This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
EBCDIC has the unicode bug too
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define DO_HSPLIT(xhv) ((xhv)->xhv_keys > (xhv)->xhv_max) /* HvTOTALKEYS(hv) > HvMAX(hv) */
39#define HV_FILL_THRESHOLD 31
40
41static const char S_strtab_error[]
42 = "Cannot modify shared string table in hv_%s";
43
44#ifdef PURIFY
45
46#define new_HE() (HE*)safemalloc(sizeof(HE))
47#define del_HE(p) safefree((char*)p)
48
49#else
50
51STATIC HE*
52S_new_he(pTHX)
53{
54 dVAR;
55 HE* he;
56 void ** const root = &PL_body_roots[HE_SVSLOT];
57
58 if (!*root)
59 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
60 he = (HE*) *root;
61 assert(he);
62 *root = HeNEXT(he);
63 return he;
64}
65
66#define new_HE() new_he()
67#define del_HE(p) \
68 STMT_START { \
69 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
70 PL_body_roots[HE_SVSLOT] = p; \
71 } STMT_END
72
73
74
75#endif
76
77STATIC HEK *
78S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
79{
80 const int flags_masked = flags & HVhek_MASK;
81 char *k;
82 HEK *hek;
83
84 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
85
86 Newx(k, HEK_BASESIZE + len + 2, char);
87 hek = (HEK*)k;
88 Copy(str, HEK_KEY(hek), len, char);
89 HEK_KEY(hek)[len] = 0;
90 HEK_LEN(hek) = len;
91 HEK_HASH(hek) = hash;
92 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
93
94 if (flags & HVhek_FREEKEY)
95 Safefree(str);
96 return hek;
97}
98
99/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
100 * for tied hashes */
101
102void
103Perl_free_tied_hv_pool(pTHX)
104{
105 dVAR;
106 HE *he = PL_hv_fetch_ent_mh;
107 while (he) {
108 HE * const ohe = he;
109 Safefree(HeKEY_hek(he));
110 he = HeNEXT(he);
111 del_HE(ohe);
112 }
113 PL_hv_fetch_ent_mh = NULL;
114}
115
116#if defined(USE_ITHREADS)
117HEK *
118Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
119{
120 HEK *shared;
121
122 PERL_ARGS_ASSERT_HEK_DUP;
123 PERL_UNUSED_ARG(param);
124
125 if (!source)
126 return NULL;
127
128 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
129 if (shared) {
130 /* We already shared this hash key. */
131 (void)share_hek_hek(shared);
132 }
133 else {
134 shared
135 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
136 HEK_HASH(source), HEK_FLAGS(source));
137 ptr_table_store(PL_ptr_table, source, shared);
138 }
139 return shared;
140}
141
142HE *
143Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
144{
145 HE *ret;
146
147 PERL_ARGS_ASSERT_HE_DUP;
148
149 if (!e)
150 return NULL;
151 /* look for it in the table first */
152 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
153 if (ret)
154 return ret;
155
156 /* create anew and remember what it is */
157 ret = new_HE();
158 ptr_table_store(PL_ptr_table, e, ret);
159
160 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
161 if (HeKLEN(e) == HEf_SVKEY) {
162 char *k;
163 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
164 HeKEY_hek(ret) = (HEK*)k;
165 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
166 }
167 else if (shared) {
168 /* This is hek_dup inlined, which seems to be important for speed
169 reasons. */
170 HEK * const source = HeKEY_hek(e);
171 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
172
173 if (shared) {
174 /* We already shared this hash key. */
175 (void)share_hek_hek(shared);
176 }
177 else {
178 shared
179 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
180 HEK_HASH(source), HEK_FLAGS(source));
181 ptr_table_store(PL_ptr_table, source, shared);
182 }
183 HeKEY_hek(ret) = shared;
184 }
185 else
186 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
187 HeKFLAGS(e));
188 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
189 return ret;
190}
191#endif /* USE_ITHREADS */
192
193static void
194S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
195 const char *msg)
196{
197 SV * const sv = sv_newmortal();
198
199 PERL_ARGS_ASSERT_HV_NOTALLOWED;
200
201 if (!(flags & HVhek_FREEKEY)) {
202 sv_setpvn(sv, key, klen);
203 }
204 else {
205 /* Need to free saved eventually assign to mortal SV */
206 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
207 sv_usepvn(sv, (char *) key, klen);
208 }
209 if (flags & HVhek_UTF8) {
210 SvUTF8_on(sv);
211 }
212 Perl_croak(aTHX_ msg, SVfARG(sv));
213}
214
215/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
216 * contains an SV* */
217
218/*
219=for apidoc hv_store
220
221Stores an SV in a hash. The hash key is specified as C<key> and the
222absolute value of C<klen> is the length of the key. If C<klen> is
223negative the key is assumed to be in UTF-8-encoded Unicode. The
224C<hash> parameter is the precomputed hash value; if it is zero then
225Perl will compute it.
226
227The return value will be
228NULL if the operation failed or if the value did not need to be actually
229stored within the hash (as in the case of tied hashes). Otherwise it can
230be dereferenced to get the original C<SV*>. Note that the caller is
231responsible for suitably incrementing the reference count of C<val> before
232the call, and decrementing it if the function returned NULL. Effectively
233a successful hv_store takes ownership of one reference to C<val>. This is
234usually what you want; a newly created SV has a reference count of one, so
235if all your code does is create SVs then store them in a hash, hv_store
236will own the only reference to the new SV, and your code doesn't need to do
237anything further to tidy up. hv_store is not implemented as a call to
238hv_store_ent, and does not create a temporary SV for the key, so if your
239key data is not already in SV form then use hv_store in preference to
240hv_store_ent.
241
242See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
243information on how to use this function on tied hashes.
244
245=for apidoc hv_store_ent
246
247Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
248parameter is the precomputed hash value; if it is zero then Perl will
249compute it. The return value is the new hash entry so created. It will be
250NULL if the operation failed or if the value did not need to be actually
251stored within the hash (as in the case of tied hashes). Otherwise the
252contents of the return value can be accessed using the C<He?> macros
253described here. Note that the caller is responsible for suitably
254incrementing the reference count of C<val> before the call, and
255decrementing it if the function returned NULL. Effectively a successful
256hv_store_ent takes ownership of one reference to C<val>. This is
257usually what you want; a newly created SV has a reference count of one, so
258if all your code does is create SVs then store them in a hash, hv_store
259will own the only reference to the new SV, and your code doesn't need to do
260anything further to tidy up. Note that hv_store_ent only reads the C<key>;
261unlike C<val> it does not take ownership of it, so maintaining the correct
262reference count on C<key> is entirely the caller's responsibility. hv_store
263is not implemented as a call to hv_store_ent, and does not create a temporary
264SV for the key, so if your key data is not already in SV form then use
265hv_store in preference to hv_store_ent.
266
267See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
268information on how to use this function on tied hashes.
269
270=for apidoc hv_exists
271
272Returns a boolean indicating whether the specified hash key exists. The
273absolute value of C<klen> is the length of the key. If C<klen> is
274negative the key is assumed to be in UTF-8-encoded Unicode.
275
276=for apidoc hv_fetch
277
278Returns the SV which corresponds to the specified key in the hash.
279The absolute value of C<klen> is the length of the key. If C<klen> is
280negative the key is assumed to be in UTF-8-encoded Unicode. If
281C<lval> is set then the fetch will be part of a store. This means that if
282there is no value in the hash associated with the given key, then one is
283created and a pointer to it is returned. The C<SV*> it points to can be
284assigned to. But always check that the
285return value is non-null before dereferencing it to an C<SV*>.
286
287See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
288information on how to use this function on tied hashes.
289
290=for apidoc hv_exists_ent
291
292Returns a boolean indicating whether
293the specified hash key exists. C<hash>
294can be a valid precomputed hash value, or 0 to ask for it to be
295computed.
296
297=cut
298*/
299
300/* returns an HE * structure with the all fields set */
301/* note that hent_val will be a mortal sv for MAGICAL hashes */
302/*
303=for apidoc hv_fetch_ent
304
305Returns the hash entry which corresponds to the specified key in the hash.
306C<hash> must be a valid precomputed hash number for the given C<key>, or 0
307if you want the function to compute it. IF C<lval> is set then the fetch
308will be part of a store. Make sure the return value is non-null before
309accessing it. The return value when C<hv> is a tied hash is a pointer to a
310static location, so be sure to make a copy of the structure if you need to
311store it somewhere.
312
313See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
314information on how to use this function on tied hashes.
315
316=cut
317*/
318
319/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
320void *
321Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
322 const int action, SV *val, const U32 hash)
323{
324 STRLEN klen;
325 int flags;
326
327 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
328
329 if (klen_i32 < 0) {
330 klen = -klen_i32;
331 flags = HVhek_UTF8;
332 } else {
333 klen = klen_i32;
334 flags = 0;
335 }
336 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
337}
338
339void *
340Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
341 int flags, int action, SV *val, U32 hash)
342{
343 dVAR;
344 XPVHV* xhv;
345 HE *entry;
346 HE **oentry;
347 SV *sv;
348 bool is_utf8;
349 int masked_flags;
350 const int return_svp = action & HV_FETCH_JUST_SV;
351
352 if (!hv)
353 return NULL;
354 if (SvTYPE(hv) == (svtype)SVTYPEMASK)
355 return NULL;
356
357 assert(SvTYPE(hv) == SVt_PVHV);
358
359 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
360 MAGIC* mg;
361 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
362 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
363 if (uf->uf_set == NULL) {
364 SV* obj = mg->mg_obj;
365
366 if (!keysv) {
367 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
368 ((flags & HVhek_UTF8)
369 ? SVf_UTF8 : 0));
370 }
371
372 mg->mg_obj = keysv; /* pass key */
373 uf->uf_index = action; /* pass action */
374 magic_getuvar(MUTABLE_SV(hv), mg);
375 keysv = mg->mg_obj; /* may have changed */
376 mg->mg_obj = obj;
377
378 /* If the key may have changed, then we need to invalidate
379 any passed-in computed hash value. */
380 hash = 0;
381 }
382 }
383 }
384 if (keysv) {
385 if (flags & HVhek_FREEKEY)
386 Safefree(key);
387 key = SvPV_const(keysv, klen);
388 is_utf8 = (SvUTF8(keysv) != 0);
389 if (SvIsCOW_shared_hash(keysv)) {
390 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
391 } else {
392 flags = is_utf8 ? HVhek_UTF8 : 0;
393 }
394 } else {
395 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
396 }
397
398 if (action & HV_DELETE) {
399 return (void *) hv_delete_common(hv, keysv, key, klen,
400 flags, action, hash);
401 }
402
403 xhv = (XPVHV*)SvANY(hv);
404 if (SvMAGICAL(hv)) {
405 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
406 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
407 || SvGMAGICAL((const SV *)hv))
408 {
409 /* FIXME should be able to skimp on the HE/HEK here when
410 HV_FETCH_JUST_SV is true. */
411 if (!keysv) {
412 keysv = newSVpvn_utf8(key, klen, is_utf8);
413 } else {
414 keysv = newSVsv(keysv);
415 }
416 sv = sv_newmortal();
417 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
418
419 /* grab a fake HE/HEK pair from the pool or make a new one */
420 entry = PL_hv_fetch_ent_mh;
421 if (entry)
422 PL_hv_fetch_ent_mh = HeNEXT(entry);
423 else {
424 char *k;
425 entry = new_HE();
426 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
427 HeKEY_hek(entry) = (HEK*)k;
428 }
429 HeNEXT(entry) = NULL;
430 HeSVKEY_set(entry, keysv);
431 HeVAL(entry) = sv;
432 sv_upgrade(sv, SVt_PVLV);
433 LvTYPE(sv) = 'T';
434 /* so we can free entry when freeing sv */
435 LvTARG(sv) = MUTABLE_SV(entry);
436
437 /* XXX remove at some point? */
438 if (flags & HVhek_FREEKEY)
439 Safefree(key);
440
441 if (return_svp) {
442 return entry ? (void *) &HeVAL(entry) : NULL;
443 }
444 return (void *) entry;
445 }
446#ifdef ENV_IS_CASELESS
447 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
448 U32 i;
449 for (i = 0; i < klen; ++i)
450 if (isLOWER(key[i])) {
451 /* Would be nice if we had a routine to do the
452 copy and upercase in a single pass through. */
453 const char * const nkey = strupr(savepvn(key,klen));
454 /* Note that this fetch is for nkey (the uppercased
455 key) whereas the store is for key (the original) */
456 void *result = hv_common(hv, NULL, nkey, klen,
457 HVhek_FREEKEY, /* free nkey */
458 0 /* non-LVAL fetch */
459 | HV_DISABLE_UVAR_XKEY
460 | return_svp,
461 NULL /* no value */,
462 0 /* compute hash */);
463 if (!result && (action & HV_FETCH_LVALUE)) {
464 /* This call will free key if necessary.
465 Do it this way to encourage compiler to tail
466 call optimise. */
467 result = hv_common(hv, keysv, key, klen, flags,
468 HV_FETCH_ISSTORE
469 | HV_DISABLE_UVAR_XKEY
470 | return_svp,
471 newSV(0), hash);
472 } else {
473 if (flags & HVhek_FREEKEY)
474 Safefree(key);
475 }
476 return result;
477 }
478 }
479#endif
480 } /* ISFETCH */
481 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
482 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
483 || SvGMAGICAL((const SV *)hv)) {
484 /* I don't understand why hv_exists_ent has svret and sv,
485 whereas hv_exists only had one. */
486 SV * const svret = sv_newmortal();
487 sv = sv_newmortal();
488
489 if (keysv || is_utf8) {
490 if (!keysv) {
491 keysv = newSVpvn_utf8(key, klen, TRUE);
492 } else {
493 keysv = newSVsv(keysv);
494 }
495 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
496 } else {
497 mg_copy(MUTABLE_SV(hv), sv, key, klen);
498 }
499 if (flags & HVhek_FREEKEY)
500 Safefree(key);
501 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
502 /* This cast somewhat evil, but I'm merely using NULL/
503 not NULL to return the boolean exists.
