This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
add missing section on sub typeglobs to perl275delta
[perl5.git] / utf8.c
... / ...
CommitLineData
1/* utf8.c
2 *
3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
15 *
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17 *
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
22 *
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24 *
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
27 *
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29 */
30
31#include "EXTERN.h"
32#define PERL_IN_UTF8_C
33#include "perl.h"
34#include "invlist_inline.h"
35
36static const char malformed_text[] = "Malformed UTF-8 character";
37static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39static const char cp_above_legal_max[] =
40 "Use of code point 0x%" UVXf " is not allowed; the"
41 " permissible max is 0x%" UVXf;
42
43#define MAX_EXTERNALLY_LEGAL_CP ((UV) (IV_MAX))
44
45/*
46=head1 Unicode Support
47These are various utility functions for manipulating UTF8-encoded
48strings. For the uninitiated, this is a method of representing arbitrary
49Unicode characters as a variable number of bytes, in such a way that
50characters in the ASCII range are unmodified, and a zero byte never appears
51within non-zero characters.
52
53=cut
54*/
55
56void
57Perl__force_out_malformed_utf8_message(pTHX_
58 const U8 *const p, /* First byte in UTF-8 sequence */
59 const U8 * const e, /* Final byte in sequence (may include
60 multiple chars */
61 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
62 usually 0, or some DISALLOW flags */
63 const bool die_here) /* If TRUE, this function does not return */
64{
65 /* This core-only function is to be called when a malformed UTF-8 character
66 * is found, in order to output the detailed information about the
67 * malformation before dieing. The reason it exists is for the occasions
68 * when such a malformation is fatal, but warnings might be turned off, so
69 * that normally they would not be actually output. This ensures that they
70 * do get output. Because a sequence may be malformed in more than one
71 * way, multiple messages may be generated, so we can't make them fatal, as
72 * that would cause the first one to die.
73 *
74 * Instead we pretend -W was passed to perl, then die afterwards. The
75 * flexibility is here to return to the caller so they can finish up and
76 * die themselves */
77 U32 errors;
78
79 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
80
81 ENTER;
82 SAVEI8(PL_dowarn);
83 SAVESPTR(PL_curcop);
84
85 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 if (PL_curcop) {
87 PL_curcop->cop_warnings = pWARN_ALL;
88 }
89
90 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
91
92 LEAVE;
93
94 if (! errors) {
95 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
96 " be called only when there are errors found");
97 }
98
99 if (die_here) {
100 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
101 }
102}
103
104/*
105=for apidoc uvoffuni_to_utf8_flags
106
107THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
108Instead, B<Almost all code should use L</uvchr_to_utf8> or
109L</uvchr_to_utf8_flags>>.
110
111This function is like them, but the input is a strict Unicode
112(as opposed to native) code point. Only in very rare circumstances should code
113not be using the native code point.
114
115For details, see the description for L</uvchr_to_utf8_flags>.
116
117=cut
118*/
119
120/* All these formats take a single UV code point argument */
121const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
122const char nonchar_cp_format[] = "Unicode non-character U+%04" UVXf
123 " is not recommended for open interchange";
124const char super_cp_format[] = "Code point 0x%" UVXf " is not Unicode,"
125 " may not be portable";
126const char perl_extended_cp_format[] = "Code point 0x%" UVXf " is not" \
127 " Unicode, requires a Perl extension," \
128 " and so is not portable";
129
130#define HANDLE_UNICODE_SURROGATE(uv, flags) \
131 STMT_START { \
132 if (flags & UNICODE_WARN_SURROGATE) { \
133 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
134 surrogate_cp_format, uv); \
135 } \
136 if (flags & UNICODE_DISALLOW_SURROGATE) { \
137 return NULL; \
138 } \
139 } STMT_END;
140
141#define HANDLE_UNICODE_NONCHAR(uv, flags) \
142 STMT_START { \
143 if (flags & UNICODE_WARN_NONCHAR) { \
144 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
145 nonchar_cp_format, uv); \
146 } \
147 if (flags & UNICODE_DISALLOW_NONCHAR) { \
148 return NULL; \
149 } \
150 } STMT_END;
151
152/* Use shorter names internally in this file */
153#define SHIFT UTF_ACCUMULATION_SHIFT
154#undef MARK
155#define MARK UTF_CONTINUATION_MARK
156#define MASK UTF_CONTINUATION_MASK
157
158U8 *
159Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
160{
161 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
162
163 if (OFFUNI_IS_INVARIANT(uv)) {
164 *d++ = LATIN1_TO_NATIVE(uv);
165 return d;
166 }
167
168 if (uv <= MAX_UTF8_TWO_BYTE) {
169 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
170 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
171 return d;
172 }
173
174 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
175 * below, the 16 is for start bytes E0-EF (which are all the possible ones
176 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
177 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
178 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
179 * 0x800-0xFFFF on ASCII */
180 if (uv < (16 * (1U << (2 * SHIFT)))) {
181 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
182 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
183 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
184
185#ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
186 aren't tested here */
187 /* The most likely code points in this range are below the surrogates.
188 * Do an extra test to quickly exclude those. */
189 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
190 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
191 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
192 {
193 HANDLE_UNICODE_NONCHAR(uv, flags);
194 }
195 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
196 HANDLE_UNICODE_SURROGATE(uv, flags);
197 }
198 }
199#endif
200 return d;
201 }
202
203 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
204 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
205 * happen starting with 4-byte characters on ASCII platforms. We unify the
206 * code for these with EBCDIC, even though some of them require 5-bytes on
207 * those, because khw believes the code saving is worth the very slight
208 * performance hit on these high EBCDIC code points. */
209
210 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
211 if (UNLIKELY(uv > MAX_EXTERNALLY_LEGAL_CP)) {
212 Perl_croak(aTHX_ cp_above_legal_max, uv, MAX_EXTERNALLY_LEGAL_CP);
213 }
214 if ( (flags & UNICODE_WARN_SUPER)
215 || ( (flags & UNICODE_WARN_PERL_EXTENDED)
216 && UNICODE_IS_PERL_EXTENDED(uv)))
217 {
218 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
219
220 /* Choose the more dire applicable warning */
221 (UNICODE_IS_PERL_EXTENDED(uv))
222 ? perl_extended_cp_format
223 : super_cp_format,
224 uv);
225 }
226 if ( (flags & UNICODE_DISALLOW_SUPER)
227 || ( (flags & UNICODE_DISALLOW_PERL_EXTENDED)
228 && UNICODE_IS_PERL_EXTENDED(uv)))
229 {
230 return NULL;
231 }
232 }
233 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
234 HANDLE_UNICODE_NONCHAR(uv, flags);
235 }
236
237 /* Test for and handle 4-byte result. In the test immediately below, the
238 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
239 * characters). The 3 is for 3 continuation bytes; these each contribute
240 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
241 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
242 * 0x1_0000-0x1F_FFFF on ASCII */
243 if (uv < (8 * (1U << (3 * SHIFT)))) {
244 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
245 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
246 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
247 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
248
249#ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
250 characters. The end-plane non-characters for EBCDIC were
251 handled just above */
252 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
253 HANDLE_UNICODE_NONCHAR(uv, flags);
254 }
255 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
256 HANDLE_UNICODE_SURROGATE(uv, flags);
257 }
258#endif
259
260 return d;
261 }
262
263 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
264 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
265 * format. The unrolled version above turns out to not save all that much
266 * time, and at these high code points (well above the legal Unicode range
267 * on ASCII platforms, and well above anything in common use in EBCDIC),
268 * khw believes that less code outweighs slight performance gains. */
269
270 {
271 STRLEN len = OFFUNISKIP(uv);
272 U8 *p = d+len-1;
273 while (p > d) {
274 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
275 uv >>= UTF_ACCUMULATION_SHIFT;
276 }
277 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
278 return d+len;
279 }
280}
281
282/*
283=for apidoc uvchr_to_utf8
284
285Adds the UTF-8 representation of the native code point C<uv> to the end
286of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
287C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
288the byte after the end of the new character. In other words,
289
290 d = uvchr_to_utf8(d, uv);
291
292is the recommended wide native character-aware way of saying
293
294 *(d++) = uv;
295
296This function accepts any code point from 0..C<IV_MAX> as input.
297C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
298
299It is possible to forbid or warn on non-Unicode code points, or those that may
300be problematic by using L</uvchr_to_utf8_flags>.
301
302=cut
303*/
304
305/* This is also a macro */
306PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
307
308U8 *
309Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
310{
311 return uvchr_to_utf8(d, uv);
312}
313
314/*
315=for apidoc uvchr_to_utf8_flags
316
317Adds the UTF-8 representation of the native code point C<uv> to the end
318of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
319C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
320the byte after the end of the new character. In other words,
321
322 d = uvchr_to_utf8_flags(d, uv, flags);
323
324or, in most cases,
325
326 d = uvchr_to_utf8_flags(d, uv, 0);
327
328This is the Unicode-aware way of saying
329
330 *(d++) = uv;
331
332If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
333input. C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
334
335Specifying C<flags> can further restrict what is allowed and not warned on, as
336follows:
337
338If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
339the function will raise a warning, provided UTF8 warnings are enabled. If
340instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
341NULL. If both flags are set, the function will both warn and return NULL.
342
343Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
344affect how the function handles a Unicode non-character.
345
346And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
347affect the handling of code points that are above the Unicode maximum of
3480x10FFFF. Languages other than Perl may not be able to accept files that
349contain these.
350
351The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
352the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
353three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
354allowed inputs to the strict UTF-8 traditionally defined by Unicode.
355Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
356C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
357above-Unicode and surrogate flags, but not the non-character ones, as
358defined in
359L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
360See L<perlunicode/Noncharacter code points>.
361
362Extremely high code points were never specified in any standard, and require an
363extension to UTF-8 to express, which Perl does. It is likely that programs
364written in something other than Perl would not be able to read files that
365contain these; nor would Perl understand files written by something that uses a
366different extension. For these reasons, there is a separate set of flags that
367can warn and/or disallow these extremely high code points, even if other
368above-Unicode ones are accepted. They are the C<UNICODE_WARN_PERL_EXTENDED>
369and C<UNICODE_DISALLOW_PERL_EXTENDED> flags. For more information see
370L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UNICODE_DISALLOW_SUPER> will
371treat all above-Unicode code points, including these, as malformations. (Note
372that the Unicode standard considers anything above 0x10FFFF to be illegal, but
373there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
374
375A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
376retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>. Similarly,
377C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
378C<UNICODE_DISALLOW_PERL_EXTENDED>. The names are misleading because these
379flags can apply to code points that actually do fit in 31 bits. This happens
380on EBCDIC platforms, and sometimes when the L<overlong
381malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
382describe the situation in all cases.
383
384=cut
385*/
386
387/* This is also a macro */
388PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
389
390U8 *
391Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
392{
393 return uvchr_to_utf8_flags(d, uv, flags);
394}
395
396#ifndef UV_IS_QUAD
397
398STATIC int
399S_is_utf8_cp_above_31_bits(const U8 * const s,
400 const U8 * const e,
401 const bool consider_overlongs)
402{
403 /* Returns TRUE if the first code point represented by the Perl-extended-
404 * UTF-8-encoded string starting at 's', and looking no further than 'e -
405 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
406 *
407 * The function handles the case where the input bytes do not include all
408 * the ones necessary to represent a full character. That is, they may be
409 * the intial bytes of the representation of a code point, but possibly
410 * the final ones necessary for the complete representation may be beyond
411 * 'e - 1'.
412 *
413 * The function also can handle the case where the input is an overlong
414 * sequence. If 'consider_overlongs' is 0, the function assumes the
415 * input is not overlong, without checking, and will return based on that
416 * assumption. If this parameter is 1, the function will go to the trouble
417 * of figuring out if it actually evaluates to above or below 31 bits.
418 *
419 * The sequence is otherwise assumed to be well-formed, without checking.
420 */
421
422 const STRLEN len = e - s;
423 int is_overlong;
424
425 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
426
427 assert(! UTF8_IS_INVARIANT(*s) && e > s);
428
429#ifdef EBCDIC
430
431 PERL_UNUSED_ARG(consider_overlongs);
432
433 /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
434 * mean a 32-bit or larger code point (0xFF is an invariant). 0xFE can
435 * also be the start byte for a 31-bit code point; we need at least 2
436 * bytes, and maybe up through 8 bytes, to determine that. (It can also be
437 * the start byte for an overlong sequence, but for 30-bit or smaller code
438 * points, so we don't have to worry about overlongs on EBCDIC.) */
439 if (*s != 0xFE) {
440 return 0;
441 }
442
443 if (len == 1) {
444 return -1;
445 }
446
447#else
448
449 /* On ASCII, FE and FF are the only start bytes that can evaluate to
450 * needing more than 31 bits. */
451 if (LIKELY(*s < 0xFE)) {
452 return 0;
453 }
454
455 /* What we have left are FE and FF. Both of these require more than 31
456 * bits unless they are for overlongs. */
457 if (! consider_overlongs) {
458 return 1;
459 }
460
461 /* Here, we have FE or FF. If the input isn't overlong, it evaluates to
462 * above 31 bits. But we need more than one byte to discern this, so if
463 * passed just the start byte, it could be an overlong evaluating to
464 * smaller */
465 if (len == 1) {
466 return -1;
467 }
468
469 /* Having excluded len==1, and knowing that FE and FF are both valid start
470 * bytes, we can call the function below to see if the sequence is
471 * overlong. (We don't need the full generality of the called function,
472 * but for these huge code points, speed shouldn't be a consideration, and
473 * the compiler does have enough information, since it's static to this
474 * file, to optimize to just the needed parts.) */
475 is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
476
477 /* If it isn't overlong, more than 31 bits are required. */
478 if (is_overlong == 0) {
479 return 1;
480 }
481
482 /* If it is indeterminate if it is overlong, return that */
483 if (is_overlong < 0) {
484 return -1;
485 }
486
487 /* Here is overlong. Such a sequence starting with FE is below 31 bits, as
488 * the max it can be is 2**31 - 1 */
489 if (*s == 0xFE) {
490 return 0;
491 }
492
493#endif
494
495 /* Here, ASCII and EBCDIC rejoin:
496 * On ASCII: We have an overlong sequence starting with FF
497 * On EBCDIC: We have a sequence starting with FE. */
498
499 { /* For C89, use a block so the declaration can be close to its use */
500
501#ifdef EBCDIC
502
503 /* U+7FFFFFFF (2 ** 31 - 1)
504 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
505 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
506 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
507 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
508 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
509 * U+80000000 (2 ** 31):
510 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
511 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
512 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
513 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
514 *
515 * and since we know that *s = \xfe, any continuation sequcence
516 * following it that is gt the below is above 31 bits
517 [0] [1] [2] [3] [4] [5] [6] */
518 const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
519
520#else
521
522 /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
523 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
524 * FF overlong for U+80000000 (2 ** 31):
525 * ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
526 * and since we know that *s = \xff, any continuation sequcence
527 * following it that is gt the below is above 30 bits
528 [0] [1] [2] [3] [4] [5] [6] */
529 const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
530
531
532#endif
533 const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
534 const STRLEN cmp_len = MIN(conts_len, len - 1);
535
536 /* Now compare the continuation bytes in s with the ones we have
537 * compiled in that are for the largest 30 bit code point. If we have
538 * enough bytes available to determine the answer, or the bytes we do
539 * have differ from them, we can compare the two to get a definitive
540 * answer (Note that in UTF-EBCDIC, the two lowest possible
541 * continuation bytes are \x41 and \x42.) */
542 if (cmp_len >= conts_len || memNE(s + 1,
543 conts_for_highest_30_bit,
544 cmp_len))
545 {
546 return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
547 }
548
549 /* Here, all the bytes we have are the same as the highest 30-bit code
550 * point, but we are missing so many bytes that we can't make the
551 * determination */
552 return -1;
553 }
554}
555
556#endif
557
558PERL_STATIC_INLINE int
559S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
560{
561 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
562 * 's' + 'len' - 1 is an overlong. It returns 1 if it is an overlong; 0 if
563 * it isn't, and -1 if there isn't enough information to tell. This last
564 * return value can happen if the sequence is incomplete, missing some
565 * trailing bytes that would form a complete character. If there are
566 * enough bytes to make a definitive decision, this function does so.
567 * Usually 2 bytes sufficient.
568 *
569 * Overlongs can occur whenever the number of continuation bytes changes.
570 * That means whenever the number of leading 1 bits in a start byte
571 * increases from the next lower start byte. That happens for start bytes
572 * C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following illegal
573 * start bytes have already been excluded, so don't need to be tested here;
574 * ASCII platforms: C0, C1
575 * EBCDIC platforms C0, C1, C2, C3, C4, E0
576 */
577
578 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
579 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
580
581 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
582 assert(len > 1 && UTF8_IS_START(*s));
583
584 /* Each platform has overlongs after the start bytes given above (expressed
585 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
586 * the logic is the same, except the E0 overlong has already been excluded
587 * on EBCDIC platforms. The values below were found by manually
588 * inspecting the UTF-8 patterns. See the tables in utf8.h and
589 * utfebcdic.h. */
590
591# ifdef EBCDIC
592# define F0_ABOVE_OVERLONG 0xB0
593# define F8_ABOVE_OVERLONG 0xA8
594# define FC_ABOVE_OVERLONG 0xA4
595# define FE_ABOVE_OVERLONG 0xA2
596# define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
597 /* I8(0xfe) is FF */
598# else
599
600 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
601 return 1;
602 }
603
604# define F0_ABOVE_OVERLONG 0x90
605# define F8_ABOVE_OVERLONG 0x88
606# define FC_ABOVE_OVERLONG 0x84
607# define FE_ABOVE_OVERLONG 0x82
608# define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
609# endif
610
611
612 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
613 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
614 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
615 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
616 {
617 return 1;
618 }
619
620 /* Check for the FF overlong */
621 return isFF_OVERLONG(s, len);
622}
623
624PERL_STATIC_INLINE int
625S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
626{
627 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
628 * 'e' - 1 is an overlong beginning with \xFF. It returns 1 if it is; 0 if
629 * it isn't, and -1 if there isn't enough information to tell. This last
630 * return value can happen if the sequence is incomplete, missing some
631 * trailing bytes that would form a complete character. If there are
632 * enough bytes to make a definitive decision, this function does so. */
633
634 PERL_ARGS_ASSERT_ISFF_OVERLONG;
635
636 /* To be an FF overlong, all the available bytes must match */
637 if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
638 MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
639 {
640 return 0;
641 }
642
643 /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
644 * be there; what comes after them doesn't matter. See tables in utf8.h,
645 * utfebcdic.h. */
646 if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
647 return 1;
648 }
649
650 /* The missing bytes could cause the result to go one way or the other, so
651 * the result is indeterminate */
652 return -1;
653}
654
655#if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
656# ifdef EBCDIC /* Actually is I8 */
657# define HIGHEST_REPRESENTABLE_UTF8 \
658 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
659# else
660# define HIGHEST_REPRESENTABLE_UTF8 \
661 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
662# endif
663#endif
664
665PERL_STATIC_INLINE int
666S_does_utf8_overflow(const U8 * const s,
667 const U8 * e,
668 const bool consider_overlongs)
669{
670 /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
671 * 'e' - 1 would overflow an IV on this platform; that is if it represents
672 * a code point larger than the highest representable code point. It
673 * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
674 * enough information to tell. This last return value can happen if the
675 * sequence is incomplete, missing some trailing bytes that would form a
676 * complete character. If there are enough bytes to make a definitive
677 * decision, this function does so.
678 *
679 * If 'consider_overlongs' is TRUE, the function checks for the possibility
680 * that the sequence is an overlong that doesn't overflow. Otherwise, it
681 * assumes the sequence is not an overlong. This can give different
682 * results only on ASCII 32-bit platforms.
683 *
684 * (For ASCII platforms, we could use memcmp() because we don't have to
685 * convert each byte to I8, but it's very rare input indeed that would
686 * approach overflow, so the loop below will likely only get executed once.)
687 *
688 * 'e' - 1 must not be beyond a full character. */
689
690
691 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
692 assert(s <= e && s + UTF8SKIP(s) >= e);
693
694#if ! defined(UV_IS_QUAD)
695
696 return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
697
698#else
699
700 PERL_UNUSED_ARG(consider_overlongs);
701
702 {
703 const STRLEN len = e - s;
704 const U8 *x;
705 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
706
707 for (x = s; x < e; x++, y++) {
708
709 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
710 continue;
711 }
712
713 /* If this byte is larger than the corresponding highest UTF-8
714 * byte, the sequence overflow; otherwise the byte is less than,
715 * and so the sequence doesn't overflow */
716 return NATIVE_UTF8_TO_I8(*x) > *y;
717
718 }
719
720 /* Got to the end and all bytes are the same. If the input is a whole
721 * character, it doesn't overflow. And if it is a partial character,
722 * there's not enough information to tell */
723 if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
724 return -1;
725 }
726
727 return 0;
728 }
729
730#endif
731
732}
733
734#if 0
735
736/* This is the portions of the above function that deal with UV_MAX instead of
737 * IV_MAX. They are left here in case we want to combine them so that internal
738 * uses can have larger code points. The only logic difference is that the
739 * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
740 * different logic.
741 */
742
743/* Anything larger than this will overflow the word if it were converted into a UV */
744#if defined(UV_IS_QUAD)
745# ifdef EBCDIC /* Actually is I8 */
746# define HIGHEST_REPRESENTABLE_UTF8 \
747 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
748# else
749# define HIGHEST_REPRESENTABLE_UTF8 \
750 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
751# endif
752#else /* 32-bit */
753# ifdef EBCDIC
754# define HIGHEST_REPRESENTABLE_UTF8 \
755 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
756# else
757# define HIGHEST_REPRESENTABLE_UTF8 "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
758# endif
759#endif
760
761#if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
762
763 /* On 32 bit ASCII machines, many overlongs that start with FF don't
764 * overflow */
765 if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
766
767 /* To be such an overlong, the first bytes of 's' must match
768 * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80". If we
769 * don't have any additional bytes available, the sequence, when
770 * completed might or might not fit in 32 bits. But if we have that
771 * next byte, we can tell for sure. If it is <= 0x83, then it does
772 * fit. */
773 if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
774 return -1;
775 }
776
777 return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
778 }
779
780/* Starting with the #else, the rest of the function is identical except
781 * 1. we need to move the 'len' declaration to be global to the function
782 * 2. the endif move to just after the UNUSED_ARG.
