This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Nothing uses $ENV{PERL_CORE_MINITEST} any more, so don't set it in t/TEST
[perl5.git] / numeric.c
... / ...
CommitLineData
1/* numeric.c
2 *
3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
14 *
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
16 */
17
18/*
19=head1 Numeric functions
20
21This file contains all the stuff needed by perl for manipulating numeric
22values, including such things as replacements for the OS's atof() function
23
24=cut
25
26*/
27
28#include "EXTERN.h"
29#define PERL_IN_NUMERIC_C
30#include "perl.h"
31
32U32
33Perl_cast_ulong(pTHX_ NV f)
34{
35 PERL_UNUSED_CONTEXT;
36 if (f < 0.0)
37 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
38 if (f < U32_MAX_P1) {
39#if CASTFLAGS & 2
40 if (f < U32_MAX_P1_HALF)
41 return (U32) f;
42 f -= U32_MAX_P1_HALF;
43 return ((U32) f) | (1 + U32_MAX >> 1);
44#else
45 return (U32) f;
46#endif
47 }
48 return f > 0 ? U32_MAX : 0 /* NaN */;
49}
50
51I32
52Perl_cast_i32(pTHX_ NV f)
53{
54 PERL_UNUSED_CONTEXT;
55 if (f < I32_MAX_P1)
56 return f < I32_MIN ? I32_MIN : (I32) f;
57 if (f < U32_MAX_P1) {
58#if CASTFLAGS & 2
59 if (f < U32_MAX_P1_HALF)
60 return (I32)(U32) f;
61 f -= U32_MAX_P1_HALF;
62 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
63#else
64 return (I32)(U32) f;
65#endif
66 }
67 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
68}
69
70IV
71Perl_cast_iv(pTHX_ NV f)
72{
73 PERL_UNUSED_CONTEXT;
74 if (f < IV_MAX_P1)
75 return f < IV_MIN ? IV_MIN : (IV) f;
76 if (f < UV_MAX_P1) {
77#if CASTFLAGS & 2
78 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
79 if (f < UV_MAX_P1_HALF)
80 return (IV)(UV) f;
81 f -= UV_MAX_P1_HALF;
82 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
83#else
84 return (IV)(UV) f;
85#endif
86 }
87 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
88}
89
90UV
91Perl_cast_uv(pTHX_ NV f)
92{
93 PERL_UNUSED_CONTEXT;
94 if (f < 0.0)
95 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
96 if (f < UV_MAX_P1) {
97#if CASTFLAGS & 2
98 if (f < UV_MAX_P1_HALF)
99 return (UV) f;
100 f -= UV_MAX_P1_HALF;
101 return ((UV) f) | (1 + UV_MAX >> 1);
102#else
103 return (UV) f;
104#endif
105 }
106 return f > 0 ? UV_MAX : 0 /* NaN */;
107}
108
109/*
110=for apidoc grok_bin
111
112converts a string representing a binary number to numeric form.
113
114On entry I<start> and I<*len> give the string to scan, I<*flags> gives
115conversion flags, and I<result> should be NULL or a pointer to an NV.
116The scan stops at the end of the string, or the first invalid character.
117Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
118invalid character will also trigger a warning.
119On return I<*len> is set to the length of the scanned string,
120and I<*flags> gives output flags.
121
122If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
123and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
124returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
125and writes the value to I<*result> (or the value is discarded if I<result>
126is NULL).
127
128The binary number may optionally be prefixed with "0b" or "b" unless
129C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
130C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
131number may use '_' characters to separate digits.
132
133=cut
134 */
135
136UV
137Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
138{
139 const char *s = start;
140 STRLEN len = *len_p;
141 UV value = 0;
142 NV value_nv = 0;
143
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
147 char bit;
148
149 PERL_ARGS_ASSERT_GROK_BIN;
150
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
154 numbers. */
155 if (len >= 1) {
156 if (s[0] == 'b' || s[0] == 'B') {
157 s++;
158 len--;
159 }
160 else if (len >= 2 && s[0] == '0' && (s[1] == 'b' || s[1] == 'B')) {
161 s+=2;
162 len-=2;
163 }
164 }
165 }
166
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
172 redo:
173 if (!overflowed) {
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
176 continue;
177 }
178 /* Bah. We're just overflowed. */
179 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
180 "Integer overflow in binary number");
181 overflowed = TRUE;
182 value_nv = (NV) value;
183 }
184 value_nv *= 2.0;
185 /* If an NV has not enough bits in its mantissa to
186 * represent a UV this summing of small low-order numbers
187 * is a waste of time (because the NV cannot preserve
188 * the low-order bits anyway): we could just remember when
189 * did we overflow and in the end just multiply value_nv by the
190 * right amount. */
191 value_nv += (NV)(bit - '0');
192 continue;
193 }
194 if (bit == '_' && len && allow_underscores && (bit = s[1])
195 && (bit == '0' || bit == '1'))
196 {
197 --len;
198 ++s;
199 goto redo;
200 }
201 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
202 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
203 "Illegal binary digit '%c' ignored", *s);
204 break;
205 }
206
207 if ( ( overflowed && value_nv > 4294967295.0)
208#if UVSIZE > 4
209 || (!overflowed && value > 0xffffffff )
210#endif
211 ) {
212 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
213 "Binary number > 0b11111111111111111111111111111111 non-portable");
214 }
215 *len_p = s - start;
216 if (!overflowed) {
217 *flags = 0;
218 return value;
219 }
220 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
221 if (result)
222 *result = value_nv;
223 return UV_MAX;
224}
225
226/*
227=for apidoc grok_hex
228
229converts a string representing a hex number to numeric form.
