This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Eliminate opASSIGN macro usage from core
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char malformed_text[] = "Malformed UTF-8 character";
37static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39
40/* Be sure to synchronize this message with the similar one in regcomp.c */
41static const char cp_above_legal_max[] =
42 "Use of code point 0x%" UVXf " is not allowed; the"
43 " permissible max is 0x%" UVXf;
44
45/*
46=head1 Unicode Support
47These are various utility functions for manipulating UTF8-encoded
48strings. For the uninitiated, this is a method of representing arbitrary
49Unicode characters as a variable number of bytes, in such a way that
50characters in the ASCII range are unmodified, and a zero byte never appears
51within non-zero characters.
52
53=cut
54*/
55
56void
57Perl__force_out_malformed_utf8_message(pTHX_
58 const U8 *const p, /* First byte in UTF-8 sequence */
59 const U8 * const e, /* Final byte in sequence (may include
60 multiple chars */
61 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
62 usually 0, or some DISALLOW flags */
63 const bool die_here) /* If TRUE, this function does not return */
64{
65 /* This core-only function is to be called when a malformed UTF-8 character
66 * is found, in order to output the detailed information about the
67 * malformation before dieing. The reason it exists is for the occasions
68 * when such a malformation is fatal, but warnings might be turned off, so
69 * that normally they would not be actually output. This ensures that they
70 * do get output. Because a sequence may be malformed in more than one
71 * way, multiple messages may be generated, so we can't make them fatal, as
72 * that would cause the first one to die.
73 *
74 * Instead we pretend -W was passed to perl, then die afterwards. The
75 * flexibility is here to return to the caller so they can finish up and
76 * die themselves */
77 U32 errors;
78
79 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
80
81 ENTER;
82 SAVEI8(PL_dowarn);
83 SAVESPTR(PL_curcop);
84
85 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 if (PL_curcop) {
87 PL_curcop->cop_warnings = pWARN_ALL;
88 }
89
90 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
91
92 LEAVE;
93
94 if (! errors) {
95 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
96 " be called only when there are errors found");
97 }
98
99 if (die_here) {
100 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
101 }
102}
103
104STATIC HV *
105S_new_msg_hv(pTHX_ const char * const message, /* The message text */
106 U32 categories, /* Packed warning categories */
107 U32 flag) /* Flag associated with this message */
108{
109 /* Creates, populates, and returns an HV* that describes an error message
110 * for the translators between UTF8 and code point */
111
112 SV* msg_sv = newSVpv(message, 0);
113 SV* category_sv = newSVuv(categories);
114 SV* flag_bit_sv = newSVuv(flag);
115
116 HV* msg_hv = newHV();
117
118 PERL_ARGS_ASSERT_NEW_MSG_HV;
119
120 (void) hv_stores(msg_hv, "text", msg_sv);
121 (void) hv_stores(msg_hv, "warn_categories", category_sv);
122 (void) hv_stores(msg_hv, "flag_bit", flag_bit_sv);
123
124 return msg_hv;
125}
126
127/*
128=for apidoc uvoffuni_to_utf8_flags
129
130THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
131Instead, B<Almost all code should use L</uvchr_to_utf8> or
132L</uvchr_to_utf8_flags>>.
133
134This function is like them, but the input is a strict Unicode
135(as opposed to native) code point. Only in very rare circumstances should code
136not be using the native code point.
137
138For details, see the description for L</uvchr_to_utf8_flags>.
139
140=cut
141*/
142
143U8 *
144Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
145{
146 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
147
148 return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL);
149}
150
151/* All these formats take a single UV code point argument */
152const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
153const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
154 " is not recommended for open interchange";
155const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
156 " may not be portable";
157const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
158 " Unicode, requires a Perl extension," \
159 " and so is not portable";
160
161#define HANDLE_UNICODE_SURROGATE(uv, flags, msgs) \
162 STMT_START { \
163 if (flags & UNICODE_WARN_SURROGATE) { \
164 U32 category = packWARN(WARN_SURROGATE); \
165 const char * format = surrogate_cp_format; \
166 if (msgs) { \
167 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
168 category, \
169 UNICODE_GOT_SURROGATE); \
170 } \
171 else { \
172 Perl_ck_warner_d(aTHX_ category, format, uv); \
173 } \
174 } \
175 if (flags & UNICODE_DISALLOW_SURROGATE) { \
176 return NULL; \
177 } \
178 } STMT_END;
179
180#define HANDLE_UNICODE_NONCHAR(uv, flags, msgs) \
181 STMT_START { \
182 if (flags & UNICODE_WARN_NONCHAR) { \
183 U32 category = packWARN(WARN_NONCHAR); \
184 const char * format = nonchar_cp_format; \
185 if (msgs) { \
186 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
187 category, \
188 UNICODE_GOT_NONCHAR); \
189 } \
190 else { \
191 Perl_ck_warner_d(aTHX_ category, format, uv); \
192 } \
193 } \
194 if (flags & UNICODE_DISALLOW_NONCHAR) { \
195 return NULL; \
196 } \
197 } STMT_END;
198
199/* Use shorter names internally in this file */
200#define SHIFT UTF_ACCUMULATION_SHIFT
201#undef MARK
202#define MARK UTF_CONTINUATION_MARK
203#define MASK UTF_CONTINUATION_MASK
204
205/*
206=for apidoc uvchr_to_utf8_flags_msgs
207
208THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
209
210Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly.
211
212This function is for code that wants any warning and/or error messages to be
213returned to the caller rather than be displayed. All messages that would have
214been displayed if all lexical warnings are enabled will be returned.
215
216It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter
217placed after all the others, C<msgs>. If this parameter is 0, this function
218behaves identically to C<L</uvchr_to_utf8_flags>>. Otherwise, C<msgs> should
219be a pointer to an C<HV *> variable, in which this function creates a new HV to
220contain any appropriate messages. The hash has three key-value pairs, as
221follows:
222
223=over 4
224
225=item C<text>
226
227The text of the message as a C<SVpv>.
228
229=item C<warn_categories>
230
231The warning category (or categories) packed into a C<SVuv>.
232
233=item C<flag>
234
235A single flag bit associated with this message, in a C<SVuv>.
236The bit corresponds to some bit in the C<*errors> return value,
237such as C<UNICODE_GOT_SURROGATE>.
238
239=back
240
241It's important to note that specifying this parameter as non-null will cause
242any warnings this function would otherwise generate to be suppressed, and
243instead be placed in C<*msgs>. The caller can check the lexical warnings state
244(or not) when choosing what to do with the returned messages.
245
246The caller, of course, is responsible for freeing any returned HV.
247
248=cut
249*/
250
251/* Undocumented; we don't want people using this. Instead they should use
252 * uvchr_to_utf8_flags_msgs() */
253U8 *
254Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs)
255{
256 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS;
257
258 if (msgs) {
259 *msgs = NULL;
260 }
261
262 if (OFFUNI_IS_INVARIANT(uv)) {
263 *d++ = LATIN1_TO_NATIVE(uv);
264 return d;
265 }
266
267 if (uv <= MAX_UTF8_TWO_BYTE) {
268 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
269 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
270 return d;
271 }
272
273 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
274 * below, the 16 is for start bytes E0-EF (which are all the possible ones
275 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
276 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
277 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
278 * 0x800-0xFFFF on ASCII */
279 if (uv < (16 * (1U << (2 * SHIFT)))) {
280 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
281 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
282 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
283
284#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
285 aren't tested here */
286 /* The most likely code points in this range are below the surrogates.
287 * Do an extra test to quickly exclude those. */
288 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
289 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
290 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
291 {
292 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
293 }
294 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
295 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
296 }
297 }
298#endif
299 return d;
300 }
301
302 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
303 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
304 * happen starting with 4-byte characters on ASCII platforms. We unify the
305 * code for these with EBCDIC, even though some of them require 5-bytes on
306 * those, because khw believes the code saving is worth the very slight
307 * performance hit on these high EBCDIC code points. */
308
309 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
310 if (UNLIKELY(uv > MAX_LEGAL_CP)) {
311 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_LEGAL_CP);
312 }
313 if ( (flags & UNICODE_WARN_SUPER)
314 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
315 && UNICODE_IS_PERL_EXTENDED(uv)))
316 {
317 const char * format = super_cp_format;
318 U32 category = packWARN(WARN_NON_UNICODE);
319 U32 flag = UNICODE_GOT_SUPER;
320
321 /* Choose the more dire applicable warning */
322 if (UNICODE_IS_PERL_EXTENDED(uv)) {
323 format = perl_extended_cp_format;
324 if (flags & (UNICODE_WARN_PERL_EXTENDED
325 |UNICODE_DISALLOW_PERL_EXTENDED))
326 {
327 flag = UNICODE_GOT_PERL_EXTENDED;
328 }
329 }
330
331 if (msgs) {
332 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),
333 category, flag);
334 }
335 else {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE), format, uv);
337 }
338 }
339 if ( (flags & UNICODE_DISALLOW_SUPER)
340 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
341 && UNICODE_IS_PERL_EXTENDED(uv)))
342 {
343 return NULL;
344 }
345 }
346 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
347 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
348 }
349
350 /* Test for and handle 4-byte result. In the test immediately below, the
351 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
352 * characters). The 3 is for 3 continuation bytes; these each contribute
353 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
354 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
355 * 0x1_0000-0x1F_FFFF on ASCII */
356 if (uv < (8 * (1U << (3 * SHIFT)))) {
357 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
358 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
359 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
360 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
361
362#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
363 characters. The end-plane non-characters for EBCDIC were
364 handled just above */
365 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
366 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
367 }
368 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
369 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
370 }
371#endif
372
373 return d;
374 }
375
376 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
377 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
378 * format. The unrolled version above turns out to not save all that much
379 * time, and at these high code points (well above the legal Unicode range
380 * on ASCII platforms, and well above anything in common use in EBCDIC),
381 * khw believes that less code outweighs slight performance gains. */
382
383 {
384 STRLEN len = OFFUNISKIP(uv);
385 U8 *p = d+len-1;
386 while (p > d) {
387 *p-- = I8_TO_NATIVE_UTF8((uv & MASK) | MARK);
388 uv >>= SHIFT;
389 }
390 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
391 return d+len;
392 }
393}
394
395/*
396=for apidoc uvchr_to_utf8
397
398Adds the UTF-8 representation of the native code point C<uv> to the end
399of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
400C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
401the byte after the end of the new character. In other words,
402
403 d = uvchr_to_utf8(d, uv);
404
405is the recommended wide native character-aware way of saying
406
407 *(d++) = uv;
408
409This function accepts any code point from 0..C<IV_MAX> as input.
410C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
411
412It is possible to forbid or warn on non-Unicode code points, or those that may
413be problematic by using L</uvchr_to_utf8_flags>.
414
415=cut
416*/
417
418/* This is also a macro */
419PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
420
421U8 *
422Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
423{
424 return uvchr_to_utf8(d, uv);
425}
426
427/*
428=for apidoc uvchr_to_utf8_flags
429
430Adds the UTF-8 representation of the native code point C<uv> to the end
431of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
432C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
433the byte after the end of the new character. In other words,
434
435 d = uvchr_to_utf8_flags(d, uv, flags);
436
437or, in most cases,
438
439 d = uvchr_to_utf8_flags(d, uv, 0);
440
441This is the Unicode-aware way of saying
442
443 *(d++) = uv;
444
445If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
446input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
447
448Specifying C<flags> can further restrict what is allowed and not warned on, as
449follows:
450
451If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
452the function will raise a warning, provided UTF8 warnings are enabled. If
453instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
454NULL. If both flags are set, the function will both warn and return NULL.
455
456Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
457affect how the function handles a Unicode non-character.
458
459And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
460affect the handling of code points that are above the Unicode maximum of
4610x10FFFF. Languages other than Perl may not be able to accept files that
462contain these.
463
464The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
465the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
466three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
467allowed inputs to the strict UTF-8 traditionally defined by Unicode.
468Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
469C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
470above-Unicode and surrogate flags, but not the non-character ones, as
471defined in
472L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
473See L<perlunicode/Noncharacter code points>.
474
475Extremely high code points were never specified in any standard, and require an
476extension to UTF-8 to express, which Perl does. It is likely that programs
477written in something other than Perl would not be able to read files that
478contain these; nor would Perl understand files written by something that uses a
479different extension. For these reasons, there is a separate set of flags that
480can warn and/or disallow these extremely high code points, even if other
481above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
482and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
483L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
484treat all above-Unicode code points, including these, as malformations. (Note
485that the Unicode standard considers anything above 0x10FFFF to be illegal, but
486there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
487
488A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
489retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
490C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
491C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because on EBCDIC
492platforms,these flags can apply to code points that actually do fit in 31 bits.
493The new names accurately describe the situation in all cases.
494
495=cut
496*/
497
498/* This is also a macro */
499PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
500
501U8 *
502Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
503{
504 return uvchr_to_utf8_flags(d, uv, flags);
505}
506
507#ifndef UV_IS_QUAD
508
509STATIC int
510S_is_utf8_cp_above_31_bits(const U8 * const s,
511 const U8 * const e,
512 const bool consider_overlongs)
513{
514 /* Returns TRUE if the first code point represented by the Perl-extended-
515 * UTF-8-encoded string starting at 's', and looking no further than 'e -
516 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
517 *
518 * The function handles the case where the input bytes do not include all
519 * the ones necessary to represent a full character. That is, they may be
520 * the intial bytes of the representation of a code point, but possibly
521 * the final ones necessary for the complete representation may be beyond
522 * 'e - 1'.
523 *
524 * The function also can handle the case where the input is an overlong
525 * sequence. If 'consider_overlongs' is 0, the function assumes the
526 * input is not overlong, without checking, and will return based on that
527 * assumption. If this parameter is 1, the function will go to the trouble
528 * of figuring out if it actually evaluates to above or below 31 bits.
529 *
530 * The sequence is otherwise assumed to be well-formed, without checking.
531 */
532
533 const STRLEN len = e - s;
534 int is_overlong;
535
536 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
537
538 assert(! UTF8_IS_INVARIANT(*s) && e > s);
539
540#ifdef EBCDIC
541
542 PERL_UNUSED_ARG(consider_overlongs);
543
544 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
545 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
546 * also be the start byte for a 31-bit code point; we need at least 2
547 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
548 * the start byte for an overlong sequence, but for 30-bit or smaller code
549 * points, so we don't have to worry about overlongs on EBCDIC.) */
550 if (*s != 0xFE) {
551 return 0;
552 }
553
554 if (len == 1) {
555 return -1;
556 }
557
558#else
559
560 /* On ASCII, FE and FF are the only start bytes that can evaluate to
561 * needing more than 31 bits. */
562 if (LIKELY(*s < 0xFE)) {
563 return 0;
564 }
565
566 /* What we have left are FE and FF. Both of these require more than 31
567 * bits unless they are for overlongs. */
568 if (! consider_overlongs) {
569 return 1;
570 }
571
572 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
573 * above 31 bits. But we need more than one byte to discern this, so if
574 * passed just the start byte, it could be an overlong evaluating to
575 * smaller */
576 if (len == 1) {
577 return -1;
578 }
579
580 /* Having excluded len==1, and knowing that FE and FF are both valid start
581 * bytes, we can call the function below to see if the sequence is
582 * overlong. (We don't need the full generality of the called function,
583 * but for these huge code points, speed shouldn't be a consideration, and
584 * the compiler does have enough information, since it's static to this
585 * file, to optimize to just the needed parts.) */
586 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
587
588 /* If it isn't overlong, more than 31 bits are required. */
589 if (is_overlong == 0) {
590 return 1;
591 }
592
593 /* If it is indeterminate if it is overlong, return that */
594 if (is_overlong < 0) {
595 return -1;
596 }
597
598 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
599 * the max it can be is 2**31 - 1 */
600 if (*s == 0xFE) {
601 return 0;
602 }
603
604#endif
605
606 /* Here, ASCII and EBCDIC rejoin:
607 * On ASCII: We have an overlong sequence starting with FF
608 * On EBCDIC: We have a sequence starting with FE. */
609
610 { /* For C89, use a block so the declaration can be close to its use */
611
612#ifdef EBCDIC
613
614 /* U+7FFFFFFF (2 ** 31 - 1)
615 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
616 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
617 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
618 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
619 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
620 * U+80000000 (2 ** 31):
621 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
622 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
623 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
624 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
625 *
626 * and since we know that *s = \xfe, any continuation sequcence
627 * following it that is gt the below is above 31 bits
628 [0] [1] [2] [3] [4] [5] [6] */
629 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
630
631#else
632
633 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
634 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
635 * FF overlong for U+80000000 (2 ** 31):
636 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
637 * and since we know that *s = \xff, any continuation sequcence
638 * following it that is gt the below is above 30 bits
639 [0] [1] [2] [3] [4] [5] [6] */
640 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
641
642
643#endif
644 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
645 const STRLEN cmp_len = MIN(conts_len, len - 1);
646
647 /* Now compare the continuation bytes in s with the ones we have
648 * compiled in that are for the largest 30 bit code point. If we have
649 * enough bytes available to determine the answer, or the bytes we do
650 * have differ from them, we can compare the two to get a definitive
651 * answer (Note that in UTF-EBCDIC, the two lowest possible
652 * continuation bytes are \x41 and \x42.) */
653 if (cmp_len >= conts_len || memNE(s + 1,
654 conts_for_highest_30_bit,
655 cmp_len))
656 {
657 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
658 }
659
660 /* Here, all the bytes we have are the same as the highest 30-bit code
661 * point, but we are missing so many bytes that we can't make the
662 * determination */
663 return -1;
664 }
665}
666
667#endif
668
669PERL_STATIC_INLINE int
670S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
671{
672 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
673 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
674 * it isn't, and -1 if there isn't enough information to tell. This last
675 * return value can happen if the sequence is incomplete, missing some
676 * trailing bytes that would form a complete character. If there are
677 * enough bytes to make a definitive decision, this function does so.
678 * Usually 2 bytes sufficient.
679 *
680 * Overlongs can occur whenever the number of continuation bytes changes.
681 * That means whenever the number of leading 1 bits in a start byte
682 * increases from the next lower start byte. That happens for start bytes
683 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
684 * start bytes have already been excluded, so don't need to be tested here;
685 * ASCII platforms: C0, C1
686 * EBCDIC platforms C0, C1, C2, C3, C4, E0
687 */
688
689 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
690 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
691
692 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
693 assert(len > 1 && UTF8_IS_START(*s));
694
695 /* Each platform has overlongs after the start bytes given above (expressed
696 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
697 * the logic is the same, except the E0 overlong has already been excluded
698 * on EBCDIC platforms. The values below were found by manually
699 * inspecting the UTF-8 patterns. See the tables in utf8.h and
700 * utfebcdic.h. */
701
702# ifdef EBCDIC
703# define F0_ABOVE_OVERLONG 0xB0
704# define F8_ABOVE_OVERLONG 0xA8
705# define FC_ABOVE_OVERLONG 0xA4
706# define FE_ABOVE_OVERLONG 0xA2
707# define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
708 /* I8(0xfe) is FF */
709# else
710
711 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
712 return 1;
713 }
714
715# define F0_ABOVE_OVERLONG 0x90
716# define F8_ABOVE_OVERLONG 0x88
717# define FC_ABOVE_OVERLONG 0x84
718# define FE_ABOVE_OVERLONG 0x82
719# define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
720# endif
721
722
723 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
724 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
725 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
726 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
727 {
728 return 1;
729 }
730
731 /* Check for the FF overlong */
732 return isFF_OVERLONG(s, len);
733}
734
735PERL_STATIC_INLINE int
736S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
737{
738 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
739 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
740 * it isn't, and -1 if there isn't enough information to tell. This last
741 * return value can happen if the sequence is incomplete, missing some
742 * trailing bytes that would form a complete character. If there are
743 * enough bytes to make a definitive decision, this function does so. */
744
745 PERL_ARGS_ASSERT_ISFF_OVERLONG;
746
747 /* To be an FF overlong, all the available bytes must match */
748 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
749 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
750 {
751 return 0;
752 }
753
754 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
755 * be there; what comes after them doesn't matter. See tables in utf8.h,
756 * utfebcdic.h. */
757 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
758 return 1;
759 }
760
761 /* The missing bytes could cause the result to go one way or the other, so
762 * the result is indeterminate */
763 return -1;
764}
765
766#if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
767# ifdef EBCDIC /* Actually is I8 */
768# define HIGHEST_REPRESENTABLE_UTF8 \
769 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
770# else
771# define HIGHEST_REPRESENTABLE_UTF8 \
772 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
773# endif
774#endif
775
776PERL_STATIC_INLINE int
777S_does_utf8_overflow(const U8 * const s,
778 const U8 * e,
779 const bool consider_overlongs)
780{
781 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
782 * 'e' - 1 would overflow an IV on this platform; that is if it represents
783 * a code point larger than the highest representable code point. It
784 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
785 * enough information to tell. This last return value can happen if the
786 * sequence is incomplete, missing some trailing bytes that would form a
787 * complete character. If there are enough bytes to make a definitive
788 * decision, this function does so.
789 *
790 * If 'consider_overlongs' is TRUE, the function checks for the possibility
791 * that the sequence is an overlong that doesn't overflow. Otherwise, it
792 * assumes the sequence is not an overlong. This can give different
793 * results only on ASCII 32-bit platforms.
794 *
795 * (For ASCII platforms, we could use memcmp() because we don't have to
796 * convert each byte to I8, but it's very rare input indeed that would
797 * approach overflow, so the loop below will likely only get executed once.)
