This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
pp_formline(): document switch cases
[perl5.git] / hv.c
... / ...
CommitLineData
1/* hv.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * I sit beside the fire and think
13 * of all that I have seen.
14 * --Bilbo
15 *
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
17 */
18
19/*
20=head1 Hash Manipulation Functions
21
22A HV structure represents a Perl hash. It consists mainly of an array
23of pointers, each of which points to a linked list of HE structures. The
24array is indexed by the hash function of the key, so each linked list
25represents all the hash entries with the same hash value. Each HE contains
26a pointer to the actual value, plus a pointer to a HEK structure which
27holds the key and hash value.
28
29=cut
30
31*/
32
33#include "EXTERN.h"
34#define PERL_IN_HV_C
35#define PERL_HASH_INTERNAL_ACCESS
36#include "perl.h"
37
38#define DO_HSPLIT(xhv) ((xhv)->xhv_keys > (xhv)->xhv_max) /* HvTOTALKEYS(hv) > HvMAX(hv) */
39#define HV_FILL_THRESHOLD 31
40
41static const char S_strtab_error[]
42 = "Cannot modify shared string table in hv_%s";
43
44#ifdef PURIFY
45
46#define new_HE() (HE*)safemalloc(sizeof(HE))
47#define del_HE(p) safefree((char*)p)
48
49#else
50
51STATIC HE*
52S_new_he(pTHX)
53{
54 dVAR;
55 HE* he;
56 void ** const root = &PL_body_roots[HE_SVSLOT];
57
58 if (!*root)
59 Perl_more_bodies(aTHX_ HE_SVSLOT, sizeof(HE), PERL_ARENA_SIZE);
60 he = (HE*) *root;
61 assert(he);
62 *root = HeNEXT(he);
63 return he;
64}
65
66#define new_HE() new_he()
67#define del_HE(p) \
68 STMT_START { \
69 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
70 PL_body_roots[HE_SVSLOT] = p; \
71 } STMT_END
72
73
74
75#endif
76
77STATIC HEK *
78S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
79{
80 const int flags_masked = flags & HVhek_MASK;
81 char *k;
82 HEK *hek;
83
84 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
85
86 Newx(k, HEK_BASESIZE + len + 2, char);
87 hek = (HEK*)k;
88 Copy(str, HEK_KEY(hek), len, char);
89 HEK_KEY(hek)[len] = 0;
90 HEK_LEN(hek) = len;
91 HEK_HASH(hek) = hash;
92 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
93
94 if (flags & HVhek_FREEKEY)
95 Safefree(str);
96 return hek;
97}
98
99/* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
100 * for tied hashes */
101
102void
103Perl_free_tied_hv_pool(pTHX)
104{
105 dVAR;
106 HE *he = PL_hv_fetch_ent_mh;
107 while (he) {
108 HE * const ohe = he;
109 Safefree(HeKEY_hek(he));
110 he = HeNEXT(he);
111 del_HE(ohe);
112 }
113 PL_hv_fetch_ent_mh = NULL;
114}
115
116#if defined(USE_ITHREADS)
117HEK *
118Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
119{
120 HEK *shared;
121
122 PERL_ARGS_ASSERT_HEK_DUP;
123 PERL_UNUSED_ARG(param);
124
125 if (!source)
126 return NULL;
127
128 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
129 if (shared) {
130 /* We already shared this hash key. */
131 (void)share_hek_hek(shared);
132 }
133 else {
134 shared
135 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
136 HEK_HASH(source), HEK_FLAGS(source));
137 ptr_table_store(PL_ptr_table, source, shared);
138 }
139 return shared;
140}
141
142HE *
143Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
144{
145 HE *ret;
146
147 PERL_ARGS_ASSERT_HE_DUP;
148
149 if (!e)
150 return NULL;
151 /* look for it in the table first */
152 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
153 if (ret)
154 return ret;
155
156 /* create anew and remember what it is */
157 ret = new_HE();
158 ptr_table_store(PL_ptr_table, e, ret);
159
160 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
161 if (HeKLEN(e) == HEf_SVKEY) {
162 char *k;
163 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
164 HeKEY_hek(ret) = (HEK*)k;
165 HeKEY_sv(ret) = sv_dup_inc(HeKEY_sv(e), param);
166 }
167 else if (shared) {
168 /* This is hek_dup inlined, which seems to be important for speed
169 reasons. */
170 HEK * const source = HeKEY_hek(e);
171 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
172
173 if (shared) {
174 /* We already shared this hash key. */
175 (void)share_hek_hek(shared);
176 }
177 else {
178 shared
179 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
180 HEK_HASH(source), HEK_FLAGS(source));
181 ptr_table_store(PL_ptr_table, source, shared);
182 }
183 HeKEY_hek(ret) = shared;
184 }
185 else
186 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
187 HeKFLAGS(e));
188 HeVAL(ret) = sv_dup_inc(HeVAL(e), param);
189 return ret;
190}
191#endif /* USE_ITHREADS */
192
193static void
194S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
195 const char *msg)
196{
197 SV * const sv = sv_newmortal();
198
199 PERL_ARGS_ASSERT_HV_NOTALLOWED;
200
201 if (!(flags & HVhek_FREEKEY)) {
202 sv_setpvn(sv, key, klen);
203 }
204 else {
205 /* Need to free saved eventually assign to mortal SV */
206 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
207 sv_usepvn(sv, (char *) key, klen);
208 }
209 if (flags & HVhek_UTF8) {
210 SvUTF8_on(sv);
211 }
212 Perl_croak(aTHX_ msg, SVfARG(sv));
213}
214
215/* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
216 * contains an SV* */
217
218/*
219=for apidoc hv_store
220
221Stores an SV in a hash. The hash key is specified as C<key> and the
222absolute value of C<klen> is the length of the key. If C<klen> is
223negative the key is assumed to be in UTF-8-encoded Unicode. The
224C<hash> parameter is the precomputed hash value; if it is zero then
225Perl will compute it.
226
227The return value will be
228NULL if the operation failed or if the value did not need to be actually
229stored within the hash (as in the case of tied hashes). Otherwise it can
230be dereferenced to get the original C<SV*>. Note that the caller is
231responsible for suitably incrementing the reference count of C<val> before
232the call, and decrementing it if the function returned NULL. Effectively
233a successful hv_store takes ownership of one reference to C<val>. This is
234usually what you want; a newly created SV has a reference count of one, so
235if all your code does is create SVs then store them in a hash, hv_store
236will own the only reference to the new SV, and your code doesn't need to do
237anything further to tidy up. hv_store is not implemented as a call to
238hv_store_ent, and does not create a temporary SV for the key, so if your
239key data is not already in SV form then use hv_store in preference to
240hv_store_ent.
241
242See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
243information on how to use this function on tied hashes.
244
245=for apidoc hv_store_ent
246
247Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
248parameter is the precomputed hash value; if it is zero then Perl will
249compute it. The return value is the new hash entry so created. It will be
250NULL if the operation failed or if the value did not need to be actually
251stored within the hash (as in the case of tied hashes). Otherwise the
252contents of the return value can be accessed using the C<He?> macros
253described here. Note that the caller is responsible for suitably
254incrementing the reference count of C<val> before the call, and
255decrementing it if the function returned NULL. Effectively a successful
256hv_store_ent takes ownership of one reference to C<val>. This is
257usually what you want; a newly created SV has a reference count of one, so
258if all your code does is create SVs then store them in a hash, hv_store
259will own the only reference to the new SV, and your code doesn't need to do
260anything further to tidy up. Note that hv_store_ent only reads the C<key>;
261unlike C<val> it does not take ownership of it, so maintaining the correct
262reference count on C<key> is entirely the caller's responsibility. hv_store
263is not implemented as a call to hv_store_ent, and does not create a temporary
264SV for the key, so if your key data is not already in SV form then use
265hv_store in preference to hv_store_ent.
266
267See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
268information on how to use this function on tied hashes.
269
270=for apidoc hv_exists
271
272Returns a boolean indicating whether the specified hash key exists. The
273absolute value of C<klen> is the length of the key. If C<klen> is
274negative the key is assumed to be in UTF-8-encoded Unicode.
275
276=for apidoc hv_fetch
277
278Returns the SV which corresponds to the specified key in the hash.
279The absolute value of C<klen> is the length of the key. If C<klen> is
280negative the key is assumed to be in UTF-8-encoded Unicode. If
281C<lval> is set then the fetch will be part of a store. This means that if
282there is no value in the hash associated with the given key, then one is
283created and a pointer to it is returned. The C<SV*> it points to can be
284assigned to. But always check that the
285return value is non-null before dereferencing it to an C<SV*>.
286
287See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
288information on how to use this function on tied hashes.
289
290=for apidoc hv_exists_ent
291
292Returns a boolean indicating whether
293the specified hash key exists. C<hash>
294can be a valid precomputed hash value, or 0 to ask for it to be
295computed.
296
297=cut
298*/
299
300/* returns an HE * structure with the all fields set */
301/* note that hent_val will be a mortal sv for MAGICAL hashes */
302/*
303=for apidoc hv_fetch_ent
304
305Returns the hash entry which corresponds to the specified key in the hash.
306C<hash> must be a valid precomputed hash number for the given C<key>, or 0
307if you want the function to compute it. IF C<lval> is set then the fetch
308will be part of a store. Make sure the return value is non-null before
309accessing it. The return value when C<hv> is a tied hash is a pointer to a
310static location, so be sure to make a copy of the structure if you need to
311store it somewhere.
312
313See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
314information on how to use this function on tied hashes.
315
316=cut
317*/
318
319/* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
320void *
321Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
322 const int action, SV *val, const U32 hash)
323{
324 STRLEN klen;
325 int flags;
326
327 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
328
329 if (klen_i32 < 0) {
330 klen = -klen_i32;
331 flags = HVhek_UTF8;
332 } else {
333 klen = klen_i32;
334 flags = 0;
335 }
336 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
337}
338
339void *
340Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
341 int flags, int action, SV *val, U32 hash)
342{
343 dVAR;
344 XPVHV* xhv;
345 HE *entry;
346 HE **oentry;
347 SV *sv;
348 bool is_utf8;
349 int masked_flags;
350 const int return_svp = action & HV_FETCH_JUST_SV;
351
352 if (!hv)
353 return NULL;
354 if (SvTYPE(hv) == (svtype)SVTYPEMASK)
355 return NULL;
356
357 assert(SvTYPE(hv) == SVt_PVHV);
358
359 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
360 MAGIC* mg;
361 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
362 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
363 if (uf->uf_set == NULL) {
364 SV* obj = mg->mg_obj;
365
366 if (!keysv) {
367 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
368 ((flags & HVhek_UTF8)
369 ? SVf_UTF8 : 0));
370 }
371
372 mg->mg_obj = keysv; /* pass key */
373 uf->uf_index = action; /* pass action */
374 magic_getuvar(MUTABLE_SV(hv), mg);
375 keysv = mg->mg_obj; /* may have changed */
376 mg->mg_obj = obj;
377
378 /* If the key may have changed, then we need to invalidate
379 any passed-in computed hash value. */
380 hash = 0;
381 }
382 }
383 }
384 if (keysv) {
385 if (flags & HVhek_FREEKEY)
386 Safefree(key);
387 key = SvPV_const(keysv, klen);
388 is_utf8 = (SvUTF8(keysv) != 0);
389 if (SvIsCOW_shared_hash(keysv)) {
390 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
391 } else {
392 flags = is_utf8 ? HVhek_UTF8 : 0;
393 }
394 } else {
395 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
396 }
397
398 if (action & HV_DELETE) {
399 return (void *) hv_delete_common(hv, keysv, key, klen,
400 flags, action, hash);
401 }
402
403 xhv = (XPVHV*)SvANY(hv);
404 if (SvMAGICAL(hv)) {
405 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
406 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
407 || SvGMAGICAL((const SV *)hv))
408 {
409 /* FIXME should be able to skimp on the HE/HEK here when
410 HV_FETCH_JUST_SV is true. */
411 if (!keysv) {
412 keysv = newSVpvn_utf8(key, klen, is_utf8);
413 } else {
414 keysv = newSVsv(keysv);
415 }
416 sv = sv_newmortal();
417 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
418
419 /* grab a fake HE/HEK pair from the pool or make a new one */
420 entry = PL_hv_fetch_ent_mh;
421 if (entry)
422 PL_hv_fetch_ent_mh = HeNEXT(entry);
423 else {
424 char *k;
425 entry = new_HE();
426 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
427 HeKEY_hek(entry) = (HEK*)k;
428 }
429 HeNEXT(entry) = NULL;
430 HeSVKEY_set(entry, keysv);
431 HeVAL(entry) = sv;
432 sv_upgrade(sv, SVt_PVLV);
433 LvTYPE(sv) = 'T';
434 /* so we can free entry when freeing sv */
435 LvTARG(sv) = MUTABLE_SV(entry);
436
437 /* XXX remove at some point? */
438 if (flags & HVhek_FREEKEY)
439 Safefree(key);
440
441 if (return_svp) {
442 return entry ? (void *) &HeVAL(entry) : NULL;
443 }
444 return (void *) entry;
445 }
446#ifdef ENV_IS_CASELESS
447 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
448 U32 i;
449 for (i = 0; i < klen; ++i)
450 if (isLOWER(key[i])) {
451 /* Would be nice if we had a routine to do the
452 copy and upercase in a single pass through. */
453 const char * const nkey = strupr(savepvn(key,klen));
454 /* Note that this fetch is for nkey (the uppercased
455 key) whereas the store is for key (the original) */
456 void *result = hv_common(hv, NULL, nkey, klen,
457 HVhek_FREEKEY, /* free nkey */
458 0 /* non-LVAL fetch */
459 | HV_DISABLE_UVAR_XKEY
460 | return_svp,
461 NULL /* no value */,
462 0 /* compute hash */);
463 if (!result && (action & HV_FETCH_LVALUE)) {
464 /* This call will free key if necessary.
465 Do it this way to encourage compiler to tail
466 call optimise. */
467 result = hv_common(hv, keysv, key, klen, flags,
468 HV_FETCH_ISSTORE
469 | HV_DISABLE_UVAR_XKEY
470 | return_svp,
471 newSV(0), hash);
472 } else {
473 if (flags & HVhek_FREEKEY)
474 Safefree(key);
475 }
476 return result;
477 }
478 }
479#endif
480 } /* ISFETCH */
481 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
482 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
483 || SvGMAGICAL((const SV *)hv)) {
484 /* I don't understand why hv_exists_ent has svret and sv,
485 whereas hv_exists only had one. */
486 SV * const svret = sv_newmortal();
487 sv = sv_newmortal();
488
489 if (keysv || is_utf8) {
490 if (!keysv) {
491 keysv = newSVpvn_utf8(key, klen, TRUE);
492 } else {
493 keysv = newSVsv(keysv);
494 }
495 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
496 } else {
497 mg_copy(MUTABLE_SV(hv), sv, key, klen);
498 }
499 if (flags & HVhek_FREEKEY)
500 Safefree(key);
501 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
502 /* This cast somewhat evil, but I'm merely using NULL/
503 not NULL to return the boolean exists.
