This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
avoid vivifying UNIVERSAL::isa:: in Carp
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char malformed_text[] = "Malformed UTF-8 character";
37static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39static const char cp_above_legal_max[] =
40 "Use of code point 0x%" UVXf " is not allowed; the"
41 " permissible max is 0x%" UVXf;
42
43#define MAX_EXTERNALLY_LEGAL_CP ((UV) (IV_MAX))
44
45/*
46=head1 Unicode Support
47These are various utility functions for manipulating UTF8-encoded
48strings. For the uninitiated, this is a method of representing arbitrary
49Unicode characters as a variable number of bytes, in such a way that
50characters in the ASCII range are unmodified, and a zero byte never appears
51within non-zero characters.
52
53=cut
54*/
55
56void
57Perl__force_out_malformed_utf8_message(pTHX_
58 const U8 *const p, /* First byte in UTF-8 sequence */
59 const U8 * const e, /* Final byte in sequence (may include
60 multiple chars */
61 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
62 usually 0, or some DISALLOW flags */
63 const bool die_here) /* If TRUE, this function does not return */
64{
65 /* This core-only function is to be called when a malformed UTF-8 character
66 * is found, in order to output the detailed information about the
67 * malformation before dieing. The reason it exists is for the occasions
68 * when such a malformation is fatal, but warnings might be turned off, so
69 * that normally they would not be actually output. This ensures that they
70 * do get output. Because a sequence may be malformed in more than one
71 * way, multiple messages may be generated, so we can't make them fatal, as
72 * that would cause the first one to die.
73 *
74 * Instead we pretend -W was passed to perl, then die afterwards. The
75 * flexibility is here to return to the caller so they can finish up and
76 * die themselves */
77 U32 errors;
78
79 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
80
81 ENTER;
82 SAVEI8(PL_dowarn);
83 SAVESPTR(PL_curcop);
84
85 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 if (PL_curcop) {
87 PL_curcop->cop_warnings = pWARN_ALL;
88 }
89
90 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
91
92 LEAVE;
93
94 if (! errors) {
95 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
96 " be called only when there are errors found");
97 }
98
99 if (die_here) {
100 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
101 }
102}
103
104STATIC HV *
105S_new_msg_hv(pTHX_ const char * const message, /* The message text */
106 U32 categories, /* Packed warning categories */
107 U32 flag) /* Flag associated with this message */
108{
109 /* Creates, populates, and returns an HV* that describes an error message
110 * for the translators between UTF8 and code point */
111
112 SV* msg_sv = newSVpv(message, 0);
113 SV* category_sv = newSVuv(categories);
114 SV* flag_bit_sv = newSVuv(flag);
115
116 HV* msg_hv = newHV();
117
118 PERL_ARGS_ASSERT_NEW_MSG_HV;
119
120 hv_stores(msg_hv, "text", msg_sv);
121 hv_stores(msg_hv, "warn_categories", category_sv);
122 hv_stores(msg_hv, "flag_bit", flag_bit_sv);
123
124 return msg_hv;
125}
126
127/*
128=for apidoc uvoffuni_to_utf8_flags
129
130THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
131Instead, B<Almost all code should use L</uvchr_to_utf8> or
132L</uvchr_to_utf8_flags>>.
133
134This function is like them, but the input is a strict Unicode
135(as opposed to native) code point. Only in very rare circumstances should code
136not be using the native code point.
137
138For details, see the description for L</uvchr_to_utf8_flags>.
139
140=cut
141*/
142
143U8 *
144Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
145{
146 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
147
148 return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL);
149}
150
151/* All these formats take a single UV code point argument */
152const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
153const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
154 " is not recommended for open interchange";
155const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
156 " may not be portable";
157const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
158 " Unicode, requires a Perl extension," \
159 " and so is not portable";
160
161#define HANDLE_UNICODE_SURROGATE(uv, flags, msgs) \
162 STMT_START { \
163 if (flags & UNICODE_WARN_SURROGATE) { \
164 U32 category = packWARN(WARN_SURROGATE); \
165 const char * format = surrogate_cp_format; \
166 if (msgs) { \
167 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
168 category, \
169 UNICODE_GOT_SURROGATE); \
170 } \
171 else { \
172 Perl_ck_warner_d(aTHX_ category, format, uv); \
173 } \
174 } \
175 if (flags & UNICODE_DISALLOW_SURROGATE) { \
176 return NULL; \
177 } \
178 } STMT_END;
179
180#define HANDLE_UNICODE_NONCHAR(uv, flags, msgs) \
181 STMT_START { \
182 if (flags & UNICODE_WARN_NONCHAR) { \
183 U32 category = packWARN(WARN_NONCHAR); \
184 const char * format = nonchar_cp_format; \
185 if (msgs) { \
186 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv), \
187 category, \
188 UNICODE_GOT_NONCHAR); \
189 } \
190 else { \
191 Perl_ck_warner_d(aTHX_ category, format, uv); \
192 } \
193 } \
194 if (flags & UNICODE_DISALLOW_NONCHAR) { \
195 return NULL; \
196 } \
197 } STMT_END;
198
199/* Use shorter names internally in this file */
200#define SHIFT UTF_ACCUMULATION_SHIFT
201#undef MARK
202#define MARK UTF_CONTINUATION_MARK
203#define MASK UTF_CONTINUATION_MASK
204
205/*
206=for apidoc uvchr_to_utf8_flags_msgs
207
208THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
209
210Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly.
211
212This function is for code that wants any warning and/or error messages to be
213returned to the caller rather than be displayed. All messages that would have
214been displayed if all lexcial warnings are enabled will be returned.
215
216It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter
217placed after all the others, C<msgs>. If this parameter is 0, this function
218behaves identically to C<L</uvchr_to_utf8_flags>>. Otherwise, C<msgs> should
219be a pointer to an C<HV *> variable, in which this function creates a new HV to
220contain any appropriate messages. The hash has three key-value pairs, as
221follows:
222
223=over 4
224
225=item C<text>
226
227The text of the message as a C<SVpv>.
228
229=item C<warn_categories>
230
231The warning category (or categories) packed into a C<SVuv>.
232
233=item C<flag>
234
235A single flag bit associated with this message, in a C<SVuv>.
236The bit corresponds to some bit in the C<*errors> return value,
237such as C<UNICODE_GOT_SURROGATE>.
238
239=back
240
241It's important to note that specifying this parameter as non-null will cause
242any warnings this function would otherwise generate to be suppressed, and
243instead be placed in C<*msgs>. The caller can check the lexical warnings state
244(or not) when choosing what to do with the returned messages.
245
246The caller, of course, is responsible for freeing any returned HV.
247
248=cut
249*/
250
251/* Undocumented; we don't want people using this. Instead they should use
252 * uvchr_to_utf8_flags_msgs() */
253U8 *
254Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs)
255{
256 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS;
257
258 if (msgs) {
259 *msgs = NULL;
260 }
261
262 if (OFFUNI_IS_INVARIANT(uv)) {
263 *d++ = LATIN1_TO_NATIVE(uv);
264 return d;
265 }
266
267 if (uv <= MAX_UTF8_TWO_BYTE) {
268 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
269 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
270 return d;
271 }
272
273 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
274 * below, the 16 is for start bytes E0-EF (which are all the possible ones
275 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
276 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
277 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
278 * 0x800-0xFFFF on ASCII */
279 if (uv < (16 * (1U << (2 * SHIFT)))) {
280 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
281 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
282 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
283
284#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
285 aren't tested here */
286 /* The most likely code points in this range are below the surrogates.
287 * Do an extra test to quickly exclude those. */
288 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
289 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
290 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
291 {
292 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
293 }
294 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
295 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
296 }
297 }
298#endif
299 return d;
300 }
301
302 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
303 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
304 * happen starting with 4-byte characters on ASCII platforms. We unify the
305 * code for these with EBCDIC, even though some of them require 5-bytes on
306 * those, because khw believes the code saving is worth the very slight
307 * performance hit on these high EBCDIC code points. */
308
309 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
310 if (UNLIKELY(uv > MAX_EXTERNALLY_LEGAL_CP)) {
311 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_EXTERNALLY_LEGAL_CP);
312 }
313 if ( (flags & UNICODE_WARN_SUPER)
314 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
315 && UNICODE_IS_PERL_EXTENDED(uv)))
316 {
317 const char * format = super_cp_format;
318 U32 category = packWARN(WARN_NON_UNICODE);
319 U32 flag = UNICODE_GOT_SUPER;
320
321 /* Choose the more dire applicable warning */
322 if (UNICODE_IS_PERL_EXTENDED(uv)) {
323 format = perl_extended_cp_format;
324 if (flags & (UNICODE_WARN_PERL_EXTENDED
325 |UNICODE_DISALLOW_PERL_EXTENDED))
326 {
327 flag = UNICODE_GOT_PERL_EXTENDED;
328 }
329 }
330
331 if (msgs) {
332 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),
333 category, flag);
334 }
335 else {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE), format, uv);
337 }
338 }
339 if ( (flags & UNICODE_DISALLOW_SUPER)
340 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
341 && UNICODE_IS_PERL_EXTENDED(uv)))
342 {
343 return NULL;
344 }
345 }
346 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
347 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
348 }
349
350 /* Test for and handle 4-byte result. In the test immediately below, the
351 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
352 * characters). The 3 is for 3 continuation bytes; these each contribute
353 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
354 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
355 * 0x1_0000-0x1F_FFFF on ASCII */
356 if (uv < (8 * (1U << (3 * SHIFT)))) {
357 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
358 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
359 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
360 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
361
362#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
363 characters. The end-plane non-characters for EBCDIC were
364 handled just above */
365 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
366 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
367 }
368 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
369 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
370 }
371#endif
372
373 return d;
374 }
375
376 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
377 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
378 * format. The unrolled version above turns out to not save all that much
379 * time, and at these high code points (well above the legal Unicode range
380 * on ASCII platforms, and well above anything in common use in EBCDIC),
381 * khw believes that less code outweighs slight performance gains. */
382
383 {
384 STRLEN len = OFFUNISKIP(uv);
385 U8 *p = d+len-1;
386 while (p > d) {
387 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
388 uv >>= UTF_ACCUMULATION_SHIFT;
389 }
390 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
391 return d+len;
392 }
393}
394
395/*
396=for apidoc uvchr_to_utf8
397
398Adds the UTF-8 representation of the native code point C<uv> to the end
399of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
400C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
401the byte after the end of the new character. In other words,
402
403 d = uvchr_to_utf8(d, uv);
404
405is the recommended wide native character-aware way of saying
406
407 *(d++) = uv;
408
409This function accepts any code point from 0..C<IV_MAX> as input.
410C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
411
412It is possible to forbid or warn on non-Unicode code points, or those that may
413be problematic by using L</uvchr_to_utf8_flags>.
414
415=cut
416*/
417
418/* This is also a macro */
419PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
420
421U8 *
422Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
423{
424 return uvchr_to_utf8(d, uv);
425}
426
427/*
428=for apidoc uvchr_to_utf8_flags
429
430Adds the UTF-8 representation of the native code point C<uv> to the end
431of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
432C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
433the byte after the end of the new character. In other words,
434
435 d = uvchr_to_utf8_flags(d, uv, flags);
436
437or, in most cases,
438
439 d = uvchr_to_utf8_flags(d, uv, 0);
440
441This is the Unicode-aware way of saying
442
443 *(d++) = uv;
444
445If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
446input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
447
448Specifying C<flags> can further restrict what is allowed and not warned on, as
449follows:
450
451If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
452the function will raise a warning, provided UTF8 warnings are enabled. If
453instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
454NULL. If both flags are set, the function will both warn and return NULL.
455
456Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
457affect how the function handles a Unicode non-character.
458
459And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
460affect the handling of code points that are above the Unicode maximum of
4610x10FFFF. Languages other than Perl may not be able to accept files that
462contain these.
463
464The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
465the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
466three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
467allowed inputs to the strict UTF-8 traditionally defined by Unicode.
468Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
469C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
470above-Unicode and surrogate flags, but not the non-character ones, as
471defined in
472L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
473See L<perlunicode/Noncharacter code points>.
474
475Extremely high code points were never specified in any standard, and require an
476extension to UTF-8 to express, which Perl does. It is likely that programs
477written in something other than Perl would not be able to read files that
478contain these; nor would Perl understand files written by something that uses a
479different extension. For these reasons, there is a separate set of flags that
480can warn and/or disallow these extremely high code points, even if other
481above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
482and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
483L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
484treat all above-Unicode code points, including these, as malformations. (Note
485that the Unicode standard considers anything above 0x10FFFF to be illegal, but
486there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
487
488A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
489retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
490C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
491C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because on EBCDIC
492platforms,these flags can apply to code points that actually do fit in 31 bits.
493The new names accurately describe the situation in all cases.
494
495=cut
496*/
497
498/* This is also a macro */
499PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
500
501U8 *
502Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
503{
504 return uvchr_to_utf8_flags(d, uv, flags);
505}
506
507#ifndef UV_IS_QUAD
508
509STATIC int
510S_is_utf8_cp_above_31_bits(const U8 * const s,
511 const U8 * const e,
512 const bool consider_overlongs)
513{
514 /* Returns TRUE if the first code point represented by the Perl-extended-
515 * UTF-8-encoded string starting at 's', and looking no further than 'e -
516 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
517 *
518 * The function handles the case where the input bytes do not include all
519 * the ones necessary to represent a full character. That is, they may be
520 * the intial bytes of the representation of a code point, but possibly
521 * the final ones necessary for the complete representation may be beyond
522 * 'e - 1'.
523 *
524 * The function also can handle the case where the input is an overlong
525 * sequence. If 'consider_overlongs' is 0, the function assumes the
526 * input is not overlong, without checking, and will return based on that
527 * assumption. If this parameter is 1, the function will go to the trouble
528 * of figuring out if it actually evaluates to above or below 31 bits.
529 *
530 * The sequence is otherwise assumed to be well-formed, without checking.
531 */
532
533 const STRLEN len = e - s;
534 int is_overlong;
535
536 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
537
538 assert(! UTF8_IS_INVARIANT(*s) && e > s);
539
540#ifdef EBCDIC
541
542 PERL_UNUSED_ARG(consider_overlongs);
543
544 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
545 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
546 * also be the start byte for a 31-bit code point; we need at least 2
547 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
548 * the start byte for an overlong sequence, but for 30-bit or smaller code
549 * points, so we don't have to worry about overlongs on EBCDIC.) */
550 if (*s != 0xFE) {
551 return 0;
552 }
553
554 if (len == 1) {
555 return -1;
556 }
557
558#else
559
560 /* On ASCII, FE and FF are the only start bytes that can evaluate to
561 * needing more than 31 bits. */
562 if (LIKELY(*s < 0xFE)) {
563 return 0;
564 }
565
566 /* What we have left are FE and FF. Both of these require more than 31
567 * bits unless they are for overlongs. */
568 if (! consider_overlongs) {
569 return 1;
570 }
571
572 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
573 * above 31 bits. But we need more than one byte to discern this, so if
574 * passed just the start byte, it could be an overlong evaluating to
575 * smaller */
576 if (len == 1) {
577 return -1;
578 }
579
580 /* Having excluded len==1, and knowing that FE and FF are both valid start
581 * bytes, we can call the function below to see if the sequence is
582 * overlong. (We don't need the full generality of the called function,
583 * but for these huge code points, speed shouldn't be a consideration, and
584 * the compiler does have enough information, since it's static to this
585 * file, to optimize to just the needed parts.) */
586 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
587
588 /* If it isn't overlong, more than 31 bits are required. */
589 if (is_overlong == 0) {
590 return 1;
591 }
592
593 /* If it is indeterminate if it is overlong, return that */
594 if (is_overlong < 0) {
595 return -1;
596 }
597
598 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
599 * the max it can be is 2**31 - 1 */
600 if (*s == 0xFE) {
601 return 0;
602 }
603
604#endif
605
606 /* Here, ASCII and EBCDIC rejoin:
607 * On ASCII: We have an overlong sequence starting with FF
608 * On EBCDIC: We have a sequence starting with FE. */
609
610 { /* For C89, use a block so the declaration can be close to its use */
611
612#ifdef EBCDIC
613
614 /* U+7FFFFFFF (2 ** 31 - 1)
615 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
616 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
617 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
618 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
619 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
620 * U+80000000 (2 ** 31):
621 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
622 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
623 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
624 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
625 *
626 * and since we know that *s = \xfe, any continuation sequcence
627 * following it that is gt the below is above 31 bits
628 [0] [1] [2] [3] [4] [5] [6] */
629 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
630
631#else
632
633 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
634 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
635 * FF overlong for U+80000000 (2 ** 31):
636 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
637 * and since we know that *s = \xff, any continuation sequcence
638 * following it that is gt the below is above 30 bits
639 [0] [1] [2] [3] [4] [5] [6] */
640 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
641
642
643#endif
644 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
645 const STRLEN cmp_len = MIN(conts_len, len - 1);
646
647 /* Now compare the continuation bytes in s with the ones we have
648 * compiled in that are for the largest 30 bit code point. If we have
649 * enough bytes available to determine the answer, or the bytes we do
650 * have differ from them, we can compare the two to get a definitive
651 * answer (Note that in UTF-EBCDIC, the two lowest possible
652 * continuation bytes are \x41 and \x42.) */
653 if (cmp_len >= conts_len || memNE(s + 1,
654 conts_for_highest_30_bit,
655 cmp_len))
656 {
657 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
658 }
659
660 /* Here, all the bytes we have are the same as the highest 30-bit code
661 * point, but we are missing so many bytes that we can't make the
662 * determination */
663 return -1;
664 }
665}
666
667#endif
668
669PERL_STATIC_INLINE int
670S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
671{
672 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
673 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
674 * it isn't, and -1 if there isn't enough information to tell. This last
675 * return value can happen if the sequence is incomplete, missing some
676 * trailing bytes that would form a complete character. If there are
677 * enough bytes to make a definitive decision, this function does so.
678 * Usually 2 bytes sufficient.
679 *
680 * Overlongs can occur whenever the number of continuation bytes changes.
681 * That means whenever the number of leading 1 bits in a start byte
682 * increases from the next lower start byte. That happens for start bytes
683 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
684 * start bytes have already been excluded, so don't need to be tested here;
685 * ASCII platforms: C0, C1
686 * EBCDIC platforms C0, C1, C2, C3, C4, E0
687 */
688
689 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
690 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
691
692 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
693 assert(len > 1 && UTF8_IS_START(*s));
694
695 /* Each platform has overlongs after the start bytes given above (expressed
696 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
697 * the logic is the same, except the E0 overlong has already been excluded
698 * on EBCDIC platforms. The values below were found by manually
699 * inspecting the UTF-8 patterns. See the tables in utf8.h and
700 * utfebcdic.h. */
701
702# ifdef EBCDIC
703# define F0_ABOVE_OVERLONG 0xB0
704# define F8_ABOVE_OVERLONG 0xA8
705# define FC_ABOVE_OVERLONG 0xA4
706# define FE_ABOVE_OVERLONG 0xA2
707# define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
708 /* I8(0xfe) is FF */
709# else
710
711 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
712 return 1;
713 }
714
715# define F0_ABOVE_OVERLONG 0x90
716# define F8_ABOVE_OVERLONG 0x88
717# define FC_ABOVE_OVERLONG 0x84
718# define FE_ABOVE_OVERLONG 0x82
719# define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
720# endif
721
722
723 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
724 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
725 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
726 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
727 {
728 return 1;
729 }
730
731 /* Check for the FF overlong */
732 return isFF_OVERLONG(s, len);
733}
734
735PERL_STATIC_INLINE int
736S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
737{
738 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
739 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
740 * it isn't, and -1 if there isn't enough information to tell. This last
741 * return value can happen if the sequence is incomplete, missing some
742 * trailing bytes that would form a complete character. If there are
743 * enough bytes to make a definitive decision, this function does so. */
744
745 PERL_ARGS_ASSERT_ISFF_OVERLONG;
746
747 /* To be an FF overlong, all the available bytes must match */
748 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
749 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
750 {
751 return 0;
752 }
753
754 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
755 * be there; what comes after them doesn't matter. See tables in utf8.h,
756 * utfebcdic.h. */
757 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
758 return 1;
759 }
760
761 /* The missing bytes could cause the result to go one way or the other, so
762 * the result is indeterminate */
763 return -1;
764}
765
766#if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
767# ifdef EBCDIC /* Actually is I8 */
768# define HIGHEST_REPRESENTABLE_UTF8 \
769 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
770# else
771# define HIGHEST_REPRESENTABLE_UTF8 \
772 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
773# endif
774#endif
775
776PERL_STATIC_INLINE int
777S_does_utf8_overflow(const U8 * const s,
778 const U8 * e,
779 const bool consider_overlongs)
780{
781 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
782 * 'e' - 1 would overflow an IV on this platform; that is if it represents
783 * a code point larger than the highest representable code point. It
784 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
785 * enough information to tell. This last return value can happen if the
786 * sequence is incomplete, missing some trailing bytes that would form a
787 * complete character. If there are enough bytes to make a definitive
788 * decision, this function does so.
789 *
790 * If 'consider_overlongs' is TRUE, the function checks for the possibility
791 * that the sequence is an overlong that doesn't overflow. Otherwise, it
792 * assumes the sequence is not an overlong. This can give different
793 * results only on ASCII 32-bit platforms.
794 *
795 * (For ASCII platforms, we could use memcmp() because we don't have to
796 * convert each byte to I8, but it's very rare input indeed that would
797 * approach overflow, so the loop below will likely only get executed once.)
798 *
799 * 'e' - 1 must not be beyond a full character. */
800
801
802 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
803 assert(s <= e && s + UTF8SKIP(s) >= e);
804
805#if ! defined(UV_IS_QUAD)
806
807 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
808
809#else
810
811 PERL_UNUSED_ARG(consider_overlongs);
812
813 {
814 const STRLEN len = e - s;
815 const U8 *x;
816 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
817
818 for (x = s; x < e; x++, y++) {
819
820 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
821 continue;
822 }
823
824 /* If this byte is larger than the corresponding highest UTF-8
825 * byte, the sequence overflow; otherwise the byte is less than,
826 * and so the sequence doesn't overflow */
827 return NATIVE_UTF8_TO_I8(*x) > *y;
828
829 }
830
831 /* Got to the end and all bytes are the same. If the input is a whole
832 * character, it doesn't overflow. And if it is a partial character,
833 * there's not enough information to tell */
834 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
835 return -1;
836 }
837
838 return 0;
839 }
840
841#endif
842
843}
844
845#if 0
846
847/* This is the portions of the above function that deal with UV_MAX instead of
848 * IV_MAX. They are left here in case we want to combine them so that internal
849 * uses can have larger code points. The only logic difference is that the
850 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
851 * different logic.