798 *
799 * 'e' - 1 must not be beyond a full character. */
800
801
802 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
803 assert(s <= e && s + UTF8SKIP(s) >= e);
804
805#if ! defined(UV_IS_QUAD)
806
807 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
808
809#else
810
811 PERL_UNUSED_ARG(consider_overlongs);
812
813 {
814 const STRLEN len = e - s;
815 const U8 *x;
816 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
817
818 for (x = s; x < e; x++, y++) {
819
820 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
821 continue;
822 }
823
824 /* If this byte is larger than the corresponding highest UTF-8
825 * byte, the sequence overflow; otherwise the byte is less than,
826 * and so the sequence doesn't overflow */
827 return NATIVE_UTF8_TO_I8(*x) > *y;
828
829 }
830
831 /* Got to the end and all bytes are the same. If the input is a whole
832 * character, it doesn't overflow. And if it is a partial character,
833 * there's not enough information to tell */
834 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
835 return -1;
836 }
837
838 return 0;
839 }
840
841#endif
842
843}
844
845#if 0
846
847/* This is the portions of the above function that deal with UV_MAX instead of
848 * IV_MAX. They are left here in case we want to combine them so that internal
849 * uses can have larger code points. The only logic difference is that the
850 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
851 * different logic.
852 */
853
854/* Anything larger than this will overflow the word if it were converted into a UV */
855#if defined(UV_IS_QUAD)
856# ifdef EBCDIC /* Actually is I8 */
857# define HIGHEST_REPRESENTABLE_UTF8 \
858 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
859# else
860# define HIGHEST_REPRESENTABLE_UTF8 \
861 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
862# endif
863#else /* 32-bit */
864# ifdef EBCDIC
865# define HIGHEST_REPRESENTABLE_UTF8 \
866 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
867# else
868# define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
869# endif
870#endif
871
872#if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
873
874 /* On 32 bit ASCII machines, many overlongs that start with FF don't
875 * overflow */
876 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
877
878 /* To be such an overlong, the first bytes of 's' must match
879 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
880 * don't have any additional bytes available, the sequence, when
881 * completed might or might not fit in 32 bits. But if we have that
882 * next byte, we can tell for sure. If it is <= 0x83, then it does
883 * fit. */
884 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
885 return -1;
886 }
887
888 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
889 }
890
891/* Starting with the #else, the rest of the function is identical except
892 * 1. we need to move the 'len' declaration to be global to the function
893 * 2. the endif move to just after the UNUSED_ARG.
894 * An empty endif is given just below to satisfy the preprocessor
895 */
896#endif
897
898#endif
899
900#undef F0_ABOVE_OVERLONG
901#undef F8_ABOVE_OVERLONG
902#undef FC_ABOVE_OVERLONG
903#undef FE_ABOVE_OVERLONG
904#undef FF_OVERLONG_PREFIX
905
906STRLEN
907Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
908{
909 STRLEN len;
910 const U8 *x;
911
912 /* A helper function that should not be called directly.
913 *
914 * This function returns non-zero if the string beginning at 's' and
915 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
916 * code point; otherwise it returns 0. The examination stops after the
917 * first code point in 's' is validated, not looking at the rest of the
918 * input. If 'e' is such that there are not enough bytes to represent a
919 * complete code point, this function will return non-zero anyway, if the
920 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
921 * excluded by 'flags'.
922 *
923 * A non-zero return gives the number of bytes required to represent the
924 * code point. Be aware that if the input is for a partial character, the
925 * return will be larger than 'e - s'.
926 *
927 * This function assumes that the code point represented is UTF-8 variant.
928 * The caller should have excluded the possibility of it being invariant
929 * before calling this function.
930 *
931 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
932 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
933 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
934 * disallowed by the flags. If the input is only for a partial character,
935 * the function will return non-zero if there is any sequence of
936 * well-formed UTF-8 that, when appended to the input sequence, could
937 * result in an allowed code point; otherwise it returns 0. Non characters
938 * cannot be determined based on partial character input. But many of the
939 * other excluded types can be determined with just the first one or two
940 * bytes.
941 *
942 */
943
944 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
945
946 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
947 |UTF8_DISALLOW_PERL_EXTENDED)));
948 assert(! UTF8_IS_INVARIANT(*s));
949
950 /* A variant char must begin with a start byte */
951 if (UNLIKELY(! UTF8_IS_START(*s))) {
952 return 0;
953 }
954
955 /* Examine a maximum of a single whole code point */
956 if (e - s > UTF8SKIP(s)) {
957 e = s + UTF8SKIP(s);
958 }
959
960 len = e - s;
961
962 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
963 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
964
965 /* Here, we are disallowing some set of largish code points, and the
966 * first byte indicates the sequence is for a code point that could be
967 * in the excluded set. We generally don't have to look beyond this or
968 * the second byte to see if the sequence is actually for one of the
969 * excluded classes. The code below is derived from this table:
970 *
971 * UTF-8 UTF-EBCDIC I8
972 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
973 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
974 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
975 *
976 * Keep in mind that legal continuation bytes range between \x80..\xBF
977 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
978 * continuation bytes. Hence, we don't have to test the upper edge
979 * because if any of those is encountered, the sequence is malformed,
980 * and would fail elsewhere in this function.
981 *
982 * The code here likewise assumes that there aren't other
983 * malformations; again the function should fail elsewhere because of
984 * these. For example, an overlong beginning with FC doesn't actually
985 * have to be a super; it could actually represent a small code point,
986 * even U+0000. But, since overlongs (and other malformations) are
987 * illegal, the function should return FALSE in either case.
988 */
989
990#ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
991# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
992# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
993
994# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
995 /* B6 and B7 */ \
996 && ((s1) & 0xFE ) == 0xB6)
997# define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
998#else
999# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
1000# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
1001# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
1002# define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
1003#endif
1004
1005 if ( (flags & UTF8_DISALLOW_SUPER)
1006 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1007 {
1008 return 0; /* Above Unicode */
1009 }
1010
1011 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
1012 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
1013 {
1014 return 0;
1015 }
1016
1017 if (len > 1) {
1018 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
1019
1020 if ( (flags & UTF8_DISALLOW_SUPER)
1021 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
1022 {
1023 return 0; /* Above Unicode */
1024 }
1025
1026 if ( (flags & UTF8_DISALLOW_SURROGATE)
1027 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
1028 {
1029 return 0; /* Surrogate */
1030 }
1031
1032 if ( (flags & UTF8_DISALLOW_NONCHAR)
1033 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
1034 {
1035 return 0; /* Noncharacter code point */
1036 }
1037 }
1038 }
1039
1040 /* Make sure that all that follows are continuation bytes */
1041 for (x = s + 1; x < e; x++) {
1042 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
1043 return 0;
1044 }
1045 }
1046
1047 /* Here is syntactically valid. Next, make sure this isn't the start of an
1048 * overlong. */
1049 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
1050 return 0;
1051 }
1052
1053 /* And finally, that the code point represented fits in a word on this
1054 * platform */
1055 if (0 < does_utf8_overflow(s, e,
1056 0 /* Don't consider overlongs */
1057 ))
1058 {
1059 return 0;
1060 }
1061
1062 return UTF8SKIP(s);
1063}
1064
1065char *
1066Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
1067{
1068 /* Returns a mortalized C string that is a displayable copy of the 'len'
1069 * bytes starting at 'start'. 'format' gives how to display each byte.
1070 * Currently, there are only two formats, so it is currently a bool:
1071 * 0 \xab
1072 * 1 ab (that is a space between two hex digit bytes)
1073 */
1074
1075 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
1076 trailing NUL */
1077 const U8 * s = start;
1078 const U8 * const e = start + len;
1079 char * output;
1080 char * d;
1081
1082 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
1083
1084 Newx(output, output_len, char);
1085 SAVEFREEPV(output);
1086
1087 d = output;
1088 for (s = start; s < e; s++) {
1089 const unsigned high_nibble = (*s & 0xF0) >> 4;
1090 const unsigned low_nibble = (*s & 0x0F);
1091
1092 if (format) {
1093 if (s > start) {
1094 *d++ = ' ';
1095 }
1096 }
1097 else {
1098 *d++ = '\\';
1099 *d++ = 'x';
1100 }
1101
1102 if (high_nibble < 10) {
1103 *d++ = high_nibble + '0';
1104 }
1105 else {
1106 *d++ = high_nibble - 10 + 'a';
1107 }
1108
1109 if (low_nibble < 10) {
1110 *d++ = low_nibble + '0';
1111 }
1112 else {
1113 *d++ = low_nibble - 10 + 'a';
1114 }
1115 }
1116
1117 *d = '\0';
1118 return output;
1119}
1120
1121PERL_STATIC_INLINE char *
1122S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1123
1124 /* Max number of bytes to print */
1125 STRLEN print_len,
1126
1127 /* Which one is the non-continuation */
1128 const STRLEN non_cont_byte_pos,
1129
1130 /* How many bytes should there be? */
1131 const STRLEN expect_len)
1132{
1133 /* Return the malformation warning text for an unexpected continuation
1134 * byte. */
1135
1136 const char * const where = (non_cont_byte_pos == 1)
1137 ? "immediately"
1138 : Perl_form(aTHX_ "%d bytes",
1139 (int) non_cont_byte_pos);
1140 const U8 * x = s + non_cont_byte_pos;
1141 const U8 * e = s + print_len;
1142
1143 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1144
1145 /* We don't need to pass this parameter, but since it has already been
1146 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1147 assert(expect_len == UTF8SKIP(s));
1148
1149 /* As a defensive coding measure, don't output anything past a NUL. Such
1150 * bytes shouldn't be in the middle of a malformation, and could mark the
1151 * end of the allocated string, and what comes after is undefined */
1152 for (; x < e; x++) {
1153 if (*x == '\0') {
1154 x++; /* Output this particular NUL */
1155 break;
1156 }
1157 }
1158
1159 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1160 " %s after start byte 0x%02x; need %d bytes, got %d)",
1161 malformed_text,
1162 _byte_dump_string(s, x - s, 0),
1163 *(s + non_cont_byte_pos),
1164 where,
1165 *s,
1166 (int) expect_len,
1167 (int) non_cont_byte_pos);
1168}
1169
1170/*
1171
1172=for apidoc utf8n_to_uvchr
1173
1174THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1175Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1176
1177Bottom level UTF-8 decode routine.
1178Returns the native code point value of the first character in the string C<s>,
1179which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1180C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1181the length, in bytes, of that character.
1182
1183The value of C<flags> determines the behavior when C<s> does not point to a
1184well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1185causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1186is the next possible position in C<s> that could begin a non-malformed
1187character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1188is raised. Some UTF-8 input sequences may contain multiple malformations.
1189This function tries to find every possible one in each call, so multiple
1190warnings can be raised for the same sequence.
1191
1192Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1193individual types of malformations, such as the sequence being overlong (that
1194is, when there is a shorter sequence that can express the same code point;
1195overlong sequences are expressly forbidden in the UTF-8 standard due to
1196potential security issues). Another malformation example is the first byte of
1197a character not being a legal first byte. See F<utf8.h> for the list of such
1198flags. Even if allowed, this function generally returns the Unicode
1199REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1200F<utf8.h> to override this behavior for the overlong malformations, but don't
1201do that except for very specialized purposes.
1202
1203The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1204flags) malformation is found. If this flag is set, the routine assumes that
1205the caller will raise a warning, and this function will silently just set
1206C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1207
1208Note that this API requires disambiguation between successful decoding a C<NUL>
1209character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1210in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1211be set to 1. To disambiguate, upon a zero return, see if the first byte of
1212C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1213error. Or you can use C<L</utf8n_to_uvchr_error>>.
1214
1215Certain code points are considered problematic. These are Unicode surrogates,
1216Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1217By default these are considered regular code points, but certain situations
1218warrant special handling for them, which can be specified using the C<flags>
1219parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1220three classes are treated as malformations and handled as such. The flags
1221C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1222C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1223disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1224restricts the allowed inputs to the strict UTF-8 traditionally defined by
1225Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1226definition given by
1227L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
1228The difference between traditional strictness and C9 strictness is that the
1229latter does not forbid non-character code points. (They are still discouraged,
1230however.) For more discussion see L<perlunicode/Noncharacter code points>.
1231
1232The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1233C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1234C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1235raised for their respective categories, but otherwise the code points are
1236considered valid (not malformations). To get a category to both be treated as
1237a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1238(But note that warnings are not raised if lexically disabled nor if
1239C<UTF8_CHECK_ONLY> is also specified.)
1240
1241Extremely high code points were never specified in any standard, and require an
1242extension to UTF-8 to express, which Perl does. It is likely that programs
1243written in something other than Perl would not be able to read files that
1244contain these; nor would Perl understand files written by something that uses a
1245different extension. For these reasons, there is a separate set of flags that
1246can warn and/or disallow these extremely high code points, even if other
1247above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1248C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1249L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1250above-Unicode code points, including these, as malformations.
1251(Note that the Unicode standard considers anything above 0x10FFFF to be
1252illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1253(2**31 -1))
1254
1255A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1256retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1257C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1258C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1259can apply to code points that actually do fit in 31 bits. This happens on
1260EBCDIC platforms, and sometimes when the L<overlong
1261malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1262describe the situation in all cases.
1263
1264
1265All other code points corresponding to Unicode characters, including private
1266use and those yet to be assigned, are never considered malformed and never
1267warn.
1268
1269=cut
1270
1271Also implemented as a macro in utf8.h
1272*/
1273
1274UV
1275Perl_utf8n_to_uvchr(const U8 *s,
1276 STRLEN curlen,
1277 STRLEN *retlen,
1278 const U32 flags)
1279{
1280 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1281
1282 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1283}
1284
1285/*
1286
1287=for apidoc utf8n_to_uvchr_error
1288
1289THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1290Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1291
1292This function is for code that needs to know what the precise malformation(s)
1293are when an error is found. If you also need to know the generated warning
1294messages, use L</utf8n_to_uvchr_msgs>() instead.
1295
1296It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1297all the others, C<errors>. If this parameter is 0, this function behaves
1298identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1299to a C<U32> variable, which this function sets to indicate any errors found.
1300Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1301C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1302of these bits will be set if a malformation is found, even if the input
1303C<flags> parameter indicates that the given malformation is allowed; those
1304exceptions are noted:
1305
1306=over 4
1307
1308=item C<UTF8_GOT_PERL_EXTENDED>
1309
1310The input sequence is not standard UTF-8, but a Perl extension. This bit is
1311set only if the input C<flags> parameter contains either the
1312C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1313
1314Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1315and so some extension must be used to express them. Perl uses a natural
1316extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1317extension to represent even higher ones, so that any code point that fits in a
131864-bit word can be represented. Text using these extensions is not likely to
1319be portable to non-Perl code. We lump both of these extensions together and
1320refer to them as Perl extended UTF-8. There exist other extensions that people
1321have invented, incompatible with Perl's.
1322
1323On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1324extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1325than on ASCII. Prior to that, code points 2**31 and higher were simply
1326unrepresentable, and a different, incompatible method was used to represent
1327code points between 2**30 and 2**31 - 1.
1328
1329On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1330Perl extended UTF-8 is used.
1331
1332In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1333may use for backward compatibility. That name is misleading, as this flag may
1334be set when the code point actually does fit in 31 bits. This happens on
1335EBCDIC platforms, and sometimes when the L<overlong
1336malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1337describes the situation in all cases.
1338
1339=item C<UTF8_GOT_CONTINUATION>
1340
1341The input sequence was malformed in that the first byte was a a UTF-8
1342continuation byte.
1343
1344=item C<UTF8_GOT_EMPTY>
1345
1346The input C<curlen> parameter was 0.
1347
1348=item C<UTF8_GOT_LONG>
1349
1350The input sequence was malformed in that there is some other sequence that
1351evaluates to the same code point, but that sequence is shorter than this one.
1352
1353Until Unicode 3.1, it was legal for programs to accept this malformation, but
1354it was discovered that this created security issues.
1355
1356=item C<UTF8_GOT_NONCHAR>
1357
1358The code point represented by the input UTF-8 sequence is for a Unicode
1359non-character code point.
1360This bit is set only if the input C<flags> parameter contains either the
1361C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1362
1363=item C<UTF8_GOT_NON_CONTINUATION>
1364
1365The input sequence was malformed in that a non-continuation type byte was found
1366in a position where only a continuation type one should be. See also
1367L</C<UTF8_GOT_SHORT>>.
1368
1369=item C<UTF8_GOT_OVERFLOW>
1370
1371The input sequence was malformed in that it is for a code point that is not
1372representable in the number of bits available in an IV on the current platform.
1373
1374=item C<UTF8_GOT_SHORT>
1375
1376The input sequence was malformed in that C<curlen> is smaller than required for
1377a complete sequence. In other words, the input is for a partial character
1378sequence.
1379
1380
1381C<UTF8_GOT_SHORT> and C<UTF8_GOT_NON_CONTINUATION> both indicate a too short
1382sequence. The difference is that C<UTF8_GOT_NON_CONTINUATION> indicates always
1383that there is an error, while C<UTF8_GOT_SHORT> means that an incomplete
1384sequence was looked at. If no other flags are present, it means that the
1385sequence was valid as far as it went. Depending on the application, this could
1386mean one of three things:
1387
1388=over
1389
1390=item *
1391
1392The C<curlen> length parameter passed in was too small, and the function was
1393prevented from examining all the necessary bytes.
1394
1395=item *
1396
1397The buffer being looked at is based on reading data, and the data received so
1398far stopped in the middle of a character, so that the next read will
1399read the remainder of this character. (It is up to the caller to deal with the
1400split bytes somehow.)
1401
1402=item *
1403
1404This is a real error, and the partial sequence is all we're going to get.
1405
1406=back
1407
1408=item C<UTF8_GOT_SUPER>
1409
1410The input sequence was malformed in that it is for a non-Unicode code point;
1411that is, one above the legal Unicode maximum.
1412This bit is set only if the input C<flags> parameter contains either the
1413C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1414
1415=item C<UTF8_GOT_SURROGATE>
1416
1417The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1418code point.
1419This bit is set only if the input C<flags> parameter contains either the
1420C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1421
1422=back
1423
1424To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1425flag to suppress any warnings, and then examine the C<*errors> return.
1426
1427=cut
1428
1429Also implemented as a macro in utf8.h
1430*/
1431
1432UV
1433Perl_utf8n_to_uvchr_error(const U8 *s,
1434 STRLEN curlen,
1435 STRLEN *retlen,
1436 const U32 flags,
1437 U32 * errors)
1438{
1439 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1440
1441 return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL);
1442}
1443
1444/*
1445
1446=for apidoc utf8n_to_uvchr_msgs
1447
1448THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1449Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1450
1451This function is for code that needs to know what the precise malformation(s)
1452are when an error is found, and wants the corresponding warning and/or error
1453messages to be returned to the caller rather than be displayed. All messages
1454that would have been displayed if all lexcial warnings are enabled will be
1455returned.
1456
1457It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter
1458placed after all the others, C<msgs>. If this parameter is 0, this function
1459behaves identically to C<L</utf8n_to_uvchr_error>>. Otherwise, C<msgs> should
1460be a pointer to an C<AV *> variable, in which this function creates a new AV to
1461contain any appropriate messages. The elements of the array are ordered so
1462that the first message that would have been displayed is in the 0th element,
1463and so on. Each element is a hash with three key-value pairs, as follows:
1464
1465=over 4
1466
1467=item C<text>
1468
1469The text of the message as a C<SVpv>.
1470
1471=item C<warn_categories>
1472
1473The warning category (or categories) packed into a C<SVuv>.
1474
1475=item C<flag>
1476
1477A single flag bit associated with this message, in a C<SVuv>.
1478The bit corresponds to some bit in the C<*errors> return value,
1479such as C<UTF8_GOT_LONG>.
1480
1481=back
1482
1483It's important to note that specifying this parameter as non-null will cause
1484any warnings this function would otherwise generate to be suppressed, and
1485instead be placed in C<*msgs>. The caller can check the lexical warnings state
1486(or not) when choosing what to do with the returned messages.
1487
1488If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence
1489no AV is created.
1490
1491The caller, of course, is responsible for freeing any returned AV.
1492
1493=cut
1494*/
1495
1496UV
1497Perl__utf8n_to_uvchr_msgs_helper(const U8 *s,
1498 STRLEN curlen,
1499 STRLEN *retlen,
1500 const U32 flags,
1501 U32 * errors,
1502 AV ** msgs)
1503{
1504 const U8 * const s0 = s;
1505 const U8 * send = s0 + curlen;
1506 U32 possible_problems; /* A bit is set here for each potential problem
1507 found as we go along */
1508 UV uv;
1509 STRLEN expectlen; /* How long should this sequence be? */
1510 STRLEN avail_len; /* When input is too short, gives what that is */
1511 U32 discard_errors; /* Used to save branches when 'errors' is NULL; this
1512 gets set and discarded */
1513
1514 /* The below are used only if there is both an overlong malformation and a
1515 * too short one. Otherwise the first two are set to 's0' and 'send', and
1516 * the third not used at all */
1517 U8 * adjusted_s0;
1518 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1519 routine; see [perl #130921] */
1520 UV uv_so_far;
1521 dTHX;
1522
1523 PERL_ARGS_ASSERT__UTF8N_TO_UVCHR_MSGS_HELPER;
1524
1525 /* Here, is one of: a) malformed; b) a problematic code point (surrogate,
1526 * non-unicode, or nonchar); or c) on ASCII platforms, one of the Hangul
1527 * syllables that the dfa doesn't properly handle. Quickly dispose of the
1528 * final case. */
1529
1530#ifndef EBCDIC
1531
1532 /* Each of the affected Hanguls starts with \xED */
1533
1534 if (is_HANGUL_ED_utf8_safe(s0, send)) {
1535 if (retlen) {
1536 *retlen = 3;
1537 }
1538 if (errors) {
1539 *errors = 0;
1540 }
1541 if (msgs) {
1542 *msgs = NULL;
1543 }
1544
1545 return ((0xED & UTF_START_MASK(3)) << (2 * UTF_ACCUMULATION_SHIFT))
1546 | ((s0[1] & UTF_CONTINUATION_MASK) << UTF_ACCUMULATION_SHIFT)
1547 | (s0[2] & UTF_CONTINUATION_MASK);
1548 }
1549
1550#endif
1551
1552 /* In conjunction with the exhaustive tests that can be enabled in
1553 * APItest/t/utf8_warn_base.pl, this can make sure the dfa does precisely
1554 * what it is intended to do, and that no flaws in it are masked by
1555 * dropping down and executing the code below
1556 assert(! isUTF8_CHAR(s0, send)
1557 || UTF8_IS_SURROGATE(s0, send)
1558 || UTF8_IS_SUPER(s0, send)
1559 || UTF8_IS_NONCHAR(s0,send));
1560 */
1561
1562 s = s0;
1563 uv = *s0;
1564 possible_problems = 0;
1565 expectlen = 0;
1566 avail_len = 0;
1567 discard_errors = 0;
1568 adjusted_s0 = (U8 *) s0;
1569 uv_so_far = 0;
1570
1571 if (errors) {
1572 *errors = 0;
1573 }
1574 else {
1575 errors = &discard_errors;
1576 }
1577
1578 /* The order of malformation tests here is important. We should consume as
1579 * few bytes as possible in order to not skip any valid character. This is
1580 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1581 * http://unicode.org/reports/tr36 for more discussion as to why. For
1582 * example, once we've done a UTF8SKIP, we can tell the expected number of
1583 * bytes, and could fail right off the bat if the input parameters indicate
1584 * that there are too few available. But it could be that just that first
1585 * byte is garbled, and the intended character occupies fewer bytes. If we
1586 * blindly assumed that the first byte is correct, and skipped based on
1587 * that number, we could skip over a valid input character. So instead, we
1588 * always examine the sequence byte-by-byte.
