This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
perldelta for 8700fd3876
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "inline_invlist.c"
35
36#ifndef EBCDIC
37/* Separate prototypes needed because in ASCII systems these are
38 * usually macros but they still are compiled as code, too. */
39PERL_CALLCONV UV Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags);
40PERL_CALLCONV UV Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen);
41PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
42#endif
43
44static const char unees[] =
45 "Malformed UTF-8 character (unexpected end of string)";
46
47/*
48=head1 Unicode Support
49
50This file contains various utility functions for manipulating UTF8-encoded
51strings. For the uninitiated, this is a method of representing arbitrary
52Unicode characters as a variable number of bytes, in such a way that
53characters in the ASCII range are unmodified, and a zero byte never appears
54within non-zero characters.
55
56=cut
57*/
58
59/*
60=for apidoc is_ascii_string
61
62Returns true if the first C<len> bytes of the string C<s> are the same whether
63or not the string is encoded in UTF-8 (or UTF-EBCDIC on EBCDIC machines). That
64is, if they are invariant. On ASCII-ish machines, only ASCII characters
65fit this definition, hence the function's name.
66
67If C<len> is 0, it will be calculated using C<strlen(s)>.
68
69See also L</is_utf8_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
70
71=cut
72*/
73
74bool
75Perl_is_ascii_string(const U8 *s, STRLEN len)
76{
77 const U8* const send = s + (len ? len : strlen((const char *)s));
78 const U8* x = s;
79
80 PERL_ARGS_ASSERT_IS_ASCII_STRING;
81
82 for (; x < send; ++x) {
83 if (!UTF8_IS_INVARIANT(*x))
84 break;
85 }
86
87 return x == send;
88}
89
90/*
91=for apidoc uvuni_to_utf8_flags
92
93Adds the UTF-8 representation of the code point C<uv> to the end
94of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
95bytes available. The return value is the pointer to the byte after the
96end of the new character. In other words,
97
98 d = uvuni_to_utf8_flags(d, uv, flags);
99
100or, in most cases,
101
102 d = uvuni_to_utf8(d, uv);
103
104(which is equivalent to)
105
106 d = uvuni_to_utf8_flags(d, uv, 0);
107
108This is the recommended Unicode-aware way of saying
109
110 *(d++) = uv;
111
112This function will convert to UTF-8 (and not warn) even code points that aren't
113legal Unicode or are problematic, unless C<flags> contains one or more of the
114following flags:
115
116If C<uv> is a Unicode surrogate code point and UNICODE_WARN_SURROGATE is set,
117the function will raise a warning, provided UTF8 warnings are enabled. If instead
118UNICODE_DISALLOW_SURROGATE is set, the function will fail and return NULL.
119If both flags are set, the function will both warn and return NULL.
120
121The UNICODE_WARN_NONCHAR and UNICODE_DISALLOW_NONCHAR flags correspondingly
122affect how the function handles a Unicode non-character. And, likewise for the
123UNICODE_WARN_SUPER and UNICODE_DISALLOW_SUPER flags, and code points that are
124above the Unicode maximum of 0x10FFFF. Code points above 0x7FFF_FFFF (which are
125even less portable) can be warned and/or disallowed even if other above-Unicode
126code points are accepted by the UNICODE_WARN_FE_FF and UNICODE_DISALLOW_FE_FF
127flags.
128
129And finally, the flag UNICODE_WARN_ILLEGAL_INTERCHANGE selects all four of the
130above WARN flags; and UNICODE_DISALLOW_ILLEGAL_INTERCHANGE selects all four
131DISALLOW flags.
132
133
134=cut
135*/
136
137U8 *
138Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
139{
140 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
141
142 /* The first problematic code point is the first surrogate */
143 if (uv >= UNICODE_SURROGATE_FIRST
144 && ckWARN4_d(WARN_UTF8, WARN_SURROGATE, WARN_NON_UNICODE, WARN_NONCHAR))
145 {
146 if (UNICODE_IS_SURROGATE(uv)) {
147 if (flags & UNICODE_WARN_SURROGATE) {
148 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE),
149 "UTF-16 surrogate U+%04"UVXf, uv);
150 }
151 if (flags & UNICODE_DISALLOW_SURROGATE) {
152 return NULL;
153 }
154 }
155 else if (UNICODE_IS_SUPER(uv)) {
156 if (flags & UNICODE_WARN_SUPER
157 || (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_WARN_FE_FF)))
158 {
159 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
160 "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
161 }
162 if (flags & UNICODE_DISALLOW_SUPER
163 || (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_DISALLOW_FE_FF)))
164 {
165 return NULL;
166 }
167 }
168 else if (UNICODE_IS_NONCHAR(uv)) {
169 if (flags & UNICODE_WARN_NONCHAR) {
170 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR),
171 "Unicode non-character U+%04"UVXf" is illegal for open interchange",
172 uv);
173 }
174 if (flags & UNICODE_DISALLOW_NONCHAR) {
175 return NULL;
176 }
177 }
178 }
179 if (UNI_IS_INVARIANT(uv)) {
180 *d++ = (U8)UTF_TO_NATIVE(uv);
181 return d;
182 }
183#if defined(EBCDIC)
184 else {
185 STRLEN len = UNISKIP(uv);
186 U8 *p = d+len-1;
187 while (p > d) {
188 *p-- = (U8)UTF_TO_NATIVE((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
189 uv >>= UTF_ACCUMULATION_SHIFT;
190 }
191 *p = (U8)UTF_TO_NATIVE((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
192 return d+len;
193 }
194#else /* Non loop style */
195 if (uv < 0x800) {
196 *d++ = (U8)(( uv >> 6) | 0xc0);
197 *d++ = (U8)(( uv & 0x3f) | 0x80);
198 return d;
199 }
200 if (uv < 0x10000) {
201 *d++ = (U8)(( uv >> 12) | 0xe0);
202 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
203 *d++ = (U8)(( uv & 0x3f) | 0x80);
204 return d;
205 }
206 if (uv < 0x200000) {
207 *d++ = (U8)(( uv >> 18) | 0xf0);
208 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
209 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
210 *d++ = (U8)(( uv & 0x3f) | 0x80);
211 return d;
212 }
213 if (uv < 0x4000000) {
214 *d++ = (U8)(( uv >> 24) | 0xf8);
215 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
216 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
217 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
218 *d++ = (U8)(( uv & 0x3f) | 0x80);
219 return d;
220 }
221 if (uv < 0x80000000) {
222 *d++ = (U8)(( uv >> 30) | 0xfc);
223 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
224 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
225 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
226 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
227 *d++ = (U8)(( uv & 0x3f) | 0x80);
228 return d;
229 }
230#ifdef HAS_QUAD
231 if (uv < UTF8_QUAD_MAX)
232#endif
233 {
234 *d++ = 0xfe; /* Can't match U+FEFF! */
235 *d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
236 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
237 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
238 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
239 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
240 *d++ = (U8)(( uv & 0x3f) | 0x80);
241 return d;
242 }
243#ifdef HAS_QUAD
244 {
245 *d++ = 0xff; /* Can't match U+FFFE! */
246 *d++ = 0x80; /* 6 Reserved bits */
247 *d++ = (U8)(((uv >> 60) & 0x0f) | 0x80); /* 2 Reserved bits */
248 *d++ = (U8)(((uv >> 54) & 0x3f) | 0x80);
249 *d++ = (U8)(((uv >> 48) & 0x3f) | 0x80);
250 *d++ = (U8)(((uv >> 42) & 0x3f) | 0x80);
251 *d++ = (U8)(((uv >> 36) & 0x3f) | 0x80);
252 *d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
253 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
254 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
255 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
256 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
257 *d++ = (U8)(( uv & 0x3f) | 0x80);
258 return d;
259 }
260#endif
261#endif /* Loop style */
262}
263
264/*
265
266Tests if the first C<len> bytes of string C<s> form a valid UTF-8
267character. Note that an INVARIANT (i.e. ASCII) character is a valid
268UTF-8 character. The number of bytes in the UTF-8 character
269will be returned if it is valid, otherwise 0.
270
271This is the "slow" version as opposed to the "fast" version which is
272the "unrolled" IS_UTF8_CHAR(). E.g. for t/uni/class.t the speed
273difference is a factor of 2 to 3. For lengths (UTF8SKIP(s)) of four
274or less you should use the IS_UTF8_CHAR(), for lengths of five or more
275you should use the _slow(). In practice this means that the _slow()
276will be used very rarely, since the maximum Unicode code point (as of
277Unicode 4.1) is U+10FFFF, which encodes in UTF-8 to four bytes. Only
278the "Perl extended UTF-8" (the infamous 'v-strings') will encode into
279five bytes or more.
280
281=cut */
282STATIC STRLEN
283S_is_utf8_char_slow(const U8 *s, const STRLEN len)
284{
285 dTHX; /* The function called below requires thread context */
286
287 STRLEN actual_len;
288
289 PERL_ARGS_ASSERT_IS_UTF8_CHAR_SLOW;
290
291 utf8n_to_uvuni(s, len, &actual_len, UTF8_CHECK_ONLY);
292
293 return (actual_len == (STRLEN) -1) ? 0 : actual_len;
294}
295
296/*
297=for apidoc is_utf8_char_buf
298
299Returns the number of bytes that comprise the first UTF-8 encoded character in
300buffer C<buf>. C<buf_end> should point to one position beyond the end of the
301buffer. 0 is returned if C<buf> does not point to a complete, valid UTF-8
302encoded character.
303
304Note that an INVARIANT character (i.e. ASCII on non-EBCDIC
305machines) is a valid UTF-8 character.
306
307=cut */
308
309STRLEN
310Perl_is_utf8_char_buf(const U8 *buf, const U8* buf_end)
311{
312
313 STRLEN len;
314
315 PERL_ARGS_ASSERT_IS_UTF8_CHAR_BUF;
316
317 if (buf_end <= buf) {
318 return 0;
319 }
320
321 len = buf_end - buf;
322 if (len > UTF8SKIP(buf)) {
323 len = UTF8SKIP(buf);
324 }
325
326#ifdef IS_UTF8_CHAR
327 if (IS_UTF8_CHAR_FAST(len))
328 return IS_UTF8_CHAR(buf, len) ? len : 0;
329#endif /* #ifdef IS_UTF8_CHAR */
330 return is_utf8_char_slow(buf, len);
331}
332
333/*
334=for apidoc is_utf8_char
335
336DEPRECATED!
337
338Tests if some arbitrary number of bytes begins in a valid UTF-8
339character. Note that an INVARIANT (i.e. ASCII on non-EBCDIC machines)
340character is a valid UTF-8 character. The actual number of bytes in the UTF-8
341character will be returned if it is valid, otherwise 0.
342
343This function is deprecated due to the possibility that malformed input could
344cause reading beyond the end of the input buffer. Use L</is_utf8_char_buf>
345instead.
346
347=cut */
348
349STRLEN
350Perl_is_utf8_char(const U8 *s)
351{
352 PERL_ARGS_ASSERT_IS_UTF8_CHAR;
353
354 /* Assumes we have enough space, which is why this is deprecated */
355 return is_utf8_char_buf(s, s + UTF8SKIP(s));
356}
357
358
359/*
360=for apidoc is_utf8_string
361
362Returns true if the first C<len> bytes of string C<s> form a valid
363UTF-8 string, false otherwise. If C<len> is 0, it will be calculated
364using C<strlen(s)> (which means if you use this option, that C<s> has to have a
365terminating NUL byte). Note that all characters being ASCII constitute 'a
366valid UTF-8 string'.
367
368See also L</is_ascii_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
369
370=cut
371*/
372
373bool
374Perl_is_utf8_string(const U8 *s, STRLEN len)
375{
376 const U8* const send = s + (len ? len : strlen((const char *)s));
377 const U8* x = s;
378
379 PERL_ARGS_ASSERT_IS_UTF8_STRING;
380
381 while (x < send) {
382 /* Inline the easy bits of is_utf8_char() here for speed... */
383 if (UTF8_IS_INVARIANT(*x)) {
384 x++;
385 }
386 else if (!UTF8_IS_START(*x))
387 return FALSE;
388 else {
389 /* ... and call is_utf8_char() only if really needed. */
390 const STRLEN c = UTF8SKIP(x);
391 const U8* const next_char_ptr = x + c;
392
393 if (next_char_ptr > send) {
394 return FALSE;
395 }
396
397 if (IS_UTF8_CHAR_FAST(c)) {
398 if (!IS_UTF8_CHAR(x, c))
399 return FALSE;
400 }
401 else if (! is_utf8_char_slow(x, c)) {
402 return FALSE;
403 }
404 x = next_char_ptr;
405 }
406 }
407
408 return TRUE;
409}
410
411/*
412Implemented as a macro in utf8.h
413
414=for apidoc is_utf8_string_loc
415
416Like L</is_utf8_string> but stores the location of the failure (in the
417case of "utf8ness failure") or the location C<s>+C<len> (in the case of
418"utf8ness success") in the C<ep>.
419
420See also L</is_utf8_string_loclen>() and L</is_utf8_string>().
421
422=for apidoc is_utf8_string_loclen
423
424Like L</is_utf8_string>() but stores the location of the failure (in the
425case of "utf8ness failure") or the location C<s>+C<len> (in the case of
426"utf8ness success") in the C<ep>, and the number of UTF-8
427encoded characters in the C<el>.
428
429See also L</is_utf8_string_loc>() and L</is_utf8_string>().
430
431=cut
432*/
433
434bool
435Perl_is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)
436{
437 const U8* const send = s + (len ? len : strlen((const char *)s));
438 const U8* x = s;
439 STRLEN c;
440 STRLEN outlen = 0;
441
442 PERL_ARGS_ASSERT_IS_UTF8_STRING_LOCLEN;
443
444 while (x < send) {
445 const U8* next_char_ptr;
446
447 /* Inline the easy bits of is_utf8_char() here for speed... */
448 if (UTF8_IS_INVARIANT(*x))
449 next_char_ptr = x + 1;
450 else if (!UTF8_IS_START(*x))
451 goto out;
452 else {
453 /* ... and call is_utf8_char() only if really needed. */
454 c = UTF8SKIP(x);
455 next_char_ptr = c + x;
456 if (next_char_ptr > send) {
457 goto out;
458 }
459 if (IS_UTF8_CHAR_FAST(c)) {
460 if (!IS_UTF8_CHAR(x, c))
461 c = 0;
462 } else
463 c = is_utf8_char_slow(x, c);
464 if (!c)
465 goto out;
466 }
467 x = next_char_ptr;
468 outlen++;
469 }
470
471 out:
472 if (el)
473 *el = outlen;
474
475 if (ep)
476 *ep = x;
477 return (x == send);
478}
479
480/*
481
482=for apidoc utf8n_to_uvuni
483
484Bottom level UTF-8 decode routine.
485Returns the code point value of the first character in the string C<s>,
486which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
487C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
488the length, in bytes, of that character.
489
490The value of C<flags> determines the behavior when C<s> does not point to a
491well-formed UTF-8 character. If C<flags> is 0, when a malformation is found,
492zero is returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) is the
493next possible position in C<s> that could begin a non-malformed character.
494Also, if UTF-8 warnings haven't been lexically disabled, a warning is raised.
495
496Various ALLOW flags can be set in C<flags> to allow (and not warn on)
497individual types of malformations, such as the sequence being overlong (that
498is, when there is a shorter sequence that can express the same code point;
499overlong sequences are expressly forbidden in the UTF-8 standard due to
500potential security issues). Another malformation example is the first byte of
501a character not being a legal first byte. See F<utf8.h> for the list of such
502flags. For allowed 0 length strings, this function returns 0; for allowed
503overlong sequences, the computed code point is returned; for all other allowed
504malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
505determinable reasonable value.
506
507The UTF8_CHECK_ONLY flag overrides the behavior when a non-allowed (by other
508flags) malformation is found. If this flag is set, the routine assumes that
509the caller will raise a warning, and this function will silently just set
510C<retlen> to C<-1> and return zero.
511
512Certain code points are considered problematic. These are Unicode surrogates,
513Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
514By default these are considered regular code points, but certain situations
515warrant special handling for them. If C<flags> contains
516UTF8_DISALLOW_ILLEGAL_INTERCHANGE, all three classes are treated as
517malformations and handled as such. The flags UTF8_DISALLOW_SURROGATE,
518UTF8_DISALLOW_NONCHAR, and UTF8_DISALLOW_SUPER (meaning above the legal Unicode
519maximum) can be set to disallow these categories individually.
520
521The flags UTF8_WARN_ILLEGAL_INTERCHANGE, UTF8_WARN_SURROGATE,
522UTF8_WARN_NONCHAR, and UTF8_WARN_SUPER will cause warning messages to be raised
523for their respective categories, but otherwise the code points are considered
524valid (not malformations). To get a category to both be treated as a
525malformation and raise a warning, specify both the WARN and DISALLOW flags.
526(But note that warnings are not raised if lexically disabled nor if
527UTF8_CHECK_ONLY is also specified.)
528
529Very large code points (above 0x7FFF_FFFF) are considered more problematic than
530the others that are above the Unicode legal maximum. There are several
531reasons: they requre at least 32 bits to represent them on ASCII platforms, are
532not representable at all on EBCDIC platforms, and the original UTF-8
533specification never went above this number (the current 0x10FFFF limit was
534imposed later). (The smaller ones, those that fit into 32 bits, are
535representable by a UV on ASCII platforms, but not by an IV, which means that
536the number of operations that can be performed on them is quite restricted.)
537The UTF-8 encoding on ASCII platforms for these large code points begins with a
538byte containing 0xFE or 0xFF. The UTF8_DISALLOW_FE_FF flag will cause them to
539be treated as malformations, while allowing smaller above-Unicode code points.
540(Of course UTF8_DISALLOW_SUPER will treat all above-Unicode code points,
541including these, as malformations.) Similarly, UTF8_WARN_FE_FF acts just like
542the other WARN flags, but applies just to these code points.
543
544All other code points corresponding to Unicode characters, including private
545use and those yet to be assigned, are never considered malformed and never
546warn.
547
548Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
549
550=cut
551*/
552
553UV
554Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
555{
556 dVAR;
557 const U8 * const s0 = s;
558 U8 overflow_byte = '\0'; /* Save byte in case of overflow */
559 U8 * send;
560 UV uv = *s;
561 STRLEN expectlen;
562 SV* sv = NULL;
563 UV outlier_ret = 0; /* return value when input is in error or problematic
564 */
565 UV pack_warn = 0; /* Save result of packWARN() for later */
566 bool unexpected_non_continuation = FALSE;
567 bool overflowed = FALSE;
568 bool do_overlong_test = TRUE; /* May have to skip this test */
569
570 const char* const malformed_text = "Malformed UTF-8 character";
571
572 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
573
574 /* The order of malformation tests here is important. We should consume as
575 * few bytes as possible in order to not skip any valid character. This is
576 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
577 * http://unicode.org/reports/tr36 for more discussion as to why. For
578 * example, once we've done a UTF8SKIP, we can tell the expected number of
579 * bytes, and could fail right off the bat if the input parameters indicate
580 * that there are too few available. But it could be that just that first
581 * byte is garbled, and the intended character occupies fewer bytes. If we
582 * blindly assumed that the first byte is correct, and skipped based on
583 * that number, we could skip over a valid input character. So instead, we
584 * always examine the sequence byte-by-byte.
