hash_rand_bits += ptr_hash((PTRV)array);
2136 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
2137 }
2138 iter->xhv_rand = (U32)PL_hash_rand_bits;
2139#endif
2140 } else {
2141 iter = HvAUX(hv);
2142 }
2143
2144 return hv_auxinit_internal(iter);
2145}
2146
2147/*
2148=for apidoc hv_iterinit
2149
2150Prepares a starting point to traverse a hash table. Returns the number of
2151keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
2152currently only meaningful for hashes without tie magic.
2153
2154NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
2155hash buckets that happen to be in use. If you still need that esoteric
2156value, you can get it through the macro C<HvFILL(hv)>.
2157
2158
2159=cut
2160*/
2161
2162I32
2163Perl_hv_iterinit(pTHX_ HV *hv)
2164{
2165 PERL_ARGS_ASSERT_HV_ITERINIT;
2166
2167 if (SvOOK(hv)) {
2168 struct xpvhv_aux * iter = HvAUX(hv);
2169 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
2170 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2171 HvLAZYDEL_off(hv);
2172 hv_free_ent(hv, entry);
2173 }
2174 iter = HvAUX(hv); /* may have been reallocated */
2175 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2176 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2177#ifdef PERL_HASH_RANDOMIZE_KEYS
2178 iter->xhv_last_rand = iter->xhv_rand;
2179#endif
2180 } else {
2181 hv_auxinit(hv);
2182 }
2183
2184 /* used to be xhv->xhv_fill before 5.004_65 */
2185 return HvTOTALKEYS(hv);
2186}
2187
2188I32 *
2189Perl_hv_riter_p(pTHX_ HV *hv) {
2190 struct xpvhv_aux *iter;
2191
2192 PERL_ARGS_ASSERT_HV_RITER_P;
2193
2194 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2195 return &(iter->xhv_riter);
2196}
2197
2198HE **
2199Perl_hv_eiter_p(pTHX_ HV *hv) {
2200 struct xpvhv_aux *iter;
2201
2202 PERL_ARGS_ASSERT_HV_EITER_P;
2203
2204 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2205 return &(iter->xhv_eiter);
2206}
2207
2208void
2209Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
2210 struct xpvhv_aux *iter;
2211
2212 PERL_ARGS_ASSERT_HV_RITER_SET;
2213
2214 if (SvOOK(hv)) {
2215 iter = HvAUX(hv);
2216 } else {
2217 if (riter == -1)
2218 return;
2219
2220 iter = hv_auxinit(hv);
2221 }
2222 iter->xhv_riter = riter;
2223}
2224
2225void
2226Perl_hv_rand_set(pTHX_ HV *hv, U32 new_xhv_rand) {
2227 struct xpvhv_aux *iter;
2228
2229 PERL_ARGS_ASSERT_HV_RAND_SET;
2230
2231#ifdef PERL_HASH_RANDOMIZE_KEYS
2232 if (SvOOK(hv)) {
2233 iter = HvAUX(hv);
2234 } else {
2235 iter = hv_auxinit(hv);
2236 }
2237 iter->xhv_rand = new_xhv_rand;
2238#else
2239 Perl_croak(aTHX_ "This Perl has not been built with support for randomized hash key traversal but something called Perl_hv_rand_set().");
2240#endif
2241}
2242
2243void
2244Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
2245 struct xpvhv_aux *iter;
2246
2247 PERL_ARGS_ASSERT_HV_EITER_SET;
2248
2249 if (SvOOK(hv)) {
2250 iter = HvAUX(hv);
2251 } else {
2252 /* 0 is the default so don't go malloc()ing a new structure just to
2253 hold 0. */
2254 if (!eiter)
2255 return;
2256
2257 iter = hv_auxinit(hv);
2258 }
2259 iter->xhv_eiter = eiter;
2260}
2261
2262void
2263Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2264{
2265 dVAR;
2266 struct xpvhv_aux *iter;
2267 U32 hash;
2268 HEK **spot;
2269
2270 PERL_ARGS_ASSERT_HV_NAME_SET;
2271
2272 if (len > I32_MAX)
2273 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2274
2275 if (SvOOK(hv)) {
2276 iter = HvAUX(hv);
2277 if (iter->xhv_name_u.xhvnameu_name) {
2278 if(iter->xhv_name_count) {
2279 if(flags & HV_NAME_SETALL) {
2280 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2281 HEK **hekp = name + (
2282 iter->xhv_name_count < 0
2283 ? -iter->xhv_name_count
2284 : iter->xhv_name_count
2285 );
2286 while(hekp-- > name+1)
2287 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2288 /* The first elem may be null. */
2289 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2290 Safefree(name);
2291 iter = HvAUX(hv); /* may been realloced */
2292 spot = &iter->xhv_name_u.xhvnameu_name;
2293 iter->xhv_name_count = 0;
2294 }
2295 else {
2296 if(iter->xhv_name_count > 0) {
2297 /* shift some things over */
2298 Renew(
2299 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2300 );
2301 spot = iter->xhv_name_u.xhvnameu_names;
2302 spot[iter->xhv_name_count] = spot[1];
2303 spot[1] = spot[0];
2304 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2305 }
2306 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2307 unshare_hek_or_pvn(*spot, 0, 0, 0);
2308 }
2309 }
2310 }
2311 else if (flags & HV_NAME_SETALL) {
2312 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2313 iter = HvAUX(hv); /* may been realloced */
2314 spot = &iter->xhv_name_u.xhvnameu_name;
2315 }
2316 else {
2317 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2318 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2319 iter->xhv_name_count = -2;
2320 spot = iter->xhv_name_u.xhvnameu_names;
2321 spot[1] = existing_name;
2322 }
2323 }
2324 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2325 } else {
2326 if (name == 0)
2327 return;
2328
2329 iter = hv_auxinit(hv);
2330 spot = &iter->xhv_name_u.xhvnameu_name;
2331 }
2332 PERL_HASH(hash, name, len);
2333 *spot = name ? share_hek(name, flags & SVf_UTF8 ? -(I32)len : (I32)len, hash) : NULL;
2334}
2335
2336/*
2337This is basically sv_eq_flags() in sv.c, but we avoid the magic
2338and bytes checking.