852 */
853
854/* Anything larger than this will overflow the word if it were converted into a UV */
855#if defined(UV_IS_QUAD)
856# ifdef EBCDIC /* Actually is I8 */
857# define HIGHEST_REPRESENTABLE_UTF8 \
858 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
859# else
860# define HIGHEST_REPRESENTABLE_UTF8 \
861 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
862# endif
863#else /* 32-bit */
864# ifdef EBCDIC
865# define HIGHEST_REPRESENTABLE_UTF8 \
866 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
867# else
868# define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
869# endif
870#endif
871
872#if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
873
874 /* On 32 bit ASCII machines, many overlongs that start with FF don't
875 * overflow */
876 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
877
878 /* To be such an overlong, the first bytes of 's' must match
879 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
880 * don't have any additional bytes available, the sequence, when
881 * completed might or might not fit in 32 bits. But if we have that
882 * next byte, we can tell for sure. If it is <= 0x83, then it does
883 * fit. */
884 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
885 return -1;
886 }
887
888 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
889 }
890
891/* Starting with the #else, the rest of the function is identical except
892 * 1. we need to move the 'len' declaration to be global to the function
893 * 2. the endif move to just after the UNUSED_ARG.
894 * An empty endif is given just below to satisfy the preprocessor
895 */
896#endif
897
898#endif
899
900#undef F0_ABOVE_OVERLONG
901#undef F8_ABOVE_OVERLONG
902#undef FC_ABOVE_OVERLONG
903#undef FE_ABOVE_OVERLONG
904#undef FF_OVERLONG_PREFIX
905
906STRLEN
907Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
908{
909 STRLEN len;
910 const U8 *x;
911
912 /* A helper function that should not be called directly.
913 *
914 * This function returns non-zero if the string beginning at 's' and
915 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
916 * code point; otherwise it returns 0. The examination stops after the
917 * first code point in 's' is validated, not looking at the rest of the
918 * input. If 'e' is such that there are not enough bytes to represent a
919 * complete code point, this function will return non-zero anyway, if the
920 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
921 * excluded by 'flags'.
922 *
923 * A non-zero return gives the number of bytes required to represent the
924 * code point. Be aware that if the input is for a partial character, the
925 * return will be larger than 'e - s'.
926 *
927 * This function assumes that the code point represented is UTF-8 variant.
928 * The caller should have excluded the possibility of it being invariant
929 * before calling this function.
930 *
931 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
932 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
933 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
934 * disallowed by the flags. If the input is only for a partial character,
935 * the function will return non-zero if there is any sequence of
936 * well-formed UTF-8 that, when appended to the input sequence, could
937 * result in an allowed code point; otherwise it returns 0. Non characters
938 * cannot be determined based on partial character input. But many of the
939 * other excluded types can be determined with just the first one or two
940 * bytes.
941 *
942 */
943
944 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
945
946 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
947 |UTF8_DISALLOW_PERL_EXTENDED)));
948 assert(! UTF8_IS_INVARIANT(*s));
949
950 /* A variant char must begin with a start byte */
951 if (UNLIKELY(! UTF8_IS_START(*s))) {
952 return 0;
953 }
954
955 /* Examine a maximum of a single whole code point */
956 if (e - s > UTF8SKIP(s)) {
957 e = s + UTF8SKIP(s);
958 }
959
960 len = e - s;
961
962 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
963 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
964
965 /* Here, we are disallowing some set of largish code points, and the
966 * first byte indicates the sequence is for a code point that could be
967 * in the excluded set. We generally don't have to look beyond this or
968 * the second byte to see if the sequence is actually for one of the
969 * excluded classes. The code below is derived from this table:
970 *
971 * UTF-8 UTF-EBCDIC I8
972 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
973 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
974 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
975 *
976 * Keep in mind that legal continuation bytes range between \x80..\xBF
977 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
978 * continuation bytes. Hence, we don't have to test the upper edge
979 * because if any of those is encountered, the sequence is malformed,
980 * and would fail elsewhere in this function.
981 *
982 * The code here likewise assumes that there aren't other
983 * malformations; again the function should fail elsewhere because of
984 * these. For example, an overlong beginning with FC doesn't actually
985 * have to be a super; it could actually represent a small code point,
986 * even U+0000. But, since overlongs (and other malformations) are
987 * illegal, the function should return FALSE in either case.
988 */
989
990#ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
991# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
992# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
993
994# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
995 /* B6 and B7 */ \
996 && ((s1) & 0xFE ) == 0xB6)
997# define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
998#else
999# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
1000# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
1001# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
1002# define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
1003#endif
1004
1005 if ( (flags & UTF8_DISALLOW_SUPER)
1006 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1007 {
1008 return 0; /* Above Unicode */
1009 }
1010
1011 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
1012 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
1013 {
1014 return 0;
1015 }
1016
1017 if (len > 1) {
1018 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
1019
1020 if ( (flags & UTF8_DISALLOW_SUPER)
1021 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
1022 {
1023 return 0; /* Above Unicode */
1024 }
1025
1026 if ( (flags & UTF8_DISALLOW_SURROGATE)
1027 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
1028 {
1029 return 0; /* Surrogate */
1030 }
1031
1032 if ( (flags & UTF8_DISALLOW_NONCHAR)
1033 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
1034 {
1035 return 0; /* Noncharacter code point */
1036 }
1037 }
1038 }
1039
1040 /* Make sure that all that follows are continuation bytes */
1041 for (x = s + 1; x < e; x++) {
1042 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
1043 return 0;
1044 }
1045 }
1046
1047 /* Here is syntactically valid. Next, make sure this isn't the start of an
1048 * overlong. */
1049 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
1050 return 0;
1051 }
1052
1053 /* And finally, that the code point represented fits in a word on this
1054 * platform */
1055 if (0 < does_utf8_overflow(s, e,
1056 0 /* Don't consider overlongs */
1057 ))
1058 {
1059 return 0;
1060 }
1061
1062 return UTF8SKIP(s);
1063}
1064
1065char *
1066Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
1067{
1068 /* Returns a mortalized C string that is a displayable copy of the 'len'
1069 * bytes starting at 'start'. 'format' gives how to display each byte.
1070 * Currently, there are only two formats, so it is currently a bool:
1071 * 0 \xab
1072 * 1 ab (that is a space between two hex digit bytes)
1073 */
1074
1075 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
1076 trailing NUL */
1077 const U8 * s = start;
1078 const U8 * const e = start + len;
1079 char * output;
1080 char * d;
1081
1082 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
1083
1084 Newx(output, output_len, char);
1085 SAVEFREEPV(output);
1086
1087 d = output;
1088 for (s = start; s < e; s++) {
1089 const unsigned high_nibble = (*s & 0xF0) >> 4;
1090 const unsigned low_nibble = (*s & 0x0F);
1091
1092 if (format) {
1093 if (s > start) {
1094 *d++ = ' ';
1095 }
1096 }
1097 else {
1098 *d++ = '\\';
1099 *d++ = 'x';
1100 }
1101
1102 if (high_nibble < 10) {
1103 *d++ = high_nibble + '0';
1104 }
1105 else {
1106 *d++ = high_nibble - 10 + 'a';
1107 }
1108
1109 if (low_nibble < 10) {
1110 *d++ = low_nibble + '0';
1111 }
1112 else {
1113 *d++ = low_nibble - 10 + 'a';
1114 }
1115 }
1116
1117 *d = '\0';
1118 return output;
1119}
1120
1121PERL_STATIC_INLINE char *
1122S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1123
1124 /* How many bytes to print */
1125 STRLEN print_len,
1126
1127 /* Which one is the non-continuation */
1128 const STRLEN non_cont_byte_pos,
1129
1130 /* How many bytes should there be? */
1131 const STRLEN expect_len)
1132{
1133 /* Return the malformation warning text for an unexpected continuation
1134 * byte. */
1135
1136 const char * const where = (non_cont_byte_pos == 1)
1137 ? "immediately"
1138 : Perl_form(aTHX_ "%d bytes",
1139 (int) non_cont_byte_pos);
1140
1141 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1142
1143 /* We don't need to pass this parameter, but since it has already been
1144 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1145 assert(expect_len == UTF8SKIP(s));
1146
1147 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1148 " %s after start byte 0x%02x; need %d bytes, got %d)",
1149 malformed_text,
1150 _byte_dump_string(s, print_len, 0),
1151 *(s + non_cont_byte_pos),
1152 where,
1153 *s,
1154 (int) expect_len,
1155 (int) non_cont_byte_pos);
1156}
1157
1158/*
1159
1160=for apidoc utf8n_to_uvchr
1161
1162THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1163Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1164
1165Bottom level UTF-8 decode routine.
1166Returns the native code point value of the first character in the string C<s>,
1167which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1168C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1169the length, in bytes, of that character.
1170
1171The value of C<flags> determines the behavior when C<s> does not point to a
1172well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1173causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1174is the next possible position in C<s> that could begin a non-malformed
1175character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1176is raised. Some UTF-8 input sequences may contain multiple malformations.
1177This function tries to find every possible one in each call, so multiple
1178warnings can be raised for the same sequence.
1179
1180Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1181individual types of malformations, such as the sequence being overlong (that
1182is, when there is a shorter sequence that can express the same code point;
1183overlong sequences are expressly forbidden in the UTF-8 standard due to
1184potential security issues). Another malformation example is the first byte of
1185a character not being a legal first byte. See F<utf8.h> for the list of such
1186flags. Even if allowed, this function generally returns the Unicode
1187REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1188F<utf8.h> to override this behavior for the overlong malformations, but don't
1189do that except for very specialized purposes.
1190
1191The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1192flags) malformation is found. If this flag is set, the routine assumes that
1193the caller will raise a warning, and this function will silently just set
1194C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1195
1196Note that this API requires disambiguation between successful decoding a C<NUL>
1197character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1198in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1199be set to 1. To disambiguate, upon a zero return, see if the first byte of
1200C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1201error. Or you can use C<L</utf8n_to_uvchr_error>>.
1202
1203Certain code points are considered problematic. These are Unicode surrogates,
1204Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1205By default these are considered regular code points, but certain situations
1206warrant special handling for them, which can be specified using the C<flags>
1207parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1208three classes are treated as malformations and handled as such. The flags
1209C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1210C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1211disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1212restricts the allowed inputs to the strict UTF-8 traditionally defined by
1213Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1214definition given by
1215L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
1216The difference between traditional strictness and C9 strictness is that the
1217latter does not forbid non-character code points. (They are still discouraged,
1218however.) For more discussion see L<perlunicode/Noncharacter code points>.
1219
1220The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1221C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1222C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1223raised for their respective categories, but otherwise the code points are
1224considered valid (not malformations). To get a category to both be treated as
1225a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1226(But note that warnings are not raised if lexically disabled nor if
1227C<UTF8_CHECK_ONLY> is also specified.)
1228
1229Extremely high code points were never specified in any standard, and require an
1230extension to UTF-8 to express, which Perl does. It is likely that programs
1231written in something other than Perl would not be able to read files that
1232contain these; nor would Perl understand files written by something that uses a
1233different extension. For these reasons, there is a separate set of flags that
1234can warn and/or disallow these extremely high code points, even if other
1235above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1236C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1237L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1238above-Unicode code points, including these, as malformations.
1239(Note that the Unicode standard considers anything above 0x10FFFF to be
1240illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1241(2**31 -1))
1242
1243A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1244retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1245C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1246C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1247can apply to code points that actually do fit in 31 bits. This happens on
1248EBCDIC platforms, and sometimes when the L<overlong
1249malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1250describe the situation in all cases.
1251
1252
1253All other code points corresponding to Unicode characters, including private
1254use and those yet to be assigned, are never considered malformed and never
1255warn.
1256
1257=cut
1258
1259Also implemented as a macro in utf8.h
1260*/
1261
1262UV
1263Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
1264 STRLEN curlen,
1265 STRLEN *retlen,
1266 const U32 flags)
1267{
1268 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1269
1270 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1271}
1272
1273/* The tables below come from http://bjoern.hoehrmann.de/utf-8/decoder/dfa/,
1274 * which requires this copyright notice */
1275
1276/* Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
1277
1278Permission is hereby granted, free of charge, to any person obtaining a copy of
1279this software and associated documentation files (the "Software"), to deal in
1280the Software without restriction, including without limitation the rights to
1281use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
1282of the Software, and to permit persons to whom the Software is furnished to do
1283so, subject to the following conditions:
1284
1285The above copyright notice and this permission notice shall be included in all
1286copies or substantial portions of the Software.
1287
1288THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1289IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1290FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1291AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1292LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
1293OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1294SOFTWARE.
1295
1296*/
1297
1298#if 0
1299static U8 utf8d_C9[] = {
1300 /* The first part of the table maps bytes to character classes that
1301 * to reduce the size of the transition table and create bitmasks. */
1302 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-1F*/
1303 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-3F*/
1304 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-5F*/
1305 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-7F*/
1306 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, /*-9F*/
1307 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, /*-BF*/
1308 8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, /*-DF*/
1309 10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8, /*-FF*/
1310
1311 /* The second part is a transition table that maps a combination
1312 * of a state of the automaton and a character class to a state. */
1313 0,12,24,36,60,96,84,12,12,12,48,72, 12,12,12,12,12,12,12,12,12,12,12,12,
1314 12, 0,12,12,12,12,12, 0,12, 0,12,12, 12,24,12,12,12,12,12,24,12,24,12,12,
1315 12,12,12,12,12,12,12,24,12,12,12,12, 12,24,12,12,12,12,12,12,12,24,12,12,
1316 12,12,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,36,12,36,12,12,
1317 12,36,12,12,12,12,12,12,12,12,12,12
1318};
1319
1320#endif
1321
1322#ifndef EBCDIC
1323
1324/* This is a version of the above table customized for Perl that doesn't
1325 * exclude surrogates and accepts start bytes up through F7 (representing
1326 * 2**21 - 1). */
1327static U8 dfa_tab_for_perl[] = {
1328 /* The first part of the table maps bytes to character classes to reduce
1329 * the size of the transition table and create bitmasks. */
1330 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-1F*/
1331 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-3F*/
1332 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-5F*/
1333 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /*-7F*/
1334 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, /*-9F*/
1335 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, /*-BF*/
1336 8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, /*-DF*/
1337 10,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 11,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8, /*-FF*/
1338
1339 /* The second part is a transition table that maps a combination
1340 * of a state of the automaton and a character class to a state. */
1341 0,12,24,36,96,12,12,12,12,12,48,72, 12,12,12,12,12,12,12,12,12,12,12,12,/*23*/
1342 12, 0,12,12,12,12,12, 0,12, 0,12,12, 12,24,12,12,12,12,12,24,12,24,12,12,/*47*/
1343 12,12,12,12,12,12,12,24,12,12,12,12, 12,24,12,12,12,12,12,12,12,24,12,12,/*71*/
1344 12,12,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,36,12,36,12,12,/*95*/
1345 12,36,12,12,12,12,12,36,12,36,12,12 /* 96- 107 */
1346
1347 /* The customization was to repurpose the surrogates type '4' to instead be
1348 * for start bytes F1-F7. Types 5 and 6 are now unused, and their entries in
1349 * the transition part of the table are set to 12, so are illegal.
1350 *
1351 * To do higher code points would require expansion and some rearrangement of
1352 * the table. The type '1' entries for continuation bytes 80-8f would have to
1353 * be split into several types, because they aren't treated uniformly for
1354 * higher start bytes, since overlongs for F8 are 80-87; FC: 80-83; and FE:
1355 * 80-81. We start needing to worry about overflow if FE is included.
1356 * Ignoring, FE and FF, we could use type 5 for F9-FB, and 6 for FD (remember
1357 * from the web site that these are used to right shift). FE would
1358 * necessarily be type 7; and FF, type 8. And new states would have to be
1359 * created for F8 and FC (and FE and FF if used), so quite a bit of work would
1360 * be involved.
1361 *
1362 * XXX Better would be to customize the table so that the noncharacters are
1363 * excluded. This again is non trivial, but doing so would simplify the code
1364 * that uses this, and might make it small enough to make it inlinable */
1365};
1366
1367#endif
1368
1369/*
1370
1371=for apidoc utf8n_to_uvchr_error
1372
1373THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1374Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1375
1376This function is for code that needs to know what the precise malformation(s)
1377are when an error is found. If you also need to know the generated warning
1378messages, use L</utf8n_to_uvchr_msgs>() instead.
1379
1380It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1381all the others, C<errors>. If this parameter is 0, this function behaves
1382identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1383to a C<U32> variable, which this function sets to indicate any errors found.
1384Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1385C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1386of these bits will be set if a malformation is found, even if the input
1387C<flags> parameter indicates that the given malformation is allowed; those
1388exceptions are noted:
1389
1390=over 4
1391
1392=item C<UTF8_GOT_PERL_EXTENDED>
1393
1394The input sequence is not standard UTF-8, but a Perl extension. This bit is
1395set only if the input C<flags> parameter contains either the
1396C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1397
1398Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1399and so some extension must be used to express them. Perl uses a natural
1400extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1401extension to represent even higher ones, so that any code point that fits in a
140264-bit word can be represented. Text using these extensions is not likely to
1403be portable to non-Perl code. We lump both of these extensions together and
1404refer to them as Perl extended UTF-8. There exist other extensions that people
1405have invented, incompatible with Perl's.
1406
1407On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1408extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1409than on ASCII. Prior to that, code points 2**31 and higher were simply
1410unrepresentable, and a different, incompatible method was used to represent
1411code points between 2**30 and 2**31 - 1.
1412
1413On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1414Perl extended UTF-8 is used.
1415
1416In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1417may use for backward compatibility. That name is misleading, as this flag may
1418be set when the code point actually does fit in 31 bits. This happens on
1419EBCDIC platforms, and sometimes when the L<overlong
1420malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1421describes the situation in all cases.
1422
1423=item C<UTF8_GOT_CONTINUATION>
1424
1425The input sequence was malformed in that the first byte was a a UTF-8
1426continuation byte.
1427
1428=item C<UTF8_GOT_EMPTY>
1429
1430The input C<curlen> parameter was 0.
1431
1432=item C<UTF8_GOT_LONG>
1433
1434The input sequence was malformed in that there is some other sequence that
1435evaluates to the same code point, but that sequence is shorter than this one.
1436
1437Until Unicode 3.1, it was legal for programs to accept this malformation, but
1438it was discovered that this created security issues.
1439
1440=item C<UTF8_GOT_NONCHAR>
1441
1442The code point represented by the input UTF-8 sequence is for a Unicode
1443non-character code point.
1444This bit is set only if the input C<flags> parameter contains either the
1445C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1446
1447=item C<UTF8_GOT_NON_CONTINUATION>
1448
1449The input sequence was malformed in that a non-continuation type byte was found
1450in a position where only a continuation type one should be.
1451
1452=item C<UTF8_GOT_OVERFLOW>
1453
1454The input sequence was malformed in that it is for a code point that is not
1455representable in the number of bits available in an IV on the current platform.
1456
1457=item C<UTF8_GOT_SHORT>
1458
1459The input sequence was malformed in that C<curlen> is smaller than required for
1460a complete sequence. In other words, the input is for a partial character
1461sequence.
1462
1463=item C<UTF8_GOT_SUPER>
1464
1465The input sequence was malformed in that it is for a non-Unicode code point;
1466that is, one above the legal Unicode maximum.
1467This bit is set only if the input C<flags> parameter contains either the
1468C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1469
1470=item C<UTF8_GOT_SURROGATE>
1471
1472The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1473code point.
1474This bit is set only if the input C<flags> parameter contains either the
1475C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1476
1477=back
1478
1479To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1480flag to suppress any warnings, and then examine the C<*errors> return.
1481
1482=cut
1483
1484Also implemented as a macro in utf8.h
1485*/
1486
1487UV
1488Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
1489 STRLEN curlen,
1490 STRLEN *retlen,
1491 const U32 flags,
1492 U32 * errors)
1493{
1494 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1495
1496 return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL);
1497}
1498
1499/*
1500
1501=for apidoc utf8n_to_uvchr_msgs
1502
1503THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1504Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1505
1506This function is for code that needs to know what the precise malformation(s)
1507are when an error is found, and wants the corresponding warning and/or error
1508messages to be returned to the caller rather than be displayed. All messages
1509that would have been displayed if all lexcial warnings are enabled will be
1510returned.
1511
1512It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter
1513placed after all the others, C<msgs>. If this parameter is 0, this function
1514behaves identically to C<L</utf8n_to_uvchr_error>>. Otherwise, C<msgs> should
1515be a pointer to an C<AV *> variable, in which this function creates a new AV to
1516contain any appropriate messages. The elements of the array are ordered so
1517that the first message that would have been displayed is in the 0th element,
1518and so on. Each element is a hash with three key-value pairs, as follows:
1519
1520=over 4
1521
1522=item C<text>
1523
1524The text of the message as a C<SVpv>.
1525
1526=item C<warn_categories>
1527
1528The warning category (or categories) packed into a C<SVuv>.
1529
1530=item C<flag>
1531
1532A single flag bit associated with this message, in a C<SVuv>.
1533The bit corresponds to some bit in the C<*errors> return value,
1534such as C<UTF8_GOT_LONG>.
1535
1536=back
1537
1538It's important to note that specifying this parameter as non-null will cause
1539any warnings this function would otherwise generate to be suppressed, and
1540instead be placed in C<*msgs>. The caller can check the lexical warnings state
1541(or not) when choosing what to do with the returned messages.
1542
1543If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence
1544no AV is created.
1545
1546The caller, of course, is responsible for freeing any returned AV.
1547
1548=cut
1549*/
1550
1551UV
1552Perl_utf8n_to_uvchr_msgs(pTHX_ const U8 *s,
1553 STRLEN curlen,
1554 STRLEN *retlen,
1555 const U32 flags,
1556 U32 * errors,
1557 AV ** msgs)
1558{
1559 const U8 * const s0 = s;
1560 const U8 * send = s0 + curlen;
1561 U32 possible_problems = 0; /* A bit is set here for each potential problem
1562 found as we go along */
1563 UV uv;
1564 STRLEN expectlen = 0; /* How long should this sequence be?
1565 (initialized to silence compilers' wrong
1566 warning) */
1567 STRLEN avail_len = 0; /* When input is too short, gives what that is */
1568 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
1569 this gets set and discarded */
1570
1571 /* The below are used only if there is both an overlong malformation and a
1572 * too short one. Otherwise the first two are set to 's0' and 'send', and
1573 * the third not used at all */
1574 U8 * adjusted_s0 = (U8 *) s0;
1575 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1576 routine; see [perl #130921] */
1577 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1578
1579 UV state = 0;
1580
1581 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_MSGS;
1582
1583 if (errors) {
1584 *errors = 0;
1585 }
1586 else {
1587 errors = &discard_errors;
1588 }
1589
1590 /* The order of malformation tests here is important. We should consume as
1591 * few bytes as possible in order to not skip any valid character. This is
1592 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1593 * http://unicode.org/reports/tr36 for more discussion as to why. For
1594 * example, once we've done a UTF8SKIP, we can tell the expected number of
1595 * bytes, and could fail right off the bat if the input parameters indicate
1596 * that there are too few available. But it could be that just that first
1597 * byte is garbled, and the intended character occupies fewer bytes. If we
1598 * blindly assumed that the first byte is correct, and skipped based on
1599 * that number, we could skip over a valid input character. So instead, we
1600 * always examine the sequence byte-by-byte.