504 And I know hv is not NULL. */
505 return SvTRUE(svret) ? (void *)hv : NULL;
506 }
507#ifdef ENV_IS_CASELESS
508 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
509 /* XXX This code isn't UTF8 clean. */
510 char * const keysave = (char * const)key;
511 /* Will need to free this, so set FREEKEY flag. */
512 key = savepvn(key,klen);
513 key = (const char*)strupr((char*)key);
514 is_utf8 = FALSE;
515 hash = 0;
516 keysv = 0;
517
518 if (flags & HVhek_FREEKEY) {
519 Safefree(keysave);
520 }
521 flags |= HVhek_FREEKEY;
522 }
523#endif
524 } /* ISEXISTS */
525 else if (action & HV_FETCH_ISSTORE) {
526 bool needs_copy;
527 bool needs_store;
528 hv_magic_check (hv, &needs_copy, &needs_store);
529 if (needs_copy) {
530 const bool save_taint = TAINT_get;
531 if (keysv || is_utf8) {
532 if (!keysv) {
533 keysv = newSVpvn_utf8(key, klen, TRUE);
534 }
535 if (TAINTING_get)
536 TAINT_set(SvTAINTED(keysv));
537 keysv = sv_2mortal(newSVsv(keysv));
538 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
539 } else {
540 mg_copy(MUTABLE_SV(hv), val, key, klen);
541 }
542
543 TAINT_IF(save_taint);
544#ifdef NO_TAINT_SUPPORT
545 PERL_UNUSED_VAR(save_taint);
546#endif
547 if (!needs_store) {
548 if (flags & HVhek_FREEKEY)
549 Safefree(key);
550 return NULL;
551 }
552#ifdef ENV_IS_CASELESS
553 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
554 /* XXX This code isn't UTF8 clean. */
555 const char *keysave = key;
556 /* Will need to free this, so set FREEKEY flag. */
557 key = savepvn(key,klen);
558 key = (const char*)strupr((char*)key);
559 is_utf8 = FALSE;
560 hash = 0;
561 keysv = 0;
562
563 if (flags & HVhek_FREEKEY) {
564 Safefree(keysave);
565 }
566 flags |= HVhek_FREEKEY;
567 }
568#endif
569 }
570 } /* ISSTORE */
571 } /* SvMAGICAL */
572
573 if (!HvARRAY(hv)) {
574 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
575#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
576 || (SvRMAGICAL((const SV *)hv)
577 && mg_find((const SV *)hv, PERL_MAGIC_env))
578#endif
579 ) {
580 char *array;
581 Newxz(array,
582 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
583 char);
584 HvARRAY(hv) = (HE**)array;
585 }
586#ifdef DYNAMIC_ENV_FETCH
587 else if (action & HV_FETCH_ISEXISTS) {
588 /* for an %ENV exists, if we do an insert it's by a recursive
589 store call, so avoid creating HvARRAY(hv) right now. */
590 }
591#endif
592 else {
593 /* XXX remove at some point? */
594 if (flags & HVhek_FREEKEY)
595 Safefree(key);
596
597 return NULL;
598 }
599 }
600
601 if (is_utf8 && !(flags & HVhek_KEYCANONICAL)) {
602 char * const keysave = (char *)key;
603 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
604 if (is_utf8)
605 flags |= HVhek_UTF8;
606 else
607 flags &= ~HVhek_UTF8;
608 if (key != keysave) {
609 if (flags & HVhek_FREEKEY)
610 Safefree(keysave);
611 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
612 /* If the caller calculated a hash, it was on the sequence of
613 octets that are the UTF-8 form. We've now changed the sequence
614 of octets stored to that of the equivalent byte representation,
615 so the hash we need is different. */
616 hash = 0;
617 }
618 }
619
620 if (!hash) {
621 if (keysv && (SvIsCOW_shared_hash(keysv)))
622 hash = SvSHARED_HASH(keysv);
623 else
624 PERL_HASH(hash, key, klen);
625 }
626
627 masked_flags = (flags & HVhek_MASK);
628
629#ifdef DYNAMIC_ENV_FETCH
630 if (!HvARRAY(hv)) entry = NULL;
631 else
632#endif
633 {
634 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
635 }
636 for (; entry; entry = HeNEXT(entry)) {
637 if (HeHASH(entry) != hash) /* strings can't be equal */
638 continue;
639 if (HeKLEN(entry) != (I32)klen)
640 continue;
641 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
642 continue;
643 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
644 continue;
645
646 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
647 if (HeKFLAGS(entry) != masked_flags) {
648 /* We match if HVhek_UTF8 bit in our flags and hash key's
649 match. But if entry was set previously with HVhek_WASUTF8
650 and key now doesn't (or vice versa) then we should change
651 the key's flag, as this is assignment. */
652 if (HvSHAREKEYS(hv)) {
653 /* Need to swap the key we have for a key with the flags we
654 need. As keys are shared we can't just write to the
655 flag, so we share the new one, unshare the old one. */
656 HEK * const new_hek = share_hek_flags(key, klen, hash,
657 masked_flags);
658 unshare_hek (HeKEY_hek(entry));
659 HeKEY_hek(entry) = new_hek;
660 }
661 else if (hv == PL_strtab) {
662 /* PL_strtab is usually the only hash without HvSHAREKEYS,
663 so putting this test here is cheap */
664 if (flags & HVhek_FREEKEY)
665 Safefree(key);
666 Perl_croak(aTHX_ S_strtab_error,
667 action & HV_FETCH_LVALUE ? "fetch" : "store");
668 }
669 else
670 HeKFLAGS(entry) = masked_flags;
671 if (masked_flags & HVhek_ENABLEHVKFLAGS)
672 HvHASKFLAGS_on(hv);
673 }
674 if (HeVAL(entry) == &PL_sv_placeholder) {
675 /* yes, can store into placeholder slot */
676 if (action & HV_FETCH_LVALUE) {
677 if (SvMAGICAL(hv)) {
678 /* This preserves behaviour with the old hv_fetch
679 implementation which at this point would bail out
680 with a break; (at "if we find a placeholder, we
681 pretend we haven't found anything")
682
683 That break mean that if a placeholder were found, it
684 caused a call into hv_store, which in turn would
685 check magic, and if there is no magic end up pretty
686 much back at this point (in hv_store's code). */
687 break;
688 }
689 /* LVAL fetch which actually needs a store. */
690 val = newSV(0);
691 HvPLACEHOLDERS(hv)--;
692 } else {
693 /* store */
694 if (val != &PL_sv_placeholder)
695 HvPLACEHOLDERS(hv)--;
696 }
697 HeVAL(entry) = val;
698 } else if (action & HV_FETCH_ISSTORE) {
699 SvREFCNT_dec(HeVAL(entry));
700 HeVAL(entry) = val;
701 }
702 } else if (HeVAL(entry) == &PL_sv_placeholder) {
703 /* if we find a placeholder, we pretend we haven't found
704 anything */
705 break;
706 }
707 if (flags & HVhek_FREEKEY)
708 Safefree(key);
709 if (return_svp) {
710 return entry ? (void *) &HeVAL(entry) : NULL;
711 }
712 return entry;
713 }
714#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
715 if (!(action & HV_FETCH_ISSTORE)
716 && SvRMAGICAL((const SV *)hv)
717 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
718 unsigned long len;
719 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
720 if (env) {
721 sv = newSVpvn(env,len);
722 SvTAINTED_on(sv);
723 return hv_common(hv, keysv, key, klen, flags,
724 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
725 sv, hash);
726 }
727 }
728#endif
729
730 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
731 hv_notallowed(flags, key, klen,
732 "Attempt to access disallowed key '%"SVf"' in"
733 " a restricted hash");
734 }
735 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
736 /* Not doing some form of store, so return failure. */
737 if (flags & HVhek_FREEKEY)
738 Safefree(key);
739 return NULL;
740 }
741 if (action & HV_FETCH_LVALUE) {
742 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
743 if (SvMAGICAL(hv)) {
744 /* At this point the old hv_fetch code would call to hv_store,
745 which in turn might do some tied magic. So we need to make that
746 magic check happen. */
747 /* gonna assign to this, so it better be there */
748 /* If a fetch-as-store fails on the fetch, then the action is to
749 recurse once into "hv_store". If we didn't do this, then that
750 recursive call would call the key conversion routine again.
751 However, as we replace the original key with the converted
752 key, this would result in a double conversion, which would show
753 up as a bug if the conversion routine is not idempotent.
754 Hence the use of HV_DISABLE_UVAR_XKEY. */
755 return hv_common(hv, keysv, key, klen, flags,
756 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
757 val, hash);
758 /* XXX Surely that could leak if the fetch-was-store fails?
759 Just like the hv_fetch. */
760 }
761 }
762
763 /* Welcome to hv_store... */
764
765 if (!HvARRAY(hv)) {
766 /* Not sure if we can get here. I think the only case of oentry being
767 NULL is for %ENV with dynamic env fetch. But that should disappear
768 with magic in the previous code. */
769 char *array;
770 Newxz(array,
771 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
772 char);
773 HvARRAY(hv) = (HE**)array;
774 }
775
776 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
777
778 entry = new_HE();
779 /* share_hek_flags will do the free for us. This might be considered
780 bad API design. */
781 if (HvSHAREKEYS(hv))
782 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
783 else if (hv == PL_strtab) {
784 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
785 this test here is cheap */
786 if (flags & HVhek_FREEKEY)
787 Safefree(key);
788 Perl_croak(aTHX_ S_strtab_error,
789 action & HV_FETCH_LVALUE ? "fetch" : "store");
790 }
791 else /* gotta do the real thing */
792 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
793 HeVAL(entry) = val;
794
795 if (!*oentry && SvOOK(hv)) {
796 /* initial entry, and aux struct present. */
797 struct xpvhv_aux *const aux = HvAUX(hv);
798 if (aux->xhv_fill_lazy)
799 ++aux->xhv_fill_lazy;
800 }
801
802#ifdef PERL_HASH_RANDOMIZE_KEYS
803 /* This logic semi-randomizes the insert order in a bucket.
804 * Either we insert into the top, or the slot below the top,
805 * making it harder to see if there is a collision. We also
806 * reset the iterator randomizer if there is one.
807 */
808 if ( *oentry && PL_HASH_RAND_BITS_ENABLED) {
809 PL_hash_rand_bits++;
810 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
811 if ( PL_hash_rand_bits & 1 ) {
812 HeNEXT(entry) = HeNEXT(*oentry);
813 HeNEXT(*oentry) = entry;
814 } else {
815 HeNEXT(entry) = *oentry;
816 *oentry = entry;
817 }
818 } else
819#endif
820 {
821 HeNEXT(entry) = *oentry;
822 *oentry = entry;
823 }
824#ifdef PERL_HASH_RANDOMIZE_KEYS
825 if (SvOOK(hv)) {
826 /* Currently this makes various tests warn in annoying ways.
827 * So Silenced for now. - Yves | bogus end of comment =>* /
828 if (HvAUX(hv)->xhv_riter != -1) {
829 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
830 "[TESTING] Inserting into a hash during each() traversal results in undefined behavior"
831 pTHX__FORMAT
832 pTHX__VALUE);
833 }
834 */
835 if (PL_HASH_RAND_BITS_ENABLED) {
836 if (PL_HASH_RAND_BITS_ENABLED == 1)
837 PL_hash_rand_bits += (PTRV)entry + 1; /* we don't bother to use ptr_hash here */
838 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
839 }
840 HvAUX(hv)->xhv_rand= (U32)PL_hash_rand_bits;
841 }
842#endif
843
844 if (val == &PL_sv_placeholder)
845 HvPLACEHOLDERS(hv)++;
846 if (masked_flags & HVhek_ENABLEHVKFLAGS)
847 HvHASKFLAGS_on(hv);
848
849 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
850 if ( DO_HSPLIT(xhv) ) {
851 const STRLEN oldsize = xhv->xhv_max + 1;
852 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
853
854 if (items /* hash has placeholders */
855 && !SvREADONLY(hv) /* but is not a restricted hash */) {
856 /* If this hash previously was a "restricted hash" and had
857 placeholders, but the "restricted" flag has been turned off,
858 then the placeholders no longer serve any useful purpose.
859 However, they have the downsides of taking up RAM, and adding
860 extra steps when finding used values. It's safe to clear them
861 at this point, even though Storable rebuilds restricted hashes by
862 putting in all the placeholders (first) before turning on the
863 readonly flag, because Storable always pre-splits the hash.
864 If we're lucky, then we may clear sufficient placeholders to
865 avoid needing to split the hash at all. */
866 clear_placeholders(hv, items);
867 if (DO_HSPLIT(xhv))
868 hsplit(hv, oldsize, oldsize * 2);
869 } else
870 hsplit(hv, oldsize, oldsize * 2);
871 }
872
873 if (return_svp) {
874 return entry ? (void *) &HeVAL(entry) : NULL;
875 }
876 return (void *) entry;
877}
878
879STATIC void
880S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
881{
882 const MAGIC *mg = SvMAGIC(hv);
883
884 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
885
886 *needs_copy = FALSE;
887 *needs_store = TRUE;
888 while (mg) {
889 if (isUPPER(mg->mg_type)) {
890 *needs_copy = TRUE;
891 if (mg->mg_type == PERL_MAGIC_tied) {
892 *needs_store = FALSE;
893 return; /* We've set all there is to set. */
894 }
895 }
896 mg = mg->mg_moremagic;
897 }
898}
899
900/*
901=for apidoc hv_scalar
902
903Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
904
905=cut
906*/
907
908SV *
909Perl_hv_scalar(pTHX_ HV *hv)
910{
911 SV *sv;
912
913 PERL_ARGS_ASSERT_HV_SCALAR;
914
915 if (SvRMAGICAL(hv)) {
916 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
917 if (mg)
918 return magic_scalarpack(hv, mg);
919 }
920
921 sv = sv_newmortal();
922 if (HvTOTALKEYS((const HV *)hv))
923 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
924 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
925 else
926 sv_setiv(sv, 0);
927
928 return sv;
929}
930
931/*
932=for apidoc hv_delete
933
934Deletes a key/value pair in the hash. The value's SV is removed from
935the hash, made mortal, and returned to the caller. The absolute
936value of C<klen> is the length of the key. If C<klen> is negative the
937key is assumed to be in UTF-8-encoded Unicode. The C<flags> value
938will normally be zero; if set to G_DISCARD then NULL will be returned.