2339*/
2340
2341STATIC I32
2342hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) {
2343 if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) {
2344 if (flags & SVf_UTF8)
2345 return (bytes_cmp_utf8(
2346 (const U8*)HEK_KEY(hek), HEK_LEN(hek),
2347 (const U8*)pv, pvlen) == 0);
2348 else
2349 return (bytes_cmp_utf8(
2350 (const U8*)pv, pvlen,
2351 (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0);
2352 }
2353 else
2354 return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv)
2355 || memEQ(HEK_KEY(hek), pv, pvlen));
2356}
2357
2358/*
2359=for apidoc hv_ename_add
2360
2361Adds a name to a stash's internal list of effective names. See
2362C<L</hv_ename_delete>>.
2363
2364This is called when a stash is assigned to a new location in the symbol
2365table.
2366
2367=cut
2368*/
2369
2370void
2371Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2372{
2373 dVAR;
2374 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2375 U32 hash;
2376
2377 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2378
2379 if (len > I32_MAX)
2380 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2381
2382 PERL_HASH(hash, name, len);
2383
2384 if (aux->xhv_name_count) {
2385 I32 count = aux->xhv_name_count;
2386 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names + (count<0);
2387 HEK **hekp = xhv_name + (count < 0 ? -count - 1 : count);
2388 while (hekp-- > xhv_name)
2389 {
2390 assert(*hekp);
2391 if (
2392 (HEK_UTF8(*hekp) || (flags & SVf_UTF8))
2393 ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags)
2394 : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len))
2395 ) {
2396 if (hekp == xhv_name && count < 0)
2397 aux->xhv_name_count = -count;
2398 return;
2399 }
2400 }
2401 if (count < 0) aux->xhv_name_count--, count = -count;
2402 else aux->xhv_name_count++;
2403 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2404 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2405 }
2406 else {
2407 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2408 if (
2409 existing_name && (
2410 (HEK_UTF8(existing_name) || (flags & SVf_UTF8))
2411 ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags)
2412 : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len))
2413 )
2414 ) return;
2415 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2416 aux->xhv_name_count = existing_name ? 2 : -2;
2417 *aux->xhv_name_u.xhvnameu_names = existing_name;
2418 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2419 }
2420}
2421
2422/*
2423=for apidoc hv_ename_delete
2424
2425Removes a name from a stash's internal list of effective names. If this is
2426the name returned by C<HvENAME>, then another name in the list will take
2427its place (C<HvENAME> will use it).
2428
2429This is called when a stash is deleted from the symbol table.
2430
2431=cut
2432*/
2433
2434void
2435Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2436{
2437 struct xpvhv_aux *aux;
2438
2439 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2440
2441 if (len > I32_MAX)
2442 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2443
2444 if (!SvOOK(hv)) return;
2445
2446 aux = HvAUX(hv);
2447 if (!aux->xhv_name_u.xhvnameu_name) return;
2448
2449 if (aux->xhv_name_count) {
2450 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2451 I32 const count = aux->xhv_name_count;
2452 HEK **victim = namep + (count < 0 ? -count : count);
2453 while (victim-- > namep + 1)
2454 if (
2455 (HEK_UTF8(*victim) || (flags & SVf_UTF8))
2456 ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags)
2457 : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len))
2458 ) {
2459 unshare_hek_or_pvn(*victim, 0, 0, 0);
2460 aux = HvAUX(hv); /* may been realloced */
2461 if (count < 0) ++aux->xhv_name_count;
2462 else --aux->xhv_name_count;
2463 if (
2464 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2465 && !*namep
2466 ) { /* if there are none left */
2467 Safefree(namep);
2468 aux->xhv_name_u.xhvnameu_names = NULL;
2469 aux->xhv_name_count = 0;
2470 }
2471 else {
2472 /* Move the last one back to fill the empty slot. It
2473 does not matter what order they are in. */
2474 *victim = *(namep + (count < 0 ? -count : count) - 1);
2475 }
2476 return;
2477 }
2478 if (
2479 count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8))
2480 ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags)
2481 : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len))
2482 ) {
2483 aux->xhv_name_count = -count;
2484 }
2485 }
2486 else if(
2487 (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8))
2488 ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags)
2489 : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len &&
2490 memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len))
2491 ) {
2492 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2493 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2494 *aux->xhv_name_u.xhvnameu_names = namehek;
2495 aux->xhv_name_count = -1;
2496 }
2497}
2498
2499AV **
2500Perl_hv_backreferences_p(pTHX_ HV *hv) {
2501 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2502 /* See also Perl_sv_get_backrefs in sv.c where this logic is unrolled */
2503 {
2504 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2505 return &(iter->xhv_backreferences);
2506 }
2507}
2508
2509void
2510Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2511 AV *av;
2512
2513 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2514
2515 if (!SvOOK(hv))
2516 return;
2517
2518 av = HvAUX(hv)->xhv_backreferences;
2519
2520 if (av) {
2521 HvAUX(hv)->xhv_backreferences = 0;
2522 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2523 if (SvTYPE(av) == SVt_PVAV)
2524 SvREFCNT_dec_NN(av);
2525 }
2526}
2527
2528/*
2529hv_iternext is implemented as a macro in hv.h
2530
2531=for apidoc hv_iternext
2532
2533Returns entries from a hash iterator. See C<L</hv_iterinit>>.
2534
2535You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2536iterator currently points to, without losing your place or invalidating your
2537iterator. Note that in this case the current entry is deleted from the hash
2538with your iterator holding the last reference to it. Your iterator is flagged
2539to free the entry on the next call to C<hv_iternext>, so you must not discard
2540your iterator immediately else the entry will leak - call C<hv_iternext> to
2541trigger the resource deallocation.
