This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
[perl #41587] [PATCH] 5.8.8 make sure we get the proper ldflags on libperl.so
[perl5.git] / lib / Benchmark.pm
... / ...
CommitLineData
1package Benchmark;
2
3use strict;
4
5
6=head1 NAME
7
8Benchmark - benchmark running times of Perl code
9
10=head1 SYNOPSIS
11
12 use Benchmark qw(:all) ;
13
14 timethis ($count, "code");
15
16 # Use Perl code in strings...
17 timethese($count, {
18 'Name1' => '...code1...',
19 'Name2' => '...code2...',
20 });
21
22 # ... or use subroutine references.
23 timethese($count, {
24 'Name1' => sub { ...code1... },
25 'Name2' => sub { ...code2... },
26 });
27
28 # cmpthese can be used both ways as well
29 cmpthese($count, {
30 'Name1' => '...code1...',
31 'Name2' => '...code2...',
32 });
33
34 cmpthese($count, {
35 'Name1' => sub { ...code1... },
36 'Name2' => sub { ...code2... },
37 });
38
39 # ...or in two stages
40 $results = timethese($count,
41 {
42 'Name1' => sub { ...code1... },
43 'Name2' => sub { ...code2... },
44 },
45 'none'
46 );
47 cmpthese( $results ) ;
48
49 $t = timeit($count, '...other code...')
50 print "$count loops of other code took:",timestr($t),"\n";
51
52 $t = countit($time, '...other code...')
53 $count = $t->iters ;
54 print "$count loops of other code took:",timestr($t),"\n";
55
56 # enable hires wallclock timing if possible
57 use Benchmark ':hireswallclock';
58
59=head1 DESCRIPTION
60
61The Benchmark module encapsulates a number of routines to help you
62figure out how long it takes to execute some code.
63
64timethis - run a chunk of code several times
65
66timethese - run several chunks of code several times
67
68cmpthese - print results of timethese as a comparison chart
69
70timeit - run a chunk of code and see how long it goes
71
72countit - see how many times a chunk of code runs in a given time
73
74
75=head2 Methods
76
77=over 10
78
79=item new
80
81Returns the current time. Example:
82
83 use Benchmark;
84 $t0 = new Benchmark;
85 # ... your code here ...
86 $t1 = new Benchmark;
87 $td = timediff($t1, $t0);
88 print "the code took:",timestr($td),"\n";
89
90=item debug
91
92Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
93
94 debug Benchmark 1;
95 $t = timeit(10, ' 5 ** $Global ');
96 debug Benchmark 0;
97
98=item iters
99
100Returns the number of iterations.
101
102=back
103
104=head2 Standard Exports
105
106The following routines will be exported into your namespace
107if you use the Benchmark module:
108
109=over 10
110
111=item timeit(COUNT, CODE)
112
113Arguments: COUNT is the number of times to run the loop, and CODE is
114the code to run. CODE may be either a code reference or a string to
115be eval'd; either way it will be run in the caller's package.
116
117Returns: a Benchmark object.
118
119=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
120
121Time COUNT iterations of CODE. CODE may be a string to eval or a
122code reference; either way the CODE will run in the caller's package.
123Results will be printed to STDOUT as TITLE followed by the times.
124TITLE defaults to "timethis COUNT" if none is provided. STYLE
125determines the format of the output, as described for timestr() below.
126
127The COUNT can be zero or negative: this means the I<minimum number of
128CPU seconds> to run. A zero signifies the default of 3 seconds. For
129example to run at least for 10 seconds:
130
131 timethis(-10, $code)
132
133or to run two pieces of code tests for at least 3 seconds:
134
135 timethese(0, { test1 => '...', test2 => '...'})
136
137CPU seconds is, in UNIX terms, the user time plus the system time of
138the process itself, as opposed to the real (wallclock) time and the
139time spent by the child processes. Less than 0.1 seconds is not
140accepted (-0.01 as the count, for example, will cause a fatal runtime
141exception).
142
143Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144other operating system factors may complicate the attempt so that a
145little bit more time is spent. The benchmark output will, however,
146also tell the number of C<$code> runs/second, which should be a more
147interesting number than the actually spent seconds.
148
149Returns a Benchmark object.
150
151=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
152
153The CODEHASHREF is a reference to a hash containing names as keys
154and either a string to eval or a code reference for each value.
155For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156call
157
158 timethis(COUNT, VALUE, KEY, STYLE)
159
160The routines are called in string comparison order of KEY.