783 * An empty endif is given just below to satisfy the preprocessor
784 */
785#endif
786
787#endif
788
789#undef F0_ABOVE_OVERLONG
790#undef F8_ABOVE_OVERLONG
791#undef FC_ABOVE_OVERLONG
792#undef FE_ABOVE_OVERLONG
793#undef FF_OVERLONG_PREFIX
794
795STRLEN
796Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
797{
798 STRLEN len;
799 const U8 *x;
800
801 /* A helper function that should not be called directly.
802 *
803 * This function returns non-zero if the string beginning at 's' and
804 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
805 * code point; otherwise it returns 0. The examination stops after the
806 * first code point in 's' is validated, not looking at the rest of the
807 * input. If 'e' is such that there are not enough bytes to represent a
808 * complete code point, this function will return non-zero anyway, if the
809 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
810 * excluded by 'flags'.
811 *
812 * A non-zero return gives the number of bytes required to represent the
813 * code point. Be aware that if the input is for a partial character, the
814 * return will be larger than 'e - s'.
815 *
816 * This function assumes that the code point represented is UTF-8 variant.
817 * The caller should have excluded the possibility of it being invariant
818 * before calling this function.
819 *
820 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
821 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
822 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
823 * disallowed by the flags. If the input is only for a partial character,
824 * the function will return non-zero if there is any sequence of
825 * well-formed UTF-8 that, when appended to the input sequence, could
826 * result in an allowed code point; otherwise it returns 0. Non characters
827 * cannot be determined based on partial character input. But many of the
828 * other excluded types can be determined with just the first one or two
829 * bytes.
830 *
831 */
832
833 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
834
835 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
836 |UTF8_DISALLOW_PERL_EXTENDED)));
837 assert(! UTF8_IS_INVARIANT(*s));
838
839 /* A variant char must begin with a start byte */
840 if (UNLIKELY(! UTF8_IS_START(*s))) {
841 return 0;
842 }
843
844 /* Examine a maximum of a single whole code point */
845 if (e - s > UTF8SKIP(s)) {
846 e = s + UTF8SKIP(s);
847 }
848
849 len = e - s;
850
851 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
852 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
853
854 /* Here, we are disallowing some set of largish code points, and the
855 * first byte indicates the sequence is for a code point that could be
856 * in the excluded set. We generally don't have to look beyond this or
857 * the second byte to see if the sequence is actually for one of the
858 * excluded classes. The code below is derived from this table:
859 *
860 * UTF-8 UTF-EBCDIC I8
861 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
862 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
863 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
864 *
865 * Keep in mind that legal continuation bytes range between \x80..\xBF
866 * for UTF-8, and \xA0..\xBF for I8. Anything above those aren't
867 * continuation bytes. Hence, we don't have to test the upper edge
868 * because if any of those is encountered, the sequence is malformed,
869 * and would fail elsewhere in this function.
870 *
871 * The code here likewise assumes that there aren't other
872 * malformations; again the function should fail elsewhere because of
873 * these. For example, an overlong beginning with FC doesn't actually
874 * have to be a super; it could actually represent a small code point,
875 * even U+0000. But, since overlongs (and other malformations) are
876 * illegal, the function should return FALSE in either case.
877 */
878
879#ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
880# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
881# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
882
883# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
884 /* B6 and B7 */ \
885 && ((s1) & 0xFE ) == 0xB6)
886# define isUTF8_PERL_EXTENDED(s) (*s == I8_TO_NATIVE_UTF8(0xFF))
887#else
888# define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
889# define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
890# define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
891# define isUTF8_PERL_EXTENDED(s) (*s >= 0xFE)
892#endif
893
894 if ( (flags & UTF8_DISALLOW_SUPER)
895 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
896 {
897 return 0; /* Above Unicode */
898 }
899
900 if ( (flags & UTF8_DISALLOW_PERL_EXTENDED)
901 && UNLIKELY(isUTF8_PERL_EXTENDED(s)))
902 {
903 return 0;
904 }
905
906 if (len > 1) {
907 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
908
909 if ( (flags & UTF8_DISALLOW_SUPER)
910 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
911 {
912 return 0; /* Above Unicode */
913 }
914
915 if ( (flags & UTF8_DISALLOW_SURROGATE)
916 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
917 {
918 return 0; /* Surrogate */
919 }
920
921 if ( (flags & UTF8_DISALLOW_NONCHAR)
922 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
923 {
924 return 0; /* Noncharacter code point */
925 }
926 }
927 }
928
929 /* Make sure that all that follows are continuation bytes */
930 for (x = s + 1; x < e; x++) {
931 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
932 return 0;
933 }
934 }
935
936 /* Here is syntactically valid. Next, make sure this isn't the start of an
937 * overlong. */
938 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
939 return 0;
940 }
941
942 /* And finally, that the code point represented fits in a word on this
943 * platform */
944 if (0 < does_utf8_overflow(s, e,
945 0 /* Don't consider overlongs */
946 ))
947 {
948 return 0;
949 }
950
951 return UTF8SKIP(s);
952}
953
954char *
955Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
956{
957 /* Returns a mortalized C string that is a displayable copy of the 'len'
958 * bytes starting at 'start'. 'format' gives how to display each byte.
959 * Currently, there are only two formats, so it is currently a bool:
960 * 0 \xab
961 * 1 ab (that is a space between two hex digit bytes)
962 */
963
964 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
965 trailing NUL */
966 const U8 * s = start;
967 const U8 * const e = start + len;
968 char * output;
969 char * d;
970
971 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
972
973 Newx(output, output_len, char);
974 SAVEFREEPV(output);
975
976 d = output;
977 for (s = start; s < e; s++) {
978 const unsigned high_nibble = (*s & 0xF0) >> 4;
979 const unsigned low_nibble = (*s & 0x0F);
980
981 if (format) {
982 if (s > start) {
983 *d++ = ' ';
984 }
985 }
986 else {
987 *d++ = '\\';
988 *d++ = 'x';
989 }
990
991 if (high_nibble < 10) {
992 *d++ = high_nibble + '0';
993 }
994 else {
995 *d++ = high_nibble - 10 + 'a';
996 }
997
998 if (low_nibble < 10) {
999 *d++ = low_nibble + '0';
1000 }
1001 else {
1002 *d++ = low_nibble - 10 + 'a';
1003 }
1004 }
1005
1006 *d = '\0';
1007 return output;
1008}
1009
1010PERL_STATIC_INLINE char *
1011S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1012
1013 /* How many bytes to print */
1014 STRLEN print_len,
1015
1016 /* Which one is the non-continuation */
1017 const STRLEN non_cont_byte_pos,
1018
1019 /* How many bytes should there be? */
1020 const STRLEN expect_len)
1021{
1022 /* Return the malformation warning text for an unexpected continuation
1023 * byte. */
1024
1025 const char * const where = (non_cont_byte_pos == 1)
1026 ? "immediately"
1027 : Perl_form(aTHX_ "%d bytes",
1028 (int) non_cont_byte_pos);
1029
1030 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1031
1032 /* We don't need to pass this parameter, but since it has already been
1033 * calculated, it's likely faster to pass it; verify under DEBUGGING */
1034 assert(expect_len == UTF8SKIP(s));
1035
1036 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1037 " %s after start byte 0x%02x; need %d bytes, got %d)",
1038 malformed_text,
1039 _byte_dump_string(s, print_len, 0),
1040 *(s + non_cont_byte_pos),
1041 where,
1042 *s,
1043 (int) expect_len,
1044 (int) non_cont_byte_pos);
1045}
1046
1047/*
1048
1049=for apidoc utf8n_to_uvchr
1050
1051THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1052Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1053
1054Bottom level UTF-8 decode routine.
1055Returns the native code point value of the first character in the string C<s>,
1056which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1057C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1058the length, in bytes, of that character.
1059
1060The value of C<flags> determines the behavior when C<s> does not point to a
1061well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
1062causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1063is the next possible position in C<s> that could begin a non-malformed
1064character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
1065is raised. Some UTF-8 input sequences may contain multiple malformations.
1066This function tries to find every possible one in each call, so multiple
1067warnings can be raised for the same sequence.
1068
1069Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1070individual types of malformations, such as the sequence being overlong (that
1071is, when there is a shorter sequence that can express the same code point;
1072overlong sequences are expressly forbidden in the UTF-8 standard due to
1073potential security issues). Another malformation example is the first byte of
1074a character not being a legal first byte. See F<utf8.h> for the list of such
1075flags. Even if allowed, this function generally returns the Unicode
1076REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
1077F<utf8.h> to override this behavior for the overlong malformations, but don't
1078do that except for very specialized purposes.
1079
1080The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1081flags) malformation is found. If this flag is set, the routine assumes that
1082the caller will raise a warning, and this function will silently just set
1083C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1084
1085Note that this API requires disambiguation between successful decoding a C<NUL>
1086character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1087in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1088be set to 1. To disambiguate, upon a zero return, see if the first byte of
1089C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
1090error. Or you can use C<L</utf8n_to_uvchr_error>>.
1091
1092Certain code points are considered problematic. These are Unicode surrogates,
1093Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1094By default these are considered regular code points, but certain situations
1095warrant special handling for them, which can be specified using the C<flags>
1096parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1097three classes are treated as malformations and handled as such. The flags
1098C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1099C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1100disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1101restricts the allowed inputs to the strict UTF-8 traditionally defined by
1102Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1103definition given by
1104L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
1105The difference between traditional strictness and C9 strictness is that the
1106latter does not forbid non-character code points. (They are still discouraged,
1107however.) For more discussion see L<perlunicode/Noncharacter code points>.
1108
1109The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1110C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1111C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1112raised for their respective categories, but otherwise the code points are
1113considered valid (not malformations). To get a category to both be treated as
1114a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1115(But note that warnings are not raised if lexically disabled nor if
1116C<UTF8_CHECK_ONLY> is also specified.)
1117
1118Extremely high code points were never specified in any standard, and require an
1119extension to UTF-8 to express, which Perl does. It is likely that programs
1120written in something other than Perl would not be able to read files that
1121contain these; nor would Perl understand files written by something that uses a
1122different extension. For these reasons, there is a separate set of flags that
1123can warn and/or disallow these extremely high code points, even if other
1124above-Unicode ones are accepted. They are the C<UTF8_WARN_PERL_EXTENDED> and
1125C<UTF8_DISALLOW_PERL_EXTENDED> flags. For more information see
1126L</C<UTF8_GOT_PERL_EXTENDED>>. Of course C<UTF8_DISALLOW_SUPER> will treat all
1127above-Unicode code points, including these, as malformations.
1128(Note that the Unicode standard considers anything above 0x10FFFF to be
1129illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1130(2**31 -1))
1131
1132A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1133retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>. Similarly,
1134C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1135C<UTF8_DISALLOW_PERL_EXTENDED>. The names are misleading because these flags
1136can apply to code points that actually do fit in 31 bits. This happens on
1137EBCDIC platforms, and sometimes when the L<overlong
1138malformation|/C<UTF8_GOT_LONG>> is also present. The new names accurately
1139describe the situation in all cases.
1140
1141
1142All other code points corresponding to Unicode characters, including private
1143use and those yet to be assigned, are never considered malformed and never
1144warn.
1145
1146=cut
1147
1148Also implemented as a macro in utf8.h
1149*/
1150
1151UV
1152Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
1153 STRLEN curlen,
1154 STRLEN *retlen,
1155 const U32 flags)
1156{
1157 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1158
1159 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1160}
1161
1162/*
1163
1164=for apidoc utf8n_to_uvchr_error
1165
1166THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1167Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
1168
1169This function is for code that needs to know what the precise malformation(s)
1170are when an error is found.
1171
1172It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1173all the others, C<errors>. If this parameter is 0, this function behaves
1174identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
1175to a C<U32> variable, which this function sets to indicate any errors found.
1176Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
1177C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
1178of these bits will be set if a malformation is found, even if the input
1179C<flags> parameter indicates that the given malformation is allowed; those
1180exceptions are noted:
1181
1182=over 4
1183
1184=item C<UTF8_GOT_PERL_EXTENDED>
1185
1186The input sequence is not standard UTF-8, but a Perl extension. This bit is
1187set only if the input C<flags> parameter contains either the
1188C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1189
1190Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1191and so some extension must be used to express them. Perl uses a natural
1192extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1193extension to represent even higher ones, so that any code point that fits in a
119464-bit word can be represented. Text using these extensions is not likely to
1195be portable to non-Perl code. We lump both of these extensions together and
1196refer to them as Perl extended UTF-8. There exist other extensions that people
1197have invented, incompatible with Perl's.
1198
1199On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1200extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1201than on ASCII. Prior to that, code points 2**31 and higher were simply
1202unrepresentable, and a different, incompatible method was used to represent
1203code points between 2**30 and 2**31 - 1.
1204
1205On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1206Perl extended UTF-8 is used.
1207
1208In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1209may use for backward compatibility. That name is misleading, as this flag may
1210be set when the code point actually does fit in 31 bits. This happens on
1211EBCDIC platforms, and sometimes when the L<overlong
1212malformation|/C<UTF8_GOT_LONG>> is also present. The new name accurately
1213describes the situation in all cases.
1214
1215=item C<UTF8_GOT_CONTINUATION>
1216
1217The input sequence was malformed in that the first byte was a a UTF-8
1218continuation byte.
1219
1220=item C<UTF8_GOT_EMPTY>
1221
1222The input C<curlen> parameter was 0.
1223
1224=item C<UTF8_GOT_LONG>
1225
1226The input sequence was malformed in that there is some other sequence that
1227evaluates to the same code point, but that sequence is shorter than this one.
1228
1229Until Unicode 3.1, it was legal for programs to accept this malformation, but
1230it was discovered that this created security issues.
1231
1232=item C<UTF8_GOT_NONCHAR>
1233
1234The code point represented by the input UTF-8 sequence is for a Unicode
1235non-character code point.
1236This bit is set only if the input C<flags> parameter contains either the
1237C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1238
1239=item C<UTF8_GOT_NON_CONTINUATION>
1240
1241The input sequence was malformed in that a non-continuation type byte was found
1242in a position where only a continuation type one should be.
1243
1244=item C<UTF8_GOT_OVERFLOW>
1245
1246The input sequence was malformed in that it is for a code point that is not
1247representable in the number of bits available in an IV on the current platform.
1248
1249=item C<UTF8_GOT_SHORT>
1250
1251The input sequence was malformed in that C<curlen> is smaller than required for
1252a complete sequence. In other words, the input is for a partial character
1253sequence.
1254
1255=item C<UTF8_GOT_SUPER>
1256
1257The input sequence was malformed in that it is for a non-Unicode code point;
1258that is, one above the legal Unicode maximum.
1259This bit is set only if the input C<flags> parameter contains either the
1260C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1261
1262=item C<UTF8_GOT_SURROGATE>
1263
1264The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1265code point.
1266This bit is set only if the input C<flags> parameter contains either the
1267C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1268
1269=back
1270
1271To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1272flag to suppress any warnings, and then examine the C<*errors> return.
1273
1274=cut
1275*/
1276
1277UV
1278Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
1279 STRLEN curlen,
1280 STRLEN *retlen,
1281 const U32 flags,
1282 U32 * errors)
1283{
1284 const U8 * const s0 = s;
1285 U8 * send = NULL; /* (initialized to silence compilers' wrong
1286 warning) */
1287 U32 possible_problems = 0; /* A bit is set here for each potential problem
1288 found as we go along */
1289 UV uv = *s;
1290 STRLEN expectlen = 0; /* How long should this sequence be?
1291 (initialized to silence compilers' wrong
1292 warning) */
1293 STRLEN avail_len = 0; /* When input is too short, gives what that is */
1294 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
1295 this gets set and discarded */
1296
1297 /* The below are used only if there is both an overlong malformation and a
1298 * too short one. Otherwise the first two are set to 's0' and 'send', and
1299 * the third not used at all */
1300 U8 * adjusted_s0 = (U8 *) s0;
1301 U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1302 routine; see [perl #130921] */
1303 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1304
1305 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1306
1307 if (errors) {
1308 *errors = 0;
1309 }
1310 else {
1311 errors = &discard_errors;
1312 }
1313
1314 /* The order of malformation tests here is important. We should consume as
1315 * few bytes as possible in order to not skip any valid character. This is
1316 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1317 * http://unicode.org/reports/tr36 for more discussion as to why. For
1318 * example, once we've done a UTF8SKIP, we can tell the expected number of
1319 * bytes, and could fail right off the bat if the input parameters indicate
1320 * that there are too few available. But it could be that just that first
1321 * byte is garbled, and the intended character occupies fewer bytes. If we
1322 * blindly assumed that the first byte is correct, and skipped based on
1323 * that number, we could skip over a valid input character. So instead, we
1324 * always examine the sequence byte-by-byte.
1325 *
1326 * We also should not consume too few bytes, otherwise someone could inject
1327 * things. For example, an input could be deliberately designed to
1328 * overflow, and if this code bailed out immediately upon discovering that,
1329 * returning to the caller C<*retlen> pointing to the very next byte (one
1330 * which is actually part of of the overflowing sequence), that could look
1331 * legitimate to the caller, which could discard the initial partial
1332 * sequence and process the rest, inappropriately.
1333 *
1334 * Some possible input sequences are malformed in more than one way. This
1335 * function goes to lengths to try to find all of them. This is necessary
1336 * for correctness, as the inputs may allow one malformation but not
1337 * another, and if we abandon searching for others after finding the
1338 * allowed one, we could allow in something that shouldn't have been.
1339 */
1340
1341 if (UNLIKELY(curlen == 0)) {
1342 possible_problems |= UTF8_GOT_EMPTY;
1343 curlen = 0;
1344 uv = UNICODE_REPLACEMENT;
1345 goto ready_to_handle_errors;
1346 }
1347
1348 expectlen = UTF8SKIP(s);
1349
1350 /* A well-formed UTF-8 character, as the vast majority of calls to this
1351 * function will be for, has this expected length. For efficiency, set
1352 * things up here to return it. It will be overriden only in those rare
1353 * cases where a malformation is found */
1354 if (retlen) {
1355 *retlen = expectlen;
1356 }
1357
1358 /* An invariant is trivially well-formed */
1359 if (UTF8_IS_INVARIANT(uv)) {
1360 return uv;
1361 }
1362
1363 /* A continuation character can't start a valid sequence */
1364 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1365 possible_problems |= UTF8_GOT_CONTINUATION;
1366 curlen = 1;
1367 uv = UNICODE_REPLACEMENT;
1368 goto ready_to_handle_errors;
1369 }
1370
1371 /* Here is not a continuation byte, nor an invariant. The only thing left
1372 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1373 * because it excludes start bytes like \xC0 that always lead to
1374 * overlongs.) */
1375
1376 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1377 * that indicate the number of bytes in the character's whole UTF-8
1378 * sequence, leaving just the bits that are part of the value. */
1379 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1380
1381 /* Setup the loop end point, making sure to not look past the end of the
1382 * input string, and flag it as too short if the size isn't big enough. */
1383 send = (U8*) s0;
1384 if (UNLIKELY(curlen < expectlen)) {
1385 possible_problems |= UTF8_GOT_SHORT;
1386 avail_len = curlen;
1387 send += curlen;
1388 }
1389 else {
1390 send += expectlen;
1391 }
1392
1393 /* Now, loop through the remaining bytes in the character's sequence,
1394 * accumulating each into the working value as we go. */
1395 for (s = s0 + 1; s < send; s++) {
1396 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1397 uv = UTF8_ACCUMULATE(uv, *s);
1398 continue;
1399 }
1400
1401 /* Here, found a non-continuation before processing all expected bytes.
1402 * This byte indicates the beginning of a new character, so quit, even
1403 * if allowing this malformation. */
1404 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1405 break;
1406 } /* End of loop through the character's bytes */
1407
1408 /* Save how many bytes were actually in the character */
1409 curlen = s - s0;
1410
1411 /* Note that there are two types of too-short malformation. One is when
1412 * there is actual wrong data before the normal termination of the
1413 * sequence. The other is that the sequence wasn't complete before the end
1414 * of the data we are allowed to look at, based on the input 'curlen'.
1415 * This means that we were passed data for a partial character, but it is
1416 * valid as far as we saw. The other is definitely invalid. This
1417 * distinction could be important to a caller, so the two types are kept
1418 * separate.
1419 *
1420 * A convenience macro that matches either of the too-short conditions. */
1421# define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1422
1423 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1424 uv_so_far = uv;
1425 uv = UNICODE_REPLACEMENT;
1426 }
1427
1428 /* Check for overflow. The algorithm requires us to not look past the end
1429 * of the current character, even if partial, so the upper limit is 's' */
1430 if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1431 1 /* Do consider overlongs */
1432 )))
1433 {
1434 possible_problems |= UTF8_GOT_OVERFLOW;
1435 uv = UNICODE_REPLACEMENT;
1436 }
1437
1438 /* Check for overlong. If no problems so far, 'uv' is the correct code
1439 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1440 * we must look at the UTF-8 byte sequence itself to see if it is for an
1441 * overlong */
1442 if ( ( LIKELY(! possible_problems)
1443 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1444 || ( UNLIKELY(possible_problems)
1445 && ( UNLIKELY(! UTF8_IS_START(*s0))
1446 || ( curlen > 1
1447 && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1448 s - s0))))))
1449 {
1450 possible_problems |= UTF8_GOT_LONG;
1451
1452 if ( UNLIKELY( possible_problems & UTF8_GOT_TOO_SHORT)
1453
1454 /* The calculation in the 'true' branch of this 'if'
1455 * below won't work if overflows, and isn't needed
1456 * anyway. Further below we handle all overflow
1457 * cases */
1458 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1459 {
1460 UV min_uv = uv_so_far;
1461 STRLEN i;
1462
1463 /* Here, the input is both overlong and is missing some trailing
1464 * bytes. There is no single code point it could be for, but there
1465 * may be enough information present to determine if what we have
1466 * so far is for an unallowed code point, such as for a surrogate.