1601 *
1602 * We also should not consume too few bytes, otherwise someone could inject
1603 * things. For example, an input could be deliberately designed to
1604 * overflow, and if this code bailed out immediately upon discovering that,
1605 * returning to the caller C<*retlen> pointing to the very next byte (one
1606 * which is actually part of of the overflowing sequence), that could look
1607 * legitimate to the caller, which could discard the initial partial
1608 * sequence and process the rest, inappropriately.
1609 *
1610 * Some possible input sequences are malformed in more than one way. This
1611 * function goes to lengths to try to find all of them. This is necessary
1612 * for correctness, as the inputs may allow one malformation but not
1613 * another, and if we abandon searching for others after finding the
1614 * allowed one, we could allow in something that shouldn't have been.
1615 */
1616
1617 if (UNLIKELY(curlen == 0)) {
1618 possible_problems |= UTF8_GOT_EMPTY;
1619 curlen = 0;
1620 uv = UNICODE_REPLACEMENT;
1621 goto ready_to_handle_errors;
1622 }
1623
1624 expectlen = UTF8SKIP(s);
1625
1626 /* A well-formed UTF-8 character, as the vast majority of calls to this
1627 * function will be for, has this expected length. For efficiency, set
1628 * things up here to return it. It will be overriden only in those rare
1629 * cases where a malformation is found */
1630 if (retlen) {
1631 *retlen = expectlen;
1632 }
1633
1634 /* An invariant is trivially well-formed */
1635 if (UTF8_IS_INVARIANT(*s0)) {
1636 return *s0;
1637 }
1638
1639#ifndef EBCDIC
1640
1641 /* Measurements show that this dfa is somewhat faster than the regular code
1642 * below, so use it first, dropping down for the non-normal cases. */
1643
1644# define PERL_UTF8_DECODE_REJECT 12
1645
1646 while (s < send && LIKELY(state != PERL_UTF8_DECODE_REJECT)) {
1647 UV type = dfa_tab_for_perl[*s];
1648
1649 if (state != 0) {
1650 uv = (*s & 0x3fu) | (uv << UTF_ACCUMULATION_SHIFT);
1651 state = dfa_tab_for_perl[256 + state + type];
1652 }
1653 else {
1654 uv = (0xff >> type) & (*s);
1655 state = dfa_tab_for_perl[256 + type];
1656 }
1657
1658 if (state == 0) {
1659
1660 /* If this could be a code point that the flags don't allow (the first
1661 * surrogate is the first such possible one), delve further, but we already
1662 * have calculated 'uv' */
1663 if ( (flags & (UTF8_DISALLOW_ILLEGAL_INTERCHANGE
1664 |UTF8_WARN_ILLEGAL_INTERCHANGE))
1665 && uv >= UNICODE_SURROGATE_FIRST)
1666 {
1667 curlen = s + 1 - s0;
1668 goto got_uv;
1669 }
1670
1671 return uv;
1672 }
1673
1674 s++;
1675 }
1676
1677 /* Here, is some sort of failure. Use the full mechanism */
1678
1679 uv = *s0;
1680
1681#endif
1682
1683 /* A continuation character can't start a valid sequence */
1684 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1685 possible_problems |= UTF8_GOT_CONTINUATION;
1686 curlen = 1;
1687 uv = UNICODE_REPLACEMENT;
1688 goto ready_to_handle_errors;
1689 }
1690
1691 /* Here is not a continuation byte, nor an invariant. The only thing left
1692 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1693 * because it excludes start bytes like \xC0 that always lead to
1694 * overlongs.) */
1695
1696 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1697 * that indicate the number of bytes in the character's whole UTF-8
1698 * sequence, leaving just the bits that are part of the value. */
1699 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1700
1701 /* Setup the loop end point, making sure to not look past the end of the
1702 * input string, and flag it as too short if the size isn't big enough. */
1703 if (UNLIKELY(curlen < expectlen)) {
1704 possible_problems |= UTF8_GOT_SHORT;
1705 avail_len = curlen;
1706 }
1707 else {
1708 send = (U8*) s0 + expectlen;
1709 }
1710
1711 /* Now, loop through the remaining bytes in the character's sequence,
1712 * accumulating each into the working value as we go. */
1713 for (s = s0 + 1; s < send; s++) {
1714 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1715 uv = UTF8_ACCUMULATE(uv, *s);
1716 continue;
1717 }
1718
1719 /* Here, found a non-continuation before processing all expected bytes.
1720 * This byte indicates the beginning of a new character, so quit, even
1721 * if allowing this malformation. */
1722 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1723 break;
1724 } /* End of loop through the character's bytes */
1725
1726 /* Save how many bytes were actually in the character */
1727 curlen = s - s0;
1728
1729 /* Note that there are two types of too-short malformation. One is when
1730 * there is actual wrong data before the normal termination of the
1731 * sequence. The other is that the sequence wasn't complete before the end
1732 * of the data we are allowed to look at, based on the input 'curlen'.
1733 * This means that we were passed data for a partial character, but it is
1734 * valid as far as we saw. The other is definitely invalid. This
1735 * distinction could be important to a caller, so the two types are kept
1736 * separate.
1737 *
1738 * A convenience macro that matches either of the too-short conditions. */
1739# define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1740
1741 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1742 uv_so_far = uv;
1743 uv = UNICODE_REPLACEMENT;
1744 }
1745
1746 /* Check for overflow. The algorithm requires us to not look past the end
1747 * of the current character, even if partial, so the upper limit is 's' */
1748 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1749 1 /* Do consider overlongs */
1750 )))
1751 {
1752 possible_problems |= UTF8_GOT_OVERFLOW;
1753 uv = UNICODE_REPLACEMENT;
1754 }
1755
1756 /* Check for overlong. If no problems so far, 'uv' is the correct code
1757 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1758 * we must look at the UTF-8 byte sequence itself to see if it is for an
1759 * overlong */
1760 if ( ( LIKELY(! possible_problems)
1761 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1762 || ( UNLIKELY(possible_problems)
1763 && ( UNLIKELY(! UTF8_IS_START(*s0))
1764 || ( curlen > 1
1765 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1766 s - s0))))))
1767 {
1768 possible_problems |= UTF8_GOT_LONG;
1769
1770 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1771
1772 /* The calculation in the 'true' branch of this 'if'
1773 * below won't work if overflows, and isn't needed
1774 * anyway. Further below we handle all overflow
1775 * cases */
1776 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1777 {
1778 UV min_uv = uv_so_far;
1779 STRLEN i;
1780
1781 /* Here, the input is both overlong and is missing some trailing
1782 * bytes. There is no single code point it could be for, but there
1783 * may be enough information present to determine if what we have
1784 * so far is for an unallowed code point, such as for a surrogate.
1785 * The code further below has the intelligence to determine this,
1786 * but just for non-overlong UTF-8 sequences. What we do here is
1787 * calculate the smallest code point the input could represent if
1788 * there were no too short malformation. Then we compute and save
1789 * the UTF-8 for that, which is what the code below looks at
1790 * instead of the raw input. It turns out that the smallest such
1791 * code point is all we need. */
1792 for (i = curlen; i < expectlen; i++) {
1793 min_uv = UTF8_ACCUMULATE(min_uv,
1794 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1795 }
1796
1797 adjusted_s0 = temp_char_buf;
1798 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1799 }
1800 }
1801
1802 got_uv:
1803
1804 /* Here, we have found all the possible problems, except for when the input
1805 * is for a problematic code point not allowed by the input parameters. */
1806
1807 /* uv is valid for overlongs */
1808 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1809
1810 /* isn't problematic if < this */
1811 && uv >= UNICODE_SURROGATE_FIRST)
1812 || ( UNLIKELY(possible_problems)
1813
1814 /* if overflow, we know without looking further
1815 * precisely which of the problematic types it is,
1816 * and we deal with those in the overflow handling
1817 * code */
1818 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1819 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1820 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1821 && ((flags & ( UTF8_DISALLOW_NONCHAR
1822 |UTF8_DISALLOW_SURROGATE
1823 |UTF8_DISALLOW_SUPER
1824 |UTF8_DISALLOW_PERL_EXTENDED
1825 |UTF8_WARN_NONCHAR
1826 |UTF8_WARN_SURROGATE
1827 |UTF8_WARN_SUPER
1828 |UTF8_WARN_PERL_EXTENDED))))
1829 {
1830 /* If there were no malformations, or the only malformation is an
1831 * overlong, 'uv' is valid */
1832 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1833 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1834 possible_problems |= UTF8_GOT_SURROGATE;
1835 }
1836 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1837 possible_problems |= UTF8_GOT_SUPER;
1838 }
1839 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1840 possible_problems |= UTF8_GOT_NONCHAR;
1841 }
1842 }
1843 else { /* Otherwise, need to look at the source UTF-8, possibly
1844 adjusted to be non-overlong */
1845
1846 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1847 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1848 {
1849 possible_problems |= UTF8_GOT_SUPER;
1850 }
1851 else if (curlen > 1) {
1852 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1853 NATIVE_UTF8_TO_I8(*adjusted_s0),
1854 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1855 {
1856 possible_problems |= UTF8_GOT_SUPER;
1857 }
1858 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1859 NATIVE_UTF8_TO_I8(*adjusted_s0),
1860 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1861 {
1862 possible_problems |= UTF8_GOT_SURROGATE;
1863 }
1864 }
1865
1866 /* We need a complete well-formed UTF-8 character to discern
1867 * non-characters, so can't look for them here */
1868 }
1869 }
1870
1871 ready_to_handle_errors:
1872
1873 /* At this point:
1874 * curlen contains the number of bytes in the sequence that
1875 * this call should advance the input by.
1876 * avail_len gives the available number of bytes passed in, but
1877 * only if this is less than the expected number of
1878 * bytes, based on the code point's start byte.
1879 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1880 * is set in it for each potential problem found.
1881 * uv contains the code point the input sequence
1882 * represents; or if there is a problem that prevents
1883 * a well-defined value from being computed, it is
1884 * some subsitute value, typically the REPLACEMENT
1885 * CHARACTER.
1886 * s0 points to the first byte of the character
1887 * s points to just after were we left off processing
1888 * the character
1889 * send points to just after where that character should
1890 * end, based on how many bytes the start byte tells
1891 * us should be in it, but no further than s0 +
1892 * avail_len
1893 */
1894
1895 if (UNLIKELY(possible_problems)) {
1896 bool disallowed = FALSE;
1897 const U32 orig_problems = possible_problems;
1898
1899 if (msgs) {
1900 *msgs = NULL;
1901 }
1902
1903 while (possible_problems) { /* Handle each possible problem */
1904 UV pack_warn = 0;
1905 char * message = NULL;
1906 U32 this_flag_bit = 0;
1907
1908 /* Each 'if' clause handles one problem. They are ordered so that
1909 * the first ones' messages will be displayed before the later
1910 * ones; this is kinda in decreasing severity order. But the
1911 * overlong must come last, as it changes 'uv' looked at by the
1912 * others */
1913 if (possible_problems & UTF8_GOT_OVERFLOW) {
1914
1915 /* Overflow means also got a super and are using Perl's
1916 * extended UTF-8, but we handle all three cases here */
1917 possible_problems
1918 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1919 *errors |= UTF8_GOT_OVERFLOW;
1920
1921 /* But the API says we flag all errors found */
1922 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1923 *errors |= UTF8_GOT_SUPER;
1924 }
1925 if (flags
1926 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1927 {
1928 *errors |= UTF8_GOT_PERL_EXTENDED;
1929 }
1930
1931 /* Disallow if any of the three categories say to */
1932 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1933 || (flags & ( UTF8_DISALLOW_SUPER
1934 |UTF8_DISALLOW_PERL_EXTENDED)))
1935 {
1936 disallowed = TRUE;
1937 }
1938
1939 /* Likewise, warn if any say to */
1940 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1941 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1942 {
1943
1944 /* The warnings code explicitly says it doesn't handle the
1945 * case of packWARN2 and two categories which have
1946 * parent-child relationship. Even if it works now to
1947 * raise the warning if either is enabled, it wouldn't
1948 * necessarily do so in the future. We output (only) the
1949 * most dire warning */
1950 if (! (flags & UTF8_CHECK_ONLY)) {
1951 if (msgs || ckWARN_d(WARN_UTF8)) {
1952 pack_warn = packWARN(WARN_UTF8);
1953 }
1954 else if (msgs || ckWARN_d(WARN_NON_UNICODE)) {
1955 pack_warn = packWARN(WARN_NON_UNICODE);
1956 }
1957 if (pack_warn) {
1958 message = Perl_form(aTHX_ "%s: %s (overflows)",
1959 malformed_text,
1960 _byte_dump_string(s0, curlen, 0));
1961 this_flag_bit = UTF8_GOT_OVERFLOW;
1962 }
1963 }
1964 }
1965 }
1966 else if (possible_problems & UTF8_GOT_EMPTY) {
1967 possible_problems &= ~UTF8_GOT_EMPTY;
1968 *errors |= UTF8_GOT_EMPTY;
1969
1970 if (! (flags & UTF8_ALLOW_EMPTY)) {
1971
1972 /* This so-called malformation is now treated as a bug in
1973 * the caller. If you have nothing to decode, skip calling
1974 * this function */
1975 assert(0);
1976
1977 disallowed = TRUE;
1978 if ( (msgs
1979 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1980 {
1981 pack_warn = packWARN(WARN_UTF8);
1982 message = Perl_form(aTHX_ "%s (empty string)",
1983 malformed_text);
1984 this_flag_bit = UTF8_GOT_EMPTY;
1985 }
1986 }
1987 }
1988 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1989 possible_problems &= ~UTF8_GOT_CONTINUATION;
1990 *errors |= UTF8_GOT_CONTINUATION;
1991
1992 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1993 disallowed = TRUE;
1994 if (( msgs
1995 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1996 {
1997 pack_warn = packWARN(WARN_UTF8);
1998 message = Perl_form(aTHX_
1999 "%s: %s (unexpected continuation byte 0x%02x,"
2000 " with no preceding start byte)",
2001 malformed_text,
2002 _byte_dump_string(s0, 1, 0), *s0);
2003 this_flag_bit = UTF8_GOT_CONTINUATION;
2004 }
2005 }
2006 }
2007 else if (possible_problems & UTF8_GOT_SHORT) {
2008 possible_problems &= ~UTF8_GOT_SHORT;
2009 *errors |= UTF8_GOT_SHORT;
2010
2011 if (! (flags & UTF8_ALLOW_SHORT)) {
2012 disallowed = TRUE;
2013 if (( msgs
2014 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2015 {
2016 pack_warn = packWARN(WARN_UTF8);
2017 message = Perl_form(aTHX_
2018 "%s: %s (too short; %d byte%s available, need %d)",
2019 malformed_text,
2020 _byte_dump_string(s0, send - s0, 0),
2021 (int)avail_len,
2022 avail_len == 1 ? "" : "s",
2023 (int)expectlen);
2024 this_flag_bit = UTF8_GOT_SHORT;
2025 }
2026 }
2027
2028 }
2029 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
2030 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
2031 *errors |= UTF8_GOT_NON_CONTINUATION;
2032
2033 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
2034 disallowed = TRUE;
2035 if (( msgs
2036 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2037 {
2038
2039 /* If we don't know for sure that the input length is
2040 * valid, avoid as much as possible reading past the
2041 * end of the buffer */
2042 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
2043 ? s - s0
2044 : send - s0;
2045 pack_warn = packWARN(WARN_UTF8);
2046 message = Perl_form(aTHX_ "%s",
2047 unexpected_non_continuation_text(s0,
2048 printlen,
2049 s - s0,
2050 (int) expectlen));
2051 this_flag_bit = UTF8_GOT_NON_CONTINUATION;
2052 }
2053 }
2054 }
2055 else if (possible_problems & UTF8_GOT_SURROGATE) {
2056 possible_problems &= ~UTF8_GOT_SURROGATE;
2057
2058 if (flags & UTF8_WARN_SURROGATE) {
2059 *errors |= UTF8_GOT_SURROGATE;
2060
2061 if ( ! (flags & UTF8_CHECK_ONLY)
2062 && (msgs || ckWARN_d(WARN_SURROGATE)))
2063 {
2064 pack_warn = packWARN(WARN_SURROGATE);
2065
2066 /* These are the only errors that can occur with a
2067 * surrogate when the 'uv' isn't valid */
2068 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2069 message = Perl_form(aTHX_
2070 "UTF-16 surrogate (any UTF-8 sequence that"
2071 " starts with \"%s\" is for a surrogate)",
2072 _byte_dump_string(s0, curlen, 0));
2073 }
2074 else {
2075 message = Perl_form(aTHX_ surrogate_cp_format, uv);
2076 }
2077 this_flag_bit = UTF8_GOT_SURROGATE;
2078 }
2079 }
2080
2081 if (flags & UTF8_DISALLOW_SURROGATE) {
2082 disallowed = TRUE;
2083 *errors |= UTF8_GOT_SURROGATE;
2084 }
2085 }
2086 else if (possible_problems & UTF8_GOT_SUPER) {
2087 possible_problems &= ~UTF8_GOT_SUPER;
2088
2089 if (flags & UTF8_WARN_SUPER) {
2090 *errors |= UTF8_GOT_SUPER;
2091
2092 if ( ! (flags & UTF8_CHECK_ONLY)
2093 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2094 {
2095 pack_warn = packWARN(WARN_NON_UNICODE);
2096
2097 if (orig_problems & UTF8_GOT_TOO_SHORT) {
2098 message = Perl_form(aTHX_
2099 "Any UTF-8 sequence that starts with"
2100 " \"%s\" is for a non-Unicode code point,"
2101 " may not be portable",
2102 _byte_dump_string(s0, curlen, 0));
2103 }
2104 else {
2105 message = Perl_form(aTHX_ super_cp_format, uv);
2106 }
2107 this_flag_bit = UTF8_GOT_SUPER;
2108 }
2109 }
2110
2111 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
2112 * and before possibly bailing out, so that the more dire
2113 * warning will override the regular one. */
2114 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
2115 if ( ! (flags & UTF8_CHECK_ONLY)
2116 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
2117 && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2118 {
2119 pack_warn = packWARN(WARN_NON_UNICODE);
2120
2121 /* If it is an overlong that evaluates to a code point
2122 * that doesn't have to use the Perl extended UTF-8, it
2123 * still used it, and so we output a message that
2124 * doesn't refer to the code point. The same is true
2125 * if there was a SHORT malformation where the code
2126 * point is not valid. In that case, 'uv' will have
2127 * been set to the REPLACEMENT CHAR, and the message
2128 * below without the code point in it will be selected
2129 * */
2130 if (UNICODE_IS_PERL_EXTENDED(uv)) {
2131 message = Perl_form(aTHX_
2132 perl_extended_cp_format, uv);
2133 }
2134 else {
2135 message = Perl_form(aTHX_
2136 "Any UTF-8 sequence that starts with"
2137 " \"%s\" is a Perl extension, and"
2138 " so is not portable",
2139 _byte_dump_string(s0, curlen, 0));
2140 }
2141 this_flag_bit = UTF8_GOT_PERL_EXTENDED;
2142 }
2143
2144 if (flags & ( UTF8_WARN_PERL_EXTENDED
2145 |UTF8_DISALLOW_PERL_EXTENDED))
2146 {
2147 *errors |= UTF8_GOT_PERL_EXTENDED;
2148
2149 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
2150 disallowed = TRUE;
2151 }
2152 }
2153 }
2154
2155 if (flags & UTF8_DISALLOW_SUPER) {
2156 *errors |= UTF8_GOT_SUPER;
2157 disallowed = TRUE;
2158 }
2159 }
2160 else if (possible_problems & UTF8_GOT_NONCHAR) {
2161 possible_problems &= ~UTF8_GOT_NONCHAR;
2162
2163 if (flags & UTF8_WARN_NONCHAR) {
2164 *errors |= UTF8_GOT_NONCHAR;
2165
2166 if ( ! (flags & UTF8_CHECK_ONLY)
2167 && (msgs || ckWARN_d(WARN_NONCHAR)))
2168 {
2169 /* The code above should have guaranteed that we don't
2170 * get here with errors other than overlong */
2171 assert (! (orig_problems
2172 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
2173
2174 pack_warn = packWARN(WARN_NONCHAR);
2175 message = Perl_form(aTHX_ nonchar_cp_format, uv);
2176 this_flag_bit = UTF8_GOT_NONCHAR;
2177 }
2178 }
2179
2180 if (flags & UTF8_DISALLOW_NONCHAR) {
2181 disallowed = TRUE;
2182 *errors |= UTF8_GOT_NONCHAR;
2183 }
2184 }
2185 else if (possible_problems & UTF8_GOT_LONG) {
2186 possible_problems &= ~UTF8_GOT_LONG;
2187 *errors |= UTF8_GOT_LONG;
2188
2189 if (flags & UTF8_ALLOW_LONG) {
2190
2191 /* We don't allow the actual overlong value, unless the
2192 * special extra bit is also set */
2193 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
2194 & ~UTF8_ALLOW_LONG)))
2195 {
2196 uv = UNICODE_REPLACEMENT;
2197 }
2198 }
2199 else {
2200 disallowed = TRUE;
2201
2202 if (( msgs
2203 || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2204 {
2205 pack_warn = packWARN(WARN_UTF8);
2206
2207 /* These error types cause 'uv' to be something that
2208 * isn't what was intended, so can't use it in the
2209 * message. The other error types either can't
2210 * generate an overlong, or else the 'uv' is valid */
2211 if (orig_problems &
2212 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
2213 {
2214 message = Perl_form(aTHX_
2215 "%s: %s (any UTF-8 sequence that starts"
2216 " with \"%s\" is overlong which can and"
2217 " should be represented with a"
2218 " different, shorter sequence)",
2219 malformed_text,
2220 _byte_dump_string(s0, send - s0, 0),
2221 _byte_dump_string(s0, curlen, 0));
2222 }
2223 else {
2224 U8 tmpbuf[UTF8_MAXBYTES+1];
2225 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
2226 uv, 0);
2227 /* Don't use U+ for non-Unicode code points, which
2228 * includes those in the Latin1 range */
2229 const char * preface = ( uv > PERL_UNICODE_MAX
2230#ifdef EBCDIC
2231 || uv <= 0xFF
2232#endif
2233 )
2234 ? "0x"
2235 : "U+";
2236 message = Perl_form(aTHX_
2237 "%s: %s (overlong; instead use %s to represent"
2238 " %s%0*" UVXf ")",
2239 malformed_text,
2240 _byte_dump_string(s0, send - s0, 0),
2241 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
2242 preface,
2243 ((uv < 256) ? 2 : 4), /* Field width of 2 for
2244 small code points */
2245 UNI_TO_NATIVE(uv));
2246 }
2247 this_flag_bit = UTF8_GOT_LONG;
2248 }
2249 }
2250 } /* End of looking through the possible flags */
2251
2252 /* Display the message (if any) for the problem being handled in
2253 * this iteration of the loop */
2254 if (message) {
2255 if (msgs) {
2256 assert(this_flag_bit);
2257
2258 if (*msgs == NULL) {
2259 *msgs = newAV();
2260 }
2261
2262 av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message,
2263 pack_warn,
2264 this_flag_bit)));
2265 }
2266 else if (PL_op)
2267 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
2268 OP_DESC(PL_op));
2269 else
2270 Perl_warner(aTHX_ pack_warn, "%s", message);
2271 }
2272 } /* End of 'while (possible_problems)' */
2273
2274 /* Since there was a possible problem, the returned length may need to
2275 * be changed from the one stored at the beginning of this function.