2542
2543=for apidoc hv_iternext_flags
2544
2545Returns entries from a hash iterator. See C<L</hv_iterinit>> and
2546C<L</hv_iternext>>.
2547The C<flags> value will normally be zero; if C<HV_ITERNEXT_WANTPLACEHOLDERS> is
2548set the placeholders keys (for restricted hashes) will be returned in addition
2549to normal keys. By default placeholders are automatically skipped over.
2550Currently a placeholder is implemented with a value that is
2551C<&PL_sv_placeholder>. Note that the implementation of placeholders and
2552restricted hashes may change, and the implementation currently is
2553insufficiently abstracted for any change to be tidy.
2554
2555=cut
2556*/
2557
2558HE *
2559Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2560{
2561 dVAR;
2562 XPVHV* xhv;
2563 HE *entry;
2564 HE *oldentry;
2565 MAGIC* mg;
2566 struct xpvhv_aux *iter;
2567
2568 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2569
2570 xhv = (XPVHV*)SvANY(hv);
2571
2572 if (!SvOOK(hv)) {
2573 /* Too many things (well, pp_each at least) merrily assume that you can
2574 call hv_iternext without calling hv_iterinit, so we'll have to deal
2575 with it. */
2576 hv_iterinit(hv);
2577 }
2578 iter = HvAUX(hv);
2579
2580 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2581 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2582 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2583 SV * const key = sv_newmortal();
2584 if (entry) {
2585 sv_setsv(key, HeSVKEY_force(entry));
2586 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2587 HeSVKEY_set(entry, NULL);
2588 }
2589 else {
2590 char *k;
2591 HEK *hek;
2592
2593 /* one HE per MAGICAL hash */
2594 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2595 HvLAZYDEL_on(hv); /* make sure entry gets freed */
2596 Zero(entry, 1, HE);
2597 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2598 hek = (HEK*)k;
2599 HeKEY_hek(entry) = hek;
2600 HeKLEN(entry) = HEf_SVKEY;
2601 }
2602 magic_nextpack(MUTABLE_SV(hv),mg,key);
2603 if (SvOK(key)) {
2604 /* force key to stay around until next time */
2605 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2606 return entry; /* beware, hent_val is not set */
2607 }
2608 SvREFCNT_dec(HeVAL(entry));
2609 Safefree(HeKEY_hek(entry));
2610 del_HE(entry);
2611 iter = HvAUX(hv); /* may been realloced */
2612 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2613 HvLAZYDEL_off(hv);
2614 return NULL;
2615 }
2616 }
2617#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2618 if (!entry && SvRMAGICAL((const SV *)hv)
2619 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2620 prime_env_iter();
2621#ifdef VMS
2622 /* The prime_env_iter() on VMS just loaded up new hash values
2623 * so the iteration count needs to be reset back to the beginning
2624 */
2625 hv_iterinit(hv);
2626 iter = HvAUX(hv);
2627 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2628#endif
2629 }
2630#endif
2631
2632 /* hv_iterinit now ensures this. */
2633 assert (HvARRAY(hv));
2634
2635 /* At start of hash, entry is NULL. */
2636 if (entry)
2637 {
2638 entry = HeNEXT(entry);
2639 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2640 /*
2641 * Skip past any placeholders -- don't want to include them in
2642 * any iteration.
2643 */
2644 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2645 entry = HeNEXT(entry);
2646 }
2647 }
2648 }
2649
2650#ifdef PERL_HASH_RANDOMIZE_KEYS
2651 if (iter->xhv_last_rand != iter->xhv_rand) {
2652 if (iter->xhv_riter != -1) {
2653 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2654 "Use of each() on hash after insertion without resetting hash iterator results in undefined behavior"
2655 pTHX__FORMAT
2656 pTHX__VALUE);
2657 }
2658 iter = HvAUX(hv); /* may been realloced */
2659 iter->xhv_last_rand = iter->xhv_rand;
2660 }
2661#endif
2662
2663 /* Skip the entire loop if the hash is empty. */
2664 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2665 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2666 while (!entry) {
2667 /* OK. Come to the end of the current list. Grab the next one. */
2668
2669 iter->xhv_riter++; /* HvRITER(hv)++ */
2670 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2671 /* There is no next one. End of the hash. */
2672 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2673#ifdef PERL_HASH_RANDOMIZE_KEYS
2674 iter->xhv_last_rand = iter->xhv_rand; /* reset xhv_last_rand so we can detect inserts during traversal */
2675#endif
2676 break;
2677 }
2678 entry = (HvARRAY(hv))[ PERL_HASH_ITER_BUCKET(iter) & xhv->xhv_max ];
2679
2680 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2681 /* If we have an entry, but it's a placeholder, don't count it.
2682 Try the next. */
2683 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2684 entry = HeNEXT(entry);
2685 }
2686 /* Will loop again if this linked list starts NULL
2687 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2688 or if we run through it and find only placeholders. */
2689 }
2690 }
2691 else {
2692 iter->xhv_riter = -1;
2693#ifdef PERL_HASH_RANDOMIZE_KEYS
2694 iter->xhv_last_rand = iter->xhv_rand;
2695#endif
2696 }
2697
2698 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2699 HvLAZYDEL_off(hv);
2700 hv_free_ent(hv, oldentry);
2701 }
2702
2703 iter = HvAUX(hv); /* may been realloced */
2704 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2705 return entry;
2706}
2707
2708/*
2709=for apidoc hv_iterkey
2710
2711Returns the key from the current position of the hash iterator. See
2712C<L</hv_iterinit>>.
2713
2714=cut
2715*/
2716
2717char *
2718Perl_hv_iterkey(pTHX_ HE *entry, I32 *retlen)
2719{
2720 PERL_ARGS_ASSERT_HV_ITERKEY;
2721
2722 if (HeKLEN(entry) == HEf_SVKEY) {
2723 STRLEN len;
2724 char * const p = SvPV(HeKEY_sv(entry), len);
2725 *retlen = len;
2726 return p;
2727 }
2728 else {
2729 *retlen = HeKLEN(entry);
2730 return HeKEY(entry);
2731 }
2732}
2733
2734/* unlike hv_iterval(), this always returns a mortal copy of the key */
2735/*
2736=for apidoc hv_iterkeysv
2737
2738Returns the key as an C<SV*> from the current position of the hash
2739iterator. The return value will always be a mortal copy of the key. Also
2740see C<L</hv_iterinit>>.