1589 *
1590 * We also should not consume too few bytes, otherwise someone could inject
1591 * things. For example, an input could be deliberately designed to
1592 * overflow, and if this code bailed out immediately upon discovering that,
1593 * returning to the caller C<*retlen> pointing to the very next byte (one
1594 * which is actually part of of the overflowing sequence), that could look
1595 * legitimate to the caller, which could discard the initial partial
1596 * sequence and process the rest, inappropriately.
1597 *
1598 * Some possible input sequences are malformed in more than one way. This
1599 * function goes to lengths to try to find all of them. This is necessary
1600 * for correctness, as the inputs may allow one malformation but not
1601 * another, and if we abandon searching for others after finding the
1602 * allowed one, we could allow in something that shouldn't have been.
1603 */
1604
1605 if (UNLIKELY(curlen == 0)) {
1606 possible_problems |= UTF8_GOT_EMPTY;
1607 curlen = 0;
1608 uv = UNICODE_REPLACEMENT;
1609 goto ready_to_handle_errors;
1610 }
1611
1612 expectlen = UTF8SKIP(s);
1613
1614 /* A well-formed UTF-8 character, as the vast majority of calls to this
1615 * function will be for, has this expected length. For efficiency, set
1616 * things up here to return it. It will be overriden only in those rare
1617 * cases where a malformation is found */
1618 if (retlen) {
1619 *retlen = expectlen;
1620 }
1621
1622 /* A continuation character can't start a valid sequence */
1623 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1624 possible_problems |= UTF8_GOT_CONTINUATION;
1625 curlen = 1;
1626 uv = UNICODE_REPLACEMENT;
1627 goto ready_to_handle_errors;
1628 }
1629
1630 /* Here is not a continuation byte, nor an invariant. The only thing left
1631 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1632 * because it excludes start bytes like \xC0 that always lead to
1633 * overlongs.) */
1634
1635 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1636 * that indicate the number of bytes in the character's whole UTF-8
1637 * sequence, leaving just the bits that are part of the value. */
1638 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1639
1640 /* Setup the loop end point, making sure to not look past the end of the
1641 * input string, and flag it as too short if the size isn't big enough. */
1642 if (UNLIKELY(curlen < expectlen)) {
1643 possible_problems |= UTF8_GOT_SHORT;
1644 avail_len = curlen;
1645 }
1646 else {
1647 send = (U8*) s0 + expectlen;
1648 }
1649
1650 /* Now, loop through the remaining bytes in the character's sequence,
1651 * accumulating each into the working value as we go. */
1652 for (s = s0 + 1; s < send; s++) {
1653 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1654 uv = UTF8_ACCUMULATE(uv, *s);
1655 continue;
1656 }
1657
1658 /* Here, found a non-continuation before processing all expected bytes.
1659 * This byte indicates the beginning of a new character, so quit, even
1660 * if allowing this malformation. */
1661 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1662 break;
1663 } /* End of loop through the character's bytes */
1664
1665 /* Save how many bytes were actually in the character */
1666 curlen = s - s0;
1667
1668 /* Note that there are two types of too-short malformation. One is when
1669 * there is actual wrong data before the normal termination of the
1670 * sequence. The other is that the sequence wasn't complete before the end
1671 * of the data we are allowed to look at, based on the input 'curlen'.
1672 * This means that we were passed data for a partial character, but it is
1673 * valid as far as we saw. The other is definitely invalid. This
1674 * distinction could be important to a caller, so the two types are kept
1675 * separate.
1676 *
1677 * A convenience macro that matches either of the too-short conditions. */
1678# define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1679
1680 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1681 uv_so_far = uv;
1682 uv = UNICODE_REPLACEMENT;
1683 }
1684
1685 /* Check for overflow. The algorithm requires us to not look past the end
1686 * of the current character, even if partial, so the upper limit is 's' */
1687 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1688 1 /* Do consider overlongs */
1689 )))
1690 {
1691 possible_problems |= UTF8_GOT_OVERFLOW;
1692 uv = UNICODE_REPLACEMENT;
1693 }
1694
1695 /* Check for overlong. If no problems so far, 'uv' is the correct code
1696 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1697 * we must look at the UTF-8 byte sequence itself to see if it is for an
1698 * overlong */
1699 if ( ( LIKELY(! possible_problems)
1700 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1701 || ( UNLIKELY(possible_problems)
1702 && ( UNLIKELY(! UTF8_IS_START(*s0))
1703 || ( curlen > 1
1704 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1705 s - s0))))))
1706 {
1707 possible_problems |= UTF8_GOT_LONG;
1708
1709 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1710
1711 /* The calculation in the 'true' branch of this 'if'
1712 * below won't work if overflows, and isn't needed
1713 * anyway. Further below we handle all overflow
1714 * cases */
1715 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1716 {
1717 UV min_uv = uv_so_far;
1718 STRLEN i;
1719
1720 /* Here, the input is both overlong and is missing some trailing
1721 * bytes. There is no single code point it could be for, but there
1722 * may be enough information present to determine if what we have
1723 * so far is for an unallowed code point, such as for a surrogate.
1724 * The code further below has the intelligence to determine this,
1725 * but just for non-overlong UTF-8 sequences. What we do here is
1726 * calculate the smallest code point the input could represent if
1727 * there were no too short malformation. Then we compute and save
1728 * the UTF-8 for that, which is what the code below looks at
1729 * instead of the raw input. It turns out that the smallest such
1730 * code point is all we need. */
1731 for (i = curlen; i < expectlen; i++) {
1732 min_uv = UTF8_ACCUMULATE(min_uv,
1733 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1734 }
1735
1736 adjusted_s0 = temp_char_buf;
1737 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1738 }
1739 }
1740
1741 /* Here, we have found all the possible problems, except for when the input
1742 * is for a problematic code point not allowed by the input parameters. */
1743
1744 /* uv is valid for overlongs */
1745 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1746
1747 /* isn't problematic if < this */
1748 && uv >= UNICODE_SURROGATE_FIRST)
1749 || ( UNLIKELY(possible_problems)
1750
1751 /* if overflow, we know without looking further
1752 * precisely which of the problematic types it is,
1753 * and we deal with those in the overflow handling
1754 * code */
1755 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1756 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1757 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1758 && ((flags & ( UTF8_DISALLOW_NONCHAR
1759 |UTF8_DISALLOW_SURROGATE
1760 |UTF8_DISALLOW_SUPER
1761 |UTF8_DISALLOW_PERL_EXTENDED
1762 |UTF8_WARN_NONCHAR
1763 |UTF8_WARN_SURROGATE
1764 |UTF8_WARN_SUPER
1765 |UTF8_WARN_PERL_EXTENDED))))
1766 {
1767 /* If there were no malformations, or the only malformation is an
1768 * overlong, 'uv' is valid */
1769 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1770 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1771 possible_problems |= UTF8_GOT_SURROGATE;
1772 }
1773 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1774 possible_problems |= UTF8_GOT_SUPER;
1775 }
1776 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1777 possible_problems |= UTF8_GOT_NONCHAR;
1778 }
1779 }
1780 else { /* Otherwise, need to look at the source UTF-8, possibly
1781 adjusted to be non-overlong */
1782
1783 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1784 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1785 {
1786 possible_problems |= UTF8_GOT_SUPER;
1787 }
1788 else if (curlen > 1) {
1789 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1790 NATIVE_UTF8_TO_I8(*adjusted_s0),
1791 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1792 {
1793 possible_problems |= UTF8_GOT_SUPER;
1794 }
1795 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1796 NATIVE_UTF8_TO_I8(*adjusted_s0),
1797 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1798 {
1799 possible_problems |= UTF8_GOT_SURROGATE;
1800 }
1801 }
1802
1803 /* We need a complete well-formed UTF-8 character to discern
1804 * non-characters, so can't look for them here */
1805 }
1806 }
1807
1808 ready_to_handle_errors:
1809
1810 /* At this point:
1811 * curlen contains the number of bytes in the sequence that
1812 * this call should advance the input by.
1813 * avail_len gives the available number of bytes passed in, but
1814 * only if this is less than the expected number of
1815 * bytes, based on the code point's start byte.
1816 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1817 * is set in it for each potential problem found.
1818 * uv contains the code point the input sequence
1819 * represents; or if there is a problem that prevents
1820 * a well-defined value from being computed, it is
1821 * some subsitute value, typically the REPLACEMENT
1822 * CHARACTER.
1823 * s0 points to the first byte of the character
1824 * s points to just after were we left off processing
1825 * the character
1826 * send points to just after where that character should
1827 * end, based on how many bytes the start byte tells
1828 * us should be in it, but no further than s0 +
1829 * avail_len
1830 */
1831
1832 if (UNLIKELY(possible_problems)) {
1833 bool disallowed = FALSE;
1834 const U32 orig_problems = possible_problems;
1835
1836 if (msgs) {
1837 *msgs = NULL;
1838 }
1839
1840 while (possible_problems) { /* Handle each possible problem */
1841 UV pack_warn = 0;
1842 char * message = NULL;
1843 U32 this_flag_bit = 0;
1844
1845 /* Each 'if' clause handles one problem. They are ordered so that
1846 * the first ones' messages will be displayed before the later
1847 * ones; this is kinda in decreasing severity order. But the
1848 * overlong must come last, as it changes 'uv' looked at by the
1849 * others */
1850 if (possible_problems & UTF8_GOT_OVERFLOW) {
1851
1852 /* Overflow means also got a super and are using Perl's
1853 * extended UTF-8, but we handle all three cases here */
1854 possible_problems
1855 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1856 *errors |= UTF8_GOT_OVERFLOW;
1857
1858 /* But the API says we flag all errors found */
1859 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1860 *errors |= UTF8_GOT_SUPER;
1861 }
1862 if (flags
1863 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1864 {
1865 *errors |= UTF8_GOT_PERL_EXTENDED;
1866 }
1867
1868 /* Disallow if any of the three categories say to */
1869 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1870 || (flags & ( UTF8_DISALLOW_SUPER
1871 |UTF8_DISALLOW_PERL_EXTENDED)))
1872 {
1873 disallowed = TRUE;
1874 }
1875
1876 /* Likewise, warn if any say to */
1877 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1878 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1879 {
1880
1881 /* The warnings code explicitly says it doesn't handle the
1882 * case of packWARN2 and two categories which have
1883 * parent-child relationship. Even if it works now to
1884 * raise the warning if either is enabled, it wouldn't
1885 * necessarily do so in the future. We output (only) the
1886 * most dire warning */
1887 if (! (flags & UTF8_CHECK_ONLY)) {
1888 if (msgs || ckWARN_d(WARN_UTF8)) {
1889 pack_warn = packWARN(WARN_UTF8);
1890 }
1891 else if (msgs || ckWARN_d(WARN_NON_UNICODE)) {
1892 pack_warn = packWARN(WARN_NON_UNICODE);
1893 }
1894 if (pack_warn) {
1895 message = Perl_form(aTHX_ "%s: %s (overflows)",
1896 malformed_text,
1897 _byte_dump_string(s0, curlen, 0));
1898 this_flag_bit = UTF8_GOT_OVERFLOW;
1899 }
1900 }
1901 }
1902 }
1903 else if (possible_problems & UTF8_GOT_EMPTY) {
1904 possible_problems &= ~UTF8_GOT_EMPTY;
1905 *errors |= UTF8_GOT_EMPTY;
1906
1907 if (! (flags & UTF8_ALLOW_EMPTY)) {
1908
1909 /* This so-called malformation is now treated as a bug in
1910 * the caller. If you have nothing to decode, skip calling
1911 * this function */
1912 assert(0);
1913
1914 disallowed = TRUE;
1915 if ( (msgs
1916 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1917 {
1918 pack_warn = packWARN(WARN_UTF8);
1919 message = Perl_form(aTHX_ "%s (empty string)",
1920 malformed_text);
1921 this_flag_bit = UTF8_GOT_EMPTY;
1922 }
1923 }
1924 }
1925 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1926 possible_problems &= ~UTF8_GOT_CONTINUATION;
1927 *errors |= UTF8_GOT_CONTINUATION;
1928
1929 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1930 disallowed = TRUE;
1931 if (( msgs
1932 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1933 {
1934 pack_warn = packWARN(WARN_UTF8);
1935 message = Perl_form(aTHX_
1936 "%s: %s (unexpected continuation byte 0x%02x,"
1937 " with no preceding start byte)",
1938 malformed_text,
1939 _byte_dump_string(s0, 1, 0), *s0);
1940 this_flag_bit = UTF8_GOT_CONTINUATION;
1941 }
1942 }
1943 }
1944 else if (possible_problems & UTF8_GOT_SHORT) {
1945 possible_problems &= ~UTF8_GOT_SHORT;
1946 *errors |= UTF8_GOT_SHORT;
1947
1948 if (! (flags & UTF8_ALLOW_SHORT)) {
1949 disallowed = TRUE;
1950 if (( msgs
1951 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1952 {
1953 pack_warn = packWARN(WARN_UTF8);
1954 message = Perl_form(aTHX_
1955 "%s: %s (too short; %d byte%s available, need %d)",
1956 malformed_text,
1957 _byte_dump_string(s0, send - s0, 0),
1958 (int)avail_len,
1959 avail_len == 1 ? "" : "s",
1960 (int)expectlen);
1961 this_flag_bit = UTF8_GOT_SHORT;
1962 }
1963 }
1964
1965 }
1966 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1967 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1968 *errors |= UTF8_GOT_NON_CONTINUATION;
1969
1970 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1971 disallowed = TRUE;
1972 if (( msgs
1973 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1974 {
1975
1976 /* If we don't know for sure that the input length is
1977 * valid, avoid as much as possible reading past the
1978 * end of the buffer */
1979 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
1980 ? s - s0
1981 : send - s0;
1982 pack_warn = packWARN(WARN_UTF8);
1983 message = Perl_form(aTHX_ "%s",
1984 unexpected_non_continuation_text(s0,
1985 printlen,
1986 s - s0,
1987 (int) expectlen));
1988 this_flag_bit = UTF8_GOT_NON_CONTINUATION;
1989 }
1990 }
1991 }
1992 else if (possible_problems & UTF8_GOT_SURROGATE) {
1993 possible_problems &= ~UTF8_GOT_SURROGATE;
1994
1995 if (flags & UTF8_WARN_SURROGATE) {
1996 *errors |= UTF8_GOT_SURROGATE;
1997
1998 if ( ! (flags & UTF8_CHECK_ONLY)
1999 && (msgs || ckWARN_d(WARN_SURROGATE)))
2000 {
2001 pack_warn = packWARN(WARN_SURROGATE);
2002
2003 /* These are the only errors that can occur with a
2004 * surrogate when the 'uv' isn't valid */
2005 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2006 message = Perl_form(aTHX_
2007 "UTF-16 surrogate (any UTF-8 sequence that"
2008 " starts with \"%s\" is for a surrogate)",
2009 _byte_dump_string(s0, curlen, 0));
2010 }
2011 else {
2012 message = Perl_form(aTHX_ surrogate_cp_format, uv);
2013 }
2014 this_flag_bit = UTF8_GOT_SURROGATE;
2015 }
2016 }
2017
2018 if (flags & UTF8_DISALLOW_SURROGATE) {
2019 disallowed = TRUE;
2020 *errors |= UTF8_GOT_SURROGATE;
2021 }
2022 }
2023 else if (possible_problems & UTF8_GOT_SUPER) {
2024 possible_problems &= ~UTF8_GOT_SUPER;
2025
2026 if (flags & UTF8_WARN_SUPER) {
2027 *errors |= UTF8_GOT_SUPER;
2028
2029 if ( ! (flags & UTF8_CHECK_ONLY)
2030 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2031 {
2032 pack_warn = packWARN(WARN_NON_UNICODE);
2033
2034 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2035 message = Perl_form(aTHX_
2036 "Any UTF-8 sequence that starts with"
2037 " \"%s\" is for a non-Unicode code point,"
2038 " may not be portable",
2039 _byte_dump_string(s0, curlen, 0));
2040 }
2041 else {
2042 message = Perl_form(aTHX_ super_cp_format, uv);
2043 }
2044 this_flag_bit = UTF8_GOT_SUPER;
2045 }
2046 }
2047
2048 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
2049 * and before possibly bailing out, so that the more dire
2050 * warning will override the regular one. */
2051 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
2052 if ( ! (flags & UTF8_CHECK_ONLY)
2053 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
2054 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2055 {
2056 pack_warn = packWARN(WARN_NON_UNICODE);
2057
2058 /* If it is an overlong that evaluates to a code point
2059 * that doesn't have to use the Perl extended UTF-8, it
2060 * still used it, and so we output a message that
2061 * doesn't refer to the code point. The same is true
2062 * if there was a SHORT malformation where the code
2063 * point is not valid. In that case, 'uv' will have
2064 * been set to the REPLACEMENT CHAR, and the message
2065 * below without the code point in it will be selected
2066 * */
2067 if (UNICODE_IS_PERL_EXTENDED(uv)) {
2068 message = Perl_form(aTHX_
2069 perl_extended_cp_format, uv);
2070 }
2071 else {
2072 message = Perl_form(aTHX_
2073 "Any UTF-8 sequence that starts with"
2074 " \"%s\" is a Perl extension, and"
2075 " so is not portable",
2076 _byte_dump_string(s0, curlen, 0));
2077 }
2078 this_flag_bit = UTF8_GOT_PERL_EXTENDED;
2079 }
2080
2081 if (flags & ( UTF8_WARN_PERL_EXTENDED
2082 |UTF8_DISALLOW_PERL_EXTENDED))
2083 {
2084 *errors |= UTF8_GOT_PERL_EXTENDED;
2085
2086 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
2087 disallowed = TRUE;
2088 }
2089 }
2090 }
2091
2092 if (flags & UTF8_DISALLOW_SUPER) {
2093 *errors |= UTF8_GOT_SUPER;
2094 disallowed = TRUE;
2095 }
2096 }
2097 else if (possible_problems & UTF8_GOT_NONCHAR) {
2098 possible_problems &= ~UTF8_GOT_NONCHAR;
2099
2100 if (flags & UTF8_WARN_NONCHAR) {
2101 *errors |= UTF8_GOT_NONCHAR;
2102
2103 if ( ! (flags & UTF8_CHECK_ONLY)
2104 && (msgs || ckWARN_d(WARN_NONCHAR)))
2105 {
2106 /* The code above should have guaranteed that we don't
2107 * get here with errors other than overlong */
2108 assert (! (orig_problems
2109 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
2110
2111 pack_warn = packWARN(WARN_NONCHAR);
2112 message = Perl_form(aTHX_ nonchar_cp_format, uv);
2113 this_flag_bit = UTF8_GOT_NONCHAR;
2114 }
2115 }
2116
2117 if (flags & UTF8_DISALLOW_NONCHAR) {
2118 disallowed = TRUE;
2119 *errors |= UTF8_GOT_NONCHAR;
2120 }
2121 }
2122 else if (possible_problems & UTF8_GOT_LONG) {
2123 possible_problems &= ~UTF8_GOT_LONG;
2124 *errors |= UTF8_GOT_LONG;
2125
2126 if (flags & UTF8_ALLOW_LONG) {
2127
2128 /* We don't allow the actual overlong value, unless the
2129 * special extra bit is also set */
2130 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
2131 & ~UTF8_ALLOW_LONG)))
2132 {
2133 uv = UNICODE_REPLACEMENT;
2134 }
2135 }
2136 else {
2137 disallowed = TRUE;
2138
2139 if (( msgs
2140 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2141 {
2142 pack_warn = packWARN(WARN_UTF8);
2143
2144 /* These error types cause 'uv' to be something that
2145 * isn't what was intended, so can't use it in the
2146 * message. The other error types either can't
2147 * generate an overlong, or else the 'uv' is valid */
2148 if (orig_problems &
2149 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
2150 {
2151 message = Perl_form(aTHX_
2152 "%s: %s (any UTF-8 sequence that starts"
2153 " with \"%s\" is overlong which can and"
2154 " should be represented with a"
2155 " different, shorter sequence)",
2156 malformed_text,
2157 _byte_dump_string(s0, send - s0, 0),
2158 _byte_dump_string(s0, curlen, 0));
2159 }
2160 else {
2161 U8 tmpbuf[UTF8_MAXBYTES+1];
2162 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
2163 uv, 0);
2164 /* Don't use U+ for non-Unicode code points, which
2165 * includes those in the Latin1 range */
2166 const char * preface = ( uv > PERL_UNICODE_MAX
2167#ifdef EBCDIC
2168 || uv <= 0xFF
2169#endif
2170 )
2171 ? "0x"
2172 : "U+";
2173 message = Perl_form(aTHX_
2174 "%s: %s (overlong; instead use %s to represent"
2175 " %s%0*" UVXf ")",
2176 malformed_text,
2177 _byte_dump_string(s0, send - s0, 0),
2178 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
2179 preface,
2180 ((uv < 256) ? 2 : 4), /* Field width of 2 for
2181 small code points */
2182 UNI_TO_NATIVE(uv));
2183 }
2184 this_flag_bit = UTF8_GOT_LONG;
2185 }
2186 }
2187 } /* End of looking through the possible flags */
2188
2189 /* Display the message (if any) for the problem being handled in
2190 * this iteration of the loop */
2191 if (message) {
2192 if (msgs) {
2193 assert(this_flag_bit);
2194
2195 if (*msgs == NULL) {
2196 *msgs = newAV();
2197 }
2198
2199 av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message,
2200 pack_warn,
2201 this_flag_bit)));
2202 }
2203 else if (PL_op)
2204 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
2205 OP_DESC(PL_op));
2206 else
2207 Perl_warner(aTHX_ pack_warn, "%s", message);
2208 }
2209 } /* End of 'while (possible_problems)' */
2210
2211 /* Since there was a possible problem, the returned length may need to
2212 * be changed from the one stored at the beginning of this function.
