This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Sync version of dist/Math-BigInt modules to 1.99_01 as per Florian's request
[perl5.git] / dist / Math-BigInt / lib / Math / BigFloat.pm
... / ...
CommitLineData
1package Math::BigFloat;
2
3#
4# Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
5#
6
7# The following hash values are internally used:
8# _e : exponent (ref to $CALC object)
9# _m : mantissa (ref to $CALC object)
10# _es : sign of _e
11# sign : +,-,+inf,-inf, or "NaN" if not a number
12# _a : accuracy
13# _p : precision
14
15$VERSION = '1.99_01';
16require 5.006002;
17
18require Exporter;
19@ISA = qw/Math::BigInt/;
20@EXPORT_OK = qw/bpi/;
21
22use strict;
23# $_trap_inf/$_trap_nan are internal and should never be accessed from outside
24use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode
25 $upgrade $downgrade $_trap_nan $_trap_inf/;
26my $class = "Math::BigFloat";
27
28use overload
29'<=>' => sub { my $rc = $_[2] ?
30 ref($_[0])->bcmp($_[1],$_[0]) :
31 ref($_[0])->bcmp($_[0],$_[1]);
32 $rc = 1 unless defined $rc;
33 $rc <=> 0;
34 },
35# we need '>=' to get things like "1 >= NaN" right:
36'>=' => sub { my $rc = $_[2] ?
37 ref($_[0])->bcmp($_[1],$_[0]) :
38 ref($_[0])->bcmp($_[0],$_[1]);
39 # if there was a NaN involved, return false
40 return '' unless defined $rc;
41 $rc >= 0;
42 },
43'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint
44;
45
46##############################################################################
47# global constants, flags and assorted stuff
48
49# the following are public, but their usage is not recommended. Use the
50# accessor methods instead.
51
52# class constants, use Class->constant_name() to access
53# one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
54$round_mode = 'even';
55$accuracy = undef;
56$precision = undef;
57$div_scale = 40;
58
59$upgrade = undef;
60$downgrade = undef;
61# the package we are using for our private parts, defaults to:
62# Math::BigInt->config()->{lib}
63my $MBI = 'Math::BigInt::FastCalc';
64
65# are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
66$_trap_nan = 0;
67# the same for infinity
68$_trap_inf = 0;
69
70# constant for easier life
71my $nan = 'NaN';
72
73my $IMPORT = 0; # was import() called yet? used to make require work
74
75# some digits of accuracy for blog(undef,10); which we use in blog() for speed
76my $LOG_10 =
77 '2.3025850929940456840179914546843642076011014886287729760333279009675726097';
78my $LOG_10_A = length($LOG_10)-1;
79# ditto for log(2)
80my $LOG_2 =
81 '0.6931471805599453094172321214581765680755001343602552541206800094933936220';
82my $LOG_2_A = length($LOG_2)-1;
83my $HALF = '0.5'; # made into an object if nec.
84
85##############################################################################
86# the old code had $rnd_mode, so we need to support it, too
87
88sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
89sub FETCH { return $round_mode; }
90sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
91
92BEGIN
93 {
94 # when someone sets $rnd_mode, we catch this and check the value to see
95 # whether it is valid or not.
96 $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat';
97
98 # we need both of them in this package:
99 *as_int = \&as_number;
100 }
101
102##############################################################################
103
104{
105 # valid method aliases for AUTOLOAD
106 my %methods = map { $_ => 1 }
107 qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
108 fint facmp fcmp fzero fnan finf finc fdec ffac fneg
109 fceil ffloor frsft flsft fone flog froot fexp
110 /;
111 # valid methods that can be handed up (for AUTOLOAD)
112 my %hand_ups = map { $_ => 1 }
113 qw / is_nan is_inf is_negative is_positive is_pos is_neg
114 accuracy precision div_scale round_mode fabs fnot
115 objectify upgrade downgrade
116 bone binf bnan bzero
117 bsub
118 /;
119
120 sub _method_alias { exists $methods{$_[0]||''}; }
121 sub _method_hand_up { exists $hand_ups{$_[0]||''}; }
122}
123
124##############################################################################
125# constructors
126
127sub new
128 {
129 # create a new BigFloat object from a string or another bigfloat object.
130 # _e: exponent
131 # _m: mantissa
132 # sign => sign (+/-), or "NaN"
133
134 my ($class,$wanted,@r) = @_;
135
136 # avoid numify-calls by not using || on $wanted!
137 return $class->bzero() if !defined $wanted; # default to 0
138 return $wanted->copy() if UNIVERSAL::isa($wanted,'Math::BigFloat');
139
140 $class->import() if $IMPORT == 0; # make require work
141
142 my $self = {}; bless $self, $class;
143 # shortcut for bigints and its subclasses
144 if ((ref($wanted)) && UNIVERSAL::can( $wanted, "as_number"))
145 {
146 $self->{_m} = $wanted->as_number()->{value}; # get us a bigint copy
147 $self->{_e} = $MBI->_zero();
148 $self->{_es} = '+';
149 $self->{sign} = $wanted->sign();
150 return $self->bnorm();
151 }
152 # else: got a string or something masquerading as number (with overload)
153
154 # handle '+inf', '-inf' first
155 if ($wanted =~ /^[+-]?inf\z/)
156 {
157 return $downgrade->new($wanted) if $downgrade;
158
159 $self->{sign} = $wanted; # set a default sign for bstr()
160 return $self->binf($wanted);
161 }
162
163 # shortcut for simple forms like '12' that neither have trailing nor leading
164 # zeros
165 if ($wanted =~ /^([+-]?)([1-9][0-9]*[1-9])$/)
166 {
167 $self->{_e} = $MBI->_zero();
168 $self->{_es} = '+';
169 $self->{sign} = $1 || '+';
170 $self->{_m} = $MBI->_new($2);
171 return $self->round(@r) if !$downgrade;
172 }
173
174 my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split($wanted);
175 if (!ref $mis)
176 {
177 if ($_trap_nan)
178 {
179 require Carp;
180 Carp::croak ("$wanted is not a number initialized to $class");
181 }
182
183 return $downgrade->bnan() if $downgrade;
184
185 $self->{_e} = $MBI->_zero();
186 $self->{_es} = '+';
187 $self->{_m} = $MBI->_zero();
188 $self->{sign} = $nan;
189 }
190 else
191 {
192 # make integer from mantissa by adjusting exp, then convert to int
193 $self->{_e} = $MBI->_new($$ev); # exponent
194 $self->{_es} = $$es || '+';
195 my $mantissa = "$$miv$$mfv"; # create mant.
196 $mantissa =~ s/^0+(\d)/$1/; # strip leading zeros
197 $self->{_m} = $MBI->_new($mantissa); # create mant.
198
199 # 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
200 if (CORE::length($$mfv) != 0)
201 {
202 my $len = $MBI->_new( CORE::length($$mfv));
203 ($self->{_e}, $self->{_es}) =
204 _e_sub ($self->{_e}, $len, $self->{_es}, '+');
205 }
206 # we can only have trailing zeros on the mantissa if $$mfv eq ''
207 else
208 {
209 # Use a regexp to count the trailing zeros in $$miv instead of _zeros()
210 # because that is faster, especially when _m is not stored in base 10.
211 my $zeros = 0; $zeros = CORE::length($1) if $$miv =~ /[1-9](0*)$/;
212 if ($zeros != 0)
213 {
214 my $z = $MBI->_new($zeros);
215 # turn '120e2' into '12e3'
216 $MBI->_rsft ( $self->{_m}, $z, 10);
217 ($self->{_e}, $self->{_es}) =
218 _e_add ( $self->{_e}, $z, $self->{_es}, '+');
219 }
220 }
221 $self->{sign} = $$mis;
222
223 # for something like 0Ey, set y to 1, and -0 => +0
224 # Check $$miv for being '0' and $$mfv eq '', because otherwise _m could not
225 # have become 0. That's faster than to call $MBI->_is_zero().
226 $self->{sign} = '+', $self->{_e} = $MBI->_one()
227 if $$miv eq '0' and $$mfv eq '';
228
229 return $self->round(@r) if !$downgrade;
230 }
231 # if downgrade, inf, NaN or integers go down
232
233 if ($downgrade && $self->{_es} eq '+')
234 {
235 if ($MBI->_is_zero( $self->{_e} ))
236 {
237 return $downgrade->new($$mis . $MBI->_str( $self->{_m} ));
238 }
239 return $downgrade->new($self->bsstr());
240 }
241 $self->bnorm()->round(@r); # first normalize, then round
242 }
243
244sub copy
245 {
246 # if two arguments, the first one is the class to "swallow" subclasses
247 if (@_ > 1)
248 {
249 my $self = bless {
250 sign => $_[1]->{sign},
251 _es => $_[1]->{_es},
252 _m => $MBI->_copy($_[1]->{_m}),
253 _e => $MBI->_copy($_[1]->{_e}),
254 }, $_[0] if @_ > 1;
255
256 $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
257 $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
258 return $self;
259 }
260
261 my $self = bless {
262 sign => $_[0]->{sign},
263 _es => $_[0]->{_es},
264 _m => $MBI->_copy($_[0]->{_m}),
265 _e => $MBI->_copy($_[0]->{_e}),
266 }, ref($_[0]);
267
268 $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
269 $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
270 $self;
271 }
272
273sub _bnan
274 {
275 # used by parent class bone() to initialize number to NaN
276 my $self = shift;
277
278 if ($_trap_nan)
279 {
280 require Carp;
281 my $class = ref($self);
282 Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
283 }
284
285 $IMPORT=1; # call our import only once
286 $self->{_m} = $MBI->_zero();
287 $self->{_e} = $MBI->_zero();
288 $self->{_es} = '+';
289 }
290
291sub _binf
292 {
293 # used by parent class bone() to initialize number to +-inf
294 my $self = shift;
295
296 if ($_trap_inf)
297 {
298 require Carp;
299 my $class = ref($self);
300 Carp::croak ("Tried to set $self to +-inf in $class\::_binf()");
301 }
302
303 $IMPORT=1; # call our import only once
304 $self->{_m} = $MBI->_zero();
305 $self->{_e} = $MBI->_zero();
306 $self->{_es} = '+';
307 }
308
309sub _bone
310 {
311 # used by parent class bone() to initialize number to 1
312 my $self = shift;
313 $IMPORT=1; # call our import only once
314 $self->{_m} = $MBI->_one();
315 $self->{_e} = $MBI->_zero();
316 $self->{_es} = '+';
317 }
318
319sub _bzero
320 {
321 # used by parent class bone() to initialize number to 0
322 my $self = shift;
323 $IMPORT=1; # call our import only once
324 $self->{_m} = $MBI->_zero();
325 $self->{_e} = $MBI->_one();
326 $self->{_es} = '+';
327 }
328
329sub isa
330 {
331 my ($self,$class) = @_;
332 return if $class =~ /^Math::BigInt/; # we aren't one of these
333 UNIVERSAL::isa($self,$class);
334 }
335
336sub config
337 {
338 # return (later set?) configuration data as hash ref
339 my $class = shift || 'Math::BigFloat';
340
341 if (@_ == 1 && ref($_[0]) ne 'HASH')
342 {
343 my $cfg = $class->SUPER::config();
344 return $cfg->{$_[0]};
345 }
346
347 my $cfg = $class->SUPER::config(@_);
348
349 # now we need only to override the ones that are different from our parent
350 $cfg->{class} = $class;
351 $cfg->{with} = $MBI;
352 $cfg;
353 }
354
355##############################################################################
356# string conversion
357
358sub bstr
359 {
360 # (ref to BFLOAT or num_str ) return num_str
361 # Convert number from internal format to (non-scientific) string format.
362 # internal format is always normalized (no leading zeros, "-0" => "+0")
363 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
364
365 if ($x->{sign} !~ /^[+-]$/)
366 {
367 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
368 return 'inf'; # +inf
369 }
370
371 my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.';
372
373 # $x is zero?
374 my $not_zero = !($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
375 if ($not_zero)
376 {
377 $es = $MBI->_str($x->{_m});
378 $len = CORE::length($es);
379 my $e = $MBI->_num($x->{_e});
380 $e = -$e if $x->{_es} eq '-';
381 if ($e < 0)
382 {
383 $dot = '';
384 # if _e is bigger than a scalar, the following will blow your memory
385 if ($e <= -$len)
386 {
387 my $r = abs($e) - $len;
388 $es = '0.'. ('0' x $r) . $es; $cad = -($len+$r);
389 }
390 else
391 {
392 substr($es,$e,0) = '.'; $cad = $MBI->_num($x->{_e});
393 $cad = -$cad if $x->{_es} eq '-';
394 }
395 }
396 elsif ($e > 0)
397 {
398 # expand with zeros
399 $es .= '0' x $e; $len += $e; $cad = 0;
400 }
401 } # if not zero
402
403 $es = '-'.$es if $x->{sign} eq '-';
404 # if set accuracy or precision, pad with zeros on the right side
405 if ((defined $x->{_a}) && ($not_zero))
406 {
407 # 123400 => 6, 0.1234 => 4, 0.001234 => 4
408 my $zeros = $x->{_a} - $cad; # cad == 0 => 12340
409 $zeros = $x->{_a} - $len if $cad != $len;
410 $es .= $dot.'0' x $zeros if $zeros > 0;
411 }
412 elsif ((($x->{_p} || 0) < 0))
413 {
414 # 123400 => 6, 0.1234 => 4, 0.001234 => 6
415 my $zeros = -$x->{_p} + $cad;
416 $es .= $dot.'0' x $zeros if $zeros > 0;
417 }
418 $es;
419 }
420
421sub bsstr
422 {
423 # (ref to BFLOAT or num_str ) return num_str
424 # Convert number from internal format to scientific string format.
425 # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
426 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
427
428 if ($x->{sign} !~ /^[+-]$/)
429 {
430 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
431 return 'inf'; # +inf
432 }
433 my $sep = 'e'.$x->{_es};
434 my $sign = $x->{sign}; $sign = '' if $sign eq '+';
435 $sign . $MBI->_str($x->{_m}) . $sep . $MBI->_str($x->{_e});
436 }
437
438sub numify
439 {
440 # Make a number from a BigFloat object
441 # simple return a string and let Perl's atoi()/atof() handle the rest
442 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
443 $x->bsstr();
444 }
445
446##############################################################################
447# public stuff (usually prefixed with "b")
448
449sub bneg
450 {
451 # (BINT or num_str) return BINT
452 # negate number or make a negated number from string
453 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
454
455 return $x if $x->modify('bneg');
456
457 # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
458 $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
459 $x;
460 }
461
462# tels 2001-08-04
463# XXX TODO this must be overwritten and return NaN for non-integer values
464# band(), bior(), bxor(), too
465#sub bnot
466# {
467# $class->SUPER::bnot($class,@_);
468# }
469
470sub bcmp
471 {
472 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
473
474 # set up parameters
475 my ($self,$x,$y) = (ref($_[0]),@_);
476 # objectify is costly, so avoid it
477 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
478 {
479 ($self,$x,$y) = objectify(2,@_);
480 }
481
482 return $upgrade->bcmp($x,$y) if defined $upgrade &&
483 ((!$x->isa($self)) || (!$y->isa($self)));
484
485 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
486 {
487 # handle +-inf and NaN
488 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
489 return 0 if ($x->{sign} eq $y->{sign}) && ($x->{sign} =~ /^[+-]inf$/);
490 return +1 if $x->{sign} eq '+inf';
491 return -1 if $x->{sign} eq '-inf';
492 return -1 if $y->{sign} eq '+inf';
493 return +1;
494 }
495
496 # check sign for speed first
497 return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
498 return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
499
500 # shortcut
501 my $xz = $x->is_zero();
502 my $yz = $y->is_zero();
503 return 0 if $xz && $yz; # 0 <=> 0
504 return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
505 return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
506
507 # adjust so that exponents are equal
508 my $lxm = $MBI->_len($x->{_m});
509 my $lym = $MBI->_len($y->{_m});
510 # the numify somewhat limits our length, but makes it much faster
511 my ($xes,$yes) = (1,1);
512 $xes = -1 if $x->{_es} ne '+';
513 $yes = -1 if $y->{_es} ne '+';
514 my $lx = $lxm + $xes * $MBI->_num($x->{_e});
515 my $ly = $lym + $yes * $MBI->_num($y->{_e});
516 my $l = $lx - $ly; $l = -$l if $x->{sign} eq '-';
517 return $l <=> 0 if $l != 0;
518
519 # lengths (corrected by exponent) are equal
520 # so make mantissa equal length by padding with zero (shift left)
521 my $diff = $lxm - $lym;
522 my $xm = $x->{_m}; # not yet copy it
523 my $ym = $y->{_m};
524 if ($diff > 0)
525 {
526 $ym = $MBI->_copy($y->{_m});
527 $ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
528 }
529 elsif ($diff < 0)
530 {
531 $xm = $MBI->_copy($x->{_m});
532 $xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
533 }
534 my $rc = $MBI->_acmp($xm,$ym);
535 $rc = -$rc if $x->{sign} eq '-'; # -124 < -123
536 $rc <=> 0;
537 }
538
539sub bacmp
540 {
541 # Compares 2 values, ignoring their signs.