504 And I know hv is not NULL. */
505 return SvTRUE(svret) ? (void *)hv : NULL;
506 }
507#ifdef ENV_IS_CASELESS
508 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
509 /* XXX This code isn't UTF8 clean. */
510 char * const keysave = (char * const)key;
511 /* Will need to free this, so set FREEKEY flag. */
512 key = savepvn(key,klen);
513 key = (const char*)strupr((char*)key);
514 is_utf8 = FALSE;
515 hash = 0;
516 keysv = 0;
517
518 if (flags & HVhek_FREEKEY) {
519 Safefree(keysave);
520 }
521 flags |= HVhek_FREEKEY;
522 }
523#endif
524 } /* ISEXISTS */
525 else if (action & HV_FETCH_ISSTORE) {
526 bool needs_copy;
527 bool needs_store;
528 hv_magic_check (hv, &needs_copy, &needs_store);
529 if (needs_copy) {
530 const bool save_taint = TAINT_get;
531 if (keysv || is_utf8) {
532 if (!keysv) {
533 keysv = newSVpvn_utf8(key, klen, TRUE);
534 }
535 if (TAINTING_get)
536 TAINT_set(SvTAINTED(keysv));
537 keysv = sv_2mortal(newSVsv(keysv));
538 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
539 } else {
540 mg_copy(MUTABLE_SV(hv), val, key, klen);
541 }
542
543 TAINT_IF(save_taint);
544#ifdef NO_TAINT_SUPPORT
545 PERL_UNUSED_VAR(save_taint);
546#endif
547 if (!needs_store) {
548 if (flags & HVhek_FREEKEY)
549 Safefree(key);
550 return NULL;
551 }
552#ifdef ENV_IS_CASELESS
553 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
554 /* XXX This code isn't UTF8 clean. */
555 const char *keysave = key;
556 /* Will need to free this, so set FREEKEY flag. */
557 key = savepvn(key,klen);
558 key = (const char*)strupr((char*)key);
559 is_utf8 = FALSE;
560 hash = 0;
561 keysv = 0;
562
563 if (flags & HVhek_FREEKEY) {
564 Safefree(keysave);
565 }
566 flags |= HVhek_FREEKEY;
567 }
568#endif
569 }
570 } /* ISSTORE */
571 } /* SvMAGICAL */
572
573 if (!HvARRAY(hv)) {
574 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
575#ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
576 || (SvRMAGICAL((const SV *)hv)
577 && mg_find((const SV *)hv, PERL_MAGIC_env))
578#endif
579 ) {
580 char *array;
581 Newxz(array,
582 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
583 char);
584 HvARRAY(hv) = (HE**)array;
585 }
586#ifdef DYNAMIC_ENV_FETCH
587 else if (action & HV_FETCH_ISEXISTS) {
588 /* for an %ENV exists, if we do an insert it's by a recursive
589 store call, so avoid creating HvARRAY(hv) right now. */
590 }
591#endif
592 else {
593 /* XXX remove at some point? */
594 if (flags & HVhek_FREEKEY)
595 Safefree(key);
596
597 return NULL;
598 }
599 }
600
601 if (is_utf8 && !(flags & HVhek_KEYCANONICAL)) {
602 char * const keysave = (char *)key;
603 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
604 if (is_utf8)
605 flags |= HVhek_UTF8;
606 else
607 flags &= ~HVhek_UTF8;
608 if (key != keysave) {
609 if (flags & HVhek_FREEKEY)
610 Safefree(keysave);
611 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
612 /* If the caller calculated a hash, it was on the sequence of
613 octets that are the UTF-8 form. We've now changed the sequence
614 of octets stored to that of the equivalent byte representation,
615 so the hash we need is different. */
616 hash = 0;
617 }
618 }
619
620 if (!hash) {
621 if (keysv && (SvIsCOW_shared_hash(keysv)))
622 hash = SvSHARED_HASH(keysv);
623 else
624 PERL_HASH(hash, key, klen);
625 }
626
627 masked_flags = (flags & HVhek_MASK);
628
629#ifdef DYNAMIC_ENV_FETCH
630 if (!HvARRAY(hv)) entry = NULL;
631 else
632#endif
633 {
634 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
635 }
636 for (; entry; entry = HeNEXT(entry)) {
637 if (HeHASH(entry) != hash) /* strings can't be equal */
638 continue;
639 if (HeKLEN(entry) != (I32)klen)
640 continue;
641 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
642 continue;
643 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
644 continue;
645
646 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
647 if (HeKFLAGS(entry) != masked_flags) {
648 /* We match if HVhek_UTF8 bit in our flags and hash key's
649 match. But if entry was set previously with HVhek_WASUTF8
650 and key now doesn't (or vice versa) then we should change
651 the key's flag, as this is assignment. */
652 if (HvSHAREKEYS(hv)) {
653 /* Need to swap the key we have for a key with the flags we
654 need. As keys are shared we can't just write to the
655 flag, so we share the new one, unshare the old one. */
656 HEK * const new_hek = share_hek_flags(key, klen, hash,
657 masked_flags);
658 unshare_hek (HeKEY_hek(entry));
659 HeKEY_hek(entry) = new_hek;
660 }
661 else if (hv == PL_strtab) {
662 /* PL_strtab is usually the only hash without HvSHAREKEYS,
663 so putting this test here is cheap */
664 if (flags & HVhek_FREEKEY)
665 Safefree(key);
666 Perl_croak(aTHX_ S_strtab_error,
667 action & HV_FETCH_LVALUE ? "fetch" : "store");
668 }
669 else
670 HeKFLAGS(entry) = masked_flags;
671 if (masked_flags & HVhek_ENABLEHVKFLAGS)
672 HvHASKFLAGS_on(hv);
673 }
674 if (HeVAL(entry) == &PL_sv_placeholder) {
675 /* yes, can store into placeholder slot */
676 if (action & HV_FETCH_LVALUE) {
677 if (SvMAGICAL(hv)) {
678 /* This preserves behaviour with the old hv_fetch
679 implementation which at this point would bail out
680 with a break; (at "if we find a placeholder, we
681 pretend we haven't found anything")
682
683 That break mean that if a placeholder were found, it
684 caused a call into hv_store, which in turn would
685 check magic, and if there is no magic end up pretty
686 much back at this point (in hv_store's code). */
687 break;
688 }
689 /* LVAL fetch which actually needs a store. */
690 val = newSV(0);
691 HvPLACEHOLDERS(hv)--;
692 } else {
693 /* store */
694 if (val != &PL_sv_placeholder)
695 HvPLACEHOLDERS(hv)--;
696 }
697 HeVAL(entry) = val;
698 } else if (action & HV_FETCH_ISSTORE) {
699 SvREFCNT_dec(HeVAL(entry));
700 HeVAL(entry) = val;
701 }
702 } else if (HeVAL(entry) == &PL_sv_placeholder) {
703 /* if we find a placeholder, we pretend we haven't found
704 anything */
705 break;
706 }
707 if (flags & HVhek_FREEKEY)
708 Safefree(key);
709 if (return_svp) {
710 return entry ? (void *) &HeVAL(entry) : NULL;
711 }
712 return entry;
713 }
714#ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
715 if (!(action & HV_FETCH_ISSTORE)
716 && SvRMAGICAL((const SV *)hv)
717 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
718 unsigned long len;
719 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
720 if (env) {
721 sv = newSVpvn(env,len);
722 SvTAINTED_on(sv);
723 return hv_common(hv, keysv, key, klen, flags,
724 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
725 sv, hash);
726 }
727 }
728#endif
729
730 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
731 hv_notallowed(flags, key, klen,
732 "Attempt to access disallowed key '%"SVf"' in"
733 " a restricted hash");
734 }
735 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
736 /* Not doing some form of store, so return failure. */
737 if (flags & HVhek_FREEKEY)
738 Safefree(key);
739 return NULL;
740 }
741 if (action & HV_FETCH_LVALUE) {
742 val = action & HV_FETCH_EMPTY_HE ? NULL : newSV(0);
743 if (SvMAGICAL(hv)) {
744 /* At this point the old hv_fetch code would call to hv_store,
745 which in turn might do some tied magic. So we need to make that
746 magic check happen. */
747 /* gonna assign to this, so it better be there */
748 /* If a fetch-as-store fails on the fetch, then the action is to
749 recurse once into "hv_store". If we didn't do this, then that
750 recursive call would call the key conversion routine again.
751 However, as we replace the original key with the converted
752 key, this would result in a double conversion, which would show
753 up as a bug if the conversion routine is not idempotent.
754 Hence the use of HV_DISABLE_UVAR_XKEY. */
755 return hv_common(hv, keysv, key, klen, flags,
756 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
757 val, hash);
758 /* XXX Surely that could leak if the fetch-was-store fails?
759 Just like the hv_fetch. */
760 }
761 }
762
763 /* Welcome to hv_store... */
764
765 if (!HvARRAY(hv)) {
766 /* Not sure if we can get here. I think the only case of oentry being
767 NULL is for %ENV with dynamic env fetch. But that should disappear
768 with magic in the previous code. */
769 char *array;
770 Newxz(array,
771 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
772 char);
773 HvARRAY(hv) = (HE**)array;
774 }
775
776 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
777
778 entry = new_HE();
779 /* share_hek_flags will do the free for us. This might be considered
780 bad API design. */
781 if (HvSHAREKEYS(hv))
782 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
783 else if (hv == PL_strtab) {
784 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
785 this test here is cheap */
786 if (flags & HVhek_FREEKEY)
787 Safefree(key);
788 Perl_croak(aTHX_ S_strtab_error,
789 action & HV_FETCH_LVALUE ? "fetch" : "store");
790 }
791 else /* gotta do the real thing */
792 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
793 HeVAL(entry) = val;
794
795 if (!*oentry && SvOOK(hv)) {
796 /* initial entry, and aux struct present. */
797 struct xpvhv_aux *const aux = HvAUX(hv);
798 if (aux->xhv_fill_lazy)
799 ++aux->xhv_fill_lazy;
800 }
801
802#ifdef PERL_HASH_RANDOMIZE_KEYS
803 /* This logic semi-randomizes the insert order in a bucket.
804 * Either we insert into the top, or the slot below the top,
805 * making it harder to see if there is a collision. We also
806 * reset the iterator randomizer if there is one.
807 */
808 if ( *oentry && PL_HASH_RAND_BITS_ENABLED) {
809 PL_hash_rand_bits++;
810 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
811 if ( PL_hash_rand_bits & 1 ) {
812 HeNEXT(entry) = HeNEXT(*oentry);
813 HeNEXT(*oentry) = entry;
814 } else {
815 HeNEXT(entry) = *oentry;
816 *oentry = entry;
817 }
818 } else
819#endif
820 {
821 HeNEXT(entry) = *oentry;
822 *oentry = entry;
823 }
824#ifdef PERL_HASH_RANDOMIZE_KEYS
825 if (SvOOK(hv)) {
826 /* Currently this makes various tests warn in annoying ways.
827 * So Silenced for now. - Yves | bogus end of comment =>* /
828 if (HvAUX(hv)->xhv_riter != -1) {
829 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
830 "[TESTING] Inserting into a hash during each() traversal results in undefined behavior"
831 pTHX__FORMAT
832 pTHX__VALUE);
833 }
834 */
835 if (PL_HASH_RAND_BITS_ENABLED) {
836 if (PL_HASH_RAND_BITS_ENABLED == 1)
837 PL_hash_rand_bits += (PTRV)entry + 1; /* we don't bother to use ptr_hash here */
838 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
839 }
840 HvAUX(hv)->xhv_rand= (U32)PL_hash_rand_bits;
841 }
842#endif
843
844 if (val == &PL_sv_placeholder)
845 HvPLACEHOLDERS(hv)++;
846 if (masked_flags & HVhek_ENABLEHVKFLAGS)
847 HvHASKFLAGS_on(hv);
848
849 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
850 if ( DO_HSPLIT(xhv) ) {
851 const STRLEN oldsize = xhv->xhv_max + 1;
852 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
853
854 if (items /* hash has placeholders */
855 && !SvREADONLY(hv) /* but is not a restricted hash */) {
856 /* If this hash previously was a "restricted hash" and had
857 placeholders, but the "restricted" flag has been turned off,
858 then the placeholders no longer serve any useful purpose.
859 However, they have the downsides of taking up RAM, and adding
860 extra steps when finding used values. It's safe to clear them
861 at this point, even though Storable rebuilds restricted hashes by
862 putting in all the placeholders (first) before turning on the
863 readonly flag, because Storable always pre-splits the hash.
864 If we're lucky, then we may clear sufficient placeholders to
865 avoid needing to split the hash at all. */
866 clear_placeholders(hv, items);
867 if (DO_HSPLIT(xhv))
868 hsplit(hv, oldsize, oldsize * 2);
869 } else
870 hsplit(hv, oldsize, oldsize * 2);
871 }
872
873 if (return_svp) {
874 return entry ? (void *) &HeVAL(entry) : NULL;
875 }
876 return (void *) entry;
877}
878
879STATIC void
880S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
881{
882 const MAGIC *mg = SvMAGIC(hv);
883
884 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
885
886 *needs_copy = FALSE;
887 *needs_store = TRUE;
888 while (mg) {
889 if (isUPPER(mg->mg_type)) {
890 *needs_copy = TRUE;
891 if (mg->mg_type == PERL_MAGIC_tied) {
892 *needs_store = FALSE;
893 return; /* We've set all there is to set. */
894 }
895 }
896 mg = mg->mg_moremagic;
897 }
898}
899
900/*
901=for apidoc hv_scalar
902
903Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
904
905=cut
906*/
907
908SV *
909Perl_hv_scalar(pTHX_ HV *hv)
910{
911 SV *sv;
912
913 PERL_ARGS_ASSERT_HV_SCALAR;
914
915 if (SvRMAGICAL(hv)) {
916 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
917 if (mg)
918 return magic_scalarpack(hv, mg);
919 }
920
921 sv = sv_newmortal();
922 if (HvTOTALKEYS((const HV *)hv))
923 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
924 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
925 else
926 sv_setiv(sv, 0);
927
928 return sv;
929}
930
931/*
932=for apidoc hv_delete
933
934Deletes a key/value pair in the hash. The value's SV is removed from
935the hash, made mortal, and returned to the caller. The absolute
936value of C<klen> is the length of the key. If C<klen> is negative the
937key is assumed to be in UTF-8-encoded Unicode. The C<flags> value
938will normally be zero; if set to G_DISCARD then NULL will be returned.
939NULL will also be returned if the key is not found.
940
941=for apidoc hv_delete_ent
942
943Deletes a key/value pair in the hash. The value SV is removed from the hash,
944made mortal, and returned to the caller. The C<flags> value will normally be
945zero; if set to G_DISCARD then NULL will be returned. NULL will also be
946returned if the key is not found. C<hash> can be a valid precomputed hash
947value, or 0 to ask for it to be computed.