585 *
586 * We also should not consume too few bytes, otherwise someone could inject
587 * things. For example, an input could be deliberately designed to
588 * overflow, and if this code bailed out immediately upon discovering that,
589 * returning to the caller *retlen pointing to the very next byte (one
590 * which is actually part of of the overflowing sequence), that could look
591 * legitimate to the caller, which could discard the initial partial
592 * sequence and process the rest, inappropriately */
593
594 /* Zero length strings, if allowed, of necessity are zero */
595 if (UNLIKELY(curlen == 0)) {
596 if (retlen) {
597 *retlen = 0;
598 }
599
600 if (flags & UTF8_ALLOW_EMPTY) {
601 return 0;
602 }
603 if (! (flags & UTF8_CHECK_ONLY)) {
604 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (empty string)", malformed_text));
605 }
606 goto malformed;
607 }
608
609 expectlen = UTF8SKIP(s);
610
611 /* A well-formed UTF-8 character, as the vast majority of calls to this
612 * function will be for, has this expected length. For efficiency, set
613 * things up here to return it. It will be overriden only in those rare
614 * cases where a malformation is found */
615 if (retlen) {
616 *retlen = expectlen;
617 }
618
619 /* An invariant is trivially well-formed */
620 if (UTF8_IS_INVARIANT(uv)) {
621 return (UV) (NATIVE_TO_UTF(*s));
622 }
623
624 /* A continuation character can't start a valid sequence */
625 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
626 if (flags & UTF8_ALLOW_CONTINUATION) {
627 if (retlen) {
628 *retlen = 1;
629 }
630 return UNICODE_REPLACEMENT;
631 }
632
633 if (! (flags & UTF8_CHECK_ONLY)) {
634 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected continuation byte 0x%02x, with no preceding start byte)", malformed_text, *s0));
635 }
636 curlen = 1;
637 goto malformed;
638 }
639
640#ifdef EBCDIC
641 uv = NATIVE_TO_UTF(uv);
642#endif
643
644 /* Here is not a continuation byte, nor an invariant. The only thing left
645 * is a start byte (possibly for an overlong) */
646
647 /* Remove the leading bits that indicate the number of bytes in the
648 * character's whole UTF-8 sequence, leaving just the bits that are part of
649 * the value */
650 uv &= UTF_START_MASK(expectlen);
651
652 /* Now, loop through the remaining bytes in the character's sequence,
653 * accumulating each into the working value as we go. Be sure to not look
654 * past the end of the input string */
655 send = (U8*) s0 + ((expectlen <= curlen) ? expectlen : curlen);
656
657 for (s = s0 + 1; s < send; s++) {
658 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
659#ifndef EBCDIC /* Can't overflow in EBCDIC */
660 if (uv & UTF_ACCUMULATION_OVERFLOW_MASK) {
661
662 /* The original implementors viewed this malformation as more
663 * serious than the others (though I, khw, don't understand
664 * why, since other malformations also give very very wrong
665 * results), so there is no way to turn off checking for it.
666 * Set a flag, but keep going in the loop, so that we absorb
667 * the rest of the bytes that comprise the character. */
668 overflowed = TRUE;
669 overflow_byte = *s; /* Save for warning message's use */
670 }
671#endif
672 uv = UTF8_ACCUMULATE(uv, *s);
673 }
674 else {
675 /* Here, found a non-continuation before processing all expected
676 * bytes. This byte begins a new character, so quit, even if
677 * allowing this malformation. */
678 unexpected_non_continuation = TRUE;
679 break;
680 }
681 } /* End of loop through the character's bytes */
682
683 /* Save how many bytes were actually in the character */
684 curlen = s - s0;
685
686 /* The loop above finds two types of malformations: non-continuation and/or
687 * overflow. The non-continuation malformation is really a too-short
688 * malformation, as it means that the current character ended before it was
689 * expected to (being terminated prematurely by the beginning of the next
690 * character, whereas in the too-short malformation there just are too few
691 * bytes available to hold the character. In both cases, the check below
692 * that we have found the expected number of bytes would fail if executed.)
693 * Thus the non-continuation malformation is really unnecessary, being a
694 * subset of the too-short malformation. But there may be existing
695 * applications that are expecting the non-continuation type, so we retain
696 * it, and return it in preference to the too-short malformation. (If this
697 * code were being written from scratch, the two types might be collapsed
698 * into one.) I, khw, am also giving priority to returning the
699 * non-continuation and too-short malformations over overflow when multiple
700 * ones are present. I don't know of any real reason to prefer one over
701 * the other, except that it seems to me that multiple-byte errors trumps
702 * errors from a single byte */
703 if (UNLIKELY(unexpected_non_continuation)) {
704 if (!(flags & UTF8_ALLOW_NON_CONTINUATION)) {
705 if (! (flags & UTF8_CHECK_ONLY)) {
706 if (curlen == 1) {
707 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, immediately after start byte 0x%02x)", malformed_text, *s, *s0));
708 }
709 else {
710 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, %d bytes after start byte 0x%02x, expected %d bytes)", malformed_text, *s, (int) curlen, *s0, (int)expectlen));
711 }
712 }
713 goto malformed;
714 }
715 uv = UNICODE_REPLACEMENT;
716
717 /* Skip testing for overlongs, as the REPLACEMENT may not be the same
718 * as what the original expectations were. */
719 do_overlong_test = FALSE;
720 if (retlen) {
721 *retlen = curlen;
722 }
723 }
724 else if (UNLIKELY(curlen < expectlen)) {
725 if (! (flags & UTF8_ALLOW_SHORT)) {
726 if (! (flags & UTF8_CHECK_ONLY)) {
727 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)curlen, curlen == 1 ? "" : "s", (int)expectlen, *s0));
728 }
729 goto malformed;
730 }
731 uv = UNICODE_REPLACEMENT;
732 do_overlong_test = FALSE;
733 if (retlen) {
734 *retlen = curlen;
735 }
736 }
737
738#ifndef EBCDIC /* EBCDIC allows FE, FF, can't overflow */
739 if ((*s0 & 0xFE) == 0xFE /* matches both FE, FF */
740 && (flags & (UTF8_WARN_FE_FF|UTF8_DISALLOW_FE_FF)))
741 {
742 /* By adding UTF8_CHECK_ONLY to the test, we avoid unnecessary
743 * generation of the sv, since no warnings are raised under CHECK */
744 if ((flags & (UTF8_WARN_FE_FF|UTF8_CHECK_ONLY)) == UTF8_WARN_FE_FF
745 && ckWARN_d(WARN_UTF8))
746 {
747 /* This message is deliberately not of the same syntax as the other
748 * messages for malformations, for backwards compatibility in the
749 * unlikely event that code is relying on its precise earlier text
750 */
751 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s Code point beginning with byte 0x%02X is not Unicode, and not portable", malformed_text, *s0));
752 pack_warn = packWARN(WARN_UTF8);
753 }
754 if (flags & UTF8_DISALLOW_FE_FF) {
755 goto malformed;
756 }
757 }
758 if (UNLIKELY(overflowed)) {
759
760 /* If the first byte is FF, it will overflow a 32-bit word. If the
761 * first byte is FE, it will overflow a signed 32-bit word. The
762 * above preserves backward compatibility, since its message was used
763 * in earlier versions of this code in preference to overflow */
764 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (overflow at byte 0x%02x, after start byte 0x%02x)", malformed_text, overflow_byte, *s0));
765 goto malformed;
766 }
767#endif
768
769 if (do_overlong_test
770 && expectlen > (STRLEN)UNISKIP(uv)
771 && ! (flags & UTF8_ALLOW_LONG))
772 {
773 /* The overlong malformation has lower precedence than the others.
774 * Note that if this malformation is allowed, we return the actual
775 * value, instead of the replacement character. This is because this
776 * value is actually well-defined. */
777 if (! (flags & UTF8_CHECK_ONLY)) {
778 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)expectlen, expectlen == 1 ? "": "s", UNISKIP(uv), *s0));
779 }
780 goto malformed;
781 }
782
783 /* Here, the input is considered to be well-formed , but could be a
784 * problematic code point that is not allowed by the input parameters. */
785 if (uv >= UNICODE_SURROGATE_FIRST /* isn't problematic if < this */
786 && (flags & (UTF8_DISALLOW_ILLEGAL_INTERCHANGE
787 |UTF8_WARN_ILLEGAL_INTERCHANGE)))
788 {
789 if (UNICODE_IS_SURROGATE(uv)) {
790 if ((flags & (UTF8_WARN_SURROGATE|UTF8_CHECK_ONLY)) == UTF8_WARN_SURROGATE
791 && ckWARN2_d(WARN_UTF8, WARN_SURROGATE))
792 {
793 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "UTF-16 surrogate U+%04"UVXf"", uv));
794 pack_warn = packWARN2(WARN_UTF8, WARN_SURROGATE);
795 }
796 if (flags & UTF8_DISALLOW_SURROGATE) {
797 goto disallowed;
798 }
799 }
800 else if ((uv > PERL_UNICODE_MAX)) {
801 if ((flags & (UTF8_WARN_SUPER|UTF8_CHECK_ONLY)) == UTF8_WARN_SUPER
802 && ckWARN2_d(WARN_UTF8, WARN_NON_UNICODE))
803 {
804 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv));
805 pack_warn = packWARN2(WARN_UTF8, WARN_NON_UNICODE);
806 }
807 if (flags & UTF8_DISALLOW_SUPER) {
808 goto disallowed;
809 }
810 }
811 else if (UNICODE_IS_NONCHAR(uv)) {
812 if ((flags & (UTF8_WARN_NONCHAR|UTF8_CHECK_ONLY)) == UTF8_WARN_NONCHAR
813 && ckWARN2_d(WARN_UTF8, WARN_NONCHAR))
814 {
815 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv));
816 pack_warn = packWARN2(WARN_UTF8, WARN_NONCHAR);
817 }
818 if (flags & UTF8_DISALLOW_NONCHAR) {
819 goto disallowed;
820 }
821 }
822
823 if (sv) {
824 outlier_ret = uv;
825 goto do_warn;
826 }
827
828 /* Here, this is not considered a malformed character, so drop through
829 * to return it */
830 }
831
832 return uv;
833
834 /* There are three cases which get to beyond this point. In all 3 cases:
835 * <sv> if not null points to a string to print as a warning.
836 * <curlen> is what <*retlen> should be set to if UTF8_CHECK_ONLY isn't
837 * set.
838 * <outlier_ret> is what return value to use if UTF8_CHECK_ONLY isn't set.
839 * This is done by initializing it to 0, and changing it only
840 * for case 1).
841 * The 3 cases are:
842 * 1) The input is valid but problematic, and to be warned about. The
843 * return value is the resultant code point; <*retlen> is set to
844 * <curlen>, the number of bytes that comprise the code point.
845 * <pack_warn> contains the result of packWARN() for the warning
846 * types. The entry point for this case is the label <do_warn>;
847 * 2) The input is a valid code point but disallowed by the parameters to
848 * this function. The return value is 0. If UTF8_CHECK_ONLY is set,
849 * <*relen> is -1; otherwise it is <curlen>, the number of bytes that
850 * comprise the code point. <pack_warn> contains the result of
851 * packWARN() for the warning types. The entry point for this case is
852 * the label <disallowed>.
853 * 3) The input is malformed. The return value is 0. If UTF8_CHECK_ONLY
854 * is set, <*relen> is -1; otherwise it is <curlen>, the number of
855 * bytes that comprise the malformation. All such malformations are
856 * assumed to be warning type <utf8>. The entry point for this case
857 * is the label <malformed>.
858 */
859
860malformed:
861
862 if (sv && ckWARN_d(WARN_UTF8)) {
863 pack_warn = packWARN(WARN_UTF8);
864 }
865
866disallowed:
867
868 if (flags & UTF8_CHECK_ONLY) {
869 if (retlen)
870 *retlen = ((STRLEN) -1);
871 return 0;
872 }
873
874do_warn:
875
876 if (pack_warn) { /* <pack_warn> was initialized to 0, and changed only
877 if warnings are to be raised. */
878 const char * const string = SvPVX_const(sv);
879
880 if (PL_op)
881 Perl_warner(aTHX_ pack_warn, "%s in %s", string, OP_DESC(PL_op));
882 else
883 Perl_warner(aTHX_ pack_warn, "%s", string);
884 }
885
886 if (retlen) {
887 *retlen = curlen;
888 }
889
890 return outlier_ret;
891}
892
893/*
894=for apidoc utf8_to_uvchr_buf
895
896Returns the native code point of the first character in the string C<s> which
897is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
898C<*retlen> will be set to the length, in bytes, of that character.
899
900If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
901enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
902NULL) to -1. If those warnings are off, the computed value if well-defined (or
903the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
904is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
905next possible position in C<s> that could begin a non-malformed character.
906See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
907
908=cut
909*/
910
911
912UV
913Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
914{
915 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
916
917 assert(s < send);
918
919 return utf8n_to_uvchr(s, send - s, retlen,
920 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
921}
922
923/* Like L</utf8_to_uvchr_buf>(), but should only be called when it is known that
924 * there are no malformations in the input UTF-8 string C<s>. surrogates,
925 * non-character code points, and non-Unicode code points are allowed. A macro
926 * in utf8.h is used to normally avoid this function wrapper */
927
928UV
929Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
930{
931 const UV uv = valid_utf8_to_uvuni(s, retlen);
932
933 PERL_ARGS_ASSERT_VALID_UTF8_TO_UVCHR;
934
935 return UNI_TO_NATIVE(uv);
936}
937
938/*
939=for apidoc utf8_to_uvchr
940
941DEPRECATED!
942
943Returns the native code point of the first character in the string C<s>
944which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
945length, in bytes, of that character.
946
947Some, but not all, UTF-8 malformations are detected, and in fact, some
948malformed input could cause reading beyond the end of the input buffer, which
949is why this function is deprecated. Use L</utf8_to_uvchr_buf> instead.
950
951If C<s> points to one of the detected malformations, and UTF8 warnings are
952enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
953NULL) to -1. If those warnings are off, the computed value if well-defined (or
954the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
955is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
956next possible position in C<s> that could begin a non-malformed character.
957See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
958
959=cut
960*/
961
962UV
963Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
964{
965 PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
966
967 return utf8_to_uvchr_buf(s, s + UTF8_MAXBYTES, retlen);
968}
969
970/*
971=for apidoc utf8_to_uvuni_buf
972
973Returns the Unicode code point of the first character in the string C<s> which
974is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
975C<retlen> will be set to the length, in bytes, of that character.
976
977This function should only be used when the returned UV is considered
978an index into the Unicode semantic tables (e.g. swashes).
979
980If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
981enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
982NULL) to -1. If those warnings are off, the computed value if well-defined (or
983the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
984is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
985next possible position in C<s> that could begin a non-malformed character.
986See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
987
988=cut
989*/
990
991UV
992Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
993{
994 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
995
996 assert(send > s);
997
998 /* Call the low level routine asking for checks */
999 return Perl_utf8n_to_uvuni(aTHX_ s, send -s, retlen,
1000 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1001}
1002
1003/* Like L</utf8_to_uvuni_buf>(), but should only be called when it is known that
1004 * there are no malformations in the input UTF-8 string C<s>. Surrogates,
1005 * non-character code points, and non-Unicode code points are allowed */
1006
1007UV
1008Perl_valid_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1009{
1010 UV expectlen = UTF8SKIP(s);
1011 const U8* send = s + expectlen;
1012 UV uv = NATIVE_TO_UTF(*s);
1013
1014 PERL_ARGS_ASSERT_VALID_UTF8_TO_UVUNI;
1015
1016 if (retlen) {
1017 *retlen = expectlen;
1018 }
1019
1020 /* An invariant is trivially returned */
1021 if (expectlen == 1) {
1022 return uv;
1023 }
1024
1025 /* Remove the leading bits that indicate the number of bytes, leaving just
1026 * the bits that are part of the value */
1027 uv &= UTF_START_MASK(expectlen);
1028
1029 /* Now, loop through the remaining bytes, accumulating each into the
1030 * working total as we go. (I khw tried unrolling the loop for up to 4
1031 * bytes, but there was no performance improvement) */
1032 for (++s; s < send; s++) {
1033 uv = UTF8_ACCUMULATE(uv, *s);
1034 }
1035
1036 return uv;
1037}
1038
1039/*
1040=for apidoc utf8_to_uvuni
1041
1042DEPRECATED!
1043
1044Returns the Unicode code point of the first character in the string C<s>
1045which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
1046length, in bytes, of that character.
1047
1048This function should only be used when the returned UV is considered
1049an index into the Unicode semantic tables (e.g. swashes).
1050
1051Some, but not all, UTF-8 malformations are detected, and in fact, some
1052malformed input could cause reading beyond the end of the input buffer, which
1053is why this function is deprecated. Use L</utf8_to_uvuni_buf> instead.
1054
1055If C<s> points to one of the detected malformations, and UTF8 warnings are
1056enabled, zero is returned and C<*retlen> is set (if C<retlen> doesn't point to
1057NULL) to -1. If those warnings are off, the computed value if well-defined (or
1058the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1059is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1060next possible position in C<s> that could begin a non-malformed character.
1061See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
1062
1063=cut
1064*/
1065
1066UV
1067Perl_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1068{
1069 PERL_ARGS_ASSERT_UTF8_TO_UVUNI;
1070
1071 return valid_utf8_to_uvuni(s, retlen);
1072}
1073
1074/*
1075=for apidoc utf8_length
1076
1077Return the length of the UTF-8 char encoded string C<s> in characters.
1078Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1079up past C<e>, croaks.
1080
1081=cut
1082*/
1083
1084STRLEN
1085Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1086{
1087 dVAR;
1088 STRLEN len = 0;
1089
1090 PERL_ARGS_ASSERT_UTF8_LENGTH;
1091
1092 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1093 * the bitops (especially ~) can create illegal UTF-8.
1094 * In other words: in Perl UTF-8 is not just for Unicode. */
1095
1096 if (e < s)
1097 goto warn_and_return;
1098 while (s < e) {
1099 if (!UTF8_IS_INVARIANT(*s))
1100 s += UTF8SKIP(s);
1101 else
1102 s++;
1103 len++;
1104 }
1105
1106 if (e != s) {
1107 len--;
1108 warn_and_return:
1109 if (PL_op)
1110 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1111 "%s in %s", unees, OP_DESC(PL_op));
1112 else
1113 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1114 }
1115
1116 return len;
1117}
1118
1119/*
1120=for apidoc utf8_distance
1121
1122Returns the number of UTF-8 characters between the UTF-8 pointers C<a>
1123and C<b>.
1124
1125WARNING: use only if you *know* that the pointers point inside the
1126same UTF-8 buffer.
1127
1128=cut
1129*/
1130
1131IV
1132Perl_utf8_distance(pTHX_ const U8 *a, const U8 *b)
1133{
1134 PERL_ARGS_ASSERT_UTF8_DISTANCE;
1135
1136 return (a < b) ? -1 * (IV) utf8_length(a, b) : (IV) utf8_length(b, a);
1137}
1138
1139/*
1140=for apidoc utf8_hop
1141
1142Return the UTF-8 pointer C<s> displaced by C<off> characters, either
1143forward or backward.