542 # Returns one of undef, <0, =0, >0. (suitable for sort)
543
544 # set up parameters
545 my ($self,$x,$y) = (ref($_[0]),@_);
546 # objectify is costly, so avoid it
547 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
548 {
549 ($self,$x,$y) = objectify(2,@_);
550 }
551
552 return $upgrade->bacmp($x,$y) if defined $upgrade &&
553 ((!$x->isa($self)) || (!$y->isa($self)));
554
555 # handle +-inf and NaN's
556 if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/)
557 {
558 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
559 return 0 if ($x->is_inf() && $y->is_inf());
560 return 1 if ($x->is_inf() && !$y->is_inf());
561 return -1;
562 }
563
564 # shortcut
565 my $xz = $x->is_zero();
566 my $yz = $y->is_zero();
567 return 0 if $xz && $yz; # 0 <=> 0
568 return -1 if $xz && !$yz; # 0 <=> +y
569 return 1 if $yz && !$xz; # +x <=> 0
570
571 # adjust so that exponents are equal
572 my $lxm = $MBI->_len($x->{_m});
573 my $lym = $MBI->_len($y->{_m});
574 my ($xes,$yes) = (1,1);
575 $xes = -1 if $x->{_es} ne '+';
576 $yes = -1 if $y->{_es} ne '+';
577 # the numify somewhat limits our length, but makes it much faster
578 my $lx = $lxm + $xes * $MBI->_num($x->{_e});
579 my $ly = $lym + $yes * $MBI->_num($y->{_e});
580 my $l = $lx - $ly;
581 return $l <=> 0 if $l != 0;
582
583 # lengths (corrected by exponent) are equal
584 # so make mantissa equal-length by padding with zero (shift left)
585 my $diff = $lxm - $lym;
586 my $xm = $x->{_m}; # not yet copy it
587 my $ym = $y->{_m};
588 if ($diff > 0)
589 {
590 $ym = $MBI->_copy($y->{_m});
591 $ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
592 }
593 elsif ($diff < 0)
594 {
595 $xm = $MBI->_copy($x->{_m});
596 $xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
597 }
598 $MBI->_acmp($xm,$ym);
599 }
600
601sub badd
602 {
603 # add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
604 # return result as BFLOAT
605
606 # set up parameters
607 my ($self,$x,$y,@r) = (ref($_[0]),@_);
608 # objectify is costly, so avoid it
609 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
610 {
611 ($self,$x,$y,@r) = objectify(2,@_);
612 }
613
614 return $x if $x->modify('badd');
615
616 # inf and NaN handling
617 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
618 {
619 # NaN first
620 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
621 # inf handling
622 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
623 {
624 # +inf++inf or -inf+-inf => same, rest is NaN
625 return $x if $x->{sign} eq $y->{sign};
626 return $x->bnan();
627 }
628 # +-inf + something => +inf; something +-inf => +-inf
629 $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
630 return $x;
631 }
632
633 return $upgrade->badd($x,$y,@r) if defined $upgrade &&
634 ((!$x->isa($self)) || (!$y->isa($self)));
635
636 $r[3] = $y; # no push!
637
638 # speed: no add for 0+y or x+0
639 return $x->bround(@r) if $y->is_zero(); # x+0
640 if ($x->is_zero()) # 0+y
641 {
642 # make copy, clobbering up x (modify in place!)
643 $x->{_e} = $MBI->_copy($y->{_e});
644 $x->{_es} = $y->{_es};
645 $x->{_m} = $MBI->_copy($y->{_m});
646 $x->{sign} = $y->{sign} || $nan;
647 return $x->round(@r);
648 }
649
650 # take lower of the two e's and adapt m1 to it to match m2
651 my $e = $y->{_e};
652 $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
653 $e = $MBI->_copy($e); # make copy (didn't do it yet)
654
655 my $es;
656
657 ($e,$es) = _e_sub($e, $x->{_e}, $y->{_es} || '+', $x->{_es});
658
659 my $add = $MBI->_copy($y->{_m});
660
661 if ($es eq '-') # < 0
662 {
663 $MBI->_lsft( $x->{_m}, $e, 10);
664 ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
665 }
666 elsif (!$MBI->_is_zero($e)) # > 0
667 {
668 $MBI->_lsft($add, $e, 10);
669 }
670 # else: both e are the same, so just leave them
671
672 if ($x->{sign} eq $y->{sign})
673 {
674 # add
675 $x->{_m} = $MBI->_add($x->{_m}, $add);
676 }
677 else
678 {
679 ($x->{_m}, $x->{sign}) =
680 _e_add($x->{_m}, $add, $x->{sign}, $y->{sign});
681 }
682
683 # delete trailing zeros, then round
684 $x->bnorm()->round(@r);
685 }
686
687# sub bsub is inherited from Math::BigInt!
688
689sub binc
690 {
691 # increment arg by one
692 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
693
694 return $x if $x->modify('binc');
695
696 if ($x->{_es} eq '-')
697 {
698 return $x->badd($self->bone(),@r); # digits after dot
699 }
700
701 if (!$MBI->_is_zero($x->{_e})) # _e == 0 for NaN, inf, -inf
702 {
703 # 1e2 => 100, so after the shift below _m has a '0' as last digit
704 $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
705 $x->{_e} = $MBI->_zero(); # normalize
706 $x->{_es} = '+';
707 # we know that the last digit of $x will be '1' or '9', depending on the
708 # sign
709 }
710 # now $x->{_e} == 0
711 if ($x->{sign} eq '+')
712 {
713 $MBI->_inc($x->{_m});
714 return $x->bnorm()->bround(@r);
715 }
716 elsif ($x->{sign} eq '-')
717 {
718 $MBI->_dec($x->{_m});
719 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
720 return $x->bnorm()->bround(@r);
721 }
722 # inf, nan handling etc
723 $x->badd($self->bone(),@r); # badd() does round
724 }
725
726sub bdec
727 {
728 # decrement arg by one
729 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
730
731 return $x if $x->modify('bdec');
732
733 if ($x->{_es} eq '-')
734 {
735 return $x->badd($self->bone('-'),@r); # digits after dot
736 }
737
738 if (!$MBI->_is_zero($x->{_e}))
739 {
740 $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
741 $x->{_e} = $MBI->_zero(); # normalize
742 $x->{_es} = '+';
743 }
744 # now $x->{_e} == 0
745 my $zero = $x->is_zero();
746 # <= 0
747 if (($x->{sign} eq '-') || $zero)
748 {
749 $MBI->_inc($x->{_m});
750 $x->{sign} = '-' if $zero; # 0 => 1 => -1
751 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
752 return $x->bnorm()->round(@r);
753 }
754 # > 0
755 elsif ($x->{sign} eq '+')
756 {
757 $MBI->_dec($x->{_m});
758 return $x->bnorm()->round(@r);
759 }
760 # inf, nan handling etc
761 $x->badd($self->bone('-'),@r); # does round
762 }
763
764sub DEBUG () { 0; }
765
766sub blog
767 {
768 my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
769
770 return $x if $x->modify('blog');
771
772 # $base > 0, $base != 1; if $base == undef default to $base == e
773 # $x >= 0
774
775 # we need to limit the accuracy to protect against overflow
776 my $fallback = 0;
777 my ($scale,@params);
778 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
779
780 # also takes care of the "error in _find_round_parameters?" case
781 return $x->bnan() if $x->{sign} ne '+' || $x->is_zero();
782
783 # no rounding at all, so must use fallback
784 if (scalar @params == 0)
785 {
786 # simulate old behaviour
787 $params[0] = $self->div_scale(); # and round to it as accuracy
788 $params[1] = undef; # P = undef
789 $scale = $params[0]+4; # at least four more for proper round
790 $params[2] = $r; # round mode by caller or undef
791 $fallback = 1; # to clear a/p afterwards
792 }
793 else
794 {
795 # the 4 below is empirical, and there might be cases where it is not
796 # enough...
797 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
798 }
799
800 return $x->bzero(@params) if $x->is_one();
801 # base not defined => base == Euler's number e
802 if (defined $base)
803 {
804 # make object, since we don't feed it through objectify() to still get the
805 # case of $base == undef
806 $base = $self->new($base) unless ref($base);
807 # $base > 0; $base != 1
808 return $x->bnan() if $base->is_zero() || $base->is_one() ||
809 $base->{sign} ne '+';
810 # if $x == $base, we know the result must be 1.0
811 if ($x->bcmp($base) == 0)
812 {
813 $x->bone('+',@params);
814 if ($fallback)
815 {
816 # clear a/p after round, since user did not request it
817 delete $x->{_a}; delete $x->{_p};
818 }
819 return $x;
820 }
821 }
822
823 # when user set globals, they would interfere with our calculation, so
824 # disable them and later re-enable them
825 no strict 'refs';
826 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
827 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
828 # we also need to disable any set A or P on $x (_find_round_parameters took
829 # them already into account), since these would interfere, too
830 delete $x->{_a}; delete $x->{_p};
831 # need to disable $upgrade in BigInt, to avoid deep recursion
832 local $Math::BigInt::upgrade = undef;
833 local $Math::BigFloat::downgrade = undef;
834
835 # upgrade $x if $x is not a BigFloat (handle BigInt input)
836 # XXX TODO: rebless!
837 if (!$x->isa('Math::BigFloat'))
838 {
839 $x = Math::BigFloat->new($x);
840 $self = ref($x);
841 }
842
843 my $done = 0;
844
845 # If the base is defined and an integer, try to calculate integer result
846 # first. This is very fast, and in case the real result was found, we can
847 # stop right here.
848 if (defined $base && $base->is_int() && $x->is_int())
849 {
850 my $i = $MBI->_copy( $x->{_m} );
851 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
852 my $int = Math::BigInt->bzero();
853 $int->{value} = $i;
854 $int->blog($base->as_number());
855 # if ($exact)
856 if ($base->as_number()->bpow($int) == $x)
857 {
858 # found result, return it
859 $x->{_m} = $int->{value};
860 $x->{_e} = $MBI->_zero();
861 $x->{_es} = '+';
862 $x->bnorm();
863 $done = 1;
864 }
865 }
866
867 if ($done == 0)
868 {
869 # base is undef, so base should be e (Euler's number), so first calculate the
870 # log to base e (using reduction by 10 (and probably 2)):
871 $self->_log_10($x,$scale);
872
873 # and if a different base was requested, convert it
874 if (defined $base)
875 {
876 $base = Math::BigFloat->new($base) unless $base->isa('Math::BigFloat');
877 # not ln, but some other base (don't modify $base)
878 $x->bdiv( $base->copy()->blog(undef,$scale), $scale );
879 }
880 }
881
882 # shortcut to not run through _find_round_parameters again
883 if (defined $params[0])
884 {
885 $x->bround($params[0],$params[2]); # then round accordingly
886 }
887 else
888 {
889 $x->bfround($params[1],$params[2]); # then round accordingly
890 }
891 if ($fallback)
892 {
893 # clear a/p after round, since user did not request it
894 delete $x->{_a}; delete $x->{_p};
895 }
896 # restore globals
897 $$abr = $ab; $$pbr = $pb;
898
899 $x;
900 }
901
902sub _len_to_steps
903 {
904 # Given D (digits in decimal), compute N so that N! (N factorial) is
905 # at least D digits long. D should be at least 50.
906 my $d = shift;
907
908 # two constants for the Ramanujan estimate of ln(N!)
909 my $lg2 = log(2 * 3.14159265) / 2;
910 my $lg10 = log(10);
911
912 # D = 50 => N => 42, so L = 40 and R = 50
913 my $l = 40; my $r = $d;
914
915 # Otherwise this does not work under -Mbignum and we do not yet have "no bignum;" :(
916 $l = $l->numify if ref($l);
917 $r = $r->numify if ref($r);
918 $lg2 = $lg2->numify if ref($lg2);
919 $lg10 = $lg10->numify if ref($lg10);
920
921 # binary search for the right value (could this be written as the reverse of lg(n!)?)
922 while ($r - $l > 1)
923 {
924 my $n = int(($r - $l) / 2) + $l;
925 my $ramanujan =
926 int(($n * log($n) - $n + log( $n * (1 + 4*$n*(1+2*$n)) ) / 6 + $lg2) / $lg10);
927 $ramanujan > $d ? $r = $n : $l = $n;
928 }
929 $l;
930 }
931
932sub bnok
933 {
934 # Calculate n over k (binomial coefficient or "choose" function) as integer.
935 # set up parameters
936 my ($self,$x,$y,@r) = (ref($_[0]),@_);
937
938 # objectify is costly, so avoid it
939 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
940 {
941 ($self,$x,$y,@r) = objectify(2,@_);
942 }
943
944 return $x if $x->modify('bnok');
945
946 return $x->bnan() if $x->is_nan() || $y->is_nan();
947 return $x->binf() if $x->is_inf();
948
949 my $u = $x->as_int();
950 $u->bnok($y->as_int());
951
952 $x->{_m} = $u->{value};
953 $x->{_e} = $MBI->_zero();
954 $x->{_es} = '+';
955 $x->{sign} = '+';
956 $x->bnorm(@r);
957 }
958
959sub bexp
960 {
961 # Calculate e ** X (Euler's number to the power of X)
962 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
963
964 return $x if $x->modify('bexp');
965
966 return $x->binf() if $x->{sign} eq '+inf';
967 return $x->bzero() if $x->{sign} eq '-inf';
968
969 # we need to limit the accuracy to protect against overflow
970 my $fallback = 0;
971 my ($scale,@params);
972 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
973
974 # also takes care of the "error in _find_round_parameters?" case
975 return $x if $x->{sign} eq 'NaN';
976
977 # no rounding at all, so must use fallback
978 if (scalar @params == 0)
979 {
980 # simulate old behaviour
981 $params[0] = $self->div_scale(); # and round to it as accuracy
982 $params[1] = undef; # P = undef
983 $scale = $params[0]+4; # at least four more for proper round
984 $params[2] = $r; # round mode by caller or undef
985 $fallback = 1; # to clear a/p afterwards
986 }
987 else
988 {
989 # the 4 below is empirical, and there might be cases where it's not enough...
990 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
991 }
992
993 return $x->bone(@params) if $x->is_zero();
994
995 if (!$x->isa('Math::BigFloat'))
996 {
997 $x = Math::BigFloat->new($x);
998 $self = ref($x);
999 }
1000
1001 # when user set globals, they would interfere with our calculation, so
1002 # disable them and later re-enable them
1003 no strict 'refs';
1004 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1005 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1006 # we also need to disable any set A or P on $x (_find_round_parameters took
1007 # them already into account), since these would interfere, too
1008 delete $x->{_a}; delete $x->{_p};
1009 # need to disable $upgrade in BigInt, to avoid deep recursion
1010 local $Math::BigInt::upgrade = undef;
1011 local $Math::BigFloat::downgrade = undef;
1012
1013 my $x_org = $x->copy();
1014
1015 # We use the following Taylor series:
1016
1017 # x x^2 x^3 x^4
1018 # e = 1 + --- + --- + --- + --- ...
1019 # 1! 2! 3! 4!
1020
1021 # The difference for each term is X and N, which would result in:
1022 # 2 copy, 2 mul, 2 add, 1 inc, 1 div operations per term
1023
1024 # But it is faster to compute exp(1) and then raising it to the
1025 # given power, esp. if $x is really big and an integer because:
1026
1027 # * The numerator is always 1, making the computation faster
1028 # * the series converges faster in the case of x == 1
1029 # * We can also easily check when we have reached our limit: when the
1030 # term to be added is smaller than "1E$scale", we can stop - f.i.
1031 # scale == 5, and we have 1/40320, then we stop since 1/40320 < 1E-5.
1032 # * we can compute the *exact* result by simulating bigrat math:
1033
1034 # 1 1 gcd(3,4) = 1 1*24 + 1*6 5
1035 # - + - = ---------- = --
1036 # 6 24 6*24 24
1037
1038 # We do not compute the gcd() here, but simple do:
1039 # 1 1 1*24 + 1*6 30
1040 # - + - = --------- = --
1041 # 6 24 6*24 144
1042
1043 # In general:
1044 # a c a*d + c*b and note that c is always 1 and d = (b*f)
1045 # - + - = ---------
1046 # b d b*d
1047
1048 # This leads to: which can be reduced by b to:
1049 # a 1 a*b*f + b a*f + 1
1050 # - + - = --------- = -------
1051 # b b*f b*b*f b*f
1052
1053 # The first terms in the series are:
1054
1055 # 1 1 1 1 1 1 1 1 13700
1056 # -- + -- + -- + -- + -- + --- + --- + ---- = -----
1057 # 1 1 2 6 24 120 720 5040 5040
1058
1059 # Note that we cannot simple reduce 13700/5040 to 685/252, but must keep A and B!
1060
1061 if ($scale <= 75)
1062 {
1063 # set $x directly from a cached string form
1064 $x->{_m} = $MBI->_new(
1065 "27182818284590452353602874713526624977572470936999595749669676277240766303535476");
1066 $x->{sign} = '+';
1067 $x->{_es} = '-';
1068 $x->{_e} = $MBI->_new(79);
1069 }
1070 else
1071 {
1072 # compute A and B so that e = A / B.
1073
1074 # After some terms we end up with this, so we use it as a starting point:
1075 my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
1076 my $F = $MBI->_new(42); my $step = 42;
1077
1078 # Compute how many steps we need to take to get $A and $B sufficiently big
1079 my $steps = _len_to_steps($scale - 4);
1080# print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
1081 while ($step++ <= $steps)
1082 {
1083 # calculate $a * $f + 1
1084 $A = $MBI->_mul($A, $F);
1085 $A = $MBI->_inc($A);
1086 # increment f
1087 $F = $MBI->_inc($F);
1088 }
1089 # compute $B as factorial of $steps (this is faster than doing it manually)
1090 my $B = $MBI->_fac($MBI->_new($steps));
1091
1092# print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
1093
1094 # compute A/B with $scale digits in the result (truncate, not round)
1095 $A = $MBI->_lsft( $A, $MBI->_new($scale), 10);
1096 $A = $MBI->_div( $A, $B );
1097
1098 $x->{_m} = $A;
1099 $x->{sign} = '+';
1100 $x->{_es} = '-';
1101 $x->{_e} = $MBI->_new($scale);
1102 }
1103
1104 # $x contains now an estimate of e, with some surplus digits, so we can round
1105 if (!$x_org->is_one())
1106 {
1107 # raise $x to the wanted power and round it in one step:
1108 $x->bpow($x_org, @params);
1109 }
1110 else
1111 {
1112 # else just round the already computed result
1113 delete $x->{_a}; delete $x->{_p};
1114 # shortcut to not run through _find_round_parameters again
1115 if (defined $params[0])
1116 {
1117 $x->bround($params[0],$params[2]); # then round accordingly
1118 }
1119 else
1120 {
1121 $x->bfround($params[1],$params[2]); # then round accordingly
1122 }
1123 }
1124 if ($fallback)
1125 {
1126 # clear a/p after round, since user did not request it
1127 delete $x->{_a}; delete $x->{_p};
1128 }
1129 # restore globals
1130 $$abr = $ab; $$pbr = $pb;
1131
1132 $x; # return modified $x
1133 }
1134
1135sub _log
1136 {
1137 # internal log function to calculate ln() based on Taylor series.
1138 # Modifies $x in place.