939NULL will also be returned if the key is not found.
940
941=for apidoc hv_delete_ent
942
943Deletes a key/value pair in the hash. The value SV is removed from the hash,
944made mortal, and returned to the caller. The C<flags> value will normally be
945zero; if set to G_DISCARD then NULL will be returned. NULL will also be
946returned if the key is not found. C<hash> can be a valid precomputed hash
947value, or 0 to ask for it to be computed.
948
949=cut
950*/
951
952STATIC SV *
953S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
954 int k_flags, I32 d_flags, U32 hash)
955{
956 dVAR;
957 XPVHV* xhv;
958 HE *entry;
959 HE **oentry;
960 HE *const *first_entry;
961 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
962 int masked_flags;
963
964 if (SvRMAGICAL(hv)) {
965 bool needs_copy;
966 bool needs_store;
967 hv_magic_check (hv, &needs_copy, &needs_store);
968
969 if (needs_copy) {
970 SV *sv;
971 entry = (HE *) hv_common(hv, keysv, key, klen,
972 k_flags & ~HVhek_FREEKEY,
973 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
974 NULL, hash);
975 sv = entry ? HeVAL(entry) : NULL;
976 if (sv) {
977 if (SvMAGICAL(sv)) {
978 mg_clear(sv);
979 }
980 if (!needs_store) {
981 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
982 /* No longer an element */
983 sv_unmagic(sv, PERL_MAGIC_tiedelem);
984 return sv;
985 }
986 return NULL; /* element cannot be deleted */
987 }
988#ifdef ENV_IS_CASELESS
989 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
990 /* XXX This code isn't UTF8 clean. */
991 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
992 if (k_flags & HVhek_FREEKEY) {
993 Safefree(key);
994 }
995 key = strupr(SvPVX(keysv));
996 is_utf8 = 0;
997 k_flags = 0;
998 hash = 0;
999 }
1000#endif
1001 }
1002 }
1003 }
1004 xhv = (XPVHV*)SvANY(hv);
1005 if (!HvARRAY(hv))
1006 return NULL;
1007
1008 if (is_utf8 && !(k_flags & HVhek_KEYCANONICAL)) {
1009 const char * const keysave = key;
1010 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
1011
1012 if (is_utf8)
1013 k_flags |= HVhek_UTF8;
1014 else
1015 k_flags &= ~HVhek_UTF8;
1016 if (key != keysave) {
1017 if (k_flags & HVhek_FREEKEY) {
1018 /* This shouldn't happen if our caller does what we expect,
1019 but strictly the API allows it. */
1020 Safefree(keysave);
1021 }
1022 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
1023 }
1024 HvHASKFLAGS_on(MUTABLE_SV(hv));
1025 }
1026
1027 if (!hash) {
1028 if (keysv && (SvIsCOW_shared_hash(keysv)))
1029 hash = SvSHARED_HASH(keysv);
1030 else
1031 PERL_HASH(hash, key, klen);
1032 }
1033
1034 masked_flags = (k_flags & HVhek_MASK);
1035
1036 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1037 entry = *oentry;
1038 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1039 SV *sv;
1040 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
1041 GV *gv = NULL;
1042 HV *stash = NULL;
1043
1044 if (HeHASH(entry) != hash) /* strings can't be equal */
1045 continue;
1046 if (HeKLEN(entry) != (I32)klen)
1047 continue;
1048 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1049 continue;
1050 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1051 continue;
1052
1053 if (hv == PL_strtab) {
1054 if (k_flags & HVhek_FREEKEY)
1055 Safefree(key);
1056 Perl_croak(aTHX_ S_strtab_error, "delete");
1057 }
1058
1059 /* if placeholder is here, it's already been deleted.... */
1060 if (HeVAL(entry) == &PL_sv_placeholder) {
1061 if (k_flags & HVhek_FREEKEY)
1062 Safefree(key);
1063 return NULL;
1064 }
1065 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1066 hv_notallowed(k_flags, key, klen,
1067 "Attempt to delete readonly key '%"SVf"' from"
1068 " a restricted hash");
1069 }
1070 if (k_flags & HVhek_FREEKEY)
1071 Safefree(key);
1072
1073 /* If this is a stash and the key ends with ::, then someone is
1074 * deleting a package.
1075 */
1076 if (HeVAL(entry) && HvENAME_get(hv)) {
1077 gv = (GV *)HeVAL(entry);
1078 if (keysv) key = SvPV(keysv, klen);
1079 if ((
1080 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1081 ||
1082 (klen == 1 && key[0] == ':')
1083 )
1084 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1085 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1086 && HvENAME_get(stash)) {
1087 /* A previous version of this code checked that the
1088 * GV was still in the symbol table by fetching the
1089 * GV with its name. That is not necessary (and
1090 * sometimes incorrect), as HvENAME cannot be set
1091 * on hv if it is not in the symtab. */
1092 mro_changes = 2;
1093 /* Hang on to it for a bit. */
1094 SvREFCNT_inc_simple_void_NN(
1095 sv_2mortal((SV *)gv)
1096 );
1097 }
1098 else if (klen == 3 && strnEQ(key, "ISA", 3))
1099 mro_changes = 1;
1100 }
1101
1102 sv = d_flags & G_DISCARD ? HeVAL(entry) : sv_2mortal(HeVAL(entry));
1103 HeVAL(entry) = &PL_sv_placeholder;
1104 if (sv) {
1105 /* deletion of method from stash */
1106 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1107 && HvENAME_get(hv))
1108 mro_method_changed_in(hv);
1109 }
1110
1111 /*
1112 * If a restricted hash, rather than really deleting the entry, put
1113 * a placeholder there. This marks the key as being "approved", so
1114 * we can still access via not-really-existing key without raising
1115 * an error.
1116 */
1117 if (SvREADONLY(hv))
1118 /* We'll be saving this slot, so the number of allocated keys
1119 * doesn't go down, but the number placeholders goes up */
1120 HvPLACEHOLDERS(hv)++;
1121 else {
1122 *oentry = HeNEXT(entry);
1123 if(!*first_entry && SvOOK(hv)) {
1124 /* removed last entry, and aux struct present. */
1125 struct xpvhv_aux *const aux = HvAUX(hv);
1126 if (aux->xhv_fill_lazy)
1127 --aux->xhv_fill_lazy;
1128 }
1129 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1130 HvLAZYDEL_on(hv);
1131 else {
1132 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1133 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1134 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1135 hv_free_ent(hv, entry);
1136 }
1137 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1138 if (xhv->xhv_keys == 0)
1139 HvHASKFLAGS_off(hv);
1140 }
1141
1142 if (d_flags & G_DISCARD) {
1143 SvREFCNT_dec(sv);
1144 sv = NULL;
1145 }
1146
1147 if (mro_changes == 1) mro_isa_changed_in(hv);
1148 else if (mro_changes == 2)
1149 mro_package_moved(NULL, stash, gv, 1);
1150
1151 return sv;
1152 }
1153 if (SvREADONLY(hv)) {
1154 hv_notallowed(k_flags, key, klen,
1155 "Attempt to delete disallowed key '%"SVf"' from"
1156 " a restricted hash");
1157 }
1158
1159 if (k_flags & HVhek_FREEKEY)
1160 Safefree(key);
1161 return NULL;
1162}
1163
1164STATIC void
1165S_hsplit(pTHX_ HV *hv, STRLEN const oldsize, STRLEN newsize)
1166{
1167 dVAR;
1168 STRLEN i = 0;
1169 char *a = (char*) HvARRAY(hv);
1170 HE **aep;
1171
1172 PERL_ARGS_ASSERT_HSPLIT;
1173
1174 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1175 (void*)hv, (int) oldsize);*/
1176
1177 PL_nomemok = TRUE;
1178 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1179 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1180 if (!a) {
1181 PL_nomemok = FALSE;
1182 return;
1183 }
1184#ifdef PERL_HASH_RANDOMIZE_KEYS
1185 /* the idea of this is that we create a "random" value by hashing the address of
1186 * the array, we then use the low bit to decide if we insert at the top, or insert
1187 * second from top. After each such insert we rotate the hashed value. So we can
1188 * use the same hashed value over and over, and in normal build environments use
1189 * very few ops to do so. ROTL32() should produce a single machine operation. */
1190 if (PL_HASH_RAND_BITS_ENABLED) {
1191 if (PL_HASH_RAND_BITS_ENABLED == 1)
1192 PL_hash_rand_bits += ptr_hash((PTRV)a);
1193 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1194 }
1195#endif
1196
1197 if (SvOOK(hv)) {
1198 struct xpvhv_aux *const dest
1199 = (struct xpvhv_aux*) &a[newsize * sizeof(HE*)];
1200 Move(&a[oldsize * sizeof(HE*)], dest, 1, struct xpvhv_aux);
1201 /* we reset the iterator's xhv_rand as well, so they get a totally new ordering */
1202#ifdef PERL_HASH_RANDOMIZE_KEYS
1203 dest->xhv_rand = (U32)PL_hash_rand_bits;
1204#endif
1205 /* For now, just reset the lazy fill counter.
1206 It would be possible to update the counter in the code below
1207 instead. */
1208 dest->xhv_fill_lazy = 0;
1209 }
1210
1211 PL_nomemok = FALSE;
1212 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1213 HvMAX(hv) = --newsize;
1214 HvARRAY(hv) = (HE**) a;
1215
1216 if (!HvTOTALKEYS(hv)) /* skip rest if no entries */
1217 return;
1218
1219 aep = (HE**)a;
1220 do {
1221 HE **oentry = aep + i;
1222 HE *entry = aep[i];
1223
1224 if (!entry) /* non-existent */
1225 continue;
1226 do {
1227 U32 j = (HeHASH(entry) & newsize);
1228 if (j != (U32)i) {
1229 *oentry = HeNEXT(entry);
1230#ifdef PERL_HASH_RANDOMIZE_KEYS
1231 /* if the target cell is empty or PL_HASH_RAND_BITS_ENABLED is false
1232 * insert to top, otherwise rotate the bucket rand 1 bit,
1233 * and use the new low bit to decide if we insert at top,
1234 * or next from top. IOW, we only rotate on a collision.*/
1235 if (aep[j] && PL_HASH_RAND_BITS_ENABLED) {
1236 PL_hash_rand_bits+= ROTL_UV(HeHASH(entry), 17);
1237 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
1238 if (PL_hash_rand_bits & 1) {
1239 HeNEXT(entry)= HeNEXT(aep[j]);
1240 HeNEXT(aep[j])= entry;
1241 } else {
1242 /* Note, this is structured in such a way as the optimizer
1243 * should eliminate the duplicated code here and below without
1244 * us needing to explicitly use a goto. */
1245 HeNEXT(entry) = aep[j];
1246 aep[j] = entry;
1247 }
1248 } else
1249#endif
1250 {
1251 /* see comment above about duplicated code */
1252 HeNEXT(entry) = aep[j];
1253 aep[j] = entry;
1254 }
1255 }
1256 else {
1257 oentry = &HeNEXT(entry);
1258 }
1259 entry = *oentry;
1260 } while (entry);
1261 } while (i++ < oldsize);
1262}
1263
1264void
1265Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1266{
1267 dVAR;
1268 XPVHV* xhv = (XPVHV*)SvANY(hv);
1269 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1270 I32 newsize;
1271 char *a;
1272
1273 PERL_ARGS_ASSERT_HV_KSPLIT;
1274
1275 newsize = (I32) newmax; /* possible truncation here */
1276 if (newsize != newmax || newmax <= oldsize)
1277 return;
1278 while ((newsize & (1 + ~newsize)) != newsize) {
1279 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1280 }
1281 if (newsize < newmax)
1282 newsize *= 2;
1283 if (newsize < newmax)
1284 return; /* overflow detection */
1285
1286 a = (char *) HvARRAY(hv);
1287 if (a) {
1288 hsplit(hv, oldsize, newsize);
1289 } else {
1290 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1291 xhv->xhv_max = --newsize;
1292 HvARRAY(hv) = (HE **) a;
1293 }
1294}
1295
1296/* IMO this should also handle cases where hv_max is smaller than hv_keys
1297 * as tied hashes could play silly buggers and mess us around. We will
1298 * do the right thing during hv_store() afterwards, but still - Yves */
1299#define HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys) STMT_START {\
1300 /* Can we use fewer buckets? (hv_max is always 2^n-1) */ \
1301 if (hv_max < PERL_HASH_DEFAULT_HvMAX) { \
1302 hv_max = PERL_HASH_DEFAULT_HvMAX; \
1303 } else { \
1304 while (hv_max > PERL_HASH_DEFAULT_HvMAX && hv_max + 1 >= hv_keys * 2) \
1305 hv_max = hv_max / 2; \
1306 } \
1307 HvMAX(hv) = hv_max; \
1308} STMT_END
1309
1310
1311HV *
1312Perl_newHVhv(pTHX_ HV *ohv)
1313{
1314 dVAR;
1315 HV * const hv = newHV();
1316 STRLEN hv_max;
1317
1318 if (!ohv || (!HvTOTALKEYS(ohv) && !SvMAGICAL((const SV *)ohv)))
1319 return hv;
1320 hv_max = HvMAX(ohv);
1321
1322 if (!SvMAGICAL((const SV *)ohv)) {
1323 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1324 STRLEN i;
1325 const bool shared = !!HvSHAREKEYS(ohv);
1326 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1327 char *a;
1328 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1329 ents = (HE**)a;
1330
1331 /* In each bucket... */
1332 for (i = 0; i <= hv_max; i++) {
1333 HE *prev = NULL;
1334 HE *oent = oents[i];
1335
1336 if (!oent) {
1337 ents[i] = NULL;
1338 continue;
1339 }
1340
1341 /* Copy the linked list of entries. */
1342 for (; oent; oent = HeNEXT(oent)) {
1343 const U32 hash = HeHASH(oent);
1344 const char * const key = HeKEY(oent);
1345 const STRLEN len = HeKLEN(oent);
1346 const int flags = HeKFLAGS(oent);
1347 HE * const ent = new_HE();
1348 SV *const val = HeVAL(oent);
1349
1350 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1351 HeKEY_hek(ent)
1352 = shared ? share_hek_flags(key, len, hash, flags)
1353 : save_hek_flags(key, len, hash, flags);
1354 if (prev)
1355 HeNEXT(prev) = ent;
1356 else
1357 ents[i] = ent;
1358 prev = ent;
1359 HeNEXT(ent) = NULL;
1360 }
1361 }
1362
1363 HvMAX(hv) = hv_max;
1364 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1365 HvARRAY(hv) = ents;
1366 } /* not magical */
1367 else {
1368 /* Iterate over ohv, copying keys and values one at a time. */
1369 HE *entry;
1370 const I32 riter = HvRITER_get(ohv);
1371 HE * const eiter = HvEITER_get(ohv);
1372 STRLEN hv_keys = HvTOTALKEYS(ohv);
1373
1374 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1375
1376 hv_iterinit(ohv);
1377 while ((entry = hv_iternext_flags(ohv, 0))) {
1378 SV *val = hv_iterval(ohv,entry);
1379 SV * const keysv = HeSVKEY(entry);
1380 val = SvIMMORTAL(val) ? val : newSVsv(val);
1381 if (keysv)
1382 (void)hv_store_ent(hv, keysv, val, 0);
1383 else
1384 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry), val,
1385 HeHASH(entry), HeKFLAGS(entry));
1386 }
1387 HvRITER_set(ohv, riter);
1388 HvEITER_set(ohv, eiter);
1389 }
1390
1391 return hv;
1392}
1393
1394/*
1395=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1396
1397A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1398a pointer to a hash (which may have C<%^H> magic, but should be generally
1399non-magical), or C<NULL> (interpreted as an empty hash). The content
1400of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1401added to it. A pointer to the new hash is returned.