2741
2742=cut
2743*/
2744
2745SV *
2746Perl_hv_iterkeysv(pTHX_ HE *entry)
2747{
2748 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2749
2750 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2751}
2752
2753/*
2754=for apidoc hv_iterval
2755
2756Returns the value from the current position of the hash iterator. See
2757C<L</hv_iterkey>>.
2758
2759=cut
2760*/
2761
2762SV *
2763Perl_hv_iterval(pTHX_ HV *hv, HE *entry)
2764{
2765 PERL_ARGS_ASSERT_HV_ITERVAL;
2766
2767 if (SvRMAGICAL(hv)) {
2768 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2769 SV* const sv = sv_newmortal();
2770 if (HeKLEN(entry) == HEf_SVKEY)
2771 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2772 else
2773 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2774 return sv;
2775 }
2776 }
2777 return HeVAL(entry);
2778}
2779
2780/*
2781=for apidoc hv_iternextsv
2782
2783Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2784operation.
2785
2786=cut
2787*/
2788
2789SV *
2790Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2791{
2792 HE * const he = hv_iternext_flags(hv, 0);
2793
2794 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2795
2796 if (!he)
2797 return NULL;
2798 *key = hv_iterkey(he, retlen);
2799 return hv_iterval(hv, he);
2800}
2801
2802/*
2803
2804Now a macro in hv.h
2805
2806=for apidoc hv_magic
2807
2808Adds magic to a hash. See C<L</sv_magic>>.
2809
2810=cut
2811*/
2812
2813/* possibly free a shared string if no one has access to it
2814 * len and hash must both be valid for str.
2815 */
2816void
2817Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2818{
2819 unshare_hek_or_pvn (NULL, str, len, hash);
2820}
2821
2822
2823void
2824Perl_unshare_hek(pTHX_ HEK *hek)
2825{
2826 assert(hek);
2827 unshare_hek_or_pvn(hek, NULL, 0, 0);
2828}
2829
2830/* possibly free a shared string if no one has access to it
2831 hek if non-NULL takes priority over the other 3, else str, len and hash
2832 are used. If so, len and hash must both be valid for str.
2833 */
2834STATIC void
2835S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2836{
2837 XPVHV* xhv;
2838 HE *entry;
2839 HE **oentry;
2840 bool is_utf8 = FALSE;
2841 int k_flags = 0;
2842 const char * const save = str;
2843 struct shared_he *he = NULL;
2844
2845 if (hek) {
2846 /* Find the shared he which is just before us in memory. */
2847 he = (struct shared_he *)(((char *)hek)
2848 - STRUCT_OFFSET(struct shared_he,
2849 shared_he_hek));
2850
2851 /* Assert that the caller passed us a genuine (or at least consistent)
2852 shared hek */
2853 assert (he->shared_he_he.hent_hek == hek);
2854
2855 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2856 --he->shared_he_he.he_valu.hent_refcount;
2857 return;
2858 }
2859
2860 hash = HEK_HASH(hek);
2861 } else if (len < 0) {
2862 STRLEN tmplen = -len;
2863 is_utf8 = TRUE;
2864 /* See the note in hv_fetch(). --jhi */
2865 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2866 len = tmplen;
2867 if (is_utf8)
2868 k_flags = HVhek_UTF8;
2869 if (str != save)
2870 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2871 }
2872
2873 /* what follows was the moral equivalent of:
2874 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2875 if (--*Svp == NULL)
2876 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2877 } */
2878 xhv = (XPVHV*)SvANY(PL_strtab);
2879 /* assert(xhv_array != 0) */
2880 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2881 if (he) {
2882 const HE *const he_he = &(he->shared_he_he);
2883 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2884 if (entry == he_he)
2885 break;
2886 }
2887 } else {
2888 const int flags_masked = k_flags & HVhek_MASK;
2889 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2890 if (HeHASH(entry) != hash) /* strings can't be equal */
2891 continue;
2892 if (HeKLEN(entry) != len)
2893 continue;
2894 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2895 continue;
2896 if (HeKFLAGS(entry) != flags_masked)
2897 continue;
2898 break;
2899 }
2900 }
2901
2902 if (entry) {
2903 if (--entry->he_valu.hent_refcount == 0) {
2904 *oentry = HeNEXT(entry);
2905 Safefree(entry);
2906 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2907 }
2908 }
2909
2910 if (!entry)
2911 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2912 "Attempt to free nonexistent shared string '%s'%s"
2913 pTHX__FORMAT,
2914 hek ? HEK_KEY(hek) : str,
2915 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2916 if (k_flags & HVhek_FREEKEY)
2917 Safefree(str);
2918}
2919
2920/* get a (constant) string ptr from the global string table
2921 * string will get added if it is not already there.
2922 * len and hash must both be valid for str.