1139 my ($self,$x,$scale) = @_;
1140
1141 # in case of $x == 1, result is 0
1142 return $x->bzero() if $x->is_one();
1143
1144 # XXX TODO: rewrite this in a similar manner to bexp()
1145
1146 # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log
1147
1148 # u = x-1, v = x+1
1149 # _ _
1150 # Taylor: | u 1 u^3 1 u^5 |
1151 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
1152 # |_ v 3 v^3 5 v^5 _|
1153
1154 # This takes much more steps to calculate the result and is thus not used
1155 # u = x-1
1156 # _ _
1157 # Taylor: | u 1 u^2 1 u^3 |
1158 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
1159 # |_ x 2 x^2 3 x^3 _|
1160
1161 my ($limit,$v,$u,$below,$factor,$two,$next,$over,$f);
1162
1163 $v = $x->copy(); $v->binc(); # v = x+1
1164 $x->bdec(); $u = $x->copy(); # u = x-1; x = x-1
1165 $x->bdiv($v,$scale); # first term: u/v
1166 $below = $v->copy();
1167 $over = $u->copy();
1168 $u *= $u; $v *= $v; # u^2, v^2
1169 $below->bmul($v); # u^3, v^3
1170 $over->bmul($u);
1171 $factor = $self->new(3); $f = $self->new(2);
1172
1173 my $steps = 0 if DEBUG;
1174 $limit = $self->new("1E-". ($scale-1));
1175 while (3 < 5)
1176 {
1177 # we calculate the next term, and add it to the last
1178 # when the next term is below our limit, it won't affect the outcome
1179 # anymore, so we stop
1180
1181 # calculating the next term simple from over/below will result in quite
1182 # a time hog if the input has many digits, since over and below will
1183 # accumulate more and more digits, and the result will also have many
1184 # digits, but in the end it is rounded to $scale digits anyway. So if we
1185 # round $over and $below first, we save a lot of time for the division
1186 # (not with log(1.2345), but try log (123**123) to see what I mean. This
1187 # can introduce a rounding error if the division result would be f.i.
1188 # 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
1189 # if we truncated $over and $below we might get 0.12345. Does this matter
1190 # for the end result? So we give $over and $below 4 more digits to be
1191 # on the safe side (unscientific error handling as usual... :+D
1192
1193 $next = $over->copy->bround($scale+4)->bdiv(
1194 $below->copy->bmul($factor)->bround($scale+4),
1195 $scale);
1196
1197## old version:
1198## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
1199
1200 last if $next->bacmp($limit) <= 0;
1201
1202 delete $next->{_a}; delete $next->{_p};
1203 $x->badd($next);
1204 # calculate things for the next term
1205 $over *= $u; $below *= $v; $factor->badd($f);
1206 if (DEBUG)
1207 {
1208 $steps++; print "step $steps = $x\n" if $steps % 10 == 0;
1209 }
1210 }
1211 print "took $steps steps\n" if DEBUG;
1212 $x->bmul($f); # $x *= 2
1213 }
1214
1215sub _log_10
1216 {
1217 # Internal log function based on reducing input to the range of 0.1 .. 9.99
1218 # and then "correcting" the result to the proper one. Modifies $x in place.
1219 my ($self,$x,$scale) = @_;
1220
1221 # Taking blog() from numbers greater than 10 takes a *very long* time, so we
1222 # break the computation down into parts based on the observation that:
1223 # blog(X*Y) = blog(X) + blog(Y)
1224 # We set Y here to multiples of 10 so that $x becomes below 1 - the smaller
1225 # $x is the faster it gets. Since 2*$x takes about 10 times as
1226 # long, we make it faster by about a factor of 100 by dividing $x by 10.
1227
1228 # The same observation is valid for numbers smaller than 0.1, e.g. computing
1229 # log(1) is fastest, and the further away we get from 1, the longer it takes.
1230 # So we also 'break' this down by multiplying $x with 10 and subtract the
1231 # log(10) afterwards to get the correct result.
1232
1233 # To get $x even closer to 1, we also divide by 2 and then use log(2) to
1234 # correct for this. For instance if $x is 2.4, we use the formula:
1235 # blog(2.4 * 2) == blog (1.2) + blog(2)
1236 # and thus calculate only blog(1.2) and blog(2), which is faster in total
1237 # than calculating blog(2.4).
1238
1239 # In addition, the values for blog(2) and blog(10) are cached.
1240
1241 # Calculate nr of digits before dot:
1242 my $dbd = $MBI->_num($x->{_e});
1243 $dbd = -$dbd if $x->{_es} eq '-';
1244 $dbd += $MBI->_len($x->{_m});
1245
1246 # more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
1247 # infinite recursion
1248
1249 my $calc = 1; # do some calculation?
1250
1251 # disable the shortcut for 10, since we need log(10) and this would recurse
1252 # infinitely deep
1253 if ($x->{_es} eq '+' && $MBI->_is_one($x->{_e}) && $MBI->_is_one($x->{_m}))
1254 {
1255 $dbd = 0; # disable shortcut
1256 # we can use the cached value in these cases
1257 if ($scale <= $LOG_10_A)
1258 {
1259 $x->bzero(); $x->badd($LOG_10); # modify $x in place
1260 $calc = 0; # no need to calc, but round
1261 }
1262 # if we can't use the shortcut, we continue normally
1263 }
1264 else
1265 {
1266 # disable the shortcut for 2, since we maybe have it cached
1267 if (($MBI->_is_zero($x->{_e}) && $MBI->_is_two($x->{_m})))
1268 {
1269 $dbd = 0; # disable shortcut
1270 # we can use the cached value in these cases
1271 if ($scale <= $LOG_2_A)
1272 {
1273 $x->bzero(); $x->badd($LOG_2); # modify $x in place
1274 $calc = 0; # no need to calc, but round
1275 }
1276 # if we can't use the shortcut, we continue normally
1277 }
1278 }
1279
1280 # if $x = 0.1, we know the result must be 0-log(10)
1281 if ($calc != 0 && $x->{_es} eq '-' && $MBI->_is_one($x->{_e}) &&
1282 $MBI->_is_one($x->{_m}))
1283 {
1284 $dbd = 0; # disable shortcut
1285 # we can use the cached value in these cases
1286 if ($scale <= $LOG_10_A)
1287 {
1288 $x->bzero(); $x->bsub($LOG_10);
1289 $calc = 0; # no need to calc, but round
1290 }
1291 }
1292
1293 return if $calc == 0; # already have the result
1294
1295 # default: these correction factors are undef and thus not used
1296 my $l_10; # value of ln(10) to A of $scale
1297 my $l_2; # value of ln(2) to A of $scale
1298
1299 my $two = $self->new(2);
1300
1301 # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
1302 # so don't do this shortcut for 1 or 0
1303 if (($dbd > 1) || ($dbd < 0))
1304 {
1305 # convert our cached value to an object if not already (avoid doing this
1306 # at import() time, since not everybody needs this)
1307 $LOG_10 = $self->new($LOG_10,undef,undef) unless ref $LOG_10;
1308
1309 #print "x = $x, dbd = $dbd, calc = $calc\n";
1310 # got more than one digit before the dot, or more than one zero after the
1311 # dot, so do:
1312 # log(123) == log(1.23) + log(10) * 2
1313 # log(0.0123) == log(1.23) - log(10) * 2
1314
1315 if ($scale <= $LOG_10_A)
1316 {
1317 # use cached value
1318 $l_10 = $LOG_10->copy(); # copy for mul
1319 }
1320 else
1321 {
1322 # else: slower, compute and cache result
1323 # also disable downgrade for this code path
1324 local $Math::BigFloat::downgrade = undef;
1325
1326 # shorten the time to calculate log(10) based on the following:
1327 # log(1.25 * 8) = log(1.25) + log(8)
1328 # = log(1.25) + log(2) + log(2) + log(2)
1329
1330 # first get $l_2 (and possible compute and cache log(2))
1331 $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
1332 if ($scale <= $LOG_2_A)
1333 {
1334 # use cached value
1335 $l_2 = $LOG_2->copy(); # copy() for the mul below
1336 }
1337 else
1338 {
1339 # else: slower, compute and cache result
1340 $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
1341 $LOG_2 = $l_2->copy(); # cache the result for later
1342 # the copy() is for mul below
1343 $LOG_2_A = $scale;
1344 }
1345
1346 # now calculate log(1.25):
1347 $l_10 = $self->new('1.25'); $self->_log($l_10, $scale); # scale+4, actually
1348
1349 # log(1.25) + log(2) + log(2) + log(2):
1350 $l_10->badd($l_2);
1351 $l_10->badd($l_2);
1352 $l_10->badd($l_2);
1353 $LOG_10 = $l_10->copy(); # cache the result for later
1354 # the copy() is for mul below
1355 $LOG_10_A = $scale;
1356 }
1357 $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1
1358 $l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1)
1359 my $dbd_sign = '+';
1360 if ($dbd < 0)
1361 {
1362 $dbd = -$dbd;
1363 $dbd_sign = '-';
1364 }
1365 ($x->{_e}, $x->{_es}) =
1366 _e_sub( $x->{_e}, $MBI->_new($dbd), $x->{_es}, $dbd_sign); # 123 => 1.23
1367
1368 }
1369
1370 # Now: 0.1 <= $x < 10 (and possible correction in l_10)
1371
1372 ### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
1373 ### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
1374
1375 $HALF = $self->new($HALF) unless ref($HALF);
1376
1377 my $twos = 0; # default: none (0 times)
1378 while ($x->bacmp($HALF) <= 0) # X <= 0.5
1379 {
1380 $twos--; $x->bmul($two);
1381 }
1382 while ($x->bacmp($two) >= 0) # X >= 2
1383 {
1384 $twos++; $x->bdiv($two,$scale+4); # keep all digits
1385 }
1386 # $twos > 0 => did mul 2, < 0 => did div 2 (but we never did both)
1387 # So calculate correction factor based on ln(2):
1388 if ($twos != 0)
1389 {
1390 $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
1391 if ($scale <= $LOG_2_A)
1392 {
1393 # use cached value
1394 $l_2 = $LOG_2->copy(); # copy() for the mul below
1395 }
1396 else
1397 {
1398 # else: slower, compute and cache result
1399 # also disable downgrade for this code path
1400 local $Math::BigFloat::downgrade = undef;
1401 $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
1402 $LOG_2 = $l_2->copy(); # cache the result for later
1403 # the copy() is for mul below
1404 $LOG_2_A = $scale;
1405 }
1406 $l_2->bmul($twos); # * -2 => subtract, * 2 => add
1407 }
1408
1409 $self->_log($x,$scale); # need to do the "normal" way
1410 $x->badd($l_10) if defined $l_10; # correct it by ln(10)
1411 $x->badd($l_2) if defined $l_2; # and maybe by ln(2)
1412
1413 # all done, $x contains now the result
1414 $x;
1415 }
1416
1417sub blcm
1418 {
1419 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
1420 # does not modify arguments, but returns new object
1421 # Lowest Common Multiplicator
1422
1423 my ($self,@arg) = objectify(0,@_);
1424 my $x = $self->new(shift @arg);
1425 while (@arg) { $x = Math::BigInt::__lcm($x,shift @arg); }
1426 $x;
1427 }
1428
1429sub bgcd
1430 {
1431 # (BINT or num_str, BINT or num_str) return BINT
1432 # does not modify arguments, but returns new object
1433
1434 my $y = shift;
1435 $y = __PACKAGE__->new($y) if !ref($y);
1436 my $self = ref($y);
1437 my $x = $y->copy()->babs(); # keep arguments
1438
1439 return $x->bnan() if $x->{sign} !~ /^[+-]$/ # x NaN?
1440 || !$x->is_int(); # only for integers now
1441
1442 while (@_)
1443 {
1444 my $t = shift; $t = $self->new($t) if !ref($t);
1445 $y = $t->copy()->babs();
1446
1447 return $x->bnan() if $y->{sign} !~ /^[+-]$/ # y NaN?
1448 || !$y->is_int(); # only for integers now
1449
1450 # greatest common divisor
1451 while (! $y->is_zero())
1452 {
1453 ($x,$y) = ($y->copy(), $x->copy()->bmod($y));
1454 }
1455
1456 last if $x->is_one();
1457 }
1458 $x;
1459 }
1460
1461##############################################################################
1462
1463sub _e_add
1464 {
1465 # Internal helper sub to take two positive integers and their signs and
1466 # then add them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
1467 # output ($CALC,('+'|'-'))
1468 my ($x,$y,$xs,$ys) = @_;
1469
1470 # if the signs are equal we can add them (-5 + -3 => -(5 + 3) => -8)
1471 if ($xs eq $ys)
1472 {
1473 $x = $MBI->_add ($x, $y ); # a+b
1474 # the sign follows $xs
1475 return ($x, $xs);
1476 }
1477
1478 my $a = $MBI->_acmp($x,$y);
1479 if ($a > 0)
1480 {
1481 $x = $MBI->_sub ($x , $y); # abs sub
1482 }
1483 elsif ($a == 0)
1484 {
1485 $x = $MBI->_zero(); # result is 0
1486 $xs = '+';
1487 }
1488 else # a < 0
1489 {
1490 $x = $MBI->_sub ( $y, $x, 1 ); # abs sub
1491 $xs = $ys;
1492 }
1493 ($x,$xs);
1494 }
1495
1496sub _e_sub
1497 {
1498 # Internal helper sub to take two positive integers and their signs and
1499 # then subtract them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
1500 # output ($CALC,('+'|'-'))
1501 my ($x,$y,$xs,$ys) = @_;
1502
1503 # flip sign
1504 $ys =~ tr/+-/-+/;
1505 _e_add($x,$y,$xs,$ys); # call add (does subtract now)
1506 }
1507
1508###############################################################################
1509# is_foo methods (is_negative, is_positive are inherited from BigInt)
1510
1511sub is_int
1512 {
1513 # return true if arg (BFLOAT or num_str) is an integer
1514 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1515
1516 (($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
1517 ($x->{_es} eq '+')) ? 1 : 0; # 1e-1 => no integer
1518 }
1519
1520sub is_zero
1521 {
1522 # return true if arg (BFLOAT or num_str) is zero
1523 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1524
1525 ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m})) ? 1 : 0;
1526 }
1527
1528sub is_one
1529 {
1530 # return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
1531 my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1532
1533 $sign = '+' if !defined $sign || $sign ne '-';
1534
1535 ($x->{sign} eq $sign &&
1536 $MBI->_is_zero($x->{_e}) &&
1537 $MBI->_is_one($x->{_m}) ) ? 1 : 0;
1538 }
1539
1540sub is_odd
1541 {
1542 # return true if arg (BFLOAT or num_str) is odd or false if even
1543 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1544
1545 (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
1546 ($MBI->_is_zero($x->{_e})) &&
1547 ($MBI->_is_odd($x->{_m}))) ? 1 : 0;
1548 }
1549
1550sub is_even
1551 {
1552 # return true if arg (BINT or num_str) is even or false if odd
1553 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1554
1555 (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
1556 ($x->{_es} eq '+') && # 123.45 isn't
1557 ($MBI->_is_even($x->{_m}))) ? 1 : 0; # but 1200 is
1558 }
1559
1560sub bmul
1561 {
1562 # multiply two numbers
1563
1564 # set up parameters
1565 my ($self,$x,$y,@r) = (ref($_[0]),@_);
1566 # objectify is costly, so avoid it
1567 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1568 {
1569 ($self,$x,$y,@r) = objectify(2,@_);
1570 }
1571
1572 return $x if $x->modify('bmul');
1573
1574 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1575
1576 # inf handling
1577 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1578 {
1579 return $x->bnan() if $x->is_zero() || $y->is_zero();
1580 # result will always be +-inf:
1581 # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1582 # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1583 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1584 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1585 return $x->binf('-');
1586 }
1587
1588 return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
1589 ((!$x->isa($self)) || (!$y->isa($self)));
1590
1591 # aEb * cEd = (a*c)E(b+d)
1592 $MBI->_mul($x->{_m},$y->{_m});
1593 ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1594
1595 $r[3] = $y; # no push!
1596
1597 # adjust sign:
1598 $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
1599 $x->bnorm->round(@r);
1600 }
1601
1602sub bmuladd
1603 {
1604 # multiply two numbers and add the third to the result
1605
1606 # set up parameters
1607 my ($self,$x,$y,$z,@r) = (ref($_[0]),@_);
1608 # objectify is costly, so avoid it
1609 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1610 {
1611 ($self,$x,$y,$z,@r) = objectify(3,@_);
1612 }
1613
1614 return $x if $x->modify('bmuladd');
1615
1616 return $x->bnan() if (($x->{sign} eq $nan) ||
1617 ($y->{sign} eq $nan) ||
1618 ($z->{sign} eq $nan));
1619
1620 # inf handling
1621 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1622 {
1623 return $x->bnan() if $x->is_zero() || $y->is_zero();
1624 # result will always be +-inf:
1625 # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1626 # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1627 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1628 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1629 return $x->binf('-');
1630 }
1631
1632 return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
1633 ((!$x->isa($self)) || (!$y->isa($self)));
1634
1635 # aEb * cEd = (a*c)E(b+d)
1636 $MBI->_mul($x->{_m},$y->{_m});
1637 ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1638
1639 $r[3] = $y; # no push!
1640
1641 # adjust sign:
1642 $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
1643
1644 # z=inf handling (z=NaN handled above)
1645 $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
1646
1647 # take lower of the two e's and adapt m1 to it to match m2
1648 my $e = $z->{_e};
1649 $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
1650 $e = $MBI->_copy($e); # make copy (didn't do it yet)
1651
1652 my $es;
1653
1654 ($e,$es) = _e_sub($e, $x->{_e}, $z->{_es} || '+', $x->{_es});
1655
1656 my $add = $MBI->_copy($z->{_m});
1657
1658 if ($es eq '-') # < 0
1659 {
1660 $MBI->_lsft( $x->{_m}, $e, 10);
1661 ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
1662 }
1663 elsif (!$MBI->_is_zero($e)) # > 0
1664 {
1665 $MBI->_lsft($add, $e, 10);
1666 }
1667 # else: both e are the same, so just leave them
1668
1669 if ($x->{sign} eq $z->{sign})
1670 {
1671 # add
1672 $x->{_m} = $MBI->_add($x->{_m}, $add);
1673 }
1674 else
1675 {
1676 ($x->{_m}, $x->{sign}) =
1677 _e_add($x->{_m}, $add, $x->{sign}, $z->{sign});
1678 }
1679
1680 # delete trailing zeros, then round
1681 $x->bnorm()->round(@r);
1682 }
1683
1684sub bdiv
1685 {
1686 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
1687 # (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
1688
1689 # set up parameters
1690 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1691 # objectify is costly, so avoid it
1692 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1693 {
1694 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1695 }
1696
1697 return $x if $x->modify('bdiv');
1698
1699 return $self->_div_inf($x,$y)
1700 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
1701
1702 # x== 0 # also: or y == 1 or y == -1
1703 return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
1704
1705 # upgrade ?
1706 return $upgrade->bdiv($upgrade->new($x),$y,$a,$p,$r) if defined $upgrade;
1707
1708 # we need to limit the accuracy to protect against overflow
1709 my $fallback = 0;
1710 my (@params,$scale);
1711 ($x,@params) = $x->_find_round_parameters($a,$p,$r,$y);
1712
1713 return $x if $x->is_nan(); # error in _find_round_parameters?