2276 * Instead of trying to figure out if that's needed, just do it. */
2277 if (retlen) {
2278 *retlen = curlen;
2279 }
2280
2281 if (disallowed) {
2282 if (flags & UTF8_CHECK_ONLY && retlen) {
2283 *retlen = ((STRLEN) -1);
2284 }
2285 return 0;
2286 }
2287 }
2288
2289 return UNI_TO_NATIVE(uv);
2290}
2291
2292/*
2293=for apidoc utf8_to_uvchr_buf
2294
2295Returns the native code point of the first character in the string C<s> which
2296is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2297C<*retlen> will be set to the length, in bytes, of that character.
2298
2299If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2300enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2301C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
2302(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
2303C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
2304the next possible position in C<s> that could begin a non-malformed character.
2305See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2306returned.
2307
2308=cut
2309
2310Also implemented as a macro in utf8.h
2311
2312*/
2313
2314
2315UV
2316Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2317{
2318 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
2319
2320 assert(s < send);
2321
2322 return utf8n_to_uvchr(s, send - s, retlen,
2323 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
2324}
2325
2326/* This is marked as deprecated
2327 *
2328=for apidoc utf8_to_uvuni_buf
2329
2330Only in very rare circumstances should code need to be dealing in Unicode
2331(as opposed to native) code points. In those few cases, use
2332C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
2333
2334Returns the Unicode (not-native) code point of the first character in the
2335string C<s> which
2336is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2337C<retlen> will be set to the length, in bytes, of that character.
2338
2339If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2340enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2341NULL) to -1. If those warnings are off, the computed value if well-defined (or
2342the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
2343is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
2344next possible position in C<s> that could begin a non-malformed character.
2345See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
2346
2347=cut
2348*/
2349
2350UV
2351Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2352{
2353 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
2354
2355 assert(send > s);
2356
2357 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2358}
2359
2360/*
2361=for apidoc utf8_length
2362
2363Returns the number of characters in the sequence of UTF-8-encoded bytes starting
2364at C<s> and ending at the byte just before C<e>. If <s> and <e> point to the
2365same place, it returns 0 with no warning raised.
2366
2367If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning
2368and returns the number of valid characters.
2369
2370=cut
2371*/
2372
2373STRLEN
2374Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2375{
2376 STRLEN len = 0;
2377
2378 PERL_ARGS_ASSERT_UTF8_LENGTH;
2379
2380 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2381 * the bitops (especially ~) can create illegal UTF-8.
2382 * In other words: in Perl UTF-8 is not just for Unicode. */
2383
2384 if (e < s)
2385 goto warn_and_return;
2386 while (s < e) {
2387 s += UTF8SKIP(s);
2388 len++;
2389 }
2390
2391 if (e != s) {
2392 len--;
2393 warn_and_return:
2394 if (PL_op)
2395 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2396 "%s in %s", unees, OP_DESC(PL_op));
2397 else
2398 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2399 }
2400
2401 return len;
2402}
2403
2404/*
2405=for apidoc bytes_cmp_utf8
2406
2407Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2408sequence of characters (stored as UTF-8)
2409in C<u>, C<ulen>. Returns 0 if they are
2410equal, -1 or -2 if the first string is less than the second string, +1 or +2
2411if the first string is greater than the second string.
2412
2413-1 or +1 is returned if the shorter string was identical to the start of the
2414longer string. -2 or +2 is returned if
2415there was a difference between characters
2416within the strings.
2417
2418=cut
2419*/
2420
2421int
2422Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2423{
2424 const U8 *const bend = b + blen;
2425 const U8 *const uend = u + ulen;
2426
2427 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2428
2429 while (b < bend && u < uend) {
2430 U8 c = *u++;
2431 if (!UTF8_IS_INVARIANT(c)) {
2432 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2433 if (u < uend) {
2434 U8 c1 = *u++;
2435 if (UTF8_IS_CONTINUATION(c1)) {
2436 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2437 } else {
2438 /* diag_listed_as: Malformed UTF-8 character%s */
2439 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2440 "%s %s%s",
2441 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2442 PL_op ? " in " : "",
2443 PL_op ? OP_DESC(PL_op) : "");
2444 return -2;
2445 }
2446 } else {
2447 if (PL_op)
2448 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2449 "%s in %s", unees, OP_DESC(PL_op));
2450 else
2451 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2452 return -2; /* Really want to return undef :-) */
2453 }
2454 } else {
2455 return -2;
2456 }
2457 }
2458 if (*b != c) {
2459 return *b < c ? -2 : +2;
2460 }
2461 ++b;
2462 }
2463
2464 if (b == bend && u == uend)
2465 return 0;
2466
2467 return b < bend ? +1 : -1;
2468}
2469
2470/*
2471=for apidoc utf8_to_bytes
2472
2473Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2474Unlike L</bytes_to_utf8>, this over-writes the original string, and
2475updates C<*lenp> to contain the new length.
2476Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2477
2478Upon successful return, the number of variants in the string can be computed by
2479having saved the value of C<*lenp> before the call, and subtracting the
2480after-call value of C<*lenp> from it.
2481
2482If you need a copy of the string, see L</bytes_from_utf8>.
2483
2484=cut
2485*/
2486
2487U8 *
2488Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2489{
2490 U8 * first_variant;
2491
2492 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2493 PERL_UNUSED_CONTEXT;
2494
2495 /* This is a no-op if no variants at all in the input */
2496 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2497 return s;
2498 }
2499
2500 {
2501 U8 * const save = s;
2502 U8 * const send = s + *lenp;
2503 U8 * d;
2504
2505 /* Nothing before the first variant needs to be changed, so start the real
2506 * work there */
2507 s = first_variant;
2508 while (s < send) {
2509 if (! UTF8_IS_INVARIANT(*s)) {
2510 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2511 *lenp = ((STRLEN) -1);
2512 return 0;
2513 }
2514 s++;
2515 }
2516 s++;
2517 }
2518
2519 /* Is downgradable, so do it */
2520 d = s = first_variant;
2521 while (s < send) {
2522 U8 c = *s++;
2523 if (! UVCHR_IS_INVARIANT(c)) {
2524 /* Then it is two-byte encoded */
2525 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2526 s++;
2527 }
2528 *d++ = c;
2529 }
2530 *d = '\0';
2531 *lenp = d - save;
2532
2533 return save;
2534 }
2535}
2536
2537/*
2538=for apidoc bytes_from_utf8
2539
2540Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2541byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2542actually encoded in UTF-8.
2543
2544Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2545the input string.
2546
2547Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2548not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2549C<*lenp> are unchanged, and the return value is the original C<s>.
2550
2551Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2552newly created string containing a downgraded copy of C<s>, and whose length is
2553returned in C<*lenp>, updated. The new string is C<NUL>-terminated.
2554
2555Upon successful return, the number of variants in the string can be computed by
2556having saved the value of C<*lenp> before the call, and subtracting the
2557after-call value of C<*lenp> from it.
2558
2559=cut
2560
2561There is a macro that avoids this function call, but this is retained for
2562anyone who calls it with the Perl_ prefix */
2563
2564U8 *
2565Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2566{
2567 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2568 PERL_UNUSED_CONTEXT;
2569
2570 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2571}
2572
2573/*
2574No = here because currently externally undocumented
2575for apidoc bytes_from_utf8_loc
2576
2577Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2578to store the location of the first character in C<"s"> that cannot be
2579converted to non-UTF8.
2580
2581If that parameter is C<NULL>, this function behaves identically to
2582C<bytes_from_utf8>.
2583
2584Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2585C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2586
2587Otherwise, the function returns a newly created C<NUL>-terminated string
2588containing the non-UTF8 equivalent of the convertible first portion of
2589C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2590If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2591and C<*first_non_downgradable> is set to C<NULL>.
2592
2593Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2594first character in the original string that wasn't converted. C<*is_utf8p> is
2595unchanged. Note that the new string may have length 0.
2596
2597Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2598C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2599converts as many characters in it as possible stopping at the first one it
2600finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2601set to point to that. The function returns the portion that could be converted
2602in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2603not including the terminating C<NUL>. If the very first character in the
2604original could not be converted, C<*lenp> will be 0, and the new string will
2605contain just a single C<NUL>. If the entire input string was converted,
2606C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2607
2608Upon successful return, the number of variants in the converted portion of the
2609string can be computed by having saved the value of C<*lenp> before the call,
2610and subtracting the after-call value of C<*lenp> from it.
2611
2612=cut
2613
2614
2615*/
2616
2617U8 *
2618Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2619{
2620 U8 *d;
2621 const U8 *original = s;
2622 U8 *converted_start;
2623 const U8 *send = s + *lenp;
2624
2625 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2626
2627 if (! *is_utf8p) {
2628 if (first_unconverted) {
2629 *first_unconverted = NULL;
2630 }
2631
2632 return (U8 *) original;
2633 }
2634
2635 Newx(d, (*lenp) + 1, U8);
2636
2637 converted_start = d;
2638 while (s < send) {
2639 U8 c = *s++;
2640 if (! UTF8_IS_INVARIANT(c)) {
2641
2642 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2643 * have to stop now */
2644 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2645 if (first_unconverted) {
2646 *first_unconverted = s - 1;
2647 goto finish_and_return;
2648 }
2649 else {
2650 Safefree(converted_start);
2651 return (U8 *) original;
2652 }
2653 }
2654
2655 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2656 s++;
2657 }
2658 *d++ = c;
2659 }
2660
2661 /* Here, converted the whole of the input */
2662 *is_utf8p = FALSE;
2663 if (first_unconverted) {
2664 *first_unconverted = NULL;
2665 }
2666
2667 finish_and_return:
2668 *d = '\0';
2669 *lenp = d - converted_start;
2670
2671 /* Trim unused space */
2672 Renew(converted_start, *lenp + 1, U8);
2673
2674 return converted_start;
2675}
2676
2677/*
2678=for apidoc bytes_to_utf8
2679
2680Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2681UTF-8.
2682Returns a pointer to the newly-created string, and sets C<*lenp> to
2683reflect the new length in bytes.
2684
2685Upon successful return, the number of variants in the string can be computed by
2686having saved the value of C<*lenp> before the call, and subtracting it from the
2687after-call value of C<*lenp>.
2688
2689A C<NUL> character will be written after the end of the string.
2690
2691If you want to convert to UTF-8 from encodings other than
2692the native (Latin1 or EBCDIC),
2693see L</sv_recode_to_utf8>().
2694
2695=cut
2696*/
2697
2698U8*
2699Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2700{
2701 const U8 * const send = s + (*lenp);
2702 U8 *d;
2703 U8 *dst;
2704
2705 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2706 PERL_UNUSED_CONTEXT;
2707
2708 Newx(d, (*lenp) * 2 + 1, U8);
2709 dst = d;
2710
2711 while (s < send) {
2712 append_utf8_from_native_byte(*s, &d);
2713 s++;
2714 }
2715
2716 *d = '\0';
2717 *lenp = d-dst;
2718
2719 /* Trim unused space */
2720 Renew(dst, *lenp + 1, U8);
2721
2722 return dst;
2723}
2724
2725/*
2726 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian),
2727 * use utf16_to_utf8_reversed().
2728 *
2729 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2730 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2731 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2732 *
2733 * These functions don't check for overflow. The worst case is every code
2734 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code
2735 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the
2736 * destination must be pre-extended to 2 times the source length.
2737 *
2738 * Do not use in-place. We optimize for native, for obvious reasons. */
2739
2740U8*
2741Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2742{
2743 U8* pend;
2744 U8* dstart = d;
2745
2746 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2747
2748 if (bytelen & 1)
2749 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2750 (UV)bytelen);
2751
2752 pend = p + bytelen;
2753
2754 while (p < pend) {
2755 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2756 p += 2;
2757 if (OFFUNI_IS_INVARIANT(uv)) {
2758 *d++ = LATIN1_TO_NATIVE((U8) uv);
2759 continue;
2760 }
2761 if (uv <= MAX_UTF8_TWO_BYTE) {
2762 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2763 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2764 continue;
2765 }
2766
2767#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2768#define LAST_HIGH_SURROGATE 0xDBFF
2769#define FIRST_LOW_SURROGATE 0xDC00
2770#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2771#define FIRST_IN_PLANE1 0x10000
2772
2773 /* This assumes that most uses will be in the first Unicode plane, not
2774 * needing surrogates */
2775 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2776 && uv <= UNICODE_SURROGATE_LAST))
2777 {
2778 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2779 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2780 }
2781 else {
2782 UV low = (p[0] << 8) + p[1];
2783 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2784 || UNLIKELY(low > LAST_LOW_SURROGATE))
2785 {
2786 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2787 }
2788 p += 2;
2789 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2790 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2791 }
2792 }
2793#ifdef EBCDIC
2794 d = uvoffuni_to_utf8_flags(d, uv, 0);
2795#else
2796 if (uv < FIRST_IN_PLANE1) {
2797 *d++ = (U8)(( uv >> 12) | 0xe0);
2798 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2799 *d++ = (U8)(( uv & 0x3f) | 0x80);
2800 continue;
2801 }
2802 else {
2803 *d++ = (U8)(( uv >> 18) | 0xf0);
2804 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2805 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2806 *d++ = (U8)(( uv & 0x3f) | 0x80);
2807 continue;
2808 }
2809#endif
2810 }
2811 *newlen = d - dstart;
2812 return d;
2813}
2814
2815/* Note: this one is slightly destructive of the source. */
2816
2817U8*
2818Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2819{
2820 U8* s = (U8*)p;
2821 U8* const send = s + bytelen;
2822
2823 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2824
2825 if (bytelen & 1)
2826 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2827 (UV)bytelen);
2828
2829 while (s < send) {
2830 const U8 tmp = s[0];
2831 s[0] = s[1];
2832 s[1] = tmp;
2833 s += 2;
2834 }
2835 return utf16_to_utf8(p, d, bytelen, newlen);
2836}
2837
2838bool
2839Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2840{
2841 U8 tmpbuf[UTF8_MAXBYTES+1];
2842 uvchr_to_utf8(tmpbuf, c);
2843 return _is_utf8_FOO_with_len(classnum, tmpbuf, tmpbuf + sizeof(tmpbuf));
2844}
2845
2846/* Internal function so we can deprecate the external one, and call
2847 this one from other deprecated functions in this file */
2848
2849bool
2850Perl__is_utf8_idstart(pTHX_ const U8 *p)
2851{
2852 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2853
2854 if (*p == '_')
2855 return TRUE;
2856 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2857}
2858
2859bool
2860Perl__is_uni_perl_idcont(pTHX_ UV c)
2861{
2862 U8 tmpbuf[UTF8_MAXBYTES+1];
2863 uvchr_to_utf8(tmpbuf, c);
2864 return _is_utf8_perl_idcont_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2865}
2866
2867bool
2868Perl__is_uni_perl_idstart(pTHX_ UV c)
2869{
2870 U8 tmpbuf[UTF8_MAXBYTES+1];
2871 uvchr_to_utf8(tmpbuf, c);
2872 return _is_utf8_perl_idstart_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2873}
2874
2875UV
2876Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2877 const char S_or_s)
2878{
2879 /* We have the latin1-range values compiled into the core, so just use
2880 * those, converting the result to UTF-8. The only difference between upper
2881 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2882 * either "SS" or "Ss". Which one to use is passed into the routine in
2883 * 'S_or_s' to avoid a test */
2884
2885 UV converted = toUPPER_LATIN1_MOD(c);
2886
2887 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2888
2889 assert(S_or_s == 'S' || S_or_s == 's');
2890
2891 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2892 characters in this range */
2893 *p = (U8) converted;
2894 *lenp = 1;
2895 return converted;
2896 }
2897
2898 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2899 * which it maps to one of them, so as to only have to have one check for
2900 * it in the main case */
2901 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2902 switch (c) {
2903 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2904 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2905 break;
2906 case MICRO_SIGN:
2907 converted = GREEK_CAPITAL_LETTER_MU;
2908 break;
2909#if UNICODE_MAJOR_VERSION > 2 \
2910 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2911 && UNICODE_DOT_DOT_VERSION >= 8)
2912 case LATIN_SMALL_LETTER_SHARP_S:
2913 *(p)++ = 'S';
2914 *p = S_or_s;
2915 *lenp = 2;
2916 return 'S';
2917#endif
2918 default:
2919 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2920 " '%c' to map to '%c'",
2921 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2922 NOT_REACHED; /* NOTREACHED */
2923 }
2924 }
2925
2926 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2927 *p = UTF8_TWO_BYTE_LO(converted);
2928 *lenp = 2;
2929
2930 return converted;
2931}
2932
2933/* Call the function to convert a UTF-8 encoded character to the specified case.
2934 * Note that there may be more than one character in the result.
2935 * INP is a pointer to the first byte of the input character
2936 * OUTP will be set to the first byte of the string of changed characters. It
2937 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2938 * LENP will be set to the length in bytes of the string of changed characters
2939 *
2940 * The functions return the ordinal of the first character in the string of
2941 * OUTP */
2942#define CALL_UPPER_CASE(uv, s, d, lenp) \
2943 _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2944#define CALL_TITLE_CASE(uv, s, d, lenp) \
2945 _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2946#define CALL_LOWER_CASE(uv, s, d, lenp) \
2947 _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2948
2949/* This additionally has the input parameter 'specials', which if non-zero will
2950 * cause this to use the specials hash for folding (meaning get full case
2951 * folding); otherwise, when zero, this implies a simple case fold */
2952#define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2953_to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2954
2955UV
2956Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2957{
2958 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2959 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2960 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2961 * the changed version may be longer than the original character.
2962 *
2963 * The ordinal of the first character of the changed version is returned
2964 * (but note, as explained above, that there may be more.) */
2965
2966 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2967
2968 if (c < 256) {
2969 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2970 }
2971
2972 uvchr_to_utf8(p, c);
2973 return CALL_UPPER_CASE(c, p, p, lenp);
2974}
2975
2976UV
2977Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2978{
2979 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2980
2981 if (c < 256) {
2982 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2983 }
2984
2985 uvchr_to_utf8(p, c);
2986 return CALL_TITLE_CASE(c, p, p, lenp);
2987}
2988
2989STATIC U8
2990S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2991{
2992 /* We have the latin1-range values compiled into the core, so just use
2993 * those, converting the result to UTF-8. Since the result is always just
2994 * one character, we allow <p> to be NULL */
2995
2996 U8 converted = toLOWER_LATIN1(c);
2997
2998 PERL_UNUSED_ARG(dummy);
2999
3000 if (p != NULL) {
3001 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
3002 *p = converted;
3003 *lenp = 1;
3004 }
3005 else {
3006 /* Result is known to always be < 256, so can use the EIGHT_BIT
3007 * macros */
3008 *p = UTF8_EIGHT_BIT_HI(converted);
3009 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
3010 *lenp = 2;
3011 }
3012 }
3013 return converted;
3014}
3015
3016UV
3017Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
3018{
3019 PERL_ARGS_ASSERT_TO_UNI_LOWER;
3020
3021 if (c < 256) {
3022 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
3023 }
3024
3025 uvchr_to_utf8(p, c);
3026 return CALL_LOWER_CASE(c, p, p, lenp);
3027}
3028
3029UV
3030Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
3031 const unsigned int flags)
3032{
3033 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
3034 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3035 * FOLD_FLAGS_FULL iff full folding is to be used;
3036 *
3037 * Not to be used for locale folds
3038 */
3039
3040 UV converted;
3041
3042 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
3043 PERL_UNUSED_CONTEXT;
3044
3045 assert (! (flags & FOLD_FLAGS_LOCALE));
3046
3047 if (UNLIKELY(c == MICRO_SIGN)) {
3048 converted = GREEK_SMALL_LETTER_MU;
3049 }
3050#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3051 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3052 || UNICODE_DOT_DOT_VERSION > 0)
3053 else if ( (flags & FOLD_FLAGS_FULL)
3054 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
3055 {
3056 /* If can't cross 127/128 boundary, can't return "ss"; instead return
3057 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
3058 * under those circumstances. */
3059 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
3060 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3061 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3062 p, *lenp, U8);
3063 return LATIN_SMALL_LETTER_LONG_S;
3064 }
3065 else {
3066 *(p)++ = 's';
3067 *p = 's';
3068 *lenp = 2;
3069 return 's';
3070 }
3071 }
3072#endif
3073 else { /* In this range the fold of all other characters is their lower
3074 case */
3075 converted = toLOWER_LATIN1(c);
3076 }
3077
3078 if (UVCHR_IS_INVARIANT(converted)) {
3079 *p = (U8) converted;
3080 *lenp = 1;
3081 }
3082 else {
3083 *(p)++ = UTF8_TWO_BYTE_HI(converted);
3084 *p = UTF8_TWO_BYTE_LO(converted);
3085 *lenp = 2;
3086 }
3087
3088 return converted;
3089}
3090
3091UV
3092Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
3093{
3094
3095 /* Not currently externally documented, and subject to change
3096 * <flags> bits meanings:
3097 * FOLD_FLAGS_FULL iff full folding is to be used;
3098 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3099 * locale are to be used.
3100 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3101 */
3102
3103 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
3104
3105 if (flags & FOLD_FLAGS_LOCALE) {
3106 /* Treat a UTF-8 locale as not being in locale at all */
3107 if (IN_UTF8_CTYPE_LOCALE) {
3108 flags &= ~FOLD_FLAGS_LOCALE;
3109 }
3110 else {
3111 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3112 goto needs_full_generality;
3113 }
3114 }
3115
3116 if (c < 256) {
3117 return _to_fold_latin1((U8) c, p, lenp,
3118 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
3119 }
3120
3121 /* Here, above 255. If no special needs, just use the macro */
3122 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
3123 uvchr_to_utf8(p, c);
3124 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
3125 }
3126 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
3127 the special flags. */
3128 U8 utf8_c[UTF8_MAXBYTES + 1];
3129
3130 needs_full_generality:
3131 uvchr_to_utf8(utf8_c, c);
3132 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
3133 p, lenp, flags);
3134 }
3135}
3136
3137PERL_STATIC_INLINE bool
3138S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
3139 const char *const swashname, SV* const invlist)
3140{
3141 /* returns a boolean giving whether or not the UTF8-encoded character that
3142 * starts at <p> is in the swash indicated by <swashname>. <swash>
3143 * contains a pointer to where the swash indicated by <swashname>
3144 * is to be stored; which this routine will do, so that future calls will
3145 * look at <*swash> and only generate a swash if it is not null. <invlist>
3146 * is NULL or an inversion list that defines the swash. If not null, it
3147 * saves time during initialization of the swash.