1402
1403=cut
1404*/
1405
1406HV *
1407Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1408{
1409 HV * const hv = newHV();
1410
1411 if (ohv) {
1412 STRLEN hv_max = HvMAX(ohv);
1413 STRLEN hv_keys = HvTOTALKEYS(ohv);
1414 HE *entry;
1415 const I32 riter = HvRITER_get(ohv);
1416 HE * const eiter = HvEITER_get(ohv);
1417
1418 ENTER;
1419 SAVEFREESV(hv);
1420
1421 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1422
1423 hv_iterinit(ohv);
1424 while ((entry = hv_iternext_flags(ohv, 0))) {
1425 SV *const sv = newSVsv(hv_iterval(ohv,entry));
1426 SV *heksv = HeSVKEY(entry);
1427 if (!heksv && sv) heksv = newSVhek(HeKEY_hek(entry));
1428 if (sv) sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1429 (char *)heksv, HEf_SVKEY);
1430 if (heksv == HeSVKEY(entry))
1431 (void)hv_store_ent(hv, heksv, sv, 0);
1432 else {
1433 (void)hv_common(hv, heksv, HeKEY(entry), HeKLEN(entry),
1434 HeKFLAGS(entry), HV_FETCH_ISSTORE|HV_FETCH_JUST_SV, sv, HeHASH(entry));
1435 SvREFCNT_dec_NN(heksv);
1436 }
1437 }
1438 HvRITER_set(ohv, riter);
1439 HvEITER_set(ohv, eiter);
1440
1441 SvREFCNT_inc_simple_void_NN(hv);
1442 LEAVE;
1443 }
1444 hv_magic(hv, NULL, PERL_MAGIC_hints);
1445 return hv;
1446}
1447#undef HV_SET_MAX_ADJUSTED_FOR_KEYS
1448
1449/* like hv_free_ent, but returns the SV rather than freeing it */
1450STATIC SV*
1451S_hv_free_ent_ret(pTHX_ HV *hv, HE *entry)
1452{
1453 dVAR;
1454 SV *val;
1455
1456 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1457
1458 val = HeVAL(entry);
1459 if (HeKLEN(entry) == HEf_SVKEY) {
1460 SvREFCNT_dec(HeKEY_sv(entry));
1461 Safefree(HeKEY_hek(entry));
1462 }
1463 else if (HvSHAREKEYS(hv))
1464 unshare_hek(HeKEY_hek(entry));
1465 else
1466 Safefree(HeKEY_hek(entry));
1467 del_HE(entry);
1468 return val;
1469}
1470
1471
1472void
1473Perl_hv_free_ent(pTHX_ HV *hv, HE *entry)
1474{
1475 dVAR;
1476 SV *val;
1477
1478 PERL_ARGS_ASSERT_HV_FREE_ENT;
1479
1480 if (!entry)
1481 return;
1482 val = hv_free_ent_ret(hv, entry);
1483 SvREFCNT_dec(val);
1484}
1485
1486
1487void
1488Perl_hv_delayfree_ent(pTHX_ HV *hv, HE *entry)
1489{
1490 dVAR;
1491
1492 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1493
1494 if (!entry)
1495 return;
1496 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1497 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1498 if (HeKLEN(entry) == HEf_SVKEY) {
1499 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1500 }
1501 hv_free_ent(hv, entry);
1502}
1503
1504/*
1505=for apidoc hv_clear
1506
1507Frees the all the elements of a hash, leaving it empty.
1508The XS equivalent of C<%hash = ()>. See also L</hv_undef>.
1509
1510If any destructors are triggered as a result, the hv itself may
1511be freed.
1512
1513=cut
1514*/
1515
1516void
1517Perl_hv_clear(pTHX_ HV *hv)
1518{
1519 dVAR;
1520 XPVHV* xhv;
1521 if (!hv)
1522 return;
1523
1524 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1525
1526 xhv = (XPVHV*)SvANY(hv);
1527
1528 ENTER;
1529 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1530 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1531 /* restricted hash: convert all keys to placeholders */
1532 STRLEN i;
1533 for (i = 0; i <= xhv->xhv_max; i++) {
1534 HE *entry = (HvARRAY(hv))[i];
1535 for (; entry; entry = HeNEXT(entry)) {
1536 /* not already placeholder */
1537 if (HeVAL(entry) != &PL_sv_placeholder) {
1538 if (HeVAL(entry)) {
1539 if (SvREADONLY(HeVAL(entry))) {
1540 SV* const keysv = hv_iterkeysv(entry);
1541 Perl_croak_nocontext(
1542 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1543 (void*)keysv);
1544 }
1545 SvREFCNT_dec_NN(HeVAL(entry));
1546 }
1547 HeVAL(entry) = &PL_sv_placeholder;
1548 HvPLACEHOLDERS(hv)++;
1549 }
1550 }
1551 }
1552 }
1553 else {
1554 hfreeentries(hv);
1555 HvPLACEHOLDERS_set(hv, 0);
1556
1557 if (SvRMAGICAL(hv))
1558 mg_clear(MUTABLE_SV(hv));
1559
1560 HvHASKFLAGS_off(hv);
1561 }
1562 if (SvOOK(hv)) {
1563 if(HvENAME_get(hv))
1564 mro_isa_changed_in(hv);
1565 HvEITER_set(hv, NULL);
1566 }
1567 LEAVE;
1568}
1569
1570/*
1571=for apidoc hv_clear_placeholders
1572
1573Clears any placeholders from a hash. If a restricted hash has any of its keys
1574marked as readonly and the key is subsequently deleted, the key is not actually
1575deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1576it so it will be ignored by future operations such as iterating over the hash,
1577but will still allow the hash to have a value reassigned to the key at some
1578future point. This function clears any such placeholder keys from the hash.
1579See Hash::Util::lock_keys() for an example of its use.
1580
1581=cut
1582*/
1583
1584void
1585Perl_hv_clear_placeholders(pTHX_ HV *hv)
1586{
1587 dVAR;
1588 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1589
1590 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1591
1592 if (items)
1593 clear_placeholders(hv, items);
1594}
1595
1596static void
1597S_clear_placeholders(pTHX_ HV *hv, U32 items)
1598{
1599 dVAR;
1600 I32 i;
1601
1602 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1603
1604 if (items == 0)
1605 return;
1606
1607 i = HvMAX(hv);
1608 do {
1609 /* Loop down the linked list heads */
1610 HE **oentry = &(HvARRAY(hv))[i];
1611 HE *entry;
1612
1613 while ((entry = *oentry)) {
1614 if (HeVAL(entry) == &PL_sv_placeholder) {
1615 *oentry = HeNEXT(entry);
1616 if (entry == HvEITER_get(hv))
1617 HvLAZYDEL_on(hv);
1618 else {
1619 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1620 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1621 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1622 hv_free_ent(hv, entry);
1623 }
1624
1625 if (--items == 0) {
1626 /* Finished. */
1627 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1628 if (HvUSEDKEYS(hv) == 0)
1629 HvHASKFLAGS_off(hv);
1630 HvPLACEHOLDERS_set(hv, 0);
1631 return;
1632 }
1633 } else {
1634 oentry = &HeNEXT(entry);
1635 }
1636 }
1637 } while (--i >= 0);
1638 /* You can't get here, hence assertion should always fail. */
1639 assert (items == 0);
1640 assert (0);
1641}
1642
1643STATIC void
1644S_hfreeentries(pTHX_ HV *hv)
1645{
1646 STRLEN index = 0;
1647 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1648 SV *sv;
1649
1650 PERL_ARGS_ASSERT_HFREEENTRIES;
1651
1652 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1653 SvREFCNT_dec(sv);
1654 }
1655}
1656
1657
1658/* hfree_next_entry()
1659 * For use only by S_hfreeentries() and sv_clear().
1660 * Delete the next available HE from hv and return the associated SV.
1661 * Returns null on empty hash. Nevertheless null is not a reliable
1662 * indicator that the hash is empty, as the deleted entry may have a
1663 * null value.
1664 * indexp is a pointer to the current index into HvARRAY. The index should
1665 * initially be set to 0. hfree_next_entry() may update it. */
1666
1667SV*
1668Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1669{
1670 struct xpvhv_aux *iter;
1671 HE *entry;
1672 HE ** array;
1673#ifdef DEBUGGING
1674 STRLEN orig_index = *indexp;
1675#endif
1676
1677 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1678
1679 if (SvOOK(hv) && ((iter = HvAUX(hv)))) {
1680 if ((entry = iter->xhv_eiter)) {
1681 /* the iterator may get resurrected after each
1682 * destructor call, so check each time */
1683 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1684 HvLAZYDEL_off(hv);
1685 hv_free_ent(hv, entry);
1686 /* warning: at this point HvARRAY may have been
1687 * re-allocated, HvMAX changed etc */
1688 }
1689 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1690 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1691#ifdef PERL_HASH_RANDOMIZE_KEYS
1692 iter->xhv_last_rand = iter->xhv_rand;
1693#endif
1694 }
1695 /* Reset any cached HvFILL() to "unknown". It's unlikely that anyone
1696 will actually call HvFILL() on a hash under destruction, so it
1697 seems pointless attempting to track the number of keys remaining.
1698 But if they do, we want to reset it again. */
1699 if (iter->xhv_fill_lazy)
1700 iter->xhv_fill_lazy = 0;
1701 }
1702
1703 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1704 return NULL;
1705
1706 array = HvARRAY(hv);
1707 assert(array);
1708 while ( ! ((entry = array[*indexp])) ) {
1709 if ((*indexp)++ >= HvMAX(hv))
1710 *indexp = 0;
1711 assert(*indexp != orig_index);
1712 }
1713 array[*indexp] = HeNEXT(entry);
1714 ((XPVHV*) SvANY(hv))->xhv_keys--;
1715
1716 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1717 && HeVAL(entry) && isGV(HeVAL(entry))
1718 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1719 ) {
1720 STRLEN klen;
1721 const char * const key = HePV(entry,klen);
1722 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1723 || (klen == 1 && key[0] == ':')) {
1724 mro_package_moved(
1725 NULL, GvHV(HeVAL(entry)),
1726 (GV *)HeVAL(entry), 0
1727 );
1728 }
1729 }
1730 return hv_free_ent_ret(hv, entry);
1731}
1732
1733
1734/*
1735=for apidoc hv_undef
1736
1737Undefines the hash. The XS equivalent of C<undef(%hash)>.
1738
1739As well as freeing all the elements of the hash (like hv_clear()), this
1740also frees any auxiliary data and storage associated with the hash.
1741
1742If any destructors are triggered as a result, the hv itself may
1743be freed.
1744
1745See also L</hv_clear>.