1714
1715 # no rounding at all, so must use fallback
1716 if (scalar @params == 0)
1717 {
1718 # simulate old behaviour
1719 $params[0] = $self->div_scale(); # and round to it as accuracy
1720 $scale = $params[0]+4; # at least four more for proper round
1721 $params[2] = $r; # round mode by caller or undef
1722 $fallback = 1; # to clear a/p afterwards
1723 }
1724 else
1725 {
1726 # the 4 below is empirical, and there might be cases where it is not
1727 # enough...
1728 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1729 }
1730
1731 my $rem; $rem = $self->bzero() if wantarray;
1732
1733 $y = $self->new($y) unless $y->isa('Math::BigFloat');
1734
1735 my $lx = $MBI->_len($x->{_m}); my $ly = $MBI->_len($y->{_m});
1736 $scale = $lx if $lx > $scale;
1737 $scale = $ly if $ly > $scale;
1738 my $diff = $ly - $lx;
1739 $scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx!
1740
1741 # already handled inf/NaN/-inf above:
1742
1743 # check that $y is not 1 nor -1 and cache the result:
1744 my $y_not_one = !($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m}));
1745
1746 # flipping the sign of $y will also flip the sign of $x for the special
1747 # case of $x->bsub($x); so we can catch it below:
1748 my $xsign = $x->{sign};
1749 $y->{sign} =~ tr/+-/-+/;
1750
1751 if ($xsign ne $x->{sign})
1752 {
1753 # special case of $x /= $x results in 1
1754 $x->bone(); # "fixes" also sign of $y, since $x is $y
1755 }
1756 else
1757 {
1758 # correct $y's sign again
1759 $y->{sign} =~ tr/+-/-+/;
1760 # continue with normal div code:
1761
1762 # make copy of $x in case of list context for later reminder calculation
1763 if (wantarray && $y_not_one)
1764 {
1765 $rem = $x->copy();
1766 }
1767
1768 $x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+';
1769
1770 # check for / +-1 ( +/- 1E0)
1771 if ($y_not_one)
1772 {
1773 # promote BigInts and it's subclasses (except when already a BigFloat)
1774 $y = $self->new($y) unless $y->isa('Math::BigFloat');
1775
1776 # calculate the result to $scale digits and then round it
1777 # a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
1778 $MBI->_lsft($x->{_m},$MBI->_new($scale),10);
1779 $MBI->_div ($x->{_m},$y->{_m}); # a/c
1780
1781 # correct exponent of $x
1782 ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1783 # correct for 10**scale
1784 ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $MBI->_new($scale), $x->{_es}, '+');
1785 $x->bnorm(); # remove trailing 0's
1786 }
1787 } # ende else $x != $y
1788
1789 # shortcut to not run through _find_round_parameters again
1790 if (defined $params[0])
1791 {
1792 delete $x->{_a}; # clear before round
1793 $x->bround($params[0],$params[2]); # then round accordingly
1794 }
1795 else
1796 {
1797 delete $x->{_p}; # clear before round
1798 $x->bfround($params[1],$params[2]); # then round accordingly
1799 }
1800 if ($fallback)
1801 {
1802 # clear a/p after round, since user did not request it
1803 delete $x->{_a}; delete $x->{_p};
1804 }
1805
1806 if (wantarray)
1807 {
1808 if ($y_not_one)
1809 {
1810 $rem->bmod($y,@params); # copy already done
1811 }
1812 if ($fallback)
1813 {
1814 # clear a/p after round, since user did not request it
1815 delete $rem->{_a}; delete $rem->{_p};
1816 }
1817 return ($x,$rem);
1818 }
1819 $x;
1820 }
1821
1822sub bmod
1823 {
1824 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder
1825
1826 # set up parameters
1827 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1828 # objectify is costly, so avoid it
1829 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1830 {
1831 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1832 }
1833
1834 return $x if $x->modify('bmod');
1835
1836 # handle NaN, inf, -inf
1837 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
1838 {
1839 my ($d,$re) = $self->SUPER::_div_inf($x,$y);
1840 $x->{sign} = $re->{sign};
1841 $x->{_e} = $re->{_e};
1842 $x->{_m} = $re->{_m};
1843 return $x->round($a,$p,$r,$y);
1844 }
1845 if ($y->is_zero())
1846 {
1847 return $x->bnan() if $x->is_zero();
1848 return $x;
1849 }
1850
1851 return $x->bzero() if $x->is_zero()
1852 || ($x->is_int() &&
1853 # check that $y == +1 or $y == -1:
1854 ($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m})));
1855
1856 my $cmp = $x->bacmp($y); # equal or $x < $y?
1857 return $x->bzero($a,$p) if $cmp == 0; # $x == $y => result 0
1858
1859 # only $y of the operands negative?
1860 my $neg = 0; $neg = 1 if $x->{sign} ne $y->{sign};
1861
1862 $x->{sign} = $y->{sign}; # calc sign first
1863 return $x->round($a,$p,$r) if $cmp < 0 && $neg == 0; # $x < $y => result $x
1864
1865 my $ym = $MBI->_copy($y->{_m});
1866
1867 # 2e1 => 20
1868 $MBI->_lsft( $ym, $y->{_e}, 10)
1869 if $y->{_es} eq '+' && !$MBI->_is_zero($y->{_e});
1870
1871 # if $y has digits after dot
1872 my $shifty = 0; # correct _e of $x by this
1873 if ($y->{_es} eq '-') # has digits after dot
1874 {
1875 # 123 % 2.5 => 1230 % 25 => 5 => 0.5
1876 $shifty = $MBI->_num($y->{_e}); # no more digits after dot
1877 $MBI->_lsft($x->{_m}, $y->{_e}, 10);# 123 => 1230, $y->{_m} is already 25
1878 }
1879 # $ym is now mantissa of $y based on exponent 0
1880
1881 my $shiftx = 0; # correct _e of $x by this
1882 if ($x->{_es} eq '-') # has digits after dot
1883 {
1884 # 123.4 % 20 => 1234 % 200
1885 $shiftx = $MBI->_num($x->{_e}); # no more digits after dot
1886 $MBI->_lsft($ym, $x->{_e}, 10); # 123 => 1230
1887 }
1888 # 123e1 % 20 => 1230 % 20
1889 if ($x->{_es} eq '+' && !$MBI->_is_zero($x->{_e}))
1890 {
1891 $MBI->_lsft( $x->{_m}, $x->{_e},10); # es => '+' here
1892 }
1893
1894 $x->{_e} = $MBI->_new($shiftx);
1895 $x->{_es} = '+';
1896 $x->{_es} = '-' if $shiftx != 0 || $shifty != 0;
1897 $MBI->_add( $x->{_e}, $MBI->_new($shifty)) if $shifty != 0;
1898
1899 # now mantissas are equalized, exponent of $x is adjusted, so calc result
1900
1901 $x->{_m} = $MBI->_mod( $x->{_m}, $ym);
1902
1903 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
1904 $x->bnorm();
1905
1906 if ($neg != 0) # one of them negative => correct in place
1907 {
1908 my $r = $y - $x;
1909 $x->{_m} = $r->{_m};
1910 $x->{_e} = $r->{_e};
1911 $x->{_es} = $r->{_es};
1912 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
1913 $x->bnorm();
1914 }
1915
1916 $x->round($a,$p,$r,$y); # round and return
1917 }
1918
1919sub broot
1920 {
1921 # calculate $y'th root of $x
1922
1923 # set up parameters
1924 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1925 # objectify is costly, so avoid it
1926 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1927 {
1928 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1929 }
1930
1931 return $x if $x->modify('broot');
1932
1933 # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
1934 return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
1935 $y->{sign} !~ /^\+$/;
1936
1937 return $x if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
1938
1939 # we need to limit the accuracy to protect against overflow
1940 my $fallback = 0;
1941 my (@params,$scale);
1942 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
1943
1944 return $x if $x->is_nan(); # error in _find_round_parameters?
1945
1946 # no rounding at all, so must use fallback
1947 if (scalar @params == 0)
1948 {
1949 # simulate old behaviour
1950 $params[0] = $self->div_scale(); # and round to it as accuracy
1951 $scale = $params[0]+4; # at least four more for proper round
1952 $params[2] = $r; # iound mode by caller or undef
1953 $fallback = 1; # to clear a/p afterwards
1954 }
1955 else
1956 {
1957 # the 4 below is empirical, and there might be cases where it is not
1958 # enough...
1959 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1960 }
1961
1962 # when user set globals, they would interfere with our calculation, so
1963 # disable them and later re-enable them
1964 no strict 'refs';
1965 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1966 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1967 # we also need to disable any set A or P on $x (_find_round_parameters took
1968 # them already into account), since these would interfere, too
1969 delete $x->{_a}; delete $x->{_p};
1970 # need to disable $upgrade in BigInt, to avoid deep recursion
1971 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
1972
1973 # remember sign and make $x positive, since -4 ** (1/2) => -2
1974 my $sign = 0; $sign = 1 if $x->{sign} eq '-'; $x->{sign} = '+';
1975
1976 my $is_two = 0;
1977 if ($y->isa('Math::BigFloat'))
1978 {
1979 $is_two = ($y->{sign} eq '+' && $MBI->_is_two($y->{_m}) && $MBI->_is_zero($y->{_e}));
1980 }
1981 else
1982 {
1983 $is_two = ($y == 2);
1984 }
1985
1986 # normal square root if $y == 2:
1987 if ($is_two)
1988 {
1989 $x->bsqrt($scale+4);
1990 }
1991 elsif ($y->is_one('-'))
1992 {
1993 # $x ** -1 => 1/$x
1994 my $u = $self->bone()->bdiv($x,$scale);
1995 # copy private parts over
1996 $x->{_m} = $u->{_m};
1997 $x->{_e} = $u->{_e};
1998 $x->{_es} = $u->{_es};
1999 }
2000 else
2001 {
2002 # calculate the broot() as integer result first, and if it fits, return
2003 # it rightaway (but only if $x and $y are integer):
2004
2005 my $done = 0; # not yet
2006 if ($y->is_int() && $x->is_int())
2007 {
2008 my $i = $MBI->_copy( $x->{_m} );
2009 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
2010 my $int = Math::BigInt->bzero();
2011 $int->{value} = $i;
2012 $int->broot($y->as_number());
2013 # if ($exact)
2014 if ($int->copy()->bpow($y) == $x)
2015 {
2016 # found result, return it
2017 $x->{_m} = $int->{value};
2018 $x->{_e} = $MBI->_zero();
2019 $x->{_es} = '+';
2020 $x->bnorm();
2021 $done = 1;
2022 }
2023 }
2024 if ($done == 0)
2025 {
2026 my $u = $self->bone()->bdiv($y,$scale+4);
2027 delete $u->{_a}; delete $u->{_p}; # otherwise it conflicts
2028 $x->bpow($u,$scale+4); # el cheapo
2029 }
2030 }
2031 $x->bneg() if $sign == 1;
2032
2033 # shortcut to not run through _find_round_parameters again
2034 if (defined $params[0])
2035 {
2036 $x->bround($params[0],$params[2]); # then round accordingly
2037 }
2038 else
2039 {
2040 $x->bfround($params[1],$params[2]); # then round accordingly
2041 }
2042 if ($fallback)
2043 {
2044 # clear a/p after round, since user did not request it
2045 delete $x->{_a}; delete $x->{_p};
2046 }
2047 # restore globals
2048 $$abr = $ab; $$pbr = $pb;
2049 $x;
2050 }
2051
2052sub bsqrt
2053 {
2054 # calculate square root
2055 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2056
2057 return $x if $x->modify('bsqrt');
2058
2059 return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
2060 return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
2061 return $x->round($a,$p,$r) if $x->is_zero() || $x->is_one();
2062
2063 # we need to limit the accuracy to protect against overflow
2064 my $fallback = 0;
2065 my (@params,$scale);
2066 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
2067
2068 return $x if $x->is_nan(); # error in _find_round_parameters?
2069
2070 # no rounding at all, so must use fallback
2071 if (scalar @params == 0)
2072 {
2073 # simulate old behaviour
2074 $params[0] = $self->div_scale(); # and round to it as accuracy
2075 $scale = $params[0]+4; # at least four more for proper round
2076 $params[2] = $r; # round mode by caller or undef
2077 $fallback = 1; # to clear a/p afterwards
2078 }
2079 else
2080 {
2081 # the 4 below is empirical, and there might be cases where it is not
2082 # enough...
2083 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2084 }
2085
2086 # when user set globals, they would interfere with our calculation, so
2087 # disable them and later re-enable them
2088 no strict 'refs';
2089 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2090 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2091 # we also need to disable any set A or P on $x (_find_round_parameters took
2092 # them already into account), since these would interfere, too
2093 delete $x->{_a}; delete $x->{_p};
2094 # need to disable $upgrade in BigInt, to avoid deep recursion
2095 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
2096
2097 my $i = $MBI->_copy( $x->{_m} );
2098 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
2099 my $xas = Math::BigInt->bzero();
2100 $xas->{value} = $i;
2101
2102 my $gs = $xas->copy()->bsqrt(); # some guess
2103
2104 if (($x->{_es} ne '-') # guess can't be accurate if there are
2105 # digits after the dot
2106 && ($xas->bacmp($gs * $gs) == 0)) # guess hit the nail on the head?
2107 {
2108 # exact result, copy result over to keep $x
2109 $x->{_m} = $gs->{value}; $x->{_e} = $MBI->_zero(); $x->{_es} = '+';
2110 $x->bnorm();
2111 # shortcut to not run through _find_round_parameters again
2112 if (defined $params[0])
2113 {
2114 $x->bround($params[0],$params[2]); # then round accordingly
2115 }
2116 else
2117 {
2118 $x->bfround($params[1],$params[2]); # then round accordingly
2119 }
2120 if ($fallback)
2121 {
2122 # clear a/p after round, since user did not request it
2123 delete $x->{_a}; delete $x->{_p};
2124 }
2125 # re-enable A and P, upgrade is taken care of by "local"
2126 ${"$self\::accuracy"} = $ab; ${"$self\::precision"} = $pb;
2127 return $x;
2128 }
2129
2130 # sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
2131 # of the result by multiplying the input by 100 and then divide the integer
2132 # result of sqrt(input) by 10. Rounding afterwards returns the real result.
2133
2134 # The following steps will transform 123.456 (in $x) into 123456 (in $y1)
2135 my $y1 = $MBI->_copy($x->{_m});
2136
2137 my $length = $MBI->_len($y1);
2138
2139 # Now calculate how many digits the result of sqrt(y1) would have
2140 my $digits = int($length / 2);
2141
2142 # But we need at least $scale digits, so calculate how many are missing
2143 my $shift = $scale - $digits;
2144
2145 # This happens if the input had enough digits
2146 # (we take care of integer guesses above)
2147 $shift = 0 if $shift < 0;
2148
2149 # Multiply in steps of 100, by shifting left two times the "missing" digits
2150 my $s2 = $shift * 2;
2151
2152 # We now make sure that $y1 has the same odd or even number of digits than
2153 # $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
2154 # because we always must multiply by steps of 100 (sqrt(100) is 10) and not
2155 # steps of 10. The length of $x does not count, since an even or odd number
2156 # of digits before the dot is not changed by adding an even number of digits
2157 # after the dot (the result is still odd or even digits long).
2158 $s2++ if $MBI->_is_odd($x->{_e});
2159
2160 $MBI->_lsft( $y1, $MBI->_new($s2), 10);
2161
2162 # now take the square root and truncate to integer
2163 $y1 = $MBI->_sqrt($y1);
2164
2165 # By "shifting" $y1 right (by creating a negative _e) we calculate the final
2166 # result, which is than later rounded to the desired scale.
2167
2168 # calculate how many zeros $x had after the '.' (or before it, depending
2169 # on sign of $dat, the result should have half as many:
2170 my $dat = $MBI->_num($x->{_e});
2171 $dat = -$dat if $x->{_es} eq '-';
2172 $dat += $length;
2173
2174 if ($dat > 0)
2175 {
2176 # no zeros after the dot (e.g. 1.23, 0.49 etc)
2177 # preserve half as many digits before the dot than the input had
2178 # (but round this "up")
2179 $dat = int(($dat+1)/2);
2180 }
2181 else
2182 {
2183 $dat = int(($dat)/2);
2184 }
2185 $dat -= $MBI->_len($y1);
2186 if ($dat < 0)
2187 {
2188 $dat = abs($dat);
2189 $x->{_e} = $MBI->_new( $dat );
2190 $x->{_es} = '-';
2191 }
2192 else
2193 {
2194 $x->{_e} = $MBI->_new( $dat );
2195 $x->{_es} = '+';
2196 }
2197 $x->{_m} = $y1;
2198 $x->bnorm();
2199
2200 # shortcut to not run through _find_round_parameters again
2201 if (defined $params[0])
2202 {
2203 $x->bround($params[0],$params[2]); # then round accordingly
2204 }
2205 else
2206 {
2207 $x->bfround($params[1],$params[2]); # then round accordingly
2208 }
2209 if ($fallback)
2210 {
2211 # clear a/p after round, since user did not request it
2212 delete $x->{_a}; delete $x->{_p};
2213 }
2214 # restore globals
2215 $$abr = $ab; $$pbr = $pb;
2216 $x;
2217 }
2218
2219sub bfac
2220 {
2221 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
2222 # compute factorial number, modifies first argument
2223
2224 # set up parameters
2225 my ($self,$x,@r) = (ref($_[0]),@_);
2226 # objectify is costly, so avoid it
2227 ($self,$x,@r) = objectify(1,@_) if !ref($x);
2228
2229 # inf => inf
2230 return $x if $x->modify('bfac') || $x->{sign} eq '+inf';
2231
2232 return $x->bnan()
2233 if (($x->{sign} ne '+') || # inf, NaN, <0 etc => NaN
2234 ($x->{_es} ne '+')); # digits after dot?
2235
2236 # use BigInt's bfac() for faster calc
2237 if (! $MBI->_is_zero($x->{_e}))
2238 {
2239 $MBI->_lsft($x->{_m}, $x->{_e},10); # change 12e1 to 120e0
2240 $x->{_e} = $MBI->_zero(); # normalize
2241 $x->{_es} = '+';
2242 }
2243 $MBI->_fac($x->{_m}); # calculate factorial
2244 $x->bnorm()->round(@r); # norm again and round result
2245 }
2246
2247sub _pow
2248 {
2249 # Calculate a power where $y is a non-integer, like 2 ** 0.3
2250 my ($x,$y,@r) = @_;
2251 my $self = ref($x);
2252
2253 # if $y == 0.5, it is sqrt($x)
2254 $HALF = $self->new($HALF) unless ref($HALF);
2255 return $x->bsqrt(@r,$y) if $y->bcmp($HALF) == 0;
2256
2257 # Using:
2258 # a ** x == e ** (x * ln a)
2259
2260 # u = y * ln x
2261 # _ _
2262 # Taylor: | u u^2 u^3 |
2263 # x ** y = 1 + | --- + --- + ----- + ... |
2264 # |_ 1 1*2 1*2*3 _|
2265
2266 # we need to limit the accuracy to protect against overflow
2267 my $fallback = 0;
2268 my ($scale,@params);
2269 ($x,@params) = $x->_find_round_parameters(@r);
2270
2271 return $x if $x->is_nan(); # error in _find_round_parameters?