2213 * Instead of trying to figure out if that's needed, just do it. */
2214 if (retlen) {
2215 *retlen = curlen;
2216 }
2217
2218 if (disallowed) {
2219 if (flags & UTF8_CHECK_ONLY && retlen) {
2220 *retlen = ((STRLEN) -1);
2221 }
2222 return 0;
2223 }
2224 }
2225
2226 return UNI_TO_NATIVE(uv);
2227}
2228
2229/*
2230=for apidoc utf8_to_uvchr_buf
2231
2232Returns the native code point of the first character in the string C<s> which
2233is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2234C<*retlen> will be set to the length, in bytes, of that character.
2235
2236If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2237enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2238C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
2239(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
2240C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
2241the next possible position in C<s> that could begin a non-malformed character.
2242See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2243returned.
2244
2245=cut
2246
2247Also implemented as a macro in utf8.h
2248
2249*/
2250
2251
2252UV
2253Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2254{
2255 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
2256
2257 assert(s < send);
2258
2259 return utf8n_to_uvchr(s, send - s, retlen,
2260 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
2261}
2262
2263/* This is marked as deprecated
2264 *
2265=for apidoc utf8_to_uvuni_buf
2266
2267Only in very rare circumstances should code need to be dealing in Unicode
2268(as opposed to native) code points. In those few cases, use
2269C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead. If you
2270are not absolutely sure this is one of those cases, then assume it isn't and
2271use plain C<utf8_to_uvchr_buf> instead.
2272
2273Returns the Unicode (not-native) code point of the first character in the
2274string C<s> which
2275is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2276C<retlen> will be set to the length, in bytes, of that character.
2277
2278If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2279enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2280NULL) to -1. If those warnings are off, the computed value if well-defined (or
2281the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
2282is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
2283next possible position in C<s> that could begin a non-malformed character.
2284See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
2285
2286=cut
2287*/
2288
2289UV
2290Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2291{
2292 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
2293
2294 assert(send > s);
2295
2296 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2297}
2298
2299/*
2300=for apidoc utf8_length
2301
2302Returns the number of characters in the sequence of UTF-8-encoded bytes starting
2303at C<s> and ending at the byte just before C<e>. If <s> and <e> point to the
2304same place, it returns 0 with no warning raised.
2305
2306If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning
2307and returns the number of valid characters.
2308
2309=cut
2310*/
2311
2312STRLEN
2313Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2314{
2315 STRLEN len = 0;
2316
2317 PERL_ARGS_ASSERT_UTF8_LENGTH;
2318
2319 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2320 * the bitops (especially ~) can create illegal UTF-8.
2321 * In other words: in Perl UTF-8 is not just for Unicode. */
2322
2323 if (e < s)
2324 goto warn_and_return;
2325 while (s < e) {
2326 s += UTF8SKIP(s);
2327 len++;
2328 }
2329
2330 if (e != s) {
2331 len--;
2332 warn_and_return:
2333 if (PL_op)
2334 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2335 "%s in %s", unees, OP_DESC(PL_op));
2336 else
2337 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2338 }
2339
2340 return len;
2341}
2342
2343/*
2344=for apidoc bytes_cmp_utf8
2345
2346Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2347sequence of characters (stored as UTF-8)
2348in C<u>, C<ulen>. Returns 0 if they are
2349equal, -1 or -2 if the first string is less than the second string, +1 or +2
2350if the first string is greater than the second string.
2351
2352-1 or +1 is returned if the shorter string was identical to the start of the
2353longer string. -2 or +2 is returned if
2354there was a difference between characters
2355within the strings.
2356
2357=cut
2358*/
2359
2360int
2361Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2362{
2363 const U8 *const bend = b + blen;
2364 const U8 *const uend = u + ulen;
2365
2366 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2367
2368 while (b < bend && u < uend) {
2369 U8 c = *u++;
2370 if (!UTF8_IS_INVARIANT(c)) {
2371 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2372 if (u < uend) {
2373 U8 c1 = *u++;
2374 if (UTF8_IS_CONTINUATION(c1)) {
2375 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2376 } else {
2377 /* diag_listed_as: Malformed UTF-8 character%s */
2378 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2379 "%s %s%s",
2380 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2381 PL_op ? " in " : "",
2382 PL_op ? OP_DESC(PL_op) : "");
2383 return -2;
2384 }
2385 } else {
2386 if (PL_op)
2387 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2388 "%s in %s", unees, OP_DESC(PL_op));
2389 else
2390 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2391 return -2; /* Really want to return undef :-) */
2392 }
2393 } else {
2394 return -2;
2395 }
2396 }
2397 if (*b != c) {
2398 return *b < c ? -2 : +2;
2399 }
2400 ++b;
2401 }
2402
2403 if (b == bend && u == uend)
2404 return 0;
2405
2406 return b < bend ? +1 : -1;
2407}
2408
2409/*
2410=for apidoc utf8_to_bytes
2411
2412Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2413Unlike L</bytes_to_utf8>, this over-writes the original string, and
2414updates C<*lenp> to contain the new length.
2415Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2416
2417Upon successful return, the number of variants in the string can be computed by
2418having saved the value of C<*lenp> before the call, and subtracting the
2419after-call value of C<*lenp> from it.
2420
2421If you need a copy of the string, see L</bytes_from_utf8>.
2422
2423=cut
2424*/
2425
2426U8 *
2427Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2428{
2429 U8 * first_variant;
2430
2431 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2432 PERL_UNUSED_CONTEXT;
2433
2434 /* This is a no-op if no variants at all in the input */
2435 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2436 return s;
2437 }
2438
2439 {
2440 U8 * const save = s;
2441 U8 * const send = s + *lenp;
2442 U8 * d;
2443
2444 /* Nothing before the first variant needs to be changed, so start the real
2445 * work there */
2446 s = first_variant;
2447 while (s < send) {
2448 if (! UTF8_IS_INVARIANT(*s)) {
2449 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2450 *lenp = ((STRLEN) -1);
2451 return 0;
2452 }
2453 s++;
2454 }
2455 s++;
2456 }
2457
2458 /* Is downgradable, so do it */
2459 d = s = first_variant;
2460 while (s < send) {
2461 U8 c = *s++;
2462 if (! UVCHR_IS_INVARIANT(c)) {
2463 /* Then it is two-byte encoded */
2464 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2465 s++;
2466 }
2467 *d++ = c;
2468 }
2469 *d = '\0';
2470 *lenp = d - save;
2471
2472 return save;
2473 }
2474}
2475
2476/*
2477=for apidoc bytes_from_utf8
2478
2479Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2480byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2481actually encoded in UTF-8.
2482
2483Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2484the input string.
2485
2486Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2487not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2488C<*lenp> are unchanged, and the return value is the original C<s>.
2489
2490Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2491newly created string containing a downgraded copy of C<s>, and whose length is
2492returned in C<*lenp>, updated. The new string is C<NUL>-terminated. The
2493caller is responsible for arranging for the memory used by this string to get
2494freed.
2495
2496Upon successful return, the number of variants in the string can be computed by
2497having saved the value of C<*lenp> before the call, and subtracting the
2498after-call value of C<*lenp> from it.
2499
2500=cut
2501
2502There is a macro that avoids this function call, but this is retained for
2503anyone who calls it with the Perl_ prefix */
2504
2505U8 *
2506Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2507{
2508 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2509 PERL_UNUSED_CONTEXT;
2510
2511 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2512}
2513
2514/*
2515No = here because currently externally undocumented
2516for apidoc bytes_from_utf8_loc
2517
2518Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2519to store the location of the first character in C<"s"> that cannot be
2520converted to non-UTF8.
2521
2522If that parameter is C<NULL>, this function behaves identically to
2523C<bytes_from_utf8>.
2524
2525Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2526C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2527
2528Otherwise, the function returns a newly created C<NUL>-terminated string
2529containing the non-UTF8 equivalent of the convertible first portion of
2530C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2531If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2532and C<*first_non_downgradable> is set to C<NULL>.
2533
2534Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2535first character in the original string that wasn't converted. C<*is_utf8p> is
2536unchanged. Note that the new string may have length 0.
2537
2538Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2539C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2540converts as many characters in it as possible stopping at the first one it
2541finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2542set to point to that. The function returns the portion that could be converted
2543in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2544not including the terminating C<NUL>. If the very first character in the
2545original could not be converted, C<*lenp> will be 0, and the new string will
2546contain just a single C<NUL>. If the entire input string was converted,
2547C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2548
2549Upon successful return, the number of variants in the converted portion of the
2550string can be computed by having saved the value of C<*lenp> before the call,
2551and subtracting the after-call value of C<*lenp> from it.
2552
2553=cut
2554
2555
2556*/
2557
2558U8 *
2559Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2560{
2561 U8 *d;
2562 const U8 *original = s;
2563 U8 *converted_start;
2564 const U8 *send = s + *lenp;
2565
2566 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2567
2568 if (! *is_utf8p) {
2569 if (first_unconverted) {
2570 *first_unconverted = NULL;
2571 }
2572
2573 return (U8 *) original;
2574 }
2575
2576 Newx(d, (*lenp) + 1, U8);
2577
2578 converted_start = d;
2579 while (s < send) {
2580 U8 c = *s++;
2581 if (! UTF8_IS_INVARIANT(c)) {
2582
2583 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2584 * have to stop now */
2585 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2586 if (first_unconverted) {
2587 *first_unconverted = s - 1;
2588 goto finish_and_return;
2589 }
2590 else {
2591 Safefree(converted_start);
2592 return (U8 *) original;
2593 }
2594 }
2595
2596 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2597 s++;
2598 }
2599 *d++ = c;
2600 }
2601
2602 /* Here, converted the whole of the input */
2603 *is_utf8p = FALSE;
2604 if (first_unconverted) {
2605 *first_unconverted = NULL;
2606 }
2607
2608 finish_and_return:
2609 *d = '\0';
2610 *lenp = d - converted_start;
2611
2612 /* Trim unused space */
2613 Renew(converted_start, *lenp + 1, U8);
2614
2615 return converted_start;
2616}
2617
2618/*
2619=for apidoc bytes_to_utf8
2620
2621Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2622UTF-8.
2623Returns a pointer to the newly-created string, and sets C<*lenp> to
2624reflect the new length in bytes. The caller is responsible for arranging for
2625the memory used by this string to get freed.
2626
2627Upon successful return, the number of variants in the string can be computed by
2628having saved the value of C<*lenp> before the call, and subtracting it from the
2629after-call value of C<*lenp>.
2630
2631A C<NUL> character will be written after the end of the string.
2632
2633If you want to convert to UTF-8 from encodings other than
2634the native (Latin1 or EBCDIC),
2635see L</sv_recode_to_utf8>().
2636
2637=cut
2638*/
2639
2640U8*
2641Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2642{
2643 const U8 * const send = s + (*lenp);
2644 U8 *d;
2645 U8 *dst;
2646
2647 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2648 PERL_UNUSED_CONTEXT;
2649
2650 /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
2651 Newx(d, (*lenp) + variant_under_utf8_count(s, send) + 1, U8);
2652 dst = d;
2653
2654 while (s < send) {
2655 append_utf8_from_native_byte(*s, &d);
2656 s++;
2657 }
2658
2659 *d = '\0';
2660 *lenp = d-dst;
2661
2662 return dst;
2663}
2664
2665/*
2666 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian),
2667 * use utf16_to_utf8_reversed().
2668 *
2669 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2670 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2671 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2672 *
2673 * These functions don't check for overflow. The worst case is every code
2674 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code
2675 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the
2676 * destination must be pre-extended to 2 times the source length.
2677 *
2678 * Do not use in-place. We optimize for native, for obvious reasons. */
2679
2680U8*
2681Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2682{
2683 U8* pend;
2684 U8* dstart = d;
2685
2686 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2687
2688 if (bytelen & 1)
2689 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2690 (UV)bytelen);
2691
2692 pend = p + bytelen;
2693
2694 while (p < pend) {
2695 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2696 p += 2;
2697 if (OFFUNI_IS_INVARIANT(uv)) {
2698 *d++ = LATIN1_TO_NATIVE((U8) uv);
2699 continue;
2700 }
2701 if (uv <= MAX_UTF8_TWO_BYTE) {
2702 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2703 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2704 continue;
2705 }
2706
2707#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2708#define LAST_HIGH_SURROGATE 0xDBFF
2709#define FIRST_LOW_SURROGATE 0xDC00
2710#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2711#define FIRST_IN_PLANE1 0x10000
2712
2713 /* This assumes that most uses will be in the first Unicode plane, not
2714 * needing surrogates */
2715 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2716 && uv <= UNICODE_SURROGATE_LAST))
2717 {
2718 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2719 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2720 }
2721 else {
2722 UV low = (p[0] << 8) + p[1];
2723 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2724 || UNLIKELY(low > LAST_LOW_SURROGATE))
2725 {
2726 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2727 }
2728 p += 2;
2729 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2730 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2731 }
2732 }
2733#ifdef EBCDIC
2734 d = uvoffuni_to_utf8_flags(d, uv, 0);
2735#else
2736 if (uv < FIRST_IN_PLANE1) {
2737 *d++ = (U8)(( uv >> 12) | 0xe0);
2738 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2739 *d++ = (U8)(( uv & 0x3f) | 0x80);
2740 continue;
2741 }
2742 else {
2743 *d++ = (U8)(( uv >> 18) | 0xf0);
2744 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2745 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2746 *d++ = (U8)(( uv & 0x3f) | 0x80);
2747 continue;
2748 }
2749#endif
2750 }
2751 *newlen = d - dstart;
2752 return d;
2753}
2754
2755/* Note: this one is slightly destructive of the source. */
2756
2757U8*
2758Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2759{
2760 U8* s = (U8*)p;
2761 U8* const send = s + bytelen;
2762
2763 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2764
2765 if (bytelen & 1)
2766 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2767 (UV)bytelen);
2768
2769 while (s < send) {
2770 const U8 tmp = s[0];
2771 s[0] = s[1];
2772 s[1] = tmp;
2773 s += 2;
2774 }
2775 return utf16_to_utf8(p, d, bytelen, newlen);
2776}
2777
2778bool
2779Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2780{
2781 return _invlist_contains_cp(PL_XPosix_ptrs[classnum], c);
2782}
2783
2784/* Internal function so we can deprecate the external one, and call
2785 this one from other deprecated functions in this file */
2786
2787bool
2788Perl__is_utf8_idstart(pTHX_ const U8 *p)
2789{
2790 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2791
2792 if (*p == '_')
2793 return TRUE;
2794 return is_utf8_common(p, PL_utf8_idstart);
2795}
2796
2797bool
2798Perl__is_uni_perl_idcont(pTHX_ UV c)
2799{
2800 return _invlist_contains_cp(PL_utf8_perl_idcont, c);
2801}
2802
2803bool
2804Perl__is_uni_perl_idstart(pTHX_ UV c)
2805{
2806 return _invlist_contains_cp(PL_utf8_perl_idstart, c);
2807}
2808
2809UV
2810Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2811 const char S_or_s)
2812{
2813 /* We have the latin1-range values compiled into the core, so just use
2814 * those, converting the result to UTF-8. The only difference between upper
2815 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2816 * either "SS" or "Ss". Which one to use is passed into the routine in
2817 * 'S_or_s' to avoid a test */
2818
2819 UV converted = toUPPER_LATIN1_MOD(c);
2820
2821 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2822
2823 assert(S_or_s == 'S' || S_or_s == 's');
2824
2825 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2826 characters in this range */
2827 *p = (U8) converted;
2828 *lenp = 1;
2829 return converted;
2830 }
2831
2832 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2833 * which it maps to one of them, so as to only have to have one check for
2834 * it in the main case */
2835 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2836 switch (c) {
2837 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2838 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2839 break;
2840 case MICRO_SIGN:
2841 converted = GREEK_CAPITAL_LETTER_MU;
2842 break;
2843#if UNICODE_MAJOR_VERSION > 2 \
2844 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2845 && UNICODE_DOT_DOT_VERSION >= 8)
2846 case LATIN_SMALL_LETTER_SHARP_S:
2847 *(p)++ = 'S';
2848 *p = S_or_s;
2849 *lenp = 2;
2850 return 'S';
2851#endif
2852 default:
2853 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2854 " '%c' to map to '%c'",
2855 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2856 NOT_REACHED; /* NOTREACHED */
2857 }
2858 }
2859
2860 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2861 *p = UTF8_TWO_BYTE_LO(converted);
2862 *lenp = 2;
2863
2864 return converted;
2865}
2866
2867/* If compiled on an early Unicode version, there may not be auxiliary tables
2868 * */
2869#ifndef HAS_UC_AUX_TABLES
2870# define UC_AUX_TABLE_ptrs NULL
2871# define UC_AUX_TABLE_lengths NULL
2872#endif
2873#ifndef HAS_TC_AUX_TABLES
2874# define TC_AUX_TABLE_ptrs NULL
2875# define TC_AUX_TABLE_lengths NULL
2876#endif
2877#ifndef HAS_LC_AUX_TABLES
2878# define LC_AUX_TABLE_ptrs NULL
2879# define LC_AUX_TABLE_lengths NULL
2880#endif
2881#ifndef HAS_CF_AUX_TABLES
2882# define CF_AUX_TABLE_ptrs NULL
2883# define CF_AUX_TABLE_lengths NULL
2884#endif
2885#ifndef HAS_UC_AUX_TABLES
2886# define UC_AUX_TABLE_ptrs NULL
2887# define UC_AUX_TABLE_lengths NULL
2888#endif
2889
2890/* Call the function to convert a UTF-8 encoded character to the specified case.
2891 * Note that there may be more than one character in the result.
2892 * 's' is a pointer to the first byte of the input character
2893 * 'd' will be set to the first byte of the string of changed characters. It
2894 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2895 * 'lenp' will be set to the length in bytes of the string of changed characters
2896 *
2897 * The functions return the ordinal of the first character in the string of
2898 * 'd' */
2899#define CALL_UPPER_CASE(uv, s, d, lenp) \
2900 _to_utf8_case(uv, s, d, lenp, PL_utf8_toupper, \
2901 Uppercase_Mapping_invmap, \
2902 UC_AUX_TABLE_ptrs, \
2903 UC_AUX_TABLE_lengths, \
2904 "uppercase")
2905#define CALL_TITLE_CASE(uv, s, d, lenp) \
2906 _to_utf8_case(uv, s, d, lenp, PL_utf8_totitle, \
2907 Titlecase_Mapping_invmap, \
2908 TC_AUX_TABLE_ptrs, \
2909 TC_AUX_TABLE_lengths, \
2910 "titlecase")
2911#define CALL_LOWER_CASE(uv, s, d, lenp) \
2912 _to_utf8_case(uv, s, d, lenp, PL_utf8_tolower, \
2913 Lowercase_Mapping_invmap, \
2914 LC_AUX_TABLE_ptrs, \
2915 LC_AUX_TABLE_lengths, \
2916 "lowercase")
2917
2918
2919/* This additionally has the input parameter 'specials', which if non-zero will
2920 * cause this to use the specials hash for folding (meaning get full case
2921 * folding); otherwise, when zero, this implies a simple case fold */
2922#define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2923 (specials) \
2924 ? _to_utf8_case(uv, s, d, lenp, PL_utf8_tofold, \
2925 Case_Folding_invmap, \
2926 CF_AUX_TABLE_ptrs, \
2927 CF_AUX_TABLE_lengths, \
2928 "foldcase") \
2929 : _to_utf8_case(uv, s, d, lenp, PL_utf8_tosimplefold, \
2930 Simple_Case_Folding_invmap, \
2931 NULL, NULL, \
2932 "foldcase")
2933
2934UV
2935Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2936{
2937 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2938 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2939 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2940 * the changed version may be longer than the original character.