1746
1747=cut
1748*/
1749
1750void
1751Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1752{
1753 dVAR;
1754 XPVHV* xhv;
1755 const char *name;
1756 const bool save = !!SvREFCNT(hv);
1757
1758 if (!hv)
1759 return;
1760 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1761 xhv = (XPVHV*)SvANY(hv);
1762
1763 /* The name must be deleted before the call to hfreeeeentries so that
1764 CVs are anonymised properly. But the effective name must be pre-
1765 served until after that call (and only deleted afterwards if the
1766 call originated from sv_clear). For stashes with one name that is
1767 both the canonical name and the effective name, hv_name_set has to
1768 allocate an array for storing the effective name. We can skip that
1769 during global destruction, as it does not matter where the CVs point
1770 if they will be freed anyway. */
1771 /* note that the code following prior to hfreeentries is duplicated
1772 * in sv_clear(), and changes here should be done there too */
1773 if (PL_phase != PERL_PHASE_DESTRUCT && (name = HvNAME(hv))) {
1774 if (PL_stashcache) {
1775 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for '%"
1776 HEKf"'\n", HvNAME_HEK(hv)));
1777 (void)hv_delete(PL_stashcache, name,
1778 HEK_UTF8(HvNAME_HEK(hv)) ? -HvNAMELEN_get(hv) : HvNAMELEN_get(hv),
1779 G_DISCARD
1780 );
1781 }
1782 hv_name_set(hv, NULL, 0, 0);
1783 }
1784 if (save) {
1785 ENTER;
1786 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1787 }
1788 hfreeentries(hv);
1789 if (SvOOK(hv)) {
1790 struct xpvhv_aux * const aux = HvAUX(hv);
1791 struct mro_meta *meta;
1792
1793 if ((name = HvENAME_get(hv))) {
1794 if (PL_phase != PERL_PHASE_DESTRUCT)
1795 mro_isa_changed_in(hv);
1796 if (PL_stashcache) {
1797 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for effective name '%"
1798 HEKf"'\n", HvENAME_HEK(hv)));
1799 (void)hv_delete(
1800 PL_stashcache, name,
1801 HEK_UTF8(HvENAME_HEK(hv)) ? -HvENAMELEN_get(hv) : HvENAMELEN_get(hv),
1802 G_DISCARD
1803 );
1804 }
1805 }
1806
1807 /* If this call originated from sv_clear, then we must check for
1808 * effective names that need freeing, as well as the usual name. */
1809 name = HvNAME(hv);
1810 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1811 if (name && PL_stashcache) {
1812 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for name '%"
1813 HEKf"'\n", HvNAME_HEK(hv)));
1814 (void)hv_delete(PL_stashcache, name, (HEK_UTF8(HvNAME_HEK(hv)) ? -HvNAMELEN_get(hv) : HvNAMELEN_get(hv)), G_DISCARD);
1815 }
1816 hv_name_set(hv, NULL, 0, flags);
1817 }
1818 if((meta = aux->xhv_mro_meta)) {
1819 if (meta->mro_linear_all) {
1820 SvREFCNT_dec_NN(meta->mro_linear_all);
1821 /* mro_linear_current is just acting as a shortcut pointer,
1822 hence the else. */
1823 }
1824 else
1825 /* Only the current MRO is stored, so this owns the data.
1826 */
1827 SvREFCNT_dec(meta->mro_linear_current);
1828 SvREFCNT_dec(meta->mro_nextmethod);
1829 SvREFCNT_dec(meta->isa);
1830 SvREFCNT_dec(meta->super);
1831 Safefree(meta);
1832 aux->xhv_mro_meta = NULL;
1833 }
1834 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1835 SvFLAGS(hv) &= ~SVf_OOK;
1836 }
1837 if (!SvOOK(hv)) {
1838 Safefree(HvARRAY(hv));
1839 xhv->xhv_max = PERL_HASH_DEFAULT_HvMAX; /* HvMAX(hv) = 7 (it's a normal hash) */
1840 HvARRAY(hv) = 0;
1841 }
1842 /* if we're freeing the HV, the SvMAGIC field has been reused for
1843 * other purposes, and so there can't be any placeholder magic */
1844 if (SvREFCNT(hv))
1845 HvPLACEHOLDERS_set(hv, 0);
1846
1847 if (SvRMAGICAL(hv))
1848 mg_clear(MUTABLE_SV(hv));
1849 if (save) LEAVE;
1850}
1851
1852/*
1853=for apidoc hv_fill
1854
1855Returns the number of hash buckets that happen to be in use. This function is
1856wrapped by the macro C<HvFILL>.
1857
1858Previously this value was always stored in the HV structure, which created an
1859overhead on every hash (and pretty much every object) for something that was
1860rarely used. Now we calculate it on demand the first time that it is needed,
1861and cache it if that calculation is going to be costly to repeat. The cached
1862value is updated by insertions and deletions, but (currently) discarded if
1863the hash is split.
1864
1865=cut
1866*/
1867
1868STRLEN
1869Perl_hv_fill(pTHX_ HV *const hv)
1870{
1871 STRLEN count = 0;
1872 HE **ents = HvARRAY(hv);
1873 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : NULL;
1874
1875 PERL_ARGS_ASSERT_HV_FILL;
1876
1877 /* No keys implies no buckets used.
1878 One key can only possibly mean one bucket used. */
1879 if (HvTOTALKEYS(hv) < 2)
1880 return HvTOTALKEYS(hv);
1881
1882#ifndef DEBUGGING
1883 if (aux && aux->xhv_fill_lazy)
1884 return aux->xhv_fill_lazy;
1885#endif
1886
1887 if (ents) {
1888 HE *const *const last = ents + HvMAX(hv);
1889 count = last + 1 - ents;
1890
1891 do {
1892 if (!*ents)
1893 --count;
1894 } while (++ents <= last);
1895 }
1896 if (aux) {
1897#ifdef DEBUGGING
1898 if (aux->xhv_fill_lazy)
1899 assert(aux->xhv_fill_lazy == count);
1900#endif
1901 aux->xhv_fill_lazy = count;
1902 } else if (HvMAX(hv) >= HV_FILL_THRESHOLD) {
1903 aux = hv_auxinit(hv);
1904 aux->xhv_fill_lazy = count;
1905 }
1906 return count;
1907}
1908
1909/* hash a pointer to a U32 - Used in the hash traversal randomization
1910 * and bucket order randomization code
1911 *
1912 * this code was derived from Sereal, which was derived from autobox.
1913 */
1914
1915PERL_STATIC_INLINE U32 S_ptr_hash(PTRV u) {
1916#if PTRSIZE == 8
1917 /*
1918 * This is one of Thomas Wang's hash functions for 64-bit integers from:
1919 * http://www.concentric.net/~Ttwang/tech/inthash.htm
1920 */
1921 u = (~u) + (u << 18);
1922 u = u ^ (u >> 31);
1923 u = u * 21;
1924 u = u ^ (u >> 11);
1925 u = u + (u << 6);
1926 u = u ^ (u >> 22);
1927#else
1928 /*
1929 * This is one of Bob Jenkins' hash functions for 32-bit integers
1930 * from: http://burtleburtle.net/bob/hash/integer.html
1931 */
1932 u = (u + 0x7ed55d16) + (u << 12);
1933 u = (u ^ 0xc761c23c) ^ (u >> 19);
1934 u = (u + 0x165667b1) + (u << 5);
1935 u = (u + 0xd3a2646c) ^ (u << 9);
1936 u = (u + 0xfd7046c5) + (u << 3);
1937 u = (u ^ 0xb55a4f09) ^ (u >> 16);
1938#endif
1939 return (U32)u;
1940}
1941
1942
1943static struct xpvhv_aux*
1944S_hv_auxinit(pTHX_ HV *hv) {
1945 struct xpvhv_aux *iter;
1946 char *array;
1947
1948 PERL_ARGS_ASSERT_HV_AUXINIT;
1949
1950 if (!SvOOK(hv)) {
1951 if (!HvARRAY(hv)) {
1952 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1953 + sizeof(struct xpvhv_aux), char);
1954 } else {
1955 array = (char *) HvARRAY(hv);
1956 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1957 + sizeof(struct xpvhv_aux), char);
1958 }
1959 HvARRAY(hv) = (HE**)array;
1960 SvOOK_on(hv);
1961 iter = HvAUX(hv);
1962#ifdef PERL_HASH_RANDOMIZE_KEYS
1963 if (PL_HASH_RAND_BITS_ENABLED) {
1964 /* mix in some new state to PL_hash_rand_bits to "randomize" the traversal order*/
1965 if (PL_HASH_RAND_BITS_ENABLED == 1)
1966 PL_hash_rand_bits += ptr_hash((PTRV)array);
1967 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1968 }
1969 iter->xhv_rand = (U32)PL_hash_rand_bits;
1970#endif
1971 } else {
1972 iter = HvAUX(hv);
1973 }
1974
1975 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1976 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1977#ifdef PERL_HASH_RANDOMIZE_KEYS
1978 iter->xhv_last_rand = iter->xhv_rand;
1979#endif
1980 iter->xhv_fill_lazy = 0;
1981 iter->xhv_name_u.xhvnameu_name = 0;
1982 iter->xhv_name_count = 0;
1983 iter->xhv_backreferences = 0;
1984 iter->xhv_mro_meta = NULL;
1985 return iter;
1986}
1987
1988/*
1989=for apidoc hv_iterinit
1990
1991Prepares a starting point to traverse a hash table. Returns the number of
1992keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1993currently only meaningful for hashes without tie magic.
1994
1995NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1996hash buckets that happen to be in use. If you still need that esoteric
1997value, you can get it through the macro C<HvFILL(hv)>.
1998
1999
2000=cut
2001*/
2002
2003I32
2004Perl_hv_iterinit(pTHX_ HV *hv)
2005{
2006 PERL_ARGS_ASSERT_HV_ITERINIT;
2007
2008 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
2009
2010 if (!hv)
2011 Perl_croak(aTHX_ "Bad hash");
2012
2013 if (SvOOK(hv)) {
2014 struct xpvhv_aux * const iter = HvAUX(hv);
2015 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
2016 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2017 HvLAZYDEL_off(hv);
2018 hv_free_ent(hv, entry);
2019 }
2020 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2021 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2022#ifdef PERL_HASH_RANDOMIZE_KEYS
2023 iter->xhv_last_rand = iter->xhv_rand;
2024#endif
2025 } else {
2026 hv_auxinit(hv);
2027 }
2028
2029 /* used to be xhv->xhv_fill before 5.004_65 */
2030 return HvTOTALKEYS(hv);
2031}
2032
2033I32 *
2034Perl_hv_riter_p(pTHX_ HV *hv) {
2035 struct xpvhv_aux *iter;
2036
2037 PERL_ARGS_ASSERT_HV_RITER_P;
2038
2039 if (!hv)
2040 Perl_croak(aTHX_ "Bad hash");
2041
2042 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2043 return &(iter->xhv_riter);
2044}
2045
2046HE **
2047Perl_hv_eiter_p(pTHX_ HV *hv) {
2048 struct xpvhv_aux *iter;
2049
2050 PERL_ARGS_ASSERT_HV_EITER_P;
2051
2052 if (!hv)
2053 Perl_croak(aTHX_ "Bad hash");
2054
2055 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2056 return &(iter->xhv_eiter);
2057}
2058
2059void
2060Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
2061 struct xpvhv_aux *iter;
2062
2063 PERL_ARGS_ASSERT_HV_RITER_SET;
2064
2065 if (!hv)
2066 Perl_croak(aTHX_ "Bad hash");
2067
2068 if (SvOOK(hv)) {
2069 iter = HvAUX(hv);
2070 } else {
2071 if (riter == -1)
2072 return;
2073
2074 iter = hv_auxinit(hv);
2075 }
2076 iter->xhv_riter = riter;
2077}
2078
2079void
2080Perl_hv_rand_set(pTHX_ HV *hv, U32 new_xhv_rand) {
2081 struct xpvhv_aux *iter;
2082
2083 PERL_ARGS_ASSERT_HV_RAND_SET;
2084
2085#ifdef PERL_HASH_RANDOMIZE_KEYS
2086 if (!hv)
2087 Perl_croak(aTHX_ "Bad hash");
2088
2089 if (SvOOK(hv)) {
2090 iter = HvAUX(hv);
2091 } else {
2092 iter = hv_auxinit(hv);
2093 }
2094 iter->xhv_rand = new_xhv_rand;
2095#else
2096 Perl_croak(aTHX_ "This Perl has not been built with support for randomized hash key traversal but something called Perl_hv_rand_set().");
2097#endif
2098}
2099
2100void
2101Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
2102 struct xpvhv_aux *iter;
2103
2104 PERL_ARGS_ASSERT_HV_EITER_SET;
2105
2106 if (!hv)
2107 Perl_croak(aTHX_ "Bad hash");
2108
2109 if (SvOOK(hv)) {
2110 iter = HvAUX(hv);
2111 } else {
2112 /* 0 is the default so don't go malloc()ing a new structure just to
2113 hold 0. */
2114 if (!eiter)
2115 return;
2116
2117 iter = hv_auxinit(hv);
2118 }
2119 iter->xhv_eiter = eiter;
2120}
2121
2122void
2123Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2124{
2125 dVAR;
2126 struct xpvhv_aux *iter;
2127 U32 hash;
2128 HEK **spot;
2129
2130 PERL_ARGS_ASSERT_HV_NAME_SET;
2131
2132 if (len > I32_MAX)
2133 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2134
2135 if (SvOOK(hv)) {
2136 iter = HvAUX(hv);
2137 if (iter->xhv_name_u.xhvnameu_name) {
2138 if(iter->xhv_name_count) {
2139 if(flags & HV_NAME_SETALL) {
2140 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2141 HEK **hekp = name + (
2142 iter->xhv_name_count < 0
2143 ? -iter->xhv_name_count
2144 : iter->xhv_name_count
2145 );
2146 while(hekp-- > name+1)
2147 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2148 /* The first elem may be null. */
2149 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2150 Safefree(name);
2151 spot = &iter->xhv_name_u.xhvnameu_name;
2152 iter->xhv_name_count = 0;
2153 }
2154 else {
2155 if(iter->xhv_name_count > 0) {
2156 /* shift some things over */
2157 Renew(
2158 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2159 );
2160 spot = iter->xhv_name_u.xhvnameu_names;
2161 spot[iter->xhv_name_count] = spot[1];
2162 spot[1] = spot[0];
2163 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2164 }
2165 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2166 unshare_hek_or_pvn(*spot, 0, 0, 0);
2167 }
2168 }
2169 }
2170 else if (flags & HV_NAME_SETALL) {
2171 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2172 spot = &iter->xhv_name_u.xhvnameu_name;
2173 }
2174 else {
2175 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2176 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2177 iter->xhv_name_count = -2;
2178 spot = iter->xhv_name_u.xhvnameu_names;
2179 spot[1] = existing_name;
2180 }
2181 }
2182 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2183 } else {
2184 if (name == 0)
2185 return;
2186
2187 iter = hv_auxinit(hv);
2188 spot = &iter->xhv_name_u.xhvnameu_name;
2189 }
2190 PERL_HASH(hash, name, len);
2191 *spot = name ? share_hek(name, flags & SVf_UTF8 ? -(I32)len : (I32)len, hash) : NULL;
2192}
2193
2194/*
2195This is basically sv_eq_flags() in sv.c, but we avoid the magic
2196and bytes checking.