1144
1145WARNING: do not use the following unless you *know* C<off> is within
1146the UTF-8 data pointed to by C<s> *and* that on entry C<s> is aligned
1147on the first byte of character or just after the last byte of a character.
1148
1149=cut
1150*/
1151
1152U8 *
1153Perl_utf8_hop(pTHX_ const U8 *s, I32 off)
1154{
1155 PERL_ARGS_ASSERT_UTF8_HOP;
1156
1157 PERL_UNUSED_CONTEXT;
1158 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g
1159 * the bitops (especially ~) can create illegal UTF-8.
1160 * In other words: in Perl UTF-8 is not just for Unicode. */
1161
1162 if (off >= 0) {
1163 while (off--)
1164 s += UTF8SKIP(s);
1165 }
1166 else {
1167 while (off++) {
1168 s--;
1169 while (UTF8_IS_CONTINUATION(*s))
1170 s--;
1171 }
1172 }
1173 return (U8 *)s;
1174}
1175
1176/*
1177=for apidoc bytes_cmp_utf8
1178
1179Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1180sequence of characters (stored as UTF-8) in C<u>, C<ulen>. Returns 0 if they are
1181equal, -1 or -2 if the first string is less than the second string, +1 or +2
1182if the first string is greater than the second string.
1183
1184-1 or +1 is returned if the shorter string was identical to the start of the
1185longer string. -2 or +2 is returned if the was a difference between characters
1186within the strings.
1187
1188=cut
1189*/
1190
1191int
1192Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1193{
1194 const U8 *const bend = b + blen;
1195 const U8 *const uend = u + ulen;
1196
1197 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1198
1199 PERL_UNUSED_CONTEXT;
1200
1201 while (b < bend && u < uend) {
1202 U8 c = *u++;
1203 if (!UTF8_IS_INVARIANT(c)) {
1204 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1205 if (u < uend) {
1206 U8 c1 = *u++;
1207 if (UTF8_IS_CONTINUATION(c1)) {
1208 c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, c1));
1209 } else {
1210 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1211 "Malformed UTF-8 character "
1212 "(unexpected non-continuation byte 0x%02x"
1213 ", immediately after start byte 0x%02x)"
1214 /* Dear diag.t, it's in the pod. */
1215 "%s%s", c1, c,
1216 PL_op ? " in " : "",
1217 PL_op ? OP_DESC(PL_op) : "");
1218 return -2;
1219 }
1220 } else {
1221 if (PL_op)
1222 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1223 "%s in %s", unees, OP_DESC(PL_op));
1224 else
1225 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1226 return -2; /* Really want to return undef :-) */
1227 }
1228 } else {
1229 return -2;
1230 }
1231 }
1232 if (*b != c) {
1233 return *b < c ? -2 : +2;
1234 }
1235 ++b;
1236 }
1237
1238 if (b == bend && u == uend)
1239 return 0;
1240
1241 return b < bend ? +1 : -1;
1242}
1243
1244/*
1245=for apidoc utf8_to_bytes
1246
1247Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1248Unlike L</bytes_to_utf8>, this over-writes the original string, and
1249updates C<len> to contain the new length.
1250Returns zero on failure, setting C<len> to -1.
1251
1252If you need a copy of the string, see L</bytes_from_utf8>.
1253
1254=cut
1255*/
1256
1257U8 *
1258Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1259{
1260 U8 * const save = s;
1261 U8 * const send = s + *len;
1262 U8 *d;
1263
1264 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1265
1266 /* ensure valid UTF-8 and chars < 256 before updating string */
1267 while (s < send) {
1268 U8 c = *s++;
1269
1270 if (!UTF8_IS_INVARIANT(c) &&
1271 (!UTF8_IS_DOWNGRADEABLE_START(c) || (s >= send)
1272 || !(c = *s++) || !UTF8_IS_CONTINUATION(c))) {
1273 *len = ((STRLEN) -1);
1274 return 0;
1275 }
1276 }
1277
1278 d = s = save;
1279 while (s < send) {
1280 STRLEN ulen;
1281 *d++ = (U8)utf8_to_uvchr_buf(s, send, &ulen);
1282 s += ulen;
1283 }
1284 *d = '\0';
1285 *len = d - save;
1286 return save;
1287}
1288
1289/*
1290=for apidoc bytes_from_utf8
1291
1292Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1293Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1294the newly-created string, and updates C<len> to contain the new
1295length. Returns the original string if no conversion occurs, C<len>
1296is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
12970 if C<s> is converted or consisted entirely of characters that are invariant
1298in utf8 (i.e., US-ASCII on non-EBCDIC machines).
1299
1300=cut
1301*/
1302
1303U8 *
1304Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1305{
1306 U8 *d;
1307 const U8 *start = s;
1308 const U8 *send;
1309 I32 count = 0;
1310
1311 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1312
1313 PERL_UNUSED_CONTEXT;
1314 if (!*is_utf8)
1315 return (U8 *)start;
1316
1317 /* ensure valid UTF-8 and chars < 256 before converting string */
1318 for (send = s + *len; s < send;) {
1319 U8 c = *s++;
1320 if (!UTF8_IS_INVARIANT(c)) {
1321 if (UTF8_IS_DOWNGRADEABLE_START(c) && s < send &&
1322 (c = *s++) && UTF8_IS_CONTINUATION(c))
1323 count++;
1324 else
1325 return (U8 *)start;
1326 }
1327 }
1328
1329 *is_utf8 = FALSE;
1330
1331 Newx(d, (*len) - count + 1, U8);
1332 s = start; start = d;
1333 while (s < send) {
1334 U8 c = *s++;
1335 if (!UTF8_IS_INVARIANT(c)) {
1336 /* Then it is two-byte encoded */
1337 c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, *s++));
1338 }
1339 *d++ = c;
1340 }
1341 *d = '\0';
1342 *len = d - start;
1343 return (U8 *)start;
1344}
1345
1346/*
1347=for apidoc bytes_to_utf8
1348
1349Converts a string C<s> of length C<len> bytes from the native encoding into
1350UTF-8.
1351Returns a pointer to the newly-created string, and sets C<len> to
1352reflect the new length in bytes.
1353
1354A NUL character will be written after the end of the string.
1355
1356If you want to convert to UTF-8 from encodings other than
1357the native (Latin1 or EBCDIC),
1358see L</sv_recode_to_utf8>().
1359
1360=cut
1361*/
1362
1363/* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1364 likewise need duplication. */
1365
1366U8*
1367Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1368{
1369 const U8 * const send = s + (*len);
1370 U8 *d;
1371 U8 *dst;
1372
1373 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1374 PERL_UNUSED_CONTEXT;
1375
1376 Newx(d, (*len) * 2 + 1, U8);
1377 dst = d;
1378
1379 while (s < send) {
1380 const UV uv = NATIVE_TO_ASCII(*s++);
1381 if (UNI_IS_INVARIANT(uv))
1382 *d++ = (U8)UTF_TO_NATIVE(uv);
1383 else {
1384 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
1385 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
1386 }
1387 }
1388 *d = '\0';
1389 *len = d-dst;
1390 return dst;
1391}
1392
1393/*
1394 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1395 *
1396 * Destination must be pre-extended to 3/2 source. Do not use in-place.
1397 * We optimize for native, for obvious reasons. */
1398
1399U8*
1400Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1401{
1402 U8* pend;
1403 U8* dstart = d;
1404
1405 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1406
1407 if (bytelen & 1)
1408 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1409
1410 pend = p + bytelen;
1411
1412 while (p < pend) {
1413 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1414 p += 2;
1415 if (uv < 0x80) {
1416#ifdef EBCDIC
1417 *d++ = UNI_TO_NATIVE(uv);
1418#else
1419 *d++ = (U8)uv;
1420#endif
1421 continue;
1422 }
1423 if (uv < 0x800) {
1424 *d++ = (U8)(( uv >> 6) | 0xc0);
1425 *d++ = (U8)(( uv & 0x3f) | 0x80);
1426 continue;
1427 }
1428 if (uv >= 0xd800 && uv <= 0xdbff) { /* surrogates */
1429 if (p >= pend) {
1430 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1431 } else {
1432 UV low = (p[0] << 8) + p[1];
1433 p += 2;
1434 if (low < 0xdc00 || low > 0xdfff)
1435 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1436 uv = ((uv - 0xd800) << 10) + (low - 0xdc00) + 0x10000;
1437 }
1438 } else if (uv >= 0xdc00 && uv <= 0xdfff) {
1439 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1440 }
1441 if (uv < 0x10000) {
1442 *d++ = (U8)(( uv >> 12) | 0xe0);
1443 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1444 *d++ = (U8)(( uv & 0x3f) | 0x80);
1445 continue;
1446 }
1447 else {
1448 *d++ = (U8)(( uv >> 18) | 0xf0);
1449 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1450 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1451 *d++ = (U8)(( uv & 0x3f) | 0x80);
1452 continue;
1453 }
1454 }
1455 *newlen = d - dstart;
1456 return d;
1457}
1458
1459/* Note: this one is slightly destructive of the source. */
1460
1461U8*
1462Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1463{
1464 U8* s = (U8*)p;
1465 U8* const send = s + bytelen;
1466
1467 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
1468
1469 if (bytelen & 1)
1470 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
1471 (UV)bytelen);
1472
1473 while (s < send) {
1474 const U8 tmp = s[0];
1475 s[0] = s[1];
1476 s[1] = tmp;
1477 s += 2;
1478 }
1479 return utf16_to_utf8(p, d, bytelen, newlen);
1480}
1481
1482/* for now these are all defined (inefficiently) in terms of the utf8 versions.
1483 * Note that the macros in handy.h that call these short-circuit calling them
1484 * for Latin-1 range inputs */
1485
1486bool
1487Perl_is_uni_alnum(pTHX_ UV c)
1488{
1489 U8 tmpbuf[UTF8_MAXBYTES+1];
1490 uvchr_to_utf8(tmpbuf, c);
1491 return is_utf8_alnum(tmpbuf);
1492}
1493
1494bool
1495Perl_is_uni_idfirst(pTHX_ UV c)
1496{
1497 U8 tmpbuf[UTF8_MAXBYTES+1];
1498 uvchr_to_utf8(tmpbuf, c);
1499 return is_utf8_idfirst(tmpbuf);
1500}
1501
1502bool
1503Perl_is_uni_alpha(pTHX_ UV c)
1504{
1505 U8 tmpbuf[UTF8_MAXBYTES+1];
1506 uvchr_to_utf8(tmpbuf, c);
1507 return is_utf8_alpha(tmpbuf);
1508}
1509
1510bool
1511Perl_is_uni_ascii(pTHX_ UV c)
1512{
1513 return isASCII(c);
1514}
1515
1516bool
1517Perl_is_uni_blank(pTHX_ UV c)
1518{
1519 U8 tmpbuf[UTF8_MAXBYTES+1];
1520 uvchr_to_utf8(tmpbuf, c);
1521 return is_utf8_blank(tmpbuf);
1522}
1523
1524bool
1525Perl_is_uni_space(pTHX_ UV c)
1526{
1527 U8 tmpbuf[UTF8_MAXBYTES+1];
1528 uvchr_to_utf8(tmpbuf, c);
1529 return is_utf8_space(tmpbuf);
1530}
1531
1532bool
1533Perl_is_uni_digit(pTHX_ UV c)
1534{
1535 U8 tmpbuf[UTF8_MAXBYTES+1];
1536 uvchr_to_utf8(tmpbuf, c);
1537 return is_utf8_digit(tmpbuf);
1538}
1539
1540bool
1541Perl_is_uni_upper(pTHX_ UV c)
1542{
1543 U8 tmpbuf[UTF8_MAXBYTES+1];
1544 uvchr_to_utf8(tmpbuf, c);
1545 return is_utf8_upper(tmpbuf);
1546}
1547
1548bool
1549Perl_is_uni_lower(pTHX_ UV c)
1550{
1551 U8 tmpbuf[UTF8_MAXBYTES+1];
1552 uvchr_to_utf8(tmpbuf, c);
1553 return is_utf8_lower(tmpbuf);
1554}
1555
1556bool
1557Perl_is_uni_cntrl(pTHX_ UV c)
1558{
1559 return isCNTRL_L1(c);
1560}
1561
1562bool
1563Perl_is_uni_graph(pTHX_ UV c)
1564{
1565 U8 tmpbuf[UTF8_MAXBYTES+1];
1566 uvchr_to_utf8(tmpbuf, c);
1567 return is_utf8_graph(tmpbuf);
1568}
1569
1570bool
1571Perl_is_uni_print(pTHX_ UV c)
1572{
1573 U8 tmpbuf[UTF8_MAXBYTES+1];
1574 uvchr_to_utf8(tmpbuf, c);
1575 return is_utf8_print(tmpbuf);
1576}
1577
1578bool
1579Perl_is_uni_punct(pTHX_ UV c)
1580{
1581 U8 tmpbuf[UTF8_MAXBYTES+1];
1582 uvchr_to_utf8(tmpbuf, c);
1583 return is_utf8_punct(tmpbuf);
1584}
1585
1586bool
1587Perl_is_uni_xdigit(pTHX_ UV c)
1588{
1589 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1590 uvchr_to_utf8(tmpbuf, c);
1591 return is_utf8_xdigit(tmpbuf);
1592}
1593
1594UV
1595Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
1596{
1597 /* We have the latin1-range values compiled into the core, so just use
1598 * those, converting the result to utf8. The only difference between upper
1599 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
1600 * either "SS" or "Ss". Which one to use is passed into the routine in
1601 * 'S_or_s' to avoid a test */
1602
1603 UV converted = toUPPER_LATIN1_MOD(c);
1604
1605 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
1606
1607 assert(S_or_s == 'S' || S_or_s == 's');
1608
1609 if (UNI_IS_INVARIANT(converted)) { /* No difference between the two for
1610 characters in this range */
1611 *p = (U8) converted;
1612 *lenp = 1;
1613 return converted;
1614 }
1615
1616 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
1617 * which it maps to one of them, so as to only have to have one check for
1618 * it in the main case */
1619 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
1620 switch (c) {
1621 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
1622 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
1623 break;
1624 case MICRO_SIGN:
1625 converted = GREEK_CAPITAL_LETTER_MU;
1626 break;
1627 case LATIN_SMALL_LETTER_SHARP_S:
1628 *(p)++ = 'S';
1629 *p = S_or_s;
1630 *lenp = 2;
1631 return 'S';
1632 default:
1633 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
1634 assert(0); /* NOTREACHED */
1635 }
1636 }
1637
1638 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1639 *p = UTF8_TWO_BYTE_LO(converted);
1640 *lenp = 2;
1641
1642 return converted;
1643}
1644
1645/* Call the function to convert a UTF-8 encoded character to the specified case.
1646 * Note that there may be more than one character in the result.
1647 * INP is a pointer to the first byte of the input character
1648 * OUTP will be set to the first byte of the string of changed characters. It
1649 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
1650 * LENP will be set to the length in bytes of the string of changed characters
1651 *
1652 * The functions return the ordinal of the first character in the string of OUTP */
1653#define CALL_UPPER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_toupper, "ToUc", "utf8::ToSpecUc")
1654#define CALL_TITLE_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_totitle, "ToTc", "utf8::ToSpecTc")
1655#define CALL_LOWER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tolower, "ToLc", "utf8::ToSpecLc")
1656
1657/* This additionally has the input parameter SPECIALS, which if non-zero will
1658 * cause this to use the SPECIALS hash for folding (meaning get full case
1659 * folding); otherwise, when zero, this implies a simple case fold */
1660#define CALL_FOLD_CASE(INP, OUTP, LENP, SPECIALS) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tofold, "ToCf", (SPECIALS) ? "utf8::ToSpecCf" : NULL)
1661
1662UV
1663Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
1664{
1665 dVAR;
1666
1667 /* Convert the Unicode character whose ordinal is <c> to its uppercase
1668 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
1669 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
1670 * the changed version may be longer than the original character.