2941 *
2942 * The ordinal of the first character of the changed version is returned
2943 * (but note, as explained above, that there may be more.) */
2944
2945 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2946
2947 if (c < 256) {
2948 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2949 }
2950
2951 return CALL_UPPER_CASE(c, NULL, p, lenp);
2952}
2953
2954UV
2955Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2956{
2957 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2958
2959 if (c < 256) {
2960 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2961 }
2962
2963 return CALL_TITLE_CASE(c, NULL, p, lenp);
2964}
2965
2966STATIC U8
2967S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2968{
2969 /* We have the latin1-range values compiled into the core, so just use
2970 * those, converting the result to UTF-8. Since the result is always just
2971 * one character, we allow <p> to be NULL */
2972
2973 U8 converted = toLOWER_LATIN1(c);
2974
2975 PERL_UNUSED_ARG(dummy);
2976
2977 if (p != NULL) {
2978 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2979 *p = converted;
2980 *lenp = 1;
2981 }
2982 else {
2983 /* Result is known to always be < 256, so can use the EIGHT_BIT
2984 * macros */
2985 *p = UTF8_EIGHT_BIT_HI(converted);
2986 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2987 *lenp = 2;
2988 }
2989 }
2990 return converted;
2991}
2992
2993UV
2994Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2995{
2996 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2997
2998 if (c < 256) {
2999 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
3000 }
3001
3002 return CALL_LOWER_CASE(c, NULL, p, lenp);
3003}
3004
3005UV
3006Perl__to_fold_latin1(const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
3007{
3008 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
3009 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3010 * FOLD_FLAGS_FULL iff full folding is to be used;
3011 *
3012 * Not to be used for locale folds
3013 */
3014
3015 UV converted;
3016
3017 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
3018
3019 assert (! (flags & FOLD_FLAGS_LOCALE));
3020
3021 if (UNLIKELY(c == MICRO_SIGN)) {
3022 converted = GREEK_SMALL_LETTER_MU;
3023 }
3024#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3025 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3026 || UNICODE_DOT_DOT_VERSION > 0)
3027 else if ( (flags & FOLD_FLAGS_FULL)
3028 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
3029 {
3030 /* If can't cross 127/128 boundary, can't return "ss"; instead return
3031 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
3032 * under those circumstances. */
3033 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
3034 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3035 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3036 p, *lenp, U8);
3037 return LATIN_SMALL_LETTER_LONG_S;
3038 }
3039 else {
3040 *(p)++ = 's';
3041 *p = 's';
3042 *lenp = 2;
3043 return 's';
3044 }
3045 }
3046#endif
3047 else { /* In this range the fold of all other characters is their lower
3048 case */
3049 converted = toLOWER_LATIN1(c);
3050 }
3051
3052 if (UVCHR_IS_INVARIANT(converted)) {
3053 *p = (U8) converted;
3054 *lenp = 1;
3055 }
3056 else {
3057 *(p)++ = UTF8_TWO_BYTE_HI(converted);
3058 *p = UTF8_TWO_BYTE_LO(converted);
3059 *lenp = 2;
3060 }
3061
3062 return converted;
3063}
3064
3065UV
3066Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
3067{
3068
3069 /* Not currently externally documented, and subject to change
3070 * <flags> bits meanings:
3071 * FOLD_FLAGS_FULL iff full folding is to be used;
3072 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3073 * locale are to be used.
3074 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3075 */
3076
3077 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
3078
3079 if (flags & FOLD_FLAGS_LOCALE) {
3080 /* Treat a UTF-8 locale as not being in locale at all, except for
3081 * potentially warning */
3082 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3083 if (IN_UTF8_CTYPE_LOCALE) {
3084 flags &= ~FOLD_FLAGS_LOCALE;
3085 }
3086 else {
3087 goto needs_full_generality;
3088 }
3089 }
3090
3091 if (c < 256) {
3092 return _to_fold_latin1((U8) c, p, lenp,
3093 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
3094 }
3095
3096 /* Here, above 255. If no special needs, just use the macro */
3097 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
3098 return CALL_FOLD_CASE(c, NULL, p, lenp, flags & FOLD_FLAGS_FULL);
3099 }
3100 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
3101 the special flags. */
3102 U8 utf8_c[UTF8_MAXBYTES + 1];
3103
3104 needs_full_generality:
3105 uvchr_to_utf8(utf8_c, c);
3106 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
3107 p, lenp, flags);
3108 }
3109}
3110
3111PERL_STATIC_INLINE bool
3112S_is_utf8_common(pTHX_ const U8 *const p, SV* const invlist)
3113{
3114 /* returns a boolean giving whether or not the UTF8-encoded character that
3115 * starts at <p> is in the inversion list indicated by <invlist>.
3116 *
3117 * Note that it is assumed that the buffer length of <p> is enough to
3118 * contain all the bytes that comprise the character. Thus, <*p> should
3119 * have been checked before this call for mal-formedness enough to assure
3120 * that. This function, does make sure to not look past any NUL, so it is
3121 * safe to use on C, NUL-terminated, strings */
3122 STRLEN len = my_strnlen((char *) p, UTF8SKIP(p));
3123
3124 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
3125
3126 /* The API should have included a length for the UTF-8 character in <p>,
3127 * but it doesn't. We therefore assume that p has been validated at least
3128 * as far as there being enough bytes available in it to accommodate the
3129 * character without reading beyond the end, and pass that number on to the
3130 * validating routine */
3131 if (! isUTF8_CHAR(p, p + len)) {
3132 _force_out_malformed_utf8_message(p, p + len, _UTF8_NO_CONFIDENCE_IN_CURLEN,
3133 1 /* Die */ );
3134 NOT_REACHED; /* NOTREACHED */
3135 }
3136
3137 return is_utf8_common_with_len(p, p + len, invlist);
3138}
3139
3140PERL_STATIC_INLINE bool
3141S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e,
3142 SV* const invlist)
3143{
3144 /* returns a boolean giving whether or not the UTF8-encoded character that
3145 * starts at <p>, and extending no further than <e - 1> is in the inversion
3146 * list <invlist>. */
3147
3148 UV cp = utf8n_to_uvchr(p, e - p, NULL, 0);
3149
3150 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
3151
3152 if (cp == 0 && (p >= e || *p != '\0')) {
3153 _force_out_malformed_utf8_message(p, e, 0, 1);
3154 NOT_REACHED; /* NOTREACHED */
3155 }
3156
3157 assert(invlist);
3158 return _invlist_contains_cp(invlist, cp);
3159}
3160
3161STATIC void
3162S_warn_on_first_deprecated_use(pTHX_ const char * const name,
3163 const char * const alternative,
3164 const bool use_locale,
3165 const char * const file,
3166 const unsigned line)
3167{
3168 const char * key;
3169
3170 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
3171
3172 if (ckWARN_d(WARN_DEPRECATED)) {
3173
3174 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
3175 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
3176 if (! PL_seen_deprecated_macro) {
3177 PL_seen_deprecated_macro = newHV();
3178 }
3179 if (! hv_store(PL_seen_deprecated_macro, key,
3180 strlen(key), &PL_sv_undef, 0))
3181 {
3182 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3183 }
3184
3185 if (instr(file, "mathoms.c")) {
3186 Perl_warner(aTHX_ WARN_DEPRECATED,
3187 "In %s, line %d, starting in Perl v5.32, %s()"
3188 " will be removed. Avoid this message by"
3189 " converting to use %s().\n",
3190 file, line, name, alternative);
3191 }
3192 else {
3193 Perl_warner(aTHX_ WARN_DEPRECATED,
3194 "In %s, line %d, starting in Perl v5.32, %s() will"
3195 " require an additional parameter. Avoid this"
3196 " message by converting to use %s().\n",
3197 file, line, name, alternative);
3198 }
3199 }
3200 }
3201}
3202
3203bool
3204Perl__is_utf8_FOO(pTHX_ U8 classnum,
3205 const U8 * const p,
3206 const char * const name,
3207 const char * const alternative,
3208 const bool use_utf8,
3209 const bool use_locale,
3210 const char * const file,
3211 const unsigned line)
3212{
3213 PERL_ARGS_ASSERT__IS_UTF8_FOO;
3214
3215 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3216
3217 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
3218
3219 switch (classnum) {
3220 case _CC_WORDCHAR:
3221 case _CC_DIGIT:
3222 case _CC_ALPHA:
3223 case _CC_LOWER:
3224 case _CC_UPPER:
3225 case _CC_PUNCT:
3226 case _CC_PRINT:
3227 case _CC_ALPHANUMERIC:
3228 case _CC_GRAPH:
3229 case _CC_CASED:
3230
3231 return is_utf8_common(p, PL_XPosix_ptrs[classnum]);
3232
3233 case _CC_SPACE:
3234 return is_XPERLSPACE_high(p);
3235 case _CC_BLANK:
3236 return is_HORIZWS_high(p);
3237 case _CC_XDIGIT:
3238 return is_XDIGIT_high(p);
3239 case _CC_CNTRL:
3240 return 0;
3241 case _CC_ASCII:
3242 return 0;
3243 case _CC_VERTSPACE:
3244 return is_VERTWS_high(p);
3245 case _CC_IDFIRST:
3246 return is_utf8_common(p, PL_utf8_perl_idstart);
3247 case _CC_IDCONT:
3248 return is_utf8_common(p, PL_utf8_perl_idcont);
3249 }
3250 }
3251
3252 /* idcont is the same as wordchar below 256 */
3253 if (classnum == _CC_IDCONT) {
3254 classnum = _CC_WORDCHAR;
3255 }
3256 else if (classnum == _CC_IDFIRST) {
3257 if (*p == '_') {
3258 return TRUE;
3259 }
3260 classnum = _CC_ALPHA;
3261 }
3262
3263 if (! use_locale) {
3264 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3265 return _generic_isCC(*p, classnum);
3266 }
3267
3268 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
3269 }
3270 else {
3271 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3272 return isFOO_lc(classnum, *p);
3273 }
3274
3275 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
3276 }
3277
3278 NOT_REACHED; /* NOTREACHED */
3279}
3280
3281bool
3282Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
3283 const U8 * const e)
3284{
3285 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
3286
3287 return is_utf8_common_with_len(p, e, PL_XPosix_ptrs[classnum]);
3288}
3289
3290bool
3291Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
3292{
3293 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
3294
3295 return is_utf8_common_with_len(p, e, PL_utf8_perl_idstart);
3296}
3297
3298bool
3299Perl__is_utf8_xidstart(pTHX_ const U8 *p)
3300{
3301 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
3302
3303 if (*p == '_')
3304 return TRUE;
3305 return is_utf8_common(p, PL_utf8_xidstart);
3306}
3307
3308bool
3309Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
3310{
3311 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
3312
3313 return is_utf8_common_with_len(p, e, PL_utf8_perl_idcont);
3314}
3315
3316bool
3317Perl__is_utf8_idcont(pTHX_ const U8 *p)
3318{
3319 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
3320
3321 return is_utf8_common(p, PL_utf8_idcont);
3322}
3323
3324bool
3325Perl__is_utf8_xidcont(pTHX_ const U8 *p)
3326{
3327 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
3328
3329 return is_utf8_common(p, PL_utf8_xidcont);
3330}
3331
3332bool
3333Perl__is_utf8_mark(pTHX_ const U8 *p)
3334{
3335 PERL_ARGS_ASSERT__IS_UTF8_MARK;
3336
3337 return is_utf8_common(p, PL_utf8_mark);
3338}
3339
3340STATIC UV
3341S__to_utf8_case(pTHX_ const UV uv1, const U8 *p,
3342 U8* ustrp, STRLEN *lenp,
3343 SV *invlist, const int * const invmap,
3344 const unsigned int * const * const aux_tables,
3345 const U8 * const aux_table_lengths,
3346 const char * const normal)
3347{
3348 STRLEN len = 0;
3349
3350 /* Change the case of code point 'uv1' whose UTF-8 representation (assumed
3351 * by this routine to be valid) begins at 'p'. 'normal' is a string to use
3352 * to name the new case in any generated messages, as a fallback if the
3353 * operation being used is not available. The new case is given by the
3354 * data structures in the remaining arguments.
3355 *
3356 * On return 'ustrp' points to '*lenp' UTF-8 encoded bytes representing the
3357 * entire changed case string, and the return value is the first code point
3358 * in that string */
3359
3360 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3361
3362 /* For code points that don't change case, we already know that the output
3363 * of this function is the unchanged input, so we can skip doing look-ups
3364 * for them. Unfortunately the case-changing code points are scattered
3365 * around. But there are some long consecutive ranges where there are no
3366 * case changing code points. By adding tests, we can eliminate the lookup
3367 * for all the ones in such ranges. This is currently done here only for
3368 * just a few cases where the scripts are in common use in modern commerce
3369 * (and scripts adjacent to those which can be included without additional
3370 * tests). */
3371
3372 if (uv1 >= 0x0590) {
3373 /* This keeps from needing further processing the code points most
3374 * likely to be used in the following non-cased scripts: Hebrew,
3375 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3376 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3377 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3378 if (uv1 < 0x10A0) {
3379 goto cases_to_self;
3380 }
3381
3382 /* The following largish code point ranges also don't have case
3383 * changes, but khw didn't think they warranted extra tests to speed
3384 * them up (which would slightly slow down everything else above them):
3385 * 1100..139F Hangul Jamo, Ethiopic
3386 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3387 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3388 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3389 * Combining Diacritical Marks Extended, Balinese,
3390 * Sundanese, Batak, Lepcha, Ol Chiki
3391 * 2000..206F General Punctuation
3392 */
3393
3394 if (uv1 >= 0x2D30) {
3395
3396 /* This keeps the from needing further processing the code points
3397 * most likely to be used in the following non-cased major scripts:
3398 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3399 *
3400 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3401 * event that Unicode eventually allocates the unused block as of
3402 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3403 * that the test suite will start having failures to alert you
3404 * should that happen) */
3405 if (uv1 < 0xA640) {
3406 goto cases_to_self;
3407 }
3408
3409 if (uv1 >= 0xAC00) {
3410 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3411 if (ckWARN_d(WARN_SURROGATE)) {
3412 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3413 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3414 "Operation \"%s\" returns its argument for"
3415 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3416 }
3417 goto cases_to_self;
3418 }
3419
3420 /* AC00..FAFF Catches Hangul syllables and private use, plus
3421 * some others */
3422 if (uv1 < 0xFB00) {
3423 goto cases_to_self;
3424 }
3425
3426 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3427 if (UNLIKELY(uv1 > MAX_LEGAL_CP)) {
3428 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3429 MAX_LEGAL_CP);
3430 }
3431 if (ckWARN_d(WARN_NON_UNICODE)) {
3432 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3433 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3434 "Operation \"%s\" returns its argument for"
3435 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3436 }
3437 goto cases_to_self;
3438 }
3439#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3440 if (UNLIKELY(uv1
3441 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3442 {
3443
3444 /* As of Unicode 10.0, this means we avoid swash creation
3445 * for anything beyond high Plane 1 (below emojis) */
3446 goto cases_to_self;
3447 }
3448#endif
3449 }
3450 }
3451
3452 /* Note that non-characters are perfectly legal, so no warning should
3453 * be given. */
3454 }
3455
3456 {
3457 unsigned int i;
3458 const unsigned int * cp_list;
3459 U8 * d;
3460
3461 /* 'index' is guaranteed to be non-negative, as this is an inversion
3462 * map that covers all possible inputs. See [perl #133365] */
3463 SSize_t index = _invlist_search(invlist, uv1);
3464 IV base = invmap[index];
3465
3466 /* The data structures are set up so that if 'base' is non-negative,
3467 * the case change is 1-to-1; and if 0, the change is to itself */
3468 if (base >= 0) {
3469 IV lc;
3470
3471 if (base == 0) {
3472 goto cases_to_self;
3473 }
3474
3475 /* This computes, e.g. lc(H) as 'H - A + a', using the lc table */
3476 lc = base + uv1 - invlist_array(invlist)[index];
3477 *lenp = uvchr_to_utf8(ustrp, lc) - ustrp;
3478 return lc;
3479 }
3480
3481 /* Here 'base' is negative. That means the mapping is 1-to-many, and
3482 * requires an auxiliary table look up. abs(base) gives the index into
3483 * a list of such tables which points to the proper aux table. And a
3484 * parallel list gives the length of each corresponding aux table. */
3485 cp_list = aux_tables[-base];
3486
3487 /* Create the string of UTF-8 from the mapped-to code points */
3488 d = ustrp;
3489 for (i = 0; i < aux_table_lengths[-base]; i++) {
3490 d = uvchr_to_utf8(d, cp_list[i]);
3491 }
3492 *d = '\0';
3493 *lenp = d - ustrp;
3494
3495 return cp_list[0];
3496 }
3497
3498 /* Here, there was no mapping defined, which means that the code point maps
3499 * to itself. Return the inputs */
3500 cases_to_self:
3501 if (p) {
3502 len = UTF8SKIP(p);
3503 if (p != ustrp) { /* Don't copy onto itself */
3504 Copy(p, ustrp, len, U8);
3505 }
3506 *lenp = len;
3507 }
3508 else {
3509 *lenp = uvchr_to_utf8(ustrp, uv1) - ustrp;
3510 }
3511
3512 return uv1;
3513
3514}
3515
3516Size_t
3517Perl__inverse_folds(pTHX_ const UV cp, unsigned int * first_folds_to,
3518 const unsigned int ** remaining_folds_to)
3519{
3520 /* Returns the count of the number of code points that fold to the input
3521 * 'cp' (besides itself).
3522 *
3523 * If the return is 0, there is nothing else that folds to it, and
3524 * '*first_folds_to' is set to 0, and '*remaining_folds_to' is set to NULL.
3525 *
3526 * If the return is 1, '*first_folds_to' is set to the single code point,
3527 * and '*remaining_folds_to' is set to NULL.
3528 *
3529 * Otherwise, '*first_folds_to' is set to a code point, and
3530 * '*remaining_fold_to' is set to an array that contains the others. The
3531 * length of this array is the returned count minus 1.
3532 *
3533 * The reason for this convolution is to avoid having to deal with
3534 * allocating and freeing memory. The lists are already constructed, so
3535 * the return can point to them, but single code points aren't, so would
3536 * need to be constructed if we didn't employ something like this API */
3537
3538 /* 'index' is guaranteed to be non-negative, as this is an inversion map
3539 * that covers all possible inputs. See [perl #133365] */
3540 SSize_t index = _invlist_search(PL_utf8_foldclosures, cp);
3541 int base = _Perl_IVCF_invmap[index];
3542
3543 PERL_ARGS_ASSERT__INVERSE_FOLDS;
3544
3545 if (base == 0) { /* No fold */
3546 *first_folds_to = 0;
3547 *remaining_folds_to = NULL;
3548 return 0;
3549 }
3550
3551#ifndef HAS_IVCF_AUX_TABLES /* This Unicode version only has 1-1 folds */
3552
3553 assert(base > 0);
3554
3555#else
3556
3557 if (UNLIKELY(base < 0)) { /* Folds to more than one character */
3558
3559 /* The data structure is set up so that the absolute value of 'base' is
3560 * an index into a table of pointers to arrays, with the array
3561 * corresponding to the index being the list of code points that fold
3562 * to 'cp', and the parallel array containing the length of the list
3563 * array */
3564 *first_folds_to = IVCF_AUX_TABLE_ptrs[-base][0];
3565 *remaining_folds_to = IVCF_AUX_TABLE_ptrs[-base] + 1; /* +1 excludes
3566 *first_folds_to
3567 */
3568 return IVCF_AUX_TABLE_lengths[-base];
3569 }
3570
3571#endif
3572
3573 /* Only the single code point. This works like 'fc(G) = G - A + a' */
3574 *first_folds_to = base + cp - invlist_array(PL_utf8_foldclosures)[index];
3575 *remaining_folds_to = NULL;
3576 return 1;
3577}
3578
3579STATIC UV
3580S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3581 U8* const ustrp, STRLEN *lenp)
3582{
3583 /* This is called when changing the case of a UTF-8-encoded character above
3584 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3585 * result contains a character that crosses the 255/256 boundary, disallow
3586 * the change, and return the original code point. See L<perlfunc/lc> for
3587 * why;
3588 *
3589 * p points to the original string whose case was changed; assumed
3590 * by this routine to be well-formed
3591 * result the code point of the first character in the changed-case string
3592 * ustrp points to the changed-case string (<result> represents its
3593 * first char)
3594 * lenp points to the length of <ustrp> */
3595
3596 UV original; /* To store the first code point of <p> */
3597
3598 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3599
3600 assert(UTF8_IS_ABOVE_LATIN1(*p));
3601
3602 /* We know immediately if the first character in the string crosses the
3603 * boundary, so can skip testing */
3604 if (result > 255) {
3605
3606 /* Look at every character in the result; if any cross the
3607 * boundary, the whole thing is disallowed */
3608 U8* s = ustrp + UTF8SKIP(ustrp);
3609 U8* e = ustrp + *lenp;
3610 while (s < e) {
3611 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3612 goto bad_crossing;
3613 }
3614 s += UTF8SKIP(s);
3615 }
3616
3617 /* Here, no characters crossed, result is ok as-is, but we warn. */
3618 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3619 return result;
3620 }
3621
3622 bad_crossing:
3623
3624 /* Failed, have to return the original */
3625 original = valid_utf8_to_uvchr(p, lenp);
3626
3627 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3628 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3629 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3630 " locale; resolved to \"\\x{%" UVXf "}\".",
3631 OP_DESC(PL_op),
3632 original,
3633 original);
3634 Copy(p, ustrp, *lenp, char);
3635 return original;
3636}
3637
3638STATIC U32
3639S_check_and_deprecate(pTHX_ const U8 *p,
3640 const U8 **e,
3641 const unsigned int type, /* See below */
3642 const bool use_locale, /* Is this a 'LC_'
3643 macro call? */
3644 const char * const file,
3645 const unsigned line)
3646{
3647 /* This is a temporary function to deprecate the unsafe calls to the case
3648 * changing macros and functions. It keeps all the special stuff in just
3649 * one place.
3650 *
3651 * It updates *e with the pointer to the end of the input string. If using
3652 * the old-style macros, *e is NULL on input, and so this function assumes
3653 * the input string is long enough to hold the entire UTF-8 sequence, and
3654 * sets *e accordingly, but it then returns a flag to pass the
3655 * utf8n_to_uvchr(), to tell it that this size is a guess, and to avoid
3656 * using the full length if possible.
3657 *
3658 * It also does the assert that *e > p when *e is not NULL. This should be
3659 * migrated to the callers when this function gets deleted.