161
162The COUNT can be zero or negative, see timethis().
163
164Returns a hash reference of Benchmark objects, keyed by name.
165
166=item timediff ( T1, T2 )
167
168Returns the difference between two Benchmark times as a Benchmark
169object suitable for passing to timestr().
170
171=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
172
173Returns a string that formats the times in the TIMEDIFF object in
174the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175similar to that returned by timediff().
176
177STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178each of the 5 times available ('wallclock' time, user time, system time,
179user time of children, and system time of children). 'noc' shows all
180except the two children times. 'nop' shows only wallclock and the
181two children times. 'auto' (the default) will act as 'all' unless
182the children times are both zero, in which case it acts as 'noc'.
183'none' prevents output.
184
185FORMAT is the L<printf(3)>-style format specifier (without the
186leading '%') to use to print the times. It defaults to '5.2f'.
187
188=back
189
190=head2 Optional Exports
191
192The following routines will be exported into your namespace
193if you specifically ask that they be imported:
194
195=over 10
196
197=item clearcache ( COUNT )
198
199Clear the cached time for COUNT rounds of the null loop.
200
201=item clearallcache ( )
202
203Clear all cached times.
204
205=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
206
207=item cmpthese ( RESULTSHASHREF, [ STYLE ] )
208
209Optionally calls timethese(), then outputs comparison chart. This:
210
211 cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
212
213outputs a chart like:
214
215 Rate b a
216 b 2831802/s -- -61%
217 a 7208959/s 155% --
218
219This chart is sorted from slowest to fastest, and shows the percent speed
220difference between each pair of tests.
221
222c<cmpthese> can also be passed the data structure that timethese() returns:
223
224 $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
225 cmpthese( $results );
226
227in case you want to see both sets of results.
228If the first argument is an unblessed hash reference,
229that is RESULTSHASHREF; otherwise that is COUNT.
230
231Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
232above chart, including labels. This:
233
234 my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" );
235
236returns a data structure like:
237
238 [
239 [ '', 'Rate', 'b', 'a' ],
240 [ 'b', '2885232/s', '--', '-59%' ],
241 [ 'a', '7099126/s', '146%', '--' ],
242 ]
243
244B<NOTE>: This result value differs from previous versions, which returned
245the C<timethese()> result structure. If you want that, just use the two
246statement C<timethese>...C<cmpthese> idiom shown above.
247
248Incidently, note the variance in the result values between the two examples;
249this is typical of benchmarking. If this were a real benchmark, you would
250probably want to run a lot more iterations.
251
252=item countit(TIME, CODE)
253
254Arguments: TIME is the minimum length of time to run CODE for, and CODE is
255the code to run. CODE may be either a code reference or a string to
256be eval'd; either way it will be run in the caller's package.
257
258TIME is I<not> negative. countit() will run the loop many times to
259calculate the speed of CODE before running it for TIME. The actual
260time run for will usually be greater than TIME due to system clock
261resolution, so it's best to look at the number of iterations divided
262by the times that you are concerned with, not just the iterations.
263
264Returns: a Benchmark object.
265
266=item disablecache ( )
267
268Disable caching of timings for the null loop. This will force Benchmark
269to recalculate these timings for each new piece of code timed.
270
271=item enablecache ( )
272
273Enable caching of timings for the null loop. The time taken for COUNT
274rounds of the null loop will be calculated only once for each
275different COUNT used.
276
277=item timesum ( T1, T2 )
278
279Returns the sum of two Benchmark times as a Benchmark object suitable
280for passing to timestr().
281
282=back
283
284=head2 :hireswallclock
285
286If the Time::HiRes module has been installed, you can specify the
287special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
288available, the tag will be silently ignored). This tag will cause the
289wallclock time to be measured in microseconds, instead of integer
290seconds. Note though that the speed computations are still conducted
291in CPU time, not wallclock time.
292
293=head1 NOTES
294
295The data is stored as a list of values from the time and times
296functions:
297
298 ($real, $user, $system, $children_user, $children_system, $iters)
299
300in seconds for the whole loop (not divided by the number of rounds).
301
302The timing is done using time(3) and times(3).
303
304Code is executed in the caller's package.
305
306The time of the null loop (a loop with the same
307number of rounds but empty loop body) is subtracted
308from the time of the real loop.