2272
2273 # no rounding at all, so must use fallback
2274 if (scalar @params == 0)
2275 {
2276 # simulate old behaviour
2277 $params[0] = $self->div_scale(); # and round to it as accuracy
2278 $params[1] = undef; # disable P
2279 $scale = $params[0]+4; # at least four more for proper round
2280 $params[2] = $r[2]; # round mode by caller or undef
2281 $fallback = 1; # to clear a/p afterwards
2282 }
2283 else
2284 {
2285 # the 4 below is empirical, and there might be cases where it is not
2286 # enough...
2287 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2288 }
2289
2290 # when user set globals, they would interfere with our calculation, so
2291 # disable them and later re-enable them
2292 no strict 'refs';
2293 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2294 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2295 # we also need to disable any set A or P on $x (_find_round_parameters took
2296 # them already into account), since these would interfere, too
2297 delete $x->{_a}; delete $x->{_p};
2298 # need to disable $upgrade in BigInt, to avoid deep recursion
2299 local $Math::BigInt::upgrade = undef;
2300
2301 my ($limit,$v,$u,$below,$factor,$next,$over);
2302
2303 $u = $x->copy()->blog(undef,$scale)->bmul($y);
2304 $v = $self->bone(); # 1
2305 $factor = $self->new(2); # 2
2306 $x->bone(); # first term: 1
2307
2308 $below = $v->copy();
2309 $over = $u->copy();
2310
2311 $limit = $self->new("1E-". ($scale-1));
2312 #my $steps = 0;
2313 while (3 < 5)
2314 {
2315 # we calculate the next term, and add it to the last
2316 # when the next term is below our limit, it won't affect the outcome
2317 # anymore, so we stop:
2318 $next = $over->copy()->bdiv($below,$scale);
2319 last if $next->bacmp($limit) <= 0;
2320 $x->badd($next);
2321 # calculate things for the next term
2322 $over *= $u; $below *= $factor; $factor->binc();
2323
2324 last if $x->{sign} !~ /^[-+]$/;
2325
2326 #$steps++;
2327 }
2328
2329 # shortcut to not run through _find_round_parameters again
2330 if (defined $params[0])
2331 {
2332 $x->bround($params[0],$params[2]); # then round accordingly
2333 }
2334 else
2335 {
2336 $x->bfround($params[1],$params[2]); # then round accordingly
2337 }
2338 if ($fallback)
2339 {
2340 # clear a/p after round, since user did not request it
2341 delete $x->{_a}; delete $x->{_p};
2342 }
2343 # restore globals
2344 $$abr = $ab; $$pbr = $pb;
2345 $x;
2346 }
2347
2348sub bpow
2349 {
2350 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
2351 # compute power of two numbers, second arg is used as integer
2352 # modifies first argument
2353
2354 # set up parameters
2355 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
2356 # objectify is costly, so avoid it
2357 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
2358 {
2359 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
2360 }
2361
2362 return $x if $x->modify('bpow');
2363
2364 return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
2365 return $x if $x->{sign} =~ /^[+-]inf$/;
2366
2367 # cache the result of is_zero
2368 my $y_is_zero = $y->is_zero();
2369 return $x->bone() if $y_is_zero;
2370 return $x if $x->is_one() || $y->is_one();
2371
2372 my $x_is_zero = $x->is_zero();
2373 return $x->_pow($y,$a,$p,$r) if !$x_is_zero && !$y->is_int(); # non-integer power
2374
2375 my $y1 = $y->as_number()->{value}; # make MBI part
2376
2377 # if ($x == -1)
2378 if ($x->{sign} eq '-' && $MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
2379 {
2380 # if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
2381 return $MBI->_is_odd($y1) ? $x : $x->babs(1);
2382 }
2383 if ($x_is_zero)
2384 {
2385 return $x if $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0)
2386 # 0 ** -y => 1 / (0 ** y) => 1 / 0! (1 / 0 => +inf)
2387 return $x->binf();
2388 }
2389
2390 my $new_sign = '+';
2391 $new_sign = $MBI->_is_odd($y1) ? '-' : '+' if $x->{sign} ne '+';
2392
2393 # calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
2394 $x->{_m} = $MBI->_pow( $x->{_m}, $y1);
2395 $x->{_e} = $MBI->_mul ($x->{_e}, $y1);
2396
2397 $x->{sign} = $new_sign;
2398 $x->bnorm();
2399 if ($y->{sign} eq '-')
2400 {
2401 # modify $x in place!
2402 my $z = $x->copy(); $x->bone();
2403 return scalar $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!)
2404 }
2405 $x->round($a,$p,$r,$y);
2406 }
2407
2408sub bmodpow
2409 {
2410 # takes a very large number to a very large exponent in a given very
2411 # large modulus, quickly, thanks to binary exponentation. Supports
2412 # negative exponents.
2413 my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
2414
2415 return $num if $num->modify('bmodpow');
2416
2417 # check modulus for valid values
2418 return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf
2419 || $mod->is_zero());
2420
2421 # check exponent for valid values
2422 if ($exp->{sign} =~ /\w/)
2423 {
2424 # i.e., if it's NaN, +inf, or -inf...
2425 return $num->bnan();
2426 }
2427
2428 $num->bmodinv ($mod) if ($exp->{sign} eq '-');
2429
2430 # check num for valid values (also NaN if there was no inverse but $exp < 0)
2431 return $num->bnan() if $num->{sign} !~ /^[+-]$/;
2432
2433 # $mod is positive, sign on $exp is ignored, result also positive
2434
2435 # XXX TODO: speed it up when all three numbers are integers
2436 $num->bpow($exp)->bmod($mod);
2437 }
2438
2439###############################################################################
2440# trigonometric functions
2441
2442# helper function for bpi() and batan2(), calculates arcus tanges (1/x)
2443
2444sub _atan_inv
2445 {
2446 # return a/b so that a/b approximates atan(1/x) to at least limit digits
2447 my ($self, $x, $limit) = @_;
2448
2449 # Taylor: x^3 x^5 x^7 x^9
2450 # atan = x - --- + --- - --- + --- - ...
2451 # 3 5 7 9
2452
2453 # 1 1 1 1
2454 # atan 1/x = - - ------- + ------- - ------- + ...
2455 # x x^3 * 3 x^5 * 5 x^7 * 7
2456
2457 # 1 1 1 1
2458 # atan 1/x = - - --------- + ---------- - ----------- + ...
2459 # 5 3 * 125 5 * 3125 7 * 78125
2460
2461 # Subtraction/addition of a rational:
2462
2463 # 5 7 5*3 +- 7*4
2464 # - +- - = ----------
2465 # 4 3 4*3
2466
2467 # Term: N N+1
2468 #
2469 # a 1 a * d * c +- b
2470 # ----- +- ------------------ = ----------------
2471 # b d * c b * d * c
2472
2473 # since b1 = b0 * (d-2) * c
2474
2475 # a 1 a * d +- b / c
2476 # ----- +- ------------------ = ----------------
2477 # b d * c b * d
2478
2479 # and d = d + 2
2480 # and c = c * x * x
2481
2482 # u = d * c
2483 # stop if length($u) > limit
2484 # a = a * u +- b
2485 # b = b * u
2486 # d = d + 2
2487 # c = c * x * x
2488 # sign = 1 - sign
2489
2490 my $a = $MBI->_one();
2491 my $b = $MBI->_copy($x);
2492
2493 my $x2 = $MBI->_mul( $MBI->_copy($x), $b); # x2 = x * x
2494 my $d = $MBI->_new( 3 ); # d = 3
2495 my $c = $MBI->_mul( $MBI->_copy($x), $x2); # c = x ^ 3
2496 my $two = $MBI->_new( 2 );
2497
2498 # run the first step unconditionally
2499 my $u = $MBI->_mul( $MBI->_copy($d), $c);
2500 $a = $MBI->_mul($a, $u);
2501 $a = $MBI->_sub($a, $b);
2502 $b = $MBI->_mul($b, $u);
2503 $d = $MBI->_add($d, $two);
2504 $c = $MBI->_mul($c, $x2);
2505
2506 # a is now a * (d-3) * c
2507 # b is now b * (d-2) * c
2508
2509 # run the second step unconditionally
2510 $u = $MBI->_mul( $MBI->_copy($d), $c);
2511 $a = $MBI->_mul($a, $u);
2512 $a = $MBI->_add($a, $b);
2513 $b = $MBI->_mul($b, $u);
2514 $d = $MBI->_add($d, $two);
2515 $c = $MBI->_mul($c, $x2);
2516
2517 # a is now a * (d-3) * (d-5) * c * c
2518 # b is now b * (d-2) * (d-4) * c * c
2519
2520 # so we can remove c * c from both a and b to shorten the numbers involved:
2521 $a = $MBI->_div($a, $x2);
2522 $b = $MBI->_div($b, $x2);
2523 $a = $MBI->_div($a, $x2);
2524 $b = $MBI->_div($b, $x2);
2525
2526# my $step = 0;
2527 my $sign = 0; # 0 => -, 1 => +
2528 while (3 < 5)
2529 {
2530# $step++;
2531# if (($i++ % 100) == 0)
2532# {
2533# print "a=",$MBI->_str($a),"\n";
2534# print "b=",$MBI->_str($b),"\n";
2535# }
2536# print "d=",$MBI->_str($d),"\n";
2537# print "x2=",$MBI->_str($x2),"\n";
2538# print "c=",$MBI->_str($c),"\n";
2539
2540 my $u = $MBI->_mul( $MBI->_copy($d), $c);
2541 # use _alen() for libs like GMP where _len() would be O(N^2)
2542 last if $MBI->_alen($u) > $limit;
2543 my ($bc,$r) = $MBI->_div( $MBI->_copy($b), $c);
2544 if ($MBI->_is_zero($r))
2545 {
2546 # b / c is an integer, so we can remove c from all terms
2547 # this happens almost every time:
2548 $a = $MBI->_mul($a, $d);
2549 $a = $MBI->_sub($a, $bc) if $sign == 0;
2550 $a = $MBI->_add($a, $bc) if $sign == 1;
2551 $b = $MBI->_mul($b, $d);
2552 }
2553 else
2554 {
2555 # b / c is not an integer, so we keep c in the terms
2556 # this happens very rarely, for instance for x = 5, this happens only
2557 # at the following steps:
2558 # 1, 5, 14, 32, 72, 157, 340, ...
2559 $a = $MBI->_mul($a, $u);
2560 $a = $MBI->_sub($a, $b) if $sign == 0;
2561 $a = $MBI->_add($a, $b) if $sign == 1;
2562 $b = $MBI->_mul($b, $u);
2563 }
2564 $d = $MBI->_add($d, $two);
2565 $c = $MBI->_mul($c, $x2);
2566 $sign = 1 - $sign;
2567
2568 }
2569
2570# print "Took $step steps for ", $MBI->_str($x),"\n";
2571# print "a=",$MBI->_str($a),"\n"; print "b=",$MBI->_str($b),"\n";
2572 # return a/b so that a/b approximates atan(1/x)
2573 ($a,$b);
2574 }
2575
2576sub bpi
2577 {
2578 my ($self,$n) = @_;
2579 if (@_ == 0)
2580 {
2581 $self = $class;
2582 }
2583 if (@_ == 1)
2584 {
2585 # called like Math::BigFloat::bpi(10);
2586 $n = $self; $self = $class;
2587 # called like Math::BigFloat->bpi();
2588 $n = undef if $n eq 'Math::BigFloat';
2589 }
2590 $self = ref($self) if ref($self);
2591 my $fallback = defined $n ? 0 : 1;
2592 $n = 40 if !defined $n || $n < 1;
2593
2594 # after 黃見利 (Hwang Chien-Lih) (1997)
2595 # pi/4 = 183 * atan(1/239) + 32 * atan(1/1023) – 68 * atan(1/5832)
2596 # + 12 * atan(1/110443) - 12 * atan(1/4841182) - 100 * atan(1/6826318)
2597
2598 # a few more to prevent rounding errors
2599 $n += 4;
2600
2601 my ($a,$b) = $self->_atan_inv( $MBI->_new(239),$n);
2602 my ($c,$d) = $self->_atan_inv( $MBI->_new(1023),$n);
2603 my ($e,$f) = $self->_atan_inv( $MBI->_new(5832),$n);
2604 my ($g,$h) = $self->_atan_inv( $MBI->_new(110443),$n);
2605 my ($i,$j) = $self->_atan_inv( $MBI->_new(4841182),$n);
2606 my ($k,$l) = $self->_atan_inv( $MBI->_new(6826318),$n);
2607
2608 $MBI->_mul($a, $MBI->_new(732));
2609 $MBI->_mul($c, $MBI->_new(128));
2610 $MBI->_mul($e, $MBI->_new(272));
2611 $MBI->_mul($g, $MBI->_new(48));
2612 $MBI->_mul($i, $MBI->_new(48));
2613 $MBI->_mul($k, $MBI->_new(400));
2614
2615 my $x = $self->bone(); $x->{_m} = $a; my $x_d = $self->bone(); $x_d->{_m} = $b;
2616 my $y = $self->bone(); $y->{_m} = $c; my $y_d = $self->bone(); $y_d->{_m} = $d;
2617 my $z = $self->bone(); $z->{_m} = $e; my $z_d = $self->bone(); $z_d->{_m} = $f;
2618 my $u = $self->bone(); $u->{_m} = $g; my $u_d = $self->bone(); $u_d->{_m} = $h;
2619 my $v = $self->bone(); $v->{_m} = $i; my $v_d = $self->bone(); $v_d->{_m} = $j;
2620 my $w = $self->bone(); $w->{_m} = $k; my $w_d = $self->bone(); $w_d->{_m} = $l;
2621 $x->bdiv($x_d, $n);
2622 $y->bdiv($y_d, $n);
2623 $z->bdiv($z_d, $n);
2624 $u->bdiv($u_d, $n);
2625 $v->bdiv($v_d, $n);
2626 $w->bdiv($w_d, $n);
2627
2628 delete $x->{_a}; delete $y->{_a}; delete $z->{_a};
2629 delete $u->{_a}; delete $v->{_a}; delete $w->{_a};
2630 $x->badd($y)->bsub($z)->badd($u)->bsub($v)->bsub($w);
2631
2632 $x->bround($n-4);
2633 delete $x->{_a} if $fallback == 1;
2634 $x;
2635 }
2636
2637sub bcos
2638 {
2639 # Calculate a cosinus of x.
2640 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2641
2642 # Taylor: x^2 x^4 x^6 x^8
2643 # cos = 1 - --- + --- - --- + --- ...
2644 # 2! 4! 6! 8!
2645
2646 # we need to limit the accuracy to protect against overflow
2647 my $fallback = 0;
2648 my ($scale,@params);
2649 ($x,@params) = $x->_find_round_parameters(@r);
2650
2651 # constant object or error in _find_round_parameters?
2652 return $x if $x->modify('bcos') || $x->is_nan();
2653
2654 return $x->bone(@r) if $x->is_zero();
2655
2656 # no rounding at all, so must use fallback
2657 if (scalar @params == 0)
2658 {
2659 # simulate old behaviour
2660 $params[0] = $self->div_scale(); # and round to it as accuracy
2661 $params[1] = undef; # disable P
2662 $scale = $params[0]+4; # at least four more for proper round
2663 $params[2] = $r[2]; # round mode by caller or undef
2664 $fallback = 1; # to clear a/p afterwards
2665 }
2666 else
2667 {
2668 # the 4 below is empirical, and there might be cases where it is not
2669 # enough...
2670 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2671 }
2672
2673 # when user set globals, they would interfere with our calculation, so
2674 # disable them and later re-enable them
2675 no strict 'refs';
2676 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2677 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2678 # we also need to disable any set A or P on $x (_find_round_parameters took
2679 # them already into account), since these would interfere, too
2680 delete $x->{_a}; delete $x->{_p};
2681 # need to disable $upgrade in BigInt, to avoid deep recursion
2682 local $Math::BigInt::upgrade = undef;
2683
2684 my $last = 0;
2685 my $over = $x * $x; # X ^ 2
2686 my $x2 = $over->copy(); # X ^ 2; difference between terms
2687 my $sign = 1; # start with -=
2688 my $below = $self->new(2); my $factorial = $self->new(3);
2689 $x->bone(); delete $x->{_a}; delete $x->{_p};
2690
2691 my $limit = $self->new("1E-". ($scale-1));
2692 #my $steps = 0;
2693 while (3 < 5)
2694 {
2695 # we calculate the next term, and add it to the last
2696 # when the next term is below our limit, it won't affect the outcome
2697 # anymore, so we stop:
2698 my $next = $over->copy()->bdiv($below,$scale);
2699 last if $next->bacmp($limit) <= 0;
2700
2701 if ($sign == 0)
2702 {
2703 $x->badd($next);
2704 }
2705 else
2706 {
2707 $x->bsub($next);
2708 }
2709 $sign = 1-$sign; # alternate
2710 # calculate things for the next term
2711 $over->bmul($x2); # $x*$x
2712 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2713 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2714 }
2715
2716 # shortcut to not run through _find_round_parameters again
2717 if (defined $params[0])
2718 {
2719 $x->bround($params[0],$params[2]); # then round accordingly
2720 }
2721 else
2722 {
2723 $x->bfround($params[1],$params[2]); # then round accordingly
2724 }
2725 if ($fallback)
2726 {
2727 # clear a/p after round, since user did not request it
2728 delete $x->{_a}; delete $x->{_p};
2729 }
2730 # restore globals
2731 $$abr = $ab; $$pbr = $pb;
2732 $x;
2733 }
2734
2735sub bsin
2736 {
2737 # Calculate a sinus of x.
2738 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2739
2740 # taylor: x^3 x^5 x^7 x^9
2741 # sin = x - --- + --- - --- + --- ...
2742 # 3! 5! 7! 9!
2743
2744 # we need to limit the accuracy to protect against overflow
2745 my $fallback = 0;
2746 my ($scale,@params);
2747 ($x,@params) = $x->_find_round_parameters(@r);
2748
2749 # constant object or error in _find_round_parameters?