3148 *
3149 * Note that it is assumed that the buffer length of <p> is enough to
3150 * contain all the bytes that comprise the character. Thus, <*p> should
3151 * have been checked before this call for mal-formedness enough to assure
3152 * that. */
3153
3154 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
3155
3156 /* The API should have included a length for the UTF-8 character in <p>,
3157 * but it doesn't. We therefore assume that p has been validated at least
3158 * as far as there being enough bytes available in it to accommodate the
3159 * character without reading beyond the end, and pass that number on to the
3160 * validating routine */
3161 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
3162 _force_out_malformed_utf8_message(p, p + UTF8SKIP(p),
3163 _UTF8_NO_CONFIDENCE_IN_CURLEN,
3164 1 /* Die */ );
3165 NOT_REACHED; /* NOTREACHED */
3166 }
3167
3168 if (!*swash) {
3169 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
3170 *swash = _core_swash_init("utf8",
3171
3172 /* Only use the name if there is no inversion
3173 * list; otherwise will go out to disk */
3174 (invlist) ? "" : swashname,
3175
3176 &PL_sv_undef, 1, 0, invlist, &flags);
3177 }
3178
3179 return swash_fetch(*swash, p, TRUE) != 0;
3180}
3181
3182PERL_STATIC_INLINE bool
3183S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e,
3184 SV **swash, const char *const swashname,
3185 SV* const invlist)
3186{
3187 /* returns a boolean giving whether or not the UTF8-encoded character that
3188 * starts at <p>, and extending no further than <e - 1> is in the swash
3189 * indicated by <swashname>. <swash> contains a pointer to where the swash
3190 * indicated by <swashname> is to be stored; which this routine will do, so
3191 * that future calls will look at <*swash> and only generate a swash if it
3192 * is not null. <invlist> is NULL or an inversion list that defines the
3193 * swash. If not null, it saves time during initialization of the swash.
3194 */
3195
3196 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
3197
3198 if (! isUTF8_CHAR(p, e)) {
3199 _force_out_malformed_utf8_message(p, e, 0, 1);
3200 NOT_REACHED; /* NOTREACHED */
3201 }
3202
3203 if (!*swash) {
3204 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
3205 *swash = _core_swash_init("utf8",
3206
3207 /* Only use the name if there is no inversion
3208 * list; otherwise will go out to disk */
3209 (invlist) ? "" : swashname,
3210
3211 &PL_sv_undef, 1, 0, invlist, &flags);
3212 }
3213
3214 return swash_fetch(*swash, p, TRUE) != 0;
3215}
3216
3217STATIC void
3218S_warn_on_first_deprecated_use(pTHX_ const char * const name,
3219 const char * const alternative,
3220 const bool use_locale,
3221 const char * const file,
3222 const unsigned line)
3223{
3224 const char * key;
3225
3226 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
3227
3228 if (ckWARN_d(WARN_DEPRECATED)) {
3229
3230 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
3231 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
3232 if (! PL_seen_deprecated_macro) {
3233 PL_seen_deprecated_macro = newHV();
3234 }
3235 if (! hv_store(PL_seen_deprecated_macro, key,
3236 strlen(key), &PL_sv_undef, 0))
3237 {
3238 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3239 }
3240
3241 if (instr(file, "mathoms.c")) {
3242 Perl_warner(aTHX_ WARN_DEPRECATED,
3243 "In %s, line %d, starting in Perl v5.30, %s()"
3244 " will be removed. Avoid this message by"
3245 " converting to use %s().\n",
3246 file, line, name, alternative);
3247 }
3248 else {
3249 Perl_warner(aTHX_ WARN_DEPRECATED,
3250 "In %s, line %d, starting in Perl v5.30, %s() will"
3251 " require an additional parameter. Avoid this"
3252 " message by converting to use %s().\n",
3253 file, line, name, alternative);
3254 }
3255 }
3256 }
3257}
3258
3259bool
3260Perl__is_utf8_FOO(pTHX_ U8 classnum,
3261 const U8 * const p,
3262 const char * const name,
3263 const char * const alternative,
3264 const bool use_utf8,
3265 const bool use_locale,
3266 const char * const file,
3267 const unsigned line)
3268{
3269 PERL_ARGS_ASSERT__IS_UTF8_FOO;
3270
3271 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3272
3273 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
3274
3275 switch (classnum) {
3276 case _CC_WORDCHAR:
3277 case _CC_DIGIT:
3278 case _CC_ALPHA:
3279 case _CC_LOWER:
3280 case _CC_UPPER:
3281 case _CC_PUNCT:
3282 case _CC_PRINT:
3283 case _CC_ALPHANUMERIC:
3284 case _CC_GRAPH:
3285 case _CC_CASED:
3286
3287 return is_utf8_common(p,
3288 &PL_utf8_swash_ptrs[classnum],
3289 swash_property_names[classnum],
3290 PL_XPosix_ptrs[classnum]);
3291
3292 case _CC_SPACE:
3293 return is_XPERLSPACE_high(p);
3294 case _CC_BLANK:
3295 return is_HORIZWS_high(p);
3296 case _CC_XDIGIT:
3297 return is_XDIGIT_high(p);
3298 case _CC_CNTRL:
3299 return 0;
3300 case _CC_ASCII:
3301 return 0;
3302 case _CC_VERTSPACE:
3303 return is_VERTWS_high(p);
3304 case _CC_IDFIRST:
3305 if (! PL_utf8_perl_idstart) {
3306 PL_utf8_perl_idstart
3307 = _new_invlist_C_array(_Perl_IDStart_invlist);
3308 }
3309 return is_utf8_common(p, &PL_utf8_perl_idstart,
3310 "_Perl_IDStart", NULL);
3311 case _CC_IDCONT:
3312 if (! PL_utf8_perl_idcont) {
3313 PL_utf8_perl_idcont
3314 = _new_invlist_C_array(_Perl_IDCont_invlist);
3315 }
3316 return is_utf8_common(p, &PL_utf8_perl_idcont,
3317 "_Perl_IDCont", NULL);
3318 }
3319 }
3320
3321 /* idcont is the same as wordchar below 256 */
3322 if (classnum == _CC_IDCONT) {
3323 classnum = _CC_WORDCHAR;
3324 }
3325 else if (classnum == _CC_IDFIRST) {
3326 if (*p == '_') {
3327 return TRUE;
3328 }
3329 classnum = _CC_ALPHA;
3330 }
3331
3332 if (! use_locale) {
3333 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3334 return _generic_isCC(*p, classnum);
3335 }
3336
3337 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
3338 }
3339 else {
3340 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
3341 return isFOO_lc(classnum, *p);
3342 }
3343
3344 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
3345 }
3346
3347 NOT_REACHED; /* NOTREACHED */
3348}
3349
3350bool
3351Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
3352 const U8 * const e)
3353{
3354 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
3355
3356 assert(classnum < _FIRST_NON_SWASH_CC);
3357
3358 return is_utf8_common_with_len(p,
3359 e,
3360 &PL_utf8_swash_ptrs[classnum],
3361 swash_property_names[classnum],
3362 PL_XPosix_ptrs[classnum]);
3363}
3364
3365bool
3366Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
3367{
3368 SV* invlist = NULL;
3369
3370 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
3371
3372 if (! PL_utf8_perl_idstart) {
3373 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
3374 }
3375 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idstart,
3376 "_Perl_IDStart", invlist);
3377}
3378
3379bool
3380Perl__is_utf8_xidstart(pTHX_ const U8 *p)
3381{
3382 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
3383
3384 if (*p == '_')
3385 return TRUE;
3386 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
3387}
3388
3389bool
3390Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
3391{
3392 SV* invlist = NULL;
3393
3394 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
3395
3396 if (! PL_utf8_perl_idcont) {
3397 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
3398 }
3399 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idcont,
3400 "_Perl_IDCont", invlist);
3401}
3402
3403bool
3404Perl__is_utf8_idcont(pTHX_ const U8 *p)
3405{
3406 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
3407
3408 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
3409}
3410
3411bool
3412Perl__is_utf8_xidcont(pTHX_ const U8 *p)
3413{
3414 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
3415
3416 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
3417}
3418
3419bool
3420Perl__is_utf8_mark(pTHX_ const U8 *p)
3421{
3422 PERL_ARGS_ASSERT__IS_UTF8_MARK;
3423
3424 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
3425}
3426
3427 /* change namve uv1 to 'from' */
3428STATIC UV
3429S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
3430 SV **swashp, const char *normal, const char *special)
3431{
3432 STRLEN len = 0;
3433
3434 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3435
3436 /* For code points that don't change case, we already know that the output
3437 * of this function is the unchanged input, so we can skip doing look-ups
3438 * for them. Unfortunately the case-changing code points are scattered
3439 * around. But there are some long consecutive ranges where there are no
3440 * case changing code points. By adding tests, we can eliminate the lookup
3441 * for all the ones in such ranges. This is currently done here only for
3442 * just a few cases where the scripts are in common use in modern commerce
3443 * (and scripts adjacent to those which can be included without additional
3444 * tests). */
3445
3446 if (uv1 >= 0x0590) {
3447 /* This keeps from needing further processing the code points most
3448 * likely to be used in the following non-cased scripts: Hebrew,
3449 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3450 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3451 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3452 if (uv1 < 0x10A0) {
3453 goto cases_to_self;
3454 }
3455
3456 /* The following largish code point ranges also don't have case
3457 * changes, but khw didn't think they warranted extra tests to speed
3458 * them up (which would slightly slow down everything else above them):
3459 * 1100..139F Hangul Jamo, Ethiopic
3460 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3461 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3462 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3463 * Combining Diacritical Marks Extended, Balinese,
3464 * Sundanese, Batak, Lepcha, Ol Chiki
3465 * 2000..206F General Punctuation
3466 */
3467
3468 if (uv1 >= 0x2D30) {
3469
3470 /* This keeps the from needing further processing the code points
3471 * most likely to be used in the following non-cased major scripts:
3472 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3473 *
3474 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3475 * event that Unicode eventually allocates the unused block as of
3476 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3477 * that the test suite will start having failures to alert you
3478 * should that happen) */
3479 if (uv1 < 0xA640) {
3480 goto cases_to_self;
3481 }
3482
3483 if (uv1 >= 0xAC00) {
3484 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3485 if (ckWARN_d(WARN_SURROGATE)) {
3486 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3487 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3488 "Operation \"%s\" returns its argument for"
3489 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3490 }
3491 goto cases_to_self;
3492 }
3493
3494 /* AC00..FAFF Catches Hangul syllables and private use, plus
3495 * some others */
3496 if (uv1 < 0xFB00) {
3497 goto cases_to_self;
3498
3499 }
3500
3501 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3502 if (UNLIKELY(uv1 > MAX_EXTERNALLY_LEGAL_CP)) {
3503 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3504 MAX_EXTERNALLY_LEGAL_CP);
3505 }
3506 if (ckWARN_d(WARN_NON_UNICODE)) {
3507 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3508 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3509 "Operation \"%s\" returns its argument for"
3510 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3511 }
3512 goto cases_to_self;
3513 }
3514#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3515 if (UNLIKELY(uv1
3516 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3517 {
3518
3519 /* As of Unicode 10.0, this means we avoid swash creation
3520 * for anything beyond high Plane 1 (below emojis) */
3521 goto cases_to_self;
3522 }
3523#endif
3524 }
3525 }
3526
3527 /* Note that non-characters are perfectly legal, so no warning should
3528 * be given. There are so few of them, that it isn't worth the extra
3529 * tests to avoid swash creation */
3530 }
3531
3532 if (!*swashp) /* load on-demand */
3533 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef,
3534 4, 0, NULL, NULL);
3535
3536 if (special) {
3537 /* It might be "special" (sometimes, but not always,
3538 * a multicharacter mapping) */
3539 HV *hv = NULL;
3540 SV **svp;
3541
3542 /* If passed in the specials name, use that; otherwise use any
3543 * given in the swash */
3544 if (*special != '\0') {
3545 hv = get_hv(special, 0);
3546 }
3547 else {
3548 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
3549 if (svp) {
3550 hv = MUTABLE_HV(SvRV(*svp));
3551 }
3552 }
3553
3554 if (hv
3555 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
3556 && (*svp))
3557 {
3558 const char *s;
3559
3560 s = SvPV_const(*svp, len);
3561 if (len == 1)
3562 /* EIGHTBIT */
3563 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
3564 else {
3565 Copy(s, ustrp, len, U8);
3566 }
3567 }
3568 }
3569
3570 if (!len && *swashp) {
3571 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
3572
3573 if (uv2) {
3574 /* It was "normal" (a single character mapping). */
3575 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
3576 }
3577 }
3578
3579 if (len) {
3580 if (lenp) {
3581 *lenp = len;
3582 }
3583 return valid_utf8_to_uvchr(ustrp, 0);
3584 }
3585
3586 /* Here, there was no mapping defined, which means that the code point maps
3587 * to itself. Return the inputs */
3588 cases_to_self:
3589 len = UTF8SKIP(p);
3590 if (p != ustrp) { /* Don't copy onto itself */
3591 Copy(p, ustrp, len, U8);
3592 }
3593
3594 if (lenp)
3595 *lenp = len;
3596
3597 return uv1;
3598
3599}
3600
3601STATIC UV
3602S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3603 U8* const ustrp, STRLEN *lenp)
3604{
3605 /* This is called when changing the case of a UTF-8-encoded character above
3606 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3607 * result contains a character that crosses the 255/256 boundary, disallow
3608 * the change, and return the original code point. See L<perlfunc/lc> for
3609 * why;
3610 *
3611 * p points to the original string whose case was changed; assumed
3612 * by this routine to be well-formed
3613 * result the code point of the first character in the changed-case string
3614 * ustrp points to the changed-case string (<result> represents its
3615 * first char)
3616 * lenp points to the length of <ustrp> */
3617
3618 UV original; /* To store the first code point of <p> */
3619
3620 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3621
3622 assert(UTF8_IS_ABOVE_LATIN1(*p));
3623
3624 /* We know immediately if the first character in the string crosses the
3625 * boundary, so can skip */
3626 if (result > 255) {
3627
3628 /* Look at every character in the result; if any cross the
3629 * boundary, the whole thing is disallowed */
3630 U8* s = ustrp + UTF8SKIP(ustrp);
3631 U8* e = ustrp + *lenp;
3632 while (s < e) {
3633 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3634 goto bad_crossing;
3635 }
3636 s += UTF8SKIP(s);
3637 }
3638
3639 /* Here, no characters crossed, result is ok as-is, but we warn. */
3640 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3641 return result;
3642 }
3643
3644 bad_crossing:
3645
3646 /* Failed, have to return the original */
3647 original = valid_utf8_to_uvchr(p, lenp);
3648
3649 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3650 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3651 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3652 " locale; resolved to \"\\x{%" UVXf "}\".",
3653 OP_DESC(PL_op),
3654 original,
3655 original);
3656 Copy(p, ustrp, *lenp, char);
3657 return original;
3658}
3659
3660STATIC U32
3661S_check_and_deprecate(pTHX_ const U8 *p,
3662 const U8 **e,
3663 const unsigned int type, /* See below */
3664 const bool use_locale, /* Is this a 'LC_'
3665 macro call? */
3666 const char * const file,
3667 const unsigned line)
3668{
3669 /* This is a temporary function to deprecate the unsafe calls to the case
3670 * changing macros and functions. It keeps all the special stuff in just
3671 * one place.
3672 *
3673 * It updates *e with the pointer to the end of the input string. If using
3674 * the old-style macros, *e is NULL on input, and so this function assumes
3675 * the input string is long enough to hold the entire UTF-8 sequence, and
3676 * sets *e accordingly, but it then returns a flag to pass the
3677 * utf8n_to_uvchr(), to tell it that this size is a guess, and to avoid
3678 * using the full length if possible.
3679 *
3680 * It also does the assert that *e > p when *e is not NULL. This should be
3681 * migrated to the callers when this function gets deleted.
3682 *
3683 * The 'type' parameter is used for the caller to specify which case
3684 * changing function this is called from: */
3685
3686# define DEPRECATE_TO_UPPER 0
3687# define DEPRECATE_TO_TITLE 1
3688# define DEPRECATE_TO_LOWER 2
3689# define DEPRECATE_TO_FOLD 3
3690
3691 U32 utf8n_flags = 0;
3692 const char * name;
3693 const char * alternative;
3694
3695 PERL_ARGS_ASSERT_CHECK_AND_DEPRECATE;
3696
3697 if (*e == NULL) {
3698 utf8n_flags = _UTF8_NO_CONFIDENCE_IN_CURLEN;
3699 *e = p + UTF8SKIP(p);
3700
3701 /* For mathoms.c calls, we use the function name we know is stored
3702 * there. It could be part of a larger path */
3703 if (type == DEPRECATE_TO_UPPER) {
3704 name = instr(file, "mathoms.c")
3705 ? "to_utf8_upper"
3706 : "toUPPER_utf8";
3707 alternative = "toUPPER_utf8_safe";
3708 }
3709 else if (type == DEPRECATE_TO_TITLE) {
3710 name = instr(file, "mathoms.c")
3711 ? "to_utf8_title"
3712 : "toTITLE_utf8";
3713 alternative = "toTITLE_utf8_safe";
3714 }
3715 else if (type == DEPRECATE_TO_LOWER) {
3716 name = instr(file, "mathoms.c")
3717 ? "to_utf8_lower"
3718 : "toLOWER_utf8";
3719 alternative = "toLOWER_utf8_safe";
3720 }
3721 else if (type == DEPRECATE_TO_FOLD) {
3722 name = instr(file, "mathoms.c")
3723 ? "to_utf8_fold"
3724 : "toFOLD_utf8";
3725 alternative = "toFOLD_utf8_safe";
3726 }
3727 else Perl_croak(aTHX_ "panic: Unexpected case change type");
3728
3729 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3730 }
3731 else {
3732 assert (p < *e);
3733 }
3734
3735 return utf8n_flags;
3736}
3737
3738/* The process for changing the case is essentially the same for the four case
3739 * change types, except there are complications for folding. Otherwise the
3740 * difference is only which case to change to. To make sure that they all do
3741 * the same thing, the bodies of the functions are extracted out into the
3742 * following two macros. The functions are written with the same variable
3743 * names, and these are known and used inside these macros. It would be
3744 * better, of course, to have inline functions to do it, but since different
3745 * macros are called, depending on which case is being changed to, this is not
3746 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3747 * function can start with the common start macro, then finish with its special
3748 * handling; while the other three cases can just use the common end macro.
3749 *
3750 * The algorithm is to use the proper (passed in) macro or function to change
3751 * the case for code points that are below 256. The macro is used if using
3752 * locale rules for the case change; the function if not. If the code point is
3753 * above 255, it is computed from the input UTF-8, and another macro is called
3754 * to do the conversion. If necessary, the output is converted to UTF-8. If
3755 * using a locale, we have to check that the change did not cross the 255/256
3756 * boundary, see check_locale_boundary_crossing() for further details.
3757 *
3758 * The macros are split with the correct case change for the below-256 case
3759 * stored into 'result', and in the middle of an else clause for the above-255
3760 * case. At that point in the 'else', 'result' is not the final result, but is
3761 * the input code point calculated from the UTF-8. The fold code needs to
3762 * realize all this and take it from there.
3763 *
3764 * If you read the two macros as sequential, it's easier to understand what's
3765 * going on. */
3766#define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3767 L1_func_extra_param) \
3768 \
3769 if (flags & (locale_flags)) { \
3770 /* Treat a UTF-8 locale as not being in locale at all */ \
3771 if (IN_UTF8_CTYPE_LOCALE) { \
3772 flags &= ~(locale_flags); \
3773 } \
3774 else { \
3775 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3776 } \
3777 } \
3778 \
3779 if (UTF8_IS_INVARIANT(*p)) { \
3780 if (flags & (locale_flags)) { \
3781 result = LC_L1_change_macro(*p); \
3782 } \
3783 else { \
3784 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3785 } \
3786 } \
3787 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3788 if (flags & (locale_flags)) { \
3789 result = LC_L1_change_macro(EIGHT_BIT_UTF8_TO_NATIVE(*p, \
3790 *(p+1))); \
3791 } \
3792 else { \
3793 return L1_func(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)), \
3794 ustrp, lenp, L1_func_extra_param); \
3795 } \
3796 } \
3797 else { /* malformed UTF-8 or ord above 255 */ \
3798 STRLEN len_result; \
3799 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3800 if (len_result == (STRLEN) -1) { \
3801 _force_out_malformed_utf8_message(p, e, utf8n_flags, \
3802 1 /* Die */ ); \
3803 }
3804
3805#define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3806 result = change_macro(result, p, ustrp, lenp); \
3807 \
3808 if (flags & (locale_flags)) { \
3809 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3810 } \
3811 return result; \
3812 } \
3813 \
3814 /* Here, used locale rules. Convert back to UTF-8 */ \
3815 if (UTF8_IS_INVARIANT(result)) { \
3816 *ustrp = (U8) result; \
3817 *lenp = 1; \
3818 } \
3819 else { \
3820 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3821 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3822 *lenp = 2; \
3823 } \
3824 \
3825 return result;
3826
3827/*
3828=for apidoc to_utf8_upper
3829
3830Instead use L</toUPPER_utf8_safe>.
3831
3832=cut */
3833
3834/* Not currently externally documented, and subject to change:
3835 * <flags> is set iff iff the rules from the current underlying locale are to
3836 * be used. */
3837
3838UV
3839Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3840 const U8 *e,
3841 U8* ustrp,
3842 STRLEN *lenp,
3843 bool flags,
3844 const char * const file,
3845 const int line)
3846{
3847 UV result;
3848 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_UPPER,
3849 cBOOL(flags), file, line);
3850
3851 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3852
3853 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3854 /* 2nd char of uc(U+DF) is 'S' */
3855 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
3856 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3857}
3858
3859/*
3860=for apidoc to_utf8_title
3861
3862Instead use L</toTITLE_utf8_safe>.
3863
3864=cut */
3865
3866/* Not currently externally documented, and subject to change:
3867 * <flags> is set iff the rules from the current underlying locale are to be
3868 * used. Since titlecase is not defined in POSIX, for other than a
3869 * UTF-8 locale, uppercase is used instead for code points < 256.