1671 *
1672 * The ordinal of the first character of the changed version is returned
1673 * (but note, as explained above, that there may be more.) */
1674
1675 PERL_ARGS_ASSERT_TO_UNI_UPPER;
1676
1677 if (c < 256) {
1678 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
1679 }
1680
1681 uvchr_to_utf8(p, c);
1682 return CALL_UPPER_CASE(p, p, lenp);
1683}
1684
1685UV
1686Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
1687{
1688 dVAR;
1689
1690 PERL_ARGS_ASSERT_TO_UNI_TITLE;
1691
1692 if (c < 256) {
1693 return _to_upper_title_latin1((U8) c, p, lenp, 's');
1694 }
1695
1696 uvchr_to_utf8(p, c);
1697 return CALL_TITLE_CASE(p, p, lenp);
1698}
1699
1700STATIC U8
1701S_to_lower_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp)
1702{
1703 /* We have the latin1-range values compiled into the core, so just use
1704 * those, converting the result to utf8. Since the result is always just
1705 * one character, we allow <p> to be NULL */
1706
1707 U8 converted = toLOWER_LATIN1(c);
1708
1709 if (p != NULL) {
1710 if (UNI_IS_INVARIANT(converted)) {
1711 *p = converted;
1712 *lenp = 1;
1713 }
1714 else {
1715 *p = UTF8_TWO_BYTE_HI(converted);
1716 *(p+1) = UTF8_TWO_BYTE_LO(converted);
1717 *lenp = 2;
1718 }
1719 }
1720 return converted;
1721}
1722
1723UV
1724Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
1725{
1726 dVAR;
1727
1728 PERL_ARGS_ASSERT_TO_UNI_LOWER;
1729
1730 if (c < 256) {
1731 return to_lower_latin1((U8) c, p, lenp);
1732 }
1733
1734 uvchr_to_utf8(p, c);
1735 return CALL_LOWER_CASE(p, p, lenp);
1736}
1737
1738UV
1739Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const bool flags)
1740{
1741 /* Corresponds to to_lower_latin1(), <flags> is TRUE if to use full case
1742 * folding */
1743
1744 UV converted;
1745
1746 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
1747
1748 if (c == MICRO_SIGN) {
1749 converted = GREEK_SMALL_LETTER_MU;
1750 }
1751 else if (flags && c == LATIN_SMALL_LETTER_SHARP_S) {
1752 *(p)++ = 's';
1753 *p = 's';
1754 *lenp = 2;
1755 return 's';
1756 }
1757 else { /* In this range the fold of all other characters is their lower
1758 case */
1759 converted = toLOWER_LATIN1(c);
1760 }
1761
1762 if (UNI_IS_INVARIANT(converted)) {
1763 *p = (U8) converted;
1764 *lenp = 1;
1765 }
1766 else {
1767 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1768 *p = UTF8_TWO_BYTE_LO(converted);
1769 *lenp = 2;
1770 }
1771
1772 return converted;
1773}
1774
1775UV
1776Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, const U8 flags)
1777{
1778
1779 /* Not currently externally documented, and subject to change
1780 * <flags> bits meanings:
1781 * FOLD_FLAGS_FULL iff full folding is to be used;
1782 * FOLD_FLAGS_LOCALE iff in locale
1783 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1784 */
1785
1786 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
1787
1788 if (c < 256) {
1789 UV result = _to_fold_latin1((U8) c, p, lenp,
1790 cBOOL(((flags & FOLD_FLAGS_FULL)
1791 /* If ASCII-safe, don't allow full folding,
1792 * as that could include SHARP S => ss;
1793 * otherwise there is no crossing of
1794 * ascii/non-ascii in the latin1 range */
1795 && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
1796 /* It is illegal for the fold to cross the 255/256 boundary under
1797 * locale; in this case return the original */
1798 return (result > 256 && flags & FOLD_FLAGS_LOCALE)
1799 ? c
1800 : result;
1801 }
1802
1803 /* If no special needs, just use the macro */
1804 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
1805 uvchr_to_utf8(p, c);
1806 return CALL_FOLD_CASE(p, p, lenp, flags & FOLD_FLAGS_FULL);
1807 }
1808 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
1809 the special flags. */
1810 U8 utf8_c[UTF8_MAXBYTES + 1];
1811 uvchr_to_utf8(utf8_c, c);
1812 return _to_utf8_fold_flags(utf8_c, p, lenp, flags, NULL);
1813 }
1814}
1815
1816/* for now these all assume no locale info available for Unicode > 255; and
1817 * the corresponding macros in handy.h (like isALNUM_LC_uvchr) should have been
1818 * called instead, so that these don't get called for < 255 */
1819
1820bool
1821Perl_is_uni_alnum_lc(pTHX_ UV c)
1822{
1823 return is_uni_alnum(c); /* XXX no locale support yet */
1824}
1825
1826bool
1827Perl_is_uni_idfirst_lc(pTHX_ UV c)
1828{
1829 return is_uni_idfirst(c); /* XXX no locale support yet */
1830}
1831
1832bool
1833Perl_is_uni_alpha_lc(pTHX_ UV c)
1834{
1835 return is_uni_alpha(c); /* XXX no locale support yet */
1836}
1837
1838bool
1839Perl_is_uni_ascii_lc(pTHX_ UV c)
1840{
1841 return is_uni_ascii(c); /* XXX no locale support yet */
1842}
1843
1844bool
1845Perl_is_uni_blank_lc(pTHX_ UV c)
1846{
1847 return is_uni_blank(c); /* XXX no locale support yet */
1848}
1849
1850bool
1851Perl_is_uni_space_lc(pTHX_ UV c)
1852{
1853 return is_uni_space(c); /* XXX no locale support yet */
1854}
1855
1856bool
1857Perl_is_uni_digit_lc(pTHX_ UV c)
1858{
1859 return is_uni_digit(c); /* XXX no locale support yet */
1860}
1861
1862bool
1863Perl_is_uni_upper_lc(pTHX_ UV c)
1864{
1865 return is_uni_upper(c); /* XXX no locale support yet */
1866}
1867
1868bool
1869Perl_is_uni_lower_lc(pTHX_ UV c)
1870{
1871 return is_uni_lower(c); /* XXX no locale support yet */
1872}
1873
1874bool
1875Perl_is_uni_cntrl_lc(pTHX_ UV c)
1876{
1877 return is_uni_cntrl(c); /* XXX no locale support yet */
1878}
1879
1880bool
1881Perl_is_uni_graph_lc(pTHX_ UV c)
1882{
1883 return is_uni_graph(c); /* XXX no locale support yet */
1884}
1885
1886bool
1887Perl_is_uni_print_lc(pTHX_ UV c)
1888{
1889 return is_uni_print(c); /* XXX no locale support yet */
1890}
1891
1892bool
1893Perl_is_uni_punct_lc(pTHX_ UV c)
1894{
1895 return is_uni_punct(c); /* XXX no locale support yet */
1896}
1897
1898bool
1899Perl_is_uni_xdigit_lc(pTHX_ UV c)
1900{
1901 return is_uni_xdigit(c); /* XXX no locale support yet */
1902}
1903
1904U32
1905Perl_to_uni_upper_lc(pTHX_ U32 c)
1906{
1907 /* XXX returns only the first character -- do not use XXX */
1908 /* XXX no locale support yet */
1909 STRLEN len;
1910 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1911 return (U32)to_uni_upper(c, tmpbuf, &len);
1912}
1913
1914U32
1915Perl_to_uni_title_lc(pTHX_ U32 c)
1916{
1917 /* XXX returns only the first character XXX -- do not use XXX */
1918 /* XXX no locale support yet */
1919 STRLEN len;
1920 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1921 return (U32)to_uni_title(c, tmpbuf, &len);
1922}
1923
1924U32
1925Perl_to_uni_lower_lc(pTHX_ U32 c)
1926{
1927 /* XXX returns only the first character -- do not use XXX */
1928 /* XXX no locale support yet */
1929 STRLEN len;
1930 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1931 return (U32)to_uni_lower(c, tmpbuf, &len);
1932}
1933
1934static bool
1935S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
1936 const char *const swashname)
1937{
1938 /* returns a boolean giving whether or not the UTF8-encoded character that
1939 * starts at <p> is in the swash indicated by <swashname>. <swash>
1940 * contains a pointer to where the swash indicated by <swashname>
1941 * is to be stored; which this routine will do, so that future calls will
1942 * look at <*swash> and only generate a swash if it is not null
1943 *
1944 * Note that it is assumed that the buffer length of <p> is enough to
1945 * contain all the bytes that comprise the character. Thus, <*p> should
1946 * have been checked before this call for mal-formedness enough to assure
1947 * that. */
1948
1949 dVAR;
1950
1951 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
1952
1953 /* The API should have included a length for the UTF-8 character in <p>,
1954 * but it doesn't. We therefor assume that p has been validated at least
1955 * as far as there being enough bytes available in it to accommodate the
1956 * character without reading beyond the end, and pass that number on to the
1957 * validating routine */
1958 if (!is_utf8_char_buf(p, p + UTF8SKIP(p)))
1959 return FALSE;
1960 if (!*swash) {
1961 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
1962 *swash = _core_swash_init("utf8", swashname, &PL_sv_undef, 1, 0, NULL, &flags);
1963 }
1964 return swash_fetch(*swash, p, TRUE) != 0;
1965}
1966
1967bool
1968Perl_is_utf8_alnum(pTHX_ const U8 *p)
1969{
1970 dVAR;
1971
1972 PERL_ARGS_ASSERT_IS_UTF8_ALNUM;
1973
1974 /* NOTE: "IsWord", not "IsAlnum", since Alnum is a true
1975 * descendant of isalnum(3), in other words, it doesn't
1976 * contain the '_'. --jhi */
1977 return is_utf8_common(p, &PL_utf8_alnum, "IsWord");
1978}
1979
1980bool
1981Perl_is_utf8_idfirst(pTHX_ const U8 *p) /* The naming is historical. */
1982{
1983 dVAR;
1984
1985 PERL_ARGS_ASSERT_IS_UTF8_IDFIRST;
1986
1987 if (*p == '_')
1988 return TRUE;
1989 /* is_utf8_idstart would be more logical. */
1990 return is_utf8_common(p, &PL_utf8_idstart, "IdStart");
1991}
1992
1993bool
1994Perl_is_utf8_xidfirst(pTHX_ const U8 *p) /* The naming is historical. */
1995{
1996 dVAR;
1997
1998 PERL_ARGS_ASSERT_IS_UTF8_XIDFIRST;
1999
2000 if (*p == '_')
2001 return TRUE;
2002 /* is_utf8_idstart would be more logical. */
2003 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart");
2004}
2005
2006bool
2007Perl__is_utf8__perl_idstart(pTHX_ const U8 *p)
2008{
2009 dVAR;
2010
2011 PERL_ARGS_ASSERT__IS_UTF8__PERL_IDSTART;
2012
2013 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart");
2014}
2015
2016bool
2017Perl_is_utf8_idcont(pTHX_ const U8 *p)
2018{
2019 dVAR;
2020
2021 PERL_ARGS_ASSERT_IS_UTF8_IDCONT;
2022
2023 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue");
2024}
2025
2026bool
2027Perl_is_utf8_xidcont(pTHX_ const U8 *p)
2028{
2029 dVAR;
2030
2031 PERL_ARGS_ASSERT_IS_UTF8_XIDCONT;
2032
2033 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue");
2034}
2035
2036bool
2037Perl_is_utf8_alpha(pTHX_ const U8 *p)
2038{
2039 dVAR;
2040
2041 PERL_ARGS_ASSERT_IS_UTF8_ALPHA;
2042
2043 return is_utf8_common(p, &PL_utf8_alpha, "IsAlpha");
2044}
2045
2046bool
2047Perl_is_utf8_ascii(pTHX_ const U8 *p)
2048{
2049 dVAR;
2050
2051 PERL_ARGS_ASSERT_IS_UTF8_ASCII;
2052
2053 /* ASCII characters are the same whether in utf8 or not. So the macro
2054 * works on both utf8 and non-utf8 representations. */
2055 return isASCII(*p);
2056}
2057
2058bool
2059Perl_is_utf8_blank(pTHX_ const U8 *p)
2060{
2061 dVAR;
2062
2063 PERL_ARGS_ASSERT_IS_UTF8_BLANK;
2064
2065 return is_utf8_common(p, &PL_utf8_blank, "XPosixBlank");
2066}
2067
2068bool
2069Perl_is_utf8_space(pTHX_ const U8 *p)
2070{
2071 dVAR;
2072
2073 PERL_ARGS_ASSERT_IS_UTF8_SPACE;
2074
2075 return is_utf8_common(p, &PL_utf8_space, "IsXPerlSpace");
2076}
2077
2078bool
2079Perl_is_utf8_perl_space(pTHX_ const U8 *p)
2080{
2081 dVAR;
2082
2083 PERL_ARGS_ASSERT_IS_UTF8_PERL_SPACE;
2084
2085 /* Only true if is an ASCII space-like character, and ASCII is invariant
2086 * under utf8, so can just use the macro */
2087 return isSPACE_A(*p);
2088}
2089
2090bool
2091Perl_is_utf8_perl_word(pTHX_ const U8 *p)
2092{
2093 dVAR;
2094
2095 PERL_ARGS_ASSERT_IS_UTF8_PERL_WORD;
2096
2097 /* Only true if is an ASCII word character, and ASCII is invariant
2098 * under utf8, so can just use the macro */
2099 return isWORDCHAR_A(*p);
2100}
2101
2102bool
2103Perl_is_utf8_digit(pTHX_ const U8 *p)
2104{
2105 dVAR;
2106
2107 PERL_ARGS_ASSERT_IS_UTF8_DIGIT;
2108
2109 return is_utf8_common(p, &PL_utf8_digit, "IsDigit");
2110}
2111
2112bool
2113Perl_is_utf8_posix_digit(pTHX_ const U8 *p)
2114{
2115 dVAR;
2116
2117 PERL_ARGS_ASSERT_IS_UTF8_POSIX_DIGIT;
2118
2119 /* Only true if is an ASCII digit character, and ASCII is invariant
2120 * under utf8, so can just use the macro */
2121 return isDIGIT_A(*p);
2122}
2123
2124bool
2125Perl_is_utf8_upper(pTHX_ const U8 *p)
2126{
2127 dVAR;
2128
2129 PERL_ARGS_ASSERT_IS_UTF8_UPPER;
2130
2131 return is_utf8_common(p, &PL_utf8_upper, "IsUppercase");
2132}
2133
2134bool
2135Perl_is_utf8_lower(pTHX_ const U8 *p)
2136{
2137 dVAR;
2138
2139 PERL_ARGS_ASSERT_IS_UTF8_LOWER;
2140
2141 return is_utf8_common(p, &PL_utf8_lower, "IsLowercase");
2142}
2143
2144bool
2145Perl_is_utf8_cntrl(pTHX_ const U8 *p)
2146{
2147 dVAR;
2148
2149 PERL_ARGS_ASSERT_IS_UTF8_CNTRL;
2150
2151 if (isASCII(*p)) {
2152 return isCNTRL_A(*p);
2153 }
2154
2155 /* All controls are in Latin1 */
2156 if (! UTF8_IS_DOWNGRADEABLE_START(*p)) {
2157 return 0;
2158 }
2159 return isCNTRL_L1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2160}
2161
2162bool
2163Perl_is_utf8_graph(pTHX_ const U8 *p)
2164{
2165 dVAR;
2166
2167 PERL_ARGS_ASSERT_IS_UTF8_GRAPH;
2168
2169 return is_utf8_common(p, &PL_utf8_graph, "IsGraph");
2170}
2171
2172bool
2173Perl_is_utf8_print(pTHX_ const U8 *p)
2174{
2175 dVAR;
2176
2177 PERL_ARGS_ASSERT_IS_UTF8_PRINT;
2178
2179 return is_utf8_common(p, &PL_utf8_print, "IsPrint");
2180}
2181
2182bool
2183Perl_is_utf8_punct(pTHX_ const U8 *p)
2184{
2185 dVAR;
2186
2187 PERL_ARGS_ASSERT_IS_UTF8_PUNCT;
2188
2189 return is_utf8_common(p, &PL_utf8_punct, "IsPunct");
2190}
2191
2192bool
2193Perl_is_utf8_xdigit(pTHX_ const U8 *p)
2194{
2195 dVAR;
2196
2197 PERL_ARGS_ASSERT_IS_UTF8_XDIGIT;
2198
2199 return is_utf8_common(p, &PL_utf8_xdigit, "IsXDigit");
2200}
2201
2202bool
2203Perl_is_utf8_mark(pTHX_ const U8 *p)
2204{
2205 dVAR;
2206
2207 PERL_ARGS_ASSERT_IS_UTF8_MARK;
2208
2209 return is_utf8_common(p, &PL_utf8_mark, "IsM");
2210}
2211
2212bool
2213Perl_is_utf8_X_regular_begin(pTHX_ const U8 *p)
2214{
2215 dVAR;
2216
2217 PERL_ARGS_ASSERT_IS_UTF8_X_REGULAR_BEGIN;
2218
2219 return is_utf8_common(p, &PL_utf8_X_regular_begin, "_X_Regular_Begin");
2220}
2221
2222bool
2223Perl_is_utf8_X_extend(pTHX_ const U8 *p)
2224{
2225 dVAR;
2226
2227 PERL_ARGS_ASSERT_IS_UTF8_X_EXTEND;
2228
2229 return is_utf8_common(p, &PL_utf8_X_extend, "_X_Extend");
2230}
2231
2232bool
2233Perl_is_utf8_X_prepend(pTHX_ const U8 *p)
2234{
2235 /* If no code points in the Unicode version being worked on match
2236 * GCB=Prepend, this will set PL_utf8_X_prepend to &PL_sv_undef during its
2237 * first call. Otherwise, it will set it to a swash created for it.
2238 * swash_fetch() hence can't be used without checking first if it is valid
2239 * to do so. */
2240
2241 dVAR;
2242 bool initialized = cBOOL(PL_utf8_X_prepend);
2243 bool ret;
2244
2245 PERL_ARGS_ASSERT_IS_UTF8_X_PREPEND;
2246
2247 if (PL_utf8_X_prepend == &PL_sv_undef) {
2248 return FALSE;
2249 }
2250
2251 if ((ret = is_utf8_common(p, &PL_utf8_X_prepend, "_X_GCB_Prepend"))
2252 || initialized)
2253 {
2254 return ret;
2255 }
2256
2257 /* Here the code point being checked was not a prepend, and we hadn't
2258 * initialized PL_utf8_X_prepend, so we don't know if it is just this
2259 * particular input code point that didn't match, or if the table is
2260 * completely empty. The is_utf8_common() call did the initialization, so
2261 * we can inspect the swash's inversion list to find out. If there are no
2262 * elements in its inversion list, it's empty, and nothing will ever match,
2263 * so set things up so we can skip the check in future calls. */
2264 if (_invlist_len(_get_swash_invlist(PL_utf8_X_prepend)) == 0) {
2265 SvREFCNT_dec(PL_utf8_X_prepend);
2266 PL_utf8_X_prepend = &PL_sv_undef;
2267 }
2268
2269 return FALSE;
2270}
2271
2272bool
2273Perl_is_utf8_X_special_begin(pTHX_ const U8 *p)
2274{
2275 dVAR;
2276
2277 PERL_ARGS_ASSERT_IS_UTF8_X_SPECIAL_BEGIN;
2278
2279 return is_utf8_common(p, &PL_utf8_X_special_begin, "_X_Special_Begin");
2280}
2281
2282bool
2283Perl_is_utf8_X_L(pTHX_ const U8 *p)
2284{
2285 dVAR;
2286
2287 PERL_ARGS_ASSERT_IS_UTF8_X_L;
2288
2289 return is_utf8_common(p, &PL_utf8_X_L, "_X_GCB_L");
2290}
2291
2292bool
2293Perl_is_utf8_X_RI(pTHX_ const U8 *p)
2294{
2295 dVAR;
2296
2297 PERL_ARGS_ASSERT_IS_UTF8_X_RI;
2298
2299 return is_utf8_common(p, &PL_utf8_X_RI, "_X_RI");
2300}
2301
2302/* These constants are for finding GCB=LV and GCB=LVT. These are for the
2303 * pre-composed Hangul syllables, which are all in a contiguous block and
2304 * arranged there in such a way so as to facilitate alorithmic determination of
2305 * their characteristics. As such, they don't need a swash, but can be
2306 * determined by simple arithmetic. Almost all are GCB=LVT, but every 28th one
2307 * is a GCB=LV */
2308#define SBASE 0xAC00 /* Start of block */
2309#define SCount 11172 /* Length of block */
2310#define TCount 28
2311
2312#if 0 /* This routine is not currently used */
2313bool
2314Perl_is_utf8_X_LV(pTHX_ const U8 *p)
2315{
2316 /* Unlike most other similarly named routines here, this does not create a
2317 * swash, so swash_fetch() cannot be used on PL_utf8_X_LV. */
2318
2319 dVAR;
2320
2321 UV cp = valid_utf8_to_uvchr(p, NULL);
2322
2323 PERL_ARGS_ASSERT_IS_UTF8_X_LV;
2324
2325 /* The earliest Unicode releases did not have these precomposed Hangul
2326 * syllables. Set to point to undef in that case, so will return false on
2327 * every call */
2328 if (! PL_utf8_X_LV) { /* Set up if this is the first time called */
2329 PL_utf8_X_LV = swash_init("utf8", "_X_GCB_LV", &PL_sv_undef, 1, 0);
2330 if (_invlist_len(_get_swash_invlist(PL_utf8_X_LV)) == 0) {
2331 SvREFCNT_dec(PL_utf8_X_LV);
2332 PL_utf8_X_LV = &PL_sv_undef;
2333 }
2334 }
2335
2336 return (PL_utf8_X_LV != &PL_sv_undef
2337 && cp >= SBASE && cp < SBASE + SCount
2338 && (cp - SBASE) % TCount == 0); /* Only every TCount one is LV */
2339}
2340#endif
2341
2342bool
2343Perl_is_utf8_X_LVT(pTHX_ const U8 *p)
2344{
2345 /* Unlike most other similarly named routines here, this does not create a
2346 * swash, so swash_fetch() cannot be used on PL_utf8_X_LVT. */
2347
2348 dVAR;
2349
2350 UV cp = valid_utf8_to_uvchr(p, NULL);
2351
2352 PERL_ARGS_ASSERT_IS_UTF8_X_LVT;
2353
2354 /* The earliest Unicode releases did not have these precomposed Hangul
2355 * syllables. Set to point to undef in that case, so will return false on
2356 * every call */
2357 if (! PL_utf8_X_LVT) { /* Set up if this is the first time called */
2358 PL_utf8_X_LVT = swash_init("utf8", "_X_GCB_LVT", &PL_sv_undef, 1, 0);
2359 if (_invlist_len(_get_swash_invlist(PL_utf8_X_LVT)) == 0) {
2360 SvREFCNT_dec(PL_utf8_X_LVT);
2361 PL_utf8_X_LVT = &PL_sv_undef;
2362 }
2363 }
2364
2365 return (PL_utf8_X_LVT != &PL_sv_undef
2366 && cp >= SBASE && cp < SBASE + SCount
2367 && (cp - SBASE) % TCount != 0); /* All but every TCount one is LV */
2368}
2369
2370bool
2371Perl_is_utf8_X_T(pTHX_ const U8 *p)
2372{
2373 dVAR;
2374
2375 PERL_ARGS_ASSERT_IS_UTF8_X_T;
2376
2377 return is_utf8_common(p, &PL_utf8_X_T, "_X_GCB_T");
2378}
2379
2380bool
2381Perl_is_utf8_X_V(pTHX_ const U8 *p)
2382{
2383 dVAR;
2384
2385 PERL_ARGS_ASSERT_IS_UTF8_X_V;
2386
2387 return is_utf8_common(p, &PL_utf8_X_V, "_X_GCB_V");
2388}
2389
2390bool
2391Perl_is_utf8_X_LV_LVT_V(pTHX_ const U8 *p)
2392{
2393 dVAR;
2394
2395 PERL_ARGS_ASSERT_IS_UTF8_X_LV_LVT_V;
2396
2397 return is_utf8_common(p, &PL_utf8_X_LV_LVT_V, "_X_LV_LVT_V");
2398}
2399
2400bool
2401Perl__is_utf8_quotemeta(pTHX_ const U8 *p)
2402{
2403 /* For exclusive use of pp_quotemeta() */
2404
2405 dVAR;
2406
2407 PERL_ARGS_ASSERT__IS_UTF8_QUOTEMETA;
2408
2409 return is_utf8_common(p, &PL_utf8_quotemeta, "_Perl_Quotemeta");
2410}
2411
2412/*
2413=for apidoc to_utf8_case
2414
2415The C<p> contains the pointer to the UTF-8 string encoding
2416the character that is being converted. This routine assumes that the character
2417at C<p> is well-formed.