309
310The null loop times can be cached, the key being the
311number of rounds. The caching can be controlled using
312calls like these:
313
314 clearcache($key);
315 clearallcache();
316
317 disablecache();
318 enablecache();
319
320Caching is off by default, as it can (usually slightly) decrease
321accuracy and does not usually noticably affect runtimes.
322
323=head1 EXAMPLES
324
325For example,
326
327 use Benchmark qw( cmpthese ) ;
328 $x = 3;
329 cmpthese( -5, {
330 a => sub{$x*$x},
331 b => sub{$x**2},
332 } );
333
334outputs something like this:
335
336 Benchmark: running a, b, each for at least 5 CPU seconds...
337 Rate b a
338 b 1559428/s -- -62%
339 a 4152037/s 166% --
340
341
342while
343
344 use Benchmark qw( timethese cmpthese ) ;
345 $x = 3;
346 $r = timethese( -5, {
347 a => sub{$x*$x},
348 b => sub{$x**2},
349 } );
350 cmpthese $r;
351
352outputs something like this:
353
354 Benchmark: running a, b, each for at least 5 CPU seconds...
355 a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743)
356 b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452)
357 Rate b a
358 b 1574945/s -- -59%
359 a 3835056/s 144% --
360
361
362=head1 INHERITANCE
363
364Benchmark inherits from no other class, except of course
365for Exporter.
366
367=head1 CAVEATS
368
369Comparing eval'd strings with code references will give you
370inaccurate results: a code reference will show a slightly slower
371execution time than the equivalent eval'd string.
372
373The real time timing is done using time(2) and
374the granularity is therefore only one second.
375
376Short tests may produce negative figures because perl
377can appear to take longer to execute the empty loop
378than a short test; try:
379
380 timethis(100,'1');
381
382The system time of the null loop might be slightly
383more than the system time of the loop with the actual
384code and therefore the difference might end up being E<lt> 0.
385
386=head1 SEE ALSO
387
388L<Devel::DProf> - a Perl code profiler
389
390=head1 AUTHORS
391
392Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
393
394=head1 MODIFICATION HISTORY
395
396September 8th, 1994; by Tim Bunce.
397
398March 28th, 1997; by Hugo van der Sanden: added support for code
399references and the already documented 'debug' method; revamped
400documentation.
401
402April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
403functionality.
404
405September, 1999; by Barrie Slaymaker: math fixes and accuracy and
406efficiency tweaks. Added cmpthese(). A result is now returned from
407timethese(). Exposed countit() (was runfor()).
408
409December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
410and return an empty string. If cmpthese is calling timethese, make it pass the
411style in. (so that 'none' will suppress output). Make sub new dump its
412debugging output to STDERR, to be consistent with everything else.
413All bugs found while writing a regression test.
414
415September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
416
417February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
418statistics for children instead of parent when the style is 'nop'.
419
420November, 2007; by Christophe Grosjean: make cmpthese and timestr compute
421time consistently with style argument, default is 'all' not 'noc' any more.
422
423=cut
424
425# evaluate something in a clean lexical environment
426sub _doeval { no strict; eval shift }
427
428#
429# put any lexicals at file scope AFTER here
430#
431
432use Carp;
433use Exporter;
434
435our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
436
437@ISA=qw(Exporter);
438@EXPORT=qw(timeit timethis timethese timediff timestr);
439@EXPORT_OK=qw(timesum cmpthese countit
440 clearcache clearallcache disablecache enablecache);
441%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
442
443$VERSION = 1.10;
444
445# --- ':hireswallclock' special handling
446
447my $hirestime;
448
449sub mytime () { time }
450
451init();
452
453sub BEGIN {
454 if (eval 'require Time::HiRes') {
455 import Time::HiRes qw(time);
456 $hirestime = \&Time::HiRes::time;
457 }
458}
459
460sub import {
461 my $class = shift;
462 if (grep { $_ eq ":hireswallclock" } @_) {
463 @_ = grep { $_ ne ":hireswallclock" } @_;
464 local $^W=0;
465 *mytime = $hirestime if defined $hirestime;
466 }
467 Benchmark->export_to_level(1, $class, @_);
468}
469
470our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
471 %_Usage, %Cache, $Do_Cache);
472
473sub init {
474 $Debug = 0;
475 $Min_Count = 4;
476 $Min_CPU = 0.4;
477 $Default_Format = '5.2f';
478 $Default_Style = 'auto';
479 # The cache can cause a slight loss of sys time accuracy. If a
480 # user does many tests (>10) with *very* large counts (>10000)
481 # or works on a very slow machine the cache may be useful.