3870 */
3871
3872UV
3873Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3874 const U8 *e,
3875 U8* ustrp,
3876 STRLEN *lenp,
3877 bool flags,
3878 const char * const file,
3879 const int line)
3880{
3881 UV result;
3882 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_TITLE,
3883 cBOOL(flags), file, line);
3884
3885 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3886
3887 /* 2nd char of ucfirst(U+DF) is 's' */
3888 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3889 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3890}
3891
3892/*
3893=for apidoc to_utf8_lower
3894
3895Instead use L</toLOWER_utf8_safe>.
3896
3897=cut */
3898
3899/* Not currently externally documented, and subject to change:
3900 * <flags> is set iff iff the rules from the current underlying locale are to
3901 * be used.
3902 */
3903
3904UV
3905Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3906 const U8 *e,
3907 U8* ustrp,
3908 STRLEN *lenp,
3909 bool flags,
3910 const char * const file,
3911 const int line)
3912{
3913 UV result;
3914 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_LOWER,
3915 cBOOL(flags), file, line);
3916
3917 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3918
3919 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3920 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3921}
3922
3923/*
3924=for apidoc to_utf8_fold
3925
3926Instead use L</toFOLD_utf8_safe>.
3927
3928=cut */
3929
3930/* Not currently externally documented, and subject to change,
3931 * in <flags>
3932 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3933 * locale are to be used.
3934 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3935 * otherwise simple folds
3936 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3937 * prohibited
3938 */
3939
3940UV
3941Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3942 const U8 *e,
3943 U8* ustrp,
3944 STRLEN *lenp,
3945 U8 flags,
3946 const char * const file,
3947 const int line)
3948{
3949 UV result;
3950 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_FOLD,
3951 cBOOL(flags), file, line);
3952
3953 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3954
3955 /* These are mutually exclusive */
3956 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3957
3958 assert(p != ustrp); /* Otherwise overwrites */
3959
3960 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3961 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3962
3963 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3964
3965 if (flags & FOLD_FLAGS_LOCALE) {
3966
3967# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3968# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3969# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3970
3971 /* Special case these two characters, as what normally gets
3972 * returned under locale doesn't work */
3973 if (memEQs((char *) p, UTF8SKIP(p), CAP_SHARP_S))
3974 {
3975 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3976 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3977 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3978 "resolved to \"\\x{17F}\\x{17F}\".");
3979 goto return_long_s;
3980 }
3981 else
3982#endif
3983 if (memEQs((char *) p, UTF8SKIP(p), LONG_S_T))
3984 {
3985 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3986 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3987 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3988 "resolved to \"\\x{FB06}\".");
3989 goto return_ligature_st;
3990 }
3991
3992#if UNICODE_MAJOR_VERSION == 3 \
3993 && UNICODE_DOT_VERSION == 0 \
3994 && UNICODE_DOT_DOT_VERSION == 1
3995# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3996
3997 /* And special case this on this Unicode version only, for the same
3998 * reaons the other two are special cased. They would cross the
3999 * 255/256 boundary which is forbidden under /l, and so the code
4000 * wouldn't catch that they are equivalent (which they are only in
4001 * this release) */
4002 else if (memEQs((char *) p, UTF8SKIP(p), DOTTED_I)) {
4003 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
4004 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
4005 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
4006 "resolved to \"\\x{0131}\".");
4007 goto return_dotless_i;
4008 }
4009#endif
4010
4011 return check_locale_boundary_crossing(p, result, ustrp, lenp);
4012 }
4013 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
4014 return result;
4015 }
4016 else {
4017 /* This is called when changing the case of a UTF-8-encoded
4018 * character above the ASCII range, and the result should not
4019 * contain an ASCII character. */
4020
4021 UV original; /* To store the first code point of <p> */
4022
4023 /* Look at every character in the result; if any cross the
4024 * boundary, the whole thing is disallowed */
4025 U8* s = ustrp;
4026 U8* e = ustrp + *lenp;
4027 while (s < e) {
4028 if (isASCII(*s)) {
4029 /* Crossed, have to return the original */
4030 original = valid_utf8_to_uvchr(p, lenp);
4031
4032 /* But in these instances, there is an alternative we can
4033 * return that is valid */
4034 if (original == LATIN_SMALL_LETTER_SHARP_S
4035#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
4036 || original == LATIN_CAPITAL_LETTER_SHARP_S
4037#endif
4038 ) {
4039 goto return_long_s;
4040 }
4041 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
4042 goto return_ligature_st;
4043 }
4044#if UNICODE_MAJOR_VERSION == 3 \
4045 && UNICODE_DOT_VERSION == 0 \
4046 && UNICODE_DOT_DOT_VERSION == 1
4047
4048 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
4049 goto return_dotless_i;
4050 }
4051#endif
4052 Copy(p, ustrp, *lenp, char);
4053 return original;
4054 }
4055 s += UTF8SKIP(s);
4056 }
4057
4058 /* Here, no characters crossed, result is ok as-is */
4059 return result;
4060 }
4061 }
4062
4063 /* Here, used locale rules. Convert back to UTF-8 */
4064 if (UTF8_IS_INVARIANT(result)) {
4065 *ustrp = (U8) result;
4066 *lenp = 1;
4067 }
4068 else {
4069 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
4070 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
4071 *lenp = 2;
4072 }
4073
4074 return result;
4075
4076 return_long_s:
4077 /* Certain folds to 'ss' are prohibited by the options, but they do allow
4078 * folds to a string of two of these characters. By returning this
4079 * instead, then, e.g.,
4080 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
4081 * works. */
4082
4083 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
4084 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
4085 ustrp, *lenp, U8);
4086 return LATIN_SMALL_LETTER_LONG_S;
4087
4088 return_ligature_st:
4089 /* Two folds to 'st' are prohibited by the options; instead we pick one and
4090 * have the other one fold to it */
4091
4092 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
4093 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
4094 return LATIN_SMALL_LIGATURE_ST;
4095
4096#if UNICODE_MAJOR_VERSION == 3 \
4097 && UNICODE_DOT_VERSION == 0 \
4098 && UNICODE_DOT_DOT_VERSION == 1
4099
4100 return_dotless_i:
4101 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
4102 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
4103 return LATIN_SMALL_LETTER_DOTLESS_I;
4104
4105#endif
4106
4107}
4108
4109/* Note:
4110 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
4111 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
4112 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
4113 */
4114
4115SV*
4116Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
4117 I32 minbits, I32 none)
4118{
4119 PERL_ARGS_ASSERT_SWASH_INIT;
4120
4121 /* Returns a copy of a swash initiated by the called function. This is the
4122 * public interface, and returning a copy prevents others from doing
4123 * mischief on the original */
4124
4125 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none,
4126 NULL, NULL));
4127}
4128
4129SV*
4130Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
4131 I32 minbits, I32 none, SV* invlist,
4132 U8* const flags_p)
4133{
4134
4135 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
4136 * use the following define */
4137
4138#define CORE_SWASH_INIT_RETURN(x) \
4139 PL_curpm= old_PL_curpm; \
4140 return x
4141
4142 /* Initialize and return a swash, creating it if necessary. It does this
4143 * by calling utf8_heavy.pl in the general case. The returned value may be
4144 * the swash's inversion list instead if the input parameters allow it.
4145 * Which is returned should be immaterial to callers, as the only
4146 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
4147 * and swash_to_invlist() handle both these transparently.
4148 *
4149 * This interface should only be used by functions that won't destroy or
4150 * adversely change the swash, as doing so affects all other uses of the
4151 * swash in the program; the general public should use 'Perl_swash_init'
4152 * instead.
4153 *
4154 * pkg is the name of the package that <name> should be in.
4155 * name is the name of the swash to find. Typically it is a Unicode
4156 * property name, including user-defined ones
4157 * listsv is a string to initialize the swash with. It must be of the form
4158 * documented as the subroutine return value in
4159 * L<perlunicode/User-Defined Character Properties>
4160 * minbits is the number of bits required to represent each data element.
4161 * It is '1' for binary properties.
4162 * none I (khw) do not understand this one, but it is used only in tr///.
4163 * invlist is an inversion list to initialize the swash with (or NULL)
4164 * flags_p if non-NULL is the address of various input and output flag bits
4165 * to the routine, as follows: ('I' means is input to the routine;
4166 * 'O' means output from the routine. Only flags marked O are
4167 * meaningful on return.)
4168 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
4169 * came from a user-defined property. (I O)
4170 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
4171 * when the swash cannot be located, to simply return NULL. (I)
4172 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
4173 * return of an inversion list instead of a swash hash if this routine
4174 * thinks that would result in faster execution of swash_fetch() later
4175 * on. (I)
4176 *
4177 * Thus there are three possible inputs to find the swash: <name>,
4178 * <listsv>, and <invlist>. At least one must be specified. The result
4179 * will be the union of the specified ones, although <listsv>'s various
4180 * actions can intersect, etc. what <name> gives. To avoid going out to
4181 * disk at all, <invlist> should specify completely what the swash should
4182 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
4183 *
4184 * <invlist> is only valid for binary properties */
4185
4186 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
4187
4188 SV* retval = &PL_sv_undef;
4189 HV* swash_hv = NULL;
4190 const int invlist_swash_boundary =
4191 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
4192 ? 512 /* Based on some benchmarking, but not extensive, see commit
4193 message */
4194 : -1; /* Never return just an inversion list */
4195
4196 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
4197 assert(! invlist || minbits == 1);
4198
4199 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the
4200 regex that triggered the swash init and the swash init
4201 perl logic itself. See perl #122747 */
4202
4203 /* If data was passed in to go out to utf8_heavy to find the swash of, do
4204 * so */
4205 if (listsv != &PL_sv_undef || strNE(name, "")) {
4206 dSP;
4207 const size_t pkg_len = strlen(pkg);
4208 const size_t name_len = strlen(name);
4209 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
4210 SV* errsv_save;
4211 GV *method;
4212
4213 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
4214
4215 PUSHSTACKi(PERLSI_MAGIC);
4216 ENTER;
4217 SAVEHINTS();
4218 save_re_context();
4219 /* We might get here via a subroutine signature which uses a utf8
4220 * parameter name, at which point PL_subname will have been set
4221 * but not yet used. */
4222 save_item(PL_subname);
4223 if (PL_parser && PL_parser->error_count)
4224 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
4225 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
4226 if (!method) { /* demand load UTF-8 */
4227 ENTER;
4228 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4229 GvSV(PL_errgv) = NULL;
4230#ifndef NO_TAINT_SUPPORT
4231 /* It is assumed that callers of this routine are not passing in
4232 * any user derived data. */
4233 /* Need to do this after save_re_context() as it will set
4234 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
4235 * in Perl_magic_get). Even line to create errsv_save can turn on
4236 * PL_tainted. */
4237 SAVEBOOL(TAINT_get);
4238 TAINT_NOT;
4239#endif
4240 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
4241 NULL);
4242 {
4243 /* Not ERRSV, as there is no need to vivify a scalar we are
4244 about to discard. */
4245 SV * const errsv = GvSV(PL_errgv);
4246 if (!SvTRUE(errsv)) {
4247 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4248 SvREFCNT_dec(errsv);
4249 }
4250 }
4251 LEAVE;
4252 }
4253 SPAGAIN;
4254 PUSHMARK(SP);
4255 EXTEND(SP,5);
4256 mPUSHp(pkg, pkg_len);
4257 mPUSHp(name, name_len);
4258 PUSHs(listsv);
4259 mPUSHi(minbits);
4260 mPUSHi(none);
4261 PUTBACK;
4262 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
4263 GvSV(PL_errgv) = NULL;
4264 /* If we already have a pointer to the method, no need to use
4265 * call_method() to repeat the lookup. */
4266 if (method
4267 ? call_sv(MUTABLE_SV(method), G_SCALAR)
4268 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
4269 {
4270 retval = *PL_stack_sp--;
4271 SvREFCNT_inc(retval);
4272 }
4273 {
4274 /* Not ERRSV. See above. */
4275 SV * const errsv = GvSV(PL_errgv);
4276 if (!SvTRUE(errsv)) {
4277 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
4278 SvREFCNT_dec(errsv);
4279 }
4280 }
4281 LEAVE;
4282 POPSTACK;
4283 if (IN_PERL_COMPILETIME) {
4284 CopHINTS_set(PL_curcop, PL_hints);
4285 }
4286 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
4287 if (SvPOK(retval)) {
4288
4289 /* If caller wants to handle missing properties, let them */
4290 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
4291 CORE_SWASH_INIT_RETURN(NULL);
4292 }
4293 Perl_croak(aTHX_
4294 "Can't find Unicode property definition \"%" SVf "\"",
4295 SVfARG(retval));
4296 NOT_REACHED; /* NOTREACHED */
4297 }
4298 }
4299 } /* End of calling the module to find the swash */
4300
4301 /* If this operation fetched a swash, and we will need it later, get it */
4302 if (retval != &PL_sv_undef
4303 && (minbits == 1 || (flags_p
4304 && ! (*flags_p
4305 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
4306 {
4307 swash_hv = MUTABLE_HV(SvRV(retval));
4308
4309 /* If we don't already know that there is a user-defined component to
4310 * this swash, and the user has indicated they wish to know if there is
4311 * one (by passing <flags_p>), find out */
4312 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
4313 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
4314 if (user_defined && SvUV(*user_defined)) {
4315 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
4316 }
4317 }
4318 }
4319
4320 /* Make sure there is an inversion list for binary properties */
4321 if (minbits == 1) {
4322 SV** swash_invlistsvp = NULL;
4323 SV* swash_invlist = NULL;
4324 bool invlist_in_swash_is_valid = FALSE;
4325 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
4326 an unclaimed reference count */
4327
4328 /* If this operation fetched a swash, get its already existing
4329 * inversion list, or create one for it */
4330
4331 if (swash_hv) {
4332 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
4333 if (swash_invlistsvp) {
4334 swash_invlist = *swash_invlistsvp;
4335 invlist_in_swash_is_valid = TRUE;
4336 }
4337 else {
4338 swash_invlist = _swash_to_invlist(retval);
4339 swash_invlist_unclaimed = TRUE;
4340 }
4341 }
4342
4343 /* If an inversion list was passed in, have to include it */
4344 if (invlist) {
4345
4346 /* Any fetched swash will by now have an inversion list in it;
4347 * otherwise <swash_invlist> will be NULL, indicating that we
4348 * didn't fetch a swash */
4349 if (swash_invlist) {
4350
4351 /* Add the passed-in inversion list, which invalidates the one
4352 * already stored in the swash */
4353 invlist_in_swash_is_valid = FALSE;
4354 SvREADONLY_off(swash_invlist); /* Turned on again below */
4355 _invlist_union(invlist, swash_invlist, &swash_invlist);
4356 }
4357 else {
4358
4359 /* Here, there is no swash already. Set up a minimal one, if
4360 * we are going to return a swash */
4361 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
4362 swash_hv = newHV();
4363 retval = newRV_noinc(MUTABLE_SV(swash_hv));
4364 }
4365 swash_invlist = invlist;
4366 }
4367 }
4368
4369 /* Here, we have computed the union of all the passed-in data. It may
4370 * be that there was an inversion list in the swash which didn't get
4371 * touched; otherwise save the computed one */
4372 if (! invlist_in_swash_is_valid
4373 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
4374 {
4375 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
4376 {
4377 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4378 }
4379 /* We just stole a reference count. */
4380 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
4381 else SvREFCNT_inc_simple_void_NN(swash_invlist);
4382 }
4383
4384 /* The result is immutable. Forbid attempts to change it. */
4385 SvREADONLY_on(swash_invlist);
4386
4387 /* Use the inversion list stand-alone if small enough */
4388 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
4389 SvREFCNT_dec(retval);
4390 if (!swash_invlist_unclaimed)
4391 SvREFCNT_inc_simple_void_NN(swash_invlist);
4392 retval = newRV_noinc(swash_invlist);
4393 }
4394 }
4395
4396 CORE_SWASH_INIT_RETURN(retval);
4397#undef CORE_SWASH_INIT_RETURN
4398}
4399
4400
4401/* This API is wrong for special case conversions since we may need to
4402 * return several Unicode characters for a single Unicode character
4403 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
4404 * the lower-level routine, and it is similarly broken for returning
4405 * multiple values. --jhi
4406 * For those, you should use S__to_utf8_case() instead */
4407/* Now SWASHGET is recasted into S_swatch_get in this file. */
4408
4409/* Note:
4410 * Returns the value of property/mapping C<swash> for the first character
4411 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
4412 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
4413 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
4414 *
4415 * A "swash" is a hash which contains initially the keys/values set up by
4416 * SWASHNEW. The purpose is to be able to completely represent a Unicode
4417 * property for all possible code points. Things are stored in a compact form
4418 * (see utf8_heavy.pl) so that calculation is required to find the actual
4419 * property value for a given code point. As code points are looked up, new
4420 * key/value pairs are added to the hash, so that the calculation doesn't have
4421 * to ever be re-done. Further, each calculation is done, not just for the
4422 * desired one, but for a whole block of code points adjacent to that one.
4423 * For binary properties on ASCII machines, the block is usually for 64 code
4424 * points, starting with a code point evenly divisible by 64. Thus if the
4425 * property value for code point 257 is requested, the code goes out and
4426 * calculates the property values for all 64 code points between 256 and 319,
4427 * and stores these as a single 64-bit long bit vector, called a "swatch",
4428 * under the key for code point 256. The key is the UTF-8 encoding for code
4429 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
4430 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
4431 * for code point 258 is then requested, this code realizes that it would be
4432 * stored under the key for 256, and would find that value and extract the
4433 * relevant bit, offset from 256.
4434 *
4435 * Non-binary properties are stored in as many bits as necessary to represent
4436 * their values (32 currently, though the code is more general than that), not
4437 * as single bits, but the principle is the same: the value for each key is a
4438 * vector that encompasses the property values for all code points whose UTF-8
4439 * representations are represented by the key. That is, for all code points
4440 * whose UTF-8 representations are length N bytes, and the key is the first N-1
4441 * bytes of that.
4442 */
4443UV
4444Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
4445{
4446 HV *const hv = MUTABLE_HV(SvRV(swash));
4447 U32 klen;
4448 U32 off;
4449 STRLEN slen = 0;
4450 STRLEN needents;
4451 const U8 *tmps = NULL;
4452 SV *swatch;
4453 const U8 c = *ptr;
4454
4455 PERL_ARGS_ASSERT_SWASH_FETCH;
4456
4457 /* If it really isn't a hash, it isn't really swash; must be an inversion
4458 * list */
4459 if (SvTYPE(hv) != SVt_PVHV) {
4460 return _invlist_contains_cp((SV*)hv,
4461 (do_utf8)
4462 ? valid_utf8_to_uvchr(ptr, NULL)
4463 : c);
4464 }
4465
4466 /* We store the values in a "swatch" which is a vec() value in a swash
4467 * hash. Code points 0-255 are a single vec() stored with key length
4468 * (klen) 0. All other code points have a UTF-8 representation
4469 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
4470 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
4471 * length for them is the length of the encoded char - 1. ptr[klen] is the
4472 * final byte in the sequence representing the character */
4473 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
4474 klen = 0;
4475 needents = 256;
4476 off = c;
4477 }
4478 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
4479 klen = 0;
4480 needents = 256;
4481 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
4482 }
4483 else {
4484 klen = UTF8SKIP(ptr) - 1;
4485
4486 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
4487 * the vec is the final byte in the sequence. (In EBCDIC this is
4488 * converted to I8 to get consecutive values.) To help you visualize
4489 * all this:
4490 * Straight 1047 After final byte
4491 * UTF-8 UTF-EBCDIC I8 transform
4492 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
4493 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
4494 * ...
4495 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
4496 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
4497 * ...
4498 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
4499 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
4500 * ...
4501 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
4502 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
4503 * ...
4504 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
4505 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
4506 *
4507 * (There are no discontinuities in the elided (...) entries.)
4508 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
4509 * key for the next 31, up through U+043F, whose UTF-8 final byte is
4510 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
4511 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
4512 * index into the vec() swatch (after subtracting 0x80, which we
4513 * actually do with an '&').
4514 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
4515 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
4516 * dicontinuities which go away by transforming it into I8, and we
4517 * effectively subtract 0xA0 to get the index. */
4518 needents = (1 << UTF_ACCUMULATION_SHIFT);
4519 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
4520 }
4521
4522 /*
4523 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
4524 * suite. (That is, only 7-8% overall over just a hash cache. Still,
4525 * it's nothing to sniff at.) Pity we usually come through at least
4526 * two function calls to get here...
4527 *
4528 * NB: this code assumes that swatches are never modified, once generated!
4529 */
4530
4531 if (hv == PL_last_swash_hv &&
4532 klen == PL_last_swash_klen &&
4533 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
4534 {
4535 tmps = PL_last_swash_tmps;
4536 slen = PL_last_swash_slen;
4537 }
4538 else {
4539 /* Try our second-level swatch cache, kept in a hash. */
4540 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
4541
4542 /* If not cached, generate it via swatch_get */
4543 if (!svp || !SvPOK(*svp)
4544 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
4545 {
4546 if (klen) {
4547 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
4548 swatch = swatch_get(swash,
4549 code_point & ~((UV)needents - 1),
4550 needents);
4551 }
4552 else { /* For the first 256 code points, the swatch has a key of
4553 length 0 */
4554 swatch = swatch_get(swash, 0, needents);
4555 }
4556
4557 if (IN_PERL_COMPILETIME)
4558 CopHINTS_set(PL_curcop, PL_hints);
4559
4560 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
4561
4562 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
4563 || (slen << 3) < needents)
4564 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
4565 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
4566 svp, tmps, (UV)slen, (UV)needents);
4567 }
4568
4569 PL_last_swash_hv = hv;
4570 assert(klen <= sizeof(PL_last_swash_key));
4571 PL_last_swash_klen = (U8)klen;
4572 /* FIXME change interpvar.h? */
4573 PL_last_swash_tmps = (U8 *) tmps;
4574 PL_last_swash_slen = slen;
4575 if (klen)
4576 Copy(ptr, PL_last_swash_key, klen, U8);
4577 }
4578
4579 switch ((int)((slen << 3) / needents)) {
4580 case 1:
4581 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
4582 case 8:
4583 return ((UV) tmps[off]);
4584 case 16:
4585 off <<= 1;
4586 return
4587 ((UV) tmps[off ] << 8) +
4588 ((UV) tmps[off + 1]);
4589 case 32:
4590 off <<= 2;
4591 return
4592 ((UV) tmps[off ] << 24) +
4593 ((UV) tmps[off + 1] << 16) +
4594 ((UV) tmps[off + 2] << 8) +
4595 ((UV) tmps[off + 3]);
4596 }
4597 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
4598 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
4599 NORETURN_FUNCTION_END;
4600}
4601
4602/* Read a single line of the main body of the swash input text. These are of
4603 * the form:
4604 * 0053 0056 0073
4605 * where each number is hex. The first two numbers form the minimum and
4606 * maximum of a range, and the third is the value associated with the range.