2197*/
2198
2199STATIC I32
2200hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) {
2201 if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) {
2202 if (flags & SVf_UTF8)
2203 return (bytes_cmp_utf8(
2204 (const U8*)HEK_KEY(hek), HEK_LEN(hek),
2205 (const U8*)pv, pvlen) == 0);
2206 else
2207 return (bytes_cmp_utf8(
2208 (const U8*)pv, pvlen,
2209 (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0);
2210 }
2211 else
2212 return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv)
2213 || memEQ(HEK_KEY(hek), pv, pvlen));
2214}
2215
2216/*
2217=for apidoc hv_ename_add
2218
2219Adds a name to a stash's internal list of effective names. See
2220C<hv_ename_delete>.
2221
2222This is called when a stash is assigned to a new location in the symbol
2223table.
2224
2225=cut
2226*/
2227
2228void
2229Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2230{
2231 dVAR;
2232 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2233 U32 hash;
2234
2235 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2236
2237 if (len > I32_MAX)
2238 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2239
2240 PERL_HASH(hash, name, len);
2241
2242 if (aux->xhv_name_count) {
2243 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2244 I32 count = aux->xhv_name_count;
2245 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2246 while (hekp-- > xhv_name)
2247 if (
2248 (HEK_UTF8(*hekp) || (flags & SVf_UTF8))
2249 ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags)
2250 : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len))
2251 ) {
2252 if (hekp == xhv_name && count < 0)
2253 aux->xhv_name_count = -count;
2254 return;
2255 }
2256 if (count < 0) aux->xhv_name_count--, count = -count;
2257 else aux->xhv_name_count++;
2258 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2259 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2260 }
2261 else {
2262 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2263 if (
2264 existing_name && (
2265 (HEK_UTF8(existing_name) || (flags & SVf_UTF8))
2266 ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags)
2267 : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len))
2268 )
2269 ) return;
2270 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2271 aux->xhv_name_count = existing_name ? 2 : -2;
2272 *aux->xhv_name_u.xhvnameu_names = existing_name;
2273 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2274 }
2275}
2276
2277/*
2278=for apidoc hv_ename_delete
2279
2280Removes a name from a stash's internal list of effective names. If this is
2281the name returned by C<HvENAME>, then another name in the list will take
2282its place (C<HvENAME> will use it).
2283
2284This is called when a stash is deleted from the symbol table.
2285
2286=cut
2287*/
2288
2289void
2290Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2291{
2292 dVAR;
2293 struct xpvhv_aux *aux;
2294
2295 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2296
2297 if (len > I32_MAX)
2298 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2299
2300 if (!SvOOK(hv)) return;
2301
2302 aux = HvAUX(hv);
2303 if (!aux->xhv_name_u.xhvnameu_name) return;
2304
2305 if (aux->xhv_name_count) {
2306 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2307 I32 const count = aux->xhv_name_count;
2308 HEK **victim = namep + (count < 0 ? -count : count);
2309 while (victim-- > namep + 1)
2310 if (
2311 (HEK_UTF8(*victim) || (flags & SVf_UTF8))
2312 ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags)
2313 : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len))
2314 ) {
2315 unshare_hek_or_pvn(*victim, 0, 0, 0);
2316 if (count < 0) ++aux->xhv_name_count;
2317 else --aux->xhv_name_count;
2318 if (
2319 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2320 && !*namep
2321 ) { /* if there are none left */
2322 Safefree(namep);
2323 aux->xhv_name_u.xhvnameu_names = NULL;
2324 aux->xhv_name_count = 0;
2325 }
2326 else {
2327 /* Move the last one back to fill the empty slot. It
2328 does not matter what order they are in. */
2329 *victim = *(namep + (count < 0 ? -count : count) - 1);
2330 }
2331 return;
2332 }
2333 if (
2334 count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8))
2335 ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags)
2336 : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len))
2337 ) {
2338 aux->xhv_name_count = -count;
2339 }
2340 }
2341 else if(
2342 (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8))
2343 ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags)
2344 : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len &&
2345 memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len))
2346 ) {
2347 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2348 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2349 *aux->xhv_name_u.xhvnameu_names = namehek;
2350 aux->xhv_name_count = -1;
2351 }
2352}
2353
2354AV **
2355Perl_hv_backreferences_p(pTHX_ HV *hv) {
2356 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2357
2358 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2359 PERL_UNUSED_CONTEXT;
2360
2361 return &(iter->xhv_backreferences);
2362}
2363
2364void
2365Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2366 AV *av;
2367
2368 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2369
2370 if (!SvOOK(hv))
2371 return;
2372
2373 av = HvAUX(hv)->xhv_backreferences;
2374
2375 if (av) {
2376 HvAUX(hv)->xhv_backreferences = 0;
2377 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2378 if (SvTYPE(av) == SVt_PVAV)
2379 SvREFCNT_dec_NN(av);
2380 }
2381}
2382
2383/*
2384hv_iternext is implemented as a macro in hv.h
2385
2386=for apidoc hv_iternext
2387
2388Returns entries from a hash iterator. See C<hv_iterinit>.
2389
2390You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2391iterator currently points to, without losing your place or invalidating your
2392iterator. Note that in this case the current entry is deleted from the hash
2393with your iterator holding the last reference to it. Your iterator is flagged
2394to free the entry on the next call to C<hv_iternext>, so you must not discard
2395your iterator immediately else the entry will leak - call C<hv_iternext> to
2396trigger the resource deallocation.
2397
2398=for apidoc hv_iternext_flags
2399
2400Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2401The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2402set the placeholders keys (for restricted hashes) will be returned in addition
2403to normal keys. By default placeholders are automatically skipped over.
2404Currently a placeholder is implemented with a value that is
2405C<&PL_sv_placeholder>. Note that the implementation of placeholders and
2406restricted hashes may change, and the implementation currently is
2407insufficiently abstracted for any change to be tidy.
2408
2409=cut
2410*/
2411
2412HE *
2413Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2414{
2415 dVAR;
2416 XPVHV* xhv;
2417 HE *entry;
2418 HE *oldentry;
2419 MAGIC* mg;
2420 struct xpvhv_aux *iter;
2421
2422 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2423
2424 if (!hv)
2425 Perl_croak(aTHX_ "Bad hash");
2426
2427 xhv = (XPVHV*)SvANY(hv);
2428
2429 if (!SvOOK(hv)) {
2430 /* Too many things (well, pp_each at least) merrily assume that you can
2431 call hv_iternext without calling hv_iterinit, so we'll have to deal
2432 with it. */
2433 hv_iterinit(hv);
2434 }
2435 iter = HvAUX(hv);
2436
2437 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2438 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2439 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2440 SV * const key = sv_newmortal();
2441 if (entry) {
2442 sv_setsv(key, HeSVKEY_force(entry));
2443 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2444 HeSVKEY_set(entry, NULL);
2445 }
2446 else {
2447 char *k;
2448 HEK *hek;
2449
2450 /* one HE per MAGICAL hash */
2451 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2452 HvLAZYDEL_on(hv); /* make sure entry gets freed */
2453 Zero(entry, 1, HE);
2454 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2455 hek = (HEK*)k;
2456 HeKEY_hek(entry) = hek;
2457 HeKLEN(entry) = HEf_SVKEY;
2458 }
2459 magic_nextpack(MUTABLE_SV(hv),mg,key);
2460 if (SvOK(key)) {
2461 /* force key to stay around until next time */
2462 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2463 return entry; /* beware, hent_val is not set */
2464 }
2465 SvREFCNT_dec(HeVAL(entry));
2466 Safefree(HeKEY_hek(entry));
2467 del_HE(entry);
2468 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2469 HvLAZYDEL_off(hv);
2470 return NULL;
2471 }
2472 }
2473#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2474 if (!entry && SvRMAGICAL((const SV *)hv)
2475 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2476 prime_env_iter();
2477#ifdef VMS
2478 /* The prime_env_iter() on VMS just loaded up new hash values
2479 * so the iteration count needs to be reset back to the beginning
2480 */
2481 hv_iterinit(hv);
2482 iter = HvAUX(hv);
2483 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2484#endif
2485 }
2486#endif
2487
2488 /* hv_iterinit now ensures this. */
2489 assert (HvARRAY(hv));
2490
2491 /* At start of hash, entry is NULL. */
2492 if (entry)
2493 {
2494 entry = HeNEXT(entry);
2495 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2496 /*
2497 * Skip past any placeholders -- don't want to include them in
2498 * any iteration.
2499 */
2500 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2501 entry = HeNEXT(entry);
2502 }
2503 }
2504 }
2505
2506#ifdef PERL_HASH_RANDOMIZE_KEYS
2507 if (iter->xhv_last_rand != iter->xhv_rand) {
2508 if (iter->xhv_riter != -1) {
2509 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2510 "Use of each() on hash after insertion without resetting hash iterator results in undefined behavior"
2511 pTHX__FORMAT
2512 pTHX__VALUE);
2513 }
2514 iter->xhv_last_rand = iter->xhv_rand;
2515 }
2516#endif
2517
2518 /* Skip the entire loop if the hash is empty. */
2519 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2520 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2521 while (!entry) {
2522 /* OK. Come to the end of the current list. Grab the next one. */
2523
2524 iter->xhv_riter++; /* HvRITER(hv)++ */
2525 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2526 /* There is no next one. End of the hash. */
2527 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2528#ifdef PERL_HASH_RANDOMIZE_KEYS
2529 iter->xhv_last_rand = iter->xhv_rand; /* reset xhv_last_rand so we can detect inserts during traversal */
2530#endif
2531 break;
2532 }
2533 entry = (HvARRAY(hv))[ PERL_HASH_ITER_BUCKET(iter) & xhv->xhv_max ];
2534
2535 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2536 /* If we have an entry, but it's a placeholder, don't count it.
2537 Try the next. */
2538 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2539 entry = HeNEXT(entry);
2540 }
2541 /* Will loop again if this linked list starts NULL
2542 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2543 or if we run through it and find only placeholders. */
2544 }
2545 }
2546 else {
2547 iter->xhv_riter = -1;
2548#ifdef PERL_HASH_RANDOMIZE_KEYS
2549 iter->xhv_last_rand = iter->xhv_rand;
2550#endif
2551 }
2552
2553 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2554 HvLAZYDEL_off(hv);
2555 hv_free_ent(hv, oldentry);
2556 }
2557
2558 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2559 return entry;
2560}
2561
2562/*
2563=for apidoc hv_iterkey
2564
2565Returns the key from the current position of the hash iterator. See
2566C<hv_iterinit>.
2567
2568=cut
2569*/
2570
2571char *
2572Perl_hv_iterkey(pTHX_ HE *entry, I32 *retlen)
2573{
2574 PERL_ARGS_ASSERT_HV_ITERKEY;
2575
2576 if (HeKLEN(entry) == HEf_SVKEY) {
2577 STRLEN len;
2578 char * const p = SvPV(HeKEY_sv(entry), len);
2579 *retlen = len;
2580 return p;
2581 }
2582 else {
2583 *retlen = HeKLEN(entry);
2584 return HeKEY(entry);
2585 }
2586}
2587
2588/* unlike hv_iterval(), this always returns a mortal copy of the key */
2589/*
2590=for apidoc hv_iterkeysv
2591
2592Returns the key as an C<SV*> from the current position of the hash
2593iterator. The return value will always be a mortal copy of the key. Also
2594see C<hv_iterinit>.
2595
2596=cut
2597*/
2598
2599SV *
2600Perl_hv_iterkeysv(pTHX_ HE *entry)
2601{
2602 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2603
2604 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2605}
2606
2607/*
2608=for apidoc hv_iterval
2609
2610Returns the value from the current position of the hash iterator. See
2611C<hv_iterkey>.
2612
2613=cut
2614*/
2615
2616SV *
2617Perl_hv_iterval(pTHX_ HV *hv, HE *entry)
2618{
2619 PERL_ARGS_ASSERT_HV_ITERVAL;
2620
2621 if (SvRMAGICAL(hv)) {
2622 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2623 SV* const sv = sv_newmortal();
2624 if (HeKLEN(entry) == HEf_SVKEY)
2625 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2626 else
2627 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2628 return sv;
2629 }
2630 }
2631 return HeVAL(entry);
2632}
2633
2634/*
2635=for apidoc hv_iternextsv
2636
2637Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2638operation.