3660 *
3661 * The 'type' parameter is used for the caller to specify which case
3662 * changing function this is called from: */
3663
3664# define DEPRECATE_TO_UPPER 0
3665# define DEPRECATE_TO_TITLE 1
3666# define DEPRECATE_TO_LOWER 2
3667# define DEPRECATE_TO_FOLD 3
3668
3669 U32 utf8n_flags = 0;
3670 const char * name;
3671 const char * alternative;
3672
3673 PERL_ARGS_ASSERT_CHECK_AND_DEPRECATE;
3674
3675 if (*e == NULL) {
3676 utf8n_flags = _UTF8_NO_CONFIDENCE_IN_CURLEN;
3677
3678 /* strnlen() makes this function safe for the common case of
3679 * NUL-terminated strings */
3680 *e = p + my_strnlen((char *) p, UTF8SKIP(p));
3681
3682 /* For mathoms.c calls, we use the function name we know is stored
3683 * there. It could be part of a larger path */
3684 if (type == DEPRECATE_TO_UPPER) {
3685 name = instr(file, "mathoms.c")
3686 ? "to_utf8_upper"
3687 : "toUPPER_utf8";
3688 alternative = "toUPPER_utf8_safe";
3689 }
3690 else if (type == DEPRECATE_TO_TITLE) {
3691 name = instr(file, "mathoms.c")
3692 ? "to_utf8_title"
3693 : "toTITLE_utf8";
3694 alternative = "toTITLE_utf8_safe";
3695 }
3696 else if (type == DEPRECATE_TO_LOWER) {
3697 name = instr(file, "mathoms.c")
3698 ? "to_utf8_lower"
3699 : "toLOWER_utf8";
3700 alternative = "toLOWER_utf8_safe";
3701 }
3702 else if (type == DEPRECATE_TO_FOLD) {
3703 name = instr(file, "mathoms.c")
3704 ? "to_utf8_fold"
3705 : "toFOLD_utf8";
3706 alternative = "toFOLD_utf8_safe";
3707 }
3708 else Perl_croak(aTHX_ "panic: Unexpected case change type");
3709
3710 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3711 }
3712 else {
3713 assert (p < *e);
3714 }
3715
3716 return utf8n_flags;
3717}
3718
3719/* The process for changing the case is essentially the same for the four case
3720 * change types, except there are complications for folding. Otherwise the
3721 * difference is only which case to change to. To make sure that they all do
3722 * the same thing, the bodies of the functions are extracted out into the
3723 * following two macros. The functions are written with the same variable
3724 * names, and these are known and used inside these macros. It would be
3725 * better, of course, to have inline functions to do it, but since different
3726 * macros are called, depending on which case is being changed to, this is not
3727 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3728 * function can start with the common start macro, then finish with its special
3729 * handling; while the other three cases can just use the common end macro.
3730 *
3731 * The algorithm is to use the proper (passed in) macro or function to change
3732 * the case for code points that are below 256. The macro is used if using
3733 * locale rules for the case change; the function if not. If the code point is
3734 * above 255, it is computed from the input UTF-8, and another macro is called
3735 * to do the conversion. If necessary, the output is converted to UTF-8. If
3736 * using a locale, we have to check that the change did not cross the 255/256
3737 * boundary, see check_locale_boundary_crossing() for further details.
3738 *
3739 * The macros are split with the correct case change for the below-256 case
3740 * stored into 'result', and in the middle of an else clause for the above-255
3741 * case. At that point in the 'else', 'result' is not the final result, but is
3742 * the input code point calculated from the UTF-8. The fold code needs to
3743 * realize all this and take it from there.
3744 *
3745 * If you read the two macros as sequential, it's easier to understand what's
3746 * going on. */
3747#define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3748 L1_func_extra_param) \
3749 \
3750 if (flags & (locale_flags)) { \
3751 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3752 /* Treat a UTF-8 locale as not being in locale at all */ \
3753 if (IN_UTF8_CTYPE_LOCALE) { \
3754 flags &= ~(locale_flags); \
3755 } \
3756 } \
3757 \
3758 if (UTF8_IS_INVARIANT(*p)) { \
3759 if (flags & (locale_flags)) { \
3760 result = LC_L1_change_macro(*p); \
3761 } \
3762 else { \
3763 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3764 } \
3765 } \
3766 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3767 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)); \
3768 if (flags & (locale_flags)) { \
3769 result = LC_L1_change_macro(c); \
3770 } \
3771 else { \
3772 return L1_func(c, ustrp, lenp, L1_func_extra_param); \
3773 } \
3774 } \
3775 else { /* malformed UTF-8 or ord above 255 */ \
3776 STRLEN len_result; \
3777 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3778 if (len_result == (STRLEN) -1) { \
3779 _force_out_malformed_utf8_message(p, e, utf8n_flags, \
3780 1 /* Die */ ); \
3781 }
3782
3783#define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3784 result = change_macro(result, p, ustrp, lenp); \
3785 \
3786 if (flags & (locale_flags)) { \
3787 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3788 } \
3789 return result; \
3790 } \
3791 \
3792 /* Here, used locale rules. Convert back to UTF-8 */ \
3793 if (UTF8_IS_INVARIANT(result)) { \
3794 *ustrp = (U8) result; \
3795 *lenp = 1; \
3796 } \
3797 else { \
3798 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3799 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3800 *lenp = 2; \
3801 } \
3802 \
3803 return result;
3804
3805/*
3806=for apidoc to_utf8_upper
3807
3808Instead use L</toUPPER_utf8_safe>.
3809
3810=cut */
3811
3812/* Not currently externally documented, and subject to change:
3813 * <flags> is set iff iff the rules from the current underlying locale are to
3814 * be used. */
3815
3816UV
3817Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3818 const U8 *e,
3819 U8* ustrp,
3820 STRLEN *lenp,
3821 bool flags,
3822 const char * const file,
3823 const int line)
3824{
3825 UV result;
3826 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_UPPER,
3827 cBOOL(flags), file, line);
3828
3829 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3830
3831 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3832 /* 2nd char of uc(U+DF) is 'S' */
3833 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
3834 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3835}
3836
3837/*
3838=for apidoc to_utf8_title
3839
3840Instead use L</toTITLE_utf8_safe>.
3841
3842=cut */
3843
3844/* Not currently externally documented, and subject to change:
3845 * <flags> is set iff the rules from the current underlying locale are to be
3846 * used. Since titlecase is not defined in POSIX, for other than a
3847 * UTF-8 locale, uppercase is used instead for code points < 256.
3848 */
3849
3850UV
3851Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3852 const U8 *e,
3853 U8* ustrp,
3854 STRLEN *lenp,
3855 bool flags,
3856 const char * const file,
3857 const int line)
3858{
3859 UV result;
3860 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_TITLE,
3861 cBOOL(flags), file, line);
3862
3863 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3864
3865 /* 2nd char of ucfirst(U+DF) is 's' */
3866 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3867 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3868}
3869
3870/*
3871=for apidoc to_utf8_lower
3872
3873Instead use L</toLOWER_utf8_safe>.
3874
3875=cut */
3876
3877/* Not currently externally documented, and subject to change:
3878 * <flags> is set iff iff the rules from the current underlying locale are to
3879 * be used.
3880 */
3881
3882UV
3883Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3884 const U8 *e,
3885 U8* ustrp,
3886 STRLEN *lenp,
3887 bool flags,
3888 const char * const file,
3889 const int line)
3890{
3891 UV result;
3892 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_LOWER,
3893 cBOOL(flags), file, line);
3894
3895 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3896
3897 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3898 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3899}
3900
3901/*
3902=for apidoc to_utf8_fold
3903
3904Instead use L</toFOLD_utf8_safe>.
3905
3906=cut */
3907
3908/* Not currently externally documented, and subject to change,
3909 * in <flags>
3910 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3911 * locale are to be used.
3912 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3913 * otherwise simple folds
3914 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3915 * prohibited
3916 */
3917
3918UV
3919Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3920 const U8 *e,
3921 U8* ustrp,
3922 STRLEN *lenp,
3923 U8 flags,
3924 const char * const file,
3925 const int line)
3926{
3927 UV result;
3928 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_FOLD,
3929 cBOOL(flags), file, line);
3930
3931 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3932
3933 /* These are mutually exclusive */
3934 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3935
3936 assert(p != ustrp); /* Otherwise overwrites */
3937
3938 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3939 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3940
3941 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3942
3943 if (flags & FOLD_FLAGS_LOCALE) {
3944
3945# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3946# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3947# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3948
3949 /* Special case these two characters, as what normally gets
3950 * returned under locale doesn't work */
3951 if (memBEGINs((char *) p, e - p, CAP_SHARP_S))
3952 {
3953 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3954 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3955 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3956 "resolved to \"\\x{17F}\\x{17F}\".");
3957 goto return_long_s;
3958 }
3959 else
3960#endif
3961 if (memBEGINs((char *) p, e - p, LONG_S_T))
3962 {
3963 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3964 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3965 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3966 "resolved to \"\\x{FB06}\".");
3967 goto return_ligature_st;
3968 }
3969
3970#if UNICODE_MAJOR_VERSION == 3 \
3971 && UNICODE_DOT_VERSION == 0 \
3972 && UNICODE_DOT_DOT_VERSION == 1
3973# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3974
3975 /* And special case this on this Unicode version only, for the same
3976 * reaons the other two are special cased. They would cross the
3977 * 255/256 boundary which is forbidden under /l, and so the code
3978 * wouldn't catch that they are equivalent (which they are only in
3979 * this release) */
3980 else if (memBEGINs((char *) p, e - p, DOTTED_I)) {
3981 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3982 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3983 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3984 "resolved to \"\\x{0131}\".");
3985 goto return_dotless_i;
3986 }
3987#endif
3988
3989 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3990 }
3991 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3992 return result;
3993 }
3994 else {
3995 /* This is called when changing the case of a UTF-8-encoded
3996 * character above the ASCII range, and the result should not
3997 * contain an ASCII character. */
3998
3999 UV original; /* To store the first code point of <p> */
4000
4001 /* Look at every character in the result; if any cross the
4002 * boundary, the whole thing is disallowed */
4003 U8* s = ustrp;
4004 U8* e = ustrp + *lenp;
4005 while (s < e) {
4006 if (isASCII(*s)) {
4007 /* Crossed, have to return the original */
4008 original = valid_utf8_to_uvchr(p, lenp);
4009
4010 /* But in these instances, there is an alternative we can
4011 * return that is valid */
4012 if (original == LATIN_SMALL_LETTER_SHARP_S
4013#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
4014 || original == LATIN_CAPITAL_LETTER_SHARP_S
4015#endif
4016 ) {
4017 goto return_long_s;
4018 }
4019 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
4020 goto return_ligature_st;
4021 }
4022#if UNICODE_MAJOR_VERSION == 3 \
4023 && UNICODE_DOT_VERSION == 0 \
4024 && UNICODE_DOT_DOT_VERSION == 1
4025
4026 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
4027 goto return_dotless_i;
4028 }
4029#endif
4030 Copy(p, ustrp, *lenp, char);
4031 return original;
4032 }
4033 s += UTF8SKIP(s);
4034 }
4035
4036 /* Here, no characters crossed, result is ok as-is */
4037 return result;
4038 }
4039 }
4040
4041 /* Here, used locale rules. Convert back to UTF-8 */
4042 if (UTF8_IS_INVARIANT(result)) {
4043 *ustrp = (U8) result;
4044 *lenp = 1;
4045 }
4046 else {
4047 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
4048 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
4049 *lenp = 2;
4050 }
4051
4052 return result;
4053
4054 return_long_s:
4055 /* Certain folds to 'ss' are prohibited by the options, but they do allow
4056 * folds to a string of two of these characters. By returning this
4057 * instead, then, e.g.,
4058 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
4059 * works. */
4060
4061 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
4062 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
4063 ustrp, *lenp, U8);
4064 return LATIN_SMALL_LETTER_LONG_S;
4065
4066 return_ligature_st:
4067 /* Two folds to 'st' are prohibited by the options; instead we pick one and
4068 * have the other one fold to it */
4069
4070 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
4071 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
4072 return LATIN_SMALL_LIGATURE_ST;
4073
4074#if UNICODE_MAJOR_VERSION == 3 \
4075 && UNICODE_DOT_VERSION == 0 \
4076 && UNICODE_DOT_DOT_VERSION == 1
4077
4078 return_dotless_i:
4079 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
4080 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
4081 return LATIN_SMALL_LETTER_DOTLESS_I;
4082
4083#endif
4084
4085}
4086
4087/* Note:
4088 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
4089 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
4090 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
4091 */
4092
4093SV*
4094Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
4095 I32 minbits, I32 none)
4096{
4097 PERL_ARGS_ASSERT_SWASH_INIT;
4098
4099 /* Returns a copy of a swash initiated by the called function. This is the
4100 * public interface, and returning a copy prevents others from doing
4101 * mischief on the original */
4102
4103 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none,
4104 NULL, NULL));
4105}
4106
4107SV*
4108Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
4109 I32 minbits, I32 none, SV* invlist,
4110 U8* const flags_p)
4111{
4112
4113 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
4114 * use the following define */
4115
4116#define CORE_SWASH_INIT_RETURN(x) \
4117 PL_curpm= old_PL_curpm; \
4118 return x
4119
4120 /* Initialize and return a swash, creating it if necessary. It does this
4121 * by calling utf8_heavy.pl in the general case. The returned value may be
4122 * the swash's inversion list instead if the input parameters allow it.
4123 * Which is returned should be immaterial to callers, as the only
4124 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
4125 * and swash_to_invlist() handle both these transparently.
4126 *
4127 * This interface should only be used by functions that won't destroy or
4128 * adversely change the swash, as doing so affects all other uses of the
4129 * swash in the program; the general public should use 'Perl_swash_init'
4130 * instead.
4131 *
4132 * pkg is the name of the package that <name> should be in.
4133 * name is the name of the swash to find. Typically it is a Unicode
4134 * property name, including user-defined ones
4135 * listsv is a string to initialize the swash with. It must be of the form
4136 * documented as the subroutine return value in
4137 * L<perlunicode/User-Defined Character Properties>
4138 * minbits is the number of bits required to represent each data element.
4139 * It is '1' for binary properties.
4140 * none I (khw) do not understand this one, but it is used only in tr///.
4141 * invlist is an inversion list to initialize the swash with (or NULL)
4142 * flags_p if non-NULL is the address of various input and output flag bits
4143 * to the routine, as follows: ('I' means is input to the routine;
4144 * 'O' means output from the routine. Only flags marked O are
4145 * meaningful on return.)
4146 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
4147 * came from a user-defined property. (I O)
4148 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
4149 * when the swash cannot be located, to simply return NULL. (I)
4150 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
4151 * return of an inversion list instead of a swash hash if this routine
4152 * thinks that would result in faster execution of swash_fetch() later
4153 * on. (I)
4154 *
4155 * Thus there are three possible inputs to find the swash: <name>,
4156 * <listsv>, and <invlist>. At least one must be specified. The result
4157 * will be the union of the specified ones, although <listsv>'s various
4158 * actions can intersect, etc. what <name> gives. To avoid going out to
4159 * disk at all, <invlist> should specify completely what the swash should
4160 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
4161 *
4162 * <invlist> is only valid for binary properties */
4163
4164 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
4165
4166 SV* retval = &PL_sv_undef;
4167 HV* swash_hv = NULL;
4168 const bool use_invlist= (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST);
4169
4170 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
4171 assert(! invlist || minbits == 1);
4172
4173 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the
4174 regex that triggered the swash init and the swash init
4175 perl logic itself. See perl #122747 */
4176
4177 /* If data was passed in to go out to utf8_heavy to find the swash of, do
4178 * so */
4179 if (listsv != &PL_sv_undef || strNE(name, "")) {
4180 dSP;
4181 const size_t pkg_len = strlen(pkg);
4182 const size_t name_len = strlen(name);
4183 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
4184 SV* errsv_save;
4185 GV *method;
4186
4187 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
4188
4189 PUSHSTACKi(PERLSI_MAGIC);
4190 ENTER;
4191 SAVEHINTS();
4192 save_re_context();
4193 /* We might get here via a subroutine signature which uses a utf8
4194 * parameter name, at which point PL_subname will have been set
4195 * but not yet used. */
4196 save_item(PL_subname);
4197 if (PL_parser && PL_parser->error_count)
4198 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
4199 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
4200 if (!method) { /* demand load UTF-8 */
4201 ENTER;
4202 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4203 GvSV(PL_errgv) = NULL;
4204#ifndef NO_TAINT_SUPPORT
4205 /* It is assumed that callers of this routine are not passing in
4206 * any user derived data. */
4207 /* Need to do this after save_re_context() as it will set
4208 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
4209 * in Perl_magic_get). Even line to create errsv_save can turn on
4210 * PL_tainted. */
4211 SAVEBOOL(TAINT_get);
4212 TAINT_NOT;
4213#endif
4214 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
4215 NULL);
4216 {
4217 /* Not ERRSV, as there is no need to vivify a scalar we are
4218 about to discard. */
4219 SV * const errsv = GvSV(PL_errgv);
4220 if (!SvTRUE(errsv)) {
4221 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4222 SvREFCNT_dec(errsv);
4223 }
4224 }
4225 LEAVE;
4226 }
4227 SPAGAIN;
4228 PUSHMARK(SP);
4229 EXTEND(SP,5);
4230 mPUSHp(pkg, pkg_len);
4231 mPUSHp(name, name_len);
4232 PUSHs(listsv);
4233 mPUSHi(minbits);
4234 mPUSHi(none);
4235 PUTBACK;
4236 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4237 GvSV(PL_errgv) = NULL;
4238 /* If we already have a pointer to the method, no need to use
4239 * call_method() to repeat the lookup. */
4240 if (method
4241 ? call_sv(MUTABLE_SV(method), G_SCALAR)
4242 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
4243 {
4244 retval = *PL_stack_sp--;
4245 SvREFCNT_inc(retval);
4246 }
4247 {
4248 /* Not ERRSV. See above. */
4249 SV * const errsv = GvSV(PL_errgv);
4250 if (!SvTRUE(errsv)) {
4251 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4252 SvREFCNT_dec(errsv);
4253 }
4254 }
4255 LEAVE;
4256 POPSTACK;
4257 if (IN_PERL_COMPILETIME) {
4258 CopHINTS_set(PL_curcop, PL_hints);
4259 }
4260 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
4261 if (SvPOK(retval)) {
4262
4263 /* If caller wants to handle missing properties, let them */
4264 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
4265 CORE_SWASH_INIT_RETURN(NULL);
4266 }
4267 Perl_croak(aTHX_
4268 "Can't find Unicode property definition \"%" SVf "\"",
4269 SVfARG(retval));
4270 NOT_REACHED; /* NOTREACHED */
4271 }
4272 }
4273 } /* End of calling the module to find the swash */
4274
4275 /* If this operation fetched a swash, and we will need it later, get it */
4276 if (retval != &PL_sv_undef
4277 && (minbits == 1 || (flags_p
4278 && ! (*flags_p
4279 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
4280 {
4281 swash_hv = MUTABLE_HV(SvRV(retval));
4282
4283 /* If we don't already know that there is a user-defined component to
4284 * this swash, and the user has indicated they wish to know if there is
4285 * one (by passing <flags_p>), find out */
4286 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
4287 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
4288 if (user_defined && SvUV(*user_defined)) {
4289 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
4290 }
4291 }
4292 }
4293
4294 /* Make sure there is an inversion list for binary properties */
4295 if (minbits == 1) {
4296 SV** swash_invlistsvp = NULL;
4297 SV* swash_invlist = NULL;
4298 bool invlist_in_swash_is_valid = FALSE;
4299 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
4300 an unclaimed reference count */
4301
4302 /* If this operation fetched a swash, get its already existing
4303 * inversion list, or create one for it */
4304
4305 if (swash_hv) {
4306 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
4307 if (swash_invlistsvp) {
4308 swash_invlist = *swash_invlistsvp;
4309 invlist_in_swash_is_valid = TRUE;
4310 }
4311 else {
4312 swash_invlist = _swash_to_invlist(retval);
4313 swash_invlist_unclaimed = TRUE;
4314 }
4315 }
4316
4317 /* If an inversion list was passed in, have to include it */
4318 if (invlist) {
4319
4320 /* Any fetched swash will by now have an inversion list in it;
4321 * otherwise <swash_invlist> will be NULL, indicating that we
4322 * didn't fetch a swash */
4323 if (swash_invlist) {
4324
4325 /* Add the passed-in inversion list, which invalidates the one
4326 * already stored in the swash */
4327 invlist_in_swash_is_valid = FALSE;
4328 SvREADONLY_off(swash_invlist); /* Turned on again below */
4329 _invlist_union(invlist, swash_invlist, &swash_invlist);
4330 }
4331 else {
4332
4333 /* Here, there is no swash already. Set up a minimal one, if
4334 * we are going to return a swash */
4335 if (! use_invlist) {
4336 swash_hv = newHV();
4337 retval = newRV_noinc(MUTABLE_SV(swash_hv));
4338 }
4339 swash_invlist = invlist;
4340 }
4341 }
4342
4343 /* Here, we have computed the union of all the passed-in data. It may
4344 * be that there was an inversion list in the swash which didn't get
4345 * touched; otherwise save the computed one */
4346 if (! invlist_in_swash_is_valid && ! use_invlist) {
4347 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
4348 {
4349 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4350 }
4351 /* We just stole a reference count. */
4352 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
4353 else SvREFCNT_inc_simple_void_NN(swash_invlist);
4354 }
4355
4356 /* The result is immutable. Forbid attempts to change it. */
4357 SvREADONLY_on(swash_invlist);
4358
4359 if (use_invlist) {
4360 SvREFCNT_dec(retval);
4361 if (!swash_invlist_unclaimed)
4362 SvREFCNT_inc_simple_void_NN(swash_invlist);
4363 retval = newRV_noinc(swash_invlist);
4364 }
4365 }
4366
4367 CORE_SWASH_INIT_RETURN(retval);
4368#undef CORE_SWASH_INIT_RETURN
4369}
4370
4371
4372/* This API is wrong for special case conversions since we may need to
4373 * return several Unicode characters for a single Unicode character
4374 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
4375 * the lower-level routine, and it is similarly broken for returning
4376 * multiple values. --jhi
4377 * For those, you should use S__to_utf8_case() instead */
4378/* Now SWASHGET is recasted into S_swatch_get in this file. */
4379
4380/* Note:
4381 * Returns the value of property/mapping C<swash> for the first character
4382 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
4383 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
4384 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
4385 *
4386 * A "swash" is a hash which contains initially the keys/values set up by
4387 * SWASHNEW. The purpose is to be able to completely represent a Unicode
4388 * property for all possible code points. Things are stored in a compact form
4389 * (see utf8_heavy.pl) so that calculation is required to find the actual
4390 * property value for a given code point. As code points are looked up, new
4391 * key/value pairs are added to the hash, so that the calculation doesn't have
4392 * to ever be re-done. Further, each calculation is done, not just for the
4393 * desired one, but for a whole block of code points adjacent to that one.