2750 return $x if $x->modify('bsin') || $x->is_nan();
2751
2752 return $x->bzero(@r) if $x->is_zero();
2753
2754 # no rounding at all, so must use fallback
2755 if (scalar @params == 0)
2756 {
2757 # simulate old behaviour
2758 $params[0] = $self->div_scale(); # and round to it as accuracy
2759 $params[1] = undef; # disable P
2760 $scale = $params[0]+4; # at least four more for proper round
2761 $params[2] = $r[2]; # round mode by caller or undef
2762 $fallback = 1; # to clear a/p afterwards
2763 }
2764 else
2765 {
2766 # the 4 below is empirical, and there might be cases where it is not
2767 # enough...
2768 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2769 }
2770
2771 # when user set globals, they would interfere with our calculation, so
2772 # disable them and later re-enable them
2773 no strict 'refs';
2774 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2775 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2776 # we also need to disable any set A or P on $x (_find_round_parameters took
2777 # them already into account), since these would interfere, too
2778 delete $x->{_a}; delete $x->{_p};
2779 # need to disable $upgrade in BigInt, to avoid deep recursion
2780 local $Math::BigInt::upgrade = undef;
2781
2782 my $last = 0;
2783 my $over = $x * $x; # X ^ 2
2784 my $x2 = $over->copy(); # X ^ 2; difference between terms
2785 $over->bmul($x); # X ^ 3 as starting value
2786 my $sign = 1; # start with -=
2787 my $below = $self->new(6); my $factorial = $self->new(4);
2788 delete $x->{_a}; delete $x->{_p};
2789
2790 my $limit = $self->new("1E-". ($scale-1));
2791 #my $steps = 0;
2792 while (3 < 5)
2793 {
2794 # we calculate the next term, and add it to the last
2795 # when the next term is below our limit, it won't affect the outcome
2796 # anymore, so we stop:
2797 my $next = $over->copy()->bdiv($below,$scale);
2798 last if $next->bacmp($limit) <= 0;
2799
2800 if ($sign == 0)
2801 {
2802 $x->badd($next);
2803 }
2804 else
2805 {
2806 $x->bsub($next);
2807 }
2808 $sign = 1-$sign; # alternate
2809 # calculate things for the next term
2810 $over->bmul($x2); # $x*$x
2811 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2812 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2813 }
2814
2815 # shortcut to not run through _find_round_parameters again
2816 if (defined $params[0])
2817 {
2818 $x->bround($params[0],$params[2]); # then round accordingly
2819 }
2820 else
2821 {
2822 $x->bfround($params[1],$params[2]); # then round accordingly
2823 }
2824 if ($fallback)
2825 {
2826 # clear a/p after round, since user did not request it
2827 delete $x->{_a}; delete $x->{_p};
2828 }
2829 # restore globals
2830 $$abr = $ab; $$pbr = $pb;
2831 $x;
2832 }
2833
2834sub batan2
2835 {
2836 # calculate arcus tangens of ($y/$x)
2837
2838 # set up parameters
2839 my ($self,$y,$x,@r) = (ref($_[0]),@_);
2840 # objectify is costly, so avoid it
2841 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
2842 {
2843 ($self,$y,$x,@r) = objectify(2,@_);
2844 }
2845
2846 return $y if $y->modify('batan2');
2847
2848 return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
2849
2850 # Y X
2851 # 0 0 result is 0
2852 # 0 +x result is 0
2853 # ? inf result is 0
2854 return $y->bzero(@r) if ($x->is_inf('+') && !$y->is_inf()) || ($y->is_zero() && $x->{sign} eq '+');
2855
2856 # Y X
2857 # != 0 -inf result is +- pi
2858 if ($x->is_inf() || $y->is_inf())
2859 {
2860 # calculate PI
2861 my $pi = $self->bpi(@r);
2862 if ($y->is_inf())
2863 {
2864 # upgrade to BigRat etc.
2865 return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
2866 if ($x->{sign} eq '-inf')
2867 {
2868 # calculate 3 pi/4
2869 $MBI->_mul($pi->{_m}, $MBI->_new(3));
2870 $MBI->_div($pi->{_m}, $MBI->_new(4));
2871 }
2872 elsif ($x->{sign} eq '+inf')
2873 {
2874 # calculate pi/4
2875 $MBI->_div($pi->{_m}, $MBI->_new(4));
2876 }
2877 else
2878 {
2879 # calculate pi/2
2880 $MBI->_div($pi->{_m}, $MBI->_new(2));
2881 }
2882 $y->{sign} = substr($y->{sign},0,1); # keep +/-
2883 }
2884 # modify $y in place
2885 $y->{_m} = $pi->{_m};
2886 $y->{_e} = $pi->{_e};
2887 $y->{_es} = $pi->{_es};
2888 # keep the sign of $y
2889 return $y;
2890 }
2891
2892 return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
2893
2894 # Y X
2895 # 0 -x result is PI
2896 if ($y->is_zero())
2897 {
2898 # calculate PI
2899 my $pi = $self->bpi(@r);
2900 # modify $y in place
2901 $y->{_m} = $pi->{_m};
2902 $y->{_e} = $pi->{_e};
2903 $y->{_es} = $pi->{_es};
2904 $y->{sign} = '+';
2905 return $y;
2906 }
2907
2908 # Y X
2909 # +y 0 result is PI/2
2910 # -y 0 result is -PI/2
2911 if ($x->is_zero())
2912 {
2913 # calculate PI/2
2914 my $pi = $self->bpi(@r);
2915 # modify $y in place
2916 $y->{_m} = $pi->{_m};
2917 $y->{_e} = $pi->{_e};
2918 $y->{_es} = $pi->{_es};
2919 # -y => -PI/2, +y => PI/2
2920 $MBI->_div($y->{_m}, $MBI->_new(2));
2921 return $y;
2922 }
2923
2924 # we need to limit the accuracy to protect against overflow
2925 my $fallback = 0;
2926 my ($scale,@params);
2927 ($y,@params) = $y->_find_round_parameters(@r);
2928
2929 # error in _find_round_parameters?
2930 return $y if $y->is_nan();
2931
2932 # no rounding at all, so must use fallback
2933 if (scalar @params == 0)
2934 {
2935 # simulate old behaviour
2936 $params[0] = $self->div_scale(); # and round to it as accuracy
2937 $params[1] = undef; # disable P
2938 $scale = $params[0]+4; # at least four more for proper round
2939 $params[2] = $r[2]; # round mode by caller or undef
2940 $fallback = 1; # to clear a/p afterwards
2941 }
2942 else
2943 {
2944 # the 4 below is empirical, and there might be cases where it is not
2945 # enough...
2946 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2947 }
2948
2949 # inlined is_one() && is_one('-')
2950 if ($MBI->_is_one($y->{_m}) && $MBI->_is_zero($y->{_e}))
2951 {
2952 # shortcut: 1 1 result is PI/4
2953 # inlined is_one() && is_one('-')
2954 if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
2955 {
2956 # 1,1 => PI/4
2957 my $pi_4 = $self->bpi( $scale - 3);
2958 # modify $y in place
2959 $y->{_m} = $pi_4->{_m};
2960 $y->{_e} = $pi_4->{_e};
2961 $y->{_es} = $pi_4->{_es};
2962 # 1 1 => +
2963 # -1 1 => -
2964 # 1 -1 => -
2965 # -1 -1 => +
2966 $y->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
2967 $MBI->_div($y->{_m}, $MBI->_new(4));
2968 return $y;
2969 }
2970 # shortcut: 1 int(X) result is _atan_inv(X)
2971
2972 # is integer
2973 if ($x->{_es} eq '+')
2974 {
2975 my $x1 = $MBI->_copy($x->{_m});
2976 $MBI->_lsft($x1, $x->{_e},10) unless $MBI->_is_zero($x->{_e});
2977
2978 my ($a,$b) = $self->_atan_inv($x1, $scale);
2979 my $y_sign = $y->{sign};
2980 # calculate A/B
2981 $y->bone(); $y->{_m} = $a; my $y_d = $self->bone(); $y_d->{_m} = $b;
2982 $y->bdiv($y_d, @r);
2983 $y->{sign} = $y_sign;
2984 return $y;
2985 }
2986 }
2987
2988 # handle all other cases
2989 # X Y
2990 # +x +y 0 to PI/2
2991 # -x +y PI/2 to PI
2992 # +x -y 0 to -PI/2
2993 # -x -y -PI/2 to -PI
2994
2995 my $y_sign = $y->{sign};
2996
2997 # divide $x by $y
2998 $y->bdiv($x, $scale) unless $x->is_one();
2999 $y->batan(@r);
3000
3001 # restore sign
3002 $y->{sign} = $y_sign;
3003
3004 $y;
3005 }
3006
3007sub batan
3008 {
3009 # Calculate a arcus tangens of x.
3010 my ($x,@r) = @_;
3011 my $self = ref($x);
3012
3013 # taylor: x^3 x^5 x^7 x^9
3014 # atan = x - --- + --- - --- + --- ...
3015 # 3 5 7 9
3016
3017 # we need to limit the accuracy to protect against overflow
3018 my $fallback = 0;
3019 my ($scale,@params);
3020 ($x,@params) = $x->_find_round_parameters(@r);
3021
3022 # constant object or error in _find_round_parameters?
3023 return $x if $x->modify('batan') || $x->is_nan();
3024
3025 if ($x->{sign} =~ /^[+-]inf\z/)
3026 {
3027 # +inf result is PI/2
3028 # -inf result is -PI/2
3029 # calculate PI/2
3030 my $pi = $self->bpi(@r);
3031 # modify $x in place
3032 $x->{_m} = $pi->{_m};
3033 $x->{_e} = $pi->{_e};
3034 $x->{_es} = $pi->{_es};
3035 # -y => -PI/2, +y => PI/2
3036 $x->{sign} = substr($x->{sign},0,1); # +inf => +
3037 $MBI->_div($x->{_m}, $MBI->_new(2));
3038 return $x;
3039 }
3040
3041 return $x->bzero(@r) if $x->is_zero();
3042
3043 # no rounding at all, so must use fallback
3044 if (scalar @params == 0)
3045 {
3046 # simulate old behaviour
3047 $params[0] = $self->div_scale(); # and round to it as accuracy
3048 $params[1] = undef; # disable P
3049 $scale = $params[0]+4; # at least four more for proper round
3050 $params[2] = $r[2]; # round mode by caller or undef
3051 $fallback = 1; # to clear a/p afterwards
3052 }
3053 else
3054 {
3055 # the 4 below is empirical, and there might be cases where it is not
3056 # enough...
3057 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
3058 }
3059
3060 # 1 or -1 => PI/4
3061 # inlined is_one() && is_one('-')
3062 if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
3063 {
3064 my $pi = $self->bpi($scale - 3);
3065 # modify $x in place
3066 $x->{_m} = $pi->{_m};
3067 $x->{_e} = $pi->{_e};
3068 $x->{_es} = $pi->{_es};
3069 # leave the sign of $x alone (+1 => +PI/4, -1 => -PI/4)
3070 $MBI->_div($x->{_m}, $MBI->_new(4));
3071 return $x;
3072 }
3073
3074 # This series is only valid if -1 < x < 1, so for other x we need to
3075 # to calculate PI/2 - atan(1/x):
3076 my $one = $MBI->_new(1);
3077 my $pi = undef;
3078 if ($x->{_es} eq '+' && ($MBI->_acmp($x->{_m},$one) >= 0))
3079 {
3080 # calculate PI/2
3081 $pi = $self->bpi($scale - 3);
3082 $MBI->_div($pi->{_m}, $MBI->_new(2));
3083 # calculate 1/$x:
3084 my $x_copy = $x->copy();
3085 # modify $x in place
3086 $x->bone(); $x->bdiv($x_copy,$scale);
3087 }
3088
3089 # when user set globals, they would interfere with our calculation, so
3090 # disable them and later re-enable them
3091 no strict 'refs';
3092 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
3093 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
3094 # we also need to disable any set A or P on $x (_find_round_parameters took
3095 # them already into account), since these would interfere, too
3096 delete $x->{_a}; delete $x->{_p};
3097 # need to disable $upgrade in BigInt, to avoid deep recursion
3098 local $Math::BigInt::upgrade = undef;
3099
3100 my $last = 0;
3101 my $over = $x * $x; # X ^ 2
3102 my $x2 = $over->copy(); # X ^ 2; difference between terms
3103 $over->bmul($x); # X ^ 3 as starting value
3104 my $sign = 1; # start with -=
3105 my $below = $self->new(3);
3106 my $two = $self->new(2);
3107 delete $x->{_a}; delete $x->{_p};
3108
3109 my $limit = $self->new("1E-". ($scale-1));
3110 #my $steps = 0;
3111 while (3 < 5)
3112 {
3113 # we calculate the next term, and add it to the last
3114 # when the next term is below our limit, it won't affect the outcome
3115 # anymore, so we stop:
3116 my $next = $over->copy()->bdiv($below,$scale);
3117 last if $next->bacmp($limit) <= 0;
3118
3119 if ($sign == 0)
3120 {
3121 $x->badd($next);
3122 }
3123 else
3124 {
3125 $x->bsub($next);
3126 }
3127 $sign = 1-$sign; # alternate
3128 # calculate things for the next term
3129 $over->bmul($x2); # $x*$x
3130 $below->badd($two); # n += 2
3131 }
3132
3133 if (defined $pi)
3134 {
3135 my $x_copy = $x->copy();
3136 # modify $x in place
3137 $x->{_m} = $pi->{_m};
3138 $x->{_e} = $pi->{_e};
3139 $x->{_es} = $pi->{_es};
3140 # PI/2 - $x
3141 $x->bsub($x_copy);
3142 }
3143
3144 # shortcut to not run through _find_round_parameters again
3145 if (defined $params[0])
3146 {
3147 $x->bround($params[0],$params[2]); # then round accordingly
3148 }
3149 else
3150 {
3151 $x->bfround($params[1],$params[2]); # then round accordingly
3152 }
3153 if ($fallback)
3154 {
3155 # clear a/p after round, since user did not request it
3156 delete $x->{_a}; delete $x->{_p};
3157 }
3158 # restore globals
3159 $$abr = $ab; $$pbr = $pb;
3160 $x;
3161 }
3162
3163###############################################################################
3164# rounding functions
3165
3166sub bfround
3167 {
3168 # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
3169 # $n == 0 means round to integer
3170 # expects and returns normalized numbers!
3171 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
3172
3173 my ($scale,$mode) = $x->_scale_p(@_);
3174 return $x if !defined $scale || $x->modify('bfround'); # no-op
3175
3176 # never round a 0, +-inf, NaN
3177 if ($x->is_zero())
3178 {
3179 $x->{_p} = $scale if !defined $x->{_p} || $x->{_p} < $scale; # -3 < -2
3180 return $x;
3181 }
3182 return $x if $x->{sign} !~ /^[+-]$/;
3183
3184 # don't round if x already has lower precision
3185 return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p});
3186
3187 $x->{_p} = $scale; # remember round in any case
3188 delete $x->{_a}; # and clear A
3189 if ($scale < 0)
3190 {
3191 # round right from the '.'
3192
3193 return $x if $x->{_es} eq '+'; # e >= 0 => nothing to round
3194
3195 $scale = -$scale; # positive for simplicity
3196 my $len = $MBI->_len($x->{_m}); # length of mantissa
3197
3198 # the following poses a restriction on _e, but if _e is bigger than a
3199 # scalar, you got other problems (memory etc) anyway
3200 my $dad = -(0+ ($x->{_es}.$MBI->_num($x->{_e}))); # digits after dot
3201 my $zad = 0; # zeros after dot
3202 $zad = $dad - $len if (-$dad < -$len); # for 0.00..00xxx style
3203
3204 # p rint "scale $scale dad $dad zad $zad len $len\n";
3205 # number bsstr len zad dad
3206 # 0.123 123e-3 3 0 3
3207 # 0.0123 123e-4 3 1 4
3208 # 0.001 1e-3 1 2 3
3209 # 1.23 123e-2 3 0 2
3210 # 1.2345 12345e-4 5 0 4
3211
3212 # do not round after/right of the $dad
3213 return $x if $scale > $dad; # 0.123, scale >= 3 => exit
3214
3215 # round to zero if rounding inside the $zad, but not for last zero like:
3216 # 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
3217 return $x->bzero() if $scale < $zad;
3218 if ($scale == $zad) # for 0.006, scale -3 and trunc
3219 {
3220 $scale = -$len;
3221 }
3222 else
3223 {
3224 # adjust round-point to be inside mantissa
3225 if ($zad != 0)
3226 {
3227 $scale = $scale-$zad;
3228 }
3229 else
3230 {
3231 my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot
3232 $scale = $dbd+$scale;
3233 }
3234 }
3235 }
3236 else
3237 {
3238 # round left from the '.'