2639
2640=cut
2641*/
2642
2643SV *
2644Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2645{
2646 HE * const he = hv_iternext_flags(hv, 0);
2647
2648 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2649
2650 if (!he)
2651 return NULL;
2652 *key = hv_iterkey(he, retlen);
2653 return hv_iterval(hv, he);
2654}
2655
2656/*
2657
2658Now a macro in hv.h
2659
2660=for apidoc hv_magic
2661
2662Adds magic to a hash. See C<sv_magic>.
2663
2664=cut
2665*/
2666
2667/* possibly free a shared string if no one has access to it
2668 * len and hash must both be valid for str.
2669 */
2670void
2671Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2672{
2673 unshare_hek_or_pvn (NULL, str, len, hash);
2674}
2675
2676
2677void
2678Perl_unshare_hek(pTHX_ HEK *hek)
2679{
2680 assert(hek);
2681 unshare_hek_or_pvn(hek, NULL, 0, 0);
2682}
2683
2684/* possibly free a shared string if no one has access to it
2685 hek if non-NULL takes priority over the other 3, else str, len and hash
2686 are used. If so, len and hash must both be valid for str.
2687 */
2688STATIC void
2689S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2690{
2691 dVAR;
2692 XPVHV* xhv;
2693 HE *entry;
2694 HE **oentry;
2695 bool is_utf8 = FALSE;
2696 int k_flags = 0;
2697 const char * const save = str;
2698 struct shared_he *he = NULL;
2699
2700 if (hek) {
2701 /* Find the shared he which is just before us in memory. */
2702 he = (struct shared_he *)(((char *)hek)
2703 - STRUCT_OFFSET(struct shared_he,
2704 shared_he_hek));
2705
2706 /* Assert that the caller passed us a genuine (or at least consistent)
2707 shared hek */
2708 assert (he->shared_he_he.hent_hek == hek);
2709
2710 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2711 --he->shared_he_he.he_valu.hent_refcount;
2712 return;
2713 }
2714
2715 hash = HEK_HASH(hek);
2716 } else if (len < 0) {
2717 STRLEN tmplen = -len;
2718 is_utf8 = TRUE;
2719 /* See the note in hv_fetch(). --jhi */
2720 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2721 len = tmplen;
2722 if (is_utf8)
2723 k_flags = HVhek_UTF8;
2724 if (str != save)
2725 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2726 }
2727
2728 /* what follows was the moral equivalent of:
2729 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2730 if (--*Svp == NULL)
2731 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2732 } */
2733 xhv = (XPVHV*)SvANY(PL_strtab);
2734 /* assert(xhv_array != 0) */
2735 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2736 if (he) {
2737 const HE *const he_he = &(he->shared_he_he);
2738 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2739 if (entry == he_he)
2740 break;
2741 }
2742 } else {
2743 const int flags_masked = k_flags & HVhek_MASK;
2744 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2745 if (HeHASH(entry) != hash) /* strings can't be equal */
2746 continue;
2747 if (HeKLEN(entry) != len)
2748 continue;
2749 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2750 continue;
2751 if (HeKFLAGS(entry) != flags_masked)
2752 continue;
2753 break;
2754 }
2755 }
2756
2757 if (entry) {
2758 if (--entry->he_valu.hent_refcount == 0) {
2759 *oentry = HeNEXT(entry);
2760 Safefree(entry);
2761 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2762 }
2763 }
2764
2765 if (!entry)
2766 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2767 "Attempt to free nonexistent shared string '%s'%s"
2768 pTHX__FORMAT,
2769 hek ? HEK_KEY(hek) : str,
2770 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2771 if (k_flags & HVhek_FREEKEY)
2772 Safefree(str);
2773}
2774
2775/* get a (constant) string ptr from the global string table
2776 * string will get added if it is not already there.
2777 * len and hash must both be valid for str.
2778 */
2779HEK *
2780Perl_share_hek(pTHX_ const char *str, I32 len, U32 hash)
2781{
2782 bool is_utf8 = FALSE;
2783 int flags = 0;
2784 const char * const save = str;
2785
2786 PERL_ARGS_ASSERT_SHARE_HEK;
2787
2788 if (len < 0) {
2789 STRLEN tmplen = -len;
2790 is_utf8 = TRUE;
2791 /* See the note in hv_fetch(). --jhi */
2792 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2793 len = tmplen;
2794 /* If we were able to downgrade here, then than means that we were passed
2795 in a key which only had chars 0-255, but was utf8 encoded. */
2796 if (is_utf8)
2797 flags = HVhek_UTF8;
2798 /* If we found we were able to downgrade the string to bytes, then
2799 we should flag that it needs upgrading on keys or each. Also flag
2800 that we need share_hek_flags to free the string. */
2801 if (str != save) {
2802 dVAR;
2803 PERL_HASH(hash, str, len);
2804 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2805 }
2806 }
2807
2808 return share_hek_flags (str, len, hash, flags);
2809}
2810
2811STATIC HEK *
2812S_share_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags)
2813{
2814 dVAR;
2815 HE *entry;
2816 const int flags_masked = flags & HVhek_MASK;
2817 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2818 XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2819
2820 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2821
2822 /* what follows is the moral equivalent of:
2823
2824 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2825 hv_store(PL_strtab, str, len, NULL, hash);
2826
2827 Can't rehash the shared string table, so not sure if it's worth
2828 counting the number of entries in the linked list
2829 */
2830
2831 /* assert(xhv_array != 0) */
2832 entry = (HvARRAY(PL_strtab))[hindex];
2833 for (;entry; entry = HeNEXT(entry)) {
2834 if (HeHASH(entry) != hash) /* strings can't be equal */
2835 continue;
2836 if (HeKLEN(entry) != len)
2837 continue;
2838 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2839 continue;
2840 if (HeKFLAGS(entry) != flags_masked)
2841 continue;
2842 break;
2843 }
2844
2845 if (!entry) {
2846 /* What used to be head of the list.
2847 If this is NULL, then we're the first entry for this slot, which
2848 means we need to increate fill. */
2849 struct shared_he *new_entry;
2850 HEK *hek;
2851 char *k;
2852 HE **const head = &HvARRAY(PL_strtab)[hindex];
2853 HE *const next = *head;
2854
2855 /* We don't actually store a HE from the arena and a regular HEK.
2856 Instead we allocate one chunk of memory big enough for both,
2857 and put the HEK straight after the HE. This way we can find the
2858 HE directly from the HEK.
2859 */
2860
2861 Newx(k, STRUCT_OFFSET(struct shared_he,
2862 shared_he_hek.hek_key[0]) + len + 2, char);
2863 new_entry = (struct shared_he *)k;
2864 entry = &(new_entry->shared_he_he);
2865 hek = &(new_entry->shared_he_hek);
2866
2867 Copy(str, HEK_KEY(hek), len, char);
2868 HEK_KEY(hek)[len] = 0;
2869 HEK_LEN(hek) = len;
2870 HEK_HASH(hek) = hash;
2871 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2872
2873 /* Still "point" to the HEK, so that other code need not know what
2874 we're up to. */
2875 HeKEY_hek(entry) = hek;
2876 entry->he_valu.hent_refcount = 0;
2877 HeNEXT(entry) = next;
2878 *head = entry;
2879
2880 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2881 if (!next) { /* initial entry? */
2882 } else if ( DO_HSPLIT(xhv) ) {
2883 const STRLEN oldsize = xhv->xhv_max + 1;
2884 hsplit(PL_strtab, oldsize, oldsize * 2);
2885 }
2886 }
2887
2888 ++entry->he_valu.hent_refcount;
2889
2890 if (flags & HVhek_FREEKEY)
2891 Safefree(str);
2892
2893 return HeKEY_hek(entry);
2894}
2895
2896SSize_t *
2897Perl_hv_placeholders_p(pTHX_ HV *hv)
2898{
2899 dVAR;
2900 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2901
2902 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2903
2904 if (!mg) {
2905 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2906
2907 if (!mg) {
2908 Perl_die(aTHX_ "panic: hv_placeholders_p");
2909 }
2910 }
2911 return &(mg->mg_len);
2912}
2913
2914
2915I32
2916Perl_hv_placeholders_get(pTHX_ const HV *hv)
2917{
2918 dVAR;
2919 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2920
2921 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2922
2923 return mg ? mg->mg_len : 0;
2924}
2925
2926void
2927Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2928{
2929 dVAR;
2930 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2931
2932 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2933
2934 if (mg) {
2935 mg->mg_len = ph;
2936 } else if (ph) {
2937 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2938 Perl_die(aTHX_ "panic: hv_placeholders_set");
2939 }
2940 /* else we don't need to add magic to record 0 placeholders. */
2941}
2942
2943STATIC SV *
2944S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2945{
2946 dVAR;
2947 SV *value;
2948
2949 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2950
2951 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2952 case HVrhek_undef:
2953 value = newSV(0);
2954 break;
2955 case HVrhek_delete:
2956 value = &PL_sv_placeholder;
2957 break;
2958 case HVrhek_IV:
2959 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2960 break;
2961 case HVrhek_UV:
2962 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2963 break;
2964 case HVrhek_PV:
2965 case HVrhek_PV_UTF8:
2966 /* Create a string SV that directly points to the bytes in our
2967 structure. */
2968 value = newSV_type(SVt_PV);
2969 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2970 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2971 /* This stops anything trying to free it */
2972 SvLEN_set(value, 0);
2973 SvPOK_on(value);
2974 SvREADONLY_on(value);
2975 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2976 SvUTF8_on(value);
2977 break;
2978 default:
2979 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2980 (UV)he->refcounted_he_data[0]);
2981 }
2982 return value;
2983}
2984
2985/*
2986=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2987
2988Generates and returns a C<HV *> representing the content of a
2989C<refcounted_he> chain.
2990I<flags> is currently unused and must be zero.
2991
2992=cut
2993*/
2994HV *
2995Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2996{
2997 dVAR;
2998 HV *hv;
2999 U32 placeholders, max;
3000
3001 if (flags)
3002 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
3003 (UV)flags);
3004
3005 /* We could chase the chain once to get an idea of the number of keys,
3006 and call ksplit. But for now we'll make a potentially inefficient
3007 hash with only 8 entries in its array. */
3008 hv = newHV();
3009 max = HvMAX(hv);
3010 if (!HvARRAY(hv)) {
3011 char *array;
3012 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
3013 HvARRAY(hv) = (HE**)array;
3014 }
3015
3016 placeholders = 0;
3017 while (chain) {
3018#ifdef USE_ITHREADS
3019 U32 hash = chain->refcounted_he_hash;
3020#else
3021 U32 hash = HEK_HASH(chain->refcounted_he_hek);
3022#endif
3023 HE **oentry = &((HvARRAY(hv))[hash & max]);
3024 HE *entry = *oentry;
3025 SV *value;
3026
3027 for (; entry; entry = HeNEXT(entry)) {
3028 if (HeHASH(entry) == hash) {
3029 /* We might have a duplicate key here. If so, entry is older
3030 than the key we've already put in the hash, so if they are
3031 the same, skip adding entry. */
3032#ifdef USE_ITHREADS
3033 const STRLEN klen = HeKLEN(entry);
3034 const char *const key = HeKEY(entry);
3035 if (klen == chain->refcounted_he_keylen
3036 && (!!HeKUTF8(entry)
3037 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
3038 && memEQ(key, REF_HE_KEY(chain), klen))
3039 goto next_please;
3040#else
3041 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
3042 goto next_please;
3043 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
3044 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
3045 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
3046 HeKLEN(entry)))
3047 goto next_please;
3048#endif
3049 }
3050 }
3051 assert (!entry);
3052 entry = new_HE();
3053
3054#ifdef USE_ITHREADS
3055 HeKEY_hek(entry)
3056 = share_hek_flags(REF_HE_KEY(chain),
3057 chain->refcounted_he_keylen,
3058 chain->refcounted_he_hash,
3059 (chain->refcounted_he_data[0]
3060 & (HVhek_UTF8|HVhek_WASUTF8)));
3061#else
3062 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
3063#endif
3064 value = refcounted_he_value(chain);
3065 if (value == &PL_sv_placeholder)
3066 placeholders++;
3067 HeVAL(entry) = value;
3068
3069 /* Link it into the chain. */
3070 HeNEXT(entry) = *oentry;
3071 *oentry = entry;
3072
3073 HvTOTALKEYS(hv)++;
3074
3075 next_please:
3076 chain = chain->refcounted_he_next;
3077 }
3078
3079 if (placeholders) {
3080 clear_placeholders(hv, placeholders);
3081 HvTOTALKEYS(hv) -= placeholders;
3082 }
3083
3084 /* We could check in the loop to see if we encounter any keys with key
3085 flags, but it's probably not worth it, as this per-hash flag is only
3086 really meant as an optimisation for things like Storable. */
3087 HvHASKFLAGS_on(hv);
3088 DEBUG_A(Perl_hv_assert(aTHX_ hv));
3089
3090 return hv;
3091}
3092
3093/*
3094=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
3095
3096Search along a C<refcounted_he> chain for an entry with the key specified
3097by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
3098bit set, the key octets are interpreted as UTF-8, otherwise they
3099are interpreted as Latin-1. I<hash> is a precomputed hash of the key
3100string, or zero if it has not been precomputed. Returns a mortal scalar
3101representing the value associated with the key, or C<&PL_sv_placeholder>
3102if there is no value associated with the key.