2923 */
2924HEK *
2925Perl_share_hek(pTHX_ const char *str, I32 len, U32 hash)
2926{
2927 bool is_utf8 = FALSE;
2928 int flags = 0;
2929 const char * const save = str;
2930
2931 PERL_ARGS_ASSERT_SHARE_HEK;
2932
2933 if (len < 0) {
2934 STRLEN tmplen = -len;
2935 is_utf8 = TRUE;
2936 /* See the note in hv_fetch(). --jhi */
2937 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2938 len = tmplen;
2939 /* If we were able to downgrade here, then than means that we were passed
2940 in a key which only had chars 0-255, but was utf8 encoded. */
2941 if (is_utf8)
2942 flags = HVhek_UTF8;
2943 /* If we found we were able to downgrade the string to bytes, then
2944 we should flag that it needs upgrading on keys or each. Also flag
2945 that we need share_hek_flags to free the string. */
2946 if (str != save) {
2947 dVAR;
2948 PERL_HASH(hash, str, len);
2949 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2950 }
2951 }
2952
2953 return share_hek_flags (str, len, hash, flags);
2954}
2955
2956STATIC HEK *
2957S_share_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags)
2958{
2959 HE *entry;
2960 const int flags_masked = flags & HVhek_MASK;
2961 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2962 XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2963
2964 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2965
2966 /* what follows is the moral equivalent of:
2967
2968 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2969 hv_store(PL_strtab, str, len, NULL, hash);
2970
2971 Can't rehash the shared string table, so not sure if it's worth
2972 counting the number of entries in the linked list
2973 */
2974
2975 /* assert(xhv_array != 0) */
2976 entry = (HvARRAY(PL_strtab))[hindex];
2977 for (;entry; entry = HeNEXT(entry)) {
2978 if (HeHASH(entry) != hash) /* strings can't be equal */
2979 continue;
2980 if (HeKLEN(entry) != len)
2981 continue;
2982 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2983 continue;
2984 if (HeKFLAGS(entry) != flags_masked)
2985 continue;
2986 break;
2987 }
2988
2989 if (!entry) {
2990 /* What used to be head of the list.
2991 If this is NULL, then we're the first entry for this slot, which
2992 means we need to increate fill. */
2993 struct shared_he *new_entry;
2994 HEK *hek;
2995 char *k;
2996 HE **const head = &HvARRAY(PL_strtab)[hindex];
2997 HE *const next = *head;
2998
2999 /* We don't actually store a HE from the arena and a regular HEK.
3000 Instead we allocate one chunk of memory big enough for both,
3001 and put the HEK straight after the HE. This way we can find the
3002 HE directly from the HEK.
3003 */
3004
3005 Newx(k, STRUCT_OFFSET(struct shared_he,
3006 shared_he_hek.hek_key[0]) + len + 2, char);
3007 new_entry = (struct shared_he *)k;
3008 entry = &(new_entry->shared_he_he);
3009 hek = &(new_entry->shared_he_hek);
3010
3011 Copy(str, HEK_KEY(hek), len, char);
3012 HEK_KEY(hek)[len] = 0;
3013 HEK_LEN(hek) = len;
3014 HEK_HASH(hek) = hash;
3015 HEK_FLAGS(hek) = (unsigned char)flags_masked;
3016
3017 /* Still "point" to the HEK, so that other code need not know what
3018 we're up to. */
3019 HeKEY_hek(entry) = hek;
3020 entry->he_valu.hent_refcount = 0;
3021 HeNEXT(entry) = next;
3022 *head = entry;
3023
3024 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
3025 if (!next) { /* initial entry? */
3026 } else if ( DO_HSPLIT(xhv) ) {
3027 const STRLEN oldsize = xhv->xhv_max + 1;
3028 hsplit(PL_strtab, oldsize, oldsize * 2);
3029 }
3030 }
3031
3032 ++entry->he_valu.hent_refcount;
3033
3034 if (flags & HVhek_FREEKEY)
3035 Safefree(str);
3036
3037 return HeKEY_hek(entry);
3038}
3039
3040SSize_t *
3041Perl_hv_placeholders_p(pTHX_ HV *hv)
3042{
3043 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
3044
3045 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
3046
3047 if (!mg) {
3048 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
3049
3050 if (!mg) {
3051 Perl_die(aTHX_ "panic: hv_placeholders_p");
3052 }
3053 }
3054 return &(mg->mg_len);
3055}
3056
3057
3058I32
3059Perl_hv_placeholders_get(pTHX_ const HV *hv)
3060{
3061 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
3062
3063 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
3064 PERL_UNUSED_CONTEXT;
3065
3066 return mg ? mg->mg_len : 0;
3067}
3068
3069void
3070Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
3071{
3072 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
3073
3074 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
3075
3076 if (mg) {
3077 mg->mg_len = ph;
3078 } else if (ph) {
3079 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
3080 Perl_die(aTHX_ "panic: hv_placeholders_set");
3081 }
3082 /* else we don't need to add magic to record 0 placeholders. */
3083}
3084
3085STATIC SV *
3086S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
3087{
3088 dVAR;
3089 SV *value;
3090
3091 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
3092
3093 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
3094 case HVrhek_undef:
3095 value = newSV(0);
3096 break;
3097 case HVrhek_delete:
3098 value = &PL_sv_placeholder;
3099 break;
3100 case HVrhek_IV:
3101 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
3102 break;
3103 case HVrhek_UV:
3104 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
3105 break;
3106 case HVrhek_PV:
3107 case HVrhek_PV_UTF8:
3108 /* Create a string SV that directly points to the bytes in our
3109 structure. */
3110 value = newSV_type(SVt_PV);
3111 SvPV_set(value, (char *) he->refcounted_he_data + 1);
3112 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
3113 /* This stops anything trying to free it */
3114 SvLEN_set(value, 0);
3115 SvPOK_on(value);
3116 SvREADONLY_on(value);
3117 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
3118 SvUTF8_on(value);
3119 break;
3120 default:
3121 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
3122 (UV)he->refcounted_he_data[0]);
3123 }
3124 return value;
3125}
3126
3127/*
3128=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
3129
3130Generates and returns a C<HV *> representing the content of a
3131C<refcounted_he> chain.
3132C<flags> is currently unused and must be zero.