4607 * Not all swashes should have a third number
4608 *
4609 * On input: l points to the beginning of the line to be examined; it points
4610 * to somewhere in the string of the whole input text, and is
4611 * terminated by a \n or the null string terminator.
4612 * lend points to the null terminator of that string
4613 * wants_value is non-zero if the swash expects a third number
4614 * typestr is the name of the swash's mapping, like 'ToLower'
4615 * On output: *min, *max, and *val are set to the values read from the line.
4616 * returns a pointer just beyond the line examined. If there was no
4617 * valid min number on the line, returns lend+1
4618 */
4619
4620STATIC U8*
4621S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
4622 const bool wants_value, const U8* const typestr)
4623{
4624 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
4625 STRLEN numlen; /* Length of the number */
4626 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
4627 | PERL_SCAN_DISALLOW_PREFIX
4628 | PERL_SCAN_SILENT_NON_PORTABLE;
4629
4630 /* nl points to the next \n in the scan */
4631 U8* const nl = (U8*)memchr(l, '\n', lend - l);
4632
4633 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
4634
4635 /* Get the first number on the line: the range minimum */
4636 numlen = lend - l;
4637 *min = grok_hex((char *)l, &numlen, &flags, NULL);
4638 *max = *min; /* So can never return without setting max */
4639 if (numlen) /* If found a hex number, position past it */
4640 l += numlen;
4641 else if (nl) { /* Else, go handle next line, if any */
4642 return nl + 1; /* 1 is length of "\n" */
4643 }
4644 else { /* Else, no next line */
4645 return lend + 1; /* to LIST's end at which \n is not found */
4646 }
4647
4648 /* The max range value follows, separated by a BLANK */
4649 if (isBLANK(*l)) {
4650 ++l;
4651 flags = PERL_SCAN_SILENT_ILLDIGIT
4652 | PERL_SCAN_DISALLOW_PREFIX
4653 | PERL_SCAN_SILENT_NON_PORTABLE;
4654 numlen = lend - l;
4655 *max = grok_hex((char *)l, &numlen, &flags, NULL);
4656 if (numlen)
4657 l += numlen;
4658 else /* If no value here, it is a single element range */
4659 *max = *min;
4660
4661 /* Non-binary tables have a third entry: what the first element of the
4662 * range maps to. The map for those currently read here is in hex */
4663 if (wants_value) {
4664 if (isBLANK(*l)) {
4665 ++l;
4666 flags = PERL_SCAN_SILENT_ILLDIGIT
4667 | PERL_SCAN_DISALLOW_PREFIX
4668 | PERL_SCAN_SILENT_NON_PORTABLE;
4669 numlen = lend - l;
4670 *val = grok_hex((char *)l, &numlen, &flags, NULL);
4671 if (numlen)
4672 l += numlen;
4673 else
4674 *val = 0;
4675 }
4676 else {
4677 *val = 0;
4678 if (typeto) {
4679 /* diag_listed_as: To%s: illegal mapping '%s' */
4680 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
4681 typestr, l);
4682 }
4683 }
4684 }
4685 else
4686 *val = 0; /* bits == 1, then any val should be ignored */
4687 }
4688 else { /* Nothing following range min, should be single element with no
4689 mapping expected */
4690 if (wants_value) {
4691 *val = 0;
4692 if (typeto) {
4693 /* diag_listed_as: To%s: illegal mapping '%s' */
4694 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
4695 }
4696 }
4697 else
4698 *val = 0; /* bits == 1, then val should be ignored */
4699 }
4700
4701 /* Position to next line if any, or EOF */
4702 if (nl)
4703 l = nl + 1;
4704 else
4705 l = lend;
4706
4707 return l;
4708}
4709
4710/* Note:
4711 * Returns a swatch (a bit vector string) for a code point sequence
4712 * that starts from the value C<start> and comprises the number C<span>.
4713 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
4714 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
4715 */
4716STATIC SV*
4717S_swatch_get(pTHX_ SV* swash, UV start, UV span)
4718{
4719 SV *swatch;
4720 U8 *l, *lend, *x, *xend, *s, *send;
4721 STRLEN lcur, xcur, scur;
4722 HV *const hv = MUTABLE_HV(SvRV(swash));
4723 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
4724
4725 SV** listsvp = NULL; /* The string containing the main body of the table */
4726 SV** extssvp = NULL;
4727 SV** invert_it_svp = NULL;
4728 U8* typestr = NULL;
4729 STRLEN bits;
4730 STRLEN octets; /* if bits == 1, then octets == 0 */
4731 UV none;
4732 UV end = start + span;
4733
4734 if (invlistsvp == NULL) {
4735 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4736 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4737 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4738 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4739 listsvp = hv_fetchs(hv, "LIST", FALSE);
4740 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4741
4742 bits = SvUV(*bitssvp);
4743 none = SvUV(*nonesvp);
4744 typestr = (U8*)SvPV_nolen(*typesvp);
4745 }
4746 else {
4747 bits = 1;
4748 none = 0;
4749 }
4750 octets = bits >> 3; /* if bits == 1, then octets == 0 */
4751
4752 PERL_ARGS_ASSERT_SWATCH_GET;
4753
4754 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
4755 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
4756 (UV)bits);
4757 }
4758
4759 /* If overflowed, use the max possible */
4760 if (end < start) {
4761 end = UV_MAX;
4762 span = end - start;
4763 }
4764
4765 /* create and initialize $swatch */
4766 scur = octets ? (span * octets) : (span + 7) / 8;
4767 swatch = newSV(scur);
4768 SvPOK_on(swatch);
4769 s = (U8*)SvPVX(swatch);
4770 if (octets && none) {
4771 const U8* const e = s + scur;
4772 while (s < e) {
4773 if (bits == 8)
4774 *s++ = (U8)(none & 0xff);
4775 else if (bits == 16) {
4776 *s++ = (U8)((none >> 8) & 0xff);
4777 *s++ = (U8)( none & 0xff);
4778 }
4779 else if (bits == 32) {
4780 *s++ = (U8)((none >> 24) & 0xff);
4781 *s++ = (U8)((none >> 16) & 0xff);
4782 *s++ = (U8)((none >> 8) & 0xff);
4783 *s++ = (U8)( none & 0xff);
4784 }
4785 }
4786 *s = '\0';
4787 }
4788 else {
4789 (void)memzero((U8*)s, scur + 1);
4790 }
4791 SvCUR_set(swatch, scur);
4792 s = (U8*)SvPVX(swatch);
4793
4794 if (invlistsvp) { /* If has an inversion list set up use that */
4795 _invlist_populate_swatch(*invlistsvp, start, end, s);
4796 return swatch;
4797 }
4798
4799 /* read $swash->{LIST} */
4800 l = (U8*)SvPV(*listsvp, lcur);
4801 lend = l + lcur;
4802 while (l < lend) {
4803 UV min, max, val, upper;
4804 l = swash_scan_list_line(l, lend, &min, &max, &val,
4805 cBOOL(octets), typestr);
4806 if (l > lend) {
4807 break;
4808 }
4809
4810 /* If looking for something beyond this range, go try the next one */
4811 if (max < start)
4812 continue;
4813
4814 /* <end> is generally 1 beyond where we want to set things, but at the
4815 * platform's infinity, where we can't go any higher, we want to
4816 * include the code point at <end> */
4817 upper = (max < end)
4818 ? max
4819 : (max != UV_MAX || end != UV_MAX)
4820 ? end - 1
4821 : end;
4822
4823 if (octets) {
4824 UV key;
4825 if (min < start) {
4826 if (!none || val < none) {
4827 val += start - min;
4828 }
4829 min = start;
4830 }
4831 for (key = min; key <= upper; key++) {
4832 STRLEN offset;
4833 /* offset must be non-negative (start <= min <= key < end) */
4834 offset = octets * (key - start);
4835 if (bits == 8)
4836 s[offset] = (U8)(val & 0xff);
4837 else if (bits == 16) {
4838 s[offset ] = (U8)((val >> 8) & 0xff);
4839 s[offset + 1] = (U8)( val & 0xff);
4840 }
4841 else if (bits == 32) {
4842 s[offset ] = (U8)((val >> 24) & 0xff);
4843 s[offset + 1] = (U8)((val >> 16) & 0xff);
4844 s[offset + 2] = (U8)((val >> 8) & 0xff);
4845 s[offset + 3] = (U8)( val & 0xff);
4846 }
4847
4848 if (!none || val < none)
4849 ++val;
4850 }
4851 }
4852 else { /* bits == 1, then val should be ignored */
4853 UV key;
4854 if (min < start)
4855 min = start;
4856
4857 for (key = min; key <= upper; key++) {
4858 const STRLEN offset = (STRLEN)(key - start);
4859 s[offset >> 3] |= 1 << (offset & 7);
4860 }
4861 }
4862 } /* while */
4863
4864 /* Invert if the data says it should be. Assumes that bits == 1 */
4865 if (invert_it_svp && SvUV(*invert_it_svp)) {
4866
4867 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
4868 * be 0, and their inversion should also be 0, as we don't succeed any
4869 * Unicode property matches for non-Unicode code points */
4870 if (start <= PERL_UNICODE_MAX) {
4871
4872 /* The code below assumes that we never cross the
4873 * Unicode/above-Unicode boundary in a range, as otherwise we would
4874 * have to figure out where to stop flipping the bits. Since this
4875 * boundary is divisible by a large power of 2, and swatches comes
4876 * in small powers of 2, this should be a valid assumption */
4877 assert(start + span - 1 <= PERL_UNICODE_MAX);
4878
4879 send = s + scur;
4880 while (s < send) {
4881 *s = ~(*s);
4882 s++;
4883 }
4884 }
4885 }
4886
4887 /* read $swash->{EXTRAS}
4888 * This code also copied to swash_to_invlist() below */
4889 x = (U8*)SvPV(*extssvp, xcur);
4890 xend = x + xcur;
4891 while (x < xend) {
4892 STRLEN namelen;
4893 U8 *namestr;
4894 SV** othersvp;
4895 HV* otherhv;
4896 STRLEN otherbits;
4897 SV **otherbitssvp, *other;
4898 U8 *s, *o, *nl;
4899 STRLEN slen, olen;
4900
4901 const U8 opc = *x++;
4902 if (opc == '\n')
4903 continue;
4904
4905 nl = (U8*)memchr(x, '\n', xend - x);
4906
4907 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4908 if (nl) {
4909 x = nl + 1; /* 1 is length of "\n" */
4910 continue;
4911 }
4912 else {
4913 x = xend; /* to EXTRAS' end at which \n is not found */
4914 break;
4915 }
4916 }
4917
4918 namestr = x;
4919 if (nl) {
4920 namelen = nl - namestr;
4921 x = nl + 1;
4922 }
4923 else {
4924 namelen = xend - namestr;
4925 x = xend;
4926 }
4927
4928 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4929 otherhv = MUTABLE_HV(SvRV(*othersvp));
4930 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4931 otherbits = (STRLEN)SvUV(*otherbitssvp);
4932 if (bits < otherbits)
4933 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4934 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4935
4936 /* The "other" swatch must be destroyed after. */
4937 other = swatch_get(*othersvp, start, span);
4938 o = (U8*)SvPV(other, olen);
4939
4940 if (!olen)
4941 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4942
4943 s = (U8*)SvPV(swatch, slen);
4944 if (bits == 1 && otherbits == 1) {
4945 if (slen != olen)
4946 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4947 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4948 (UV)slen, (UV)olen);
4949
4950 switch (opc) {
4951 case '+':
4952 while (slen--)
4953 *s++ |= *o++;
4954 break;
4955 case '!':
4956 while (slen--)
4957 *s++ |= ~*o++;
4958 break;
4959 case '-':
4960 while (slen--)
4961 *s++ &= ~*o++;
4962 break;
4963 case '&':
4964 while (slen--)
4965 *s++ &= *o++;
4966 break;
4967 default:
4968 break;
4969 }
4970 }
4971 else {
4972 STRLEN otheroctets = otherbits >> 3;
4973 STRLEN offset = 0;
4974 U8* const send = s + slen;
4975
4976 while (s < send) {
4977 UV otherval = 0;
4978
4979 if (otherbits == 1) {
4980 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4981 ++offset;
4982 }
4983 else {
4984 STRLEN vlen = otheroctets;
4985 otherval = *o++;
4986 while (--vlen) {
4987 otherval <<= 8;
4988 otherval |= *o++;
4989 }
4990 }
4991
4992 if (opc == '+' && otherval)
4993 NOOP; /* replace with otherval */
4994 else if (opc == '!' && !otherval)
4995 otherval = 1;
4996 else if (opc == '-' && otherval)
4997 otherval = 0;
4998 else if (opc == '&' && !otherval)
4999 otherval = 0;
5000 else {
5001 s += octets; /* no replacement */
5002 continue;
5003 }
5004
5005 if (bits == 8)
5006 *s++ = (U8)( otherval & 0xff);
5007 else if (bits == 16) {
5008 *s++ = (U8)((otherval >> 8) & 0xff);
5009 *s++ = (U8)( otherval & 0xff);
5010 }
5011 else if (bits == 32) {
5012 *s++ = (U8)((otherval >> 24) & 0xff);
5013 *s++ = (U8)((otherval >> 16) & 0xff);
5014 *s++ = (U8)((otherval >> 8) & 0xff);
5015 *s++ = (U8)( otherval & 0xff);
5016 }
5017 }
5018 }
5019 sv_free(other); /* through with it! */
5020 } /* while */
5021 return swatch;
5022}
5023
5024HV*
5025Perl__swash_inversion_hash(pTHX_ SV* const swash)
5026{
5027
5028 /* Subject to change or removal. For use only in regcomp.c and regexec.c
5029 * Can't be used on a property that is subject to user override, as it
5030 * relies on the value of SPECIALS in the swash which would be set by
5031 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
5032 * for overridden properties
5033 *
5034 * Returns a hash which is the inversion and closure of a swash mapping.
5035 * For example, consider the input lines:
5036 * 004B 006B
5037 * 004C 006C
5038 * 212A 006B
5039 *
5040 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
5041 * 006C. The value for each key is an array. For 006C, the array would
5042 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
5043 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
5044 *
5045 * Note that there are no elements in the hash for 004B, 004C, 212A. The
5046 * keys are only code points that are folded-to, so it isn't a full closure.
5047 *
5048 * Essentially, for any code point, it gives all the code points that map to
5049 * it, or the list of 'froms' for that point.
5050 *
5051 * Currently it ignores any additions or deletions from other swashes,
5052 * looking at just the main body of the swash, and if there are SPECIALS
5053 * in the swash, at that hash
5054 *
5055 * The specials hash can be extra code points, and most likely consists of
5056 * maps from single code points to multiple ones (each expressed as a string
5057 * of UTF-8 characters). This function currently returns only 1-1 mappings.
5058 * However consider this possible input in the specials hash:
5059 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
5060 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
5061 *
5062 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
5063 * currently handle. But it also means that FB05 and FB06 are equivalent in
5064 * a 1-1 mapping which we should handle, and this relationship may not be in
5065 * the main table. Therefore this function examines all the multi-char
5066 * sequences and adds the 1-1 mappings that come out of that.
5067 *
5068 * XXX This function was originally intended to be multipurpose, but its
5069 * only use is quite likely to remain for constructing the inversion of
5070 * the CaseFolding (//i) property. If it were more general purpose for
5071 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
5072 * because certain folds are prohibited under /iaa and /il. As an example,
5073 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
5074 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
5075 * prohibited, so we would not figure out that they fold to each other.
5076 * Code could be written to automatically figure this out, similar to the
5077 * code that does this for multi-character folds, but this is the only case
5078 * where something like this is ever likely to happen, as all the single
5079 * char folds to the 0-255 range are now quite settled. Instead there is a
5080 * little special code that is compiled only for this Unicode version. This
5081 * is smaller and didn't require much coding time to do. But this makes
5082 * this routine strongly tied to being used just for CaseFolding. If ever
5083 * it should be generalized, this would have to be fixed */
5084
5085 U8 *l, *lend;
5086 STRLEN lcur;
5087 HV *const hv = MUTABLE_HV(SvRV(swash));
5088
5089 /* The string containing the main body of the table. This will have its
5090 * assertion fail if the swash has been converted to its inversion list */
5091 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
5092
5093 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
5094 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
5095 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
5096 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
5097 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
5098 const STRLEN bits = SvUV(*bitssvp);
5099 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
5100 const UV none = SvUV(*nonesvp);
5101 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
5102
5103 HV* ret = newHV();
5104
5105 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
5106
5107 /* Must have at least 8 bits to get the mappings */
5108 if (bits != 8 && bits != 16 && bits != 32) {
5109 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"
5110 UVuf, (UV)bits);
5111 }
5112
5113 if (specials_p) { /* It might be "special" (sometimes, but not always, a
5114 mapping to more than one character */
5115
5116 /* Construct an inverse mapping hash for the specials */
5117 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
5118 HV * specials_inverse = newHV();
5119 char *char_from; /* the lhs of the map */
5120 I32 from_len; /* its byte length */
5121 char *char_to; /* the rhs of the map */
5122 I32 to_len; /* its byte length */
5123 SV *sv_to; /* and in a sv */
5124 AV* from_list; /* list of things that map to each 'to' */
5125
5126 hv_iterinit(specials_hv);
5127
5128 /* The keys are the characters (in UTF-8) that map to the corresponding
5129 * UTF-8 string value. Iterate through the list creating the inverse
5130 * list. */
5131 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
5132 SV** listp;
5133 if (! SvPOK(sv_to)) {
5134 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
5135 "unexpectedly is not a string, flags=%lu",
5136 (unsigned long)SvFLAGS(sv_to));
5137 }
5138 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %" UVXf ", First char of to is %" UVXf "\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
5139
5140 /* Each key in the inverse list is a mapped-to value, and the key's
5141 * hash value is a list of the strings (each in UTF-8) that map to
5142 * it. Those strings are all one character long */
5143 if ((listp = hv_fetch(specials_inverse,
5144 SvPVX(sv_to),
5145 SvCUR(sv_to), 0)))
5146 {
5147 from_list = (AV*) *listp;
5148 }
5149 else { /* No entry yet for it: create one */
5150 from_list = newAV();
5151 if (! hv_store(specials_inverse,
5152 SvPVX(sv_to),
5153 SvCUR(sv_to),
5154 (SV*) from_list, 0))
5155 {
5156 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
5157 }
5158 }
5159
5160 /* Here have the list associated with this 'to' (perhaps newly
5161 * created and empty). Just add to it. Note that we ASSUME that
5162 * the input is guaranteed to not have duplications, so we don't
5163 * check for that. Duplications just slow down execution time. */
5164 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
5165 }
5166
5167 /* Here, 'specials_inverse' contains the inverse mapping. Go through
5168 * it looking for cases like the FB05/FB06 examples above. There would
5169 * be an entry in the hash like
5170 * 'st' => [ FB05, FB06 ]
5171 * In this example we will create two lists that get stored in the
5172 * returned hash, 'ret':
5173 * FB05 => [ FB05, FB06 ]
5174 * FB06 => [ FB05, FB06 ]
5175 *
5176 * Note that there is nothing to do if the array only has one element.
5177 * (In the normal 1-1 case handled below, we don't have to worry about
5178 * two lists, as everything gets tied to the single list that is
5179 * generated for the single character 'to'. But here, we are omitting
5180 * that list, ('st' in the example), so must have multiple lists.) */
5181 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
5182 &char_to, &to_len)))
5183 {
5184 if (av_tindex_skip_len_mg(from_list) > 0) {
5185 SSize_t i;
5186
5187 /* We iterate over all combinations of i,j to place each code
5188 * point on each list */
5189 for (i = 0; i <= av_tindex_skip_len_mg(from_list); i++) {
5190 SSize_t j;
5191 AV* i_list = newAV();
5192 SV** entryp = av_fetch(from_list, i, FALSE);
5193 if (entryp == NULL) {
5194 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly"
5195 " failed");
5196 }
5197 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
5198 Perl_croak(aTHX_ "panic: unexpected entry for %s",
5199 SvPVX(*entryp));
5200 }
5201 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
5202 (SV*) i_list, FALSE))
5203 {
5204 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
5205 }
5206
5207 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
5208 for (j = 0; j <= av_tindex_skip_len_mg(from_list); j++) {
5209 entryp = av_fetch(from_list, j, FALSE);
5210 if (entryp == NULL) {
5211 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
5212 }
5213
5214 /* When i==j this adds itself to the list */
5215 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
5216 (U8*) SvPVX(*entryp),
5217 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
5218 0)));
5219 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
5220 }
5221 }
5222 }
5223 }
5224 SvREFCNT_dec(specials_inverse); /* done with it */
5225 } /* End of specials */
5226
5227 /* read $swash->{LIST} */
5228
5229#if UNICODE_MAJOR_VERSION == 3 \
5230 && UNICODE_DOT_VERSION == 0 \
5231 && UNICODE_DOT_DOT_VERSION == 1
5232
5233 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
5234 * rule so that things work under /iaa and /il */
5235
5236 SV * mod_listsv = sv_mortalcopy(*listsvp);
5237 sv_catpv(mod_listsv, "130\t130\t131\n");
5238 l = (U8*)SvPV(mod_listsv, lcur);
5239
5240#else
5241
5242 l = (U8*)SvPV(*listsvp, lcur);
5243
5244#endif
5245
5246 lend = l + lcur;
5247
5248 /* Go through each input line */
5249 while (l < lend) {
5250 UV min, max, val;
5251 UV inverse;
5252 l = swash_scan_list_line(l, lend, &min, &max, &val,
5253 cBOOL(octets), typestr);
5254 if (l > lend) {
5255 break;
5256 }
5257
5258 /* Each element in the range is to be inverted */
5259 for (inverse = min; inverse <= max; inverse++) {
5260 AV* list;
5261 SV** listp;
5262 IV i;
5263 bool found_key = FALSE;
5264 bool found_inverse = FALSE;
5265
5266 /* The key is the inverse mapping */
5267 char key[UTF8_MAXBYTES+1];
5268 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
5269 STRLEN key_len = key_end - key;
5270
5271 /* Get the list for the map */
5272 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
5273 list = (AV*) *listp;
5274 }
5275 else { /* No entry yet for it: create one */
5276 list = newAV();
5277 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
5278 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
5279 }
5280 }
5281
5282 /* Look through list to see if this inverse mapping already is
5283 * listed, or if there is a mapping to itself already */
5284 for (i = 0; i <= av_tindex_skip_len_mg(list); i++) {
5285 SV** entryp = av_fetch(list, i, FALSE);
5286 SV* entry;
5287 UV uv;
5288 if (entryp == NULL) {
5289 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
5290 }
5291 entry = *entryp;
5292 uv = SvUV(entry);
5293 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %" UVXf " contains %" UVXf "\n", val, uv));*/
5294 if (uv == val) {
5295 found_key = TRUE;
5296 }
5297 if (uv == inverse) {
5298 found_inverse = TRUE;
5299 }
5300
5301 /* No need to continue searching if found everything we are
5302 * looking for */
5303 if (found_key && found_inverse) {
5304 break;
5305 }
5306 }
5307
5308 /* Make sure there is a mapping to itself on the list */
5309 if (! found_key) {
5310 av_push(list, newSVuv(val));
5311 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, val, val));*/
5312 }
5313
5314
5315 /* Simply add the value to the list */
5316 if (! found_inverse) {
5317 av_push(list, newSVuv(inverse));
5318 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, inverse, val));*/
5319 }
5320
5321 /* swatch_get() increments the value of val for each element in the
5322 * range. That makes more compact tables possible. You can
5323 * express the capitalization, for example, of all consecutive
5324 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
5325 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
5326 * and it's not documented; it appears to be used only in
5327 * implementing tr//; I copied the semantics from swatch_get(), just
5328 * in case */
5329 if (!none || val < none) {
5330 ++val;
5331 }
5332 }
5333 }
5334
5335 return ret;
5336}
5337
5338SV*
5339Perl__swash_to_invlist(pTHX_ SV* const swash)
5340{
5341
5342 /* Subject to change or removal. For use only in one place in regcomp.c.