482 disablecache();
483 clearallcache();
484}
485
486sub debug { $Debug = ($_[1] != 0); }
487
488sub usage {
489 my $calling_sub = (caller(1))[3];
490 $calling_sub =~ s/^Benchmark:://;
491 return $_Usage{$calling_sub} || '';
492}
493
494# The cache needs two branches: 's' for strings and 'c' for code. The
495# empty loop is different in these two cases.
496
497$_Usage{clearcache} = <<'USAGE';
498usage: clearcache($count);
499USAGE
500
501sub clearcache {
502 die usage unless @_ == 1;
503 delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
504}
505
506$_Usage{clearallcache} = <<'USAGE';
507usage: clearallcache();
508USAGE
509
510sub clearallcache {
511 die usage if @_;
512 %Cache = ();
513}
514
515$_Usage{enablecache} = <<'USAGE';
516usage: enablecache();
517USAGE
518
519sub enablecache {
520 die usage if @_;
521 $Do_Cache = 1;
522}
523
524$_Usage{disablecache} = <<'USAGE';
525usage: disablecache();
526USAGE
527
528sub disablecache {
529 die usage if @_;
530 $Do_Cache = 0;
531}
532
533
534# --- Functions to process the 'time' data type
535
536sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
537 print STDERR "new=@t\n" if $Debug;
538 bless \@t; }
539
540sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps ; }
541sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $cu+$cs ; }
542sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
543sub real { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r ; }
544sub iters { $_[0]->[5] ; }
545
546
547$_Usage{timediff} = <<'USAGE';
548usage: $result_diff = timediff($result1, $result2);
549USAGE
550
551sub timediff {
552 my($a, $b) = @_;
553
554 die usage unless ref $a and ref $b;
555
556 my @r;
557 for (my $i=0; $i < @$a; ++$i) {
558 push(@r, $a->[$i] - $b->[$i]);
559 }
560 #die "Bad timediff(): ($r[1] + $r[2]) <= 0 (@$a[1,2]|@$b[1,2])\n"
561 # if ($r[1] + $r[2]) < 0;
562 bless \@r;
563}
564
565$_Usage{timesum} = <<'USAGE';
566usage: $sum = timesum($result1, $result2);
567USAGE
568
569sub timesum {
570 my($a, $b) = @_;
571
572 die usage unless ref $a and ref $b;
573
574 my @r;
575 for (my $i=0; $i < @$a; ++$i) {
576 push(@r, $a->[$i] + $b->[$i]);
577 }
578 bless \@r;
579}
580
581
582$_Usage{timestr} = <<'USAGE';
583usage: $formatted_result = timestr($result1);
584USAGE
585
586sub timestr {
587 my($tr, $style, $f) = @_;
588
589 die usage unless ref $tr;
590
591 my @t = @$tr;
592 warn "bad time value (@t)" unless @t==6;
593 my($r, $pu, $ps, $cu, $cs, $n) = @t;
594 my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
595 $f = $Default_Format unless defined $f;
596 # format a time in the required style, other formats may be added here
597 $style ||= $Default_Style;
598 return '' if $style eq 'none';
599 $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
600 my $s = "@t $style"; # default for unknown style
601 my $w = $hirestime ? "%2g" : "%2d";
602 $s = sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
603 $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
604 $s = sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
605 $r,$pu,$ps,$pt) if $style eq 'noc';
606 $s = sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
607 $r,$cu,$cs,$ct) if $style eq 'nop';
608 my $elapsed = do {
609 if ($style eq 'nop') {$cu+$cs}
610 elsif ($style eq 'noc') {$pu+$ps}
611 else {$cu+$cs+$pu+$ps}
612 };
613 $s .= sprintf(" @ %$f/s (n=$n)",$n/($elapsed)) if $n && $elapsed;
614 $s;
615}
616
617sub timedebug {
618 my($msg, $t) = @_;
619 print STDERR "$msg",timestr($t),"\n" if $Debug;
620}
621
622# --- Functions implementing low-level support for timing loops
623
624$_Usage{runloop} = <<'USAGE';
625usage: runloop($number, [$string | $coderef])
626USAGE
627
628sub runloop {
629 my($n, $c) = @_;
630
631 $n+=0; # force numeric now, so garbage won't creep into the eval
632 croak "negative loopcount $n" if $n<0;
633 confess usage unless defined $c;
634 my($t0, $t1, $td); # before, after, difference
635
636 # find package of caller so we can execute code there
637 my($curpack) = caller(0);
638 my($i, $pack)= 0;
639 while (($pack) = caller(++$i)) {
640 last if $pack ne $curpack;
641 }
642
643 my ($subcode, $subref);
644 if (ref $c eq 'CODE') {
645 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
646 $subref = eval $subcode;
647 }
648 else {
649 $subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
650 $subref = _doeval($subcode);
651 }
652 croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
653 print STDERR "runloop $n '$subcode'\n" if $Debug;
654
655 # Wait for the user timer to tick. This makes the error range more like
656 # -0.01, +0. If we don't wait, then it's more like -0.01, +0.01. This
657 # may not seem important, but it significantly reduces the chances of
658 # getting a too low initial $n in the initial, 'find the minimum' loop
659 # in &countit. This, in turn, can reduce the number of calls to
660 # &runloop a lot, and thus reduce additive errors.