3239
3240 # 123 => 100 means length(123) = 3 - $scale (2) => 1
3241
3242 my $dbt = $MBI->_len($x->{_m});
3243 # digits before dot
3244 my $dbd = $dbt + ($x->{_es} . $MBI->_num($x->{_e}));
3245 # should be the same, so treat it as this
3246 $scale = 1 if $scale == 0;
3247 # shortcut if already integer
3248 return $x if $scale == 1 && $dbt <= $dbd;
3249 # maximum digits before dot
3250 ++$dbd;
3251
3252 if ($scale > $dbd)
3253 {
3254 # not enough digits before dot, so round to zero
3255 return $x->bzero;
3256 }
3257 elsif ( $scale == $dbd )
3258 {
3259 # maximum
3260 $scale = -$dbt;
3261 }
3262 else
3263 {
3264 $scale = $dbd - $scale;
3265 }
3266 }
3267 # pass sign to bround for rounding modes '+inf' and '-inf'
3268 my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
3269 $m->bround($scale,$mode);
3270 $x->{_m} = $m->{value}; # get our mantissa back
3271 $x->bnorm();
3272 }
3273
3274sub bround
3275 {
3276 # accuracy: preserve $N digits, and overwrite the rest with 0's
3277 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
3278
3279 if (($_[0] || 0) < 0)
3280 {
3281 require Carp; Carp::croak ('bround() needs positive accuracy');
3282 }
3283
3284 my ($scale,$mode) = $x->_scale_a(@_);
3285 return $x if !defined $scale || $x->modify('bround'); # no-op
3286
3287 # scale is now either $x->{_a}, $accuracy, or the user parameter
3288 # test whether $x already has lower accuracy, do nothing in this case
3289 # but do round if the accuracy is the same, since a math operation might
3290 # want to round a number with A=5 to 5 digits afterwards again
3291 return $x if defined $x->{_a} && $x->{_a} < $scale;
3292
3293 # scale < 0 makes no sense
3294 # scale == 0 => keep all digits
3295 # never round a +-inf, NaN
3296 return $x if ($scale <= 0) || $x->{sign} !~ /^[+-]$/;
3297
3298 # 1: never round a 0
3299 # 2: if we should keep more digits than the mantissa has, do nothing
3300 if ($x->is_zero() || $MBI->_len($x->{_m}) <= $scale)
3301 {
3302 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale;
3303 return $x;
3304 }
3305
3306 # pass sign to bround for '+inf' and '-inf' rounding modes
3307 my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
3308
3309 $m->bround($scale,$mode); # round mantissa
3310 $x->{_m} = $m->{value}; # get our mantissa back
3311 $x->{_a} = $scale; # remember rounding
3312 delete $x->{_p}; # and clear P
3313 $x->bnorm(); # del trailing zeros gen. by bround()
3314 }
3315
3316sub bfloor
3317 {
3318 # return integer less or equal then $x
3319 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
3320
3321 return $x if $x->modify('bfloor');
3322
3323 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3324
3325 # if $x has digits after dot
3326 if ($x->{_es} eq '-')
3327 {
3328 $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
3329 $x->{_e} = $MBI->_zero(); # trunc/norm
3330 $x->{_es} = '+'; # abs e
3331 $MBI->_inc($x->{_m}) if $x->{sign} eq '-'; # increment if negative
3332 }
3333 $x->round($a,$p,$r);
3334 }
3335
3336sub bceil
3337 {
3338 # return integer greater or equal then $x
3339 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
3340
3341 return $x if $x->modify('bceil');
3342 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3343
3344 # if $x has digits after dot
3345 if ($x->{_es} eq '-')
3346 {
3347 $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
3348 $x->{_e} = $MBI->_zero(); # trunc/norm
3349 $x->{_es} = '+'; # abs e
3350 $MBI->_inc($x->{_m}) if $x->{sign} eq '+'; # increment if positive
3351 }
3352 $x->round($a,$p,$r);
3353 }
3354
3355sub brsft
3356 {
3357 # shift right by $y (divide by power of $n)
3358
3359 # set up parameters
3360 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
3361 # objectify is costly, so avoid it
3362 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
3363 {
3364 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
3365 }
3366
3367 return $x if $x->modify('brsft');
3368 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3369
3370 $n = 2 if !defined $n; $n = $self->new($n);
3371
3372 # negative amount?
3373 return $x->blsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
3374
3375 # the following call to bdiv() will return either quo or (quo,reminder):
3376 $x->bdiv($n->bpow($y),$a,$p,$r,$y);
3377 }
3378
3379sub blsft
3380 {
3381 # shift left by $y (multiply by power of $n)
3382
3383 # set up parameters
3384 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
3385 # objectify is costly, so avoid it
3386 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
3387 {
3388 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
3389 }
3390
3391 return $x if $x->modify('blsft');
3392 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3393
3394 $n = 2 if !defined $n; $n = $self->new($n);
3395
3396 # negative amount?
3397 return $x->brsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
3398
3399 $x->bmul($n->bpow($y),$a,$p,$r,$y);
3400 }
3401
3402###############################################################################
3403
3404sub DESTROY
3405 {
3406 # going through AUTOLOAD for every DESTROY is costly, avoid it by empty sub
3407 }
3408
3409sub AUTOLOAD
3410 {
3411 # make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
3412 # or falling back to MBI::bxxx()
3413 my $name = $AUTOLOAD;
3414
3415 $name =~ s/(.*):://; # split package
3416 my $c = $1 || $class;
3417 no strict 'refs';
3418 $c->import() if $IMPORT == 0;
3419 if (!_method_alias($name))
3420 {
3421 if (!defined $name)
3422 {
3423 # delayed load of Carp and avoid recursion
3424 require Carp;
3425 Carp::croak ("$c: Can't call a method without name");
3426 }
3427 if (!_method_hand_up($name))
3428 {
3429 # delayed load of Carp and avoid recursion
3430 require Carp;
3431 Carp::croak ("Can't call $c\-\>$name, not a valid method");
3432 }
3433 # try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
3434 $name =~ s/^f/b/;
3435 return &{"Math::BigInt"."::$name"}(@_);
3436 }
3437 my $bname = $name; $bname =~ s/^f/b/;
3438 $c .= "::$name";
3439 *{$c} = \&{$bname};
3440 &{$c}; # uses @_
3441 }
3442
3443sub exponent
3444 {
3445 # return a copy of the exponent
3446 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3447
3448 if ($x->{sign} !~ /^[+-]$/)
3449 {
3450 my $s = $x->{sign}; $s =~ s/^[+-]//;
3451 return Math::BigInt->new($s); # -inf, +inf => +inf
3452 }
3453 Math::BigInt->new( $x->{_es} . $MBI->_str($x->{_e}));
3454 }
3455
3456sub mantissa
3457 {
3458 # return a copy of the mantissa
3459 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3460
3461 if ($x->{sign} !~ /^[+-]$/)
3462 {
3463 my $s = $x->{sign}; $s =~ s/^[+]//;
3464 return Math::BigInt->new($s); # -inf, +inf => +inf
3465 }
3466 my $m = Math::BigInt->new( $MBI->_str($x->{_m}));
3467 $m->bneg() if $x->{sign} eq '-';
3468
3469 $m;
3470 }
3471
3472sub parts
3473 {
3474 # return a copy of both the exponent and the mantissa
3475 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3476
3477 if ($x->{sign} !~ /^[+-]$/)
3478 {
3479 my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//;
3480 return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf
3481 }
3482 my $m = Math::BigInt->bzero();
3483 $m->{value} = $MBI->_copy($x->{_m});
3484 $m->bneg() if $x->{sign} eq '-';
3485 ($m, Math::BigInt->new( $x->{_es} . $MBI->_num($x->{_e}) ));
3486 }
3487
3488##############################################################################
3489# private stuff (internal use only)
3490
3491sub import
3492 {
3493 my $self = shift;
3494 my $l = scalar @_;
3495 my $lib = ''; my @a;
3496 my $lib_kind = 'try';
3497 $IMPORT=1;
3498 for ( my $i = 0; $i < $l ; $i++)
3499 {
3500 if ( $_[$i] eq ':constant' )
3501 {
3502 # This causes overlord er load to step in. 'binary' and 'integer'
3503 # are handled by BigInt.
3504 overload::constant float => sub { $self->new(shift); };
3505 }
3506 elsif ($_[$i] eq 'upgrade')
3507 {
3508 # this causes upgrading
3509 $upgrade = $_[$i+1]; # or undef to disable
3510 $i++;
3511 }
3512 elsif ($_[$i] eq 'downgrade')
3513 {
3514 # this causes downgrading
3515 $downgrade = $_[$i+1]; # or undef to disable
3516 $i++;
3517 }
3518 elsif ($_[$i] =~ /^(lib|try|only)\z/)
3519 {
3520 # alternative library
3521 $lib = $_[$i+1] || ''; # default Calc
3522 $lib_kind = $1; # lib, try or only
3523 $i++;
3524 }
3525 elsif ($_[$i] eq 'with')
3526 {
3527 # alternative class for our private parts()
3528 # XXX: no longer supported
3529 # $MBI = $_[$i+1] || 'Math::BigInt';
3530 $i++;
3531 }
3532 else
3533 {
3534 push @a, $_[$i];
3535 }
3536 }
3537
3538 $lib =~ tr/a-zA-Z0-9,://cd; # restrict to sane characters
3539 # let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
3540 my $mbilib = eval { Math::BigInt->config()->{lib} };
3541 if ((defined $mbilib) && ($MBI eq 'Math::BigInt::Calc'))
3542 {
3543 # MBI already loaded
3544 Math::BigInt->import( $lib_kind, "$lib,$mbilib", 'objectify');
3545 }
3546 else
3547 {
3548 # MBI not loaded, or with ne "Math::BigInt::Calc"
3549 $lib .= ",$mbilib" if defined $mbilib;
3550 $lib =~ s/^,//; # don't leave empty
3551
3552 # replacement library can handle lib statement, but also could ignore it
3553
3554 # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
3555 # used in the same script, or eval inside import(). So we require MBI:
3556 require Math::BigInt;
3557 Math::BigInt->import( $lib_kind => $lib, 'objectify' );
3558 }
3559 if ($@)
3560 {
3561 require Carp; Carp::croak ("Couldn't load $lib: $! $@");
3562 }
3563 # find out which one was actually loaded
3564 $MBI = Math::BigInt->config()->{lib};
3565
3566 # register us with MBI to get notified of future lib changes
3567 Math::BigInt::_register_callback( $self, sub { $MBI = $_[0]; } );
3568
3569 $self->export_to_level(1,$self,@a); # export wanted functions
3570 }
3571
3572sub bnorm
3573 {
3574 # adjust m and e so that m is smallest possible
3575 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
3576
3577 return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3578
3579 my $zeros = $MBI->_zeros($x->{_m}); # correct for trailing zeros
3580 if ($zeros != 0)
3581 {
3582 my $z = $MBI->_new($zeros);
3583 $x->{_m} = $MBI->_rsft ($x->{_m}, $z, 10);
3584 if ($x->{_es} eq '-')
3585 {
3586 if ($MBI->_acmp($x->{_e},$z) >= 0)
3587 {
3588 $x->{_e} = $MBI->_sub ($x->{_e}, $z);
3589 $x->{_es} = '+' if $MBI->_is_zero($x->{_e});
3590 }
3591 else
3592 {
3593 $x->{_e} = $MBI->_sub ( $MBI->_copy($z), $x->{_e});
3594 $x->{_es} = '+';
3595 }
3596 }
3597 else
3598 {
3599 $x->{_e} = $MBI->_add ($x->{_e}, $z);
3600 }
3601 }
3602 else
3603 {
3604 # $x can only be 0Ey if there are no trailing zeros ('0' has 0 trailing
3605 # zeros). So, for something like 0Ey, set y to 1, and -0 => +0
3606 $x->{sign} = '+', $x->{_es} = '+', $x->{_e} = $MBI->_one()
3607 if $MBI->_is_zero($x->{_m});
3608 }
3609
3610 $x; # MBI bnorm is no-op, so dont call it
3611 }
3612
3613##############################################################################
3614
3615sub as_hex
3616 {
3617 # return number as hexadecimal string (only for integers defined)
3618 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3619
3620 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3621 return '0x0' if $x->is_zero();
3622
3623 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3624
3625 my $z = $MBI->_copy($x->{_m});
3626 if (! $MBI->_is_zero($x->{_e})) # > 0
3627 {
3628 $MBI->_lsft( $z, $x->{_e},10);
3629 }
3630 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3631 $z->as_hex();
3632 }
3633
3634sub as_bin
3635 {
3636 # return number as binary digit string (only for integers defined)
3637 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3638
3639 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3640 return '0b0' if $x->is_zero();
3641
3642 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3643
3644 my $z = $MBI->_copy($x->{_m});
3645 if (! $MBI->_is_zero($x->{_e})) # > 0
3646 {
3647 $MBI->_lsft( $z, $x->{_e},10);
3648 }
3649 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3650 $z->as_bin();
3651 }
3652
3653sub as_oct
3654 {
3655 # return number as octal digit string (only for integers defined)
3656 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3657
3658 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3659 return '0' if $x->is_zero();
3660
3661 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3662
3663 my $z = $MBI->_copy($x->{_m});
3664 if (! $MBI->_is_zero($x->{_e})) # > 0
3665 {
3666 $MBI->_lsft( $z, $x->{_e},10);
3667 }
3668 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3669 $z->as_oct();
3670 }
3671
3672sub as_number
3673 {
3674 # return copy as a bigint representation of this BigFloat number
3675 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3676
3677 return $x if $x->modify('as_number');
3678
3679 if (!$x->isa('Math::BigFloat'))
3680 {
3681 # if the object can as_number(), use it
3682 return $x->as_number() if $x->can('as_number');
3683 # otherwise, get us a float and then a number
3684 $x = $x->can('as_float') ? $x->as_float() : $self->new(0+"$x");
3685 }
3686
3687 return Math::BigInt->binf($x->sign()) if $x->is_inf();
3688 return Math::BigInt->bnan() if $x->is_nan();
3689
3690 my $z = $MBI->_copy($x->{_m});
3691 if ($x->{_es} eq '-') # < 0
3692 {
3693 $MBI->_rsft( $z, $x->{_e},10);
3694 }
3695 elsif (! $MBI->_is_zero($x->{_e})) # > 0
3696 {
3697 $MBI->_lsft( $z, $x->{_e},10);
3698 }
3699 $z = Math::BigInt->new( $x->{sign} . $MBI->_str($z));
3700 $z;
3701 }
3702
3703sub length
3704 {
3705 my $x = shift;
3706 my $class = ref($x) || $x;
3707 $x = $class->new(shift) unless ref($x);
3708
3709 return 1 if $MBI->_is_zero($x->{_m});
3710
3711 my $len = $MBI->_len($x->{_m});
3712 $len += $MBI->_num($x->{_e}) if $x->{_es} eq '+';
3713 if (wantarray())
3714 {
3715 my $t = 0;
3716 $t = $MBI->_num($x->{_e}) if $x->{_es} eq '-';
3717 return ($len, $t);
3718 }
3719 $len;
3720 }
3721
37221;
3723__END__
3724
3725=head1 NAME
3726
3727Math::BigFloat - Arbitrary size floating point math package
3728
3729=head1 SYNOPSIS
3730
3731 use Math::BigFloat;
3732
3733 # Number creation
3734 my $x = Math::BigFloat->new($str); # defaults to 0
3735 my $y = $x->copy(); # make a true copy
3736 my $nan = Math::BigFloat->bnan(); # create a NotANumber
3737 my $zero = Math::BigFloat->bzero(); # create a +0
3738 my $inf = Math::BigFloat->binf(); # create a +inf
3739 my $inf = Math::BigFloat->binf('-'); # create a -inf
3740 my $one = Math::BigFloat->bone(); # create a +1
3741 my $mone = Math::BigFloat->bone('-'); # create a -1
3742
3743 my $pi = Math::BigFloat->bpi(100); # PI to 100 digits
3744
3745 # the following examples compute their result to 100 digits accuracy:
3746 my $cos = Math::BigFloat->new(1)->bcos(100); # cosinus(1)
3747 my $sin = Math::BigFloat->new(1)->bsin(100); # sinus(1)
3748 my $atan = Math::BigFloat->new(1)->batan(100); # arcus tangens(1)
3749
3750 my $atan2 = Math::BigFloat->new( 1 )->batan2( 1 ,100); # batan(1)
3751 my $atan2 = Math::BigFloat->new( 1 )->batan2( 8 ,100); # batan(1/8)
3752 my $atan2 = Math::BigFloat->new( -2 )->batan2( 1 ,100); # batan(-2)
3753
3754 # Testing
3755 $x->is_zero(); # true if arg is +0
3756 $x->is_nan(); # true if arg is NaN
3757 $x->is_one(); # true if arg is +1
3758 $x->is_one('-'); # true if arg is -1
3759 $x->is_odd(); # true if odd, false for even
3760 $x->is_even(); # true if even, false for odd
3761 $x->is_pos(); # true if >= 0
3762 $x->is_neg(); # true if < 0
3763 $x->is_inf(sign); # true if +inf, or -inf (default is '+')
3764
3765 $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
3766 $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
3767 $x->sign(); # return the sign, either +,- or NaN
3768 $x->digit($n); # return the nth digit, counting from right
3769 $x->digit(-$n); # return the nth digit, counting from left
3770
3771 # The following all modify their first argument. If you want to preserve
3772 # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
3773 # necessary when mixing $a = $b assignments with non-overloaded math.
3774
3775 # set
3776 $x->bzero(); # set $i to 0
3777 $x->bnan(); # set $i to NaN
3778 $x->bone(); # set $x to +1
3779 $x->bone('-'); # set $x to -1
3780 $x->binf(); # set $x to inf
3781 $x->binf('-'); # set $x to -inf
3782
3783 $x->bneg(); # negation
3784 $x->babs(); # absolute value
3785 $x->bnorm(); # normalize (no-op)
3786 $x->bnot(); # two's complement (bit wise not)
3787 $x->binc(); # increment x by 1
3788 $x->bdec(); # decrement x by 1
3789
3790 $x->badd($y); # addition (add $y to $x)
3791 $x->bsub($y); # subtraction (subtract $y from $x)
3792 $x->bmul($y); # multiplication (multiply $x by $y)
3793 $x->bdiv($y); # divide, set $x to quotient
3794 # return (quo,rem) or quo if scalar
3795
3796 $x->bmod($y); # modulus ($x % $y)
3797 $x->bpow($y); # power of arguments ($x ** $y)
3798 $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
3799 $x->blsft($y, $n); # left shift by $y places in base $n
3800 $x->brsft($y, $n); # right shift by $y places in base $n
3801 # returns (quo,rem) or quo if in scalar context
3802
3803 $x->blog(); # logarithm of $x to base e (Euler's number)
3804 $x->blog($base); # logarithm of $x to base $base (f.i. 2)
3805 $x->bexp(); # calculate e ** $x where e is Euler's number
3806
3807 $x->band($y); # bit-wise and
3808 $x->bior($y); # bit-wise inclusive or
3809 $x->bxor($y); # bit-wise exclusive or
3810 $x->bnot(); # bit-wise not (two's complement)
3811
3812 $x->bsqrt(); # calculate square-root
3813 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
3814 $x->bfac(); # factorial of $x (1*2*3*4*..$x)
3815
3816 $x->bround($N); # accuracy: preserve $N digits
3817 $x->bfround($N); # precision: round to the $Nth digit
3818
3819 $x->bfloor(); # return integer less or equal than $x
3820 $x->bceil(); # return integer greater or equal than $x
3821
3822 # The following do not modify their arguments:
3823
3824 bgcd(@values); # greatest common divisor
3825 blcm(@values); # lowest common multiplicator
3826
3827 $x->bstr(); # return string
3828 $x->bsstr(); # return string in scientific notation
3829
3830 $x->as_int(); # return $x as BigInt
3831 $x->exponent(); # return exponent as BigInt
3832 $x->mantissa(); # return mantissa as BigInt
3833 $x->parts(); # return (mantissa,exponent) as BigInt
3834
3835 $x->length(); # number of digits (w/o sign and '.')