2418
2419The C<ustrp> is a pointer to the character buffer to put the
2420conversion result to. The C<lenp> is a pointer to the length
2421of the result.
2422
2423The C<swashp> is a pointer to the swash to use.
2424
2425Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2426and loaded by SWASHNEW, using F<lib/utf8_heavy.pl>. The C<special> (usually,
2427but not always, a multicharacter mapping), is tried first.
2428
2429The C<special> is a string like "utf8::ToSpecLower", which means the
2430hash %utf8::ToSpecLower. The access to the hash is through
2431Perl_to_utf8_case().
2432
2433The C<normal> is a string like "ToLower" which means the swash
2434%utf8::ToLower.
2435
2436=cut */
2437
2438UV
2439Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2440 SV **swashp, const char *normal, const char *special)
2441{
2442 dVAR;
2443 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2444 STRLEN len = 0;
2445 const UV uv0 = valid_utf8_to_uvchr(p, NULL);
2446 /* The NATIVE_TO_UNI() and UNI_TO_NATIVE() mappings
2447 * are necessary in EBCDIC, they are redundant no-ops
2448 * in ASCII-ish platforms, and hopefully optimized away. */
2449 const UV uv1 = NATIVE_TO_UNI(uv0);
2450
2451 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2452
2453 /* Note that swash_fetch() doesn't output warnings for these because it
2454 * assumes we will */
2455 if (uv1 >= UNICODE_SURROGATE_FIRST) {
2456 if (uv1 <= UNICODE_SURROGATE_LAST) {
2457 if (ckWARN_d(WARN_SURROGATE)) {
2458 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2459 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2460 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
2461 }
2462 }
2463 else if (UNICODE_IS_SUPER(uv1)) {
2464 if (ckWARN_d(WARN_NON_UNICODE)) {
2465 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2466 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2467 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
2468 }
2469 }
2470
2471 /* Note that non-characters are perfectly legal, so no warning should
2472 * be given */
2473 }
2474
2475 uvuni_to_utf8(tmpbuf, uv1);
2476
2477 if (!*swashp) /* load on-demand */
2478 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2479
2480 if (special) {
2481 /* It might be "special" (sometimes, but not always,
2482 * a multicharacter mapping) */
2483 HV * const hv = get_hv(special, 0);
2484 SV **svp;
2485
2486 if (hv &&
2487 (svp = hv_fetch(hv, (const char*)tmpbuf, UNISKIP(uv1), FALSE)) &&
2488 (*svp)) {
2489 const char *s;
2490
2491 s = SvPV_const(*svp, len);
2492 if (len == 1)
2493 len = uvuni_to_utf8(ustrp, NATIVE_TO_UNI(*(U8*)s)) - ustrp;
2494 else {
2495#ifdef EBCDIC
2496 /* If we have EBCDIC we need to remap the characters
2497 * since any characters in the low 256 are Unicode
2498 * code points, not EBCDIC. */
2499 U8 *t = (U8*)s, *tend = t + len, *d;
2500
2501 d = tmpbuf;
2502 if (SvUTF8(*svp)) {
2503 STRLEN tlen = 0;
2504
2505 while (t < tend) {
2506 const UV c = utf8_to_uvchr_buf(t, tend, &tlen);
2507 if (tlen > 0) {
2508 d = uvchr_to_utf8(d, UNI_TO_NATIVE(c));
2509 t += tlen;
2510 }
2511 else
2512 break;
2513 }
2514 }
2515 else {
2516 while (t < tend) {
2517 d = uvchr_to_utf8(d, UNI_TO_NATIVE(*t));
2518 t++;
2519 }
2520 }
2521 len = d - tmpbuf;
2522 Copy(tmpbuf, ustrp, len, U8);
2523#else
2524 Copy(s, ustrp, len, U8);
2525#endif
2526 }
2527 }
2528 }
2529
2530 if (!len && *swashp) {
2531 const UV uv2 = swash_fetch(*swashp, tmpbuf, TRUE /* => is utf8 */);
2532
2533 if (uv2) {
2534 /* It was "normal" (a single character mapping). */
2535 const UV uv3 = UNI_TO_NATIVE(uv2);
2536 len = uvchr_to_utf8(ustrp, uv3) - ustrp;
2537 }
2538 }
2539
2540 if (len) {
2541 if (lenp) {
2542 *lenp = len;
2543 }
2544 return valid_utf8_to_uvchr(ustrp, 0);
2545 }
2546
2547 /* Here, there was no mapping defined, which means that the code point maps
2548 * to itself. Return the inputs */
2549 len = UTF8SKIP(p);
2550 Copy(p, ustrp, len, U8);
2551
2552 if (lenp)
2553 *lenp = len;
2554
2555 return uv0;
2556
2557}
2558
2559STATIC UV
2560S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2561{
2562 /* This is called when changing the case of a utf8-encoded character above
2563 * the Latin1 range, and the operation is in locale. If the result
2564 * contains a character that crosses the 255/256 boundary, disallow the
2565 * change, and return the original code point. See L<perlfunc/lc> for why;
2566 *
2567 * p points to the original string whose case was changed; assumed
2568 * by this routine to be well-formed
2569 * result the code point of the first character in the changed-case string
2570 * ustrp points to the changed-case string (<result> represents its first char)
2571 * lenp points to the length of <ustrp> */
2572
2573 UV original; /* To store the first code point of <p> */
2574
2575 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2576
2577 assert(! UTF8_IS_INVARIANT(*p) && ! UTF8_IS_DOWNGRADEABLE_START(*p));
2578
2579 /* We know immediately if the first character in the string crosses the
2580 * boundary, so can skip */
2581 if (result > 255) {
2582
2583 /* Look at every character in the result; if any cross the
2584 * boundary, the whole thing is disallowed */
2585 U8* s = ustrp + UTF8SKIP(ustrp);
2586 U8* e = ustrp + *lenp;
2587 while (s < e) {
2588 if (UTF8_IS_INVARIANT(*s) || UTF8_IS_DOWNGRADEABLE_START(*s))
2589 {
2590 goto bad_crossing;
2591 }
2592 s += UTF8SKIP(s);
2593 }
2594
2595 /* Here, no characters crossed, result is ok as-is */
2596 return result;
2597 }
2598
2599bad_crossing:
2600
2601 /* Failed, have to return the original */
2602 original = valid_utf8_to_uvchr(p, lenp);
2603 Copy(p, ustrp, *lenp, char);
2604 return original;
2605}
2606
2607/*
2608=for apidoc to_utf8_upper
2609
2610Convert the UTF-8 encoded character at C<p> to its uppercase version and
2611store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2612that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2613the uppercase version may be longer than the original character.
2614
2615The first character of the uppercased version is returned
2616(but note, as explained above, that there may be more.)
2617
2618The character at C<p> is assumed by this routine to be well-formed.
2619
2620=cut */
2621
2622/* Not currently externally documented, and subject to change:
2623 * <flags> is set iff locale semantics are to be used for code points < 256
2624 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2625 * were used in the calculation; otherwise unchanged. */
2626
2627UV
2628Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2629{
2630 dVAR;
2631
2632 UV result;
2633
2634 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2635
2636 if (UTF8_IS_INVARIANT(*p)) {
2637 if (flags) {
2638 result = toUPPER_LC(*p);
2639 }
2640 else {
2641 return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2642 }
2643 }
2644 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2645 if (flags) {
2646 result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2647 }
2648 else {
2649 return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2650 ustrp, lenp, 'S');
2651 }
2652 }
2653 else { /* utf8, ord above 255 */
2654 result = CALL_UPPER_CASE(p, ustrp, lenp);
2655
2656 if (flags) {
2657 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2658 }
2659 return result;
2660 }
2661
2662 /* Here, used locale rules. Convert back to utf8 */
2663 if (UTF8_IS_INVARIANT(result)) {
2664 *ustrp = (U8) result;
2665 *lenp = 1;
2666 }
2667 else {
2668 *ustrp = UTF8_EIGHT_BIT_HI(result);
2669 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2670 *lenp = 2;
2671 }
2672
2673 if (tainted_ptr) {
2674 *tainted_ptr = TRUE;
2675 }
2676 return result;
2677}
2678
2679/*
2680=for apidoc to_utf8_title
2681
2682Convert the UTF-8 encoded character at C<p> to its titlecase version and
2683store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2684that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2685titlecase version may be longer than the original character.
2686
2687The first character of the titlecased version is returned
2688(but note, as explained above, that there may be more.)
2689
2690The character at C<p> is assumed by this routine to be well-formed.
2691
2692=cut */
2693
2694/* Not currently externally documented, and subject to change:
2695 * <flags> is set iff locale semantics are to be used for code points < 256
2696 * Since titlecase is not defined in POSIX, uppercase is used instead
2697 * for these/
2698 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2699 * were used in the calculation; otherwise unchanged. */
2700
2701UV
2702Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2703{
2704 dVAR;
2705
2706 UV result;
2707
2708 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2709
2710 if (UTF8_IS_INVARIANT(*p)) {
2711 if (flags) {
2712 result = toUPPER_LC(*p);
2713 }
2714 else {
2715 return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2716 }
2717 }
2718 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2719 if (flags) {
2720 result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2721 }
2722 else {
2723 return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2724 ustrp, lenp, 's');
2725 }
2726 }
2727 else { /* utf8, ord above 255 */
2728 result = CALL_TITLE_CASE(p, ustrp, lenp);
2729
2730 if (flags) {
2731 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2732 }
2733 return result;
2734 }
2735
2736 /* Here, used locale rules. Convert back to utf8 */
2737 if (UTF8_IS_INVARIANT(result)) {
2738 *ustrp = (U8) result;
2739 *lenp = 1;
2740 }
2741 else {
2742 *ustrp = UTF8_EIGHT_BIT_HI(result);
2743 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2744 *lenp = 2;
2745 }
2746
2747 if (tainted_ptr) {
2748 *tainted_ptr = TRUE;
2749 }
2750 return result;
2751}
2752
2753/*
2754=for apidoc to_utf8_lower
2755
2756Convert the UTF-8 encoded character at C<p> to its lowercase version and
2757store that in UTF-8 in ustrp and its length in bytes in C<lenp>. Note
2758that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2759lowercase version may be longer than the original character.
2760
2761The first character of the lowercased version is returned
2762(but note, as explained above, that there may be more.)
2763
2764The character at C<p> is assumed by this routine to be well-formed.
2765
2766=cut */
2767
2768/* Not currently externally documented, and subject to change:
2769 * <flags> is set iff locale semantics are to be used for code points < 256
2770 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2771 * were used in the calculation; otherwise unchanged. */
2772
2773UV
2774Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2775{
2776 UV result;
2777
2778 dVAR;
2779
2780 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2781
2782 if (UTF8_IS_INVARIANT(*p)) {
2783 if (flags) {
2784 result = toLOWER_LC(*p);
2785 }
2786 else {
2787 return to_lower_latin1(*p, ustrp, lenp);
2788 }
2789 }
2790 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2791 if (flags) {
2792 result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2793 }
2794 else {
2795 return to_lower_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2796 ustrp, lenp);
2797 }
2798 }
2799 else { /* utf8, ord above 255 */
2800 result = CALL_LOWER_CASE(p, ustrp, lenp);
2801
2802 if (flags) {
2803 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2804 }
2805
2806 return result;
2807 }
2808
2809 /* Here, used locale rules. Convert back to utf8 */
2810 if (UTF8_IS_INVARIANT(result)) {
2811 *ustrp = (U8) result;
2812 *lenp = 1;
2813 }
2814 else {
2815 *ustrp = UTF8_EIGHT_BIT_HI(result);
2816 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2817 *lenp = 2;
2818 }
2819
2820 if (tainted_ptr) {
2821 *tainted_ptr = TRUE;
2822 }
2823 return result;
2824}
2825
2826/*
2827=for apidoc to_utf8_fold
2828
2829Convert the UTF-8 encoded character at C<p> to its foldcase version and
2830store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2831that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2832foldcase version may be longer than the original character (up to
2833three characters).
2834
2835The first character of the foldcased version is returned
2836(but note, as explained above, that there may be more.)
2837
2838The character at C<p> is assumed by this routine to be well-formed.
2839
2840=cut */
2841
2842/* Not currently externally documented, and subject to change,
2843 * in <flags>
2844 * bit FOLD_FLAGS_LOCALE is set iff locale semantics are to be used for code
2845 * points < 256. Since foldcase is not defined in
2846 * POSIX, lowercase is used instead
2847 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
2848 * otherwise simple folds
2849 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2850 * prohibited
2851 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2852 * were used in the calculation; otherwise unchanged. */
2853
2854UV
2855Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags, bool* tainted_ptr)
2856{
2857 dVAR;
2858
2859 UV result;
2860
2861 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2862
2863 /* These are mutually exclusive */
2864 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2865
2866 assert(p != ustrp); /* Otherwise overwrites */
2867
2868 if (UTF8_IS_INVARIANT(*p)) {
2869 if (flags & FOLD_FLAGS_LOCALE) {
2870 result = toLOWER_LC(*p);
2871 }
2872 else {
2873 return _to_fold_latin1(*p, ustrp, lenp,
2874 cBOOL(flags & FOLD_FLAGS_FULL));
2875 }
2876 }
2877 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2878 if (flags & FOLD_FLAGS_LOCALE) {
2879 result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2880 }
2881 else {
2882 return _to_fold_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2883 ustrp, lenp,
2884 cBOOL((flags & FOLD_FLAGS_FULL
2885 /* If ASCII safe, don't allow full
2886 * folding, as that could include SHARP
2887 * S => ss; otherwise there is no
2888 * crossing of ascii/non-ascii in the
2889 * latin1 range */
2890 && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
2891 }
2892 }
2893 else { /* utf8, ord above 255 */
2894 result = CALL_FOLD_CASE(p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2895
2896 if ((flags & FOLD_FLAGS_LOCALE)) {
2897 return check_locale_boundary_crossing(p, result, ustrp, lenp);
2898 }
2899 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
2900 return result;
2901 }
2902 else {
2903 /* This is called when changing the case of a utf8-encoded
2904 * character above the Latin1 range, and the result should not
2905 * contain an ASCII character. */
2906
2907 UV original; /* To store the first code point of <p> */
2908
2909 /* Look at every character in the result; if any cross the
2910 * boundary, the whole thing is disallowed */
2911 U8* s = ustrp;
2912 U8* e = ustrp + *lenp;
2913 while (s < e) {
2914 if (isASCII(*s)) {
2915 /* Crossed, have to return the original */
2916 original = valid_utf8_to_uvchr(p, lenp);
2917 Copy(p, ustrp, *lenp, char);
2918 return original;
2919 }
2920 s += UTF8SKIP(s);
2921 }
2922
2923 /* Here, no characters crossed, result is ok as-is */
2924 return result;
2925 }
2926 }
2927
2928 /* Here, used locale rules. Convert back to utf8 */
2929 if (UTF8_IS_INVARIANT(result)) {
2930 *ustrp = (U8) result;
2931 *lenp = 1;
2932 }
2933 else {
2934 *ustrp = UTF8_EIGHT_BIT_HI(result);
2935 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2936 *lenp = 2;
2937 }
2938
2939 if (tainted_ptr) {
2940 *tainted_ptr = TRUE;
2941 }
2942 return result;
2943}
2944
2945/* Note:
2946 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
2947 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
2948 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
2949 */
2950
2951SV*
2952Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
2953{
2954 PERL_ARGS_ASSERT_SWASH_INIT;
2955
2956 /* Returns a copy of a swash initiated by the called function. This is the
2957 * public interface, and returning a copy prevents others from doing
2958 * mischief on the original */
2959
2960 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
2961}
2962
2963SV*
2964Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
2965{
2966 /* Initialize and return a swash, creating it if necessary. It does this
2967 * by calling utf8_heavy.pl in the general case. The returned value may be
2968 * the swash's inversion list instead if the input parameters allow it.
2969 * Which is returned should be immaterial to callers, as the only
2970 * operations permitted on a swash, swash_fetch() and
2971 * _get_swash_invlist(), handle both these transparently.
2972 *
2973 * This interface should only be used by functions that won't destroy or
2974 * adversely change the swash, as doing so affects all other uses of the
2975 * swash in the program; the general public should use 'Perl_swash_init'
2976 * instead.
2977 *
2978 * pkg is the name of the package that <name> should be in.
2979 * name is the name of the swash to find. Typically it is a Unicode
2980 * property name, including user-defined ones
2981 * listsv is a string to initialize the swash with. It must be of the form
2982 * documented as the subroutine return value in
2983 * L<perlunicode/User-Defined Character Properties>
2984 * minbits is the number of bits required to represent each data element.