1467 * The code further below has the intelligence to determine this,
1468 * but just for non-overlong UTF-8 sequences. What we do here is
1469 * calculate the smallest code point the input could represent if
1470 * there were no too short malformation. Then we compute and save
1471 * the UTF-8 for that, which is what the code below looks at
1472 * instead of the raw input. It turns out that the smallest such
1473 * code point is all we need. */
1474 for (i = curlen; i < expectlen; i++) {
1475 min_uv = UTF8_ACCUMULATE(min_uv,
1476 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1477 }
1478
1479 adjusted_s0 = temp_char_buf;
1480 (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1481 }
1482 }
1483
1484 /* Here, we have found all the possible problems, except for when the input
1485 * is for a problematic code point not allowed by the input parameters. */
1486
1487 /* uv is valid for overlongs */
1488 if ( ( ( LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1489
1490 /* isn't problematic if < this */
1491 && uv >= UNICODE_SURROGATE_FIRST)
1492 || ( UNLIKELY(possible_problems)
1493
1494 /* if overflow, we know without looking further
1495 * precisely which of the problematic types it is,
1496 * and we deal with those in the overflow handling
1497 * code */
1498 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1499 && ( isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1500 || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1501 && ((flags & ( UTF8_DISALLOW_NONCHAR
1502 |UTF8_DISALLOW_SURROGATE
1503 |UTF8_DISALLOW_SUPER
1504 |UTF8_DISALLOW_PERL_EXTENDED
1505 |UTF8_WARN_NONCHAR
1506 |UTF8_WARN_SURROGATE
1507 |UTF8_WARN_SUPER
1508 |UTF8_WARN_PERL_EXTENDED))))
1509 {
1510 /* If there were no malformations, or the only malformation is an
1511 * overlong, 'uv' is valid */
1512 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1513 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1514 possible_problems |= UTF8_GOT_SURROGATE;
1515 }
1516 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1517 possible_problems |= UTF8_GOT_SUPER;
1518 }
1519 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1520 possible_problems |= UTF8_GOT_NONCHAR;
1521 }
1522 }
1523 else { /* Otherwise, need to look at the source UTF-8, possibly
1524 adjusted to be non-overlong */
1525
1526 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1527 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1528 {
1529 possible_problems |= UTF8_GOT_SUPER;
1530 }
1531 else if (curlen > 1) {
1532 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1533 NATIVE_UTF8_TO_I8(*adjusted_s0),
1534 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1535 {
1536 possible_problems |= UTF8_GOT_SUPER;
1537 }
1538 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1539 NATIVE_UTF8_TO_I8(*adjusted_s0),
1540 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1541 {
1542 possible_problems |= UTF8_GOT_SURROGATE;
1543 }
1544 }
1545
1546 /* We need a complete well-formed UTF-8 character to discern
1547 * non-characters, so can't look for them here */
1548 }
1549 }
1550
1551 ready_to_handle_errors:
1552
1553 /* At this point:
1554 * curlen contains the number of bytes in the sequence that
1555 * this call should advance the input by.
1556 * avail_len gives the available number of bytes passed in, but
1557 * only if this is less than the expected number of
1558 * bytes, based on the code point's start byte.
1559 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1560 * is set in it for each potential problem found.
1561 * uv contains the code point the input sequence
1562 * represents; or if there is a problem that prevents
1563 * a well-defined value from being computed, it is
1564 * some subsitute value, typically the REPLACEMENT
1565 * CHARACTER.
1566 * s0 points to the first byte of the character
1567 * s points to just after were we left off processing
1568 * the character
1569 * send points to just after where that character should
1570 * end, based on how many bytes the start byte tells
1571 * us should be in it, but no further than s0 +
1572 * avail_len
1573 */
1574
1575 if (UNLIKELY(possible_problems)) {
1576 bool disallowed = FALSE;
1577 const U32 orig_problems = possible_problems;
1578
1579 while (possible_problems) { /* Handle each possible problem */
1580 UV pack_warn = 0;
1581 char * message = NULL;
1582
1583 /* Each 'if' clause handles one problem. They are ordered so that
1584 * the first ones' messages will be displayed before the later
1585 * ones; this is kinda in decreasing severity order. But the
1586 * overlong must come last, as it changes 'uv' looked at by the
1587 * others */
1588 if (possible_problems & UTF8_GOT_OVERFLOW) {
1589
1590 /* Overflow means also got a super and are using Perl's
1591 * extended UTF-8, but we handle all three cases here */
1592 possible_problems
1593 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1594 *errors |= UTF8_GOT_OVERFLOW;
1595
1596 /* But the API says we flag all errors found */
1597 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1598 *errors |= UTF8_GOT_SUPER;
1599 }
1600 if (flags
1601 & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1602 {
1603 *errors |= UTF8_GOT_PERL_EXTENDED;
1604 }
1605
1606 /* Disallow if any of the three categories say to */
1607 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1608 || (flags & ( UTF8_DISALLOW_SUPER
1609 |UTF8_DISALLOW_PERL_EXTENDED)))
1610 {
1611 disallowed = TRUE;
1612 }
1613
1614 /* Likewise, warn if any say to */
1615 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1616 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1617 {
1618
1619 /* The warnings code explicitly says it doesn't handle the
1620 * case of packWARN2 and two categories which have
1621 * parent-child relationship. Even if it works now to
1622 * raise the warning if either is enabled, it wouldn't
1623 * necessarily do so in the future. We output (only) the
1624 * most dire warning */
1625 if (! (flags & UTF8_CHECK_ONLY)) {
1626 if (ckWARN_d(WARN_UTF8)) {
1627 pack_warn = packWARN(WARN_UTF8);
1628 }
1629 else if (ckWARN_d(WARN_NON_UNICODE)) {
1630 pack_warn = packWARN(WARN_NON_UNICODE);
1631 }
1632 if (pack_warn) {
1633 message = Perl_form(aTHX_ "%s: %s (overflows)",
1634 malformed_text,
1635 _byte_dump_string(s0, curlen, 0));
1636 }
1637 }
1638 }
1639 }
1640 else if (possible_problems & UTF8_GOT_EMPTY) {
1641 possible_problems &= ~UTF8_GOT_EMPTY;
1642 *errors |= UTF8_GOT_EMPTY;
1643
1644 if (! (flags & UTF8_ALLOW_EMPTY)) {
1645
1646 /* This so-called malformation is now treated as a bug in
1647 * the caller. If you have nothing to decode, skip calling
1648 * this function */
1649 assert(0);
1650
1651 disallowed = TRUE;
1652 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1653 pack_warn = packWARN(WARN_UTF8);
1654 message = Perl_form(aTHX_ "%s (empty string)",
1655 malformed_text);
1656 }
1657 }
1658 }
1659 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1660 possible_problems &= ~UTF8_GOT_CONTINUATION;
1661 *errors |= UTF8_GOT_CONTINUATION;
1662
1663 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1664 disallowed = TRUE;
1665 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1666 pack_warn = packWARN(WARN_UTF8);
1667 message = Perl_form(aTHX_
1668 "%s: %s (unexpected continuation byte 0x%02x,"
1669 " with no preceding start byte)",
1670 malformed_text,
1671 _byte_dump_string(s0, 1, 0), *s0);
1672 }
1673 }
1674 }
1675 else if (possible_problems & UTF8_GOT_SHORT) {
1676 possible_problems &= ~UTF8_GOT_SHORT;
1677 *errors |= UTF8_GOT_SHORT;
1678
1679 if (! (flags & UTF8_ALLOW_SHORT)) {
1680 disallowed = TRUE;
1681 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1682 pack_warn = packWARN(WARN_UTF8);
1683 message = Perl_form(aTHX_
1684 "%s: %s (too short; %d byte%s available, need %d)",
1685 malformed_text,
1686 _byte_dump_string(s0, send - s0, 0),
1687 (int)avail_len,
1688 avail_len == 1 ? "" : "s",
1689 (int)expectlen);
1690 }
1691 }
1692
1693 }
1694 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1695 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1696 *errors |= UTF8_GOT_NON_CONTINUATION;
1697
1698 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1699 disallowed = TRUE;
1700 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1701
1702 /* If we don't know for sure that the input length is
1703 * valid, avoid as much as possible reading past the
1704 * end of the buffer */
1705 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
1706 ? s - s0
1707 : send - s0;
1708 pack_warn = packWARN(WARN_UTF8);
1709 message = Perl_form(aTHX_ "%s",
1710 unexpected_non_continuation_text(s0,
1711 printlen,
1712 s - s0,
1713 (int) expectlen));
1714 }
1715 }
1716 }
1717 else if (possible_problems & UTF8_GOT_SURROGATE) {
1718 possible_problems &= ~UTF8_GOT_SURROGATE;
1719
1720 if (flags & UTF8_WARN_SURROGATE) {
1721 *errors |= UTF8_GOT_SURROGATE;
1722
1723 if ( ! (flags & UTF8_CHECK_ONLY)
1724 && ckWARN_d(WARN_SURROGATE))
1725 {
1726 pack_warn = packWARN(WARN_SURROGATE);
1727
1728 /* These are the only errors that can occur with a
1729 * surrogate when the 'uv' isn't valid */
1730 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1731 message = Perl_form(aTHX_
1732 "UTF-16 surrogate (any UTF-8 sequence that"
1733 " starts with \"%s\" is for a surrogate)",
1734 _byte_dump_string(s0, curlen, 0));
1735 }
1736 else {
1737 message = Perl_form(aTHX_ surrogate_cp_format, uv);
1738 }
1739 }
1740 }
1741
1742 if (flags & UTF8_DISALLOW_SURROGATE) {
1743 disallowed = TRUE;
1744 *errors |= UTF8_GOT_SURROGATE;
1745 }
1746 }
1747 else if (possible_problems & UTF8_GOT_SUPER) {
1748 possible_problems &= ~UTF8_GOT_SUPER;
1749
1750 if (flags & UTF8_WARN_SUPER) {
1751 *errors |= UTF8_GOT_SUPER;
1752
1753 if ( ! (flags & UTF8_CHECK_ONLY)
1754 && ckWARN_d(WARN_NON_UNICODE))
1755 {
1756 pack_warn = packWARN(WARN_NON_UNICODE);
1757
1758 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1759 message = Perl_form(aTHX_
1760 "Any UTF-8 sequence that starts with"
1761 " \"%s\" is for a non-Unicode code point,"
1762 " may not be portable",
1763 _byte_dump_string(s0, curlen, 0));
1764 }
1765 else {
1766 message = Perl_form(aTHX_ super_cp_format, uv);
1767 }
1768 }
1769 }
1770
1771 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
1772 * and before possibly bailing out, so that the more dire
1773 * warning will override the regular one. */
1774 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
1775 if ( ! (flags & UTF8_CHECK_ONLY)
1776 && (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
1777 && ckWARN_d(WARN_NON_UNICODE))
1778 {
1779 pack_warn = packWARN(WARN_NON_UNICODE);
1780
1781 /* If it is an overlong that evaluates to a code point
1782 * that doesn't have to use the Perl extended UTF-8, it
1783 * still used it, and so we output a message that
1784 * doesn't refer to the code point. The same is true
1785 * if there was a SHORT malformation where the code
1786 * point is not valid. In that case, 'uv' will have
1787 * been set to the REPLACEMENT CHAR, and the message
1788 * below without the code point in it will be selected
1789 * */
1790 if (UNICODE_IS_PERL_EXTENDED(uv)) {
1791 message = Perl_form(aTHX_
1792 perl_extended_cp_format, uv);
1793 }
1794 else {
1795 message = Perl_form(aTHX_
1796 "Any UTF-8 sequence that starts with"
1797 " \"%s\" is a Perl extension, and"
1798 " so is not portable",
1799 _byte_dump_string(s0, curlen, 0));
1800 }
1801 }
1802
1803 if (flags & ( UTF8_WARN_PERL_EXTENDED
1804 |UTF8_DISALLOW_PERL_EXTENDED))
1805 {
1806 *errors |= UTF8_GOT_PERL_EXTENDED;
1807
1808 if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
1809 disallowed = TRUE;
1810 }
1811 }
1812 }
1813
1814 if (flags & UTF8_DISALLOW_SUPER) {
1815 *errors |= UTF8_GOT_SUPER;
1816 disallowed = TRUE;
1817 }
1818 }
1819 else if (possible_problems & UTF8_GOT_NONCHAR) {
1820 possible_problems &= ~UTF8_GOT_NONCHAR;
1821
1822 if (flags & UTF8_WARN_NONCHAR) {
1823 *errors |= UTF8_GOT_NONCHAR;
1824
1825 if ( ! (flags & UTF8_CHECK_ONLY)
1826 && ckWARN_d(WARN_NONCHAR))
1827 {
1828 /* The code above should have guaranteed that we don't
1829 * get here with errors other than overlong */
1830 assert (! (orig_problems
1831 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
1832
1833 pack_warn = packWARN(WARN_NONCHAR);
1834 message = Perl_form(aTHX_ nonchar_cp_format, uv);
1835 }
1836 }
1837
1838 if (flags & UTF8_DISALLOW_NONCHAR) {
1839 disallowed = TRUE;
1840 *errors |= UTF8_GOT_NONCHAR;
1841 }
1842 }
1843 else if (possible_problems & UTF8_GOT_LONG) {
1844 possible_problems &= ~UTF8_GOT_LONG;
1845 *errors |= UTF8_GOT_LONG;
1846
1847 if (flags & UTF8_ALLOW_LONG) {
1848
1849 /* We don't allow the actual overlong value, unless the
1850 * special extra bit is also set */
1851 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
1852 & ~UTF8_ALLOW_LONG)))
1853 {
1854 uv = UNICODE_REPLACEMENT;
1855 }
1856 }
1857 else {
1858 disallowed = TRUE;
1859
1860 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1861 pack_warn = packWARN(WARN_UTF8);
1862
1863 /* These error types cause 'uv' to be something that
1864 * isn't what was intended, so can't use it in the
1865 * message. The other error types either can't
1866 * generate an overlong, or else the 'uv' is valid */
1867 if (orig_problems &
1868 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1869 {
1870 message = Perl_form(aTHX_
1871 "%s: %s (any UTF-8 sequence that starts"
1872 " with \"%s\" is overlong which can and"
1873 " should be represented with a"
1874 " different, shorter sequence)",
1875 malformed_text,
1876 _byte_dump_string(s0, send - s0, 0),
1877 _byte_dump_string(s0, curlen, 0));
1878 }
1879 else {
1880 U8 tmpbuf[UTF8_MAXBYTES+1];
1881 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
1882 uv, 0);
1883 /* Don't use U+ for non-Unicode code points, which
1884 * includes those in the Latin1 range */
1885 const char * preface = ( uv > PERL_UNICODE_MAX
1886#ifdef EBCDIC
1887 || uv <= 0xFF
1888#endif
1889 )
1890 ? "0x"
1891 : "U+";
1892 message = Perl_form(aTHX_
1893 "%s: %s (overlong; instead use %s to represent"
1894 " %s%0*" UVXf ")",
1895 malformed_text,
1896 _byte_dump_string(s0, send - s0, 0),
1897 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
1898 preface,
1899 ((uv < 256) ? 2 : 4), /* Field width of 2 for
1900 small code points */
1901 UNI_TO_NATIVE(uv));
1902 }
1903 }
1904 }
1905 } /* End of looking through the possible flags */
1906
1907 /* Display the message (if any) for the problem being handled in
1908 * this iteration of the loop */
1909 if (message) {
1910 if (PL_op)
1911 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
1912 OP_DESC(PL_op));
1913 else
1914 Perl_warner(aTHX_ pack_warn, "%s", message);
1915 }
1916 } /* End of 'while (possible_problems)' */
1917
1918 /* Since there was a possible problem, the returned length may need to
1919 * be changed from the one stored at the beginning of this function.
1920 * Instead of trying to figure out if that's needed, just do it. */
1921 if (retlen) {
1922 *retlen = curlen;
1923 }
1924
1925 if (disallowed) {
1926 if (flags & UTF8_CHECK_ONLY && retlen) {
1927 *retlen = ((STRLEN) -1);
1928 }
1929 return 0;
1930 }
1931 }
1932
1933 return UNI_TO_NATIVE(uv);
1934}
1935
1936/*
1937=for apidoc utf8_to_uvchr_buf
1938
1939Returns the native code point of the first character in the string C<s> which
1940is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1941C<*retlen> will be set to the length, in bytes, of that character.
1942
1943If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1944enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1945C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1946(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1947C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1948the next possible position in C<s> that could begin a non-malformed character.
1949See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1950returned.
1951
1952=cut
1953
1954Also implemented as a macro in utf8.h
1955
1956*/
1957
1958
1959UV
1960Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1961{
1962 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
1963
1964 assert(s < send);
1965
1966 return utf8n_to_uvchr(s, send - s, retlen,
1967 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1968}
1969
1970/* This is marked as deprecated
1971 *
1972=for apidoc utf8_to_uvuni_buf
1973
1974Only in very rare circumstances should code need to be dealing in Unicode
1975(as opposed to native) code points. In those few cases, use
1976C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1977
1978Returns the Unicode (not-native) code point of the first character in the
1979string C<s> which
1980is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1981C<retlen> will be set to the length, in bytes, of that character.
1982
1983If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1984enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1985NULL) to -1. If those warnings are off, the computed value if well-defined (or
1986the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1987is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1988next possible position in C<s> that could begin a non-malformed character.
1989See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1990
1991=cut
1992*/
1993
1994UV
1995Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1996{
1997 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1998
1999 assert(send > s);
2000
2001 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2002}
2003
2004/*
2005=for apidoc utf8_length
2006
2007Return the length of the UTF-8 char encoded string C<s> in characters.
2008Stops at C<e> (i.e. the C<*e> byte does not form part of the character).
2009If C<e E<lt> s> or if the scan would end up past C<e>, it croaks.
2010
2011=cut
2012*/
2013
2014STRLEN
2015Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2016{
2017 STRLEN len = 0;
2018
2019 PERL_ARGS_ASSERT_UTF8_LENGTH;
2020
2021 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2022 * the bitops (especially ~) can create illegal UTF-8.
2023 * In other words: in Perl UTF-8 is not just for Unicode. */
2024
2025 if (e < s)
2026 goto warn_and_return;
2027 while (s < e) {
2028 s += UTF8SKIP(s);
2029 len++;
2030 }
2031
2032 if (e != s) {
2033 len--;
2034 warn_and_return:
2035 if (PL_op)
2036 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2037 "%s in %s", unees, OP_DESC(PL_op));
2038 else
2039 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2040 }
2041
2042 return len;
2043}
2044
2045/*
2046=for apidoc bytes_cmp_utf8
2047
2048Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2049sequence of characters (stored as UTF-8)
2050in C<u>, C<ulen>. Returns 0 if they are
2051equal, -1 or -2 if the first string is less than the second string, +1 or +2
2052if the first string is greater than the second string.
2053
2054-1 or +1 is returned if the shorter string was identical to the start of the
2055longer string. -2 or +2 is returned if
2056there was a difference between characters
2057within the strings.
2058
2059=cut
2060*/
2061
2062int
2063Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2064{
2065 const U8 *const bend = b + blen;
2066 const U8 *const uend = u + ulen;
2067
2068 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2069
2070 while (b < bend && u < uend) {
2071 U8 c = *u++;
2072 if (!UTF8_IS_INVARIANT(c)) {
2073 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2074 if (u < uend) {
2075 U8 c1 = *u++;
2076 if (UTF8_IS_CONTINUATION(c1)) {
2077 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2078 } else {
2079 /* diag_listed_as: Malformed UTF-8 character%s */
2080 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2081 "%s %s%s",
2082 unexpected_non_continuation_text(u - 2, 2, 1, 2),
2083 PL_op ? " in " : "",
2084 PL_op ? OP_DESC(PL_op) : "");
2085 return -2;
2086 }
2087 } else {
2088 if (PL_op)
2089 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2090 "%s in %s", unees, OP_DESC(PL_op));
2091 else
2092 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2093 return -2; /* Really want to return undef :-) */
2094 }
2095 } else {
2096 return -2;
2097 }
2098 }
2099 if (*b != c) {
2100 return *b < c ? -2 : +2;
2101 }
2102 ++b;
2103 }
2104
2105 if (b == bend && u == uend)
2106 return 0;
2107
2108 return b < bend ? +1 : -1;
2109}
2110
2111/*
2112=for apidoc utf8_to_bytes
2113
2114Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2115Unlike L</bytes_to_utf8>, this over-writes the original string, and
2116updates C<*lenp> to contain the new length.
2117Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2118
2119Upon successful return, the number of variants in the string can be computed by
2120having saved the value of C<*lenp> before the call, and subtracting the
2121after-call value of C<*lenp> from it.
2122
2123If you need a copy of the string, see L</bytes_from_utf8>.