3133
3134=cut
3135*/
3136HV *
3137Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
3138{
3139 dVAR;
3140 HV *hv;
3141 U32 placeholders, max;
3142
3143 if (flags)
3144 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
3145 (UV)flags);
3146
3147 /* We could chase the chain once to get an idea of the number of keys,
3148 and call ksplit. But for now we'll make a potentially inefficient
3149 hash with only 8 entries in its array. */
3150 hv = newHV();
3151 max = HvMAX(hv);
3152 if (!HvARRAY(hv)) {
3153 char *array;
3154 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
3155 HvARRAY(hv) = (HE**)array;
3156 }
3157
3158 placeholders = 0;
3159 while (chain) {
3160#ifdef USE_ITHREADS
3161 U32 hash = chain->refcounted_he_hash;
3162#else
3163 U32 hash = HEK_HASH(chain->refcounted_he_hek);
3164#endif
3165 HE **oentry = &((HvARRAY(hv))[hash & max]);
3166 HE *entry = *oentry;
3167 SV *value;
3168
3169 for (; entry; entry = HeNEXT(entry)) {
3170 if (HeHASH(entry) == hash) {
3171 /* We might have a duplicate key here. If so, entry is older
3172 than the key we've already put in the hash, so if they are
3173 the same, skip adding entry. */
3174#ifdef USE_ITHREADS
3175 const STRLEN klen = HeKLEN(entry);
3176 const char *const key = HeKEY(entry);
3177 if (klen == chain->refcounted_he_keylen
3178 && (!!HeKUTF8(entry)
3179 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
3180 && memEQ(key, REF_HE_KEY(chain), klen))
3181 goto next_please;
3182#else
3183 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
3184 goto next_please;
3185 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
3186 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
3187 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
3188 HeKLEN(entry)))
3189 goto next_please;
3190#endif
3191 }
3192 }
3193 assert (!entry);
3194 entry = new_HE();
3195
3196#ifdef USE_ITHREADS
3197 HeKEY_hek(entry)
3198 = share_hek_flags(REF_HE_KEY(chain),
3199 chain->refcounted_he_keylen,
3200 chain->refcounted_he_hash,
3201 (chain->refcounted_he_data[0]
3202 & (HVhek_UTF8|HVhek_WASUTF8)));
3203#else
3204 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
3205#endif
3206 value = refcounted_he_value(chain);
3207 if (value == &PL_sv_placeholder)
3208 placeholders++;
3209 HeVAL(entry) = value;
3210
3211 /* Link it into the chain. */
3212 HeNEXT(entry) = *oentry;
3213 *oentry = entry;
3214
3215 HvTOTALKEYS(hv)++;
3216
3217 next_please:
3218 chain = chain->refcounted_he_next;
3219 }
3220
3221 if (placeholders) {
3222 clear_placeholders(hv, placeholders);
3223 HvTOTALKEYS(hv) -= placeholders;
3224 }
3225
3226 /* We could check in the loop to see if we encounter any keys with key
3227 flags, but it's probably not worth it, as this per-hash flag is only
3228 really meant as an optimisation for things like Storable. */
3229 HvHASKFLAGS_on(hv);
3230 DEBUG_A(Perl_hv_assert(aTHX_ hv));
3231
3232 return hv;
3233}
3234
3235/*
3236=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
3237
3238Search along a C<refcounted_he> chain for an entry with the key specified
3239by C<keypv> and C<keylen>. If C<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
3240bit set, the key octets are interpreted as UTF-8, otherwise they
3241are interpreted as Latin-1. C<hash> is a precomputed hash of the key
3242string, or zero if it has not been precomputed. Returns a mortal scalar
3243representing the value associated with the key, or C<&PL_sv_placeholder>
3244if there is no value associated with the key.
3245
3246=cut
3247*/
3248
3249SV *
3250Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
3251 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
3252{
3253 dVAR;
3254 U8 utf8_flag;
3255 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
3256
3257 if (flags & ~(REFCOUNTED_HE_KEY_UTF8|REFCOUNTED_HE_EXISTS))
3258 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
3259 (UV)flags);
3260 if (!chain)
3261 goto ret;
3262 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3263 /* For searching purposes, canonicalise to Latin-1 where possible. */
3264 const char *keyend = keypv + keylen, *p;
3265 STRLEN nonascii_count = 0;
3266 for (p = keypv; p != keyend; p++) {
3267 if (! UTF8_IS_INVARIANT(*p)) {
3268 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3269 goto canonicalised_key;
3270 }
3271 nonascii_count++;
3272 p++;
3273 }
3274 }
3275 if (nonascii_count) {
3276 char *q;
3277 const char *p = keypv, *keyend = keypv + keylen;
3278 keylen -= nonascii_count;
3279 Newx(q, keylen, char);
3280 SAVEFREEPV(q);
3281 keypv = q;
3282 for (; p != keyend; p++, q++) {
3283 U8 c = (U8)*p;
3284 if (UTF8_IS_INVARIANT(c)) {
3285 *q = (char) c;
3286 }
3287 else {
3288 p++;
3289 *q = (char) EIGHT_BIT_UTF8_TO_NATIVE(c, *p);
3290 }
3291 }
3292 }
3293 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3294 canonicalised_key: ;
3295 }
3296 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
3297 if (!hash)
3298 PERL_HASH(hash, keypv, keylen);
3299
3300 for (; chain; chain = chain->refcounted_he_next) {
3301 if (
3302#ifdef USE_ITHREADS
3303 hash == chain->refcounted_he_hash &&
3304 keylen == chain->refcounted_he_keylen &&
3305 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
3306 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
3307#else
3308 hash == HEK_HASH(chain->refcounted_he_hek) &&
3309 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
3310 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
3311 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
3312#endif
3313 ) {
3314 if (flags & REFCOUNTED_HE_EXISTS)
3315 return (chain->refcounted_he_data[0] & HVrhek_typemask)
3316 == HVrhek_delete
3317 ? NULL : &PL_sv_yes;
3318 return sv_2mortal(refcounted_he_value(chain));
3319 }
3320 }
3321 ret:
3322 return flags & REFCOUNTED_HE_EXISTS ? NULL : &PL_sv_placeholder;
3323}
3324
3325/*
3326=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3327
3328Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3329instead of a string/length pair.
3330
3331=cut
3332*/
3333
3334SV *
3335Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3336 const char *key, U32 hash, U32 flags)
3337{
3338 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3339 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3340}
3341
3342/*
3343=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3344
3345Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3346string/length pair.