5343 * Ownership is given to one reference count in the returned SV* */
5344
5345 U8 *l, *lend;
5346 char *loc;
5347 STRLEN lcur;
5348 HV *const hv = MUTABLE_HV(SvRV(swash));
5349 UV elements = 0; /* Number of elements in the inversion list */
5350 U8 empty[] = "";
5351 SV** listsvp;
5352 SV** typesvp;
5353 SV** bitssvp;
5354 SV** extssvp;
5355 SV** invert_it_svp;
5356
5357 U8* typestr;
5358 STRLEN bits;
5359 STRLEN octets; /* if bits == 1, then octets == 0 */
5360 U8 *x, *xend;
5361 STRLEN xcur;
5362
5363 SV* invlist;
5364
5365 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
5366
5367 /* If not a hash, it must be the swash's inversion list instead */
5368 if (SvTYPE(hv) != SVt_PVHV) {
5369 return SvREFCNT_inc_simple_NN((SV*) hv);
5370 }
5371
5372 /* The string containing the main body of the table */
5373 listsvp = hv_fetchs(hv, "LIST", FALSE);
5374 typesvp = hv_fetchs(hv, "TYPE", FALSE);
5375 bitssvp = hv_fetchs(hv, "BITS", FALSE);
5376 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
5377 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
5378
5379 typestr = (U8*)SvPV_nolen(*typesvp);
5380 bits = SvUV(*bitssvp);
5381 octets = bits >> 3; /* if bits == 1, then octets == 0 */
5382
5383 /* read $swash->{LIST} */
5384 if (SvPOK(*listsvp)) {
5385 l = (U8*)SvPV(*listsvp, lcur);
5386 }
5387 else {
5388 /* LIST legitimately doesn't contain a string during compilation phases
5389 * of Perl itself, before the Unicode tables are generated. In this
5390 * case, just fake things up by creating an empty list */
5391 l = empty;
5392 lcur = 0;
5393 }
5394 loc = (char *) l;
5395 lend = l + lcur;
5396
5397 if (*l == 'V') { /* Inversion list format */
5398 const char *after_atou = (char *) lend;
5399 UV element0;
5400 UV* other_elements_ptr;
5401
5402 /* The first number is a count of the rest */
5403 l++;
5404 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
5405 Perl_croak(aTHX_ "panic: Expecting a valid count of elements"
5406 " at start of inversion list");
5407 }
5408 if (elements == 0) {
5409 invlist = _new_invlist(0);
5410 }
5411 else {
5412 l = (U8 *) after_atou;
5413
5414 /* Get the 0th element, which is needed to setup the inversion list
5415 * */
5416 while (isSPACE(*l)) l++;
5417 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
5418 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for"
5419 " inversion list");
5420 }
5421 l = (U8 *) after_atou;
5422 invlist = _setup_canned_invlist(elements, element0,
5423 &other_elements_ptr);
5424 elements--;
5425
5426 /* Then just populate the rest of the input */
5427 while (elements-- > 0) {
5428 if (l > lend) {
5429 Perl_croak(aTHX_ "panic: Expecting %" UVuf " more"
5430 " elements than available", elements);
5431 }
5432 while (isSPACE(*l)) l++;
5433 if (!grok_atoUV((const char *)l, other_elements_ptr++,
5434 &after_atou))
5435 {
5436 Perl_croak(aTHX_ "panic: Expecting a valid element"
5437 " in inversion list");
5438 }
5439 l = (U8 *) after_atou;
5440 }
5441 }
5442 }
5443 else {
5444
5445 /* Scan the input to count the number of lines to preallocate array
5446 * size based on worst possible case, which is each line in the input
5447 * creates 2 elements in the inversion list: 1) the beginning of a
5448 * range in the list; 2) the beginning of a range not in the list. */
5449 while ((loc = (char *) memchr(loc, '\n', lend - (U8 *) loc)) != NULL) {
5450 elements += 2;
5451 loc++;
5452 }
5453
5454 /* If the ending is somehow corrupt and isn't a new line, add another
5455 * element for the final range that isn't in the inversion list */
5456 if (! (*lend == '\n'
5457 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
5458 {
5459 elements++;
5460 }
5461
5462 invlist = _new_invlist(elements);
5463
5464 /* Now go through the input again, adding each range to the list */
5465 while (l < lend) {
5466 UV start, end;
5467 UV val; /* Not used by this function */
5468
5469 l = swash_scan_list_line(l, lend, &start, &end, &val,
5470 cBOOL(octets), typestr);
5471
5472 if (l > lend) {
5473 break;
5474 }
5475
5476 invlist = _add_range_to_invlist(invlist, start, end);
5477 }
5478 }
5479
5480 /* Invert if the data says it should be */
5481 if (invert_it_svp && SvUV(*invert_it_svp)) {
5482 _invlist_invert(invlist);
5483 }
5484
5485 /* This code is copied from swatch_get()
5486 * read $swash->{EXTRAS} */
5487 x = (U8*)SvPV(*extssvp, xcur);
5488 xend = x + xcur;
5489 while (x < xend) {
5490 STRLEN namelen;
5491 U8 *namestr;
5492 SV** othersvp;
5493 HV* otherhv;
5494 STRLEN otherbits;
5495 SV **otherbitssvp, *other;
5496 U8 *nl;
5497
5498 const U8 opc = *x++;
5499 if (opc == '\n')
5500 continue;
5501
5502 nl = (U8*)memchr(x, '\n', xend - x);
5503
5504 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
5505 if (nl) {
5506 x = nl + 1; /* 1 is length of "\n" */
5507 continue;
5508 }
5509 else {
5510 x = xend; /* to EXTRAS' end at which \n is not found */
5511 break;
5512 }
5513 }
5514
5515 namestr = x;
5516 if (nl) {
5517 namelen = nl - namestr;
5518 x = nl + 1;
5519 }
5520 else {
5521 namelen = xend - namestr;
5522 x = xend;
5523 }
5524
5525 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
5526 otherhv = MUTABLE_HV(SvRV(*othersvp));
5527 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
5528 otherbits = (STRLEN)SvUV(*otherbitssvp);
5529
5530 if (bits != otherbits || bits != 1) {
5531 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
5532 "properties, bits=%" UVuf ", otherbits=%" UVuf,
5533 (UV)bits, (UV)otherbits);
5534 }
5535
5536 /* The "other" swatch must be destroyed after. */
5537 other = _swash_to_invlist((SV *)*othersvp);
5538
5539 /* End of code copied from swatch_get() */
5540 switch (opc) {
5541 case '+':
5542 _invlist_union(invlist, other, &invlist);
5543 break;
5544 case '!':
5545 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
5546 break;
5547 case '-':
5548 _invlist_subtract(invlist, other, &invlist);
5549 break;
5550 case '&':
5551 _invlist_intersection(invlist, other, &invlist);
5552 break;
5553 default:
5554 break;
5555 }
5556 sv_free(other); /* through with it! */
5557 }
5558
5559 SvREADONLY_on(invlist);
5560 return invlist;
5561}
5562
5563SV*
5564Perl__get_swash_invlist(pTHX_ SV* const swash)
5565{
5566 SV** ptr;
5567
5568 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
5569
5570 if (! SvROK(swash)) {
5571 return NULL;
5572 }
5573
5574 /* If it really isn't a hash, it isn't really swash; must be an inversion
5575 * list */
5576 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
5577 return SvRV(swash);
5578 }
5579
5580 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
5581 if (! ptr) {
5582 return NULL;
5583 }
5584
5585 return *ptr;
5586}
5587
5588bool
5589Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
5590{
5591 /* May change: warns if surrogates, non-character code points, or
5592 * non-Unicode code points are in 's' which has length 'len' bytes.
5593 * Returns TRUE if none found; FALSE otherwise. The only other validity
5594 * check is to make sure that this won't exceed the string's length nor
5595 * overflow */
5596
5597 const U8* const e = s + len;
5598 bool ok = TRUE;
5599
5600 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
5601
5602 while (s < e) {
5603 if (UTF8SKIP(s) > len) {
5604 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
5605 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
5606 return FALSE;
5607 }
5608 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
5609 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
5610 if ( ckWARN_d(WARN_NON_UNICODE)
5611 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
5612 0 /* Don't consider overlongs */
5613 )))
5614 {
5615 /* A side effect of this function will be to warn */
5616 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
5617 ok = FALSE;
5618 }
5619 }
5620 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
5621 if (ckWARN_d(WARN_SURROGATE)) {
5622 /* This has a different warning than the one the called
5623 * function would output, so can't just call it, unlike we
5624 * do for the non-chars and above-unicodes */
5625 UV uv = utf8_to_uvchr_buf(s, e, NULL);
5626 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
5627 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
5628 uv);
5629 ok = FALSE;
5630 }
5631 }
5632 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
5633 && (ckWARN_d(WARN_NONCHAR)))
5634 {
5635 /* A side effect of this function will be to warn */
5636 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
5637 ok = FALSE;
5638 }
5639 }
5640 s += UTF8SKIP(s);
5641 }
5642
5643 return ok;
5644}
5645
5646/*
5647=for apidoc pv_uni_display
5648
5649Build to the scalar C<dsv> a displayable version of the string C<spv>,
5650length C<len>, the displayable version being at most C<pvlim> bytes long
5651(if longer, the rest is truncated and C<"..."> will be appended).
5652
5653The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
5654C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
5655to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
5656(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
5657C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
5658C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
5659
5660The pointer to the PV of the C<dsv> is returned.
5661
5662See also L</sv_uni_display>.
5663
5664=cut */
5665char *
5666Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
5667 UV flags)
5668{
5669 int truncated = 0;
5670 const char *s, *e;
5671
5672 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
5673
5674 SvPVCLEAR(dsv);
5675 SvUTF8_off(dsv);
5676 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
5677 UV u;
5678 /* This serves double duty as a flag and a character to print after
5679 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
5680 */
5681 char ok = 0;
5682
5683 if (pvlim && SvCUR(dsv) >= pvlim) {
5684 truncated++;
5685 break;
5686 }
5687 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
5688 if (u < 256) {
5689 const unsigned char c = (unsigned char)u & 0xFF;
5690 if (flags & UNI_DISPLAY_BACKSLASH) {
5691 switch (c) {
5692 case '\n':
5693 ok = 'n'; break;
5694 case '\r':
5695 ok = 'r'; break;
5696 case '\t':
5697 ok = 't'; break;
5698 case '\f':
5699 ok = 'f'; break;
5700 case '\a':
5701 ok = 'a'; break;
5702 case '\\':
5703 ok = '\\'; break;
5704 default: break;
5705 }
5706 if (ok) {
5707 const char string = ok;
5708 sv_catpvs(dsv, "\\");
5709 sv_catpvn(dsv, &string, 1);
5710 }
5711 }
5712 /* isPRINT() is the locale-blind version. */
5713 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
5714 const char string = c;
5715 sv_catpvn(dsv, &string, 1);
5716 ok = 1;
5717 }
5718 }
5719 if (!ok)
5720 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
5721 }
5722 if (truncated)
5723 sv_catpvs(dsv, "...");
5724
5725 return SvPVX(dsv);
5726}
5727
5728/*
5729=for apidoc sv_uni_display
5730
5731Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
5732the displayable version being at most C<pvlim> bytes long
5733(if longer, the rest is truncated and "..." will be appended).
5734
5735The C<flags> argument is as in L</pv_uni_display>().
5736
5737The pointer to the PV of the C<dsv> is returned.
5738
5739=cut
5740*/
5741char *
5742Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
5743{
5744 const char * const ptr =
5745 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
5746
5747 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
5748
5749 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
5750 SvCUR(ssv), pvlim, flags);
5751}
5752
5753/*
5754=for apidoc foldEQ_utf8
5755
5756Returns true if the leading portions of the strings C<s1> and C<s2> (either or
5757both of which may be in UTF-8) are the same case-insensitively; false
5758otherwise. How far into the strings to compare is determined by other input
5759parameters.
5760
5761If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
5762otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
5763C<u2> with respect to C<s2>.
5764
5765If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
5766fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
5767The scan will not be considered to be a match unless the goal is reached, and
5768scanning won't continue past that goal. Correspondingly for C<l2> with respect
5769to C<s2>.
5770
5771If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
5772pointer is considered an end pointer to the position 1 byte past the maximum
5773point in C<s1> beyond which scanning will not continue under any circumstances.
5774(This routine assumes that UTF-8 encoded input strings are not malformed;
5775malformed input can cause it to read past C<pe1>). This means that if both
5776C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
5777will never be successful because it can never
5778get as far as its goal (and in fact is asserted against). Correspondingly for
5779C<pe2> with respect to C<s2>.
5780
5781At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
5782C<l2> must be non-zero), and if both do, both have to be
5783reached for a successful match. Also, if the fold of a character is multiple
5784characters, all of them must be matched (see tr21 reference below for
5785'folding').
5786
5787Upon a successful match, if C<pe1> is non-C<NULL>,
5788it will be set to point to the beginning of the I<next> character of C<s1>
5789beyond what was matched. Correspondingly for C<pe2> and C<s2>.
5790
5791For case-insensitiveness, the "casefolding" of Unicode is used
5792instead of upper/lowercasing both the characters, see
5793L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
5794
5795=cut */
5796
5797/* A flags parameter has been added which may change, and hence isn't
5798 * externally documented. Currently it is:
5799 * 0 for as-documented above
5800 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
5801 ASCII one, to not match
5802 * FOLDEQ_LOCALE is set iff the rules from the current underlying
5803 * locale are to be used.
5804 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
5805 * routine. This allows that step to be skipped.
5806 * Currently, this requires s1 to be encoded as UTF-8
5807 * (u1 must be true), which is asserted for.
5808 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
5809 * cross certain boundaries. Hence, the caller should
5810 * let this function do the folding instead of
5811 * pre-folding. This code contains an assertion to
5812 * that effect. However, if the caller knows what
5813 * it's doing, it can pass this flag to indicate that,
5814 * and the assertion is skipped.
5815 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
5816 * FOLDEQ_S2_FOLDS_SANE
5817 */
5818I32
5819Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
5820 const char *s2, char **pe2, UV l2, bool u2,
5821 U32 flags)
5822{
5823 const U8 *p1 = (const U8*)s1; /* Point to current char */
5824 const U8 *p2 = (const U8*)s2;
5825 const U8 *g1 = NULL; /* goal for s1 */
5826 const U8 *g2 = NULL;
5827 const U8 *e1 = NULL; /* Don't scan s1 past this */
5828 U8 *f1 = NULL; /* Point to current folded */
5829 const U8 *e2 = NULL;
5830 U8 *f2 = NULL;
5831 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
5832 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
5833 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
5834 U8 flags_for_folder = FOLD_FLAGS_FULL;
5835
5836 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
5837
5838 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
5839 && (((flags & FOLDEQ_S1_ALREADY_FOLDED)
5840 && !(flags & FOLDEQ_S1_FOLDS_SANE))
5841 || ((flags & FOLDEQ_S2_ALREADY_FOLDED)
5842 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
5843 /* The algorithm is to trial the folds without regard to the flags on
5844 * the first line of the above assert(), and then see if the result
5845 * violates them. This means that the inputs can't be pre-folded to a
5846 * violating result, hence the assert. This could be changed, with the
5847 * addition of extra tests here for the already-folded case, which would
5848 * slow it down. That cost is more than any possible gain for when these
5849 * flags are specified, as the flags indicate /il or /iaa matching which
5850 * is less common than /iu, and I (khw) also believe that real-world /il
5851 * and /iaa matches are most likely to involve code points 0-255, and this
5852 * function only under rare conditions gets called for 0-255. */
5853
5854 if (flags & FOLDEQ_LOCALE) {
5855 if (IN_UTF8_CTYPE_LOCALE) {
5856 flags &= ~FOLDEQ_LOCALE;
5857 }
5858 else {
5859 flags_for_folder |= FOLD_FLAGS_LOCALE;
5860 }
5861 }
5862
5863 if (pe1) {
5864 e1 = *(U8**)pe1;
5865 }
5866
5867 if (l1) {
5868 g1 = (const U8*)s1 + l1;
5869 }
5870
5871 if (pe2) {
5872 e2 = *(U8**)pe2;
5873 }
5874
5875 if (l2) {
5876 g2 = (const U8*)s2 + l2;
5877 }
5878
5879 /* Must have at least one goal */
5880 assert(g1 || g2);
5881
5882 if (g1) {
5883
5884 /* Will never match if goal is out-of-bounds */
5885 assert(! e1 || e1 >= g1);
5886
5887 /* Here, there isn't an end pointer, or it is beyond the goal. We
5888 * only go as far as the goal */
5889 e1 = g1;
5890 }
5891 else {
5892 assert(e1); /* Must have an end for looking at s1 */
5893 }
5894
5895 /* Same for goal for s2 */
5896 if (g2) {
5897 assert(! e2 || e2 >= g2);
5898 e2 = g2;
5899 }
5900 else {
5901 assert(e2);
5902 }
5903
5904 /* If both operands are already folded, we could just do a memEQ on the
5905 * whole strings at once, but it would be better if the caller realized
5906 * this and didn't even call us */
5907
5908 /* Look through both strings, a character at a time */
5909 while (p1 < e1 && p2 < e2) {
5910
5911 /* If at the beginning of a new character in s1, get its fold to use
5912 * and the length of the fold. */
5913 if (n1 == 0) {
5914 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
5915 f1 = (U8 *) p1;
5916 assert(u1);
5917 n1 = UTF8SKIP(f1);
5918 }
5919 else {
5920 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
5921
5922 /* We have to forbid mixing ASCII with non-ASCII if the
5923 * flags so indicate. And, we can short circuit having to
5924 * call the general functions for this common ASCII case,
5925 * all of whose non-locale folds are also ASCII, and hence
5926 * UTF-8 invariants, so the UTF8ness of the strings is not
5927 * relevant. */
5928 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
5929 return 0;
5930 }
5931 n1 = 1;
5932 *foldbuf1 = toFOLD(*p1);
5933 }
5934 else if (u1) {
5935 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
5936 }
5937 else { /* Not UTF-8, get UTF-8 fold */
5938 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
5939 }
5940 f1 = foldbuf1;
5941 }
5942 }
5943
5944 if (n2 == 0) { /* Same for s2 */
5945 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
5946 f2 = (U8 *) p2;
5947 assert(u2);
5948 n2 = UTF8SKIP(f2);
5949 }
5950 else {
5951 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
5952 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
5953 return 0;
5954 }
5955 n2 = 1;
5956 *foldbuf2 = toFOLD(*p2);
5957 }
5958 else if (u2) {
5959 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
5960 }
5961 else {
5962 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
5963 }
5964 f2 = foldbuf2;
5965 }
5966 }
5967
5968 /* Here f1 and f2 point to the beginning of the strings to compare.
5969 * These strings are the folds of the next character from each input
5970 * string, stored in UTF-8. */
5971
5972 /* While there is more to look for in both folds, see if they
5973 * continue to match */
5974 while (n1 && n2) {
5975 U8 fold_length = UTF8SKIP(f1);
5976 if (fold_length != UTF8SKIP(f2)
5977 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
5978 function call for single
5979 byte */
5980 || memNE((char*)f1, (char*)f2, fold_length))
5981 {
5982 return 0; /* mismatch */
5983 }
5984
5985 /* Here, they matched, advance past them */
5986 n1 -= fold_length;
5987 f1 += fold_length;
5988 n2 -= fold_length;
5989 f2 += fold_length;
5990 }
5991
5992 /* When reach the end of any fold, advance the input past it */
5993 if (n1 == 0) {
5994 p1 += u1 ? UTF8SKIP(p1) : 1;
5995 }
5996 if (n2 == 0) {
5997 p2 += u2 ? UTF8SKIP(p2) : 1;
5998 }
5999 } /* End of loop through both strings */
6000
6001 /* A match is defined by each scan that specified an explicit length
6002 * reaching its final goal, and the other not having matched a partial
6003 * character (which can happen when the fold of a character is more than one
6004 * character). */
6005 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
6006 return 0;
6007 }
6008
6009 /* Successful match. Set output pointers */
6010 if (pe1) {
6011 *pe1 = (char*)p1;
6012 }
6013 if (pe2) {
6014 *pe2 = (char*)p2;
6015 }
6016 return 1;
6017}
6018
6019/* XXX The next two functions should likely be moved to mathoms.c once all
6020 * occurrences of them are removed from the core; some cpan-upstream modules
6021 * still use them */
6022
6023U8 *
6024Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
6025{
6026 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
6027
6028 return uvoffuni_to_utf8_flags(d, uv, 0);
6029}
6030
6031/*
6032=for apidoc utf8n_to_uvuni
6033
6034Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
6035
6036This function was useful for code that wanted to handle both EBCDIC and
6037ASCII platforms with Unicode properties, but starting in Perl v5.20, the
6038distinctions between the platforms have mostly been made invisible to most
6039code, so this function is quite unlikely to be what you want. If you do need
6040this precise functionality, use instead
6041C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
6042or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
6043
6044=cut
6045*/
6046
6047UV
6048Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
6049{
6050 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
6051
6052 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
6053}
6054
6055/*
6056=for apidoc uvuni_to_utf8_flags
6057
6058Instead you almost certainly want to use L</uvchr_to_utf8> or
6059L</uvchr_to_utf8_flags>.
6060
6061This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
6062which itself, while not deprecated, should be used only in isolated
6063circumstances. These functions were useful for code that wanted to handle
6064both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
6065v5.20, the distinctions between the platforms have mostly been made invisible
6066to most code, so this function is quite unlikely to be what you want.
6067
6068=cut
6069*/
6070
6071U8 *
6072Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
6073{
6074 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
6075
6076 return uvoffuni_to_utf8_flags(d, uv, flags);
6077}
6078
6079/*
6080 * ex: set ts=8 sts=4 sw=4 et:
6081 */