2124
2125=cut
2126*/
2127
2128U8 *
2129Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2130{
2131 U8 * first_variant;
2132
2133 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2134 PERL_UNUSED_CONTEXT;
2135
2136 /* This is a no-op if no variants at all in the input */
2137 if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2138 return s;
2139 }
2140
2141 {
2142 U8 * const save = s;
2143 U8 * const send = s + *lenp;
2144 U8 * d;
2145
2146 /* Nothing before the first variant needs to be changed, so start the real
2147 * work there */
2148 s = first_variant;
2149 while (s < send) {
2150 if (! UTF8_IS_INVARIANT(*s)) {
2151 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2152 *lenp = ((STRLEN) -1);
2153 return 0;
2154 }
2155 s++;
2156 }
2157 s++;
2158 }
2159
2160 /* Is downgradable, so do it */
2161 d = s = first_variant;
2162 while (s < send) {
2163 U8 c = *s++;
2164 if (! UVCHR_IS_INVARIANT(c)) {
2165 /* Then it is two-byte encoded */
2166 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2167 s++;
2168 }
2169 *d++ = c;
2170 }
2171 *d = '\0';
2172 *lenp = d - save;
2173
2174 return save;
2175 }
2176}
2177
2178/*
2179=for apidoc bytes_from_utf8
2180
2181Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2182byte encoding. On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2183actually encoded in UTF-8.
2184
2185Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2186the input string.
2187
2188Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2189not expressible in native byte encoding. In these cases, C<*is_utf8p> and
2190C<*lenp> are unchanged, and the return value is the original C<s>.
2191
2192Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2193newly created string containing a downgraded copy of C<s>, and whose length is
2194returned in C<*lenp>, updated. The new string is C<NUL>-terminated.
2195
2196Upon successful return, the number of variants in the string can be computed by
2197having saved the value of C<*lenp> before the call, and subtracting the
2198after-call value of C<*lenp> from it.
2199
2200=cut
2201
2202There is a macro that avoids this function call, but this is retained for
2203anyone who calls it with the Perl_ prefix */
2204
2205U8 *
2206Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2207{
2208 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2209 PERL_UNUSED_CONTEXT;
2210
2211 return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2212}
2213
2214/*
2215No = here because currently externally undocumented
2216for apidoc bytes_from_utf8_loc
2217
2218Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2219to store the location of the first character in C<"s"> that cannot be
2220converted to non-UTF8.
2221
2222If that parameter is C<NULL>, this function behaves identically to
2223C<bytes_from_utf8>.
2224
2225Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2226C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2227
2228Otherwise, the function returns a newly created C<NUL>-terminated string
2229containing the non-UTF8 equivalent of the convertible first portion of
2230C<"s">. C<*lenp> is set to its length, not including the terminating C<NUL>.
2231If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2232and C<*first_non_downgradable> is set to C<NULL>.
2233
2234Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2235first character in the original string that wasn't converted. C<*is_utf8p> is
2236unchanged. Note that the new string may have length 0.
2237
2238Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2239C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2240converts as many characters in it as possible stopping at the first one it
2241finds that can't be converted to non-UTF-8. C<*first_non_downgradable> is
2242set to point to that. The function returns the portion that could be converted
2243in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2244not including the terminating C<NUL>. If the very first character in the
2245original could not be converted, C<*lenp> will be 0, and the new string will
2246contain just a single C<NUL>. If the entire input string was converted,
2247C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2248
2249Upon successful return, the number of variants in the converted portion of the
2250string can be computed by having saved the value of C<*lenp> before the call,
2251and subtracting the after-call value of C<*lenp> from it.
2252
2253=cut
2254
2255
2256*/
2257
2258U8 *
2259Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2260{
2261 U8 *d;
2262 const U8 *original = s;
2263 U8 *converted_start;
2264 const U8 *send = s + *lenp;
2265
2266 PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2267
2268 if (! *is_utf8p) {
2269 if (first_unconverted) {
2270 *first_unconverted = NULL;
2271 }
2272
2273 return (U8 *) original;
2274 }
2275
2276 Newx(d, (*lenp) + 1, U8);
2277
2278 converted_start = d;
2279 while (s < send) {
2280 U8 c = *s++;
2281 if (! UTF8_IS_INVARIANT(c)) {
2282
2283 /* Then it is multi-byte encoded. If the code point is above 0xFF,
2284 * have to stop now */
2285 if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2286 if (first_unconverted) {
2287 *first_unconverted = s - 1;
2288 goto finish_and_return;
2289 }
2290 else {
2291 Safefree(converted_start);
2292 return (U8 *) original;
2293 }
2294 }
2295
2296 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2297 s++;
2298 }
2299 *d++ = c;
2300 }
2301
2302 /* Here, converted the whole of the input */
2303 *is_utf8p = FALSE;
2304 if (first_unconverted) {
2305 *first_unconverted = NULL;
2306 }
2307
2308 finish_and_return:
2309 *d = '\0';
2310 *lenp = d - converted_start;
2311
2312 /* Trim unused space */
2313 Renew(converted_start, *lenp + 1, U8);
2314
2315 return converted_start;
2316}
2317
2318/*
2319=for apidoc bytes_to_utf8
2320
2321Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2322UTF-8.
2323Returns a pointer to the newly-created string, and sets C<*lenp> to
2324reflect the new length in bytes.
2325
2326Upon successful return, the number of variants in the string can be computed by
2327having saved the value of C<*lenp> before the call, and subtracting it from the
2328after-call value of C<*lenp>.
2329
2330A C<NUL> character will be written after the end of the string.
2331
2332If you want to convert to UTF-8 from encodings other than
2333the native (Latin1 or EBCDIC),
2334see L</sv_recode_to_utf8>().
2335
2336=cut
2337*/
2338
2339U8*
2340Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2341{
2342 const U8 * const send = s + (*lenp);
2343 U8 *d;
2344 U8 *dst;
2345
2346 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2347 PERL_UNUSED_CONTEXT;
2348
2349 Newx(d, (*lenp) * 2 + 1, U8);
2350 dst = d;
2351
2352 while (s < send) {
2353 append_utf8_from_native_byte(*s, &d);
2354 s++;
2355 }
2356
2357 *d = '\0';
2358 *lenp = d-dst;
2359
2360 /* Trim unused space */
2361 Renew(dst, *lenp + 1, U8);
2362
2363 return dst;
2364}
2365
2366/*
2367 * Convert native (big-endian) UTF-16 to UTF-8. For reversed (little-endian),
2368 * use utf16_to_utf8_reversed().
2369 *
2370 * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2371 * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2372 * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2373 *
2374 * These functions don't check for overflow. The worst case is every code
2375 * point in the input is 2 bytes, and requires 4 bytes on output. (If the code
2376 * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.) Therefore the
2377 * destination must be pre-extended to 2 times the source length.
2378 *
2379 * Do not use in-place. We optimize for native, for obvious reasons. */
2380
2381U8*
2382Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2383{
2384 U8* pend;
2385 U8* dstart = d;
2386
2387 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2388
2389 if (bytelen & 1)
2390 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2391 (UV)bytelen);
2392
2393 pend = p + bytelen;
2394
2395 while (p < pend) {
2396 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2397 p += 2;
2398 if (OFFUNI_IS_INVARIANT(uv)) {
2399 *d++ = LATIN1_TO_NATIVE((U8) uv);
2400 continue;
2401 }
2402 if (uv <= MAX_UTF8_TWO_BYTE) {
2403 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2404 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2405 continue;
2406 }
2407
2408#define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2409#define LAST_HIGH_SURROGATE 0xDBFF
2410#define FIRST_LOW_SURROGATE 0xDC00
2411#define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2412#define FIRST_IN_PLANE1 0x10000
2413
2414 /* This assumes that most uses will be in the first Unicode plane, not
2415 * needing surrogates */
2416 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2417 && uv <= UNICODE_SURROGATE_LAST))
2418 {
2419 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2420 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2421 }
2422 else {
2423 UV low = (p[0] << 8) + p[1];
2424 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2425 || UNLIKELY(low > LAST_LOW_SURROGATE))
2426 {
2427 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2428 }
2429 p += 2;
2430 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2431 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2432 }
2433 }
2434#ifdef EBCDIC
2435 d = uvoffuni_to_utf8_flags(d, uv, 0);
2436#else
2437 if (uv < FIRST_IN_PLANE1) {
2438 *d++ = (U8)(( uv >> 12) | 0xe0);
2439 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2440 *d++ = (U8)(( uv & 0x3f) | 0x80);
2441 continue;
2442 }
2443 else {
2444 *d++ = (U8)(( uv >> 18) | 0xf0);
2445 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2446 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2447 *d++ = (U8)(( uv & 0x3f) | 0x80);
2448 continue;
2449 }
2450#endif
2451 }
2452 *newlen = d - dstart;
2453 return d;
2454}
2455
2456/* Note: this one is slightly destructive of the source. */
2457
2458U8*
2459Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2460{
2461 U8* s = (U8*)p;
2462 U8* const send = s + bytelen;
2463
2464 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2465
2466 if (bytelen & 1)
2467 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2468 (UV)bytelen);
2469
2470 while (s < send) {
2471 const U8 tmp = s[0];
2472 s[0] = s[1];
2473 s[1] = tmp;
2474 s += 2;
2475 }
2476 return utf16_to_utf8(p, d, bytelen, newlen);
2477}
2478
2479bool
2480Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2481{
2482 U8 tmpbuf[UTF8_MAXBYTES+1];
2483 uvchr_to_utf8(tmpbuf, c);
2484 return _is_utf8_FOO_with_len(classnum, tmpbuf, tmpbuf + sizeof(tmpbuf));
2485}
2486
2487/* Internal function so we can deprecate the external one, and call
2488 this one from other deprecated functions in this file */
2489
2490bool
2491Perl__is_utf8_idstart(pTHX_ const U8 *p)
2492{
2493 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2494
2495 if (*p == '_')
2496 return TRUE;
2497 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2498}
2499
2500bool
2501Perl__is_uni_perl_idcont(pTHX_ UV c)
2502{
2503 U8 tmpbuf[UTF8_MAXBYTES+1];
2504 uvchr_to_utf8(tmpbuf, c);
2505 return _is_utf8_perl_idcont_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2506}
2507
2508bool
2509Perl__is_uni_perl_idstart(pTHX_ UV c)
2510{
2511 U8 tmpbuf[UTF8_MAXBYTES+1];
2512 uvchr_to_utf8(tmpbuf, c);
2513 return _is_utf8_perl_idstart_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2514}
2515
2516UV
2517Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2518 const char S_or_s)
2519{
2520 /* We have the latin1-range values compiled into the core, so just use
2521 * those, converting the result to UTF-8. The only difference between upper
2522 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2523 * either "SS" or "Ss". Which one to use is passed into the routine in
2524 * 'S_or_s' to avoid a test */
2525
2526 UV converted = toUPPER_LATIN1_MOD(c);
2527
2528 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2529
2530 assert(S_or_s == 'S' || S_or_s == 's');
2531
2532 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2533 characters in this range */
2534 *p = (U8) converted;
2535 *lenp = 1;
2536 return converted;
2537 }
2538
2539 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2540 * which it maps to one of them, so as to only have to have one check for
2541 * it in the main case */
2542 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2543 switch (c) {
2544 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2545 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2546 break;
2547 case MICRO_SIGN:
2548 converted = GREEK_CAPITAL_LETTER_MU;
2549 break;
2550#if UNICODE_MAJOR_VERSION > 2 \
2551 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2552 && UNICODE_DOT_DOT_VERSION >= 8)
2553 case LATIN_SMALL_LETTER_SHARP_S:
2554 *(p)++ = 'S';
2555 *p = S_or_s;
2556 *lenp = 2;
2557 return 'S';
2558#endif
2559 default:
2560 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2561 " '%c' to map to '%c'",
2562 c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2563 NOT_REACHED; /* NOTREACHED */
2564 }
2565 }
2566
2567 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2568 *p = UTF8_TWO_BYTE_LO(converted);
2569 *lenp = 2;
2570
2571 return converted;
2572}
2573
2574/* Call the function to convert a UTF-8 encoded character to the specified case.
2575 * Note that there may be more than one character in the result.
2576 * INP is a pointer to the first byte of the input character
2577 * OUTP will be set to the first byte of the string of changed characters. It
2578 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2579 * LENP will be set to the length in bytes of the string of changed characters
2580 *
2581 * The functions return the ordinal of the first character in the string of
2582 * OUTP */
2583#define CALL_UPPER_CASE(uv, s, d, lenp) \
2584 _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2585#define CALL_TITLE_CASE(uv, s, d, lenp) \
2586 _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2587#define CALL_LOWER_CASE(uv, s, d, lenp) \
2588 _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2589
2590/* This additionally has the input parameter 'specials', which if non-zero will
2591 * cause this to use the specials hash for folding (meaning get full case
2592 * folding); otherwise, when zero, this implies a simple case fold */
2593#define CALL_FOLD_CASE(uv, s, d, lenp, specials) \
2594_to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2595
2596UV
2597Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2598{
2599 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2600 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2601 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2602 * the changed version may be longer than the original character.
2603 *
2604 * The ordinal of the first character of the changed version is returned
2605 * (but note, as explained above, that there may be more.) */
2606
2607 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2608
2609 if (c < 256) {
2610 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2611 }
2612
2613 uvchr_to_utf8(p, c);
2614 return CALL_UPPER_CASE(c, p, p, lenp);
2615}
2616
2617UV
2618Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2619{
2620 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2621
2622 if (c < 256) {
2623 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2624 }
2625
2626 uvchr_to_utf8(p, c);
2627 return CALL_TITLE_CASE(c, p, p, lenp);
2628}
2629
2630STATIC U8
2631S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2632{
2633 /* We have the latin1-range values compiled into the core, so just use
2634 * those, converting the result to UTF-8. Since the result is always just
2635 * one character, we allow <p> to be NULL */
2636
2637 U8 converted = toLOWER_LATIN1(c);
2638
2639 PERL_UNUSED_ARG(dummy);
2640
2641 if (p != NULL) {
2642 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2643 *p = converted;
2644 *lenp = 1;
2645 }
2646 else {
2647 /* Result is known to always be < 256, so can use the EIGHT_BIT
2648 * macros */
2649 *p = UTF8_EIGHT_BIT_HI(converted);
2650 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2651 *lenp = 2;
2652 }
2653 }
2654 return converted;
2655}
2656
2657UV
2658Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2659{
2660 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2661
2662 if (c < 256) {
2663 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
2664 }
2665
2666 uvchr_to_utf8(p, c);
2667 return CALL_LOWER_CASE(c, p, p, lenp);
2668}
2669
2670UV
2671Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2672 const unsigned int flags)
2673{
2674 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
2675 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2676 * FOLD_FLAGS_FULL iff full folding is to be used;
2677 *
2678 * Not to be used for locale folds
2679 */
2680
2681 UV converted;
2682
2683 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
2684 PERL_UNUSED_CONTEXT;
2685
2686 assert (! (flags & FOLD_FLAGS_LOCALE));
2687
2688 if (UNLIKELY(c == MICRO_SIGN)) {
2689 converted = GREEK_SMALL_LETTER_MU;
2690 }
2691#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
2692 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
2693 || UNICODE_DOT_DOT_VERSION > 0)
2694 else if ( (flags & FOLD_FLAGS_FULL)
2695 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
2696 {
2697 /* If can't cross 127/128 boundary, can't return "ss"; instead return
2698 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
2699 * under those circumstances. */
2700 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
2701 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2702 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2703 p, *lenp, U8);
2704 return LATIN_SMALL_LETTER_LONG_S;
2705 }
2706 else {
2707 *(p)++ = 's';
2708 *p = 's';
2709 *lenp = 2;
2710 return 's';
2711 }
2712 }
2713#endif
2714 else { /* In this range the fold of all other characters is their lower
2715 case */
2716 converted = toLOWER_LATIN1(c);
2717 }
2718
2719 if (UVCHR_IS_INVARIANT(converted)) {
2720 *p = (U8) converted;
2721 *lenp = 1;
2722 }
2723 else {
2724 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2725 *p = UTF8_TWO_BYTE_LO(converted);
2726 *lenp = 2;
2727 }
2728
2729 return converted;
2730}
2731
2732UV
2733Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
2734{
2735
2736 /* Not currently externally documented, and subject to change
2737 * <flags> bits meanings:
2738 * FOLD_FLAGS_FULL iff full folding is to be used;
2739 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2740 * locale are to be used.
2741 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2742 */
2743
2744 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
2745
2746 if (flags & FOLD_FLAGS_LOCALE) {
2747 /* Treat a UTF-8 locale as not being in locale at all */
2748 if (IN_UTF8_CTYPE_LOCALE) {
2749 flags &= ~FOLD_FLAGS_LOCALE;
2750 }
2751 else {
2752 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2753 goto needs_full_generality;
2754 }
2755 }
2756
2757 if (c < 256) {
2758 return _to_fold_latin1((U8) c, p, lenp,
2759 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2760 }
2761
2762 /* Here, above 255. If no special needs, just use the macro */
2763 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
2764 uvchr_to_utf8(p, c);
2765 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
2766 }
2767 else { /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
2768 the special flags. */
2769 U8 utf8_c[UTF8_MAXBYTES + 1];
2770
2771 needs_full_generality:
2772 uvchr_to_utf8(utf8_c, c);
2773 return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
2774 p, lenp, flags);
2775 }
2776}
2777
2778PERL_STATIC_INLINE bool
2779S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2780 const char *const swashname, SV* const invlist)
2781{
2782 /* returns a boolean giving whether or not the UTF8-encoded character that
2783 * starts at <p> is in the swash indicated by <swashname>. <swash>
2784 * contains a pointer to where the swash indicated by <swashname>
2785 * is to be stored; which this routine will do, so that future calls will
2786 * look at <*swash> and only generate a swash if it is not null. <invlist>
2787 * is NULL or an inversion list that defines the swash. If not null, it
2788 * saves time during initialization of the swash.
2789 *
2790 * Note that it is assumed that the buffer length of <p> is enough to
2791 * contain all the bytes that comprise the character. Thus, <*p> should
2792 * have been checked before this call for mal-formedness enough to assure
2793 * that. */
2794
2795 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2796
2797 /* The API should have included a length for the UTF-8 character in <p>,
2798 * but it doesn't. We therefore assume that p has been validated at least
2799 * as far as there being enough bytes available in it to accommodate the
2800 * character without reading beyond the end, and pass that number on to the
2801 * validating routine */
2802 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
2803 _force_out_malformed_utf8_message(p, p + UTF8SKIP(p),
2804 _UTF8_NO_CONFIDENCE_IN_CURLEN,
2805 1 /* Die */ );
2806 NOT_REACHED; /* NOTREACHED */
2807 }
2808
2809 if (!*swash) {
2810 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2811 *swash = _core_swash_init("utf8",
2812
2813 /* Only use the name if there is no inversion
2814 * list; otherwise will go out to disk */
2815 (invlist) ? "" : swashname,
2816
2817 &PL_sv_undef, 1, 0, invlist, &flags);
2818 }
2819
2820 return swash_fetch(*swash, p, TRUE) != 0;
2821}
2822
2823PERL_STATIC_INLINE bool
2824S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e,
2825 SV **swash, const char *const swashname,
2826 SV* const invlist)
2827{
2828 /* returns a boolean giving whether or not the UTF8-encoded character that
2829 * starts at <p>, and extending no further than <e - 1> is in the swash
2830 * indicated by <swashname>. <swash> contains a pointer to where the swash
2831 * indicated by <swashname> is to be stored; which this routine will do, so
2832 * that future calls will look at <*swash> and only generate a swash if it
2833 * is not null. <invlist> is NULL or an inversion list that defines the
2834 * swash. If not null, it saves time during initialization of the swash.