948
949=cut
950*/
951
952STATIC SV *
953S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
954 int k_flags, I32 d_flags, U32 hash)
955{
956 dVAR;
957 XPVHV* xhv;
958 HE *entry;
959 HE **oentry;
960 HE *const *first_entry;
961 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
962 int masked_flags;
963
964 if (SvRMAGICAL(hv)) {
965 bool needs_copy;
966 bool needs_store;
967 hv_magic_check (hv, &needs_copy, &needs_store);
968
969 if (needs_copy) {
970 SV *sv;
971 entry = (HE *) hv_common(hv, keysv, key, klen,
972 k_flags & ~HVhek_FREEKEY,
973 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
974 NULL, hash);
975 sv = entry ? HeVAL(entry) : NULL;
976 if (sv) {
977 if (SvMAGICAL(sv)) {
978 mg_clear(sv);
979 }
980 if (!needs_store) {
981 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
982 /* No longer an element */
983 sv_unmagic(sv, PERL_MAGIC_tiedelem);
984 return sv;
985 }
986 return NULL; /* element cannot be deleted */
987 }
988#ifdef ENV_IS_CASELESS
989 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
990 /* XXX This code isn't UTF8 clean. */
991 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
992 if (k_flags & HVhek_FREEKEY) {
993 Safefree(key);
994 }
995 key = strupr(SvPVX(keysv));
996 is_utf8 = 0;
997 k_flags = 0;
998 hash = 0;
999 }
1000#endif
1001 }
1002 }
1003 }
1004 xhv = (XPVHV*)SvANY(hv);
1005 if (!HvARRAY(hv))
1006 return NULL;
1007
1008 if (is_utf8 && !(k_flags & HVhek_KEYCANONICAL)) {
1009 const char * const keysave = key;
1010 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
1011
1012 if (is_utf8)
1013 k_flags |= HVhek_UTF8;
1014 else
1015 k_flags &= ~HVhek_UTF8;
1016 if (key != keysave) {
1017 if (k_flags & HVhek_FREEKEY) {
1018 /* This shouldn't happen if our caller does what we expect,
1019 but strictly the API allows it. */
1020 Safefree(keysave);
1021 }
1022 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
1023 }
1024 HvHASKFLAGS_on(MUTABLE_SV(hv));
1025 }
1026
1027 if (!hash) {
1028 if (keysv && (SvIsCOW_shared_hash(keysv)))
1029 hash = SvSHARED_HASH(keysv);
1030 else
1031 PERL_HASH(hash, key, klen);
1032 }
1033
1034 masked_flags = (k_flags & HVhek_MASK);
1035
1036 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1037 entry = *oentry;
1038 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1039 SV *sv;
1040 U8 mro_changes = 0; /* 1 = isa; 2 = package moved */
1041 GV *gv = NULL;
1042 HV *stash = NULL;
1043
1044 if (HeHASH(entry) != hash) /* strings can't be equal */
1045 continue;
1046 if (HeKLEN(entry) != (I32)klen)
1047 continue;
1048 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1049 continue;
1050 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1051 continue;
1052
1053 if (hv == PL_strtab) {
1054 if (k_flags & HVhek_FREEKEY)
1055 Safefree(key);
1056 Perl_croak(aTHX_ S_strtab_error, "delete");
1057 }
1058
1059 /* if placeholder is here, it's already been deleted.... */
1060 if (HeVAL(entry) == &PL_sv_placeholder) {
1061 if (k_flags & HVhek_FREEKEY)
1062 Safefree(key);
1063 return NULL;
1064 }
1065 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1066 hv_notallowed(k_flags, key, klen,
1067 "Attempt to delete readonly key '%"SVf"' from"
1068 " a restricted hash");
1069 }
1070 if (k_flags & HVhek_FREEKEY)
1071 Safefree(key);
1072
1073 /* If this is a stash and the key ends with ::, then someone is
1074 * deleting a package.
1075 */
1076 if (HeVAL(entry) && HvENAME_get(hv)) {
1077 gv = (GV *)HeVAL(entry);
1078 if (keysv) key = SvPV(keysv, klen);
1079 if ((
1080 (klen > 1 && key[klen-2] == ':' && key[klen-1] == ':')
1081 ||
1082 (klen == 1 && key[0] == ':')
1083 )
1084 && (klen != 6 || hv!=PL_defstash || memNE(key,"main::",6))
1085 && SvTYPE(gv) == SVt_PVGV && (stash = GvHV((GV *)gv))
1086 && HvENAME_get(stash)) {
1087 /* A previous version of this code checked that the
1088 * GV was still in the symbol table by fetching the
1089 * GV with its name. That is not necessary (and
1090 * sometimes incorrect), as HvENAME cannot be set
1091 * on hv if it is not in the symtab. */
1092 mro_changes = 2;
1093 /* Hang on to it for a bit. */
1094 SvREFCNT_inc_simple_void_NN(
1095 sv_2mortal((SV *)gv)
1096 );
1097 }
1098 else if (klen == 3 && strnEQ(key, "ISA", 3))
1099 mro_changes = 1;
1100 }
1101
1102 sv = d_flags & G_DISCARD ? HeVAL(entry) : sv_2mortal(HeVAL(entry));
1103 HeVAL(entry) = &PL_sv_placeholder;
1104 if (sv) {
1105 /* deletion of method from stash */
1106 if (isGV(sv) && isGV_with_GP(sv) && GvCVu(sv)
1107 && HvENAME_get(hv))
1108 mro_method_changed_in(hv);
1109 }
1110
1111 /*
1112 * If a restricted hash, rather than really deleting the entry, put
1113 * a placeholder there. This marks the key as being "approved", so
1114 * we can still access via not-really-existing key without raising
1115 * an error.
1116 */
1117 if (SvREADONLY(hv))
1118 /* We'll be saving this slot, so the number of allocated keys
1119 * doesn't go down, but the number placeholders goes up */
1120 HvPLACEHOLDERS(hv)++;
1121 else {
1122 *oentry = HeNEXT(entry);
1123 if(!*first_entry && SvOOK(hv)) {
1124 /* removed last entry, and aux struct present. */
1125 struct xpvhv_aux *const aux = HvAUX(hv);
1126 if (aux->xhv_fill_lazy)
1127 --aux->xhv_fill_lazy;
1128 }
1129 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1130 HvLAZYDEL_on(hv);
1131 else {
1132 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1133 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1134 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1135 hv_free_ent(hv, entry);
1136 }
1137 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1138 if (xhv->xhv_keys == 0)
1139 HvHASKFLAGS_off(hv);
1140 }
1141
1142 if (d_flags & G_DISCARD) {
1143 SvREFCNT_dec(sv);
1144 sv = NULL;
1145 }
1146
1147 if (mro_changes == 1) mro_isa_changed_in(hv);
1148 else if (mro_changes == 2)
1149 mro_package_moved(NULL, stash, gv, 1);
1150
1151 return sv;
1152 }
1153 if (SvREADONLY(hv)) {
1154 hv_notallowed(k_flags, key, klen,
1155 "Attempt to delete disallowed key '%"SVf"' from"
1156 " a restricted hash");
1157 }
1158
1159 if (k_flags & HVhek_FREEKEY)
1160 Safefree(key);
1161 return NULL;
1162}
1163
1164STATIC void
1165S_hsplit(pTHX_ HV *hv, STRLEN const oldsize, STRLEN newsize)
1166{
1167 dVAR;
1168 STRLEN i = 0;
1169 char *a = (char*) HvARRAY(hv);
1170 HE **aep;
1171
1172 PERL_ARGS_ASSERT_HSPLIT;
1173
1174 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1175 (void*)hv, (int) oldsize);*/
1176
1177 PL_nomemok = TRUE;
1178 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1179 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1180 if (!a) {
1181 PL_nomemok = FALSE;
1182 return;
1183 }
1184#ifdef PERL_HASH_RANDOMIZE_KEYS
1185 /* the idea of this is that we create a "random" value by hashing the address of
1186 * the array, we then use the low bit to decide if we insert at the top, or insert
1187 * second from top. After each such insert we rotate the hashed value. So we can
1188 * use the same hashed value over and over, and in normal build environments use
1189 * very few ops to do so. ROTL32() should produce a single machine operation. */
1190 if (PL_HASH_RAND_BITS_ENABLED) {
1191 if (PL_HASH_RAND_BITS_ENABLED == 1)
1192 PL_hash_rand_bits += ptr_hash((PTRV)a);
1193 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1194 }
1195#endif
1196
1197 if (SvOOK(hv)) {
1198 struct xpvhv_aux *const dest
1199 = (struct xpvhv_aux*) &a[newsize * sizeof(HE*)];
1200 Move(&a[oldsize * sizeof(HE*)], dest, 1, struct xpvhv_aux);
1201 /* we reset the iterator's xhv_rand as well, so they get a totally new ordering */
1202#ifdef PERL_HASH_RANDOMIZE_KEYS
1203 dest->xhv_rand = (U32)PL_hash_rand_bits;
1204#endif
1205 /* For now, just reset the lazy fill counter.
1206 It would be possible to update the counter in the code below
1207 instead. */
1208 dest->xhv_fill_lazy = 0;
1209 }
1210
1211 PL_nomemok = FALSE;
1212 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1213 HvMAX(hv) = --newsize;
1214 HvARRAY(hv) = (HE**) a;
1215
1216 if (!HvTOTALKEYS(hv)) /* skip rest if no entries */
1217 return;
1218
1219 aep = (HE**)a;
1220 do {
1221 HE **oentry = aep + i;
1222 HE *entry = aep[i];
1223
1224 if (!entry) /* non-existent */
1225 continue;
1226 do {
1227 U32 j = (HeHASH(entry) & newsize);
1228 if (j != (U32)i) {
1229 *oentry = HeNEXT(entry);
1230#ifdef PERL_HASH_RANDOMIZE_KEYS
1231 /* if the target cell is empty or PL_HASH_RAND_BITS_ENABLED is false
1232 * insert to top, otherwise rotate the bucket rand 1 bit,
1233 * and use the new low bit to decide if we insert at top,
1234 * or next from top. IOW, we only rotate on a collision.*/
1235 if (aep[j] && PL_HASH_RAND_BITS_ENABLED) {
1236 PL_hash_rand_bits+= ROTL_UV(HeHASH(entry), 17);
1237 PL_hash_rand_bits= ROTL_UV(PL_hash_rand_bits,1);
1238 if (PL_hash_rand_bits & 1) {
1239 HeNEXT(entry)= HeNEXT(aep[j]);
1240 HeNEXT(aep[j])= entry;
1241 } else {
1242 /* Note, this is structured in such a way as the optimizer
1243 * should eliminate the duplicated code here and below without
1244 * us needing to explicitly use a goto. */
1245 HeNEXT(entry) = aep[j];
1246 aep[j] = entry;
1247 }
1248 } else
1249#endif
1250 {
1251 /* see comment above about duplicated code */
1252 HeNEXT(entry) = aep[j];
1253 aep[j] = entry;
1254 }
1255 }
1256 else {
1257 oentry = &HeNEXT(entry);
1258 }
1259 entry = *oentry;
1260 } while (entry);
1261 } while (i++ < oldsize);
1262}
1263
1264void
1265Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1266{
1267 dVAR;
1268 XPVHV* xhv = (XPVHV*)SvANY(hv);
1269 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1270 I32 newsize;
1271 char *a;
1272
1273 PERL_ARGS_ASSERT_HV_KSPLIT;
1274
1275 newsize = (I32) newmax; /* possible truncation here */
1276 if (newsize != newmax || newmax <= oldsize)
1277 return;
1278 while ((newsize & (1 + ~newsize)) != newsize) {
1279 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1280 }
1281 if (newsize < newmax)
1282 newsize *= 2;
1283 if (newsize < newmax)
1284 return; /* overflow detection */
1285
1286 a = (char *) HvARRAY(hv);
1287 if (a) {
1288 hsplit(hv, oldsize, newsize);
1289 } else {
1290 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1291 xhv->xhv_max = --newsize;
1292 HvARRAY(hv) = (HE **) a;
1293 }
1294}
1295
1296/* IMO this should also handle cases where hv_max is smaller than hv_keys
1297 * as tied hashes could play silly buggers and mess us around. We will
1298 * do the right thing during hv_store() afterwards, but still - Yves */
1299#define HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys) STMT_START {\
1300 /* Can we use fewer buckets? (hv_max is always 2^n-1) */ \
1301 if (hv_max < PERL_HASH_DEFAULT_HvMAX) { \
1302 hv_max = PERL_HASH_DEFAULT_HvMAX; \
1303 } else { \
1304 while (hv_max > PERL_HASH_DEFAULT_HvMAX && hv_max + 1 >= hv_keys * 2) \
1305 hv_max = hv_max / 2; \
1306 } \
1307 HvMAX(hv) = hv_max; \
1308} STMT_END
1309
1310
1311HV *
1312Perl_newHVhv(pTHX_ HV *ohv)
1313{
1314 dVAR;
1315 HV * const hv = newHV();
1316 STRLEN hv_max;
1317
1318 if (!ohv || (!HvTOTALKEYS(ohv) && !SvMAGICAL((const SV *)ohv)))
1319 return hv;
1320 hv_max = HvMAX(ohv);
1321
1322 if (!SvMAGICAL((const SV *)ohv)) {
1323 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1324 STRLEN i;
1325 const bool shared = !!HvSHAREKEYS(ohv);
1326 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1327 char *a;
1328 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1329 ents = (HE**)a;
1330
1331 /* In each bucket... */
1332 for (i = 0; i <= hv_max; i++) {
1333 HE *prev = NULL;
1334 HE *oent = oents[i];
1335
1336 if (!oent) {
1337 ents[i] = NULL;
1338 continue;
1339 }
1340
1341 /* Copy the linked list of entries. */
1342 for (; oent; oent = HeNEXT(oent)) {
1343 const U32 hash = HeHASH(oent);
1344 const char * const key = HeKEY(oent);
1345 const STRLEN len = HeKLEN(oent);
1346 const int flags = HeKFLAGS(oent);
1347 HE * const ent = new_HE();
1348 SV *const val = HeVAL(oent);
1349
1350 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1351 HeKEY_hek(ent)
1352 = shared ? share_hek_flags(key, len, hash, flags)
1353 : save_hek_flags(key, len, hash, flags);
1354 if (prev)
1355 HeNEXT(prev) = ent;
1356 else
1357 ents[i] = ent;
1358 prev = ent;
1359 HeNEXT(ent) = NULL;
1360 }
1361 }
1362
1363 HvMAX(hv) = hv_max;
1364 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1365 HvARRAY(hv) = ents;
1366 } /* not magical */
1367 else {
1368 /* Iterate over ohv, copying keys and values one at a time. */
1369 HE *entry;
1370 const I32 riter = HvRITER_get(ohv);
1371 HE * const eiter = HvEITER_get(ohv);
1372 STRLEN hv_keys = HvTOTALKEYS(ohv);
1373
1374 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1375
1376 hv_iterinit(ohv);
1377 while ((entry = hv_iternext_flags(ohv, 0))) {
1378 SV *val = hv_iterval(ohv,entry);
1379 SV * const keysv = HeSVKEY(entry);
1380 val = SvIMMORTAL(val) ? val : newSVsv(val);
1381 if (keysv)
1382 (void)hv_store_ent(hv, keysv, val, 0);
1383 else
1384 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry), val,
1385 HeHASH(entry), HeKFLAGS(entry));
1386 }
1387 HvRITER_set(ohv, riter);
1388 HvEITER_set(ohv, eiter);
1389 }
1390
1391 return hv;
1392}
1393
1394/*
1395=for apidoc Am|HV *|hv_copy_hints_hv|HV *ohv
1396
1397A specialised version of L</newHVhv> for copying C<%^H>. I<ohv> must be
1398a pointer to a hash (which may have C<%^H> magic, but should be generally
1399non-magical), or C<NULL> (interpreted as an empty hash). The content
1400of I<ohv> is copied to a new hash, which has the C<%^H>-specific magic
1401added to it. A pointer to the new hash is returned.