3103
3104=cut
3105*/
3106
3107SV *
3108Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
3109 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
3110{
3111 dVAR;
3112 U8 utf8_flag;
3113 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
3114
3115 if (flags & ~(REFCOUNTED_HE_KEY_UTF8|REFCOUNTED_HE_EXISTS))
3116 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
3117 (UV)flags);
3118 if (!chain)
3119 return &PL_sv_placeholder;
3120 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3121 /* For searching purposes, canonicalise to Latin-1 where possible. */
3122 const char *keyend = keypv + keylen, *p;
3123 STRLEN nonascii_count = 0;
3124 for (p = keypv; p != keyend; p++) {
3125 U8 c = (U8)*p;
3126 if (c & 0x80) {
3127 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3128 (((U8)*p) & 0xc0) == 0x80))
3129 goto canonicalised_key;
3130 nonascii_count++;
3131 }
3132 }
3133 if (nonascii_count) {
3134 char *q;
3135 const char *p = keypv, *keyend = keypv + keylen;
3136 keylen -= nonascii_count;
3137 Newx(q, keylen, char);
3138 SAVEFREEPV(q);
3139 keypv = q;
3140 for (; p != keyend; p++, q++) {
3141 U8 c = (U8)*p;
3142 *q = (char)
3143 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3144 }
3145 }
3146 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3147 canonicalised_key: ;
3148 }
3149 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
3150 if (!hash)
3151 PERL_HASH(hash, keypv, keylen);
3152
3153 for (; chain; chain = chain->refcounted_he_next) {
3154 if (
3155#ifdef USE_ITHREADS
3156 hash == chain->refcounted_he_hash &&
3157 keylen == chain->refcounted_he_keylen &&
3158 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
3159 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
3160#else
3161 hash == HEK_HASH(chain->refcounted_he_hek) &&
3162 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
3163 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
3164 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
3165#endif
3166 ) {
3167 if (flags & REFCOUNTED_HE_EXISTS)
3168 return (chain->refcounted_he_data[0] & HVrhek_typemask)
3169 == HVrhek_delete
3170 ? NULL : &PL_sv_yes;
3171 return sv_2mortal(refcounted_he_value(chain));
3172 }
3173 }
3174 return flags & REFCOUNTED_HE_EXISTS ? NULL : &PL_sv_placeholder;
3175}
3176
3177/*
3178=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3179
3180Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3181instead of a string/length pair.
3182
3183=cut
3184*/
3185
3186SV *
3187Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3188 const char *key, U32 hash, U32 flags)
3189{
3190 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3191 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3192}
3193
3194/*
3195=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3196
3197Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3198string/length pair.
3199
3200=cut
3201*/
3202
3203SV *
3204Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3205 SV *key, U32 hash, U32 flags)
3206{
3207 const char *keypv;
3208 STRLEN keylen;
3209 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3210 if (flags & REFCOUNTED_HE_KEY_UTF8)
3211 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3212 (UV)flags);
3213 keypv = SvPV_const(key, keylen);
3214 if (SvUTF8(key))
3215 flags |= REFCOUNTED_HE_KEY_UTF8;
3216 if (!hash && SvIsCOW_shared_hash(key))
3217 hash = SvSHARED_HASH(key);
3218 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3219}
3220
3221/*
3222=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3223
3224Creates a new C<refcounted_he>. This consists of a single key/value
3225pair and a reference to an existing C<refcounted_he> chain (which may
3226be empty), and thus forms a longer chain. When using the longer chain,
3227the new key/value pair takes precedence over any entry for the same key
3228further along the chain.
3229
3230The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3231the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3232as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3233a precomputed hash of the key string, or zero if it has not been
3234precomputed.
3235
3236I<value> is the scalar value to store for this key. I<value> is copied
3237by this function, which thus does not take ownership of any reference
3238to it, and later changes to the scalar will not be reflected in the
3239value visible in the C<refcounted_he>. Complex types of scalar will not
3240be stored with referential integrity, but will be coerced to strings.
3241I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3242value is to be associated with the key; this, as with any non-null value,
3243takes precedence over the existence of a value for the key further along
3244the chain.
3245
3246I<parent> points to the rest of the C<refcounted_he> chain to be
3247attached to the new C<refcounted_he>. This function takes ownership
3248of one reference to I<parent>, and returns one reference to the new
3249C<refcounted_he>.
3250
3251=cut
3252*/
3253
3254struct refcounted_he *
3255Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3256 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3257{
3258 dVAR;
3259 STRLEN value_len = 0;
3260 const char *value_p = NULL;
3261 bool is_pv;
3262 char value_type;
3263 char hekflags;
3264 STRLEN key_offset = 1;
3265 struct refcounted_he *he;
3266 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3267
3268 if (!value || value == &PL_sv_placeholder) {
3269 value_type = HVrhek_delete;
3270 } else if (SvPOK(value)) {
3271 value_type = HVrhek_PV;
3272 } else if (SvIOK(value)) {
3273 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3274 } else if (!SvOK(value)) {
3275 value_type = HVrhek_undef;
3276 } else {
3277 value_type = HVrhek_PV;
3278 }
3279 is_pv = value_type == HVrhek_PV;
3280 if (is_pv) {
3281 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3282 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3283 value_p = SvPV_const(value, value_len);
3284 if (SvUTF8(value))
3285 value_type = HVrhek_PV_UTF8;
3286 key_offset = value_len + 2;
3287 }
3288 hekflags = value_type;
3289
3290 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3291 /* Canonicalise to Latin-1 where possible. */
3292 const char *keyend = keypv + keylen, *p;
3293 STRLEN nonascii_count = 0;
3294 for (p = keypv; p != keyend; p++) {
3295 U8 c = (U8)*p;
3296 if (c & 0x80) {
3297 if (!((c & 0xfe) == 0xc2 && ++p != keyend &&
3298 (((U8)*p) & 0xc0) == 0x80))
3299 goto canonicalised_key;
3300 nonascii_count++;
3301 }
3302 }
3303 if (nonascii_count) {
3304 char *q;
3305 const char *p = keypv, *keyend = keypv + keylen;
3306 keylen -= nonascii_count;
3307 Newx(q, keylen, char);
3308 SAVEFREEPV(q);
3309 keypv = q;
3310 for (; p != keyend; p++, q++) {
3311 U8 c = (U8)*p;
3312 *q = (char)
3313 ((c & 0x80) ? ((c & 0x03) << 6) | (((U8)*++p) & 0x3f) : c);
3314 }
3315 }
3316 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3317 canonicalised_key: ;
3318 }
3319 if (flags & REFCOUNTED_HE_KEY_UTF8)
3320 hekflags |= HVhek_UTF8;
3321 if (!hash)
3322 PERL_HASH(hash, keypv, keylen);
3323
3324#ifdef USE_ITHREADS
3325 he = (struct refcounted_he*)
3326 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3327 + keylen
3328 + key_offset);
3329#else
3330 he = (struct refcounted_he*)
3331 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3332 + key_offset);
3333#endif
3334
3335 he->refcounted_he_next = parent;
3336
3337 if (is_pv) {
3338 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3339 he->refcounted_he_val.refcounted_he_u_len = value_len;
3340 } else if (value_type == HVrhek_IV) {
3341 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3342 } else if (value_type == HVrhek_UV) {
3343 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3344 }
3345
3346#ifdef USE_ITHREADS
3347 he->refcounted_he_hash = hash;
3348 he->refcounted_he_keylen = keylen;
3349 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3350#else
3351 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3352#endif
3353
3354 he->refcounted_he_data[0] = hekflags;
3355 he->refcounted_he_refcnt = 1;
3356
3357 return he;
3358}
3359
3360/*
3361=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3362
3363Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3364of a string/length pair.
3365
3366=cut
3367*/
3368
3369struct refcounted_he *
3370Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3371 const char *key, U32 hash, SV *value, U32 flags)
3372{
3373 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3374 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3375}
3376
3377/*
3378=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3379
3380Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3381string/length pair.
3382
3383=cut
3384*/
3385
3386struct refcounted_he *
3387Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3388 SV *key, U32 hash, SV *value, U32 flags)
3389{
3390 const char *keypv;
3391 STRLEN keylen;
3392 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3393 if (flags & REFCOUNTED_HE_KEY_UTF8)
3394 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3395 (UV)flags);
3396 keypv = SvPV_const(key, keylen);
3397 if (SvUTF8(key))
3398 flags |= REFCOUNTED_HE_KEY_UTF8;
3399 if (!hash && SvIsCOW_shared_hash(key))
3400 hash = SvSHARED_HASH(key);
3401 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3402}
3403
3404/*
3405=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3406
3407Decrements the reference count of a C<refcounted_he> by one. If the
3408reference count reaches zero the structure's memory is freed, which
3409(recursively) causes a reduction of its parent C<refcounted_he>'s
3410reference count. It is safe to pass a null pointer to this function:
3411no action occurs in this case.
3412
3413=cut
3414*/
3415
3416void
3417Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3418 dVAR;
3419 PERL_UNUSED_CONTEXT;
3420
3421 while (he) {
3422 struct refcounted_he *copy;
3423 U32 new_count;
3424
3425 HINTS_REFCNT_LOCK;
3426 new_count = --he->refcounted_he_refcnt;
3427 HINTS_REFCNT_UNLOCK;
3428
3429 if (new_count) {
3430 return;
3431 }
3432
3433#ifndef USE_ITHREADS
3434 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3435#endif
3436 copy = he;
3437 he = he->refcounted_he_next;
3438 PerlMemShared_free(copy);
3439 }
3440}
3441
3442/*
3443=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3444
3445Increment the reference count of a C<refcounted_he>. The pointer to the
3446C<refcounted_he> is also returned. It is safe to pass a null pointer
3447to this function: no action occurs and a null pointer is returned.
3448
3449=cut
3450*/
3451
3452struct refcounted_he *
3453Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3454{
3455 dVAR;
3456 if (he) {
3457 HINTS_REFCNT_LOCK;
3458 he->refcounted_he_refcnt++;
3459 HINTS_REFCNT_UNLOCK;
3460 }
3461 return he;
3462}
3463
3464/*
3465=for apidoc cop_fetch_label
3466
3467Returns the label attached to a cop.
3468The flags pointer may be set to C<SVf_UTF8> or 0.
3469
3470=cut
3471*/
3472
3473/* pp_entereval is aware that labels are stored with a key ':' at the top of
3474 the linked list. */
3475const char *
3476Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3477 struct refcounted_he *const chain = cop->cop_hints_hash;
3478
3479 PERL_ARGS_ASSERT_COP_FETCH_LABEL;
3480
3481 if (!chain)
3482 return NULL;
3483#ifdef USE_ITHREADS
3484 if (chain->refcounted_he_keylen != 1)
3485 return NULL;
3486 if (*REF_HE_KEY(chain) != ':')
3487 return NULL;
3488#else
3489 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3490 return NULL;
3491 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3492 return NULL;
3493#endif
3494 /* Stop anyone trying to really mess us up by adding their own value for
3495 ':' into %^H */
3496 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3497 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3498 return NULL;
3499
3500 if (len)
3501 *len = chain->refcounted_he_val.refcounted_he_u_len;
3502 if (flags) {
3503 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3504 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3505 }
3506 return chain->refcounted_he_data + 1;
3507}
3508
3509/*
3510=for apidoc cop_store_label
3511
3512Save a label into a C<cop_hints_hash>. You need to set flags to C<SVf_UTF8>
3513for a utf-8 label.
3514
3515=cut
3516*/
3517
3518void
3519Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3520 U32 flags)
3521{
3522 SV *labelsv;
3523 PERL_ARGS_ASSERT_COP_STORE_LABEL;
3524
3525 if (flags & ~(SVf_UTF8))
3526 Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf,
3527 (UV)flags);
3528 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3529 if (flags & SVf_UTF8)
3530 SvUTF8_on(labelsv);
3531 cop->cop_hints_hash
3532 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3533}
3534
3535/*
3536=for apidoc hv_assert
3537
3538Check that a hash is in an internally consistent state.
3539
3540=cut
3541*/
3542
3543#ifdef DEBUGGING
3544
3545void
3546Perl_hv_assert(pTHX_ HV *hv)
3547{
3548 dVAR;
3549 HE* entry;
3550 int withflags = 0;
3551 int placeholders = 0;
3552 int real = 0;
3553 int bad = 0;
3554 const I32 riter = HvRITER_get(hv);
3555 HE *eiter = HvEITER_get(hv);
3556
3557 PERL_ARGS_ASSERT_HV_ASSERT;
3558
3559 (void)hv_iterinit(hv);
3560
3561 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3562 /* sanity check the values */
3563 if (HeVAL(entry) == &PL_sv_placeholder)
3564 placeholders++;
3565 else
3566 real++;
3567 /* sanity check the keys */
3568 if (HeSVKEY(entry)) {
3569 NOOP; /* Don't know what to check on SV keys. */
3570 } else if (HeKUTF8(entry)) {
3571 withflags++;
3572 if (HeKWASUTF8(entry)) {
3573 PerlIO_printf(Perl_debug_log,
3574 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3575 (int) HeKLEN(entry), HeKEY(entry));
3576 bad = 1;
3577 }
3578 } else if (HeKWASUTF8(entry))
3579 withflags++;
3580 }
3581 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3582 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3583 const int nhashkeys = HvUSEDKEYS(hv);
3584 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3585
3586 if (nhashkeys != real) {
3587 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3588 bad = 1;
3589 }
3590 if (nhashplaceholders != placeholders) {
3591 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3592 bad = 1;
3593 }
3594 }
3595 if (withflags && ! HvHASKFLAGS(hv)) {
3596 PerlIO_printf(Perl_debug_log,
3597 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3598 withflags);
3599 bad = 1;
3600 }
3601 if (bad) {
3602 sv_dump(MUTABLE_SV(hv));
3603 }
3604 HvRITER_set(hv, riter); /* Restore hash iterator state */
3605 HvEITER_set(hv, eiter);
3606}
3607
3608#endif
3609
3610/*
3611 * Local variables:
3612 * c-indentation-style: bsd
3613 * c-basic-offset: 4
3614 * indent-tabs-mode: nil
3615 * End:
3616 *
3617 * ex: set ts=8 sts=4 sw=4 et:
3618 */