2835 */
2836
2837 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
2838
2839 if (! isUTF8_CHAR(p, e)) {
2840 _force_out_malformed_utf8_message(p, e, 0, 1);
2841 NOT_REACHED; /* NOTREACHED */
2842 }
2843
2844 if (!*swash) {
2845 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2846 *swash = _core_swash_init("utf8",
2847
2848 /* Only use the name if there is no inversion
2849 * list; otherwise will go out to disk */
2850 (invlist) ? "" : swashname,
2851
2852 &PL_sv_undef, 1, 0, invlist, &flags);
2853 }
2854
2855 return swash_fetch(*swash, p, TRUE) != 0;
2856}
2857
2858STATIC void
2859S_warn_on_first_deprecated_use(pTHX_ const char * const name,
2860 const char * const alternative,
2861 const bool use_locale,
2862 const char * const file,
2863 const unsigned line)
2864{
2865 const char * key;
2866
2867 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
2868
2869 if (ckWARN_d(WARN_DEPRECATED)) {
2870
2871 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
2872 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
2873 if (! PL_seen_deprecated_macro) {
2874 PL_seen_deprecated_macro = newHV();
2875 }
2876 if (! hv_store(PL_seen_deprecated_macro, key,
2877 strlen(key), &PL_sv_undef, 0))
2878 {
2879 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
2880 }
2881
2882 if (instr(file, "mathoms.c")) {
2883 Perl_warner(aTHX_ WARN_DEPRECATED,
2884 "In %s, line %d, starting in Perl v5.30, %s()"
2885 " will be removed. Avoid this message by"
2886 " converting to use %s().\n",
2887 file, line, name, alternative);
2888 }
2889 else {
2890 Perl_warner(aTHX_ WARN_DEPRECATED,
2891 "In %s, line %d, starting in Perl v5.30, %s() will"
2892 " require an additional parameter. Avoid this"
2893 " message by converting to use %s().\n",
2894 file, line, name, alternative);
2895 }
2896 }
2897 }
2898}
2899
2900bool
2901Perl__is_utf8_FOO(pTHX_ U8 classnum,
2902 const U8 * const p,
2903 const char * const name,
2904 const char * const alternative,
2905 const bool use_utf8,
2906 const bool use_locale,
2907 const char * const file,
2908 const unsigned line)
2909{
2910 PERL_ARGS_ASSERT__IS_UTF8_FOO;
2911
2912 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
2913
2914 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
2915
2916 switch (classnum) {
2917 case _CC_WORDCHAR:
2918 case _CC_DIGIT:
2919 case _CC_ALPHA:
2920 case _CC_LOWER:
2921 case _CC_UPPER:
2922 case _CC_PUNCT:
2923 case _CC_PRINT:
2924 case _CC_ALPHANUMERIC:
2925 case _CC_GRAPH:
2926 case _CC_CASED:
2927
2928 return is_utf8_common(p,
2929 &PL_utf8_swash_ptrs[classnum],
2930 swash_property_names[classnum],
2931 PL_XPosix_ptrs[classnum]);
2932
2933 case _CC_SPACE:
2934 return is_XPERLSPACE_high(p);
2935 case _CC_BLANK:
2936 return is_HORIZWS_high(p);
2937 case _CC_XDIGIT:
2938 return is_XDIGIT_high(p);
2939 case _CC_CNTRL:
2940 return 0;
2941 case _CC_ASCII:
2942 return 0;
2943 case _CC_VERTSPACE:
2944 return is_VERTWS_high(p);
2945 case _CC_IDFIRST:
2946 if (! PL_utf8_perl_idstart) {
2947 PL_utf8_perl_idstart
2948 = _new_invlist_C_array(_Perl_IDStart_invlist);
2949 }
2950 return is_utf8_common(p, &PL_utf8_perl_idstart,
2951 "_Perl_IDStart", NULL);
2952 case _CC_IDCONT:
2953 if (! PL_utf8_perl_idcont) {
2954 PL_utf8_perl_idcont
2955 = _new_invlist_C_array(_Perl_IDCont_invlist);
2956 }
2957 return is_utf8_common(p, &PL_utf8_perl_idcont,
2958 "_Perl_IDCont", NULL);
2959 }
2960 }
2961
2962 /* idcont is the same as wordchar below 256 */
2963 if (classnum == _CC_IDCONT) {
2964 classnum = _CC_WORDCHAR;
2965 }
2966 else if (classnum == _CC_IDFIRST) {
2967 if (*p == '_') {
2968 return TRUE;
2969 }
2970 classnum = _CC_ALPHA;
2971 }
2972
2973 if (! use_locale) {
2974 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2975 return _generic_isCC(*p, classnum);
2976 }
2977
2978 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
2979 }
2980 else {
2981 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2982 return isFOO_lc(classnum, *p);
2983 }
2984
2985 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
2986 }
2987
2988 NOT_REACHED; /* NOTREACHED */
2989}
2990
2991bool
2992Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
2993 const U8 * const e)
2994{
2995 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
2996
2997 assert(classnum < _FIRST_NON_SWASH_CC);
2998
2999 return is_utf8_common_with_len(p,
3000 e,
3001 &PL_utf8_swash_ptrs[classnum],
3002 swash_property_names[classnum],
3003 PL_XPosix_ptrs[classnum]);
3004}
3005
3006bool
3007Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
3008{
3009 SV* invlist = NULL;
3010
3011 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
3012
3013 if (! PL_utf8_perl_idstart) {
3014 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
3015 }
3016 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idstart,
3017 "_Perl_IDStart", invlist);
3018}
3019
3020bool
3021Perl__is_utf8_xidstart(pTHX_ const U8 *p)
3022{
3023 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
3024
3025 if (*p == '_')
3026 return TRUE;
3027 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
3028}
3029
3030bool
3031Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
3032{
3033 SV* invlist = NULL;
3034
3035 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
3036
3037 if (! PL_utf8_perl_idcont) {
3038 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
3039 }
3040 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idcont,
3041 "_Perl_IDCont", invlist);
3042}
3043
3044bool
3045Perl__is_utf8_idcont(pTHX_ const U8 *p)
3046{
3047 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
3048
3049 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
3050}
3051
3052bool
3053Perl__is_utf8_xidcont(pTHX_ const U8 *p)
3054{
3055 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
3056
3057 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
3058}
3059
3060bool
3061Perl__is_utf8_mark(pTHX_ const U8 *p)
3062{
3063 PERL_ARGS_ASSERT__IS_UTF8_MARK;
3064
3065 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
3066}
3067
3068 /* change namve uv1 to 'from' */
3069STATIC UV
3070S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
3071 SV **swashp, const char *normal, const char *special)
3072{
3073 STRLEN len = 0;
3074
3075 PERL_ARGS_ASSERT__TO_UTF8_CASE;
3076
3077 /* For code points that don't change case, we already know that the output
3078 * of this function is the unchanged input, so we can skip doing look-ups
3079 * for them. Unfortunately the case-changing code points are scattered
3080 * around. But there are some long consecutive ranges where there are no
3081 * case changing code points. By adding tests, we can eliminate the lookup
3082 * for all the ones in such ranges. This is currently done here only for
3083 * just a few cases where the scripts are in common use in modern commerce
3084 * (and scripts adjacent to those which can be included without additional
3085 * tests). */
3086
3087 if (uv1 >= 0x0590) {
3088 /* This keeps from needing further processing the code points most
3089 * likely to be used in the following non-cased scripts: Hebrew,
3090 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3091 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3092 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3093 if (uv1 < 0x10A0) {
3094 goto cases_to_self;
3095 }
3096
3097 /* The following largish code point ranges also don't have case
3098 * changes, but khw didn't think they warranted extra tests to speed
3099 * them up (which would slightly slow down everything else above them):
3100 * 1100..139F Hangul Jamo, Ethiopic
3101 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3102 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3103 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3104 * Combining Diacritical Marks Extended, Balinese,
3105 * Sundanese, Batak, Lepcha, Ol Chiki
3106 * 2000..206F General Punctuation
3107 */
3108
3109 if (uv1 >= 0x2D30) {
3110
3111 /* This keeps the from needing further processing the code points
3112 * most likely to be used in the following non-cased major scripts:
3113 * CJK, Katakana, Hiragana, plus some less-likely scripts.
3114 *
3115 * (0x2D30 above might have to be changed to 2F00 in the unlikely
3116 * event that Unicode eventually allocates the unused block as of
3117 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
3118 * that the test suite will start having failures to alert you
3119 * should that happen) */
3120 if (uv1 < 0xA640) {
3121 goto cases_to_self;
3122 }
3123
3124 if (uv1 >= 0xAC00) {
3125 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3126 if (ckWARN_d(WARN_SURROGATE)) {
3127 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3128 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3129 "Operation \"%s\" returns its argument for"
3130 " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3131 }
3132 goto cases_to_self;
3133 }
3134
3135 /* AC00..FAFF Catches Hangul syllables and private use, plus
3136 * some others */
3137 if (uv1 < 0xFB00) {
3138 goto cases_to_self;
3139
3140 }
3141
3142 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3143 if (UNLIKELY(uv1 > MAX_EXTERNALLY_LEGAL_CP)) {
3144 Perl_croak(aTHX_ cp_above_legal_max, uv1,
3145 MAX_EXTERNALLY_LEGAL_CP);
3146 }
3147 if (ckWARN_d(WARN_NON_UNICODE)) {
3148 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3149 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3150 "Operation \"%s\" returns its argument for"
3151 " non-Unicode code point 0x%04" UVXf, desc, uv1);
3152 }
3153 goto cases_to_self;
3154 }
3155#ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3156 if (UNLIKELY(uv1
3157 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3158 {
3159
3160 /* As of Unicode 10.0, this means we avoid swash creation
3161 * for anything beyond high Plane 1 (below emojis) */
3162 goto cases_to_self;
3163 }
3164#endif
3165 }
3166 }
3167
3168 /* Note that non-characters are perfectly legal, so no warning should
3169 * be given. There are so few of them, that it isn't worth the extra
3170 * tests to avoid swash creation */
3171 }
3172
3173 if (!*swashp) /* load on-demand */
3174 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef,
3175 4, 0, NULL, NULL);
3176
3177 if (special) {
3178 /* It might be "special" (sometimes, but not always,
3179 * a multicharacter mapping) */
3180 HV *hv = NULL;
3181 SV **svp;
3182
3183 /* If passed in the specials name, use that; otherwise use any
3184 * given in the swash */
3185 if (*special != '\0') {
3186 hv = get_hv(special, 0);
3187 }
3188 else {
3189 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
3190 if (svp) {
3191 hv = MUTABLE_HV(SvRV(*svp));
3192 }
3193 }
3194
3195 if (hv
3196 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
3197 && (*svp))
3198 {
3199 const char *s;
3200
3201 s = SvPV_const(*svp, len);
3202 if (len == 1)
3203 /* EIGHTBIT */
3204 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
3205 else {
3206 Copy(s, ustrp, len, U8);
3207 }
3208 }
3209 }
3210
3211 if (!len && *swashp) {
3212 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
3213
3214 if (uv2) {
3215 /* It was "normal" (a single character mapping). */
3216 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
3217 }
3218 }
3219
3220 if (len) {
3221 if (lenp) {
3222 *lenp = len;
3223 }
3224 return valid_utf8_to_uvchr(ustrp, 0);
3225 }
3226
3227 /* Here, there was no mapping defined, which means that the code point maps
3228 * to itself. Return the inputs */
3229 cases_to_self:
3230 len = UTF8SKIP(p);
3231 if (p != ustrp) { /* Don't copy onto itself */
3232 Copy(p, ustrp, len, U8);
3233 }
3234
3235 if (lenp)
3236 *lenp = len;
3237
3238 return uv1;
3239
3240}
3241
3242STATIC UV
3243S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3244 U8* const ustrp, STRLEN *lenp)
3245{
3246 /* This is called when changing the case of a UTF-8-encoded character above
3247 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
3248 * result contains a character that crosses the 255/256 boundary, disallow
3249 * the change, and return the original code point. See L<perlfunc/lc> for
3250 * why;
3251 *
3252 * p points to the original string whose case was changed; assumed
3253 * by this routine to be well-formed
3254 * result the code point of the first character in the changed-case string
3255 * ustrp points to the changed-case string (<result> represents its
3256 * first char)
3257 * lenp points to the length of <ustrp> */
3258
3259 UV original; /* To store the first code point of <p> */
3260
3261 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3262
3263 assert(UTF8_IS_ABOVE_LATIN1(*p));
3264
3265 /* We know immediately if the first character in the string crosses the
3266 * boundary, so can skip */
3267 if (result > 255) {
3268
3269 /* Look at every character in the result; if any cross the
3270 * boundary, the whole thing is disallowed */
3271 U8* s = ustrp + UTF8SKIP(ustrp);
3272 U8* e = ustrp + *lenp;
3273 while (s < e) {
3274 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3275 goto bad_crossing;
3276 }
3277 s += UTF8SKIP(s);
3278 }
3279
3280 /* Here, no characters crossed, result is ok as-is, but we warn. */
3281 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3282 return result;
3283 }
3284
3285 bad_crossing:
3286
3287 /* Failed, have to return the original */
3288 original = valid_utf8_to_uvchr(p, lenp);
3289
3290 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3291 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3292 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3293 " locale; resolved to \"\\x{%" UVXf "}\".",
3294 OP_DESC(PL_op),
3295 original,
3296 original);
3297 Copy(p, ustrp, *lenp, char);
3298 return original;
3299}
3300
3301STATIC U32
3302S_check_and_deprecate(pTHX_ const U8 *p,
3303 const U8 **e,
3304 const unsigned int type, /* See below */
3305 const bool use_locale, /* Is this a 'LC_'
3306 macro call? */
3307 const char * const file,
3308 const unsigned line)
3309{
3310 /* This is a temporary function to deprecate the unsafe calls to the case
3311 * changing macros and functions. It keeps all the special stuff in just
3312 * one place.
3313 *
3314 * It updates *e with the pointer to the end of the input string. If using
3315 * the old-style macros, *e is NULL on input, and so this function assumes
3316 * the input string is long enough to hold the entire UTF-8 sequence, and
3317 * sets *e accordingly, but it then returns a flag to pass the
3318 * utf8n_to_uvchr(), to tell it that this size is a guess, and to avoid
3319 * using the full length if possible.
3320 *
3321 * It also does the assert that *e > p when *e is not NULL. This should be
3322 * migrated to the callers when this function gets deleted.
3323 *
3324 * The 'type' parameter is used for the caller to specify which case
3325 * changing function this is called from: */
3326
3327# define DEPRECATE_TO_UPPER 0
3328# define DEPRECATE_TO_TITLE 1
3329# define DEPRECATE_TO_LOWER 2
3330# define DEPRECATE_TO_FOLD 3
3331
3332 U32 utf8n_flags = 0;
3333 const char * name;
3334 const char * alternative;
3335
3336 PERL_ARGS_ASSERT_CHECK_AND_DEPRECATE;
3337
3338 if (*e == NULL) {
3339 utf8n_flags = _UTF8_NO_CONFIDENCE_IN_CURLEN;
3340 *e = p + UTF8SKIP(p);
3341
3342 /* For mathoms.c calls, we use the function name we know is stored
3343 * there. It could be part of a larger path */
3344 if (type == DEPRECATE_TO_UPPER) {
3345 name = instr(file, "mathoms.c")
3346 ? "to_utf8_upper"
3347 : "toUPPER_utf8";
3348 alternative = "toUPPER_utf8_safe";
3349 }
3350 else if (type == DEPRECATE_TO_TITLE) {
3351 name = instr(file, "mathoms.c")
3352 ? "to_utf8_title"
3353 : "toTITLE_utf8";
3354 alternative = "toTITLE_utf8_safe";
3355 }
3356 else if (type == DEPRECATE_TO_LOWER) {
3357 name = instr(file, "mathoms.c")
3358 ? "to_utf8_lower"
3359 : "toLOWER_utf8";
3360 alternative = "toLOWER_utf8_safe";
3361 }
3362 else if (type == DEPRECATE_TO_FOLD) {
3363 name = instr(file, "mathoms.c")
3364 ? "to_utf8_fold"
3365 : "toFOLD_utf8";
3366 alternative = "toFOLD_utf8_safe";
3367 }
3368 else Perl_croak(aTHX_ "panic: Unexpected case change type");
3369
3370 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
3371 }
3372 else {
3373 assert (p < *e);
3374 }
3375
3376 return utf8n_flags;
3377}
3378
3379/* The process for changing the case is essentially the same for the four case
3380 * change types, except there are complications for folding. Otherwise the
3381 * difference is only which case to change to. To make sure that they all do
3382 * the same thing, the bodies of the functions are extracted out into the
3383 * following two macros. The functions are written with the same variable
3384 * names, and these are known and used inside these macros. It would be
3385 * better, of course, to have inline functions to do it, but since different
3386 * macros are called, depending on which case is being changed to, this is not
3387 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3388 * function can start with the common start macro, then finish with its special
3389 * handling; while the other three cases can just use the common end macro.
3390 *
3391 * The algorithm is to use the proper (passed in) macro or function to change
3392 * the case for code points that are below 256. The macro is used if using
3393 * locale rules for the case change; the function if not. If the code point is
3394 * above 255, it is computed from the input UTF-8, and another macro is called
3395 * to do the conversion. If necessary, the output is converted to UTF-8. If
3396 * using a locale, we have to check that the change did not cross the 255/256
3397 * boundary, see check_locale_boundary_crossing() for further details.
3398 *
3399 * The macros are split with the correct case change for the below-256 case
3400 * stored into 'result', and in the middle of an else clause for the above-255
3401 * case. At that point in the 'else', 'result' is not the final result, but is
3402 * the input code point calculated from the UTF-8. The fold code needs to
3403 * realize all this and take it from there.
3404 *
3405 * If you read the two macros as sequential, it's easier to understand what's
3406 * going on. */
3407#define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3408 L1_func_extra_param) \
3409 \
3410 if (flags & (locale_flags)) { \
3411 /* Treat a UTF-8 locale as not being in locale at all */ \
3412 if (IN_UTF8_CTYPE_LOCALE) { \
3413 flags &= ~(locale_flags); \
3414 } \
3415 else { \
3416 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3417 } \
3418 } \
3419 \
3420 if (UTF8_IS_INVARIANT(*p)) { \
3421 if (flags & (locale_flags)) { \
3422 result = LC_L1_change_macro(*p); \
3423 } \
3424 else { \
3425 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3426 } \
3427 } \
3428 else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) { \
3429 if (flags & (locale_flags)) { \
3430 result = LC_L1_change_macro(EIGHT_BIT_UTF8_TO_NATIVE(*p, \
3431 *(p+1))); \
3432 } \
3433 else { \
3434 return L1_func(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)), \
3435 ustrp, lenp, L1_func_extra_param); \
3436 } \
3437 } \
3438 else { /* malformed UTF-8 or ord above 255 */ \
3439 STRLEN len_result; \
3440 result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY); \
3441 if (len_result == (STRLEN) -1) { \
3442 _force_out_malformed_utf8_message(p, e, utf8n_flags, \
3443 1 /* Die */ ); \
3444 }
3445
3446#define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3447 result = change_macro(result, p, ustrp, lenp); \
3448 \
3449 if (flags & (locale_flags)) { \
3450 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3451 } \
3452 return result; \
3453 } \
3454 \
3455 /* Here, used locale rules. Convert back to UTF-8 */ \
3456 if (UTF8_IS_INVARIANT(result)) { \
3457 *ustrp = (U8) result; \
3458 *lenp = 1; \
3459 } \
3460 else { \
3461 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3462 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3463 *lenp = 2; \
3464 } \
3465 \
3466 return result;
3467
3468/*
3469=for apidoc to_utf8_upper
3470
3471Instead use L</toUPPER_utf8_safe>.
3472
3473=cut */
3474
3475/* Not currently externally documented, and subject to change:
3476 * <flags> is set iff iff the rules from the current underlying locale are to
3477 * be used. */
3478
3479UV
3480Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3481 const U8 *e,
3482 U8* ustrp,
3483 STRLEN *lenp,
3484 bool flags,
3485 const char * const file,
3486 const int line)
3487{
3488 UV result;
3489 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_UPPER,
3490 cBOOL(flags), file, line);
3491
3492 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3493
3494 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3495 /* 2nd char of uc(U+DF) is 'S' */
3496 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
3497 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3498}
3499
3500/*
3501=for apidoc to_utf8_title
3502
3503Instead use L</toTITLE_utf8_safe>.
3504
3505=cut */
3506
3507/* Not currently externally documented, and subject to change:
3508 * <flags> is set iff the rules from the current underlying locale are to be
3509 * used. Since titlecase is not defined in POSIX, for other than a
3510 * UTF-8 locale, uppercase is used instead for code points < 256.
3511 */
3512
3513UV
3514Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3515 const U8 *e,
3516 U8* ustrp,
3517 STRLEN *lenp,
3518 bool flags,
3519 const char * const file,
3520 const int line)
3521{
3522 UV result;
3523 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_TITLE,
3524 cBOOL(flags), file, line);
3525
3526 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3527
3528 /* 2nd char of ucfirst(U+DF) is 's' */
3529 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3530 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3531}
3532
3533/*
3534=for apidoc to_utf8_lower
3535
3536Instead use L</toLOWER_utf8_safe>.
3537
3538=cut */
3539
3540/* Not currently externally documented, and subject to change:
3541 * <flags> is set iff iff the rules from the current underlying locale are to
3542 * be used.
3543 */
3544
3545UV
3546Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3547 const U8 *e,
3548 U8* ustrp,
3549 STRLEN *lenp,
3550 bool flags,
3551 const char * const file,
3552 const int line)
3553{
3554 UV result;
3555 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_LOWER,
3556 cBOOL(flags), file, line);
3557
3558 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3559
3560 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3561 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3562}
3563
3564/*
3565=for apidoc to_utf8_fold
3566
3567Instead use L</toFOLD_utf8_safe>.
3568
3569=cut */
3570
3571/* Not currently externally documented, and subject to change,
3572 * in <flags>
3573 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3574 * locale are to be used.