2985 * It is '1' for binary properties.
2986 * none I (khw) do not understand this one, but it is used only in tr///.
2987 * invlist is an inversion list to initialize the swash with (or NULL)
2988 * flags_p if non-NULL is the address of various input and output flag bits
2989 * to the routine, as follows: ('I' means is input to the routine;
2990 * 'O' means output from the routine. Only flags marked O are
2991 * meaningful on return.)
2992 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
2993 * came from a user-defined property. (I O)
2994 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
2995 * when the swash cannot be located, to simply return NULL. (I)
2996 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
2997 * return of an inversion list instead of a swash hash if this routine
2998 * thinks that would result in faster execution of swash_fetch() later
2999 * on. (I)
3000 *
3001 * Thus there are three possible inputs to find the swash: <name>,
3002 * <listsv>, and <invlist>. At least one must be specified. The result
3003 * will be the union of the specified ones, although <listsv>'s various
3004 * actions can intersect, etc. what <name> gives.
3005 *
3006 * <invlist> is only valid for binary properties */
3007
3008 dVAR;
3009 SV* retval = &PL_sv_undef;
3010 HV* swash_hv = NULL;
3011 const int invlist_swash_boundary =
3012 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3013 ? 512 /* Based on some benchmarking, but not extensive, see commit
3014 message */
3015 : -1; /* Never return just an inversion list */
3016
3017 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3018 assert(! invlist || minbits == 1);
3019
3020 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3021 * so */
3022 if (listsv != &PL_sv_undef || strNE(name, "")) {
3023 dSP;
3024 const size_t pkg_len = strlen(pkg);
3025 const size_t name_len = strlen(name);
3026 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3027 SV* errsv_save;
3028 GV *method;
3029
3030 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3031
3032 PUSHSTACKi(PERLSI_MAGIC);
3033 ENTER;
3034 SAVEHINTS();
3035 save_re_context();
3036 /* We might get here via a subroutine signature which uses a utf8
3037 * parameter name, at which point PL_subname will have been set
3038 * but not yet used. */
3039 save_item(PL_subname);
3040 if (PL_parser && PL_parser->error_count)
3041 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3042 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3043 if (!method) { /* demand load utf8 */
3044 ENTER;
3045 errsv_save = newSVsv(ERRSV);
3046 /* It is assumed that callers of this routine are not passing in
3047 * any user derived data. */
3048 /* Need to do this after save_re_context() as it will set
3049 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3050 * in Perl_magic_get). Even line to create errsv_save can turn on
3051 * PL_tainted. */
3052 SAVEBOOL(PL_tainted);
3053 PL_tainted = 0;
3054 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3055 NULL);
3056 if (!SvTRUE(ERRSV))
3057 sv_setsv(ERRSV, errsv_save);
3058 SvREFCNT_dec(errsv_save);
3059 LEAVE;
3060 }
3061 SPAGAIN;
3062 PUSHMARK(SP);
3063 EXTEND(SP,5);
3064 mPUSHp(pkg, pkg_len);
3065 mPUSHp(name, name_len);
3066 PUSHs(listsv);
3067 mPUSHi(minbits);
3068 mPUSHi(none);
3069 PUTBACK;
3070 errsv_save = newSVsv(ERRSV);
3071 /* If we already have a pointer to the method, no need to use
3072 * call_method() to repeat the lookup. */
3073 if (method ? call_sv(MUTABLE_SV(method), G_SCALAR)
3074 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3075 {
3076 retval = *PL_stack_sp--;
3077 SvREFCNT_inc(retval);
3078 }
3079 if (!SvTRUE(ERRSV))
3080 sv_setsv(ERRSV, errsv_save);
3081 SvREFCNT_dec(errsv_save);
3082 LEAVE;
3083 POPSTACK;
3084 if (IN_PERL_COMPILETIME) {
3085 CopHINTS_set(PL_curcop, PL_hints);
3086 }
3087 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3088 if (SvPOK(retval))
3089
3090 /* If caller wants to handle missing properties, let them */
3091 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3092 return NULL;
3093 }
3094 Perl_croak(aTHX_
3095 "Can't find Unicode property definition \"%"SVf"\"",
3096 SVfARG(retval));
3097 Perl_croak(aTHX_ "SWASHNEW didn't return an HV ref");
3098 }
3099 } /* End of calling the module to find the swash */
3100
3101 /* If this operation fetched a swash, and we will need it later, get it */
3102 if (retval != &PL_sv_undef
3103 && (minbits == 1 || (flags_p
3104 && ! (*flags_p
3105 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3106 {
3107 swash_hv = MUTABLE_HV(SvRV(retval));
3108
3109 /* If we don't already know that there is a user-defined component to
3110 * this swash, and the user has indicated they wish to know if there is
3111 * one (by passing <flags_p>), find out */
3112 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3113 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3114 if (user_defined && SvUV(*user_defined)) {
3115 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3116 }
3117 }
3118 }
3119
3120 /* Make sure there is an inversion list for binary properties */
3121 if (minbits == 1) {
3122 SV** swash_invlistsvp = NULL;
3123 SV* swash_invlist = NULL;
3124 bool invlist_in_swash_is_valid = FALSE;
3125
3126 /* If this operation fetched a swash, get its already existing
3127 * inversion list, or create one for it */
3128
3129 if (swash_hv) {
3130 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3131 if (swash_invlistsvp) {
3132 swash_invlist = *swash_invlistsvp;
3133 invlist_in_swash_is_valid = TRUE;
3134 }
3135 else {
3136 swash_invlist = _swash_to_invlist(retval);
3137 }
3138 }
3139
3140 /* If an inversion list was passed in, have to include it */
3141 if (invlist) {
3142
3143 /* Any fetched swash will by now have an inversion list in it;
3144 * otherwise <swash_invlist> will be NULL, indicating that we
3145 * didn't fetch a swash */
3146 if (swash_invlist) {
3147
3148 /* Add the passed-in inversion list, which invalidates the one
3149 * already stored in the swash */
3150 invlist_in_swash_is_valid = FALSE;
3151 _invlist_union(invlist, swash_invlist, &swash_invlist);
3152 }
3153 else {
3154
3155 /* Here, there is no swash already. Set up a minimal one, if
3156 * we are going to return a swash */
3157 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3158 swash_hv = newHV();
3159 retval = newRV_inc(MUTABLE_SV(swash_hv));
3160 }
3161 swash_invlist = invlist;
3162 }
3163 }
3164
3165 /* Here, we have computed the union of all the passed-in data. It may
3166 * be that there was an inversion list in the swash which didn't get
3167 * touched; otherwise save the one computed one */
3168 if (! invlist_in_swash_is_valid
3169 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3170 {
3171 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
3172 {
3173 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3174 }
3175 }
3176
3177 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3178 SvREFCNT_dec(retval);
3179 retval = newRV_inc(swash_invlist);
3180 }
3181 }
3182
3183 return retval;
3184}
3185
3186
3187/* This API is wrong for special case conversions since we may need to
3188 * return several Unicode characters for a single Unicode character
3189 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3190 * the lower-level routine, and it is similarly broken for returning
3191 * multiple values. --jhi
3192 * For those, you should use to_utf8_case() instead */
3193/* Now SWASHGET is recasted into S_swatch_get in this file. */
3194
3195/* Note:
3196 * Returns the value of property/mapping C<swash> for the first character
3197 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3198 * assumed to be in utf8. If C<do_utf8> is false, the string C<ptr> is
3199 * assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3200 *
3201 * A "swash" is a hash which contains initially the keys/values set up by
3202 * SWASHNEW. The purpose is to be able to completely represent a Unicode
3203 * property for all possible code points. Things are stored in a compact form
3204 * (see utf8_heavy.pl) so that calculation is required to find the actual
3205 * property value for a given code point. As code points are looked up, new
3206 * key/value pairs are added to the hash, so that the calculation doesn't have
3207 * to ever be re-done. Further, each calculation is done, not just for the
3208 * desired one, but for a whole block of code points adjacent to that one.
3209 * For binary properties on ASCII machines, the block is usually for 64 code
3210 * points, starting with a code point evenly divisible by 64. Thus if the
3211 * property value for code point 257 is requested, the code goes out and
3212 * calculates the property values for all 64 code points between 256 and 319,
3213 * and stores these as a single 64-bit long bit vector, called a "swatch",
3214 * under the key for code point 256. The key is the UTF-8 encoding for code
3215 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
3216 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
3217 * for code point 258 is then requested, this code realizes that it would be
3218 * stored under the key for 256, and would find that value and extract the
3219 * relevant bit, offset from 256.
3220 *
3221 * Non-binary properties are stored in as many bits as necessary to represent
3222 * their values (32 currently, though the code is more general than that), not
3223 * as single bits, but the principal is the same: the value for each key is a
3224 * vector that encompasses the property values for all code points whose UTF-8
3225 * representations are represented by the key. That is, for all code points
3226 * whose UTF-8 representations are length N bytes, and the key is the first N-1
3227 * bytes of that.
3228 */
3229UV
3230Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3231{
3232 dVAR;
3233 HV *const hv = MUTABLE_HV(SvRV(swash));
3234 U32 klen;
3235 U32 off;
3236 STRLEN slen;
3237 STRLEN needents;
3238 const U8 *tmps = NULL;
3239 U32 bit;
3240 SV *swatch;
3241 U8 tmputf8[2];
3242 const UV c = NATIVE_TO_ASCII(*ptr);
3243
3244 PERL_ARGS_ASSERT_SWASH_FETCH;
3245
3246 /* If it really isn't a hash, it isn't really swash; must be an inversion
3247 * list */
3248 if (SvTYPE(hv) != SVt_PVHV) {
3249 return _invlist_contains_cp((SV*)hv,
3250 (do_utf8)
3251 ? valid_utf8_to_uvchr(ptr, NULL)
3252 : c);
3253 }
3254
3255 /* Convert to utf8 if not already */
3256 if (!do_utf8 && !UNI_IS_INVARIANT(c)) {
3257 tmputf8[0] = (U8)UTF8_EIGHT_BIT_HI(c);
3258 tmputf8[1] = (U8)UTF8_EIGHT_BIT_LO(c);
3259 ptr = tmputf8;
3260 }
3261 /* Given a UTF-X encoded char 0xAA..0xYY,0xZZ
3262 * then the "swatch" is a vec() for all the chars which start
3263 * with 0xAA..0xYY
3264 * So the key in the hash (klen) is length of encoded char -1
3265 */
3266 klen = UTF8SKIP(ptr) - 1;
3267 off = ptr[klen];
3268
3269 if (klen == 0) {
3270 /* If char is invariant then swatch is for all the invariant chars
3271 * In both UTF-8 and UTF-8-MOD that happens to be UTF_CONTINUATION_MARK
3272 */
3273 needents = UTF_CONTINUATION_MARK;
3274 off = NATIVE_TO_UTF(ptr[klen]);
3275 }
3276 else {
3277 /* If char is encoded then swatch is for the prefix */
3278 needents = (1 << UTF_ACCUMULATION_SHIFT);
3279 off = NATIVE_TO_UTF(ptr[klen]) & UTF_CONTINUATION_MASK;
3280 }
3281
3282 /*
3283 * This single-entry cache saves about 1/3 of the utf8 overhead in test
3284 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3285 * it's nothing to sniff at.) Pity we usually come through at least
3286 * two function calls to get here...
3287 *
3288 * NB: this code assumes that swatches are never modified, once generated!
3289 */
3290
3291 if (hv == PL_last_swash_hv &&
3292 klen == PL_last_swash_klen &&
3293 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3294 {
3295 tmps = PL_last_swash_tmps;
3296 slen = PL_last_swash_slen;
3297 }
3298 else {
3299 /* Try our second-level swatch cache, kept in a hash. */
3300 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3301
3302 /* If not cached, generate it via swatch_get */
3303 if (!svp || !SvPOK(*svp)
3304 || !(tmps = (const U8*)SvPV_const(*svp, slen))) {
3305 /* We use utf8n_to_uvuni() as we want an index into
3306 Unicode tables, not a native character number.
3307 */
3308 const UV code_point = utf8n_to_uvuni(ptr, UTF8_MAXBYTES, 0,
3309 ckWARN(WARN_UTF8) ?
3310 0 : UTF8_ALLOW_ANY);
3311 swatch = swatch_get(swash,
3312 /* On EBCDIC & ~(0xA0-1) isn't a useful thing to do */
3313 (klen) ? (code_point & ~((UV)needents - 1)) : 0,
3314 needents);
3315
3316 if (IN_PERL_COMPILETIME)
3317 CopHINTS_set(PL_curcop, PL_hints);
3318
3319 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3320
3321 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3322 || (slen << 3) < needents)
3323 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3324 "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3325 svp, tmps, (UV)slen, (UV)needents);
3326 }
3327
3328 PL_last_swash_hv = hv;
3329 assert(klen <= sizeof(PL_last_swash_key));
3330 PL_last_swash_klen = (U8)klen;
3331 /* FIXME change interpvar.h? */
3332 PL_last_swash_tmps = (U8 *) tmps;
3333 PL_last_swash_slen = slen;
3334 if (klen)
3335 Copy(ptr, PL_last_swash_key, klen, U8);
3336 }
3337
3338 switch ((int)((slen << 3) / needents)) {
3339 case 1:
3340 bit = 1 << (off & 7);
3341 off >>= 3;
3342 return (tmps[off] & bit) != 0;
3343 case 8:
3344 return tmps[off];
3345 case 16:
3346 off <<= 1;
3347 return (tmps[off] << 8) + tmps[off + 1] ;
3348 case 32:
3349 off <<= 2;
3350 return (tmps[off] << 24) + (tmps[off+1] << 16) + (tmps[off+2] << 8) + tmps[off + 3] ;
3351 }
3352 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3353 "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3354 NORETURN_FUNCTION_END;
3355}
3356
3357/* Read a single line of the main body of the swash input text. These are of
3358 * the form:
3359 * 0053 0056 0073
3360 * where each number is hex. The first two numbers form the minimum and
3361 * maximum of a range, and the third is the value associated with the range.
3362 * Not all swashes should have a third number
3363 *
3364 * On input: l points to the beginning of the line to be examined; it points
3365 * to somewhere in the string of the whole input text, and is
3366 * terminated by a \n or the null string terminator.
3367 * lend points to the null terminator of that string
3368 * wants_value is non-zero if the swash expects a third number
3369 * typestr is the name of the swash's mapping, like 'ToLower'
3370 * On output: *min, *max, and *val are set to the values read from the line.
3371 * returns a pointer just beyond the line examined. If there was no
3372 * valid min number on the line, returns lend+1
3373 */
3374
3375STATIC U8*
3376S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3377 const bool wants_value, const U8* const typestr)
3378{
3379 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3380 STRLEN numlen; /* Length of the number */
3381 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3382 | PERL_SCAN_DISALLOW_PREFIX
3383 | PERL_SCAN_SILENT_NON_PORTABLE;
3384
3385 /* nl points to the next \n in the scan */
3386 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3387
3388 /* Get the first number on the line: the range minimum */
3389 numlen = lend - l;
3390 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3391 if (numlen) /* If found a hex number, position past it */
3392 l += numlen;
3393 else if (nl) { /* Else, go handle next line, if any */
3394 return nl + 1; /* 1 is length of "\n" */
3395 }
3396 else { /* Else, no next line */
3397 return lend + 1; /* to LIST's end at which \n is not found */
3398 }
3399
3400 /* The max range value follows, separated by a BLANK */
3401 if (isBLANK(*l)) {
3402 ++l;
3403 flags = PERL_SCAN_SILENT_ILLDIGIT
3404 | PERL_SCAN_DISALLOW_PREFIX
3405 | PERL_SCAN_SILENT_NON_PORTABLE;
3406 numlen = lend - l;
3407 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3408 if (numlen)
3409 l += numlen;
3410 else /* If no value here, it is a single element range */
3411 *max = *min;
3412
3413 /* Non-binary tables have a third entry: what the first element of the
3414 * range maps to */
3415 if (wants_value) {
3416 if (isBLANK(*l)) {
3417 ++l;
3418
3419 /* The ToLc, etc table mappings are not in hex, and must be
3420 * corrected by adding the code point to them */
3421 if (typeto) {
3422 char *after_strtol = (char *) lend;
3423 *val = Strtol((char *)l, &after_strtol, 10);
3424 l = (U8 *) after_strtol;
3425 }
3426 else { /* Other tables are in hex, and are the correct result
3427 without tweaking */
3428 flags = PERL_SCAN_SILENT_ILLDIGIT
3429 | PERL_SCAN_DISALLOW_PREFIX
3430 | PERL_SCAN_SILENT_NON_PORTABLE;
3431 numlen = lend - l;
3432 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3433 if (numlen)
3434 l += numlen;
3435 else
3436 *val = 0;
3437 }
3438 }
3439 else {
3440 *val = 0;
3441 if (typeto) {
3442 /* diag_listed_as: To%s: illegal mapping '%s' */
3443 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3444 typestr, l);
3445 }
3446 }
3447 }
3448 else
3449 *val = 0; /* bits == 1, then any val should be ignored */
3450 }
3451 else { /* Nothing following range min, should be single element with no
3452 mapping expected */
3453 *max = *min;
3454 if (wants_value) {
3455 *val = 0;
3456 if (typeto) {
3457 /* diag_listed_as: To%s: illegal mapping '%s' */
3458 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3459 }
3460 }
3461 else
3462 *val = 0; /* bits == 1, then val should be ignored */
3463 }
3464
3465 /* Position to next line if any, or EOF */
3466 if (nl)
3467 l = nl + 1;
3468 else
3469 l = lend;
3470
3471 return l;
3472}
3473
3474/* Note:
3475 * Returns a swatch (a bit vector string) for a code point sequence
3476 * that starts from the value C<start> and comprises the number C<span>.