4394 * For binary properties on ASCII machines, the block is usually for 64 code
4395 * points, starting with a code point evenly divisible by 64. Thus if the
4396 * property value for code point 257 is requested, the code goes out and
4397 * calculates the property values for all 64 code points between 256 and 319,
4398 * and stores these as a single 64-bit long bit vector, called a "swatch",
4399 * under the key for code point 256. The key is the UTF-8 encoding for code
4400 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
4401 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
4402 * for code point 258 is then requested, this code realizes that it would be
4403 * stored under the key for 256, and would find that value and extract the
4404 * relevant bit, offset from 256.
4405 *
4406 * Non-binary properties are stored in as many bits as necessary to represent
4407 * their values (32 currently, though the code is more general than that), not
4408 * as single bits, but the principle is the same: the value for each key is a
4409 * vector that encompasses the property values for all code points whose UTF-8
4410 * representations are represented by the key. That is, for all code points
4411 * whose UTF-8 representations are length N bytes, and the key is the first N-1
4412 * bytes of that.
4413 */
4414UV
4415Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
4416{
4417 HV *const hv = MUTABLE_HV(SvRV(swash));
4418 U32 klen;
4419 U32 off;
4420 STRLEN slen = 0;
4421 STRLEN needents;
4422 const U8 *tmps = NULL;
4423 SV *swatch;
4424 const U8 c = *ptr;
4425
4426 PERL_ARGS_ASSERT_SWASH_FETCH;
4427
4428 /* If it really isn't a hash, it isn't really swash; must be an inversion
4429 * list */
4430 if (SvTYPE(hv) != SVt_PVHV) {
4431 return _invlist_contains_cp((SV*)hv,
4432 (do_utf8)
4433 ? valid_utf8_to_uvchr(ptr, NULL)
4434 : c);
4435 }
4436
4437 /* We store the values in a "swatch" which is a vec() value in a swash
4438 * hash. Code points 0-255 are a single vec() stored with key length
4439 * (klen) 0. All other code points have a UTF-8 representation
4440 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
4441 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
4442 * length for them is the length of the encoded char - 1. ptr[klen] is the
4443 * final byte in the sequence representing the character */
4444 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
4445 klen = 0;
4446 needents = 256;
4447 off = c;
4448 }
4449 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
4450 klen = 0;
4451 needents = 256;
4452 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
4453 }
4454 else {
4455 klen = UTF8SKIP(ptr) - 1;
4456
4457 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
4458 * the vec is the final byte in the sequence. (In EBCDIC this is
4459 * converted to I8 to get consecutive values.) To help you visualize
4460 * all this:
4461 * Straight 1047 After final byte
4462 * UTF-8 UTF-EBCDIC I8 transform
4463 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
4464 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
4465 * ...
4466 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
4467 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
4468 * ...
4469 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
4470 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
4471 * ...
4472 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
4473 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
4474 * ...
4475 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
4476 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
4477 *
4478 * (There are no discontinuities in the elided (...) entries.)
4479 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
4480 * key for the next 31, up through U+043F, whose UTF-8 final byte is
4481 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
4482 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
4483 * index into the vec() swatch (after subtracting 0x80, which we
4484 * actually do with an '&').
4485 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
4486 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
4487 * dicontinuities which go away by transforming it into I8, and we
4488 * effectively subtract 0xA0 to get the index. */
4489 needents = (1 << UTF_ACCUMULATION_SHIFT);
4490 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
4491 }
4492
4493 /*
4494 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
4495 * suite. (That is, only 7-8% overall over just a hash cache. Still,
4496 * it's nothing to sniff at.) Pity we usually come through at least
4497 * two function calls to get here...
4498 *
4499 * NB: this code assumes that swatches are never modified, once generated!
4500 */
4501
4502 if (hv == PL_last_swash_hv &&
4503 klen == PL_last_swash_klen &&
4504 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
4505 {
4506 tmps = PL_last_swash_tmps;
4507 slen = PL_last_swash_slen;
4508 }
4509 else {
4510 /* Try our second-level swatch cache, kept in a hash. */
4511 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
4512
4513 /* If not cached, generate it via swatch_get */
4514 if (!svp || !SvPOK(*svp)
4515 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
4516 {
4517 if (klen) {
4518 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
4519 swatch = swatch_get(swash,
4520 code_point & ~((UV)needents - 1),
4521 needents);
4522 }
4523 else { /* For the first 256 code points, the swatch has a key of
4524 length 0 */
4525 swatch = swatch_get(swash, 0, needents);
4526 }
4527
4528 if (IN_PERL_COMPILETIME)
4529 CopHINTS_set(PL_curcop, PL_hints);
4530
4531 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
4532
4533 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
4534 || (slen << 3) < needents)
4535 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
4536 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
4537 svp, tmps, (UV)slen, (UV)needents);
4538 }
4539
4540 PL_last_swash_hv = hv;
4541 assert(klen <= sizeof(PL_last_swash_key));
4542 PL_last_swash_klen = (U8)klen;
4543 /* FIXME change interpvar.h? */
4544 PL_last_swash_tmps = (U8 *) tmps;
4545 PL_last_swash_slen = slen;
4546 if (klen)
4547 Copy(ptr, PL_last_swash_key, klen, U8);
4548 }
4549
4550 switch ((int)((slen << 3) / needents)) {
4551 case 1:
4552 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
4553 case 8:
4554 return ((UV) tmps[off]);
4555 case 16:
4556 off <<= 1;
4557 return
4558 ((UV) tmps[off ] << 8) +
4559 ((UV) tmps[off + 1]);
4560 case 32:
4561 off <<= 2;
4562 return
4563 ((UV) tmps[off ] << 24) +
4564 ((UV) tmps[off + 1] << 16) +
4565 ((UV) tmps[off + 2] << 8) +
4566 ((UV) tmps[off + 3]);
4567 }
4568 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
4569 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
4570 NORETURN_FUNCTION_END;
4571}
4572
4573/* Read a single line of the main body of the swash input text. These are of
4574 * the form:
4575 * 0053 0056 0073
4576 * where each number is hex. The first two numbers form the minimum and
4577 * maximum of a range, and the third is the value associated with the range.
4578 * Not all swashes should have a third number
4579 *
4580 * On input: l points to the beginning of the line to be examined; it points
4581 * to somewhere in the string of the whole input text, and is
4582 * terminated by a \n or the null string terminator.
4583 * lend points to the null terminator of that string
4584 * wants_value is non-zero if the swash expects a third number
4585 * typestr is the name of the swash's mapping, like 'ToLower'
4586 * On output: *min, *max, and *val are set to the values read from the line.
4587 * returns a pointer just beyond the line examined. If there was no
4588 * valid min number on the line, returns lend+1
4589 */
4590
4591STATIC U8*
4592S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
4593 const bool wants_value, const U8* const typestr)
4594{
4595 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
4596 STRLEN numlen; /* Length of the number */
4597 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
4598 | PERL_SCAN_DISALLOW_PREFIX
4599 | PERL_SCAN_SILENT_NON_PORTABLE;
4600
4601 /* nl points to the next \n in the scan */
4602 U8* const nl = (U8*)memchr(l, '\n', lend - l);
4603
4604 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
4605
4606 /* Get the first number on the line: the range minimum */
4607 numlen = lend - l;
4608 *min = grok_hex((char *)l, &numlen, &flags, NULL);
4609 *max = *min; /* So can never return without setting max */
4610 if (numlen) /* If found a hex number, position past it */
4611 l += numlen;
4612 else if (nl) { /* Else, go handle next line, if any */
4613 return nl + 1; /* 1 is length of "\n" */
4614 }
4615 else { /* Else, no next line */
4616 return lend + 1; /* to LIST's end at which \n is not found */
4617 }
4618
4619 /* The max range value follows, separated by a BLANK */
4620 if (isBLANK(*l)) {
4621 ++l;
4622 flags = PERL_SCAN_SILENT_ILLDIGIT
4623 | PERL_SCAN_DISALLOW_PREFIX
4624 | PERL_SCAN_SILENT_NON_PORTABLE;
4625 numlen = lend - l;
4626 *max = grok_hex((char *)l, &numlen, &flags, NULL);
4627 if (numlen)
4628 l += numlen;
4629 else /* If no value here, it is a single element range */
4630 *max = *min;
4631
4632 /* Non-binary tables have a third entry: what the first element of the
4633 * range maps to. The map for those currently read here is in hex */
4634 if (wants_value) {
4635 if (isBLANK(*l)) {
4636 ++l;
4637 flags = PERL_SCAN_SILENT_ILLDIGIT
4638 | PERL_SCAN_DISALLOW_PREFIX
4639 | PERL_SCAN_SILENT_NON_PORTABLE;
4640 numlen = lend - l;
4641 *val = grok_hex((char *)l, &numlen, &flags, NULL);
4642 if (numlen)
4643 l += numlen;
4644 else
4645 *val = 0;
4646 }
4647 else {
4648 *val = 0;
4649 if (typeto) {
4650 /* diag_listed_as: To%s: illegal mapping '%s' */
4651 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
4652 typestr, l);
4653 }
4654 }
4655 }
4656 else
4657 *val = 0; /* bits == 1, then any val should be ignored */
4658 }
4659 else { /* Nothing following range min, should be single element with no
4660 mapping expected */
4661 if (wants_value) {
4662 *val = 0;
4663 if (typeto) {
4664 /* diag_listed_as: To%s: illegal mapping '%s' */
4665 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
4666 }
4667 }
4668 else
4669 *val = 0; /* bits == 1, then val should be ignored */
4670 }
4671
4672 /* Position to next line if any, or EOF */
4673 if (nl)
4674 l = nl + 1;
4675 else
4676 l = lend;
4677
4678 return l;
4679}
4680
4681/* Note:
4682 * Returns a swatch (a bit vector string) for a code point sequence
4683 * that starts from the value C<start> and comprises the number C<span>.
4684 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
4685 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
4686 */
4687STATIC SV*
4688S_swatch_get(pTHX_ SV* swash, UV start, UV span)
4689{
4690 SV *swatch;
4691 U8 *l, *lend, *x, *xend, *s, *send;
4692 STRLEN lcur, xcur, scur;
4693 HV *const hv = MUTABLE_HV(SvRV(swash));
4694 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
4695
4696 SV** listsvp = NULL; /* The string containing the main body of the table */
4697 SV** extssvp = NULL;
4698 SV** invert_it_svp = NULL;
4699 U8* typestr = NULL;
4700 STRLEN bits;
4701 STRLEN octets; /* if bits == 1, then octets == 0 */
4702 UV none;
4703 UV end = start + span;
4704
4705 if (invlistsvp == NULL) {
4706 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4707 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4708 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4709 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4710 listsvp = hv_fetchs(hv, "LIST", FALSE);
4711 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4712
4713 bits = SvUV(*bitssvp);
4714 none = SvUV(*nonesvp);
4715 typestr = (U8*)SvPV_nolen(*typesvp);
4716 }
4717 else {
4718 bits = 1;
4719 none = 0;
4720 }
4721 octets = bits >> 3; /* if bits == 1, then octets == 0 */
4722
4723 PERL_ARGS_ASSERT_SWATCH_GET;
4724
4725 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
4726 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
4727 (UV)bits);
4728 }
4729
4730 /* If overflowed, use the max possible */
4731 if (end < start) {
4732 end = UV_MAX;
4733 span = end - start;
4734 }
4735
4736 /* create and initialize $swatch */
4737 scur = octets ? (span * octets) : (span + 7) / 8;
4738 swatch = newSV(scur);
4739 SvPOK_on(swatch);
4740 s = (U8*)SvPVX(swatch);
4741 if (octets && none) {
4742 const U8* const e = s + scur;
4743 while (s < e) {
4744 if (bits == 8)
4745 *s++ = (U8)(none & 0xff);
4746 else if (bits == 16) {
4747 *s++ = (U8)((none >> 8) & 0xff);
4748 *s++ = (U8)( none & 0xff);
4749 }
4750 else if (bits == 32) {
4751 *s++ = (U8)((none >> 24) & 0xff);
4752 *s++ = (U8)((none >> 16) & 0xff);
4753 *s++ = (U8)((none >> 8) & 0xff);
4754 *s++ = (U8)( none & 0xff);
4755 }
4756 }
4757 *s = '\0';
4758 }
4759 else {
4760 (void)memzero((U8*)s, scur + 1);
4761 }
4762 SvCUR_set(swatch, scur);
4763 s = (U8*)SvPVX(swatch);
4764
4765 if (invlistsvp) { /* If has an inversion list set up use that */
4766 _invlist_populate_swatch(*invlistsvp, start, end, s);
4767 return swatch;
4768 }
4769
4770 /* read $swash->{LIST} */
4771 l = (U8*)SvPV(*listsvp, lcur);
4772 lend = l + lcur;
4773 while (l < lend) {
4774 UV min, max, val, upper;
4775 l = swash_scan_list_line(l, lend, &min, &max, &val,
4776 cBOOL(octets), typestr);
4777 if (l > lend) {
4778 break;
4779 }
4780
4781 /* If looking for something beyond this range, go try the next one */
4782 if (max < start)
4783 continue;
4784
4785 /* <end> is generally 1 beyond where we want to set things, but at the
4786 * platform's infinity, where we can't go any higher, we want to
4787 * include the code point at <end> */
4788 upper = (max < end)
4789 ? max
4790 : (max != UV_MAX || end != UV_MAX)
4791 ? end - 1
4792 : end;
4793
4794 if (octets) {
4795 UV key;
4796 if (min < start) {
4797 if (!none || val < none) {
4798 val += start - min;
4799 }
4800 min = start;
4801 }
4802 for (key = min; key <= upper; key++) {
4803 STRLEN offset;
4804 /* offset must be non-negative (start <= min <= key < end) */
4805 offset = octets * (key - start);
4806 if (bits == 8)
4807 s[offset] = (U8)(val & 0xff);
4808 else if (bits == 16) {
4809 s[offset ] = (U8)((val >> 8) & 0xff);
4810 s[offset + 1] = (U8)( val & 0xff);
4811 }
4812 else if (bits == 32) {
4813 s[offset ] = (U8)((val >> 24) & 0xff);
4814 s[offset + 1] = (U8)((val >> 16) & 0xff);
4815 s[offset + 2] = (U8)((val >> 8) & 0xff);
4816 s[offset + 3] = (U8)( val & 0xff);
4817 }
4818
4819 if (!none || val < none)
4820 ++val;
4821 }
4822 }
4823 else { /* bits == 1, then val should be ignored */
4824 UV key;
4825 if (min < start)
4826 min = start;
4827
4828 for (key = min; key <= upper; key++) {
4829 const STRLEN offset = (STRLEN)(key - start);
4830 s[offset >> 3] |= 1 << (offset & 7);
4831 }
4832 }
4833 } /* while */
4834
4835 /* Invert if the data says it should be. Assumes that bits == 1 */
4836 if (invert_it_svp && SvUV(*invert_it_svp)) {
4837
4838 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
4839 * be 0, and their inversion should also be 0, as we don't succeed any
4840 * Unicode property matches for non-Unicode code points */
4841 if (start <= PERL_UNICODE_MAX) {
4842
4843 /* The code below assumes that we never cross the
4844 * Unicode/above-Unicode boundary in a range, as otherwise we would
4845 * have to figure out where to stop flipping the bits. Since this
4846 * boundary is divisible by a large power of 2, and swatches comes
4847 * in small powers of 2, this should be a valid assumption */
4848 assert(start + span - 1 <= PERL_UNICODE_MAX);
4849
4850 send = s + scur;
4851 while (s < send) {
4852 *s = ~(*s);
4853 s++;
4854 }
4855 }
4856 }
4857
4858 /* read $swash->{EXTRAS}
4859 * This code also copied to swash_to_invlist() below */
4860 x = (U8*)SvPV(*extssvp, xcur);
4861 xend = x + xcur;
4862 while (x < xend) {
4863 STRLEN namelen;
4864 U8 *namestr;
4865 SV** othersvp;
4866 HV* otherhv;
4867 STRLEN otherbits;
4868 SV **otherbitssvp, *other;
4869 U8 *s, *o, *nl;
4870 STRLEN slen, olen;
4871
4872 const U8 opc = *x++;
4873 if (opc == '\n')
4874 continue;
4875
4876 nl = (U8*)memchr(x, '\n', xend - x);
4877
4878 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4879 if (nl) {
4880 x = nl + 1; /* 1 is length of "\n" */
4881 continue;
4882 }
4883 else {
4884 x = xend; /* to EXTRAS' end at which \n is not found */
4885 break;
4886 }
4887 }
4888
4889 namestr = x;
4890 if (nl) {
4891 namelen = nl - namestr;
4892 x = nl + 1;
4893 }
4894 else {
4895 namelen = xend - namestr;
4896 x = xend;
4897 }
4898
4899 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4900 otherhv = MUTABLE_HV(SvRV(*othersvp));
4901 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4902 otherbits = (STRLEN)SvUV(*otherbitssvp);
4903 if (bits < otherbits)
4904 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4905 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4906
4907 /* The "other" swatch must be destroyed after. */
4908 other = swatch_get(*othersvp, start, span);
4909 o = (U8*)SvPV(other, olen);
4910
4911 if (!olen)
4912 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4913
4914 s = (U8*)SvPV(swatch, slen);
4915 if (bits == 1 && otherbits == 1) {
4916 if (slen != olen)
4917 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4918 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4919 (UV)slen, (UV)olen);
4920
4921 switch (opc) {
4922 case '+':
4923 while (slen--)
4924 *s++ |= *o++;
4925 break;
4926 case '!':
4927 while (slen--)
4928 *s++ |= ~*o++;
4929 break;
4930 case '-':
4931 while (slen--)
4932 *s++ &= ~*o++;
4933 break;
4934 case '&':
4935 while (slen--)
4936 *s++ &= *o++;
4937 break;
4938 default:
4939 break;
4940 }
4941 }
4942 else {
4943 STRLEN otheroctets = otherbits >> 3;
4944 STRLEN offset = 0;
4945 U8* const send = s + slen;
4946
4947 while (s < send) {
4948 UV otherval = 0;
4949
4950 if (otherbits == 1) {
4951 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4952 ++offset;
4953 }
4954 else {
4955 STRLEN vlen = otheroctets;
4956 otherval = *o++;
4957 while (--vlen) {
4958 otherval <<= 8;
4959 otherval |= *o++;
4960 }
4961 }
4962
4963 if (opc == '+' && otherval)
4964 NOOP; /* replace with otherval */
4965 else if (opc == '!' && !otherval)
4966 otherval = 1;
4967 else if (opc == '-' && otherval)
4968 otherval = 0;
4969 else if (opc == '&' && !otherval)
4970 otherval = 0;
4971 else {
4972 s += octets; /* no replacement */
4973 continue;
4974 }
4975
4976 if (bits == 8)
4977 *s++ = (U8)( otherval & 0xff);
4978 else if (bits == 16) {
4979 *s++ = (U8)((otherval >> 8) & 0xff);
4980 *s++ = (U8)( otherval & 0xff);
4981 }
4982 else if (bits == 32) {
4983 *s++ = (U8)((otherval >> 24) & 0xff);
4984 *s++ = (U8)((otherval >> 16) & 0xff);
4985 *s++ = (U8)((otherval >> 8) & 0xff);
4986 *s++ = (U8)( otherval & 0xff);
4987 }
4988 }
4989 }
4990 sv_free(other); /* through with it! */
4991 } /* while */
4992 return swatch;
4993}
4994
4995SV*
4996Perl__swash_to_invlist(pTHX_ SV* const swash)
4997{
4998
4999 /* Subject to change or removal. For use only in one place in regcomp.c.