661 my $tbase = Benchmark->new(0)->[1];
662 while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ;
663 $subref->();
664 $t1 = Benchmark->new($n);
665 $td = &timediff($t1, $t0);
666 timedebug("runloop:",$td);
667 $td;
668}
669
670$_Usage{timeit} = <<'USAGE';
671usage: $result = timeit($count, 'code' ); or
672 $result = timeit($count, sub { code } );
673USAGE
674
675sub timeit {
676 my($n, $code) = @_;
677 my($wn, $wc, $wd);
678
679 die usage unless defined $code and
680 (!ref $code or ref $code eq 'CODE');
681
682 printf STDERR "timeit $n $code\n" if $Debug;
683 my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
684 if ($Do_Cache && exists $Cache{$cache_key} ) {
685 $wn = $Cache{$cache_key};
686 } else {
687 $wn = &runloop($n, ref( $code ) ? sub { } : '' );
688 # Can't let our baseline have any iterations, or they get subtracted
689 # out of the result.
690 $wn->[5] = 0;
691 $Cache{$cache_key} = $wn;
692 }
693
694 $wc = &runloop($n, $code);
695
696 $wd = timediff($wc, $wn);
697 timedebug("timeit: ",$wc);
698 timedebug(" - ",$wn);
699 timedebug(" = ",$wd);
700
701 $wd;
702}
703
704
705my $default_for = 3;
706my $min_for = 0.1;
707
708
709$_Usage{countit} = <<'USAGE';
710usage: $result = countit($time, 'code' ); or
711 $result = countit($time, sub { code } );
712USAGE
713
714sub countit {
715 my ( $tmax, $code ) = @_;
716
717 die usage unless @_;
718
719 if ( not defined $tmax or $tmax == 0 ) {
720 $tmax = $default_for;
721 } elsif ( $tmax < 0 ) {
722 $tmax = -$tmax;
723 }
724
725 die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
726 if $tmax < $min_for;
727
728 my ($n, $tc);
729
730 # First find the minimum $n that gives a significant timing.
731 my $zeros=0;
732 for ($n = 1; ; $n *= 2 ) {
733 my $td = timeit($n, $code);
734 $tc = $td->[1] + $td->[2];
735 if ( $tc <= 0 and $n > 1024 ) {
736 ++$zeros > 16
737 and die "Timing is consistently zero in estimation loop, cannot benchmark. N=$n\n";
738 } else {
739 $zeros = 0;
740 }
741 last if $tc > 0.1;
742 }
743
744 my $nmin = $n;
745
746 # Get $n high enough that we can guess the final $n with some accuracy.
747 my $tpra = 0.1 * $tmax; # Target/time practice.
748 while ( $tc < $tpra ) {
749 # The 5% fudge is to keep us from iterating again all
750 # that often (this speeds overall responsiveness when $tmax is big
751 # and we guess a little low). This does not noticably affect
752 # accuracy since we're not couting these times.
753 $n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
754 my $td = timeit($n, $code);
755 my $new_tc = $td->[1] + $td->[2];
756 # Make sure we are making progress.
757 $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
758 }
759
760 # Now, do the 'for real' timing(s), repeating until we exceed
761 # the max.
762 my $ntot = 0;
763 my $rtot = 0;
764 my $utot = 0.0;
765 my $stot = 0.0;
766 my $cutot = 0.0;
767 my $cstot = 0.0;
768 my $ttot = 0.0;
769
770 # The 5% fudge is because $n is often a few % low even for routines
771 # with stable times and avoiding extra timeit()s is nice for
772 # accuracy's sake.