3477 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3478 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3479 */
3480STATIC SV*
3481S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3482{
3483 SV *swatch;
3484 U8 *l, *lend, *x, *xend, *s, *send;
3485 STRLEN lcur, xcur, scur;
3486 HV *const hv = MUTABLE_HV(SvRV(swash));
3487 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3488
3489 SV** listsvp = NULL; /* The string containing the main body of the table */
3490 SV** extssvp = NULL;
3491 SV** invert_it_svp = NULL;
3492 U8* typestr = NULL;
3493 STRLEN bits;
3494 STRLEN octets; /* if bits == 1, then octets == 0 */
3495 UV none;
3496 UV end = start + span;
3497
3498 if (invlistsvp == NULL) {
3499 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3500 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3501 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3502 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3503 listsvp = hv_fetchs(hv, "LIST", FALSE);
3504 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3505
3506 bits = SvUV(*bitssvp);
3507 none = SvUV(*nonesvp);
3508 typestr = (U8*)SvPV_nolen(*typesvp);
3509 }
3510 else {
3511 bits = 1;
3512 none = 0;
3513 }
3514 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3515
3516 PERL_ARGS_ASSERT_SWATCH_GET;
3517
3518 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3519 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3520 (UV)bits);
3521 }
3522
3523 /* If overflowed, use the max possible */
3524 if (end < start) {
3525 end = UV_MAX;
3526 span = end - start;
3527 }
3528
3529 /* create and initialize $swatch */
3530 scur = octets ? (span * octets) : (span + 7) / 8;
3531 swatch = newSV(scur);
3532 SvPOK_on(swatch);
3533 s = (U8*)SvPVX(swatch);
3534 if (octets && none) {
3535 const U8* const e = s + scur;
3536 while (s < e) {
3537 if (bits == 8)
3538 *s++ = (U8)(none & 0xff);
3539 else if (bits == 16) {
3540 *s++ = (U8)((none >> 8) & 0xff);
3541 *s++ = (U8)( none & 0xff);
3542 }
3543 else if (bits == 32) {
3544 *s++ = (U8)((none >> 24) & 0xff);
3545 *s++ = (U8)((none >> 16) & 0xff);
3546 *s++ = (U8)((none >> 8) & 0xff);
3547 *s++ = (U8)( none & 0xff);
3548 }
3549 }
3550 *s = '\0';
3551 }
3552 else {
3553 (void)memzero((U8*)s, scur + 1);
3554 }
3555 SvCUR_set(swatch, scur);
3556 s = (U8*)SvPVX(swatch);
3557
3558 if (invlistsvp) { /* If has an inversion list set up use that */
3559 _invlist_populate_swatch(*invlistsvp, start, end, s);
3560 return swatch;
3561 }
3562
3563 /* read $swash->{LIST} */
3564 l = (U8*)SvPV(*listsvp, lcur);
3565 lend = l + lcur;
3566 while (l < lend) {
3567 UV min, max, val, upper;
3568 l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3569 cBOOL(octets), typestr);
3570 if (l > lend) {
3571 break;
3572 }
3573
3574 /* If looking for something beyond this range, go try the next one */
3575 if (max < start)
3576 continue;
3577
3578 /* <end> is generally 1 beyond where we want to set things, but at the
3579 * platform's infinity, where we can't go any higher, we want to
3580 * include the code point at <end> */
3581 upper = (max < end)
3582 ? max
3583 : (max != UV_MAX || end != UV_MAX)
3584 ? end - 1
3585 : end;
3586
3587 if (octets) {
3588 UV key;
3589 if (min < start) {
3590 if (!none || val < none) {
3591 val += start - min;
3592 }
3593 min = start;
3594 }
3595 for (key = min; key <= upper; key++) {
3596 STRLEN offset;
3597 /* offset must be non-negative (start <= min <= key < end) */
3598 offset = octets * (key - start);
3599 if (bits == 8)
3600 s[offset] = (U8)(val & 0xff);
3601 else if (bits == 16) {
3602 s[offset ] = (U8)((val >> 8) & 0xff);
3603 s[offset + 1] = (U8)( val & 0xff);
3604 }
3605 else if (bits == 32) {
3606 s[offset ] = (U8)((val >> 24) & 0xff);
3607 s[offset + 1] = (U8)((val >> 16) & 0xff);
3608 s[offset + 2] = (U8)((val >> 8) & 0xff);
3609 s[offset + 3] = (U8)( val & 0xff);
3610 }
3611
3612 if (!none || val < none)
3613 ++val;
3614 }
3615 }
3616 else { /* bits == 1, then val should be ignored */
3617 UV key;
3618 if (min < start)
3619 min = start;
3620
3621 for (key = min; key <= upper; key++) {
3622 const STRLEN offset = (STRLEN)(key - start);
3623 s[offset >> 3] |= 1 << (offset & 7);
3624 }
3625 }
3626 } /* while */
3627
3628 /* Invert if the data says it should be. Assumes that bits == 1 */
3629 if (invert_it_svp && SvUV(*invert_it_svp)) {
3630
3631 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3632 * be 0, and their inversion should also be 0, as we don't succeed any
3633 * Unicode property matches for non-Unicode code points */
3634 if (start <= PERL_UNICODE_MAX) {
3635
3636 /* The code below assumes that we never cross the
3637 * Unicode/above-Unicode boundary in a range, as otherwise we would
3638 * have to figure out where to stop flipping the bits. Since this
3639 * boundary is divisible by a large power of 2, and swatches comes
3640 * in small powers of 2, this should be a valid assumption */
3641 assert(start + span - 1 <= PERL_UNICODE_MAX);
3642
3643 send = s + scur;
3644 while (s < send) {
3645 *s = ~(*s);
3646 s++;
3647 }
3648 }
3649 }
3650
3651 /* read $swash->{EXTRAS}
3652 * This code also copied to swash_to_invlist() below */
3653 x = (U8*)SvPV(*extssvp, xcur);
3654 xend = x + xcur;
3655 while (x < xend) {
3656 STRLEN namelen;
3657 U8 *namestr;
3658 SV** othersvp;
3659 HV* otherhv;
3660 STRLEN otherbits;
3661 SV **otherbitssvp, *other;
3662 U8 *s, *o, *nl;
3663 STRLEN slen, olen;
3664
3665 const U8 opc = *x++;
3666 if (opc == '\n')
3667 continue;
3668
3669 nl = (U8*)memchr(x, '\n', xend - x);
3670
3671 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3672 if (nl) {
3673 x = nl + 1; /* 1 is length of "\n" */
3674 continue;
3675 }
3676 else {
3677 x = xend; /* to EXTRAS' end at which \n is not found */
3678 break;
3679 }
3680 }
3681
3682 namestr = x;
3683 if (nl) {
3684 namelen = nl - namestr;
3685 x = nl + 1;
3686 }
3687 else {
3688 namelen = xend - namestr;
3689 x = xend;
3690 }
3691
3692 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3693 otherhv = MUTABLE_HV(SvRV(*othersvp));
3694 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3695 otherbits = (STRLEN)SvUV(*otherbitssvp);
3696 if (bits < otherbits)
3697 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3698 "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3699
3700 /* The "other" swatch must be destroyed after. */
3701 other = swatch_get(*othersvp, start, span);
3702 o = (U8*)SvPV(other, olen);
3703
3704 if (!olen)
3705 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3706
3707 s = (U8*)SvPV(swatch, slen);
3708 if (bits == 1 && otherbits == 1) {
3709 if (slen != olen)
3710 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3711 "mismatch, slen=%"UVuf", olen=%"UVuf,
3712 (UV)slen, (UV)olen);
3713
3714 switch (opc) {
3715 case '+':
3716 while (slen--)
3717 *s++ |= *o++;
3718 break;
3719 case '!':
3720 while (slen--)
3721 *s++ |= ~*o++;
3722 break;
3723 case '-':
3724 while (slen--)
3725 *s++ &= ~*o++;
3726 break;
3727 case '&':
3728 while (slen--)
3729 *s++ &= *o++;
3730 break;
3731 default:
3732 break;
3733 }
3734 }
3735 else {
3736 STRLEN otheroctets = otherbits >> 3;
3737 STRLEN offset = 0;
3738 U8* const send = s + slen;
3739
3740 while (s < send) {
3741 UV otherval = 0;
3742
3743 if (otherbits == 1) {
3744 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
3745 ++offset;
3746 }
3747 else {
3748 STRLEN vlen = otheroctets;
3749 otherval = *o++;
3750 while (--vlen) {
3751 otherval <<= 8;
3752 otherval |= *o++;
3753 }
3754 }
3755
3756 if (opc == '+' && otherval)
3757 NOOP; /* replace with otherval */
3758 else if (opc == '!' && !otherval)
3759 otherval = 1;
3760 else if (opc == '-' && otherval)
3761 otherval = 0;
3762 else if (opc == '&' && !otherval)
3763 otherval = 0;
3764 else {
3765 s += octets; /* no replacement */
3766 continue;
3767 }
3768
3769 if (bits == 8)
3770 *s++ = (U8)( otherval & 0xff);
3771 else if (bits == 16) {
3772 *s++ = (U8)((otherval >> 8) & 0xff);
3773 *s++ = (U8)( otherval & 0xff);
3774 }
3775 else if (bits == 32) {
3776 *s++ = (U8)((otherval >> 24) & 0xff);
3777 *s++ = (U8)((otherval >> 16) & 0xff);
3778 *s++ = (U8)((otherval >> 8) & 0xff);
3779 *s++ = (U8)( otherval & 0xff);
3780 }
3781 }
3782 }
3783 sv_free(other); /* through with it! */
3784 } /* while */
3785 return swatch;
3786}
3787
3788HV*
3789Perl__swash_inversion_hash(pTHX_ SV* const swash)
3790{
3791
3792 /* Subject to change or removal. For use only in one place in regcomp.c.
3793 * Can't be used on a property that is subject to user override, as it
3794 * relies on the value of SPECIALS in the swash which would be set by
3795 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
3796 * for overridden properties
3797 *
3798 * Returns a hash which is the inversion and closure of a swash mapping.
3799 * For example, consider the input lines:
3800 * 004B 006B
3801 * 004C 006C
3802 * 212A 006B
3803 *
3804 * The returned hash would have two keys, the utf8 for 006B and the utf8 for
3805 * 006C. The value for each key is an array. For 006C, the array would
3806 * have a two elements, the utf8 for itself, and for 004C. For 006B, there
3807 * would be three elements in its array, the utf8 for 006B, 004B and 212A.
3808 *
3809 * Essentially, for any code point, it gives all the code points that map to
3810 * it, or the list of 'froms' for that point.
3811 *
3812 * Currently it ignores any additions or deletions from other swashes,
3813 * looking at just the main body of the swash, and if there are SPECIALS
3814 * in the swash, at that hash
3815 *
3816 * The specials hash can be extra code points, and most likely consists of
3817 * maps from single code points to multiple ones (each expressed as a string
3818 * of utf8 characters). This function currently returns only 1-1 mappings.
3819 * However consider this possible input in the specials hash:
3820 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
3821 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
3822 *
3823 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
3824 * currently handle. But it also means that FB05 and FB06 are equivalent in
3825 * a 1-1 mapping which we should handle, and this relationship may not be in
3826 * the main table. Therefore this function examines all the multi-char
3827 * sequences and adds the 1-1 mappings that come out of that. */
3828
3829 U8 *l, *lend;
3830 STRLEN lcur;
3831 HV *const hv = MUTABLE_HV(SvRV(swash));
3832
3833 /* The string containing the main body of the table */
3834 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
3835
3836 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3837 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3838 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3839 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
3840 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
3841 const STRLEN bits = SvUV(*bitssvp);
3842 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
3843 const UV none = SvUV(*nonesvp);
3844 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
3845
3846 HV* ret = newHV();
3847
3848 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
3849
3850 /* Must have at least 8 bits to get the mappings */
3851 if (bits != 8 && bits != 16 && bits != 32) {
3852 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
3853 (UV)bits);
3854 }
3855
3856 if (specials_p) { /* It might be "special" (sometimes, but not always, a
3857 mapping to more than one character */
3858
3859 /* Construct an inverse mapping hash for the specials */
3860 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
3861 HV * specials_inverse = newHV();
3862 char *char_from; /* the lhs of the map */
3863 I32 from_len; /* its byte length */
3864 char *char_to; /* the rhs of the map */
3865 I32 to_len; /* its byte length */
3866 SV *sv_to; /* and in a sv */
3867 AV* from_list; /* list of things that map to each 'to' */
3868
3869 hv_iterinit(specials_hv);
3870
3871 /* The keys are the characters (in utf8) that map to the corresponding
3872 * utf8 string value. Iterate through the list creating the inverse
3873 * list. */
3874 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
3875 SV** listp;
3876 if (! SvPOK(sv_to)) {
3877 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
3878 "unexpectedly is not a string, flags=%lu",
3879 (unsigned long)SvFLAGS(sv_to));
3880 }
3881 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
3882
3883 /* Each key in the inverse list is a mapped-to value, and the key's
3884 * hash value is a list of the strings (each in utf8) that map to
3885 * it. Those strings are all one character long */
3886 if ((listp = hv_fetch(specials_inverse,
3887 SvPVX(sv_to),
3888 SvCUR(sv_to), 0)))
3889 {
3890 from_list = (AV*) *listp;
3891 }
3892 else { /* No entry yet for it: create one */
3893 from_list = newAV();
3894 if (! hv_store(specials_inverse,
3895 SvPVX(sv_to),
3896 SvCUR(sv_to),
3897 (SV*) from_list, 0))
3898 {
3899 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3900 }
3901 }
3902
3903 /* Here have the list associated with this 'to' (perhaps newly
3904 * created and empty). Just add to it. Note that we ASSUME that
3905 * the input is guaranteed to not have duplications, so we don't
3906 * check for that. Duplications just slow down execution time. */
3907 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
3908 }
3909
3910 /* Here, 'specials_inverse' contains the inverse mapping. Go through
3911 * it looking for cases like the FB05/FB06 examples above. There would
3912 * be an entry in the hash like
3913 * 'st' => [ FB05, FB06 ]
3914 * In this example we will create two lists that get stored in the
3915 * returned hash, 'ret':
3916 * FB05 => [ FB05, FB06 ]
3917 * FB06 => [ FB05, FB06 ]
3918 *
3919 * Note that there is nothing to do if the array only has one element.
3920 * (In the normal 1-1 case handled below, we don't have to worry about
3921 * two lists, as everything gets tied to the single list that is
3922 * generated for the single character 'to'. But here, we are omitting
3923 * that list, ('st' in the example), so must have multiple lists.) */
3924 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
3925 &char_to, &to_len)))
3926 {
3927 if (av_len(from_list) > 0) {
3928 int i;
3929
3930 /* We iterate over all combinations of i,j to place each code
3931 * point on each list */
3932 for (i = 0; i <= av_len(from_list); i++) {
3933 int j;
3934 AV* i_list = newAV();
3935 SV** entryp = av_fetch(from_list, i, FALSE);
3936 if (entryp == NULL) {
3937 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3938 }
3939 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
3940 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
3941 }
3942 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
3943 (SV*) i_list, FALSE))
3944 {
3945 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3946 }
3947
3948 /* For debugging: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
3949 for (j = 0; j <= av_len(from_list); j++) {
3950 entryp = av_fetch(from_list, j, FALSE);
3951 if (entryp == NULL) {
3952 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3953 }
3954
3955 /* When i==j this adds itself to the list */
3956 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
3957 (U8*) SvPVX(*entryp),
3958 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
3959 0)));
3960 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
3961 }
3962 }
3963 }
3964 }
3965 SvREFCNT_dec(specials_inverse); /* done with it */
3966 } /* End of specials */
3967
3968 /* read $swash->{LIST} */
3969 l = (U8*)SvPV(*listsvp, lcur);
3970 lend = l + lcur;
3971
3972 /* Go through each input line */
3973 while (l < lend) {
3974 UV min, max, val;
3975 UV inverse;
3976 l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3977 cBOOL(octets), typestr);
3978 if (l > lend) {
3979 break;
3980 }
3981
3982 /* Each element in the range is to be inverted */
3983 for (inverse = min; inverse <= max; inverse++) {
3984 AV* list;
3985 SV** listp;
3986 IV i;
3987 bool found_key = FALSE;
3988 bool found_inverse = FALSE;
3989
3990 /* The key is the inverse mapping */
3991 char key[UTF8_MAXBYTES+1];
3992 char* key_end = (char *) uvuni_to_utf8((U8*) key, val);
3993 STRLEN key_len = key_end - key;
3994
3995 /* Get the list for the map */
3996 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
3997 list = (AV*) *listp;
3998 }
3999 else { /* No entry yet for it: create one */
4000 list = newAV();
4001 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
4002 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4003 }
4004 }
4005
4006 /* Look through list to see if this inverse mapping already is
4007 * listed, or if there is a mapping to itself already */
4008 for (i = 0; i <= av_len(list); i++) {
4009 SV** entryp = av_fetch(list, i, FALSE);
4010 SV* entry;
4011 if (entryp == NULL) {
4012 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4013 }
4014 entry = *entryp;
4015 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, SvUV(entry)));*/
4016 if (SvUV(entry) == val) {
4017 found_key = TRUE;
4018 }
4019 if (SvUV(entry) == inverse) {
4020 found_inverse = TRUE;
4021 }
4022
4023 /* No need to continue searching if found everything we are
4024 * looking for */
4025 if (found_key && found_inverse) {
4026 break;
4027 }
4028 }
4029
4030 /* Make sure there is a mapping to itself on the list */
4031 if (! found_key) {
4032 av_push(list, newSVuv(val));
4033 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
4034 }
4035
4036
4037 /* Simply add the value to the list */
4038 if (! found_inverse) {
4039 av_push(list, newSVuv(inverse));
4040 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
4041 }
4042
4043 /* swatch_get() increments the value of val for each element in the
4044 * range. That makes more compact tables possible. You can
4045 * express the capitalization, for example, of all consecutive
4046 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
4047 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
4048 * and it's not documented; it appears to be used only in
4049 * implementing tr//; I copied the semantics from swatch_get(), just
4050 * in case */
4051 if (!none || val < none) {
4052 ++val;
4053 }
4054 }
4055 }
4056
4057 return ret;
4058}
4059
4060SV*
4061Perl__swash_to_invlist(pTHX_ SV* const swash)
4062{
4063
4064 /* Subject to change or removal. For use only in one place in regcomp.c */
4065
4066 U8 *l, *lend;
4067 char *loc;
4068 STRLEN lcur;
4069 HV *const hv = MUTABLE_HV(SvRV(swash));
4070 UV elements = 0; /* Number of elements in the inversion list */
4071 U8 empty[] = "";
4072
4073 /* The string containing the main body of the table */
4074 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
4075 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4076 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4077 SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4078 SV** const invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4079
4080 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
4081 const STRLEN bits = SvUV(*bitssvp);
4082 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
4083 U8 *x, *xend;
4084 STRLEN xcur;
4085
4086 SV* invlist;
4087
4088 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
4089
4090 /* read $swash->{LIST} */
4091 if (SvPOK(*listsvp)) {
4092 l = (U8*)SvPV(*listsvp, lcur);
4093 }
4094 else {
4095 /* LIST legitimately doesn't contain a string during compilation phases
4096 * of Perl itself, before the Unicode tables are generated. In this
4097 * case, just fake things up by creating an empty list */
4098 l = empty;
4099 lcur = 0;
4100 }
4101 loc = (char *) l;
4102 lend = l + lcur;
4103
4104 /* Scan the input to count the number of lines to preallocate array size
4105 * based on worst possible case, which is each line in the input creates 2
4106 * elements in the inversion list: 1) the beginning of a range in the list;
4107 * 2) the beginning of a range not in the list. */
4108 while ((loc = (strchr(loc, '\n'))) != NULL) {
4109 elements += 2;
4110 loc++;
4111 }
4112
4113 /* If the ending is somehow corrupt and isn't a new line, add another
4114 * element for the final range that isn't in the inversion list */
4115 if (! (*lend == '\n'
4116 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
4117 {
4118 elements++;
4119 }
4120
4121 invlist = _new_invlist(elements);
4122
4123 /* Now go through the input again, adding each range to the list */
4124 while (l < lend) {
4125 UV start, end;
4126 UV val; /* Not used by this function */
4127
4128 l = S_swash_scan_list_line(aTHX_ l, lend, &start, &end, &val,
4129 cBOOL(octets), typestr);
4130
4131 if (l > lend) {
4132 break;
4133 }
4134
4135 invlist = _add_range_to_invlist(invlist, start, end);
4136 }
4137
4138 /* Invert if the data says it should be */
4139 if (invert_it_svp && SvUV(*invert_it_svp)) {
4140 _invlist_invert_prop(invlist);
4141 }
4142
4143 /* This code is copied from swatch_get()
4144 * read $swash->{EXTRAS} */
4145 x = (U8*)SvPV(*extssvp, xcur);
4146 xend = x + xcur;
4147 while (x < xend) {
4148 STRLEN namelen;
4149 U8 *namestr;
4150 SV** othersvp;
4151 HV* otherhv;
4152 STRLEN otherbits;
4153 SV **otherbitssvp, *other;
4154 U8 *nl;
4155
4156 const U8 opc = *x++;
4157 if (opc == '\n')
4158 continue;
4159
4160 nl = (U8*)memchr(x, '\n', xend - x);
4161
4162 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4163 if (nl) {
4164 x = nl + 1; /* 1 is length of "\n" */
4165 continue;
4166 }
4167 else {
4168 x = xend; /* to EXTRAS' end at which \n is not found */
4169 break;
4170 }
4171 }
4172
4173 namestr = x;
4174 if (nl) {
4175 namelen = nl - namestr;
4176 x = nl + 1;
4177 }
4178 else {
4179 namelen = xend - namestr;
4180 x = xend;
4181 }
4182
4183 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4184 otherhv = MUTABLE_HV(SvRV(*othersvp));
4185 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4186 otherbits = (STRLEN)SvUV(*otherbitssvp);
4187
4188 if (bits != otherbits || bits != 1) {
4189 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
4190 "properties, bits=%"UVuf", otherbits=%"UVuf,
4191 (UV)bits, (UV)otherbits);
4192 }
4193
4194 /* The "other" swatch must be destroyed after. */
4195 other = _swash_to_invlist((SV *)*othersvp);
4196
4197 /* End of code copied from swatch_get() */
4198 switch (opc) {
4199 case '+':
4200 _invlist_union(invlist, other, &invlist);
4201 break;
4202 case '!':
4203 _invlist_invert(other);
4204 _invlist_union(invlist, other, &invlist);
4205 break;
4206 case '-':
4207 _invlist_subtract(invlist, other, &invlist);
4208 break;
4209 case '&':
4210 _invlist_intersection(invlist, other, &invlist);
4211 break;
4212 default:
4213 break;
4214 }
4215 sv_free(other); /* through with it! */
4216 }
4217
4218 return invlist;
4219}
4220
4221SV*
4222Perl__get_swash_invlist(pTHX_ SV* const swash)
4223{
4224 SV** ptr;
4225
4226 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
4227
4228 if (! SvROK(swash)) {
4229 return NULL;
4230 }
4231
4232 /* If it really isn't a hash, it isn't really swash; must be an inversion
4233 * list */
4234 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
4235 return SvRV(swash);
4236 }
4237
4238 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
4239 if (! ptr) {
4240 return NULL;
4241 }
4242
4243 return *ptr;
4244}
4245
4246/*
4247=for apidoc uvchr_to_utf8
4248
4249Adds the UTF-8 representation of the Native code point C<uv> to the end
4250of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
4251bytes available. The return value is the pointer to the byte after the
4252end of the new character. In other words,
4253
4254 d = uvchr_to_utf8(d, uv);
4255
4256is the recommended wide native character-aware way of saying
4257
4258 *(d++) = uv;
4259
4260=cut
4261*/
4262
4263/* On ASCII machines this is normally a macro but we want a
4264 real function in case XS code wants it
4265*/
4266U8 *
4267Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
4268{
4269 PERL_ARGS_ASSERT_UVCHR_TO_UTF8;
4270
4271 return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), 0);
4272}
4273
4274U8 *
4275Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
4276{
4277 PERL_ARGS_ASSERT_UVCHR_TO_UTF8_FLAGS;
4278
4279 return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), flags);
4280}
4281
4282/*
4283=for apidoc utf8n_to_uvchr
4284
4285Returns the native character value of the first character in the string
4286C<s>
4287which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
4288length, in bytes, of that character.