1402
1403=cut
1404*/
1405
1406HV *
1407Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1408{
1409 HV * const hv = newHV();
1410
1411 if (ohv) {
1412 STRLEN hv_max = HvMAX(ohv);
1413 STRLEN hv_keys = HvTOTALKEYS(ohv);
1414 HE *entry;
1415 const I32 riter = HvRITER_get(ohv);
1416 HE * const eiter = HvEITER_get(ohv);
1417
1418 ENTER;
1419 SAVEFREESV(hv);
1420
1421 HV_SET_MAX_ADJUSTED_FOR_KEYS(hv,hv_max,hv_keys);
1422
1423 hv_iterinit(ohv);
1424 while ((entry = hv_iternext_flags(ohv, 0))) {
1425 SV *const sv = newSVsv(hv_iterval(ohv,entry));
1426 SV *heksv = HeSVKEY(entry);
1427 if (!heksv && sv) heksv = newSVhek(HeKEY_hek(entry));
1428 if (sv) sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1429 (char *)heksv, HEf_SVKEY);
1430 if (heksv == HeSVKEY(entry))
1431 (void)hv_store_ent(hv, heksv, sv, 0);
1432 else {
1433 (void)hv_common(hv, heksv, HeKEY(entry), HeKLEN(entry),
1434 HeKFLAGS(entry), HV_FETCH_ISSTORE|HV_FETCH_JUST_SV, sv, HeHASH(entry));
1435 SvREFCNT_dec_NN(heksv);
1436 }
1437 }
1438 HvRITER_set(ohv, riter);
1439 HvEITER_set(ohv, eiter);
1440
1441 SvREFCNT_inc_simple_void_NN(hv);
1442 LEAVE;
1443 }
1444 hv_magic(hv, NULL, PERL_MAGIC_hints);
1445 return hv;
1446}
1447#undef HV_SET_MAX_ADJUSTED_FOR_KEYS
1448
1449/* like hv_free_ent, but returns the SV rather than freeing it */
1450STATIC SV*
1451S_hv_free_ent_ret(pTHX_ HV *hv, HE *entry)
1452{
1453 dVAR;
1454 SV *val;
1455
1456 PERL_ARGS_ASSERT_HV_FREE_ENT_RET;
1457
1458 val = HeVAL(entry);
1459 if (HeKLEN(entry) == HEf_SVKEY) {
1460 SvREFCNT_dec(HeKEY_sv(entry));
1461 Safefree(HeKEY_hek(entry));
1462 }
1463 else if (HvSHAREKEYS(hv))
1464 unshare_hek(HeKEY_hek(entry));
1465 else
1466 Safefree(HeKEY_hek(entry));
1467 del_HE(entry);
1468 return val;
1469}
1470
1471
1472void
1473Perl_hv_free_ent(pTHX_ HV *hv, HE *entry)
1474{
1475 dVAR;
1476 SV *val;
1477
1478 PERL_ARGS_ASSERT_HV_FREE_ENT;
1479
1480 if (!entry)
1481 return;
1482 val = hv_free_ent_ret(hv, entry);
1483 SvREFCNT_dec(val);
1484}
1485
1486
1487void
1488Perl_hv_delayfree_ent(pTHX_ HV *hv, HE *entry)
1489{
1490 dVAR;
1491
1492 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1493
1494 if (!entry)
1495 return;
1496 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1497 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1498 if (HeKLEN(entry) == HEf_SVKEY) {
1499 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1500 }
1501 hv_free_ent(hv, entry);
1502}
1503
1504/*
1505=for apidoc hv_clear
1506
1507Frees the all the elements of a hash, leaving it empty.
1508The XS equivalent of C<%hash = ()>. See also L</hv_undef>.
1509
1510If any destructors are triggered as a result, the hv itself may
1511be freed.
1512
1513=cut
1514*/
1515
1516void
1517Perl_hv_clear(pTHX_ HV *hv)
1518{
1519 dVAR;
1520 XPVHV* xhv;
1521 if (!hv)
1522 return;
1523
1524 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1525
1526 xhv = (XPVHV*)SvANY(hv);
1527
1528 ENTER;
1529 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1530 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1531 /* restricted hash: convert all keys to placeholders */
1532 STRLEN i;
1533 for (i = 0; i <= xhv->xhv_max; i++) {
1534 HE *entry = (HvARRAY(hv))[i];
1535 for (; entry; entry = HeNEXT(entry)) {
1536 /* not already placeholder */
1537 if (HeVAL(entry) != &PL_sv_placeholder) {
1538 if (HeVAL(entry)) {
1539 if (SvREADONLY(HeVAL(entry))) {
1540 SV* const keysv = hv_iterkeysv(entry);
1541 Perl_croak_nocontext(
1542 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1543 (void*)keysv);
1544 }
1545 SvREFCNT_dec_NN(HeVAL(entry));
1546 }
1547 HeVAL(entry) = &PL_sv_placeholder;
1548 HvPLACEHOLDERS(hv)++;
1549 }
1550 }
1551 }
1552 }
1553 else {
1554 hfreeentries(hv);
1555 HvPLACEHOLDERS_set(hv, 0);
1556
1557 if (SvRMAGICAL(hv))
1558 mg_clear(MUTABLE_SV(hv));
1559
1560 HvHASKFLAGS_off(hv);
1561 }
1562 if (SvOOK(hv)) {
1563 if(HvENAME_get(hv))
1564 mro_isa_changed_in(hv);
1565 HvEITER_set(hv, NULL);
1566 }
1567 LEAVE;
1568}
1569
1570/*
1571=for apidoc hv_clear_placeholders
1572
1573Clears any placeholders from a hash. If a restricted hash has any of its keys
1574marked as readonly and the key is subsequently deleted, the key is not actually
1575deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1576it so it will be ignored by future operations such as iterating over the hash,
1577but will still allow the hash to have a value reassigned to the key at some
1578future point. This function clears any such placeholder keys from the hash.
1579See Hash::Util::lock_keys() for an example of its use.
1580
1581=cut
1582*/
1583
1584void
1585Perl_hv_clear_placeholders(pTHX_ HV *hv)
1586{
1587 dVAR;
1588 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1589
1590 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1591
1592 if (items)
1593 clear_placeholders(hv, items);
1594}
1595
1596static void
1597S_clear_placeholders(pTHX_ HV *hv, U32 items)
1598{
1599 dVAR;
1600 I32 i;
1601
1602 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1603
1604 if (items == 0)
1605 return;
1606
1607 i = HvMAX(hv);
1608 do {
1609 /* Loop down the linked list heads */
1610 HE **oentry = &(HvARRAY(hv))[i];
1611 HE *entry;
1612
1613 while ((entry = *oentry)) {
1614 if (HeVAL(entry) == &PL_sv_placeholder) {
1615 *oentry = HeNEXT(entry);
1616 if (entry == HvEITER_get(hv))
1617 HvLAZYDEL_on(hv);
1618 else {
1619 if (SvOOK(hv) && HvLAZYDEL(hv) &&
1620 entry == HeNEXT(HvAUX(hv)->xhv_eiter))
1621 HeNEXT(HvAUX(hv)->xhv_eiter) = HeNEXT(entry);
1622 hv_free_ent(hv, entry);
1623 }
1624
1625 if (--items == 0) {
1626 /* Finished. */
1627 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1628 if (HvUSEDKEYS(hv) == 0)
1629 HvHASKFLAGS_off(hv);
1630 HvPLACEHOLDERS_set(hv, 0);
1631 return;
1632 }
1633 } else {
1634 oentry = &HeNEXT(entry);
1635 }
1636 }
1637 } while (--i >= 0);
1638 /* You can't get here, hence assertion should always fail. */
1639 assert (items == 0);
1640 assert (0);
1641}
1642
1643STATIC void
1644S_hfreeentries(pTHX_ HV *hv)
1645{
1646 STRLEN index = 0;
1647 XPVHV * const xhv = (XPVHV*)SvANY(hv);
1648 SV *sv;
1649
1650 PERL_ARGS_ASSERT_HFREEENTRIES;
1651
1652 while ((sv = Perl_hfree_next_entry(aTHX_ hv, &index))||xhv->xhv_keys) {
1653 SvREFCNT_dec(sv);
1654 }
1655}
1656
1657
1658/* hfree_next_entry()
1659 * For use only by S_hfreeentries() and sv_clear().
1660 * Delete the next available HE from hv and return the associated SV.
1661 * Returns null on empty hash. Nevertheless null is not a reliable
1662 * indicator that the hash is empty, as the deleted entry may have a
1663 * null value.
1664 * indexp is a pointer to the current index into HvARRAY. The index should
1665 * initially be set to 0. hfree_next_entry() may update it. */
1666
1667SV*
1668Perl_hfree_next_entry(pTHX_ HV *hv, STRLEN *indexp)
1669{
1670 struct xpvhv_aux *iter;
1671 HE *entry;
1672 HE ** array;
1673#ifdef DEBUGGING
1674 STRLEN orig_index = *indexp;
1675#endif
1676
1677 PERL_ARGS_ASSERT_HFREE_NEXT_ENTRY;
1678
1679 if (SvOOK(hv) && ((iter = HvAUX(hv)))) {
1680 if ((entry = iter->xhv_eiter)) {
1681 /* the iterator may get resurrected after each
1682 * destructor call, so check each time */
1683 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1684 HvLAZYDEL_off(hv);
1685 hv_free_ent(hv, entry);
1686 /* warning: at this point HvARRAY may have been
1687 * re-allocated, HvMAX changed etc */
1688 }
1689 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1690 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1691#ifdef PERL_HASH_RANDOMIZE_KEYS
1692 iter->xhv_last_rand = iter->xhv_rand;
1693#endif
1694 }
1695 /* Reset any cached HvFILL() to "unknown". It's unlikely that anyone
1696 will actually call HvFILL() on a hash under destruction, so it
1697 seems pointless attempting to track the number of keys remaining.
1698 But if they do, we want to reset it again. */
1699 if (iter->xhv_fill_lazy)
1700 iter->xhv_fill_lazy = 0;
1701 }
1702
1703 if (!((XPVHV*)SvANY(hv))->xhv_keys)
1704 return NULL;
1705
1706 array = HvARRAY(hv);
1707 assert(array);
1708 while ( ! ((entry = array[*indexp])) ) {
1709 if ((*indexp)++ >= HvMAX(hv))
1710 *indexp = 0;
1711 assert(*indexp != orig_index);
1712 }
1713 array[*indexp] = HeNEXT(entry);
1714 ((XPVHV*) SvANY(hv))->xhv_keys--;
1715
1716 if ( PL_phase != PERL_PHASE_DESTRUCT && HvENAME(hv)
1717 && HeVAL(entry) && isGV(HeVAL(entry))
1718 && GvHV(HeVAL(entry)) && HvENAME(GvHV(HeVAL(entry)))
1719 ) {
1720 STRLEN klen;
1721 const char * const key = HePV(entry,klen);
1722 if ((klen > 1 && key[klen-1]==':' && key[klen-2]==':')
1723 || (klen == 1 && key[0] == ':')) {
1724 mro_package_moved(
1725 NULL, GvHV(HeVAL(entry)),
1726 (GV *)HeVAL(entry), 0
1727 );
1728 }
1729 }
1730 return hv_free_ent_ret(hv, entry);
1731}
1732
1733
1734/*
1735=for apidoc hv_undef
1736
1737Undefines the hash. The XS equivalent of C<undef(%hash)>.
1738
1739As well as freeing all the elements of the hash (like hv_clear()), this
1740also frees any auxiliary data and storage associated with the hash.
1741
1742If any destructors are triggered as a result, the hv itself may
1743be freed.
1744
1745See also L</hv_clear>.
1746
1747=cut
1748*/
1749
1750void
1751Perl_hv_undef_flags(pTHX_ HV *hv, U32 flags)
1752{
1753 dVAR;
1754 XPVHV* xhv;
1755 const bool save = !!SvREFCNT(hv);
1756
1757 if (!hv)
1758 return;
1759 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1760 xhv = (XPVHV*)SvANY(hv);
1761
1762 /* The name must be deleted before the call to hfreeeeentries so that
1763 CVs are anonymised properly. But the effective name must be pre-
1764 served until after that call (and only deleted afterwards if the
1765 call originated from sv_clear). For stashes with one name that is
1766 both the canonical name and the effective name, hv_name_set has to
1767 allocate an array for storing the effective name. We can skip that
1768 during global destruction, as it does not matter where the CVs point
1769 if they will be freed anyway. */
1770 /* note that the code following prior to hfreeentries is duplicated
1771 * in sv_clear(), and changes here should be done there too */
1772 if (PL_phase != PERL_PHASE_DESTRUCT && HvNAME(hv)) {
1773 if (PL_stashcache) {
1774 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for '%"
1775 HEKf"'\n", HvNAME_HEK(hv)));
1776 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1777 }
1778 hv_name_set(hv, NULL, 0, 0);
1779 }
1780 if (save) {
1781 ENTER;
1782 SAVEFREESV(SvREFCNT_inc_simple_NN(hv));
1783 }
1784 hfreeentries(hv);
1785 if (SvOOK(hv)) {
1786 struct xpvhv_aux * const aux = HvAUX(hv);
1787 struct mro_meta *meta;
1788 const char *name;
1789
1790 if (HvENAME_get(hv)) {
1791 if (PL_phase != PERL_PHASE_DESTRUCT)
1792 mro_isa_changed_in(hv);
1793 if (PL_stashcache) {
1794 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for effective name '%"
1795 HEKf"'\n", HvENAME_HEK(hv)));
1796 (void)hv_deletehek(PL_stashcache, HvENAME_HEK(hv), G_DISCARD);
1797 }
1798 }
1799
1800 /* If this call originated from sv_clear, then we must check for
1801 * effective names that need freeing, as well as the usual name. */
1802 name = HvNAME(hv);
1803 if (flags & HV_NAME_SETALL ? !!aux->xhv_name_u.xhvnameu_name : !!name) {
1804 if (name && PL_stashcache) {
1805 DEBUG_o(Perl_deb(aTHX_ "hv_undef_flags clearing PL_stashcache for name '%"
1806 HEKf"'\n", HvNAME_HEK(hv)));
1807 (void)hv_deletehek(PL_stashcache, HvNAME_HEK(hv), G_DISCARD);
1808 }
1809 hv_name_set(hv, NULL, 0, flags);
1810 }
1811 if((meta = aux->xhv_mro_meta)) {
1812 if (meta->mro_linear_all) {
1813 SvREFCNT_dec_NN(meta->mro_linear_all);
1814 /* mro_linear_current is just acting as a shortcut pointer,
1815 hence the else. */
1816 }
1817 else
1818 /* Only the current MRO is stored, so this owns the data.