773 $n = int( $n * ( 1.05 * $tmax / $tc ) );
774 $zeros=0;
775 while () {
776 my $td = timeit($n, $code);
777 $ntot += $n;
778 $rtot += $td->[0];
779 $utot += $td->[1];
780 $stot += $td->[2];
781 $cutot += $td->[3];
782 $cstot += $td->[4];
783 $ttot = $utot + $stot;
784 last if $ttot >= $tmax;
785 if ( $ttot <= 0 ) {
786 ++$zeros > 16
787 and die "Timing is consistently zero, cannot benchmark. N=$n\n";
788 } else {
789 $zeros = 0;
790 }
791 $ttot = 0.01 if $ttot < 0.01;
792 my $r = $tmax / $ttot - 1; # Linear approximation.
793 $n = int( $r * $ntot );
794 $n = $nmin if $n < $nmin;
795 }
796
797 return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
798}
799
800# --- Functions implementing high-level time-then-print utilities
801
802sub n_to_for {
803 my $n = shift;
804 return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
805}
806
807$_Usage{timethis} = <<'USAGE';
808usage: $result = timethis($time, 'code' ); or
809 $result = timethis($time, sub { code } );
810USAGE
811
812sub timethis{
813 my($n, $code, $title, $style) = @_;
814 my($t, $forn);
815
816 die usage unless defined $code and
817 (!ref $code or ref $code eq 'CODE');
818
819 if ( $n > 0 ) {
820 croak "non-integer loopcount $n, stopped" if int($n)<$n;
821 $t = timeit($n, $code);
822 $title = "timethis $n" unless defined $title;
823 } else {
824 my $fort = n_to_for( $n );
825 $t = countit( $fort, $code );
826 $title = "timethis for $fort" unless defined $title;
827 $forn = $t->[-1];
828 }
829 local $| = 1;
830 $style = "" unless defined $style;
831 printf("%10s: ", $title) unless $style eq 'none';
832 print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
833
834 $n = $forn if defined $forn;
835
836 # A conservative warning to spot very silly tests.
837 # Don't assume that your benchmark is ok simply because
838 # you don't get this warning!
839 print " (warning: too few iterations for a reliable count)\n"
840 if $n < $Min_Count
841 || ($t->real < 1 && $n < 1000)
842 || $t->cpu_a < $Min_CPU;
843 $t;
844}
845
846
847$_Usage{timethese} = <<'USAGE';
848usage: timethese($count, { Name1 => 'code1', ... }); or
849 timethese($count, { Name1 => sub { code1 }, ... });
850USAGE
851
852sub timethese{
853 my($n, $alt, $style) = @_;
854 die usage unless ref $alt eq 'HASH';
855
856 my @names = sort keys %$alt;
857 $style = "" unless defined $style;
858 print "Benchmark: " unless $style eq 'none';
859 if ( $n > 0 ) {
860 croak "non-integer loopcount $n, stopped" if int($n)<$n;
861 print "timing $n iterations of" unless $style eq 'none';
862 } else {
863 print "running" unless $style eq 'none';
864 }
865 print " ", join(', ',@names) unless $style eq 'none';
866 unless ( $n > 0 ) {
867 my $for = n_to_for( $n );
868 print ", each" if $n > 1 && $style ne 'none';
869 print " for at least $for CPU seconds" unless $style eq 'none';
870 }
871 print "...\n" unless $style eq 'none';
872
873 # we could save the results in an array and produce a summary here
874 # sum, min, max, avg etc etc
875 my %results;
876 foreach my $name (@names) {
877 $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
878 }
879
880 return \%results;
881}
882
883
884$_Usage{cmpthese} = <<'USAGE';
885usage: cmpthese($count, { Name1 => 'code1', ... }); or
886 cmpthese($count, { Name1 => sub { code1 }, ... }); or
887 cmpthese($result, $style);
888USAGE
889
890sub cmpthese{
891 my ($results, $style);
892
893 # $count can be a blessed object.