4289
4290C<length> and C<flags> are the same as L</utf8n_to_uvuni>().
4291
4292=cut
4293*/
4294/* On ASCII machines this is normally a macro but we want
4295 a real function in case XS code wants it
4296*/
4297UV
4298Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen,
4299U32 flags)
4300{
4301 const UV uv = Perl_utf8n_to_uvuni(aTHX_ s, curlen, retlen, flags);
4302
4303 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
4304
4305 return UNI_TO_NATIVE(uv);
4306}
4307
4308bool
4309Perl_check_utf8_print(pTHX_ register const U8* s, const STRLEN len)
4310{
4311 /* May change: warns if surrogates, non-character code points, or
4312 * non-Unicode code points are in s which has length len bytes. Returns
4313 * TRUE if none found; FALSE otherwise. The only other validity check is
4314 * to make sure that this won't exceed the string's length */
4315
4316 const U8* const e = s + len;
4317 bool ok = TRUE;
4318
4319 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4320
4321 while (s < e) {
4322 if (UTF8SKIP(s) > len) {
4323 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4324 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4325 return FALSE;
4326 }
4327 if (UNLIKELY(*s >= UTF8_FIRST_PROBLEMATIC_CODE_POINT_FIRST_BYTE)) {
4328 STRLEN char_len;
4329 if (UTF8_IS_SUPER(s)) {
4330 if (ckWARN_d(WARN_NON_UNICODE)) {
4331 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4332 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
4333 "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
4334 ok = FALSE;
4335 }
4336 }
4337 else if (UTF8_IS_SURROGATE(s)) {
4338 if (ckWARN_d(WARN_SURROGATE)) {
4339 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4340 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4341 "Unicode surrogate U+%04"UVXf" is illegal in UTF-8", uv);
4342 ok = FALSE;
4343 }
4344 }
4345 else if
4346 ((UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s))
4347 && (ckWARN_d(WARN_NONCHAR)))
4348 {
4349 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4350 Perl_warner(aTHX_ packWARN(WARN_NONCHAR),
4351 "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv);
4352 ok = FALSE;
4353 }
4354 }
4355 s += UTF8SKIP(s);
4356 }
4357
4358 return ok;
4359}
4360
4361/*
4362=for apidoc pv_uni_display
4363
4364Build to the scalar C<dsv> a displayable version of the string C<spv>,
4365length C<len>, the displayable version being at most C<pvlim> bytes long
4366(if longer, the rest is truncated and "..." will be appended).
4367
4368The C<flags> argument can have UNI_DISPLAY_ISPRINT set to display
4369isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH
4370to display the \\[nrfta\\] as the backslashed versions (like '\n')
4371(UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\).
4372UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both
4373UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
4374
4375The pointer to the PV of the C<dsv> is returned.
4376
4377=cut */
4378char *
4379Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
4380{
4381 int truncated = 0;
4382 const char *s, *e;
4383
4384 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4385
4386 sv_setpvs(dsv, "");
4387 SvUTF8_off(dsv);
4388 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4389 UV u;
4390 /* This serves double duty as a flag and a character to print after
4391 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4392 */
4393 char ok = 0;
4394
4395 if (pvlim && SvCUR(dsv) >= pvlim) {
4396 truncated++;
4397 break;
4398 }
4399 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4400 if (u < 256) {
4401 const unsigned char c = (unsigned char)u & 0xFF;
4402 if (flags & UNI_DISPLAY_BACKSLASH) {
4403 switch (c) {
4404 case '\n':
4405 ok = 'n'; break;
4406 case '\r':
4407 ok = 'r'; break;
4408 case '\t':
4409 ok = 't'; break;
4410 case '\f':
4411 ok = 'f'; break;
4412 case '\a':
4413 ok = 'a'; break;
4414 case '\\':
4415 ok = '\\'; break;
4416 default: break;
4417 }
4418 if (ok) {
4419 const char string = ok;
4420 sv_catpvs(dsv, "\\");
4421 sv_catpvn(dsv, &string, 1);
4422 }
4423 }
4424 /* isPRINT() is the locale-blind version. */
4425 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4426 const char string = c;
4427 sv_catpvn(dsv, &string, 1);
4428 ok = 1;
4429 }
4430 }
4431 if (!ok)
4432 Perl_sv_catpvf(aTHX_ dsv, "\\x{%"UVxf"}", u);
4433 }
4434 if (truncated)
4435 sv_catpvs(dsv, "...");
4436
4437 return SvPVX(dsv);
4438}
4439
4440/*
4441=for apidoc sv_uni_display
4442
4443Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4444the displayable version being at most C<pvlim> bytes long
4445(if longer, the rest is truncated and "..." will be appended).
4446
4447The C<flags> argument is as in L</pv_uni_display>().
4448
4449The pointer to the PV of the C<dsv> is returned.
4450
4451=cut
4452*/
4453char *
4454Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4455{
4456 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4457
4458 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)SvPVX_const(ssv),
4459 SvCUR(ssv), pvlim, flags);
4460}
4461
4462/*
4463=for apidoc foldEQ_utf8
4464
4465Returns true if the leading portions of the strings C<s1> and C<s2> (either or both
4466of which may be in UTF-8) are the same case-insensitively; false otherwise.
4467How far into the strings to compare is determined by other input parameters.
4468
4469If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4470otherwise it is assumed to be in native 8-bit encoding. Correspondingly for C<u2>
4471with respect to C<s2>.
4472
4473If the byte length C<l1> is non-zero, it says how far into C<s1> to check for fold
4474equality. In other words, C<s1>+C<l1> will be used as a goal to reach. The
4475scan will not be considered to be a match unless the goal is reached, and
4476scanning won't continue past that goal. Correspondingly for C<l2> with respect to
4477C<s2>.
4478
4479If C<pe1> is non-NULL and the pointer it points to is not NULL, that pointer is
4480considered an end pointer beyond which scanning of C<s1> will not continue under
4481any circumstances. This means that if both C<l1> and C<pe1> are specified, and
4482C<pe1>
4483is less than C<s1>+C<l1>, the match will never be successful because it can
4484never
4485get as far as its goal (and in fact is asserted against). Correspondingly for
4486C<pe2> with respect to C<s2>.
4487
4488At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4489C<l2> must be non-zero), and if both do, both have to be
4490reached for a successful match. Also, if the fold of a character is multiple
4491characters, all of them must be matched (see tr21 reference below for
4492'folding').
4493
4494Upon a successful match, if C<pe1> is non-NULL,
4495it will be set to point to the beginning of the I<next> character of C<s1>
4496beyond what was matched. Correspondingly for C<pe2> and C<s2>.
4497
4498For case-insensitiveness, the "casefolding" of Unicode is used
4499instead of upper/lowercasing both the characters, see
4500L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4501
4502=cut */
4503
4504/* A flags parameter has been added which may change, and hence isn't
4505 * externally documented. Currently it is:
4506 * 0 for as-documented above
4507 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4508 ASCII one, to not match
4509 * FOLDEQ_UTF8_LOCALE meaning that locale rules are to be used for code
4510 * points below 256; unicode rules for above 255; and
4511 * folds that cross those boundaries are disallowed,
4512 * like the NOMIX_ASCII option
4513 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4514 * routine. This allows that step to be skipped.
4515 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
4516 */
4517I32
4518Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, register UV l1, bool u1, const char *s2, char **pe2, register UV l2, bool u2, U32 flags)
4519{
4520 dVAR;
4521 const U8 *p1 = (const U8*)s1; /* Point to current char */
4522 const U8 *p2 = (const U8*)s2;
4523 const U8 *g1 = NULL; /* goal for s1 */
4524 const U8 *g2 = NULL;
4525 const U8 *e1 = NULL; /* Don't scan s1 past this */
4526 U8 *f1 = NULL; /* Point to current folded */
4527 const U8 *e2 = NULL;
4528 U8 *f2 = NULL;
4529 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
4530 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4531 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4532
4533 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4534
4535 /* The algorithm requires that input with the flags on the first line of
4536 * the assert not be pre-folded. */
4537 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_UTF8_LOCALE))
4538 && (flags & (FOLDEQ_S1_ALREADY_FOLDED | FOLDEQ_S2_ALREADY_FOLDED))));
4539
4540 if (pe1) {
4541 e1 = *(U8**)pe1;
4542 }
4543
4544 if (l1) {
4545 g1 = (const U8*)s1 + l1;
4546 }
4547
4548 if (pe2) {
4549 e2 = *(U8**)pe2;
4550 }
4551
4552 if (l2) {
4553 g2 = (const U8*)s2 + l2;
4554 }
4555
4556 /* Must have at least one goal */
4557 assert(g1 || g2);
4558
4559 if (g1) {
4560
4561 /* Will never match if goal is out-of-bounds */
4562 assert(! e1 || e1 >= g1);
4563
4564 /* Here, there isn't an end pointer, or it is beyond the goal. We
4565 * only go as far as the goal */
4566 e1 = g1;
4567 }
4568 else {
4569 assert(e1); /* Must have an end for looking at s1 */
4570 }
4571
4572 /* Same for goal for s2 */
4573 if (g2) {
4574 assert(! e2 || e2 >= g2);
4575 e2 = g2;
4576 }
4577 else {
4578 assert(e2);
4579 }
4580
4581 /* If both operands are already folded, we could just do a memEQ on the
4582 * whole strings at once, but it would be better if the caller realized
4583 * this and didn't even call us */
4584
4585 /* Look through both strings, a character at a time */
4586 while (p1 < e1 && p2 < e2) {
4587
4588 /* If at the beginning of a new character in s1, get its fold to use
4589 * and the length of the fold. (exception: locale rules just get the
4590 * character to a single byte) */
4591 if (n1 == 0) {
4592 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4593 f1 = (U8 *) p1;
4594 n1 = UTF8SKIP(f1);
4595 }
4596
4597 else {
4598 /* If in locale matching, we use two sets of rules, depending
4599 * on if the code point is above or below 255. Here, we test
4600 * for and handle locale rules */
4601 if ((flags & FOLDEQ_UTF8_LOCALE)
4602 && (! u1 || UTF8_IS_INVARIANT(*p1)
4603 || UTF8_IS_DOWNGRADEABLE_START(*p1)))
4604 {
4605 /* There is no mixing of code points above and below 255. */
4606 if (u2 && (! UTF8_IS_INVARIANT(*p2)
4607 && ! UTF8_IS_DOWNGRADEABLE_START(*p2)))
4608 {
4609 return 0;
4610 }
4611
4612 /* We handle locale rules by converting, if necessary, the
4613 * code point to a single byte. */
4614 if (! u1 || UTF8_IS_INVARIANT(*p1)) {
4615 *foldbuf1 = *p1;
4616 }
4617 else {
4618 *foldbuf1 = TWO_BYTE_UTF8_TO_UNI(*p1, *(p1 + 1));
4619 }
4620 n1 = 1;
4621 }
4622 else if (isASCII(*p1)) { /* Note, that here won't be both
4623 ASCII and using locale rules */
4624
4625 /* If trying to mix non- with ASCII, and not supposed to,
4626 * fail */
4627 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4628 return 0;
4629 }
4630 n1 = 1;
4631 *foldbuf1 = toLOWER(*p1); /* Folds in the ASCII range are
4632 just lowercased */
4633 }
4634 else if (u1) {
4635 to_utf8_fold(p1, foldbuf1, &n1);
4636 }
4637 else { /* Not utf8, get utf8 fold */
4638 to_uni_fold(NATIVE_TO_UNI(*p1), foldbuf1, &n1);
4639 }
4640 f1 = foldbuf1;
4641 }
4642 }
4643
4644 if (n2 == 0) { /* Same for s2 */
4645 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4646 f2 = (U8 *) p2;
4647 n2 = UTF8SKIP(f2);
4648 }
4649 else {
4650 if ((flags & FOLDEQ_UTF8_LOCALE)
4651 && (! u2 || UTF8_IS_INVARIANT(*p2) || UTF8_IS_DOWNGRADEABLE_START(*p2)))
4652 {
4653 /* Here, the next char in s2 is < 256. We've already
4654 * worked on s1, and if it isn't also < 256, can't match */
4655 if (u1 && (! UTF8_IS_INVARIANT(*p1)
4656 && ! UTF8_IS_DOWNGRADEABLE_START(*p1)))
4657 {
4658 return 0;
4659 }
4660 if (! u2 || UTF8_IS_INVARIANT(*p2)) {
4661 *foldbuf2 = *p2;
4662 }
4663 else {
4664 *foldbuf2 = TWO_BYTE_UTF8_TO_UNI(*p2, *(p2 + 1));
4665 }
4666
4667 /* Use another function to handle locale rules. We've made
4668 * sure that both characters to compare are single bytes */
4669 if (! foldEQ_locale((char *) f1, (char *) foldbuf2, 1)) {
4670 return 0;
4671 }
4672 n1 = n2 = 0;
4673 }
4674 else if (isASCII(*p2)) {
4675 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4676 return 0;
4677 }
4678 n2 = 1;
4679 *foldbuf2 = toLOWER(*p2);
4680 }
4681 else if (u2) {
4682 to_utf8_fold(p2, foldbuf2, &n2);
4683 }
4684 else {
4685 to_uni_fold(NATIVE_TO_UNI(*p2), foldbuf2, &n2);
4686 }
4687 f2 = foldbuf2;
4688 }
4689 }
4690
4691 /* Here f1 and f2 point to the beginning of the strings to compare.
4692 * These strings are the folds of the next character from each input
4693 * string, stored in utf8. */
4694
4695 /* While there is more to look for in both folds, see if they
4696 * continue to match */
4697 while (n1 && n2) {
4698 U8 fold_length = UTF8SKIP(f1);
4699 if (fold_length != UTF8SKIP(f2)
4700 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4701 function call for single
4702 byte */
4703 || memNE((char*)f1, (char*)f2, fold_length))
4704 {
4705 return 0; /* mismatch */
4706 }
4707
4708 /* Here, they matched, advance past them */
4709 n1 -= fold_length;
4710 f1 += fold_length;
4711 n2 -= fold_length;
4712 f2 += fold_length;
4713 }
4714
4715 /* When reach the end of any fold, advance the input past it */
4716 if (n1 == 0) {
4717 p1 += u1 ? UTF8SKIP(p1) : 1;
4718 }
4719 if (n2 == 0) {
4720 p2 += u2 ? UTF8SKIP(p2) : 1;
4721 }
4722 } /* End of loop through both strings */
4723
4724 /* A match is defined by each scan that specified an explicit length
4725 * reaching its final goal, and the other not having matched a partial
4726 * character (which can happen when the fold of a character is more than one
4727 * character). */
4728 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4729 return 0;
4730 }
4731
4732 /* Successful match. Set output pointers */
4733 if (pe1) {
4734 *pe1 = (char*)p1;
4735 }
4736 if (pe2) {
4737 *pe2 = (char*)p2;
4738 }
4739 return 1;
4740}
4741
4742/*
4743 * Local variables:
4744 * c-indentation-style: bsd
4745 * c-basic-offset: 4
4746 * indent-tabs-mode: nil
4747 * End:
4748 *
4749 * ex: set ts=8 sts=4 sw=4 et:
4750 */