3347
3348=cut
3349*/
3350
3351SV *
3352Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3353 SV *key, U32 hash, U32 flags)
3354{
3355 const char *keypv;
3356 STRLEN keylen;
3357 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3358 if (flags & REFCOUNTED_HE_KEY_UTF8)
3359 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3360 (UV)flags);
3361 keypv = SvPV_const(key, keylen);
3362 if (SvUTF8(key))
3363 flags |= REFCOUNTED_HE_KEY_UTF8;
3364 if (!hash && SvIsCOW_shared_hash(key))
3365 hash = SvSHARED_HASH(key);
3366 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3367}
3368
3369/*
3370=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3371
3372Creates a new C<refcounted_he>. This consists of a single key/value
3373pair and a reference to an existing C<refcounted_he> chain (which may
3374be empty), and thus forms a longer chain. When using the longer chain,
3375the new key/value pair takes precedence over any entry for the same key
3376further along the chain.
3377
3378The new key is specified by C<keypv> and C<keylen>. If C<flags> has
3379the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3380as UTF-8, otherwise they are interpreted as Latin-1. C<hash> is
3381a precomputed hash of the key string, or zero if it has not been
3382precomputed.
3383
3384C<value> is the scalar value to store for this key. C<value> is copied
3385by this function, which thus does not take ownership of any reference
3386to it, and later changes to the scalar will not be reflected in the
3387value visible in the C<refcounted_he>. Complex types of scalar will not
3388be stored with referential integrity, but will be coerced to strings.
3389C<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3390value is to be associated with the key; this, as with any non-null value,
3391takes precedence over the existence of a value for the key further along
3392the chain.
3393
3394C<parent> points to the rest of the C<refcounted_he> chain to be
3395attached to the new C<refcounted_he>. This function takes ownership
3396of one reference to C<parent>, and returns one reference to the new
3397C<refcounted_he>.
3398
3399=cut
3400*/
3401
3402struct refcounted_he *
3403Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3404 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3405{
3406 dVAR;
3407 STRLEN value_len = 0;
3408 const char *value_p = NULL;
3409 bool is_pv;
3410 char value_type;
3411 char hekflags;
3412 STRLEN key_offset = 1;
3413 struct refcounted_he *he;
3414 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3415
3416 if (!value || value == &PL_sv_placeholder) {
3417 value_type = HVrhek_delete;
3418 } else if (SvPOK(value)) {
3419 value_type = HVrhek_PV;
3420 } else if (SvIOK(value)) {
3421 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3422 } else if (!SvOK(value)) {
3423 value_type = HVrhek_undef;
3424 } else {
3425 value_type = HVrhek_PV;
3426 }
3427 is_pv = value_type == HVrhek_PV;
3428 if (is_pv) {
3429 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3430 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3431 value_p = SvPV_const(value, value_len);
3432 if (SvUTF8(value))
3433 value_type = HVrhek_PV_UTF8;
3434 key_offset = value_len + 2;
3435 }
3436 hekflags = value_type;
3437
3438 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3439 /* Canonicalise to Latin-1 where possible. */
3440 const char *keyend = keypv + keylen, *p;
3441 STRLEN nonascii_count = 0;
3442 for (p = keypv; p != keyend; p++) {
3443 if (! UTF8_IS_INVARIANT(*p)) {
3444 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3445 goto canonicalised_key;
3446 }
3447 nonascii_count++;
3448 p++;
3449 }
3450 }
3451 if (nonascii_count) {
3452 char *q;
3453 const char *p = keypv, *keyend = keypv + keylen;
3454 keylen -= nonascii_count;
3455 Newx(q, keylen, char);
3456 SAVEFREEPV(q);
3457 keypv = q;
3458 for (; p != keyend; p++, q++) {
3459 U8 c = (U8)*p;
3460 if (UTF8_IS_INVARIANT(c)) {
3461 *q = (char) c;
3462 }
3463 else {
3464 p++;
3465 *q = (char) EIGHT_BIT_UTF8_TO_NATIVE(c, *p);
3466 }
3467 }
3468 }
3469 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3470 canonicalised_key: ;
3471 }
3472 if (flags & REFCOUNTED_HE_KEY_UTF8)
3473 hekflags |= HVhek_UTF8;
3474 if (!hash)
3475 PERL_HASH(hash, keypv, keylen);
3476
3477#ifdef USE_ITHREADS
3478 he = (struct refcounted_he*)
3479 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3480 + keylen
3481 + key_offset);
3482#else
3483 he = (struct refcounted_he*)
3484 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3485 + key_offset);
3486#endif
3487
3488 he->refcounted_he_next = parent;
3489
3490 if (is_pv) {
3491 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3492 he->refcounted_he_val.refcounted_he_u_len = value_len;
3493 } else if (value_type == HVrhek_IV) {
3494 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3495 } else if (value_type == HVrhek_UV) {
3496 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3497 }
3498
3499#ifdef USE_ITHREADS
3500 he->refcounted_he_hash = hash;
3501 he->refcounted_he_keylen = keylen;
3502 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3503#else
3504 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3505#endif
3506
3507 he->refcounted_he_data[0] = hekflags;
3508 he->refcounted_he_refcnt = 1;
3509
3510 return he;
3511}
3512
3513/*
3514=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3515
3516Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3517of a string/length pair.
3518
3519=cut
3520*/
3521
3522struct refcounted_he *
3523Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3524 const char *key, U32 hash, SV *value, U32 flags)
3525{
3526 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3527 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3528}
3529
3530/*
3531=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3532
3533Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3534string/length pair.
3535
3536=cut
3537*/
3538
3539struct refcounted_he *
3540Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3541 SV *key, U32 hash, SV *value, U32 flags)
3542{
3543 const char *keypv;
3544 STRLEN keylen;
3545 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3546 if (flags & REFCOUNTED_HE_KEY_UTF8)
3547 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3548 (UV)flags);
3549 keypv = SvPV_const(key, keylen);
3550 if (SvUTF8(key))
3551 flags |= REFCOUNTED_HE_KEY_UTF8;
3552 if (!hash && SvIsCOW_shared_hash(key))
3553 hash = SvSHARED_HASH(key);
3554 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3555}
3556
3557/*
3558=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3559
3560Decrements the reference count of a C<refcounted_he> by one. If the
3561reference count reaches zero the structure's memory is freed, which
3562(recursively) causes a reduction of its parent C<refcounted_he>'s
3563reference count. It is safe to pass a null pointer to this function:
3564no action occurs in this case.