1819 */
1820 SvREFCNT_dec(meta->mro_linear_current);
1821 SvREFCNT_dec(meta->mro_nextmethod);
1822 SvREFCNT_dec(meta->isa);
1823 SvREFCNT_dec(meta->super);
1824 Safefree(meta);
1825 aux->xhv_mro_meta = NULL;
1826 }
1827 if (!aux->xhv_name_u.xhvnameu_name && ! aux->xhv_backreferences)
1828 SvFLAGS(hv) &= ~SVf_OOK;
1829 }
1830 if (!SvOOK(hv)) {
1831 Safefree(HvARRAY(hv));
1832 xhv->xhv_max = PERL_HASH_DEFAULT_HvMAX; /* HvMAX(hv) = 7 (it's a normal hash) */
1833 HvARRAY(hv) = 0;
1834 }
1835 /* if we're freeing the HV, the SvMAGIC field has been reused for
1836 * other purposes, and so there can't be any placeholder magic */
1837 if (SvREFCNT(hv))
1838 HvPLACEHOLDERS_set(hv, 0);
1839
1840 if (SvRMAGICAL(hv))
1841 mg_clear(MUTABLE_SV(hv));
1842 if (save) LEAVE;
1843}
1844
1845/*
1846=for apidoc hv_fill
1847
1848Returns the number of hash buckets that happen to be in use. This function is
1849wrapped by the macro C<HvFILL>.
1850
1851Previously this value was always stored in the HV structure, which created an
1852overhead on every hash (and pretty much every object) for something that was
1853rarely used. Now we calculate it on demand the first time that it is needed,
1854and cache it if that calculation is going to be costly to repeat. The cached
1855value is updated by insertions and deletions, but (currently) discarded if
1856the hash is split.
1857
1858=cut
1859*/
1860
1861STRLEN
1862Perl_hv_fill(pTHX_ HV *const hv)
1863{
1864 STRLEN count = 0;
1865 HE **ents = HvARRAY(hv);
1866 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : NULL;
1867
1868 PERL_ARGS_ASSERT_HV_FILL;
1869
1870 /* No keys implies no buckets used.
1871 One key can only possibly mean one bucket used. */
1872 if (HvTOTALKEYS(hv) < 2)
1873 return HvTOTALKEYS(hv);
1874
1875#ifndef DEBUGGING
1876 if (aux && aux->xhv_fill_lazy)
1877 return aux->xhv_fill_lazy;
1878#endif
1879
1880 if (ents) {
1881 HE *const *const last = ents + HvMAX(hv);
1882 count = last + 1 - ents;
1883
1884 do {
1885 if (!*ents)
1886 --count;
1887 } while (++ents <= last);
1888 }
1889 if (aux) {
1890#ifdef DEBUGGING
1891 if (aux->xhv_fill_lazy)
1892 assert(aux->xhv_fill_lazy == count);
1893#endif
1894 aux->xhv_fill_lazy = count;
1895 } else if (HvMAX(hv) >= HV_FILL_THRESHOLD) {
1896 aux = hv_auxinit(hv);
1897 aux->xhv_fill_lazy = count;
1898 }
1899 return count;
1900}
1901
1902/* hash a pointer to a U32 - Used in the hash traversal randomization
1903 * and bucket order randomization code
1904 *
1905 * this code was derived from Sereal, which was derived from autobox.
1906 */
1907
1908PERL_STATIC_INLINE U32 S_ptr_hash(PTRV u) {
1909#if PTRSIZE == 8
1910 /*
1911 * This is one of Thomas Wang's hash functions for 64-bit integers from:
1912 * http://www.concentric.net/~Ttwang/tech/inthash.htm
1913 */
1914 u = (~u) + (u << 18);
1915 u = u ^ (u >> 31);
1916 u = u * 21;
1917 u = u ^ (u >> 11);
1918 u = u + (u << 6);
1919 u = u ^ (u >> 22);
1920#else
1921 /*
1922 * This is one of Bob Jenkins' hash functions for 32-bit integers
1923 * from: http://burtleburtle.net/bob/hash/integer.html
1924 */
1925 u = (u + 0x7ed55d16) + (u << 12);
1926 u = (u ^ 0xc761c23c) ^ (u >> 19);
1927 u = (u + 0x165667b1) + (u << 5);
1928 u = (u + 0xd3a2646c) ^ (u << 9);
1929 u = (u + 0xfd7046c5) + (u << 3);
1930 u = (u ^ 0xb55a4f09) ^ (u >> 16);
1931#endif
1932 return (U32)u;
1933}
1934
1935
1936static struct xpvhv_aux*
1937S_hv_auxinit(pTHX_ HV *hv) {
1938 struct xpvhv_aux *iter;
1939 char *array;
1940
1941 PERL_ARGS_ASSERT_HV_AUXINIT;
1942
1943 if (!SvOOK(hv)) {
1944 if (!HvARRAY(hv)) {
1945 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1946 + sizeof(struct xpvhv_aux), char);
1947 } else {
1948 array = (char *) HvARRAY(hv);
1949 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1950 + sizeof(struct xpvhv_aux), char);
1951 }
1952 HvARRAY(hv) = (HE**)array;
1953 SvOOK_on(hv);
1954 iter = HvAUX(hv);
1955#ifdef PERL_HASH_RANDOMIZE_KEYS
1956 if (PL_HASH_RAND_BITS_ENABLED) {
1957 /* mix in some new state to PL_hash_rand_bits to "randomize" the traversal order*/
1958 if (PL_HASH_RAND_BITS_ENABLED == 1)
1959 PL_hash_rand_bits += ptr_hash((PTRV)array);
1960 PL_hash_rand_bits = ROTL_UV(PL_hash_rand_bits,1);
1961 }
1962 iter->xhv_rand = (U32)PL_hash_rand_bits;
1963#endif
1964 } else {
1965 iter = HvAUX(hv);
1966 }
1967
1968 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1969 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1970#ifdef PERL_HASH_RANDOMIZE_KEYS
1971 iter->xhv_last_rand = iter->xhv_rand;
1972#endif
1973 iter->xhv_fill_lazy = 0;
1974 iter->xhv_name_u.xhvnameu_name = 0;
1975 iter->xhv_name_count = 0;
1976 iter->xhv_backreferences = 0;
1977 iter->xhv_mro_meta = NULL;
1978 return iter;
1979}
1980
1981/*
1982=for apidoc hv_iterinit
1983
1984Prepares a starting point to traverse a hash table. Returns the number of
1985keys in the hash (i.e. the same as C<HvUSEDKEYS(hv)>). The return value is
1986currently only meaningful for hashes without tie magic.
1987
1988NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1989hash buckets that happen to be in use. If you still need that esoteric
1990value, you can get it through the macro C<HvFILL(hv)>.
1991
1992
1993=cut
1994*/
1995
1996I32
1997Perl_hv_iterinit(pTHX_ HV *hv)
1998{
1999 PERL_ARGS_ASSERT_HV_ITERINIT;
2000
2001 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
2002
2003 if (!hv)
2004 Perl_croak(aTHX_ "Bad hash");
2005
2006 if (SvOOK(hv)) {
2007 struct xpvhv_aux * const iter = HvAUX(hv);
2008 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
2009 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2010 HvLAZYDEL_off(hv);
2011 hv_free_ent(hv, entry);
2012 }
2013 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2014 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2015#ifdef PERL_HASH_RANDOMIZE_KEYS
2016 iter->xhv_last_rand = iter->xhv_rand;
2017#endif
2018 } else {
2019 hv_auxinit(hv);
2020 }
2021
2022 /* used to be xhv->xhv_fill before 5.004_65 */
2023 return HvTOTALKEYS(hv);
2024}
2025
2026I32 *
2027Perl_hv_riter_p(pTHX_ HV *hv) {
2028 struct xpvhv_aux *iter;
2029
2030 PERL_ARGS_ASSERT_HV_RITER_P;
2031
2032 if (!hv)
2033 Perl_croak(aTHX_ "Bad hash");
2034
2035 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2036 return &(iter->xhv_riter);
2037}
2038
2039HE **
2040Perl_hv_eiter_p(pTHX_ HV *hv) {
2041 struct xpvhv_aux *iter;
2042
2043 PERL_ARGS_ASSERT_HV_EITER_P;
2044
2045 if (!hv)
2046 Perl_croak(aTHX_ "Bad hash");
2047
2048 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2049 return &(iter->xhv_eiter);
2050}
2051
2052void
2053Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
2054 struct xpvhv_aux *iter;
2055
2056 PERL_ARGS_ASSERT_HV_RITER_SET;
2057
2058 if (!hv)
2059 Perl_croak(aTHX_ "Bad hash");
2060
2061 if (SvOOK(hv)) {
2062 iter = HvAUX(hv);
2063 } else {
2064 if (riter == -1)
2065 return;
2066
2067 iter = hv_auxinit(hv);
2068 }
2069 iter->xhv_riter = riter;
2070}
2071
2072void
2073Perl_hv_rand_set(pTHX_ HV *hv, U32 new_xhv_rand) {
2074 struct xpvhv_aux *iter;
2075
2076 PERL_ARGS_ASSERT_HV_RAND_SET;
2077
2078#ifdef PERL_HASH_RANDOMIZE_KEYS
2079 if (!hv)
2080 Perl_croak(aTHX_ "Bad hash");
2081
2082 if (SvOOK(hv)) {
2083 iter = HvAUX(hv);
2084 } else {
2085 iter = hv_auxinit(hv);
2086 }
2087 iter->xhv_rand = new_xhv_rand;
2088#else
2089 Perl_croak(aTHX_ "This Perl has not been built with support for randomized hash key traversal but something called Perl_hv_rand_set().");
2090#endif
2091}
2092
2093void
2094Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
2095 struct xpvhv_aux *iter;
2096
2097 PERL_ARGS_ASSERT_HV_EITER_SET;
2098
2099 if (!hv)
2100 Perl_croak(aTHX_ "Bad hash");
2101
2102 if (SvOOK(hv)) {
2103 iter = HvAUX(hv);
2104 } else {
2105 /* 0 is the default so don't go malloc()ing a new structure just to
2106 hold 0. */
2107 if (!eiter)
2108 return;
2109
2110 iter = hv_auxinit(hv);
2111 }
2112 iter->xhv_eiter = eiter;
2113}
2114
2115void
2116Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2117{
2118 dVAR;
2119 struct xpvhv_aux *iter;
2120 U32 hash;
2121 HEK **spot;
2122
2123 PERL_ARGS_ASSERT_HV_NAME_SET;
2124
2125 if (len > I32_MAX)
2126 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2127
2128 if (SvOOK(hv)) {
2129 iter = HvAUX(hv);
2130 if (iter->xhv_name_u.xhvnameu_name) {
2131 if(iter->xhv_name_count) {
2132 if(flags & HV_NAME_SETALL) {
2133 HEK ** const name = HvAUX(hv)->xhv_name_u.xhvnameu_names;
2134 HEK **hekp = name + (
2135 iter->xhv_name_count < 0
2136 ? -iter->xhv_name_count
2137 : iter->xhv_name_count
2138 );
2139 while(hekp-- > name+1)
2140 unshare_hek_or_pvn(*hekp, 0, 0, 0);
2141 /* The first elem may be null. */
2142 if(*name) unshare_hek_or_pvn(*name, 0, 0, 0);
2143 Safefree(name);
2144 spot = &iter->xhv_name_u.xhvnameu_name;
2145 iter->xhv_name_count = 0;
2146 }
2147 else {
2148 if(iter->xhv_name_count > 0) {
2149 /* shift some things over */
2150 Renew(
2151 iter->xhv_name_u.xhvnameu_names, iter->xhv_name_count + 1, HEK *
2152 );
2153 spot = iter->xhv_name_u.xhvnameu_names;
2154 spot[iter->xhv_name_count] = spot[1];
2155 spot[1] = spot[0];
2156 iter->xhv_name_count = -(iter->xhv_name_count + 1);
2157 }
2158 else if(*(spot = iter->xhv_name_u.xhvnameu_names)) {
2159 unshare_hek_or_pvn(*spot, 0, 0, 0);
2160 }
2161 }
2162 }
2163 else if (flags & HV_NAME_SETALL) {
2164 unshare_hek_or_pvn(iter->xhv_name_u.xhvnameu_name, 0, 0, 0);
2165 spot = &iter->xhv_name_u.xhvnameu_name;
2166 }
2167 else {
2168 HEK * const existing_name = iter->xhv_name_u.xhvnameu_name;
2169 Newx(iter->xhv_name_u.xhvnameu_names, 2, HEK *);
2170 iter->xhv_name_count = -2;
2171 spot = iter->xhv_name_u.xhvnameu_names;
2172 spot[1] = existing_name;
2173 }
2174 }
2175 else { spot = &iter->xhv_name_u.xhvnameu_name; iter->xhv_name_count = 0; }
2176 } else {
2177 if (name == 0)
2178 return;
2179
2180 iter = hv_auxinit(hv);
2181 spot = &iter->xhv_name_u.xhvnameu_name;
2182 }
2183 PERL_HASH(hash, name, len);
2184 *spot = name ? share_hek(name, flags & SVf_UTF8 ? -(I32)len : (I32)len, hash) : NULL;
2185}
2186
2187/*
2188This is basically sv_eq_flags() in sv.c, but we avoid the magic
2189and bytes checking.
2190*/
2191
2192STATIC I32
2193hek_eq_pvn_flags(pTHX_ const HEK *hek, const char* pv, const I32 pvlen, const U32 flags) {
2194 if ( (HEK_UTF8(hek) ? 1 : 0) != (flags & SVf_UTF8 ? 1 : 0) ) {
2195 if (flags & SVf_UTF8)
2196 return (bytes_cmp_utf8(
2197 (const U8*)HEK_KEY(hek), HEK_LEN(hek),
2198 (const U8*)pv, pvlen) == 0);
2199 else
2200 return (bytes_cmp_utf8(
2201 (const U8*)pv, pvlen,
2202 (const U8*)HEK_KEY(hek), HEK_LEN(hek)) == 0);
2203 }
2204 else
2205 return HEK_LEN(hek) == pvlen && ((HEK_KEY(hek) == pv)
2206 || memEQ(HEK_KEY(hek), pv, pvlen));
2207}
2208
2209/*
2210=for apidoc hv_ename_add
2211
2212Adds a name to a stash's internal list of effective names. See
2213C<hv_ename_delete>.
2214
2215This is called when a stash is assigned to a new location in the symbol
2216table.