3575 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3576 * otherwise simple folds
3577 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3578 * prohibited
3579 */
3580
3581UV
3582Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3583 const U8 *e,
3584 U8* ustrp,
3585 STRLEN *lenp,
3586 U8 flags,
3587 const char * const file,
3588 const int line)
3589{
3590 UV result;
3591 const U32 utf8n_flags = check_and_deprecate(p, &e, DEPRECATE_TO_FOLD,
3592 cBOOL(flags), file, line);
3593
3594 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3595
3596 /* These are mutually exclusive */
3597 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3598
3599 assert(p != ustrp); /* Otherwise overwrites */
3600
3601 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3602 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3603
3604 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3605
3606 if (flags & FOLD_FLAGS_LOCALE) {
3607
3608# define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3609# ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3610# define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3611
3612 /* Special case these two characters, as what normally gets
3613 * returned under locale doesn't work */
3614 if (memEQs((char *) p, UTF8SKIP(p), CAP_SHARP_S))
3615 {
3616 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3617 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3618 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3619 "resolved to \"\\x{17F}\\x{17F}\".");
3620 goto return_long_s;
3621 }
3622 else
3623#endif
3624 if (memEQs((char *) p, UTF8SKIP(p), LONG_S_T))
3625 {
3626 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3627 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3628 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3629 "resolved to \"\\x{FB06}\".");
3630 goto return_ligature_st;
3631 }
3632
3633#if UNICODE_MAJOR_VERSION == 3 \
3634 && UNICODE_DOT_VERSION == 0 \
3635 && UNICODE_DOT_DOT_VERSION == 1
3636# define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3637
3638 /* And special case this on this Unicode version only, for the same
3639 * reaons the other two are special cased. They would cross the
3640 * 255/256 boundary which is forbidden under /l, and so the code
3641 * wouldn't catch that they are equivalent (which they are only in
3642 * this release) */
3643 else if (memEQs((char *) p, UTF8SKIP(p), DOTTED_I)) {
3644 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3645 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3646 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3647 "resolved to \"\\x{0131}\".");
3648 goto return_dotless_i;
3649 }
3650#endif
3651
3652 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3653 }
3654 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3655 return result;
3656 }
3657 else {
3658 /* This is called when changing the case of a UTF-8-encoded
3659 * character above the ASCII range, and the result should not
3660 * contain an ASCII character. */
3661
3662 UV original; /* To store the first code point of <p> */
3663
3664 /* Look at every character in the result; if any cross the
3665 * boundary, the whole thing is disallowed */
3666 U8* s = ustrp;
3667 U8* e = ustrp + *lenp;
3668 while (s < e) {
3669 if (isASCII(*s)) {
3670 /* Crossed, have to return the original */
3671 original = valid_utf8_to_uvchr(p, lenp);
3672
3673 /* But in these instances, there is an alternative we can
3674 * return that is valid */
3675 if (original == LATIN_SMALL_LETTER_SHARP_S
3676#ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3677 || original == LATIN_CAPITAL_LETTER_SHARP_S
3678#endif
3679 ) {
3680 goto return_long_s;
3681 }
3682 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3683 goto return_ligature_st;
3684 }
3685#if UNICODE_MAJOR_VERSION == 3 \
3686 && UNICODE_DOT_VERSION == 0 \
3687 && UNICODE_DOT_DOT_VERSION == 1
3688
3689 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3690 goto return_dotless_i;
3691 }
3692#endif
3693 Copy(p, ustrp, *lenp, char);
3694 return original;
3695 }
3696 s += UTF8SKIP(s);
3697 }
3698
3699 /* Here, no characters crossed, result is ok as-is */
3700 return result;
3701 }
3702 }
3703
3704 /* Here, used locale rules. Convert back to UTF-8 */
3705 if (UTF8_IS_INVARIANT(result)) {
3706 *ustrp = (U8) result;
3707 *lenp = 1;
3708 }
3709 else {
3710 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3711 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3712 *lenp = 2;
3713 }
3714
3715 return result;
3716
3717 return_long_s:
3718 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3719 * folds to a string of two of these characters. By returning this
3720 * instead, then, e.g.,
3721 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3722 * works. */
3723
3724 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3725 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3726 ustrp, *lenp, U8);
3727 return LATIN_SMALL_LETTER_LONG_S;
3728
3729 return_ligature_st:
3730 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3731 * have the other one fold to it */
3732
3733 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3734 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3735 return LATIN_SMALL_LIGATURE_ST;
3736
3737#if UNICODE_MAJOR_VERSION == 3 \
3738 && UNICODE_DOT_VERSION == 0 \
3739 && UNICODE_DOT_DOT_VERSION == 1
3740
3741 return_dotless_i:
3742 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3743 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3744 return LATIN_SMALL_LETTER_DOTLESS_I;
3745
3746#endif
3747
3748}
3749
3750/* Note:
3751 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
3752 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
3753 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
3754 */
3755
3756SV*
3757Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
3758 I32 minbits, I32 none)
3759{
3760 PERL_ARGS_ASSERT_SWASH_INIT;
3761
3762 /* Returns a copy of a swash initiated by the called function. This is the
3763 * public interface, and returning a copy prevents others from doing
3764 * mischief on the original */
3765
3766 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none,
3767 NULL, NULL));
3768}
3769
3770SV*
3771Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv,
3772 I32 minbits, I32 none, SV* invlist,
3773 U8* const flags_p)
3774{
3775
3776 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
3777 * use the following define */
3778
3779#define CORE_SWASH_INIT_RETURN(x) \
3780 PL_curpm= old_PL_curpm; \
3781 return x
3782
3783 /* Initialize and return a swash, creating it if necessary. It does this
3784 * by calling utf8_heavy.pl in the general case. The returned value may be
3785 * the swash's inversion list instead if the input parameters allow it.
3786 * Which is returned should be immaterial to callers, as the only
3787 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
3788 * and swash_to_invlist() handle both these transparently.
3789 *
3790 * This interface should only be used by functions that won't destroy or
3791 * adversely change the swash, as doing so affects all other uses of the
3792 * swash in the program; the general public should use 'Perl_swash_init'
3793 * instead.
3794 *
3795 * pkg is the name of the package that <name> should be in.
3796 * name is the name of the swash to find. Typically it is a Unicode
3797 * property name, including user-defined ones
3798 * listsv is a string to initialize the swash with. It must be of the form
3799 * documented as the subroutine return value in
3800 * L<perlunicode/User-Defined Character Properties>
3801 * minbits is the number of bits required to represent each data element.
3802 * It is '1' for binary properties.
3803 * none I (khw) do not understand this one, but it is used only in tr///.
3804 * invlist is an inversion list to initialize the swash with (or NULL)
3805 * flags_p if non-NULL is the address of various input and output flag bits
3806 * to the routine, as follows: ('I' means is input to the routine;
3807 * 'O' means output from the routine. Only flags marked O are
3808 * meaningful on return.)
3809 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
3810 * came from a user-defined property. (I O)
3811 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
3812 * when the swash cannot be located, to simply return NULL. (I)
3813 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
3814 * return of an inversion list instead of a swash hash if this routine
3815 * thinks that would result in faster execution of swash_fetch() later
3816 * on. (I)
3817 *
3818 * Thus there are three possible inputs to find the swash: <name>,
3819 * <listsv>, and <invlist>. At least one must be specified. The result
3820 * will be the union of the specified ones, although <listsv>'s various
3821 * actions can intersect, etc. what <name> gives. To avoid going out to
3822 * disk at all, <invlist> should specify completely what the swash should
3823 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
3824 *
3825 * <invlist> is only valid for binary properties */
3826
3827 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
3828
3829 SV* retval = &PL_sv_undef;
3830 HV* swash_hv = NULL;
3831 const int invlist_swash_boundary =
3832 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3833 ? 512 /* Based on some benchmarking, but not extensive, see commit
3834 message */
3835 : -1; /* Never return just an inversion list */
3836
3837 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3838 assert(! invlist || minbits == 1);
3839
3840 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the
3841 regex that triggered the swash init and the swash init
3842 perl logic itself. See perl #122747 */
3843
3844 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3845 * so */
3846 if (listsv != &PL_sv_undef || strNE(name, "")) {
3847 dSP;
3848 const size_t pkg_len = strlen(pkg);
3849 const size_t name_len = strlen(name);
3850 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3851 SV* errsv_save;
3852 GV *method;
3853
3854 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3855
3856 PUSHSTACKi(PERLSI_MAGIC);
3857 ENTER;
3858 SAVEHINTS();
3859 save_re_context();
3860 /* We might get here via a subroutine signature which uses a utf8
3861 * parameter name, at which point PL_subname will have been set
3862 * but not yet used. */
3863 save_item(PL_subname);
3864 if (PL_parser && PL_parser->error_count)
3865 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3866 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3867 if (!method) { /* demand load UTF-8 */
3868 ENTER;
3869 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3870 GvSV(PL_errgv) = NULL;
3871#ifndef NO_TAINT_SUPPORT
3872 /* It is assumed that callers of this routine are not passing in
3873 * any user derived data. */
3874 /* Need to do this after save_re_context() as it will set
3875 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3876 * in Perl_magic_get). Even line to create errsv_save can turn on
3877 * PL_tainted. */
3878 SAVEBOOL(TAINT_get);
3879 TAINT_NOT;
3880#endif
3881 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3882 NULL);
3883 {
3884 /* Not ERRSV, as there is no need to vivify a scalar we are
3885 about to discard. */
3886 SV * const errsv = GvSV(PL_errgv);
3887 if (!SvTRUE(errsv)) {
3888 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3889 SvREFCNT_dec(errsv);
3890 }
3891 }
3892 LEAVE;
3893 }
3894 SPAGAIN;
3895 PUSHMARK(SP);
3896 EXTEND(SP,5);
3897 mPUSHp(pkg, pkg_len);
3898 mPUSHp(name, name_len);
3899 PUSHs(listsv);
3900 mPUSHi(minbits);
3901 mPUSHi(none);
3902 PUTBACK;
3903 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3904 GvSV(PL_errgv) = NULL;
3905 /* If we already have a pointer to the method, no need to use
3906 * call_method() to repeat the lookup. */
3907 if (method
3908 ? call_sv(MUTABLE_SV(method), G_SCALAR)
3909 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3910 {
3911 retval = *PL_stack_sp--;
3912 SvREFCNT_inc(retval);
3913 }
3914 {
3915 /* Not ERRSV. See above. */
3916 SV * const errsv = GvSV(PL_errgv);
3917 if (!SvTRUE(errsv)) {
3918 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3919 SvREFCNT_dec(errsv);
3920 }
3921 }
3922 LEAVE;
3923 POPSTACK;
3924 if (IN_PERL_COMPILETIME) {
3925 CopHINTS_set(PL_curcop, PL_hints);
3926 }
3927 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3928 if (SvPOK(retval)) {
3929
3930 /* If caller wants to handle missing properties, let them */
3931 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3932 CORE_SWASH_INIT_RETURN(NULL);
3933 }
3934 Perl_croak(aTHX_
3935 "Can't find Unicode property definition \"%" SVf "\"",
3936 SVfARG(retval));
3937 NOT_REACHED; /* NOTREACHED */
3938 }
3939 }
3940 } /* End of calling the module to find the swash */
3941
3942 /* If this operation fetched a swash, and we will need it later, get it */
3943 if (retval != &PL_sv_undef
3944 && (minbits == 1 || (flags_p
3945 && ! (*flags_p
3946 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3947 {
3948 swash_hv = MUTABLE_HV(SvRV(retval));
3949
3950 /* If we don't already know that there is a user-defined component to
3951 * this swash, and the user has indicated they wish to know if there is
3952 * one (by passing <flags_p>), find out */
3953 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3954 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3955 if (user_defined && SvUV(*user_defined)) {
3956 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3957 }
3958 }
3959 }
3960
3961 /* Make sure there is an inversion list for binary properties */
3962 if (minbits == 1) {
3963 SV** swash_invlistsvp = NULL;
3964 SV* swash_invlist = NULL;
3965 bool invlist_in_swash_is_valid = FALSE;
3966 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3967 an unclaimed reference count */
3968
3969 /* If this operation fetched a swash, get its already existing
3970 * inversion list, or create one for it */
3971
3972 if (swash_hv) {
3973 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3974 if (swash_invlistsvp) {
3975 swash_invlist = *swash_invlistsvp;
3976 invlist_in_swash_is_valid = TRUE;
3977 }
3978 else {
3979 swash_invlist = _swash_to_invlist(retval);
3980 swash_invlist_unclaimed = TRUE;
3981 }
3982 }
3983
3984 /* If an inversion list was passed in, have to include it */
3985 if (invlist) {
3986
3987 /* Any fetched swash will by now have an inversion list in it;
3988 * otherwise <swash_invlist> will be NULL, indicating that we
3989 * didn't fetch a swash */
3990 if (swash_invlist) {
3991
3992 /* Add the passed-in inversion list, which invalidates the one
3993 * already stored in the swash */
3994 invlist_in_swash_is_valid = FALSE;
3995 SvREADONLY_off(swash_invlist); /* Turned on again below */
3996 _invlist_union(invlist, swash_invlist, &swash_invlist);
3997 }
3998 else {
3999
4000 /* Here, there is no swash already. Set up a minimal one, if
4001 * we are going to return a swash */
4002 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
4003 swash_hv = newHV();
4004 retval = newRV_noinc(MUTABLE_SV(swash_hv));
4005 }
4006 swash_invlist = invlist;
4007 }
4008 }
4009
4010 /* Here, we have computed the union of all the passed-in data. It may
4011 * be that there was an inversion list in the swash which didn't get
4012 * touched; otherwise save the computed one */
4013 if (! invlist_in_swash_is_valid
4014 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
4015 {
4016 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
4017 {
4018 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4019 }
4020 /* We just stole a reference count. */
4021 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
4022 else SvREFCNT_inc_simple_void_NN(swash_invlist);
4023 }
4024
4025 /* The result is immutable. Forbid attempts to change it. */
4026 SvREADONLY_on(swash_invlist);
4027
4028 /* Use the inversion list stand-alone if small enough */
4029 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
4030 SvREFCNT_dec(retval);
4031 if (!swash_invlist_unclaimed)
4032 SvREFCNT_inc_simple_void_NN(swash_invlist);
4033 retval = newRV_noinc(swash_invlist);
4034 }
4035 }
4036
4037 CORE_SWASH_INIT_RETURN(retval);
4038#undef CORE_SWASH_INIT_RETURN
4039}
4040
4041
4042/* This API is wrong for special case conversions since we may need to
4043 * return several Unicode characters for a single Unicode character
4044 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
4045 * the lower-level routine, and it is similarly broken for returning
4046 * multiple values. --jhi
4047 * For those, you should use S__to_utf8_case() instead */
4048/* Now SWASHGET is recasted into S_swatch_get in this file. */
4049
4050/* Note:
4051 * Returns the value of property/mapping C<swash> for the first character
4052 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
4053 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
4054 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
4055 *
4056 * A "swash" is a hash which contains initially the keys/values set up by
4057 * SWASHNEW. The purpose is to be able to completely represent a Unicode
4058 * property for all possible code points. Things are stored in a compact form
4059 * (see utf8_heavy.pl) so that calculation is required to find the actual
4060 * property value for a given code point. As code points are looked up, new
4061 * key/value pairs are added to the hash, so that the calculation doesn't have
4062 * to ever be re-done. Further, each calculation is done, not just for the
4063 * desired one, but for a whole block of code points adjacent to that one.
4064 * For binary properties on ASCII machines, the block is usually for 64 code
4065 * points, starting with a code point evenly divisible by 64. Thus if the
4066 * property value for code point 257 is requested, the code goes out and
4067 * calculates the property values for all 64 code points between 256 and 319,
4068 * and stores these as a single 64-bit long bit vector, called a "swatch",
4069 * under the key for code point 256. The key is the UTF-8 encoding for code
4070 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
4071 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
4072 * for code point 258 is then requested, this code realizes that it would be
4073 * stored under the key for 256, and would find that value and extract the
4074 * relevant bit, offset from 256.
4075 *
4076 * Non-binary properties are stored in as many bits as necessary to represent
4077 * their values (32 currently, though the code is more general than that), not
4078 * as single bits, but the principle is the same: the value for each key is a
4079 * vector that encompasses the property values for all code points whose UTF-8
4080 * representations are represented by the key. That is, for all code points
4081 * whose UTF-8 representations are length N bytes, and the key is the first N-1
4082 * bytes of that.
4083 */
4084UV
4085Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
4086{
4087 HV *const hv = MUTABLE_HV(SvRV(swash));
4088 U32 klen;
4089 U32 off;
4090 STRLEN slen = 0;
4091 STRLEN needents;
4092 const U8 *tmps = NULL;
4093 SV *swatch;
4094 const U8 c = *ptr;
4095
4096 PERL_ARGS_ASSERT_SWASH_FETCH;
4097
4098 /* If it really isn't a hash, it isn't really swash; must be an inversion
4099 * list */
4100 if (SvTYPE(hv) != SVt_PVHV) {
4101 return _invlist_contains_cp((SV*)hv,
4102 (do_utf8)
4103 ? valid_utf8_to_uvchr(ptr, NULL)
4104 : c);
4105 }
4106
4107 /* We store the values in a "swatch" which is a vec() value in a swash
4108 * hash. Code points 0-255 are a single vec() stored with key length
4109 * (klen) 0. All other code points have a UTF-8 representation
4110 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
4111 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
4112 * length for them is the length of the encoded char - 1. ptr[klen] is the
4113 * final byte in the sequence representing the character */
4114 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
4115 klen = 0;
4116 needents = 256;
4117 off = c;
4118 }
4119 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
4120 klen = 0;
4121 needents = 256;
4122 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
4123 }
4124 else {
4125 klen = UTF8SKIP(ptr) - 1;
4126
4127 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
4128 * the vec is the final byte in the sequence. (In EBCDIC this is
4129 * converted to I8 to get consecutive values.) To help you visualize
4130 * all this:
4131 * Straight 1047 After final byte
4132 * UTF-8 UTF-EBCDIC I8 transform
4133 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
4134 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
4135 * ...
4136 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
4137 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
4138 * ...
4139 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
4140 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
4141 * ...
4142 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
4143 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
4144 * ...
4145 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
4146 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
4147 *
4148 * (There are no discontinuities in the elided (...) entries.)
4149 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
4150 * key for the next 31, up through U+043F, whose UTF-8 final byte is
4151 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
4152 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
4153 * index into the vec() swatch (after subtracting 0x80, which we
4154 * actually do with an '&').
4155 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
4156 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
4157 * dicontinuities which go away by transforming it into I8, and we
4158 * effectively subtract 0xA0 to get the index. */
4159 needents = (1 << UTF_ACCUMULATION_SHIFT);
4160 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
4161 }
4162
4163 /*
4164 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
4165 * suite. (That is, only 7-8% overall over just a hash cache. Still,
4166 * it's nothing to sniff at.) Pity we usually come through at least
4167 * two function calls to get here...
4168 *
4169 * NB: this code assumes that swatches are never modified, once generated!
4170 */
4171
4172 if (hv == PL_last_swash_hv &&
4173 klen == PL_last_swash_klen &&
4174 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
4175 {
4176 tmps = PL_last_swash_tmps;
4177 slen = PL_last_swash_slen;
4178 }
4179 else {
4180 /* Try our second-level swatch cache, kept in a hash. */
4181 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
4182
4183 /* If not cached, generate it via swatch_get */
4184 if (!svp || !SvPOK(*svp)
4185 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
4186 {
4187 if (klen) {
4188 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
4189 swatch = swatch_get(swash,
4190 code_point & ~((UV)needents - 1),
4191 needents);
4192 }
4193 else { /* For the first 256 code points, the swatch has a key of
4194 length 0 */
4195 swatch = swatch_get(swash, 0, needents);
4196 }
4197
4198 if (IN_PERL_COMPILETIME)
4199 CopHINTS_set(PL_curcop, PL_hints);
4200
4201 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
4202
4203 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
4204 || (slen << 3) < needents)
4205 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
4206 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
4207 svp, tmps, (UV)slen, (UV)needents);
4208 }
4209
4210 PL_last_swash_hv = hv;
4211 assert(klen <= sizeof(PL_last_swash_key));
4212 PL_last_swash_klen = (U8)klen;
4213 /* FIXME change interpvar.h? */
4214 PL_last_swash_tmps = (U8 *) tmps;
4215 PL_last_swash_slen = slen;
4216 if (klen)
4217 Copy(ptr, PL_last_swash_key, klen, U8);
4218 }
4219
4220 switch ((int)((slen << 3) / needents)) {
4221 case 1:
4222 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
4223 case 8:
4224 return ((UV) tmps[off]);
4225 case 16:
4226 off <<= 1;
4227 return
4228 ((UV) tmps[off ] << 8) +
4229 ((UV) tmps[off + 1]);
4230 case 32:
4231 off <<= 2;
4232 return
4233 ((UV) tmps[off ] << 24) +
4234 ((UV) tmps[off + 1] << 16) +
4235 ((UV) tmps[off + 2] << 8) +
4236 ((UV) tmps[off + 3]);
4237 }
4238 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
4239 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
4240 NORETURN_FUNCTION_END;
4241}
4242
4243/* Read a single line of the main body of the swash input text. These are of
4244 * the form:
4245 * 0053 0056 0073
4246 * where each number is hex. The first two numbers form the minimum and
4247 * maximum of a range, and the third is the value associated with the range.
4248 * Not all swashes should have a third number
4249 *
4250 * On input: l points to the beginning of the line to be examined; it points
4251 * to somewhere in the string of the whole input text, and is
4252 * terminated by a \n or the null string terminator.
4253 * lend points to the null terminator of that string
4254 * wants_value is non-zero if the swash expects a third number
4255 * typestr is the name of the swash's mapping, like 'ToLower'
4256 * On output: *min, *max, and *val are set to the values read from the line.
4257 * returns a pointer just beyond the line examined. If there was no
4258 * valid min number on the line, returns lend+1
4259 */
4260
4261STATIC U8*
4262S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
4263 const bool wants_value, const U8* const typestr)
4264{
4265 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
4266 STRLEN numlen; /* Length of the number */
4267 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
4268 | PERL_SCAN_DISALLOW_PREFIX
4269 | PERL_SCAN_SILENT_NON_PORTABLE;
4270
4271 /* nl points to the next \n in the scan */
4272 U8* const nl = (U8*)memchr(l, '\n', lend - l);
4273
4274 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
4275
4276 /* Get the first number on the line: the range minimum */
4277 numlen = lend - l;
4278 *min = grok_hex((char *)l, &numlen, &flags, NULL);
4279 *max = *min; /* So can never return without setting max */
4280 if (numlen) /* If found a hex number, position past it */
4281 l += numlen;
4282 else if (nl) { /* Else, go handle next line, if any */
4283 return nl + 1; /* 1 is length of "\n" */
4284 }
4285 else { /* Else, no next line */
4286 return lend + 1; /* to LIST's end at which \n is not found */
4287 }
4288
4289 /* The max range value follows, separated by a BLANK */
4290 if (isBLANK(*l)) {
4291 ++l;
4292 flags = PERL_SCAN_SILENT_ILLDIGIT
4293 | PERL_SCAN_DISALLOW_PREFIX
4294 | PERL_SCAN_SILENT_NON_PORTABLE;
4295 numlen = lend - l;
4296 *max = grok_hex((char *)l, &numlen, &flags, NULL);
4297 if (numlen)
4298 l += numlen;
4299 else /* If no value here, it is a single element range */
4300 *max = *min;
4301
4302 /* Non-binary tables have a third entry: what the first element of the
4303 * range maps to. The map for those currently read here is in hex */
4304 if (wants_value) {
4305 if (isBLANK(*l)) {
4306 ++l;
4307 flags = PERL_SCAN_SILENT_ILLDIGIT
4308 | PERL_SCAN_DISALLOW_PREFIX
4309 | PERL_SCAN_SILENT_NON_PORTABLE;
4310 numlen = lend - l;
4311 *val = grok_hex((char *)l, &numlen, &flags, NULL);
4312 if (numlen)
4313 l += numlen;
4314 else
4315 *val = 0;
4316 }
4317 else {
4318 *val = 0;
4319 if (typeto) {
4320 /* diag_listed_as: To%s: illegal mapping '%s' */
4321 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
4322 typestr, l);
4323 }
4324 }
4325 }
4326 else
4327 *val = 0; /* bits == 1, then any val should be ignored */
4328 }
4329 else { /* Nothing following range min, should be single element with no
4330 mapping expected */
4331 if (wants_value) {
4332 *val = 0;
4333 if (typeto) {
4334 /* diag_listed_as: To%s: illegal mapping '%s' */
4335 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
4336 }
4337 }
4338 else
4339 *val = 0; /* bits == 1, then val should be ignored */
4340 }
4341
4342 /* Position to next line if any, or EOF */
4343 if (nl)
4344 l = nl + 1;
4345 else
4346 l = lend;
4347
4348 return l;
4349}
4350
4351/* Note:
4352 * Returns a swatch (a bit vector string) for a code point sequence
4353 * that starts from the value C<start> and comprises the number C<span>.