3565
3566=cut
3567*/
3568
3569void
3570Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3571#ifdef USE_ITHREADS
3572 dVAR;
3573#endif
3574 PERL_UNUSED_CONTEXT;
3575
3576 while (he) {
3577 struct refcounted_he *copy;
3578 U32 new_count;
3579
3580 HINTS_REFCNT_LOCK;
3581 new_count = --he->refcounted_he_refcnt;
3582 HINTS_REFCNT_UNLOCK;
3583
3584 if (new_count) {
3585 return;
3586 }
3587
3588#ifndef USE_ITHREADS
3589 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3590#endif
3591 copy = he;
3592 he = he->refcounted_he_next;
3593 PerlMemShared_free(copy);
3594 }
3595}
3596
3597/*
3598=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3599
3600Increment the reference count of a C<refcounted_he>. The pointer to the
3601C<refcounted_he> is also returned. It is safe to pass a null pointer
3602to this function: no action occurs and a null pointer is returned.
3603
3604=cut
3605*/
3606
3607struct refcounted_he *
3608Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3609{
3610#ifdef USE_ITHREADS
3611 dVAR;
3612#endif
3613 PERL_UNUSED_CONTEXT;
3614 if (he) {
3615 HINTS_REFCNT_LOCK;
3616 he->refcounted_he_refcnt++;
3617 HINTS_REFCNT_UNLOCK;
3618 }
3619 return he;
3620}
3621
3622/*
3623=for apidoc cop_fetch_label
3624
3625Returns the label attached to a cop.
3626The flags pointer may be set to C<SVf_UTF8> or 0.
3627
3628=cut
3629*/
3630
3631/* pp_entereval is aware that labels are stored with a key ':' at the top of
3632 the linked list. */
3633const char *
3634Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3635 struct refcounted_he *const chain = cop->cop_hints_hash;
3636
3637 PERL_ARGS_ASSERT_COP_FETCH_LABEL;
3638 PERL_UNUSED_CONTEXT;
3639
3640 if (!chain)
3641 return NULL;
3642#ifdef USE_ITHREADS
3643 if (chain->refcounted_he_keylen != 1)
3644 return NULL;
3645 if (*REF_HE_KEY(chain) != ':')
3646 return NULL;
3647#else
3648 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3649 return NULL;
3650 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3651 return NULL;
3652#endif
3653 /* Stop anyone trying to really mess us up by adding their own value for
3654 ':' into %^H */
3655 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3656 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3657 return NULL;
3658
3659 if (len)
3660 *len = chain->refcounted_he_val.refcounted_he_u_len;
3661 if (flags) {
3662 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3663 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3664 }
3665 return chain->refcounted_he_data + 1;
3666}
3667
3668/*
3669=for apidoc cop_store_label
3670
3671Save a label into a C<cop_hints_hash>.
3672You need to set flags to C<SVf_UTF8>
3673for a UTF-8 label.
3674
3675=cut
3676*/
3677
3678void
3679Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3680 U32 flags)
3681{
3682 SV *labelsv;
3683 PERL_ARGS_ASSERT_COP_STORE_LABEL;
3684
3685 if (flags & ~(SVf_UTF8))
3686 Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf,
3687 (UV)flags);
3688 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3689 if (flags & SVf_UTF8)
3690 SvUTF8_on(labelsv);
3691 cop->cop_hints_hash
3692 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3693}
3694
3695/*
3696=for apidoc hv_assert
3697
3698Check that a hash is in an internally consistent state.
3699
3700=cut
3701*/
3702
3703#ifdef DEBUGGING
3704
3705void
3706Perl_hv_assert(pTHX_ HV *hv)
3707{
3708 dVAR;
3709 HE* entry;
3710 int withflags = 0;
3711 int placeholders = 0;
3712 int real = 0;
3713 int bad = 0;
3714 const I32 riter = HvRITER_get(hv);
3715 HE *eiter = HvEITER_get(hv);
3716
3717 PERL_ARGS_ASSERT_HV_ASSERT;
3718
3719 (void)hv_iterinit(hv);
3720
3721 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3722 /* sanity check the values */
3723 if (HeVAL(entry) == &PL_sv_placeholder)
3724 placeholders++;
3725 else
3726 real++;
3727 /* sanity check the keys */
3728 if (HeSVKEY(entry)) {
3729 NOOP; /* Don't know what to check on SV keys. */
3730 } else if (HeKUTF8(entry)) {
3731 withflags++;
3732 if (HeKWASUTF8(entry)) {
3733 PerlIO_printf(Perl_debug_log,
3734 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3735 (int) HeKLEN(entry), HeKEY(entry));
3736 bad = 1;
3737 }
3738 } else if (HeKWASUTF8(entry))
3739 withflags++;
3740 }
3741 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3742 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3743 const int nhashkeys = HvUSEDKEYS(hv);
3744 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3745
3746 if (nhashkeys != real) {
3747 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3748 bad = 1;
3749 }
3750 if (nhashplaceholders != placeholders) {
3751 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3752 bad = 1;
3753 }
3754 }
3755 if (withflags && ! HvHASKFLAGS(hv)) {
3756 PerlIO_printf(Perl_debug_log,
3757 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3758 withflags);
3759 bad = 1;
3760 }
3761 if (bad) {
3762 sv_dump(MUTABLE_SV(hv));
3763 }
3764 HvRITER_set(hv, riter); /* Restore hash iterator state */
3765 HvEITER_set(hv, eiter);
3766}
3767
3768#endif
3769
3770/*
3771 * ex: set ts=8 sts=4 sw=4 et:
3772 */