2217
2218=cut
2219*/
2220
2221void
2222Perl_hv_ename_add(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2223{
2224 dVAR;
2225 struct xpvhv_aux *aux = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2226 U32 hash;
2227
2228 PERL_ARGS_ASSERT_HV_ENAME_ADD;
2229
2230 if (len > I32_MAX)
2231 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2232
2233 PERL_HASH(hash, name, len);
2234
2235 if (aux->xhv_name_count) {
2236 HEK ** const xhv_name = aux->xhv_name_u.xhvnameu_names;
2237 I32 count = aux->xhv_name_count;
2238 HEK **hekp = xhv_name + (count < 0 ? -count : count);
2239 while (hekp-- > xhv_name)
2240 if (
2241 (HEK_UTF8(*hekp) || (flags & SVf_UTF8))
2242 ? hek_eq_pvn_flags(aTHX_ *hekp, name, (I32)len, flags)
2243 : (HEK_LEN(*hekp) == (I32)len && memEQ(HEK_KEY(*hekp), name, len))
2244 ) {
2245 if (hekp == xhv_name && count < 0)
2246 aux->xhv_name_count = -count;
2247 return;
2248 }
2249 if (count < 0) aux->xhv_name_count--, count = -count;
2250 else aux->xhv_name_count++;
2251 Renew(aux->xhv_name_u.xhvnameu_names, count + 1, HEK *);
2252 (aux->xhv_name_u.xhvnameu_names)[count] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2253 }
2254 else {
2255 HEK *existing_name = aux->xhv_name_u.xhvnameu_name;
2256 if (
2257 existing_name && (
2258 (HEK_UTF8(existing_name) || (flags & SVf_UTF8))
2259 ? hek_eq_pvn_flags(aTHX_ existing_name, name, (I32)len, flags)
2260 : (HEK_LEN(existing_name) == (I32)len && memEQ(HEK_KEY(existing_name), name, len))
2261 )
2262 ) return;
2263 Newx(aux->xhv_name_u.xhvnameu_names, 2, HEK *);
2264 aux->xhv_name_count = existing_name ? 2 : -2;
2265 *aux->xhv_name_u.xhvnameu_names = existing_name;
2266 (aux->xhv_name_u.xhvnameu_names)[1] = share_hek(name, (flags & SVf_UTF8 ? -(I32)len : (I32)len), hash);
2267 }
2268}
2269
2270/*
2271=for apidoc hv_ename_delete
2272
2273Removes a name from a stash's internal list of effective names. If this is
2274the name returned by C<HvENAME>, then another name in the list will take
2275its place (C<HvENAME> will use it).
2276
2277This is called when a stash is deleted from the symbol table.
2278
2279=cut
2280*/
2281
2282void
2283Perl_hv_ename_delete(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2284{
2285 dVAR;
2286 struct xpvhv_aux *aux;
2287
2288 PERL_ARGS_ASSERT_HV_ENAME_DELETE;
2289
2290 if (len > I32_MAX)
2291 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2292
2293 if (!SvOOK(hv)) return;
2294
2295 aux = HvAUX(hv);
2296 if (!aux->xhv_name_u.xhvnameu_name) return;
2297
2298 if (aux->xhv_name_count) {
2299 HEK ** const namep = aux->xhv_name_u.xhvnameu_names;
2300 I32 const count = aux->xhv_name_count;
2301 HEK **victim = namep + (count < 0 ? -count : count);
2302 while (victim-- > namep + 1)
2303 if (
2304 (HEK_UTF8(*victim) || (flags & SVf_UTF8))
2305 ? hek_eq_pvn_flags(aTHX_ *victim, name, (I32)len, flags)
2306 : (HEK_LEN(*victim) == (I32)len && memEQ(HEK_KEY(*victim), name, len))
2307 ) {
2308 unshare_hek_or_pvn(*victim, 0, 0, 0);
2309 if (count < 0) ++aux->xhv_name_count;
2310 else --aux->xhv_name_count;
2311 if (
2312 (aux->xhv_name_count == 1 || aux->xhv_name_count == -1)
2313 && !*namep
2314 ) { /* if there are none left */
2315 Safefree(namep);
2316 aux->xhv_name_u.xhvnameu_names = NULL;
2317 aux->xhv_name_count = 0;
2318 }
2319 else {
2320 /* Move the last one back to fill the empty slot. It
2321 does not matter what order they are in. */
2322 *victim = *(namep + (count < 0 ? -count : count) - 1);
2323 }
2324 return;
2325 }
2326 if (
2327 count > 0 && (HEK_UTF8(*namep) || (flags & SVf_UTF8))
2328 ? hek_eq_pvn_flags(aTHX_ *namep, name, (I32)len, flags)
2329 : (HEK_LEN(*namep) == (I32)len && memEQ(HEK_KEY(*namep), name, len))
2330 ) {
2331 aux->xhv_name_count = -count;
2332 }
2333 }
2334 else if(
2335 (HEK_UTF8(aux->xhv_name_u.xhvnameu_name) || (flags & SVf_UTF8))
2336 ? hek_eq_pvn_flags(aTHX_ aux->xhv_name_u.xhvnameu_name, name, (I32)len, flags)
2337 : (HEK_LEN(aux->xhv_name_u.xhvnameu_name) == (I32)len &&
2338 memEQ(HEK_KEY(aux->xhv_name_u.xhvnameu_name), name, len))
2339 ) {
2340 HEK * const namehek = aux->xhv_name_u.xhvnameu_name;
2341 Newx(aux->xhv_name_u.xhvnameu_names, 1, HEK *);
2342 *aux->xhv_name_u.xhvnameu_names = namehek;
2343 aux->xhv_name_count = -1;
2344 }
2345}
2346
2347AV **
2348Perl_hv_backreferences_p(pTHX_ HV *hv) {
2349 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2350
2351 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2352 PERL_UNUSED_CONTEXT;
2353
2354 return &(iter->xhv_backreferences);
2355}
2356
2357void
2358Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2359 AV *av;
2360
2361 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2362
2363 if (!SvOOK(hv))
2364 return;
2365
2366 av = HvAUX(hv)->xhv_backreferences;
2367
2368 if (av) {
2369 HvAUX(hv)->xhv_backreferences = 0;
2370 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2371 if (SvTYPE(av) == SVt_PVAV)
2372 SvREFCNT_dec_NN(av);
2373 }
2374}
2375
2376/*
2377hv_iternext is implemented as a macro in hv.h
2378
2379=for apidoc hv_iternext
2380
2381Returns entries from a hash iterator. See C<hv_iterinit>.
2382
2383You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2384iterator currently points to, without losing your place or invalidating your
2385iterator. Note that in this case the current entry is deleted from the hash
2386with your iterator holding the last reference to it. Your iterator is flagged
2387to free the entry on the next call to C<hv_iternext>, so you must not discard
2388your iterator immediately else the entry will leak - call C<hv_iternext> to
2389trigger the resource deallocation.
2390
2391=for apidoc hv_iternext_flags
2392
2393Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2394The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2395set the placeholders keys (for restricted hashes) will be returned in addition
2396to normal keys. By default placeholders are automatically skipped over.
2397Currently a placeholder is implemented with a value that is
2398C<&PL_sv_placeholder>. Note that the implementation of placeholders and
2399restricted hashes may change, and the implementation currently is
2400insufficiently abstracted for any change to be tidy.
2401
2402=cut
2403*/
2404
2405HE *
2406Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2407{
2408 dVAR;
2409 XPVHV* xhv;
2410 HE *entry;
2411 HE *oldentry;
2412 MAGIC* mg;
2413 struct xpvhv_aux *iter;
2414
2415 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2416
2417 if (!hv)
2418 Perl_croak(aTHX_ "Bad hash");
2419
2420 xhv = (XPVHV*)SvANY(hv);
2421
2422 if (!SvOOK(hv)) {
2423 /* Too many things (well, pp_each at least) merrily assume that you can
2424 call hv_iternext without calling hv_iterinit, so we'll have to deal
2425 with it. */
2426 hv_iterinit(hv);
2427 }
2428 iter = HvAUX(hv);
2429
2430 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2431 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2432 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2433 SV * const key = sv_newmortal();
2434 if (entry) {
2435 sv_setsv(key, HeSVKEY_force(entry));
2436 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2437 HeSVKEY_set(entry, NULL);
2438 }
2439 else {
2440 char *k;
2441 HEK *hek;
2442
2443 /* one HE per MAGICAL hash */
2444 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2445 HvLAZYDEL_on(hv); /* make sure entry gets freed */
2446 Zero(entry, 1, HE);
2447 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2448 hek = (HEK*)k;
2449 HeKEY_hek(entry) = hek;
2450 HeKLEN(entry) = HEf_SVKEY;
2451 }
2452 magic_nextpack(MUTABLE_SV(hv),mg,key);
2453 if (SvOK(key)) {
2454 /* force key to stay around until next time */
2455 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2456 return entry; /* beware, hent_val is not set */
2457 }
2458 SvREFCNT_dec(HeVAL(entry));
2459 Safefree(HeKEY_hek(entry));
2460 del_HE(entry);
2461 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2462 HvLAZYDEL_off(hv);
2463 return NULL;
2464 }
2465 }
2466#if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2467 if (!entry && SvRMAGICAL((const SV *)hv)
2468 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2469 prime_env_iter();
2470#ifdef VMS
2471 /* The prime_env_iter() on VMS just loaded up new hash values
2472 * so the iteration count needs to be reset back to the beginning
2473 */
2474 hv_iterinit(hv);
2475 iter = HvAUX(hv);
2476 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2477#endif
2478 }
2479#endif
2480
2481 /* hv_iterinit now ensures this. */
2482 assert (HvARRAY(hv));
2483
2484 /* At start of hash, entry is NULL. */
2485 if (entry)
2486 {
2487 entry = HeNEXT(entry);
2488 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2489 /*
2490 * Skip past any placeholders -- don't want to include them in
2491 * any iteration.
2492 */
2493 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2494 entry = HeNEXT(entry);
2495 }
2496 }
2497 }
2498
2499#ifdef PERL_HASH_RANDOMIZE_KEYS
2500 if (iter->xhv_last_rand != iter->xhv_rand) {
2501 if (iter->xhv_riter != -1) {
2502 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2503 "Use of each() on hash after insertion without resetting hash iterator results in undefined behavior"
2504 pTHX__FORMAT
2505 pTHX__VALUE);
2506 }
2507 iter->xhv_last_rand = iter->xhv_rand;
2508 }
2509#endif
2510
2511 /* Skip the entire loop if the hash is empty. */
2512 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2513 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2514 while (!entry) {
2515 /* OK. Come to the end of the current list. Grab the next one. */
2516
2517 iter->xhv_riter++; /* HvRITER(hv)++ */
2518 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2519 /* There is no next one. End of the hash. */
2520 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2521#ifdef PERL_HASH_RANDOMIZE_KEYS
2522 iter->xhv_last_rand = iter->xhv_rand; /* reset xhv_last_rand so we can detect inserts during traversal */
2523#endif
2524 break;
2525 }
2526 entry = (HvARRAY(hv))[ PERL_HASH_ITER_BUCKET(iter) & xhv->xhv_max ];
2527
2528 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2529 /* If we have an entry, but it's a placeholder, don't count it.
2530 Try the next. */
2531 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2532 entry = HeNEXT(entry);
2533 }
2534 /* Will loop again if this linked list starts NULL
2535 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2536 or if we run through it and find only placeholders. */
2537 }
2538 }
2539 else {
2540 iter->xhv_riter = -1;
2541#ifdef PERL_HASH_RANDOMIZE_KEYS
2542 iter->xhv_last_rand = iter->xhv_rand;
2543#endif
2544 }
2545
2546 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2547 HvLAZYDEL_off(hv);
2548 hv_free_ent(hv, oldentry);
2549 }
2550
2551 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2552 return entry;
2553}
2554
2555/*
2556=for apidoc hv_iterkey
2557
2558Returns the key from the current position of the hash iterator. See
2559C<hv_iterinit>.
2560
2561=cut
2562*/
2563
2564char *
2565Perl_hv_iterkey(pTHX_ HE *entry, I32 *retlen)
2566{
2567 PERL_ARGS_ASSERT_HV_ITERKEY;
2568
2569 if (HeKLEN(entry) == HEf_SVKEY) {
2570 STRLEN len;
2571 char * const p = SvPV(HeKEY_sv(entry), len);
2572 *retlen = len;
2573 return p;
2574 }
2575 else {
2576 *retlen = HeKLEN(entry);
2577 return HeKEY(entry);
2578 }
2579}
2580
2581/* unlike hv_iterval(), this always returns a mortal copy of the key */
2582/*
2583=for apidoc hv_iterkeysv
2584
2585Returns the key as an C<SV*> from the current position of the hash
2586iterator. The return value will always be a mortal copy of the key. Also
2587see C<hv_iterinit>.
2588
2589=cut
2590*/
2591
2592SV *
2593Perl_hv_iterkeysv(pTHX_ HE *entry)
2594{
2595 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2596
2597 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2598}
2599
2600/*
2601=for apidoc hv_iterval
2602
2603Returns the value from the current position of the hash iterator. See
2604C<hv_iterkey>.
2605
2606=cut
2607*/
2608
2609SV *
2610Perl_hv_iterval(pTHX_ HV *hv, HE *entry)
2611{
2612 PERL_ARGS_ASSERT_HV_ITERVAL;
2613
2614 if (SvRMAGICAL(hv)) {
2615 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2616 SV* const sv = sv_newmortal();
2617 if (HeKLEN(entry) == HEf_SVKEY)
2618 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2619 else
2620 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2621 return sv;
2622 }
2623 }
2624 return HeVAL(entry);
2625}
2626
2627/*
2628=for apidoc hv_iternextsv
2629
2630Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2631operation.
2632
2633=cut
2634*/
2635
2636SV *
2637Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2638{
2639 HE * const he = hv_iternext_flags(hv, 0);
2640
2641 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2642
2643 if (!he)
2644 return NULL;
2645 *key = hv_iterkey(he, retlen);
2646 return hv_iterval(hv, he);
2647}
2648
2649/*
2650
2651Now a macro in hv.h
2652
2653=for apidoc hv_magic
2654
2655Adds magic to a hash. See C<sv_magic>.
2656
2657=cut
2658*/
2659
2660/* possibly free a shared string if no one has access to it
2661 * len and hash must both be valid for str.
2662 */
2663void
2664Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2665{
2666 unshare_hek_or_pvn (NULL, str, len, hash);
2667}
2668
2669
2670void
2671Perl_unshare_hek(pTHX_ HEK *hek)
2672{
2673 assert(hek);
2674 unshare_hek_or_pvn(hek, NULL, 0, 0);
2675}
2676
2677/* possibly free a shared string if no one has access to it
2678 hek if non-NULL takes priority over the other 3, else str, len and hash
2679 are used. If so, len and hash must both be valid for str.