4354 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
4355 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
4356 */
4357STATIC SV*
4358S_swatch_get(pTHX_ SV* swash, UV start, UV span)
4359{
4360 SV *swatch;
4361 U8 *l, *lend, *x, *xend, *s, *send;
4362 STRLEN lcur, xcur, scur;
4363 HV *const hv = MUTABLE_HV(SvRV(swash));
4364 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
4365
4366 SV** listsvp = NULL; /* The string containing the main body of the table */
4367 SV** extssvp = NULL;
4368 SV** invert_it_svp = NULL;
4369 U8* typestr = NULL;
4370 STRLEN bits;
4371 STRLEN octets; /* if bits == 1, then octets == 0 */
4372 UV none;
4373 UV end = start + span;
4374
4375 if (invlistsvp == NULL) {
4376 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4377 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4378 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4379 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
4380 listsvp = hv_fetchs(hv, "LIST", FALSE);
4381 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
4382
4383 bits = SvUV(*bitssvp);
4384 none = SvUV(*nonesvp);
4385 typestr = (U8*)SvPV_nolen(*typesvp);
4386 }
4387 else {
4388 bits = 1;
4389 none = 0;
4390 }
4391 octets = bits >> 3; /* if bits == 1, then octets == 0 */
4392
4393 PERL_ARGS_ASSERT_SWATCH_GET;
4394
4395 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
4396 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
4397 (UV)bits);
4398 }
4399
4400 /* If overflowed, use the max possible */
4401 if (end < start) {
4402 end = UV_MAX;
4403 span = end - start;
4404 }
4405
4406 /* create and initialize $swatch */
4407 scur = octets ? (span * octets) : (span + 7) / 8;
4408 swatch = newSV(scur);
4409 SvPOK_on(swatch);
4410 s = (U8*)SvPVX(swatch);
4411 if (octets && none) {
4412 const U8* const e = s + scur;
4413 while (s < e) {
4414 if (bits == 8)
4415 *s++ = (U8)(none & 0xff);
4416 else if (bits == 16) {
4417 *s++ = (U8)((none >> 8) & 0xff);
4418 *s++ = (U8)( none & 0xff);
4419 }
4420 else if (bits == 32) {
4421 *s++ = (U8)((none >> 24) & 0xff);
4422 *s++ = (U8)((none >> 16) & 0xff);
4423 *s++ = (U8)((none >> 8) & 0xff);
4424 *s++ = (U8)( none & 0xff);
4425 }
4426 }
4427 *s = '\0';
4428 }
4429 else {
4430 (void)memzero((U8*)s, scur + 1);
4431 }
4432 SvCUR_set(swatch, scur);
4433 s = (U8*)SvPVX(swatch);
4434
4435 if (invlistsvp) { /* If has an inversion list set up use that */
4436 _invlist_populate_swatch(*invlistsvp, start, end, s);
4437 return swatch;
4438 }
4439
4440 /* read $swash->{LIST} */
4441 l = (U8*)SvPV(*listsvp, lcur);
4442 lend = l + lcur;
4443 while (l < lend) {
4444 UV min, max, val, upper;
4445 l = swash_scan_list_line(l, lend, &min, &max, &val,
4446 cBOOL(octets), typestr);
4447 if (l > lend) {
4448 break;
4449 }
4450
4451 /* If looking for something beyond this range, go try the next one */
4452 if (max < start)
4453 continue;
4454
4455 /* <end> is generally 1 beyond where we want to set things, but at the
4456 * platform's infinity, where we can't go any higher, we want to
4457 * include the code point at <end> */
4458 upper = (max < end)
4459 ? max
4460 : (max != UV_MAX || end != UV_MAX)
4461 ? end - 1
4462 : end;
4463
4464 if (octets) {
4465 UV key;
4466 if (min < start) {
4467 if (!none || val < none) {
4468 val += start - min;
4469 }
4470 min = start;
4471 }
4472 for (key = min; key <= upper; key++) {
4473 STRLEN offset;
4474 /* offset must be non-negative (start <= min <= key < end) */
4475 offset = octets * (key - start);
4476 if (bits == 8)
4477 s[offset] = (U8)(val & 0xff);
4478 else if (bits == 16) {
4479 s[offset ] = (U8)((val >> 8) & 0xff);
4480 s[offset + 1] = (U8)( val & 0xff);
4481 }
4482 else if (bits == 32) {
4483 s[offset ] = (U8)((val >> 24) & 0xff);
4484 s[offset + 1] = (U8)((val >> 16) & 0xff);
4485 s[offset + 2] = (U8)((val >> 8) & 0xff);
4486 s[offset + 3] = (U8)( val & 0xff);
4487 }
4488
4489 if (!none || val < none)
4490 ++val;
4491 }
4492 }
4493 else { /* bits == 1, then val should be ignored */
4494 UV key;
4495 if (min < start)
4496 min = start;
4497
4498 for (key = min; key <= upper; key++) {
4499 const STRLEN offset = (STRLEN)(key - start);
4500 s[offset >> 3] |= 1 << (offset & 7);
4501 }
4502 }
4503 } /* while */
4504
4505 /* Invert if the data says it should be. Assumes that bits == 1 */
4506 if (invert_it_svp && SvUV(*invert_it_svp)) {
4507
4508 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
4509 * be 0, and their inversion should also be 0, as we don't succeed any
4510 * Unicode property matches for non-Unicode code points */
4511 if (start <= PERL_UNICODE_MAX) {
4512
4513 /* The code below assumes that we never cross the
4514 * Unicode/above-Unicode boundary in a range, as otherwise we would
4515 * have to figure out where to stop flipping the bits. Since this
4516 * boundary is divisible by a large power of 2, and swatches comes
4517 * in small powers of 2, this should be a valid assumption */
4518 assert(start + span - 1 <= PERL_UNICODE_MAX);
4519
4520 send = s + scur;
4521 while (s < send) {
4522 *s = ~(*s);
4523 s++;
4524 }
4525 }
4526 }
4527
4528 /* read $swash->{EXTRAS}
4529 * This code also copied to swash_to_invlist() below */
4530 x = (U8*)SvPV(*extssvp, xcur);
4531 xend = x + xcur;
4532 while (x < xend) {
4533 STRLEN namelen;
4534 U8 *namestr;
4535 SV** othersvp;
4536 HV* otherhv;
4537 STRLEN otherbits;
4538 SV **otherbitssvp, *other;
4539 U8 *s, *o, *nl;
4540 STRLEN slen, olen;
4541
4542 const U8 opc = *x++;
4543 if (opc == '\n')
4544 continue;
4545
4546 nl = (U8*)memchr(x, '\n', xend - x);
4547
4548 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4549 if (nl) {
4550 x = nl + 1; /* 1 is length of "\n" */
4551 continue;
4552 }
4553 else {
4554 x = xend; /* to EXTRAS' end at which \n is not found */
4555 break;
4556 }
4557 }
4558
4559 namestr = x;
4560 if (nl) {
4561 namelen = nl - namestr;
4562 x = nl + 1;
4563 }
4564 else {
4565 namelen = xend - namestr;
4566 x = xend;
4567 }
4568
4569 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4570 otherhv = MUTABLE_HV(SvRV(*othersvp));
4571 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4572 otherbits = (STRLEN)SvUV(*otherbitssvp);
4573 if (bits < otherbits)
4574 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4575 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4576
4577 /* The "other" swatch must be destroyed after. */
4578 other = swatch_get(*othersvp, start, span);
4579 o = (U8*)SvPV(other, olen);
4580
4581 if (!olen)
4582 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4583
4584 s = (U8*)SvPV(swatch, slen);
4585 if (bits == 1 && otherbits == 1) {
4586 if (slen != olen)
4587 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4588 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4589 (UV)slen, (UV)olen);
4590
4591 switch (opc) {
4592 case '+':
4593 while (slen--)
4594 *s++ |= *o++;
4595 break;
4596 case '!':
4597 while (slen--)
4598 *s++ |= ~*o++;
4599 break;
4600 case '-':
4601 while (slen--)
4602 *s++ &= ~*o++;
4603 break;
4604 case '&':
4605 while (slen--)
4606 *s++ &= *o++;
4607 break;
4608 default:
4609 break;
4610 }
4611 }
4612 else {
4613 STRLEN otheroctets = otherbits >> 3;
4614 STRLEN offset = 0;
4615 U8* const send = s + slen;
4616
4617 while (s < send) {
4618 UV otherval = 0;
4619
4620 if (otherbits == 1) {
4621 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4622 ++offset;
4623 }
4624 else {
4625 STRLEN vlen = otheroctets;
4626 otherval = *o++;
4627 while (--vlen) {
4628 otherval <<= 8;
4629 otherval |= *o++;
4630 }
4631 }
4632
4633 if (opc == '+' && otherval)
4634 NOOP; /* replace with otherval */
4635 else if (opc == '!' && !otherval)
4636 otherval = 1;
4637 else if (opc == '-' && otherval)
4638 otherval = 0;
4639 else if (opc == '&' && !otherval)
4640 otherval = 0;
4641 else {
4642 s += octets; /* no replacement */
4643 continue;
4644 }
4645
4646 if (bits == 8)
4647 *s++ = (U8)( otherval & 0xff);
4648 else if (bits == 16) {
4649 *s++ = (U8)((otherval >> 8) & 0xff);
4650 *s++ = (U8)( otherval & 0xff);
4651 }
4652 else if (bits == 32) {
4653 *s++ = (U8)((otherval >> 24) & 0xff);
4654 *s++ = (U8)((otherval >> 16) & 0xff);
4655 *s++ = (U8)((otherval >> 8) & 0xff);
4656 *s++ = (U8)( otherval & 0xff);
4657 }
4658 }
4659 }
4660 sv_free(other); /* through with it! */
4661 } /* while */
4662 return swatch;
4663}
4664
4665HV*
4666Perl__swash_inversion_hash(pTHX_ SV* const swash)
4667{
4668
4669 /* Subject to change or removal. For use only in regcomp.c and regexec.c
4670 * Can't be used on a property that is subject to user override, as it
4671 * relies on the value of SPECIALS in the swash which would be set by
4672 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
4673 * for overridden properties
4674 *
4675 * Returns a hash which is the inversion and closure of a swash mapping.
4676 * For example, consider the input lines:
4677 * 004B 006B
4678 * 004C 006C
4679 * 212A 006B
4680 *
4681 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
4682 * 006C. The value for each key is an array. For 006C, the array would
4683 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
4684 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
4685 *
4686 * Note that there are no elements in the hash for 004B, 004C, 212A. The
4687 * keys are only code points that are folded-to, so it isn't a full closure.
4688 *
4689 * Essentially, for any code point, it gives all the code points that map to
4690 * it, or the list of 'froms' for that point.
4691 *
4692 * Currently it ignores any additions or deletions from other swashes,
4693 * looking at just the main body of the swash, and if there are SPECIALS
4694 * in the swash, at that hash
4695 *
4696 * The specials hash can be extra code points, and most likely consists of
4697 * maps from single code points to multiple ones (each expressed as a string
4698 * of UTF-8 characters). This function currently returns only 1-1 mappings.
4699 * However consider this possible input in the specials hash:
4700 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
4701 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
4702 *
4703 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
4704 * currently handle. But it also means that FB05 and FB06 are equivalent in
4705 * a 1-1 mapping which we should handle, and this relationship may not be in
4706 * the main table. Therefore this function examines all the multi-char
4707 * sequences and adds the 1-1 mappings that come out of that.
4708 *
4709 * XXX This function was originally intended to be multipurpose, but its
4710 * only use is quite likely to remain for constructing the inversion of
4711 * the CaseFolding (//i) property. If it were more general purpose for
4712 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
4713 * because certain folds are prohibited under /iaa and /il. As an example,
4714 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
4715 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
4716 * prohibited, so we would not figure out that they fold to each other.
4717 * Code could be written to automatically figure this out, similar to the
4718 * code that does this for multi-character folds, but this is the only case
4719 * where something like this is ever likely to happen, as all the single
4720 * char folds to the 0-255 range are now quite settled. Instead there is a
4721 * little special code that is compiled only for this Unicode version. This
4722 * is smaller and didn't require much coding time to do. But this makes
4723 * this routine strongly tied to being used just for CaseFolding. If ever
4724 * it should be generalized, this would have to be fixed */
4725
4726 U8 *l, *lend;
4727 STRLEN lcur;
4728 HV *const hv = MUTABLE_HV(SvRV(swash));
4729
4730 /* The string containing the main body of the table. This will have its
4731 * assertion fail if the swash has been converted to its inversion list */
4732 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
4733
4734 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4735 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4736 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4737 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
4738 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
4739 const STRLEN bits = SvUV(*bitssvp);
4740 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
4741 const UV none = SvUV(*nonesvp);
4742 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
4743
4744 HV* ret = newHV();
4745
4746 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
4747
4748 /* Must have at least 8 bits to get the mappings */
4749 if (bits != 8 && bits != 16 && bits != 32) {
4750 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"
4751 UVuf, (UV)bits);
4752 }
4753
4754 if (specials_p) { /* It might be "special" (sometimes, but not always, a
4755 mapping to more than one character */
4756
4757 /* Construct an inverse mapping hash for the specials */
4758 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
4759 HV * specials_inverse = newHV();
4760 char *char_from; /* the lhs of the map */
4761 I32 from_len; /* its byte length */
4762 char *char_to; /* the rhs of the map */
4763 I32 to_len; /* its byte length */
4764 SV *sv_to; /* and in a sv */
4765 AV* from_list; /* list of things that map to each 'to' */
4766
4767 hv_iterinit(specials_hv);
4768
4769 /* The keys are the characters (in UTF-8) that map to the corresponding
4770 * UTF-8 string value. Iterate through the list creating the inverse
4771 * list. */
4772 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
4773 SV** listp;
4774 if (! SvPOK(sv_to)) {
4775 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
4776 "unexpectedly is not a string, flags=%lu",
4777 (unsigned long)SvFLAGS(sv_to));
4778 }
4779 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %" UVXf ", First char of to is %" UVXf "\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
4780
4781 /* Each key in the inverse list is a mapped-to value, and the key's
4782 * hash value is a list of the strings (each in UTF-8) that map to
4783 * it. Those strings are all one character long */
4784 if ((listp = hv_fetch(specials_inverse,
4785 SvPVX(sv_to),
4786 SvCUR(sv_to), 0)))
4787 {
4788 from_list = (AV*) *listp;
4789 }
4790 else { /* No entry yet for it: create one */
4791 from_list = newAV();
4792 if (! hv_store(specials_inverse,
4793 SvPVX(sv_to),
4794 SvCUR(sv_to),
4795 (SV*) from_list, 0))
4796 {
4797 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4798 }
4799 }
4800
4801 /* Here have the list associated with this 'to' (perhaps newly
4802 * created and empty). Just add to it. Note that we ASSUME that
4803 * the input is guaranteed to not have duplications, so we don't
4804 * check for that. Duplications just slow down execution time. */
4805 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
4806 }
4807
4808 /* Here, 'specials_inverse' contains the inverse mapping. Go through
4809 * it looking for cases like the FB05/FB06 examples above. There would
4810 * be an entry in the hash like
4811 * 'st' => [ FB05, FB06 ]
4812 * In this example we will create two lists that get stored in the
4813 * returned hash, 'ret':
4814 * FB05 => [ FB05, FB06 ]
4815 * FB06 => [ FB05, FB06 ]
4816 *
4817 * Note that there is nothing to do if the array only has one element.
4818 * (In the normal 1-1 case handled below, we don't have to worry about
4819 * two lists, as everything gets tied to the single list that is
4820 * generated for the single character 'to'. But here, we are omitting
4821 * that list, ('st' in the example), so must have multiple lists.) */
4822 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
4823 &char_to, &to_len)))
4824 {
4825 if (av_tindex_skip_len_mg(from_list) > 0) {
4826 SSize_t i;
4827
4828 /* We iterate over all combinations of i,j to place each code
4829 * point on each list */
4830 for (i = 0; i <= av_tindex_skip_len_mg(from_list); i++) {
4831 SSize_t j;
4832 AV* i_list = newAV();
4833 SV** entryp = av_fetch(from_list, i, FALSE);
4834 if (entryp == NULL) {
4835 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly"
4836 " failed");
4837 }
4838 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
4839 Perl_croak(aTHX_ "panic: unexpected entry for %s",
4840 SvPVX(*entryp));
4841 }
4842 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
4843 (SV*) i_list, FALSE))
4844 {
4845 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4846 }
4847
4848 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
4849 for (j = 0; j <= av_tindex_skip_len_mg(from_list); j++) {
4850 entryp = av_fetch(from_list, j, FALSE);
4851 if (entryp == NULL) {
4852 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4853 }
4854
4855 /* When i==j this adds itself to the list */
4856 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
4857 (U8*) SvPVX(*entryp),
4858 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
4859 0)));
4860 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
4861 }
4862 }
4863 }
4864 }
4865 SvREFCNT_dec(specials_inverse); /* done with it */
4866 } /* End of specials */
4867
4868 /* read $swash->{LIST} */
4869
4870#if UNICODE_MAJOR_VERSION == 3 \
4871 && UNICODE_DOT_VERSION == 0 \
4872 && UNICODE_DOT_DOT_VERSION == 1
4873
4874 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
4875 * rule so that things work under /iaa and /il */
4876
4877 SV * mod_listsv = sv_mortalcopy(*listsvp);
4878 sv_catpv(mod_listsv, "130\t130\t131\n");
4879 l = (U8*)SvPV(mod_listsv, lcur);
4880
4881#else
4882
4883 l = (U8*)SvPV(*listsvp, lcur);
4884
4885#endif
4886
4887 lend = l + lcur;
4888
4889 /* Go through each input line */
4890 while (l < lend) {
4891 UV min, max, val;
4892 UV inverse;
4893 l = swash_scan_list_line(l, lend, &min, &max, &val,
4894 cBOOL(octets), typestr);
4895 if (l > lend) {
4896 break;
4897 }
4898
4899 /* Each element in the range is to be inverted */
4900 for (inverse = min; inverse <= max; inverse++) {
4901 AV* list;
4902 SV** listp;
4903 IV i;
4904 bool found_key = FALSE;
4905 bool found_inverse = FALSE;
4906
4907 /* The key is the inverse mapping */
4908 char key[UTF8_MAXBYTES+1];
4909 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
4910 STRLEN key_len = key_end - key;
4911
4912 /* Get the list for the map */
4913 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
4914 list = (AV*) *listp;
4915 }
4916 else { /* No entry yet for it: create one */
4917 list = newAV();
4918 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
4919 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4920 }
4921 }
4922
4923 /* Look through list to see if this inverse mapping already is
4924 * listed, or if there is a mapping to itself already */
4925 for (i = 0; i <= av_tindex_skip_len_mg(list); i++) {
4926 SV** entryp = av_fetch(list, i, FALSE);
4927 SV* entry;
4928 UV uv;
4929 if (entryp == NULL) {
4930 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4931 }
4932 entry = *entryp;
4933 uv = SvUV(entry);
4934 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %" UVXf " contains %" UVXf "\n", val, uv));*/
4935 if (uv == val) {
4936 found_key = TRUE;
4937 }
4938 if (uv == inverse) {
4939 found_inverse = TRUE;
4940 }
4941
4942 /* No need to continue searching if found everything we are
4943 * looking for */
4944 if (found_key && found_inverse) {
4945 break;
4946 }
4947 }
4948
4949 /* Make sure there is a mapping to itself on the list */
4950 if (! found_key) {
4951 av_push(list, newSVuv(val));
4952 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, val, val));*/
4953 }
4954
4955
4956 /* Simply add the value to the list */
4957 if (! found_inverse) {
4958 av_push(list, newSVuv(inverse));
4959 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %" UVXf " to list for %" UVXf "\n", __FILE__, __LINE__, inverse, val));*/
4960 }
4961
4962 /* swatch_get() increments the value of val for each element in the
4963 * range. That makes more compact tables possible. You can
4964 * express the capitalization, for example, of all consecutive
4965 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
4966 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
4967 * and it's not documented; it appears to be used only in
4968 * implementing tr//; I copied the semantics from swatch_get(), just
4969 * in case */
4970 if (!none || val < none) {
4971 ++val;
4972 }
4973 }
4974 }
4975
4976 return ret;
4977}
4978
4979SV*
4980Perl__swash_to_invlist(pTHX_ SV* const swash)
4981{
4982
4983 /* Subject to change or removal. For use only in one place in regcomp.c.