5000 * Ownership is given to one reference count in the returned SV* */
5001
5002 U8 *l, *lend;
5003 char *loc;
5004 STRLEN lcur;
5005 HV *const hv = MUTABLE_HV(SvRV(swash));
5006 UV elements = 0; /* Number of elements in the inversion list */
5007 U8 empty[] = "";
5008 SV** listsvp;
5009 SV** typesvp;
5010 SV** bitssvp;
5011 SV** extssvp;
5012 SV** invert_it_svp;
5013
5014 U8* typestr;
5015 STRLEN bits;
5016 STRLEN octets; /* if bits == 1, then octets == 0 */
5017 U8 *x, *xend;
5018 STRLEN xcur;
5019
5020 SV* invlist;
5021
5022 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
5023
5024 /* If not a hash, it must be the swash's inversion list instead */
5025 if (SvTYPE(hv) != SVt_PVHV) {
5026 return SvREFCNT_inc_simple_NN((SV*) hv);
5027 }
5028
5029 /* The string containing the main body of the table */
5030 listsvp = hv_fetchs(hv, "LIST", FALSE);
5031 typesvp = hv_fetchs(hv, "TYPE", FALSE);
5032 bitssvp = hv_fetchs(hv, "BITS", FALSE);
5033 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
5034 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
5035
5036 typestr = (U8*)SvPV_nolen(*typesvp);
5037 bits = SvUV(*bitssvp);
5038 octets = bits >> 3; /* if bits == 1, then octets == 0 */
5039
5040 /* read $swash->{LIST} */
5041 if (SvPOK(*listsvp)) {
5042 l = (U8*)SvPV(*listsvp, lcur);
5043 }
5044 else {
5045 /* LIST legitimately doesn't contain a string during compilation phases
5046 * of Perl itself, before the Unicode tables are generated. In this
5047 * case, just fake things up by creating an empty list */
5048 l = empty;
5049 lcur = 0;
5050 }
5051 loc = (char *) l;
5052 lend = l + lcur;
5053
5054 if (*l == 'V') { /* Inversion list format */
5055 const char *after_atou = (char *) lend;
5056 UV element0;
5057 UV* other_elements_ptr;
5058
5059 /* The first number is a count of the rest */
5060 l++;
5061 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
5062 Perl_croak(aTHX_ "panic: Expecting a valid count of elements"
5063 " at start of inversion list");
5064 }
5065 if (elements == 0) {
5066 invlist = _new_invlist(0);
5067 }
5068 else {
5069 l = (U8 *) after_atou;
5070
5071 /* Get the 0th element, which is needed to setup the inversion list
5072 * */
5073 while (isSPACE(*l)) l++;
5074 after_atou = (char *) lend;
5075 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
5076 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for"
5077 " inversion list");
5078 }
5079 l = (U8 *) after_atou;
5080 invlist = _setup_canned_invlist(elements, element0,
5081 &other_elements_ptr);
5082 elements--;
5083
5084 /* Then just populate the rest of the input */
5085 while (elements-- > 0) {
5086 if (l > lend) {
5087 Perl_croak(aTHX_ "panic: Expecting %" UVuf " more"
5088 " elements than available", elements);
5089 }
5090 while (isSPACE(*l)) l++;
5091 after_atou = (char *) lend;
5092 if (!grok_atoUV((const char *)l, other_elements_ptr++,
5093 &after_atou))
5094 {
5095 Perl_croak(aTHX_ "panic: Expecting a valid element"
5096 " in inversion list");
5097 }
5098 l = (U8 *) after_atou;
5099 }
5100 }
5101 }
5102 else {
5103
5104 /* Scan the input to count the number of lines to preallocate array
5105 * size based on worst possible case, which is each line in the input
5106 * creates 2 elements in the inversion list: 1) the beginning of a
5107 * range in the list; 2) the beginning of a range not in the list. */
5108 while ((loc = (char *) memchr(loc, '\n', lend - (U8 *) loc)) != NULL) {
5109 elements += 2;
5110 loc++;
5111 }
5112
5113 /* If the ending is somehow corrupt and isn't a new line, add another
5114 * element for the final range that isn't in the inversion list */
5115 if (! (*lend == '\n'
5116 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
5117 {
5118 elements++;
5119 }
5120
5121 invlist = _new_invlist(elements);
5122
5123 /* Now go through the input again, adding each range to the list */
5124 while (l < lend) {
5125 UV start, end;
5126 UV val; /* Not used by this function */
5127
5128 l = swash_scan_list_line(l, lend, &start, &end, &val,
5129 cBOOL(octets), typestr);
5130
5131 if (l > lend) {
5132 break;
5133 }
5134
5135 invlist = _add_range_to_invlist(invlist, start, end);
5136 }
5137 }
5138
5139 /* Invert if the data says it should be */
5140 if (invert_it_svp && SvUV(*invert_it_svp)) {
5141 _invlist_invert(invlist);
5142 }
5143
5144 /* This code is copied from swatch_get()
5145 * read $swash->{EXTRAS} */
5146 x = (U8*)SvPV(*extssvp, xcur);
5147 xend = x + xcur;
5148 while (x < xend) {
5149 STRLEN namelen;
5150 U8 *namestr;
5151 SV** othersvp;
5152 HV* otherhv;
5153 STRLEN otherbits;
5154 SV **otherbitssvp, *other;
5155 U8 *nl;
5156
5157 const U8 opc = *x++;
5158 if (opc == '\n')
5159 continue;
5160
5161 nl = (U8*)memchr(x, '\n', xend - x);
5162
5163 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
5164 if (nl) {
5165 x = nl + 1; /* 1 is length of "\n" */
5166 continue;
5167 }
5168 else {
5169 x = xend; /* to EXTRAS' end at which \n is not found */
5170 break;
5171 }
5172 }
5173
5174 namestr = x;
5175 if (nl) {
5176 namelen = nl - namestr;
5177 x = nl + 1;
5178 }
5179 else {
5180 namelen = xend - namestr;
5181 x = xend;
5182 }
5183
5184 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
5185 otherhv = MUTABLE_HV(SvRV(*othersvp));
5186 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
5187 otherbits = (STRLEN)SvUV(*otherbitssvp);
5188
5189 if (bits != otherbits || bits != 1) {
5190 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
5191 "properties, bits=%" UVuf ", otherbits=%" UVuf,
5192 (UV)bits, (UV)otherbits);
5193 }
5194
5195 /* The "other" swatch must be destroyed after. */
5196 other = _swash_to_invlist((SV *)*othersvp);
5197
5198 /* End of code copied from swatch_get() */
5199 switch (opc) {
5200 case '+':
5201 _invlist_union(invlist, other, &invlist);
5202 break;
5203 case '!':
5204 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
5205 break;
5206 case '-':
5207 _invlist_subtract(invlist, other, &invlist);
5208 break;
5209 case '&':
5210 _invlist_intersection(invlist, other, &invlist);
5211 break;
5212 default:
5213 break;
5214 }
5215 sv_free(other); /* through with it! */
5216 }
5217
5218 SvREADONLY_on(invlist);
5219 return invlist;
5220}
5221
5222SV*
5223Perl__get_swash_invlist(pTHX_ SV* const swash)
5224{
5225 SV** ptr;
5226
5227 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
5228
5229 if (! SvROK(swash)) {
5230 return NULL;
5231 }
5232
5233 /* If it really isn't a hash, it isn't really swash; must be an inversion
5234 * list */
5235 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
5236 return SvRV(swash);
5237 }
5238
5239 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
5240 if (! ptr) {
5241 return NULL;
5242 }
5243
5244 return *ptr;
5245}
5246
5247bool
5248Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
5249{
5250 /* May change: warns if surrogates, non-character code points, or
5251 * non-Unicode code points are in 's' which has length 'len' bytes.
5252 * Returns TRUE if none found; FALSE otherwise. The only other validity
5253 * check is to make sure that this won't exceed the string's length nor
5254 * overflow */
5255
5256 const U8* const e = s + len;
5257 bool ok = TRUE;
5258
5259 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
5260
5261 while (s < e) {
5262 if (UTF8SKIP(s) > len) {
5263 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
5264 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
5265 return FALSE;
5266 }
5267 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
5268 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
5269 if ( ckWARN_d(WARN_NON_UNICODE)
5270 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
5271 0 /* Don't consider overlongs */
5272 )))
5273 {
5274 /* A side effect of this function will be to warn */
5275 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
5276 ok = FALSE;
5277 }
5278 }
5279 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
5280 if (ckWARN_d(WARN_SURROGATE)) {
5281 /* This has a different warning than the one the called
5282 * function would output, so can't just call it, unlike we
5283 * do for the non-chars and above-unicodes */
5284 UV uv = utf8_to_uvchr_buf(s, e, NULL);
5285 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
5286 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
5287 uv);
5288 ok = FALSE;
5289 }
5290 }
5291 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
5292 && (ckWARN_d(WARN_NONCHAR)))
5293 {
5294 /* A side effect of this function will be to warn */
5295 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
5296 ok = FALSE;
5297 }
5298 }
5299 s += UTF8SKIP(s);
5300 }
5301
5302 return ok;
5303}
5304
5305/*
5306=for apidoc pv_uni_display
5307
5308Build to the scalar C<dsv> a displayable version of the string C<spv>,
5309length C<len>, the displayable version being at most C<pvlim> bytes long
5310(if longer, the rest is truncated and C<"..."> will be appended).
5311
5312The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
5313C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
5314to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
5315(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
5316C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
5317C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
5318
5319The pointer to the PV of the C<dsv> is returned.
5320
5321See also L</sv_uni_display>.
5322
5323=cut */
5324char *
5325Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
5326 UV flags)
5327{
5328 int truncated = 0;
5329 const char *s, *e;
5330
5331 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
5332
5333 SvPVCLEAR(dsv);
5334 SvUTF8_off(dsv);
5335 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
5336 UV u;
5337 /* This serves double duty as a flag and a character to print after
5338 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
5339 */
5340 char ok = 0;
5341
5342 if (pvlim && SvCUR(dsv) >= pvlim) {
5343 truncated++;
5344 break;
5345 }
5346 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
5347 if (u < 256) {
5348 const unsigned char c = (unsigned char)u & 0xFF;
5349 if (flags & UNI_DISPLAY_BACKSLASH) {
5350 switch (c) {
5351 case '\n':
5352 ok = 'n'; break;
5353 case '\r':
5354 ok = 'r'; break;
5355 case '\t':
5356 ok = 't'; break;
5357 case '\f':
5358 ok = 'f'; break;
5359 case '\a':
5360 ok = 'a'; break;
5361 case '\\':
5362 ok = '\\'; break;
5363 default: break;
5364 }
5365 if (ok) {
5366 const char string = ok;
5367 sv_catpvs(dsv, "\\");
5368 sv_catpvn(dsv, &string, 1);
5369 }
5370 }
5371 /* isPRINT() is the locale-blind version. */
5372 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
5373 const char string = c;
5374 sv_catpvn(dsv, &string, 1);
5375 ok = 1;
5376 }
5377 }
5378 if (!ok)
5379 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
5380 }
5381 if (truncated)
5382 sv_catpvs(dsv, "...");
5383
5384 return SvPVX(dsv);
5385}
5386
5387/*
5388=for apidoc sv_uni_display
5389
5390Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
5391the displayable version being at most C<pvlim> bytes long
5392(if longer, the rest is truncated and "..." will be appended).
5393
5394The C<flags> argument is as in L</pv_uni_display>().
5395
5396The pointer to the PV of the C<dsv> is returned.
5397
5398=cut
5399*/
5400char *
5401Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
5402{
5403 const char * const ptr =
5404 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
5405
5406 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
5407
5408 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
5409 SvCUR(ssv), pvlim, flags);
5410}
5411
5412/*
5413=for apidoc foldEQ_utf8
5414
5415Returns true if the leading portions of the strings C<s1> and C<s2> (either or
5416both of which may be in UTF-8) are the same case-insensitively; false
5417otherwise. How far into the strings to compare is determined by other input
5418parameters.
5419
5420If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
5421otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
5422C<u2> with respect to C<s2>.
5423
5424If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
5425fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
5426The scan will not be considered to be a match unless the goal is reached, and
5427scanning won't continue past that goal. Correspondingly for C<l2> with respect
5428to C<s2>.
5429
5430If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
5431pointer is considered an end pointer to the position 1 byte past the maximum
5432point in C<s1> beyond which scanning will not continue under any circumstances.
5433(This routine assumes that UTF-8 encoded input strings are not malformed;
5434malformed input can cause it to read past C<pe1>). This means that if both
5435C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
5436will never be successful because it can never
5437get as far as its goal (and in fact is asserted against). Correspondingly for
5438C<pe2> with respect to C<s2>.
5439
5440At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
5441C<l2> must be non-zero), and if both do, both have to be
5442reached for a successful match. Also, if the fold of a character is multiple
5443characters, all of them must be matched (see tr21 reference below for
5444'folding').
5445
5446Upon a successful match, if C<pe1> is non-C<NULL>,
5447it will be set to point to the beginning of the I<next> character of C<s1>
5448beyond what was matched. Correspondingly for C<pe2> and C<s2>.
5449
5450For case-insensitiveness, the "casefolding" of Unicode is used
5451instead of upper/lowercasing both the characters, see
5452L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
5453
5454=cut */
5455
5456/* A flags parameter has been added which may change, and hence isn't
5457 * externally documented. Currently it is:
5458 * 0 for as-documented above
5459 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
5460 ASCII one, to not match
5461 * FOLDEQ_LOCALE is set iff the rules from the current underlying
5462 * locale are to be used.
5463 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
5464 * routine. This allows that step to be skipped.
5465 * Currently, this requires s1 to be encoded as UTF-8
5466 * (u1 must be true), which is asserted for.
5467 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
5468 * cross certain boundaries. Hence, the caller should
5469 * let this function do the folding instead of
5470 * pre-folding. This code contains an assertion to
5471 * that effect. However, if the caller knows what
5472 * it's doing, it can pass this flag to indicate that,
5473 * and the assertion is skipped.
5474 * FOLDEQ_S2_ALREADY_FOLDED Similar to FOLDEQ_S1_ALREADY_FOLDED, but applies
5475 * to s2, and s2 doesn't have to be UTF-8 encoded.
5476 * This introduces an asymmetry to save a few branches
5477 * in a loop. Currently, this is not a problem, as
5478 * never are both inputs pre-folded. Simply call this
5479 * function with the pre-folded one as the second
5480 * string.
5481 * FOLDEQ_S2_FOLDS_SANE
5482 */
5483I32
5484Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
5485 const char *s2, char **pe2, UV l2, bool u2,
5486 U32 flags)
5487{
5488 const U8 *p1 = (const U8*)s1; /* Point to current char */
5489 const U8 *p2 = (const U8*)s2;
5490 const U8 *g1 = NULL; /* goal for s1 */
5491 const U8 *g2 = NULL;
5492 const U8 *e1 = NULL; /* Don't scan s1 past this */
5493 U8 *f1 = NULL; /* Point to current folded */
5494 const U8 *e2 = NULL;
5495 U8 *f2 = NULL;
5496 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
5497 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
5498 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
5499 U8 flags_for_folder = FOLD_FLAGS_FULL;
5500
5501 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
5502
5503 assert( ! ( (flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
5504 && (( (flags & FOLDEQ_S1_ALREADY_FOLDED)
5505 && !(flags & FOLDEQ_S1_FOLDS_SANE))
5506 || ( (flags & FOLDEQ_S2_ALREADY_FOLDED)
5507 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
5508 /* The algorithm is to trial the folds without regard to the flags on
5509 * the first line of the above assert(), and then see if the result
5510 * violates them. This means that the inputs can't be pre-folded to a
5511 * violating result, hence the assert. This could be changed, with the
5512 * addition of extra tests here for the already-folded case, which would
5513 * slow it down. That cost is more than any possible gain for when these
5514 * flags are specified, as the flags indicate /il or /iaa matching which
5515 * is less common than /iu, and I (khw) also believe that real-world /il
5516 * and /iaa matches are most likely to involve code points 0-255, and this
5517 * function only under rare conditions gets called for 0-255. */
5518
5519 if (flags & FOLDEQ_LOCALE) {
5520 if (IN_UTF8_CTYPE_LOCALE) {
5521 flags &= ~FOLDEQ_LOCALE;
5522 }
5523 else {
5524 flags_for_folder |= FOLD_FLAGS_LOCALE;
5525 }
5526 }
5527 if (flags & FOLDEQ_UTF8_NOMIX_ASCII) {
5528 flags_for_folder |= FOLD_FLAGS_NOMIX_ASCII;
5529 }
5530
5531 if (pe1) {
5532 e1 = *(U8**)pe1;
5533 }
5534
5535 if (l1) {
5536 g1 = (const U8*)s1 + l1;
5537 }
5538
5539 if (pe2) {
5540 e2 = *(U8**)pe2;
5541 }
5542
5543 if (l2) {
5544 g2 = (const U8*)s2 + l2;
5545 }
5546
5547 /* Must have at least one goal */
5548 assert(g1 || g2);
5549
5550 if (g1) {
5551
5552 /* Will never match if goal is out-of-bounds */
5553 assert(! e1 || e1 >= g1);
5554
5555 /* Here, there isn't an end pointer, or it is beyond the goal. We
5556 * only go as far as the goal */
5557 e1 = g1;
5558 }
5559 else {
5560 assert(e1); /* Must have an end for looking at s1 */
5561 }
5562
5563 /* Same for goal for s2 */
5564 if (g2) {
5565 assert(! e2 || e2 >= g2);
5566 e2 = g2;
5567 }
5568 else {
5569 assert(e2);
5570 }
5571
5572 /* If both operands are already folded, we could just do a memEQ on the
5573 * whole strings at once, but it would be better if the caller realized
5574 * this and didn't even call us */
5575
5576 /* Look through both strings, a character at a time */
5577 while (p1 < e1 && p2 < e2) {
5578
5579 /* If at the beginning of a new character in s1, get its fold to use
5580 * and the length of the fold. */
5581 if (n1 == 0) {
5582 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
5583 f1 = (U8 *) p1;
5584 assert(u1);
5585 n1 = UTF8SKIP(f1);
5586 }
5587 else {
5588 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
5589
5590 /* We have to forbid mixing ASCII with non-ASCII if the
5591 * flags so indicate. And, we can short circuit having to
5592 * call the general functions for this common ASCII case,
5593 * all of whose non-locale folds are also ASCII, and hence
5594 * UTF-8 invariants, so the UTF8ness of the strings is not
5595 * relevant. */
5596 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
5597 return 0;
5598 }
5599 n1 = 1;
5600 *foldbuf1 = toFOLD(*p1);
5601 }
5602 else if (u1) {
5603 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
5604 }
5605 else { /* Not UTF-8, get UTF-8 fold */
5606 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
5607 }
5608 f1 = foldbuf1;
5609 }
5610 }
5611
5612 if (n2 == 0) { /* Same for s2 */
5613 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
5614
5615 /* Point to the already-folded character. But for non-UTF-8
5616 * variants, convert to UTF-8 for the algorithm below */
5617 if (UTF8_IS_INVARIANT(*p2)) {
5618 f2 = (U8 *) p2;
5619 n2 = 1;
5620 }
5621 else if (u2) {
5622 f2 = (U8 *) p2;
5623 n2 = UTF8SKIP(f2);
5624 }
5625 else {
5626 foldbuf2[0] = UTF8_EIGHT_BIT_HI(*p2);
5627 foldbuf2[1] = UTF8_EIGHT_BIT_LO(*p2);
5628 f2 = foldbuf2;
5629 n2 = 2;
5630 }
5631 }
5632 else {
5633 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
5634 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
5635 return 0;
5636 }
5637 n2 = 1;
5638 *foldbuf2 = toFOLD(*p2);
5639 }
5640 else if (u2) {
5641 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
5642 }
5643 else {
5644 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
5645 }
5646 f2 = foldbuf2;
5647 }
5648 }
5649
5650 /* Here f1 and f2 point to the beginning of the strings to compare.
5651 * These strings are the folds of the next character from each input
5652 * string, stored in UTF-8. */
5653
5654 /* While there is more to look for in both folds, see if they
5655 * continue to match */
5656 while (n1 && n2) {
5657 U8 fold_length = UTF8SKIP(f1);
5658 if (fold_length != UTF8SKIP(f2)
5659 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
5660 function call for single
5661 byte */
5662 || memNE((char*)f1, (char*)f2, fold_length))
5663 {
5664 return 0; /* mismatch */
5665 }
5666
5667 /* Here, they matched, advance past them */
5668 n1 -= fold_length;
5669 f1 += fold_length;
5670 n2 -= fold_length;
5671 f2 += fold_length;
5672 }
5673
5674 /* When reach the end of any fold, advance the input past it */
5675 if (n1 == 0) {
5676 p1 += u1 ? UTF8SKIP(p1) : 1;
5677 }
5678 if (n2 == 0) {
5679 p2 += u2 ? UTF8SKIP(p2) : 1;
5680 }
5681 } /* End of loop through both strings */
5682
5683 /* A match is defined by each scan that specified an explicit length
5684 * reaching its final goal, and the other not having matched a partial
5685 * character (which can happen when the fold of a character is more than one
5686 * character). */
5687 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
5688 return 0;
5689 }
5690
5691 /* Successful match. Set output pointers */
5692 if (pe1) {
5693 *pe1 = (char*)p1;
5694 }
5695 if (pe2) {
5696 *pe2 = (char*)p2;
5697 }
5698 return 1;
5699}
5700
5701/* XXX The next two functions should likely be moved to mathoms.c once all
5702 * occurrences of them are removed from the core; some cpan-upstream modules
5703 * still use them */
5704
5705U8 *
5706Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
5707{
5708 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
5709
5710 return uvoffuni_to_utf8_flags(d, uv, 0);
5711}
5712
5713/*
5714=for apidoc utf8n_to_uvuni
5715
5716Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
5717
5718This function was useful for code that wanted to handle both EBCDIC and
5719ASCII platforms with Unicode properties, but starting in Perl v5.20, the
5720distinctions between the platforms have mostly been made invisible to most
5721code, so this function is quite unlikely to be what you want. If you do need
5722this precise functionality, use instead
5723C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
5724or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
5725
5726=cut
5727*/
5728
5729UV
5730Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
5731{
5732 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
5733
5734 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
5735}
5736
5737/*
5738=for apidoc uvuni_to_utf8_flags
5739
5740Instead you almost certainly want to use L</uvchr_to_utf8> or
5741L</uvchr_to_utf8_flags>.
5742
5743This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
5744which itself, while not deprecated, should be used only in isolated
5745circumstances. These functions were useful for code that wanted to handle
5746both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
5747v5.20, the distinctions between the platforms have mostly been made invisible
5748to most code, so this function is quite unlikely to be what you want.
5749
5750=cut
5751*/
5752
5753U8 *
5754Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
5755{
5756 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
5757
5758 return uvoffuni_to_utf8_flags(d, uv, flags);
5759}
5760
5761/*
5762=for apidoc utf8_to_uvchr
5763
5764Returns the native code point of the first character in the string C<s>
5765which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
5766length, in bytes, of that character.
5767
5768Some, but not all, UTF-8 malformations are detected, and in fact, some
5769malformed input could cause reading beyond the end of the input buffer, which
5770is why this function is deprecated. Use L</utf8_to_uvchr_buf> instead.
5771
5772If C<s> points to one of the detected malformations, and UTF8 warnings are
5773enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
5774C<NULL>) to -1. If those warnings are off, the computed value if well-defined (or
5775the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
5776is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
5777next possible position in C<s> that could begin a non-malformed character.
5778See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
5779
5780=cut
5781*/
5782
5783UV
5784Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
5785{
5786 PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
5787
5788 /* This function is unsafe if malformed UTF-8 input is given it, which is
5789 * why the function is deprecated. If the first byte of the input
5790 * indicates that there are more bytes remaining in the sequence that forms
5791 * the character than there are in the input buffer, it can read past the
5792 * end. But we can make it safe if the input string happens to be
5793 * NUL-terminated, as many strings in Perl are, by refusing to read past a
5794 * NUL. A NUL indicates the start of the next character anyway. If the
5795 * input isn't NUL-terminated, the function remains unsafe, as it always
5796 * has been.
5797 *
5798 * An initial NUL has to be handled separately, but all ASCIIs can be
5799 * handled the same way, speeding up this common case */
5800
5801 if (UTF8_IS_INVARIANT(*s)) { /* Assumes 's' contains at least 1 byte */
5802 return (UV) *s;
5803 }
5804
5805 return utf8_to_uvchr_buf(s,
5806 s + my_strnlen((char *) s, UTF8SKIP(s)),
5807 retlen);
5808}
5809
5810/*
5811 * ex: set ts=8 sts=4 sw=4 et:
5812 */