2680 */
2681STATIC void
2682S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2683{
2684 dVAR;
2685 XPVHV* xhv;
2686 HE *entry;
2687 HE **oentry;
2688 bool is_utf8 = FALSE;
2689 int k_flags = 0;
2690 const char * const save = str;
2691 struct shared_he *he = NULL;
2692
2693 if (hek) {
2694 /* Find the shared he which is just before us in memory. */
2695 he = (struct shared_he *)(((char *)hek)
2696 - STRUCT_OFFSET(struct shared_he,
2697 shared_he_hek));
2698
2699 /* Assert that the caller passed us a genuine (or at least consistent)
2700 shared hek */
2701 assert (he->shared_he_he.hent_hek == hek);
2702
2703 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2704 --he->shared_he_he.he_valu.hent_refcount;
2705 return;
2706 }
2707
2708 hash = HEK_HASH(hek);
2709 } else if (len < 0) {
2710 STRLEN tmplen = -len;
2711 is_utf8 = TRUE;
2712 /* See the note in hv_fetch(). --jhi */
2713 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2714 len = tmplen;
2715 if (is_utf8)
2716 k_flags = HVhek_UTF8;
2717 if (str != save)
2718 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2719 }
2720
2721 /* what follows was the moral equivalent of:
2722 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2723 if (--*Svp == NULL)
2724 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2725 } */
2726 xhv = (XPVHV*)SvANY(PL_strtab);
2727 /* assert(xhv_array != 0) */
2728 oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2729 if (he) {
2730 const HE *const he_he = &(he->shared_he_he);
2731 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2732 if (entry == he_he)
2733 break;
2734 }
2735 } else {
2736 const int flags_masked = k_flags & HVhek_MASK;
2737 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2738 if (HeHASH(entry) != hash) /* strings can't be equal */
2739 continue;
2740 if (HeKLEN(entry) != len)
2741 continue;
2742 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2743 continue;
2744 if (HeKFLAGS(entry) != flags_masked)
2745 continue;
2746 break;
2747 }
2748 }
2749
2750 if (entry) {
2751 if (--entry->he_valu.hent_refcount == 0) {
2752 *oentry = HeNEXT(entry);
2753 Safefree(entry);
2754 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2755 }
2756 }
2757
2758 if (!entry)
2759 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2760 "Attempt to free nonexistent shared string '%s'%s"
2761 pTHX__FORMAT,
2762 hek ? HEK_KEY(hek) : str,
2763 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2764 if (k_flags & HVhek_FREEKEY)
2765 Safefree(str);
2766}
2767
2768/* get a (constant) string ptr from the global string table
2769 * string will get added if it is not already there.
2770 * len and hash must both be valid for str.
2771 */
2772HEK *
2773Perl_share_hek(pTHX_ const char *str, I32 len, U32 hash)
2774{
2775 bool is_utf8 = FALSE;
2776 int flags = 0;
2777 const char * const save = str;
2778
2779 PERL_ARGS_ASSERT_SHARE_HEK;
2780
2781 if (len < 0) {
2782 STRLEN tmplen = -len;
2783 is_utf8 = TRUE;
2784 /* See the note in hv_fetch(). --jhi */
2785 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2786 len = tmplen;
2787 /* If we were able to downgrade here, then than means that we were passed
2788 in a key which only had chars 0-255, but was utf8 encoded. */
2789 if (is_utf8)
2790 flags = HVhek_UTF8;
2791 /* If we found we were able to downgrade the string to bytes, then
2792 we should flag that it needs upgrading on keys or each. Also flag
2793 that we need share_hek_flags to free the string. */
2794 if (str != save) {
2795 dVAR;
2796 PERL_HASH(hash, str, len);
2797 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2798 }
2799 }
2800
2801 return share_hek_flags (str, len, hash, flags);
2802}
2803
2804STATIC HEK *
2805S_share_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags)
2806{
2807 dVAR;
2808 HE *entry;
2809 const int flags_masked = flags & HVhek_MASK;
2810 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2811 XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2812
2813 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2814
2815 /* what follows is the moral equivalent of:
2816
2817 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2818 hv_store(PL_strtab, str, len, NULL, hash);
2819
2820 Can't rehash the shared string table, so not sure if it's worth
2821 counting the number of entries in the linked list
2822 */
2823
2824 /* assert(xhv_array != 0) */
2825 entry = (HvARRAY(PL_strtab))[hindex];
2826 for (;entry; entry = HeNEXT(entry)) {
2827 if (HeHASH(entry) != hash) /* strings can't be equal */
2828 continue;
2829 if (HeKLEN(entry) != len)
2830 continue;
2831 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2832 continue;
2833 if (HeKFLAGS(entry) != flags_masked)
2834 continue;
2835 break;
2836 }
2837
2838 if (!entry) {
2839 /* What used to be head of the list.
2840 If this is NULL, then we're the first entry for this slot, which
2841 means we need to increate fill. */
2842 struct shared_he *new_entry;
2843 HEK *hek;
2844 char *k;
2845 HE **const head = &HvARRAY(PL_strtab)[hindex];
2846 HE *const next = *head;
2847
2848 /* We don't actually store a HE from the arena and a regular HEK.
2849 Instead we allocate one chunk of memory big enough for both,
2850 and put the HEK straight after the HE. This way we can find the
2851 HE directly from the HEK.
2852 */
2853
2854 Newx(k, STRUCT_OFFSET(struct shared_he,
2855 shared_he_hek.hek_key[0]) + len + 2, char);
2856 new_entry = (struct shared_he *)k;
2857 entry = &(new_entry->shared_he_he);
2858 hek = &(new_entry->shared_he_hek);
2859
2860 Copy(str, HEK_KEY(hek), len, char);
2861 HEK_KEY(hek)[len] = 0;
2862 HEK_LEN(hek) = len;
2863 HEK_HASH(hek) = hash;
2864 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2865
2866 /* Still "point" to the HEK, so that other code need not know what
2867 we're up to. */
2868 HeKEY_hek(entry) = hek;
2869 entry->he_valu.hent_refcount = 0;
2870 HeNEXT(entry) = next;
2871 *head = entry;
2872
2873 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2874 if (!next) { /* initial entry? */
2875 } else if ( DO_HSPLIT(xhv) ) {
2876 const STRLEN oldsize = xhv->xhv_max + 1;
2877 hsplit(PL_strtab, oldsize, oldsize * 2);
2878 }
2879 }
2880
2881 ++entry->he_valu.hent_refcount;
2882
2883 if (flags & HVhek_FREEKEY)
2884 Safefree(str);
2885
2886 return HeKEY_hek(entry);
2887}
2888
2889SSize_t *
2890Perl_hv_placeholders_p(pTHX_ HV *hv)
2891{
2892 dVAR;
2893 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2894
2895 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2896
2897 if (!mg) {
2898 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2899
2900 if (!mg) {
2901 Perl_die(aTHX_ "panic: hv_placeholders_p");
2902 }
2903 }
2904 return &(mg->mg_len);
2905}
2906
2907
2908I32
2909Perl_hv_placeholders_get(pTHX_ const HV *hv)
2910{
2911 dVAR;
2912 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2913
2914 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2915
2916 return mg ? mg->mg_len : 0;
2917}
2918
2919void
2920Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2921{
2922 dVAR;
2923 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2924
2925 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2926
2927 if (mg) {
2928 mg->mg_len = ph;
2929 } else if (ph) {
2930 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2931 Perl_die(aTHX_ "panic: hv_placeholders_set");
2932 }
2933 /* else we don't need to add magic to record 0 placeholders. */
2934}
2935
2936STATIC SV *
2937S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2938{
2939 dVAR;
2940 SV *value;
2941
2942 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2943
2944 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2945 case HVrhek_undef:
2946 value = newSV(0);
2947 break;
2948 case HVrhek_delete:
2949 value = &PL_sv_placeholder;
2950 break;
2951 case HVrhek_IV:
2952 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2953 break;
2954 case HVrhek_UV:
2955 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2956 break;
2957 case HVrhek_PV:
2958 case HVrhek_PV_UTF8:
2959 /* Create a string SV that directly points to the bytes in our
2960 structure. */
2961 value = newSV_type(SVt_PV);
2962 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2963 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2964 /* This stops anything trying to free it */
2965 SvLEN_set(value, 0);
2966 SvPOK_on(value);
2967 SvREADONLY_on(value);
2968 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2969 SvUTF8_on(value);
2970 break;
2971 default:
2972 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %"UVxf,
2973 (UV)he->refcounted_he_data[0]);
2974 }
2975 return value;
2976}
2977
2978/*
2979=for apidoc m|HV *|refcounted_he_chain_2hv|const struct refcounted_he *c|U32 flags
2980
2981Generates and returns a C<HV *> representing the content of a
2982C<refcounted_he> chain.
2983I<flags> is currently unused and must be zero.
2984
2985=cut
2986*/
2987HV *
2988Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain, U32 flags)
2989{
2990 dVAR;
2991 HV *hv;
2992 U32 placeholders, max;
2993
2994 if (flags)
2995 Perl_croak(aTHX_ "panic: refcounted_he_chain_2hv bad flags %"UVxf,
2996 (UV)flags);
2997
2998 /* We could chase the chain once to get an idea of the number of keys,
2999 and call ksplit. But for now we'll make a potentially inefficient
3000 hash with only 8 entries in its array. */
3001 hv = newHV();
3002 max = HvMAX(hv);
3003 if (!HvARRAY(hv)) {
3004 char *array;
3005 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
3006 HvARRAY(hv) = (HE**)array;
3007 }
3008
3009 placeholders = 0;
3010 while (chain) {
3011#ifdef USE_ITHREADS
3012 U32 hash = chain->refcounted_he_hash;
3013#else
3014 U32 hash = HEK_HASH(chain->refcounted_he_hek);
3015#endif
3016 HE **oentry = &((HvARRAY(hv))[hash & max]);
3017 HE *entry = *oentry;
3018 SV *value;
3019
3020 for (; entry; entry = HeNEXT(entry)) {
3021 if (HeHASH(entry) == hash) {
3022 /* We might have a duplicate key here. If so, entry is older
3023 than the key we've already put in the hash, so if they are
3024 the same, skip adding entry. */
3025#ifdef USE_ITHREADS
3026 const STRLEN klen = HeKLEN(entry);
3027 const char *const key = HeKEY(entry);
3028 if (klen == chain->refcounted_he_keylen
3029 && (!!HeKUTF8(entry)
3030 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
3031 && memEQ(key, REF_HE_KEY(chain), klen))
3032 goto next_please;
3033#else
3034 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
3035 goto next_please;
3036 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
3037 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
3038 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
3039 HeKLEN(entry)))
3040 goto next_please;
3041#endif
3042 }
3043 }
3044 assert (!entry);
3045 entry = new_HE();
3046
3047#ifdef USE_ITHREADS
3048 HeKEY_hek(entry)
3049 = share_hek_flags(REF_HE_KEY(chain),
3050 chain->refcounted_he_keylen,
3051 chain->refcounted_he_hash,
3052 (chain->refcounted_he_data[0]
3053 & (HVhek_UTF8|HVhek_WASUTF8)));
3054#else
3055 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
3056#endif
3057 value = refcounted_he_value(chain);
3058 if (value == &PL_sv_placeholder)
3059 placeholders++;
3060 HeVAL(entry) = value;
3061
3062 /* Link it into the chain. */
3063 HeNEXT(entry) = *oentry;
3064 *oentry = entry;
3065
3066 HvTOTALKEYS(hv)++;
3067
3068 next_please:
3069 chain = chain->refcounted_he_next;
3070 }
3071
3072 if (placeholders) {
3073 clear_placeholders(hv, placeholders);
3074 HvTOTALKEYS(hv) -= placeholders;
3075 }
3076
3077 /* We could check in the loop to see if we encounter any keys with key
3078 flags, but it's probably not worth it, as this per-hash flag is only
3079 really meant as an optimisation for things like Storable. */
3080 HvHASKFLAGS_on(hv);
3081 DEBUG_A(Perl_hv_assert(aTHX_ hv));
3082
3083 return hv;
3084}
3085
3086/*
3087=for apidoc m|SV *|refcounted_he_fetch_pvn|const struct refcounted_he *chain|const char *keypv|STRLEN keylen|U32 hash|U32 flags
3088
3089Search along a C<refcounted_he> chain for an entry with the key specified
3090by I<keypv> and I<keylen>. If I<flags> has the C<REFCOUNTED_HE_KEY_UTF8>
3091bit set, the key octets are interpreted as UTF-8, otherwise they
3092are interpreted as Latin-1. I<hash> is a precomputed hash of the key
3093string, or zero if it has not been precomputed. Returns a mortal scalar
3094representing the value associated with the key, or C<&PL_sv_placeholder>
3095if there is no value associated with the key.
3096
3097=cut
3098*/
3099
3100SV *
3101Perl_refcounted_he_fetch_pvn(pTHX_ const struct refcounted_he *chain,
3102 const char *keypv, STRLEN keylen, U32 hash, U32 flags)
3103{
3104 dVAR;
3105 U8 utf8_flag;
3106 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PVN;
3107
3108 if (flags & ~(REFCOUNTED_HE_KEY_UTF8|REFCOUNTED_HE_EXISTS))
3109 Perl_croak(aTHX_ "panic: refcounted_he_fetch_pvn bad flags %"UVxf,
3110 (UV)flags);
3111 if (!chain)
3112 return &PL_sv_placeholder;
3113 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3114 /* For searching purposes, canonicalise to Latin-1 where possible. */
3115 const char *keyend = keypv + keylen, *p;
3116 STRLEN nonascii_count = 0;
3117 for (p = keypv; p != keyend; p++) {
3118 if (! UTF8_IS_INVARIANT(*p)) {
3119 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3120 goto canonicalised_key;
3121 }
3122 nonascii_count++;
3123 p++;
3124 }
3125 }
3126 if (nonascii_count) {
3127 char *q;
3128 const char *p = keypv, *keyend = keypv + keylen;
3129 keylen -= nonascii_count;
3130 Newx(q, keylen, char);
3131 SAVEFREEPV(q);
3132 keypv = q;
3133 for (; p != keyend; p++, q++) {
3134 U8 c = (U8)*p;
3135 if (UTF8_IS_INVARIANT(c)) {
3136 *q = (char) c;
3137 }
3138 else {
3139 p++;
3140 *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p);
3141 }
3142 }
3143 }
3144 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3145 canonicalised_key: ;
3146 }
3147 utf8_flag = (flags & REFCOUNTED_HE_KEY_UTF8) ? HVhek_UTF8 : 0;
3148 if (!hash)
3149 PERL_HASH(hash, keypv, keylen);
3150
3151 for (; chain; chain = chain->refcounted_he_next) {
3152 if (
3153#ifdef USE_ITHREADS
3154 hash == chain->refcounted_he_hash &&
3155 keylen == chain->refcounted_he_keylen &&
3156 memEQ(REF_HE_KEY(chain), keypv, keylen) &&
3157 utf8_flag == (chain->refcounted_he_data[0] & HVhek_UTF8)
3158#else
3159 hash == HEK_HASH(chain->refcounted_he_hek) &&
3160 keylen == (STRLEN)HEK_LEN(chain->refcounted_he_hek) &&
3161 memEQ(HEK_KEY(chain->refcounted_he_hek), keypv, keylen) &&
3162 utf8_flag == (HEK_FLAGS(chain->refcounted_he_hek) & HVhek_UTF8)
3163#endif
3164 ) {
3165 if (flags & REFCOUNTED_HE_EXISTS)
3166 return (chain->refcounted_he_data[0] & HVrhek_typemask)
3167 == HVrhek_delete
3168 ? NULL : &PL_sv_yes;
3169 return sv_2mortal(refcounted_he_value(chain));
3170 }
3171 }
3172 return flags & REFCOUNTED_HE_EXISTS ? NULL : &PL_sv_placeholder;
3173}
3174
3175/*
3176=for apidoc m|SV *|refcounted_he_fetch_pv|const struct refcounted_he *chain|const char *key|U32 hash|U32 flags
3177
3178Like L</refcounted_he_fetch_pvn>, but takes a nul-terminated string
3179instead of a string/length pair.