4984 * Ownership is given to one reference count in the returned SV* */
4985
4986 U8 *l, *lend;
4987 char *loc;
4988 STRLEN lcur;
4989 HV *const hv = MUTABLE_HV(SvRV(swash));
4990 UV elements = 0; /* Number of elements in the inversion list */
4991 U8 empty[] = "";
4992 SV** listsvp;
4993 SV** typesvp;
4994 SV** bitssvp;
4995 SV** extssvp;
4996 SV** invert_it_svp;
4997
4998 U8* typestr;
4999 STRLEN bits;
5000 STRLEN octets; /* if bits == 1, then octets == 0 */
5001 U8 *x, *xend;
5002 STRLEN xcur;
5003
5004 SV* invlist;
5005
5006 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
5007
5008 /* If not a hash, it must be the swash's inversion list instead */
5009 if (SvTYPE(hv) != SVt_PVHV) {
5010 return SvREFCNT_inc_simple_NN((SV*) hv);
5011 }
5012
5013 /* The string containing the main body of the table */
5014 listsvp = hv_fetchs(hv, "LIST", FALSE);
5015 typesvp = hv_fetchs(hv, "TYPE", FALSE);
5016 bitssvp = hv_fetchs(hv, "BITS", FALSE);
5017 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
5018 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
5019
5020 typestr = (U8*)SvPV_nolen(*typesvp);
5021 bits = SvUV(*bitssvp);
5022 octets = bits >> 3; /* if bits == 1, then octets == 0 */
5023
5024 /* read $swash->{LIST} */
5025 if (SvPOK(*listsvp)) {
5026 l = (U8*)SvPV(*listsvp, lcur);
5027 }
5028 else {
5029 /* LIST legitimately doesn't contain a string during compilation phases
5030 * of Perl itself, before the Unicode tables are generated. In this
5031 * case, just fake things up by creating an empty list */
5032 l = empty;
5033 lcur = 0;
5034 }
5035 loc = (char *) l;
5036 lend = l + lcur;
5037
5038 if (*l == 'V') { /* Inversion list format */
5039 const char *after_atou = (char *) lend;
5040 UV element0;
5041 UV* other_elements_ptr;
5042
5043 /* The first number is a count of the rest */
5044 l++;
5045 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
5046 Perl_croak(aTHX_ "panic: Expecting a valid count of elements"
5047 " at start of inversion list");
5048 }
5049 if (elements == 0) {
5050 invlist = _new_invlist(0);
5051 }
5052 else {
5053 l = (U8 *) after_atou;
5054
5055 /* Get the 0th element, which is needed to setup the inversion list
5056 * */
5057 while (isSPACE(*l)) l++;
5058 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
5059 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for"
5060 " inversion list");
5061 }
5062 l = (U8 *) after_atou;
5063 invlist = _setup_canned_invlist(elements, element0,
5064 &other_elements_ptr);
5065 elements--;
5066
5067 /* Then just populate the rest of the input */
5068 while (elements-- > 0) {
5069 if (l > lend) {
5070 Perl_croak(aTHX_ "panic: Expecting %" UVuf " more"
5071 " elements than available", elements);
5072 }
5073 while (isSPACE(*l)) l++;
5074 if (!grok_atoUV((const char *)l, other_elements_ptr++,
5075 &after_atou))
5076 {
5077 Perl_croak(aTHX_ "panic: Expecting a valid element"
5078 " in inversion list");
5079 }
5080 l = (U8 *) after_atou;
5081 }
5082 }
5083 }
5084 else {
5085
5086 /* Scan the input to count the number of lines to preallocate array
5087 * size based on worst possible case, which is each line in the input
5088 * creates 2 elements in the inversion list: 1) the beginning of a
5089 * range in the list; 2) the beginning of a range not in the list. */
5090 while ((loc = (char *) memchr(loc, '\n', lend - (U8 *) loc)) != NULL) {
5091 elements += 2;
5092 loc++;
5093 }
5094
5095 /* If the ending is somehow corrupt and isn't a new line, add another
5096 * element for the final range that isn't in the inversion list */
5097 if (! (*lend == '\n'
5098 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
5099 {
5100 elements++;
5101 }
5102
5103 invlist = _new_invlist(elements);
5104
5105 /* Now go through the input again, adding each range to the list */
5106 while (l < lend) {
5107 UV start, end;
5108 UV val; /* Not used by this function */
5109
5110 l = swash_scan_list_line(l, lend, &start, &end, &val,
5111 cBOOL(octets), typestr);
5112
5113 if (l > lend) {
5114 break;
5115 }
5116
5117 invlist = _add_range_to_invlist(invlist, start, end);
5118 }
5119 }
5120
5121 /* Invert if the data says it should be */
5122 if (invert_it_svp && SvUV(*invert_it_svp)) {
5123 _invlist_invert(invlist);
5124 }
5125
5126 /* This code is copied from swatch_get()
5127 * read $swash->{EXTRAS} */
5128 x = (U8*)SvPV(*extssvp, xcur);
5129 xend = x + xcur;
5130 while (x < xend) {
5131 STRLEN namelen;
5132 U8 *namestr;
5133 SV** othersvp;
5134 HV* otherhv;
5135 STRLEN otherbits;
5136 SV **otherbitssvp, *other;
5137 U8 *nl;
5138
5139 const U8 opc = *x++;
5140 if (opc == '\n')
5141 continue;
5142
5143 nl = (U8*)memchr(x, '\n', xend - x);
5144
5145 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
5146 if (nl) {
5147 x = nl + 1; /* 1 is length of "\n" */
5148 continue;
5149 }
5150 else {
5151 x = xend; /* to EXTRAS' end at which \n is not found */
5152 break;
5153 }
5154 }
5155
5156 namestr = x;
5157 if (nl) {
5158 namelen = nl - namestr;
5159 x = nl + 1;
5160 }
5161 else {
5162 namelen = xend - namestr;
5163 x = xend;
5164 }
5165
5166 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
5167 otherhv = MUTABLE_HV(SvRV(*othersvp));
5168 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
5169 otherbits = (STRLEN)SvUV(*otherbitssvp);
5170
5171 if (bits != otherbits || bits != 1) {
5172 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
5173 "properties, bits=%" UVuf ", otherbits=%" UVuf,
5174 (UV)bits, (UV)otherbits);
5175 }
5176
5177 /* The "other" swatch must be destroyed after. */
5178 other = _swash_to_invlist((SV *)*othersvp);
5179
5180 /* End of code copied from swatch_get() */
5181 switch (opc) {
5182 case '+':
5183 _invlist_union(invlist, other, &invlist);
5184 break;
5185 case '!':
5186 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
5187 break;
5188 case '-':
5189 _invlist_subtract(invlist, other, &invlist);
5190 break;
5191 case '&':
5192 _invlist_intersection(invlist, other, &invlist);
5193 break;
5194 default:
5195 break;
5196 }
5197 sv_free(other); /* through with it! */
5198 }
5199
5200 SvREADONLY_on(invlist);
5201 return invlist;
5202}
5203
5204SV*
5205Perl__get_swash_invlist(pTHX_ SV* const swash)
5206{
5207 SV** ptr;
5208
5209 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
5210
5211 if (! SvROK(swash)) {
5212 return NULL;
5213 }
5214
5215 /* If it really isn't a hash, it isn't really swash; must be an inversion
5216 * list */
5217 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
5218 return SvRV(swash);
5219 }
5220
5221 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
5222 if (! ptr) {
5223 return NULL;
5224 }
5225
5226 return *ptr;
5227}
5228
5229bool
5230Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
5231{
5232 /* May change: warns if surrogates, non-character code points, or
5233 * non-Unicode code points are in 's' which has length 'len' bytes.
5234 * Returns TRUE if none found; FALSE otherwise. The only other validity
5235 * check is to make sure that this won't exceed the string's length nor
5236 * overflow */
5237
5238 const U8* const e = s + len;
5239 bool ok = TRUE;
5240
5241 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
5242
5243 while (s < e) {
5244 if (UTF8SKIP(s) > len) {
5245 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
5246 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
5247 return FALSE;
5248 }
5249 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
5250 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
5251 if ( ckWARN_d(WARN_NON_UNICODE)
5252 || UNLIKELY(0 < does_utf8_overflow(s, s + len,
5253 0 /* Don't consider overlongs */
5254 )))
5255 {
5256 /* A side effect of this function will be to warn */
5257 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
5258 ok = FALSE;
5259 }
5260 }
5261 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
5262 if (ckWARN_d(WARN_SURROGATE)) {
5263 /* This has a different warning than the one the called
5264 * function would output, so can't just call it, unlike we
5265 * do for the non-chars and above-unicodes */
5266 UV uv = utf8_to_uvchr_buf(s, e, NULL);
5267 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
5268 "Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
5269 uv);
5270 ok = FALSE;
5271 }
5272 }
5273 else if ( UNLIKELY(UTF8_IS_NONCHAR(s, e))
5274 && (ckWARN_d(WARN_NONCHAR)))
5275 {
5276 /* A side effect of this function will be to warn */
5277 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
5278 ok = FALSE;
5279 }
5280 }
5281 s += UTF8SKIP(s);
5282 }
5283
5284 return ok;
5285}
5286
5287/*
5288=for apidoc pv_uni_display
5289
5290Build to the scalar C<dsv> a displayable version of the string C<spv>,
5291length C<len>, the displayable version being at most C<pvlim> bytes long
5292(if longer, the rest is truncated and C<"..."> will be appended).
5293
5294The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
5295C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
5296to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
5297(C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
5298C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
5299C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
5300
5301The pointer to the PV of the C<dsv> is returned.
5302
5303See also L</sv_uni_display>.
5304
5305=cut */
5306char *
5307Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
5308 UV flags)
5309{
5310 int truncated = 0;
5311 const char *s, *e;
5312
5313 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
5314
5315 SvPVCLEAR(dsv);
5316 SvUTF8_off(dsv);
5317 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
5318 UV u;
5319 /* This serves double duty as a flag and a character to print after
5320 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
5321 */
5322 char ok = 0;
5323
5324 if (pvlim && SvCUR(dsv) >= pvlim) {
5325 truncated++;
5326 break;
5327 }
5328 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
5329 if (u < 256) {
5330 const unsigned char c = (unsigned char)u & 0xFF;
5331 if (flags & UNI_DISPLAY_BACKSLASH) {
5332 switch (c) {
5333 case '\n':
5334 ok = 'n'; break;
5335 case '\r':
5336 ok = 'r'; break;
5337 case '\t':
5338 ok = 't'; break;
5339 case '\f':
5340 ok = 'f'; break;
5341 case '\a':
5342 ok = 'a'; break;
5343 case '\\':
5344 ok = '\\'; break;
5345 default: break;
5346 }
5347 if (ok) {
5348 const char string = ok;
5349 sv_catpvs(dsv, "\\");
5350 sv_catpvn(dsv, &string, 1);
5351 }
5352 }
5353 /* isPRINT() is the locale-blind version. */
5354 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
5355 const char string = c;
5356 sv_catpvn(dsv, &string, 1);
5357 ok = 1;
5358 }
5359 }
5360 if (!ok)
5361 Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
5362 }
5363 if (truncated)
5364 sv_catpvs(dsv, "...");
5365
5366 return SvPVX(dsv);
5367}
5368
5369/*
5370=for apidoc sv_uni_display
5371
5372Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
5373the displayable version being at most C<pvlim> bytes long
5374(if longer, the rest is truncated and "..." will be appended).
5375
5376The C<flags> argument is as in L</pv_uni_display>().
5377
5378The pointer to the PV of the C<dsv> is returned.
5379
5380=cut
5381*/
5382char *
5383Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
5384{
5385 const char * const ptr =
5386 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
5387
5388 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
5389
5390 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
5391 SvCUR(ssv), pvlim, flags);
5392}
5393
5394/*
5395=for apidoc foldEQ_utf8
5396
5397Returns true if the leading portions of the strings C<s1> and C<s2> (either or
5398both of which may be in UTF-8) are the same case-insensitively; false
5399otherwise. How far into the strings to compare is determined by other input
5400parameters.
5401
5402If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
5403otherwise it is assumed to be in native 8-bit encoding. Correspondingly for
5404C<u2> with respect to C<s2>.
5405
5406If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
5407fold equality. In other words, C<s1>+C<l1> will be used as a goal to reach.
5408The scan will not be considered to be a match unless the goal is reached, and
5409scanning won't continue past that goal. Correspondingly for C<l2> with respect
5410to C<s2>.
5411
5412If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
5413pointer is considered an end pointer to the position 1 byte past the maximum
5414point in C<s1> beyond which scanning will not continue under any circumstances.
5415(This routine assumes that UTF-8 encoded input strings are not malformed;
5416malformed input can cause it to read past C<pe1>). This means that if both
5417C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
5418will never be successful because it can never
5419get as far as its goal (and in fact is asserted against). Correspondingly for
5420C<pe2> with respect to C<s2>.
5421
5422At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
5423C<l2> must be non-zero), and if both do, both have to be
5424reached for a successful match. Also, if the fold of a character is multiple
5425characters, all of them must be matched (see tr21 reference below for
5426'folding').
5427
5428Upon a successful match, if C<pe1> is non-C<NULL>,
5429it will be set to point to the beginning of the I<next> character of C<s1>
5430beyond what was matched. Correspondingly for C<pe2> and C<s2>.
5431
5432For case-insensitiveness, the "casefolding" of Unicode is used
5433instead of upper/lowercasing both the characters, see
5434L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
5435
5436=cut */
5437
5438/* A flags parameter has been added which may change, and hence isn't
5439 * externally documented. Currently it is:
5440 * 0 for as-documented above
5441 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
5442 ASCII one, to not match
5443 * FOLDEQ_LOCALE is set iff the rules from the current underlying
5444 * locale are to be used.
5445 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
5446 * routine. This allows that step to be skipped.
5447 * Currently, this requires s1 to be encoded as UTF-8
5448 * (u1 must be true), which is asserted for.
5449 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
5450 * cross certain boundaries. Hence, the caller should
5451 * let this function do the folding instead of
5452 * pre-folding. This code contains an assertion to
5453 * that effect. However, if the caller knows what
5454 * it's doing, it can pass this flag to indicate that,
5455 * and the assertion is skipped.
5456 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
5457 * FOLDEQ_S2_FOLDS_SANE
5458 */
5459I32
5460Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
5461 const char *s2, char **pe2, UV l2, bool u2,
5462 U32 flags)
5463{
5464 const U8 *p1 = (const U8*)s1; /* Point to current char */
5465 const U8 *p2 = (const U8*)s2;
5466 const U8 *g1 = NULL; /* goal for s1 */
5467 const U8 *g2 = NULL;
5468 const U8 *e1 = NULL; /* Don't scan s1 past this */
5469 U8 *f1 = NULL; /* Point to current folded */
5470 const U8 *e2 = NULL;
5471 U8 *f2 = NULL;
5472 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
5473 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
5474 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
5475 U8 flags_for_folder = FOLD_FLAGS_FULL;
5476
5477 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
5478
5479 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
5480 && (((flags & FOLDEQ_S1_ALREADY_FOLDED)
5481 && !(flags & FOLDEQ_S1_FOLDS_SANE))
5482 || ((flags & FOLDEQ_S2_ALREADY_FOLDED)
5483 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
5484 /* The algorithm is to trial the folds without regard to the flags on
5485 * the first line of the above assert(), and then see if the result
5486 * violates them. This means that the inputs can't be pre-folded to a
5487 * violating result, hence the assert. This could be changed, with the
5488 * addition of extra tests here for the already-folded case, which would
5489 * slow it down. That cost is more than any possible gain for when these
5490 * flags are specified, as the flags indicate /il or /iaa matching which
5491 * is less common than /iu, and I (khw) also believe that real-world /il
5492 * and /iaa matches are most likely to involve code points 0-255, and this
5493 * function only under rare conditions gets called for 0-255. */
5494
5495 if (flags & FOLDEQ_LOCALE) {
5496 if (IN_UTF8_CTYPE_LOCALE) {
5497 flags &= ~FOLDEQ_LOCALE;
5498 }
5499 else {
5500 flags_for_folder |= FOLD_FLAGS_LOCALE;
5501 }
5502 }
5503
5504 if (pe1) {
5505 e1 = *(U8**)pe1;
5506 }
5507
5508 if (l1) {
5509 g1 = (const U8*)s1 + l1;
5510 }
5511
5512 if (pe2) {
5513 e2 = *(U8**)pe2;
5514 }
5515
5516 if (l2) {
5517 g2 = (const U8*)s2 + l2;
5518 }
5519
5520 /* Must have at least one goal */
5521 assert(g1 || g2);
5522
5523 if (g1) {
5524
5525 /* Will never match if goal is out-of-bounds */
5526 assert(! e1 || e1 >= g1);
5527
5528 /* Here, there isn't an end pointer, or it is beyond the goal. We
5529 * only go as far as the goal */
5530 e1 = g1;
5531 }
5532 else {
5533 assert(e1); /* Must have an end for looking at s1 */
5534 }
5535
5536 /* Same for goal for s2 */
5537 if (g2) {
5538 assert(! e2 || e2 >= g2);
5539 e2 = g2;
5540 }
5541 else {
5542 assert(e2);
5543 }
5544
5545 /* If both operands are already folded, we could just do a memEQ on the
5546 * whole strings at once, but it would be better if the caller realized
5547 * this and didn't even call us */
5548
5549 /* Look through both strings, a character at a time */
5550 while (p1 < e1 && p2 < e2) {
5551
5552 /* If at the beginning of a new character in s1, get its fold to use
5553 * and the length of the fold. */
5554 if (n1 == 0) {
5555 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
5556 f1 = (U8 *) p1;
5557 assert(u1);
5558 n1 = UTF8SKIP(f1);
5559 }
5560 else {
5561 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
5562
5563 /* We have to forbid mixing ASCII with non-ASCII if the
5564 * flags so indicate. And, we can short circuit having to
5565 * call the general functions for this common ASCII case,
5566 * all of whose non-locale folds are also ASCII, and hence
5567 * UTF-8 invariants, so the UTF8ness of the strings is not
5568 * relevant. */
5569 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
5570 return 0;
5571 }
5572 n1 = 1;
5573 *foldbuf1 = toFOLD(*p1);
5574 }
5575 else if (u1) {
5576 _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
5577 }
5578 else { /* Not UTF-8, get UTF-8 fold */
5579 _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
5580 }
5581 f1 = foldbuf1;
5582 }
5583 }
5584
5585 if (n2 == 0) { /* Same for s2 */
5586 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
5587 f2 = (U8 *) p2;
5588 assert(u2);
5589 n2 = UTF8SKIP(f2);
5590 }
5591 else {
5592 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
5593 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
5594 return 0;
5595 }
5596 n2 = 1;
5597 *foldbuf2 = toFOLD(*p2);
5598 }
5599 else if (u2) {
5600 _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
5601 }
5602 else {
5603 _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
5604 }
5605 f2 = foldbuf2;
5606 }
5607 }
5608
5609 /* Here f1 and f2 point to the beginning of the strings to compare.
5610 * These strings are the folds of the next character from each input
5611 * string, stored in UTF-8. */
5612
5613 /* While there is more to look for in both folds, see if they
5614 * continue to match */
5615 while (n1 && n2) {
5616 U8 fold_length = UTF8SKIP(f1);
5617 if (fold_length != UTF8SKIP(f2)
5618 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
5619 function call for single
5620 byte */
5621 || memNE((char*)f1, (char*)f2, fold_length))
5622 {
5623 return 0; /* mismatch */
5624 }
5625
5626 /* Here, they matched, advance past them */
5627 n1 -= fold_length;
5628 f1 += fold_length;
5629 n2 -= fold_length;
5630 f2 += fold_length;
5631 }
5632
5633 /* When reach the end of any fold, advance the input past it */
5634 if (n1 == 0) {
5635 p1 += u1 ? UTF8SKIP(p1) : 1;
5636 }
5637 if (n2 == 0) {
5638 p2 += u2 ? UTF8SKIP(p2) : 1;
5639 }
5640 } /* End of loop through both strings */
5641
5642 /* A match is defined by each scan that specified an explicit length
5643 * reaching its final goal, and the other not having matched a partial
5644 * character (which can happen when the fold of a character is more than one
5645 * character). */
5646 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
5647 return 0;
5648 }
5649
5650 /* Successful match. Set output pointers */
5651 if (pe1) {
5652 *pe1 = (char*)p1;
5653 }
5654 if (pe2) {
5655 *pe2 = (char*)p2;
5656 }
5657 return 1;
5658}
5659
5660/* XXX The next two functions should likely be moved to mathoms.c once all
5661 * occurrences of them are removed from the core; some cpan-upstream modules
5662 * still use them */
5663
5664U8 *
5665Perl_uvuni_to_utf8(pTHX_ U8 *d, UV uv)
5666{
5667 PERL_ARGS_ASSERT_UVUNI_TO_UTF8;
5668
5669 return Perl_uvoffuni_to_utf8_flags(aTHX_ d, uv, 0);
5670}
5671
5672/*
5673=for apidoc utf8n_to_uvuni
5674
5675Instead use L</utf8_to_uvchr_buf>, or rarely, L</utf8n_to_uvchr>.
5676
5677This function was useful for code that wanted to handle both EBCDIC and
5678ASCII platforms with Unicode properties, but starting in Perl v5.20, the
5679distinctions between the platforms have mostly been made invisible to most
5680code, so this function is quite unlikely to be what you want. If you do need
5681this precise functionality, use instead
5682C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>>
5683or C<L<NATIVE_TO_UNI(utf8n_to_uvchr(...))|/utf8n_to_uvchr>>.
5684
5685=cut
5686*/
5687
5688UV
5689Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
5690{
5691 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
5692
5693 return NATIVE_TO_UNI(utf8n_to_uvchr(s, curlen, retlen, flags));
5694}
5695
5696/*
5697=for apidoc uvuni_to_utf8_flags
5698
5699Instead you almost certainly want to use L</uvchr_to_utf8> or
5700L</uvchr_to_utf8_flags>.
5701
5702This function is a deprecated synonym for L</uvoffuni_to_utf8_flags>,
5703which itself, while not deprecated, should be used only in isolated
5704circumstances. These functions were useful for code that wanted to handle
5705both EBCDIC and ASCII platforms with Unicode properties, but starting in Perl
5706v5.20, the distinctions between the platforms have mostly been made invisible
5707to most code, so this function is quite unlikely to be what you want.
5708
5709=cut
5710*/
5711
5712U8 *
5713Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
5714{
5715 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
5716
5717 return uvoffuni_to_utf8_flags(d, uv, flags);
5718}
5719
5720/*
5721 * ex: set ts=8 sts=4 sw=4 et:
5722 */