894 if ( ref $_[0] eq 'HASH' ) {
895 ($results, $style) = @_;
896 }
897 else {
898 my($count, $code) = @_[0,1];
899 $style = $_[2] if defined $_[2];
900
901 die usage unless ref $code eq 'HASH';
902
903 $results = timethese($count, $code, ($style || "none"));
904 }
905
906 $style = "" unless defined $style;
907
908 # Flatten in to an array of arrays with the name as the first field
909 my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
910
911 for (@vals) {
912 # The epsilon fudge here is to prevent div by 0. Since clock
913 # resolutions are much larger, it's below the noise floor.
914 my $elapsed = do {
915 if ($style eq 'nop') {$_->[4]+$_->[5]}
916 elsif ($style eq 'noc') {$_->[2]+$_->[3]}
917 else {$_->[2]+$_->[3]+$_->[4]+$_->[5]}
918 };
919 my $rate = $_->[6]/(($elapsed)+0.000000000000001);
920 $_->[7] = $rate;
921 }
922
923 # Sort by rate
924 @vals = sort { $a->[7] <=> $b->[7] } @vals;
925
926 # If more than half of the rates are greater than one...
927 my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
928
929 my @rows;
930 my @col_widths;
931
932 my @top_row = (
933 '',
934 $display_as_rate ? 'Rate' : 's/iter',
935 map { $_->[0] } @vals
936 );
937
938 push @rows, \@top_row;
939 @col_widths = map { length( $_ ) } @top_row;
940
941 # Build the data rows
942 # We leave the last column in even though it never has any data. Perhaps
943 # it should go away. Also, perhaps a style for a single column of
944 # percentages might be nice.
945 for my $row_val ( @vals ) {
946 my @row;
947
948 # Column 0 = test name
949 push @row, $row_val->[0];
950 $col_widths[0] = length( $row_val->[0] )
951 if length( $row_val->[0] ) > $col_widths[0];
952
953 # Column 1 = performance
954 my $row_rate = $row_val->[7];
955
956 # We assume that we'll never get a 0 rate.
957 my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
958
959 # Only give a few decimal places before switching to sci. notation,
960 # since the results aren't usually that accurate anyway.
961 my $format =
962 $rate >= 100 ?
963 "%0.0f" :
964 $rate >= 10 ?
965 "%0.1f" :
966 $rate >= 1 ?
967 "%0.2f" :
968 $rate >= 0.1 ?
969 "%0.3f" :
970 "%0.2e";
971
972 $format .= "/s"
973 if $display_as_rate;
974
975 my $formatted_rate = sprintf( $format, $rate );
976 push @row, $formatted_rate;
977 $col_widths[1] = length( $formatted_rate )
978 if length( $formatted_rate ) > $col_widths[1];
979
980 # Columns 2..N = performance ratios
981 my $skip_rest = 0;
982 for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
983 my $col_val = $vals[$col_num];
984 my $out;
985 if ( $skip_rest ) {
986 $out = '';
987 }
988 elsif ( $col_val->[0] eq $row_val->[0] ) {
989 $out = "--";
990 # $skip_rest = 1;
991 }
992 else {
993 my $col_rate = $col_val->[7];
994 $out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
995 }
996 push @row, $out;
997 $col_widths[$col_num+2] = length( $out )
998 if length( $out ) > $col_widths[$col_num+2];
999
1000 # A little wierdness to set the first column width properly
1001 $col_widths[$col_num+2] = length( $col_val->[0] )
1002 if length( $col_val->[0] ) > $col_widths[$col_num+2];
1003 }
1004 push @rows, \@row;
1005 }
1006
1007 return \@rows if $style eq "none";
1008
1009 # Equalize column widths in the chart as much as possible without
1010 # exceeding 80 characters. This does not use or affect cols 0 or 1.
1011 my @sorted_width_refs =
1012 sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
1013 my $max_width = ${$sorted_width_refs[-1]};
1014
1015 my $total = @col_widths - 1 ;
1016 for ( @col_widths ) { $total += $_ }
1017
1018 STRETCHER:
1019 while ( $total < 80 ) {
1020 my $min_width = ${$sorted_width_refs[0]};
1021 last
1022 if $min_width == $max_width;
1023 for ( @sorted_width_refs ) {
1024 last
1025 if $$_ > $min_width;
1026 ++$$_;
1027 ++$total;
1028 last STRETCHER
1029 if $total >= 80;
1030 }
1031 }
1032
1033 # Dump the output
1034 my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1035 substr( $format, 1, 0 ) = '-';
1036 for ( @rows ) {
1037 printf $format, @$_;
1038 }
1039
1040 return \@rows ;
1041}
1042
1043
10441;