3180
3181=cut
3182*/
3183
3184SV *
3185Perl_refcounted_he_fetch_pv(pTHX_ const struct refcounted_he *chain,
3186 const char *key, U32 hash, U32 flags)
3187{
3188 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_PV;
3189 return refcounted_he_fetch_pvn(chain, key, strlen(key), hash, flags);
3190}
3191
3192/*
3193=for apidoc m|SV *|refcounted_he_fetch_sv|const struct refcounted_he *chain|SV *key|U32 hash|U32 flags
3194
3195Like L</refcounted_he_fetch_pvn>, but takes a Perl scalar instead of a
3196string/length pair.
3197
3198=cut
3199*/
3200
3201SV *
3202Perl_refcounted_he_fetch_sv(pTHX_ const struct refcounted_he *chain,
3203 SV *key, U32 hash, U32 flags)
3204{
3205 const char *keypv;
3206 STRLEN keylen;
3207 PERL_ARGS_ASSERT_REFCOUNTED_HE_FETCH_SV;
3208 if (flags & REFCOUNTED_HE_KEY_UTF8)
3209 Perl_croak(aTHX_ "panic: refcounted_he_fetch_sv bad flags %"UVxf,
3210 (UV)flags);
3211 keypv = SvPV_const(key, keylen);
3212 if (SvUTF8(key))
3213 flags |= REFCOUNTED_HE_KEY_UTF8;
3214 if (!hash && SvIsCOW_shared_hash(key))
3215 hash = SvSHARED_HASH(key);
3216 return refcounted_he_fetch_pvn(chain, keypv, keylen, hash, flags);
3217}
3218
3219/*
3220=for apidoc m|struct refcounted_he *|refcounted_he_new_pvn|struct refcounted_he *parent|const char *keypv|STRLEN keylen|U32 hash|SV *value|U32 flags
3221
3222Creates a new C<refcounted_he>. This consists of a single key/value
3223pair and a reference to an existing C<refcounted_he> chain (which may
3224be empty), and thus forms a longer chain. When using the longer chain,
3225the new key/value pair takes precedence over any entry for the same key
3226further along the chain.
3227
3228The new key is specified by I<keypv> and I<keylen>. If I<flags> has
3229the C<REFCOUNTED_HE_KEY_UTF8> bit set, the key octets are interpreted
3230as UTF-8, otherwise they are interpreted as Latin-1. I<hash> is
3231a precomputed hash of the key string, or zero if it has not been
3232precomputed.
3233
3234I<value> is the scalar value to store for this key. I<value> is copied
3235by this function, which thus does not take ownership of any reference
3236to it, and later changes to the scalar will not be reflected in the
3237value visible in the C<refcounted_he>. Complex types of scalar will not
3238be stored with referential integrity, but will be coerced to strings.
3239I<value> may be either null or C<&PL_sv_placeholder> to indicate that no
3240value is to be associated with the key; this, as with any non-null value,
3241takes precedence over the existence of a value for the key further along
3242the chain.
3243
3244I<parent> points to the rest of the C<refcounted_he> chain to be
3245attached to the new C<refcounted_he>. This function takes ownership
3246of one reference to I<parent>, and returns one reference to the new
3247C<refcounted_he>.
3248
3249=cut
3250*/
3251
3252struct refcounted_he *
3253Perl_refcounted_he_new_pvn(pTHX_ struct refcounted_he *parent,
3254 const char *keypv, STRLEN keylen, U32 hash, SV *value, U32 flags)
3255{
3256 dVAR;
3257 STRLEN value_len = 0;
3258 const char *value_p = NULL;
3259 bool is_pv;
3260 char value_type;
3261 char hekflags;
3262 STRLEN key_offset = 1;
3263 struct refcounted_he *he;
3264 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PVN;
3265
3266 if (!value || value == &PL_sv_placeholder) {
3267 value_type = HVrhek_delete;
3268 } else if (SvPOK(value)) {
3269 value_type = HVrhek_PV;
3270 } else if (SvIOK(value)) {
3271 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
3272 } else if (!SvOK(value)) {
3273 value_type = HVrhek_undef;
3274 } else {
3275 value_type = HVrhek_PV;
3276 }
3277 is_pv = value_type == HVrhek_PV;
3278 if (is_pv) {
3279 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
3280 the value is overloaded, and doesn't yet have the UTF-8flag set. */
3281 value_p = SvPV_const(value, value_len);
3282 if (SvUTF8(value))
3283 value_type = HVrhek_PV_UTF8;
3284 key_offset = value_len + 2;
3285 }
3286 hekflags = value_type;
3287
3288 if (flags & REFCOUNTED_HE_KEY_UTF8) {
3289 /* Canonicalise to Latin-1 where possible. */
3290 const char *keyend = keypv + keylen, *p;
3291 STRLEN nonascii_count = 0;
3292 for (p = keypv; p != keyend; p++) {
3293 if (! UTF8_IS_INVARIANT(*p)) {
3294 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, keyend)) {
3295 goto canonicalised_key;
3296 }
3297 nonascii_count++;
3298 p++;
3299 }
3300 }
3301 if (nonascii_count) {
3302 char *q;
3303 const char *p = keypv, *keyend = keypv + keylen;
3304 keylen -= nonascii_count;
3305 Newx(q, keylen, char);
3306 SAVEFREEPV(q);
3307 keypv = q;
3308 for (; p != keyend; p++, q++) {
3309 U8 c = (U8)*p;
3310 if (UTF8_IS_INVARIANT(c)) {
3311 *q = (char) c;
3312 }
3313 else {
3314 p++;
3315 *q = (char) TWO_BYTE_UTF8_TO_NATIVE(c, *p);
3316 }
3317 }
3318 }
3319 flags &= ~REFCOUNTED_HE_KEY_UTF8;
3320 canonicalised_key: ;
3321 }
3322 if (flags & REFCOUNTED_HE_KEY_UTF8)
3323 hekflags |= HVhek_UTF8;
3324 if (!hash)
3325 PERL_HASH(hash, keypv, keylen);
3326
3327#ifdef USE_ITHREADS
3328 he = (struct refcounted_he*)
3329 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3330 + keylen
3331 + key_offset);
3332#else
3333 he = (struct refcounted_he*)
3334 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
3335 + key_offset);
3336#endif
3337
3338 he->refcounted_he_next = parent;
3339
3340 if (is_pv) {
3341 Copy(value_p, he->refcounted_he_data + 1, value_len + 1, char);
3342 he->refcounted_he_val.refcounted_he_u_len = value_len;
3343 } else if (value_type == HVrhek_IV) {
3344 he->refcounted_he_val.refcounted_he_u_iv = SvIVX(value);
3345 } else if (value_type == HVrhek_UV) {
3346 he->refcounted_he_val.refcounted_he_u_uv = SvUVX(value);
3347 }
3348
3349#ifdef USE_ITHREADS
3350 he->refcounted_he_hash = hash;
3351 he->refcounted_he_keylen = keylen;
3352 Copy(keypv, he->refcounted_he_data + key_offset, keylen, char);
3353#else
3354 he->refcounted_he_hek = share_hek_flags(keypv, keylen, hash, hekflags);
3355#endif
3356
3357 he->refcounted_he_data[0] = hekflags;
3358 he->refcounted_he_refcnt = 1;
3359
3360 return he;
3361}
3362
3363/*
3364=for apidoc m|struct refcounted_he *|refcounted_he_new_pv|struct refcounted_he *parent|const char *key|U32 hash|SV *value|U32 flags
3365
3366Like L</refcounted_he_new_pvn>, but takes a nul-terminated string instead
3367of a string/length pair.
3368
3369=cut
3370*/
3371
3372struct refcounted_he *
3373Perl_refcounted_he_new_pv(pTHX_ struct refcounted_he *parent,
3374 const char *key, U32 hash, SV *value, U32 flags)
3375{
3376 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_PV;
3377 return refcounted_he_new_pvn(parent, key, strlen(key), hash, value, flags);
3378}
3379
3380/*
3381=for apidoc m|struct refcounted_he *|refcounted_he_new_sv|struct refcounted_he *parent|SV *key|U32 hash|SV *value|U32 flags
3382
3383Like L</refcounted_he_new_pvn>, but takes a Perl scalar instead of a
3384string/length pair.
3385
3386=cut
3387*/
3388
3389struct refcounted_he *
3390Perl_refcounted_he_new_sv(pTHX_ struct refcounted_he *parent,
3391 SV *key, U32 hash, SV *value, U32 flags)
3392{
3393 const char *keypv;
3394 STRLEN keylen;
3395 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_SV;
3396 if (flags & REFCOUNTED_HE_KEY_UTF8)
3397 Perl_croak(aTHX_ "panic: refcounted_he_new_sv bad flags %"UVxf,
3398 (UV)flags);
3399 keypv = SvPV_const(key, keylen);
3400 if (SvUTF8(key))
3401 flags |= REFCOUNTED_HE_KEY_UTF8;
3402 if (!hash && SvIsCOW_shared_hash(key))
3403 hash = SvSHARED_HASH(key);
3404 return refcounted_he_new_pvn(parent, keypv, keylen, hash, value, flags);
3405}
3406
3407/*
3408=for apidoc m|void|refcounted_he_free|struct refcounted_he *he
3409
3410Decrements the reference count of a C<refcounted_he> by one. If the
3411reference count reaches zero the structure's memory is freed, which
3412(recursively) causes a reduction of its parent C<refcounted_he>'s
3413reference count. It is safe to pass a null pointer to this function:
3414no action occurs in this case.
3415
3416=cut
3417*/
3418
3419void
3420Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
3421 dVAR;
3422 PERL_UNUSED_CONTEXT;
3423
3424 while (he) {
3425 struct refcounted_he *copy;
3426 U32 new_count;
3427
3428 HINTS_REFCNT_LOCK;
3429 new_count = --he->refcounted_he_refcnt;
3430 HINTS_REFCNT_UNLOCK;
3431
3432 if (new_count) {
3433 return;
3434 }
3435
3436#ifndef USE_ITHREADS
3437 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
3438#endif
3439 copy = he;
3440 he = he->refcounted_he_next;
3441 PerlMemShared_free(copy);
3442 }
3443}
3444
3445/*
3446=for apidoc m|struct refcounted_he *|refcounted_he_inc|struct refcounted_he *he
3447
3448Increment the reference count of a C<refcounted_he>. The pointer to the
3449C<refcounted_he> is also returned. It is safe to pass a null pointer
3450to this function: no action occurs and a null pointer is returned.
3451
3452=cut
3453*/
3454
3455struct refcounted_he *
3456Perl_refcounted_he_inc(pTHX_ struct refcounted_he *he)
3457{
3458 dVAR;
3459 if (he) {
3460 HINTS_REFCNT_LOCK;
3461 he->refcounted_he_refcnt++;
3462 HINTS_REFCNT_UNLOCK;
3463 }
3464 return he;
3465}
3466
3467/*
3468=for apidoc cop_fetch_label
3469
3470Returns the label attached to a cop.
3471The flags pointer may be set to C<SVf_UTF8> or 0.
3472
3473=cut
3474*/
3475
3476/* pp_entereval is aware that labels are stored with a key ':' at the top of
3477 the linked list. */
3478const char *
3479Perl_cop_fetch_label(pTHX_ COP *const cop, STRLEN *len, U32 *flags) {
3480 struct refcounted_he *const chain = cop->cop_hints_hash;
3481
3482 PERL_ARGS_ASSERT_COP_FETCH_LABEL;
3483
3484 if (!chain)
3485 return NULL;
3486#ifdef USE_ITHREADS
3487 if (chain->refcounted_he_keylen != 1)
3488 return NULL;
3489 if (*REF_HE_KEY(chain) != ':')
3490 return NULL;
3491#else
3492 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
3493 return NULL;
3494 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
3495 return NULL;
3496#endif
3497 /* Stop anyone trying to really mess us up by adding their own value for
3498 ':' into %^H */
3499 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
3500 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3501 return NULL;
3502
3503 if (len)
3504 *len = chain->refcounted_he_val.refcounted_he_u_len;
3505 if (flags) {
3506 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3507 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3508 }
3509 return chain->refcounted_he_data + 1;
3510}
3511
3512/*
3513=for apidoc cop_store_label
3514
3515Save a label into a C<cop_hints_hash>. You need to set flags to C<SVf_UTF8>
3516for a utf-8 label.
3517
3518=cut
3519*/
3520
3521void
3522Perl_cop_store_label(pTHX_ COP *const cop, const char *label, STRLEN len,
3523 U32 flags)
3524{
3525 SV *labelsv;
3526 PERL_ARGS_ASSERT_COP_STORE_LABEL;
3527
3528 if (flags & ~(SVf_UTF8))
3529 Perl_croak(aTHX_ "panic: cop_store_label illegal flag bits 0x%" UVxf,
3530 (UV)flags);
3531 labelsv = newSVpvn_flags(label, len, SVs_TEMP);
3532 if (flags & SVf_UTF8)
3533 SvUTF8_on(labelsv);
3534 cop->cop_hints_hash
3535 = refcounted_he_new_pvs(cop->cop_hints_hash, ":", labelsv, 0);
3536}
3537
3538/*
3539=for apidoc hv_assert
3540
3541Check that a hash is in an internally consistent state.
3542
3543=cut
3544*/
3545
3546#ifdef DEBUGGING
3547
3548void
3549Perl_hv_assert(pTHX_ HV *hv)
3550{
3551 dVAR;
3552 HE* entry;
3553 int withflags = 0;
3554 int placeholders = 0;
3555 int real = 0;
3556 int bad = 0;
3557 const I32 riter = HvRITER_get(hv);
3558 HE *eiter = HvEITER_get(hv);
3559
3560 PERL_ARGS_ASSERT_HV_ASSERT;
3561
3562 (void)hv_iterinit(hv);
3563
3564 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3565 /* sanity check the values */
3566 if (HeVAL(entry) == &PL_sv_placeholder)
3567 placeholders++;
3568 else
3569 real++;
3570 /* sanity check the keys */
3571 if (HeSVKEY(entry)) {
3572 NOOP; /* Don't know what to check on SV keys. */
3573 } else if (HeKUTF8(entry)) {
3574 withflags++;
3575 if (HeKWASUTF8(entry)) {
3576 PerlIO_printf(Perl_debug_log,
3577 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3578 (int) HeKLEN(entry), HeKEY(entry));
3579 bad = 1;
3580 }
3581 } else if (HeKWASUTF8(entry))
3582 withflags++;
3583 }
3584 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3585 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3586 const int nhashkeys = HvUSEDKEYS(hv);
3587 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3588
3589 if (nhashkeys != real) {
3590 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3591 bad = 1;
3592 }
3593 if (nhashplaceholders != placeholders) {
3594 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3595 bad = 1;
3596 }
3597 }
3598 if (withflags && ! HvHASKFLAGS(hv)) {
3599 PerlIO_printf(Perl_debug_log,
3600 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3601 withflags);
3602 bad = 1;
3603 }
3604 if (bad) {
3605 sv_dump(MUTABLE_SV(hv));
3606 }
3607 HvRITER_set(hv, riter); /* Restore hash iterator state */
3608 HvEITER_set(hv, eiter);
3609}
3610
3611#endif
3612
3613/*
3614 * Local variables:
3615 * c-indentation-style: bsd
3616 * c-basic-offset: 4
3617 * indent-tabs-mode: nil
3618 * End:
3619 *
3620 * ex: set ts=8 sts=4 sw=4 et:
3621 */