3836 ($l,$f) = $x->length(); # number of digits, and length of fraction
3837
3838 $x->precision(); # return P of $x (or global, if P of $x undef)
3839 $x->precision($n); # set P of $x to $n
3840 $x->accuracy(); # return A of $x (or global, if A of $x undef)
3841 $x->accuracy($n); # set A $x to $n
3842
3843 # these get/set the appropriate global value for all BigFloat objects
3844 Math::BigFloat->precision(); # Precision
3845 Math::BigFloat->accuracy(); # Accuracy
3846 Math::BigFloat->round_mode(); # rounding mode
3847
3848=head1 DESCRIPTION
3849
3850All operators (including basic math operations) are overloaded if you
3851declare your big floating point numbers as
3852
3853 $i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
3854
3855Operations with overloaded operators preserve the arguments, which is
3856exactly what you expect.
3857
3858=head2 Canonical notation
3859
3860Input to these routines are either BigFloat objects, or strings of the
3861following four forms:
3862
3863=over 2
3864
3865=item *
3866
3867C</^[+-]\d+$/>
3868
3869=item *
3870
3871C</^[+-]\d+\.\d*$/>
3872
3873=item *
3874
3875C</^[+-]\d+E[+-]?\d+$/>
3876
3877=item *
3878
3879C</^[+-]\d*\.\d+E[+-]?\d+$/>
3880
3881=back
3882
3883all with optional leading and trailing zeros and/or spaces. Additionally,
3884numbers are allowed to have an underscore between any two digits.
3885
3886Empty strings as well as other illegal numbers results in 'NaN'.
3887
3888bnorm() on a BigFloat object is now effectively a no-op, since the numbers
3889are always stored in normalized form. On a string, it creates a BigFloat
3890object.
3891
3892=head2 Output
3893
3894Output values are BigFloat objects (normalized), except for bstr() and bsstr().
3895
3896The string output will always have leading and trailing zeros stripped and drop
3897a plus sign. C<bstr()> will give you always the form with a decimal point,
3898while C<bsstr()> (s for scientific) gives you the scientific notation.
3899
3900 Input bstr() bsstr()
3901 '-0' '0' '0E1'
3902 ' -123 123 123' '-123123123' '-123123123E0'
3903 '00.0123' '0.0123' '123E-4'
3904 '123.45E-2' '1.2345' '12345E-4'
3905 '10E+3' '10000' '1E4'
3906
3907Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
3908C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
3909return either undef, <0, 0 or >0 and are suited for sort.
3910
3911Actual math is done by using the class defined with C<< with => Class; >> (which
3912defaults to BigInts) to represent the mantissa and exponent.
3913
3914The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
3915represent the result when input arguments are not numbers, as well as
3916the result of dividing by zero.
3917
3918=head2 C<mantissa()>, C<exponent()> and C<parts()>
3919
3920C<mantissa()> and C<exponent()> return the said parts of the BigFloat
3921as BigInts such that:
3922
3923 $m = $x->mantissa();
3924 $e = $x->exponent();
3925 $y = $m * ( 10 ** $e );
3926 print "ok\n" if $x == $y;
3927
3928C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
3929
3930A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
3931
3932Currently the mantissa is reduced as much as possible, favouring higher
3933exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
3934This might change in the future, so do not depend on it.
3935
3936=head2 Accuracy vs. Precision
3937
3938See also: L<Rounding|Rounding>.
3939
3940Math::BigFloat supports both precision (rounding to a certain place before or
3941after the dot) and accuracy (rounding to a certain number of digits). For a
3942full documentation, examples and tips on these topics please see the large
3943section about rounding in L<Math::BigInt>.
3944
3945Since things like C<sqrt(2)> or C<1 / 3> must presented with a limited
3946accuracy lest a operation consumes all resources, each operation produces
3947no more than the requested number of digits.
3948
3949If there is no global precision or accuracy set, B<and> the operation in
3950question was not called with a requested precision or accuracy, B<and> the
3951input $x has no accuracy or precision set, then a fallback parameter will
3952be used. For historical reasons, it is called C<div_scale> and can be accessed
3953via:
3954
3955 $d = Math::BigFloat->div_scale(); # query
3956 Math::BigFloat->div_scale($n); # set to $n digits
3957
3958The default value for C<div_scale> is 40.
3959
3960In case the result of one operation has more digits than specified,
3961it is rounded. The rounding mode taken is either the default mode, or the one
3962supplied to the operation after the I<scale>:
3963
3964 $x = Math::BigFloat->new(2);
3965 Math::BigFloat->accuracy(5); # 5 digits max
3966 $y = $x->copy()->bdiv(3); # will give 0.66667
3967 $y = $x->copy()->bdiv(3,6); # will give 0.666667
3968 $y = $x->copy()->bdiv(3,6,undef,'odd'); # will give 0.666667
3969 Math::BigFloat->round_mode('zero');
3970 $y = $x->copy()->bdiv(3,6); # will also give 0.666667
3971
3972Note that C<< Math::BigFloat->accuracy() >> and C<< Math::BigFloat->precision() >>
3973set the global variables, and thus B<any> newly created number will be subject
3974to the global rounding B<immediately>. This means that in the examples above, the
3975C<3> as argument to C<bdiv()> will also get an accuracy of B<5>.
3976
3977It is less confusing to either calculate the result fully, and afterwards
3978round it explicitly, or use the additional parameters to the math
3979functions like so:
3980
3981 use Math::BigFloat;
3982 $x = Math::BigFloat->new(2);
3983 $y = $x->copy()->bdiv(3);
3984 print $y->bround(5),"\n"; # will give 0.66667
3985
3986 or
3987
3988 use Math::BigFloat;
3989 $x = Math::BigFloat->new(2);
3990 $y = $x->copy()->bdiv(3,5); # will give 0.66667
3991 print "$y\n";
3992
3993=head2 Rounding
3994
3995=over 2
3996
3997=item ffround ( +$scale )
3998
3999Rounds to the $scale'th place left from the '.', counting from the dot.
4000The first digit is numbered 1.
4001
4002=item ffround ( -$scale )
4003
4004Rounds to the $scale'th place right from the '.', counting from the dot.
4005
4006=item ffround ( 0 )
4007
4008Rounds to an integer.
4009
4010=item fround ( +$scale )
4011
4012Preserves accuracy to $scale digits from the left (aka significant digits)
4013and pads the rest with zeros. If the number is between 1 and -1, the
4014significant digits count from the first non-zero after the '.'
4015
4016=item fround ( -$scale ) and fround ( 0 )
4017
4018These are effectively no-ops.
4019
4020=back
4021
4022All rounding functions take as a second parameter a rounding mode from one of
4023the following: 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'.
4024
4025The default rounding mode is 'even'. By using
4026C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
4027mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
4028no longer supported.
4029The second parameter to the round functions then overrides the default
4030temporarily.
4031
4032The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
4033'trunc' as rounding mode to make it equivalent to:
4034
4035 $x = 2.5;
4036 $y = int($x) + 2;
4037
4038You can override this by passing the desired rounding mode as parameter to
4039C<as_number()>:
4040
4041 $x = Math::BigFloat->new(2.5);
4042 $y = $x->as_number('odd'); # $y = 3
4043
4044=head1 METHODS
4045
4046Math::BigFloat supports all methods that Math::BigInt supports, except it
4047calculates non-integer results when possible. Please see L<Math::BigInt>
4048for a full description of each method. Below are just the most important
4049differences:
4050
4051=head2 accuracy
4052
4053 $x->accuracy(5); # local for $x
4054 CLASS->accuracy(5); # global for all members of CLASS
4055 # Note: This also applies to new()!
4056
4057 $A = $x->accuracy(); # read out accuracy that affects $x
4058 $A = CLASS->accuracy(); # read out global accuracy
4059
4060Set or get the global or local accuracy, aka how many significant digits the
4061results have. If you set a global accuracy, then this also applies to new()!
4062
4063Warning! The accuracy I<sticks>, e.g. once you created a number under the
4064influence of C<< CLASS->accuracy($A) >>, all results from math operations with
4065that number will also be rounded.
4066
4067In most cases, you should probably round the results explicitly using one of
4068L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
4069to the math operation as additional parameter:
4070
4071 my $x = Math::BigInt->new(30000);
4072 my $y = Math::BigInt->new(7);
4073 print scalar $x->copy()->bdiv($y, 2); # print 4300
4074 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
4075
4076=head2 precision()
4077
4078 $x->precision(-2); # local for $x, round at the second digit right of the dot
4079 $x->precision(2); # ditto, round at the second digit left of the dot
4080
4081 CLASS->precision(5); # Global for all members of CLASS
4082 # This also applies to new()!
4083 CLASS->precision(-5); # ditto
4084
4085 $P = CLASS->precision(); # read out global precision
4086 $P = $x->precision(); # read out precision that affects $x
4087
4088Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
4089set the number of digits each result should have, with L<precision> you
4090set the place where to round!
4091
4092=head2 bexp()
4093
4094 $x->bexp($accuracy); # calculate e ** X
4095
4096Calculates the expression C<e ** $x> where C<e> is Euler's number.
4097
4098This method was added in v1.82 of Math::BigInt (April 2007).
4099
4100=head2 bnok()
4101
4102 $x->bnok($y); # x over y (binomial coefficient n over k)
4103
4104Calculates the binomial coefficient n over k, also called the "choose"
4105function. The result is equivalent to:
4106
4107 ( n ) n!
4108 | - | = -------
4109 ( k ) k!(n-k)!
4110
4111This method was added in v1.84 of Math::BigInt (April 2007).
4112
4113=head2 bpi()
4114
4115 print Math::BigFloat->bpi(100), "\n";
4116
4117Calculate PI to N digits (including the 3 before the dot). The result is
4118rounded according to the current rounding mode, which defaults to "even".
4119
4120This method was added in v1.87 of Math::BigInt (June 2007).
4121
4122=head2 bcos()
4123
4124 my $x = Math::BigFloat->new(1);
4125 print $x->bcos(100), "\n";
4126
4127Calculate the cosinus of $x, modifying $x in place.
4128
4129This method was added in v1.87 of Math::BigInt (June 2007).
4130
4131=head2 bsin()
4132
4133 my $x = Math::BigFloat->new(1);
4134 print $x->bsin(100), "\n";
4135
4136Calculate the sinus of $x, modifying $x in place.
4137
4138This method was added in v1.87 of Math::BigInt (June 2007).
4139
4140=head2 batan2()
4141
4142 my $y = Math::BigFloat->new(2);
4143 my $x = Math::BigFloat->new(3);
4144 print $y->batan2($x), "\n";
4145
4146Calculate the arcus tanges of C<$y> divided by C<$x>, modifying $y in place.
4147See also L<batan()>.
4148
4149This method was added in v1.87 of Math::BigInt (June 2007).
4150
4151=head2 batan()
4152
4153 my $x = Math::BigFloat->new(1);
4154 print $x->batan(100), "\n";
4155
4156Calculate the arcus tanges of $x, modifying $x in place. See also L<batan2()>.
4157
4158This method was added in v1.87 of Math::BigInt (June 2007).
4159
4160=head2 bmuladd()
4161
4162 $x->bmuladd($y,$z);
4163
4164Multiply $x by $y, and then add $z to the result.
4165
4166This method was added in v1.87 of Math::BigInt (June 2007).
4167
4168=head1 Autocreating constants
4169
4170After C<use Math::BigFloat ':constant'> all the floating point constants
4171in the given scope are converted to C<Math::BigFloat>. This conversion
4172happens at compile time.
4173
4174In particular
4175
4176 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
4177
4178prints the value of C<2E-100>. Note that without conversion of
4179constants the expression 2E-100 will be calculated as normal floating point
4180number.
4181
4182Please note that ':constant' does not affect integer constants, nor binary
4183nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to
4184work.
4185
4186=head2 Math library
4187
4188Math with the numbers is done (by default) by a module called
4189Math::BigInt::Calc. This is equivalent to saying:
4190
4191 use Math::BigFloat lib => 'Calc';
4192
4193You can change this by using:
4194
4195 use Math::BigFloat lib => 'GMP';
4196
4197B<Note>: General purpose packages should not be explicit about the library
4198to use; let the script author decide which is best.
4199
4200Note: The keyword 'lib' will warn when the requested library could not be
4201loaded. To suppress the warning use 'try' instead:
4202
4203 use Math::BigFloat try => 'GMP';
4204
4205If your script works with huge numbers and Calc is too slow for them,
4206you can also for the loading of one of these libraries and if none
4207of them can be used, the code will die:
4208
4209 use Math::BigFloat only => 'GMP,Pari';
4210
4211The following would first try to find Math::BigInt::Foo, then
4212Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
4213
4214 use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
4215
4216See the respective low-level library documentation for further details.
4217
4218Please note that Math::BigFloat does B<not> use the denoted library itself,
4219but it merely passes the lib argument to Math::BigInt. So, instead of the need
4220to do:
4221
4222 use Math::BigInt lib => 'GMP';
4223 use Math::BigFloat;
4224
4225you can roll it all into one line:
4226
4227 use Math::BigFloat lib => 'GMP';
4228
4229It is also possible to just require Math::BigFloat:
4230
4231 require Math::BigFloat;
4232
4233This will load the necessary things (like BigInt) when they are needed, and
4234automatically.
4235
4236See L<Math::BigInt> for more details than you ever wanted to know about using
4237a different low-level library.
4238
4239=head2 Using Math::BigInt::Lite
4240
4241For backwards compatibility reasons it is still possible to
4242request a different storage class for use with Math::BigFloat:
4243
4244 use Math::BigFloat with => 'Math::BigInt::Lite';
4245
4246However, this request is ignored, as the current code now uses the low-level
4247math library for directly storing the number parts.
4248
4249=head1 EXPORTS
4250
4251C<Math::BigFloat> exports nothing by default, but can export the C<bpi()> method:
4252
4253 use Math::BigFloat qw/bpi/;
4254
4255 print bpi(10), "\n";
4256
4257=head1 BUGS
4258
4259Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.
4260
4261=head1 CAVEATS
4262
4263Do not try to be clever to insert some operations in between switching
4264libraries:
4265
4266 require Math::BigFloat;
4267 my $matter = Math::BigFloat->bone() + 4; # load BigInt and Calc
4268 Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
4269 my $anti_matter = Math::BigFloat->bone()+4; # now use Pari
4270
4271This will create objects with numbers stored in two different backend libraries,
4272and B<VERY BAD THINGS> will happen when you use these together:
4273
4274 my $flash_and_bang = $matter + $anti_matter; # Don't do this!
4275
4276=over 1
4277
4278=item stringify, bstr()
4279
4280Both stringify and bstr() now drop the leading '+'. The old code would return
4281'+1.23', the new returns '1.23'. See the documentation in L<Math::BigInt> for
4282reasoning and details.
4283
4284=item bdiv
4285
4286The following will probably not print what you expect:
4287
4288 print $c->bdiv(123.456),"\n";
4289
4290It prints both quotient and reminder since print works in list context. Also,
4291bdiv() will modify $c, so be careful. You probably want to use
4292
4293 print $c / 123.456,"\n";
4294 print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c
4295
4296instead.
4297
4298=item brsft
4299
4300The following will probably not print what you expect:
4301
4302 my $c = Math::BigFloat->new('3.14159');
4303 print $c->brsft(3,10),"\n"; # prints 0.00314153.1415
4304
4305It prints both quotient and remainder, since print calls C<brsft()> in list
4306context. Also, C<< $c->brsft() >> will modify $c, so be careful.
4307You probably want to use
4308
4309 print scalar $c->copy()->brsft(3,10),"\n";
4310 # or if you really want to modify $c
4311 print scalar $c->brsft(3,10),"\n";
4312
4313instead.
4314
4315=item Modifying and =
4316
4317Beware of:
4318
4319 $x = Math::BigFloat->new(5);
4320 $y = $x;
4321
4322It will not do what you think, e.g. making a copy of $x. Instead it just makes
4323a second reference to the B<same> object and stores it in $y. Thus anything
4324that modifies $x will modify $y (except overloaded math operators), and vice
4325versa. See L<Math::BigInt> for details and how to avoid that.
4326
4327=item bpow
4328
4329C<bpow()> now modifies the first argument, unlike the old code which left
4330it alone and only returned the result. This is to be consistent with
4331C<badd()> etc. The first will modify $x, the second one won't:
4332
4333 print bpow($x,$i),"\n"; # modify $x
4334 print $x->bpow($i),"\n"; # ditto
4335 print $x ** $i,"\n"; # leave $x alone
4336
4337=item precision() vs. accuracy()
4338
4339A common pitfall is to use L<precision()> when you want to round a result to
4340a certain number of digits:
4341
4342 use Math::BigFloat;
4343
4344 Math::BigFloat->precision(4); # does not do what you think it does
4345 my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
4346 print "$x\n"; # print "12000"
4347 my $y = Math::BigFloat->new(3); # rounds $y to "0"!
4348 print "$y\n"; # print "0"
4349 $z = $x / $y; # 12000 / 0 => NaN!
4350 print "$z\n";
4351 print $z->precision(),"\n"; # 4
4352
4353Replacing L<precision> with L<accuracy> is probably not what you want, either:
4354
4355 use Math::BigFloat;
4356
4357 Math::BigFloat->accuracy(4); # enables global rounding:
4358 my $x = Math::BigFloat->new(123456); # rounded immediately to "12350"
4359 print "$x\n"; # print "123500"
4360 my $y = Math::BigFloat->new(3); # rounded to "3
4361 print "$y\n"; # print "3"
4362 print $z = $x->copy()->bdiv($y),"\n"; # 41170
4363 print $z->accuracy(),"\n"; # 4
4364
4365What you want to use instead is:
4366
4367 use Math::BigFloat;
4368
4369 my $x = Math::BigFloat->new(123456); # no rounding
4370 print "$x\n"; # print "123456"
4371 my $y = Math::BigFloat->new(3); # no rounding
4372 print "$y\n"; # print "3"
4373 print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
4374 print $z->accuracy(),"\n"; # undef
4375
4376In addition to computing what you expected, the last example also does B<not>
4377"taint" the result with an accuracy or precision setting, which would
4378influence any further operation.
4379
4380=back
4381
4382=head1 SEE ALSO
4383
4384L<Math::BigInt>, L<Math::BigRat> and L<Math::Big> as well as
4385L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
4386
4387The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
4388because they solve the autoupgrading/downgrading issue, at least partly.
4389
4390The package at L<http://search.cpan.org/~tels/Math-BigInt> contains
4391more documentation including a full version history, testcases, empty
4392subclass files and benchmarks.
4393
4394=head1 LICENSE
4395
4396This program is free software; you may redistribute it and/or modify it under
4397the same terms as Perl itself.
4398
4399=head1 AUTHORS
4400
4401Mark Biggar, overloaded interface by Ilya Zakharevich.
4402Completely rewritten by Tels L<http://bloodgate.com> in 2001 - 2006, and still
4403at it in 2007.
4404
4405=cut