230
231On entry I<start> and I<*len> give the string to scan, I<*flags> gives
232conversion flags, and I<result> should be NULL or a pointer to an NV.
233The scan stops at the end of the string, or the first invalid character.
234Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
235invalid character will also trigger a warning.
236On return I<*len> is set to the length of the scanned string,
237and I<*flags> gives output flags.
238
239If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
240and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
241returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
242and writes the value to I<*result> (or the value is discarded if I<result>
243is NULL).
244
245The hex number may optionally be prefixed with "0x" or "x" unless
246C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
247C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
248number may use '_' characters to separate digits.
249
250=cut
251 */
252
253UV
254Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
255{
256 dVAR;
257 const char *s = start;
258 STRLEN len = *len_p;
259 UV value = 0;
260 NV value_nv = 0;
261 const UV max_div_16 = UV_MAX / 16;
262 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
263 bool overflowed = FALSE;
264
265 PERL_ARGS_ASSERT_GROK_HEX;
266
267 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
268 /* strip off leading x or 0x.
269 for compatibility silently suffer "x" and "0x" as valid hex numbers.
270 */
271 if (len >= 1) {
272 if (s[0] == 'x' || s[0] == 'X') {
273 s++;
274 len--;
275 }
276 else if (len >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
277 s+=2;
278 len-=2;
279 }
280 }
281 }
282
283 for (; len-- && *s; s++) {
284 const char *hexdigit = strchr(PL_hexdigit, *s);
285 if (hexdigit) {
286 /* Write it in this wonky order with a goto to attempt to get the
287 compiler to make the common case integer-only loop pretty tight.
288 With gcc seems to be much straighter code than old scan_hex. */
289 redo:
290 if (!overflowed) {
291 if (value <= max_div_16) {
292 value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
293 continue;
294 }
295 /* Bah. We're just overflowed. */
296 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
297 "Integer overflow in hexadecimal number");
298 overflowed = TRUE;
299 value_nv = (NV) value;
300 }
301 value_nv *= 16.0;
302 /* If an NV has not enough bits in its mantissa to
303 * represent a UV this summing of small low-order numbers
304 * is a waste of time (because the NV cannot preserve
305 * the low-order bits anyway): we could just remember when
306 * did we overflow and in the end just multiply value_nv by the
307 * right amount of 16-tuples. */
308 value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
309 continue;
310 }
311 if (*s == '_' && len && allow_underscores && s[1]
312 && (hexdigit = strchr(PL_hexdigit, s[1])))
313 {
314 --len;
315 ++s;
316 goto redo;
317 }
318 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
319 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
320 "Illegal hexadecimal digit '%c' ignored", *s);
321 break;
322 }
323
324 if ( ( overflowed && value_nv > 4294967295.0)
325#if UVSIZE > 4
326 || (!overflowed && value > 0xffffffff )
327#endif
328 ) {
329 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
330 "Hexadecimal number > 0xffffffff non-portable");
331 }
332 *len_p = s - start;
333 if (!overflowed) {
334 *flags = 0;
335 return value;
336 }
337 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
338 if (result)
339 *result = value_nv;
340 return UV_MAX;
341}
342
343/*
344=for apidoc grok_oct
345
346converts a string representing an octal number to numeric form.
347
348On entry I<start> and I<*len> give the string to scan, I<*flags> gives
349conversion flags, and I<result> should be NULL or a pointer to an NV.
350The scan stops at the end of the string, or the first invalid character.
351Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
3528 or 9 will also trigger a warning.
353On return I<*len> is set to the length of the scanned string,
354and I<*flags> gives output flags.
355
356If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
357and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
358returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
359and writes the value to I<*result> (or the value is discarded if I<result>
360is NULL).
361
362If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
363number may use '_' characters to separate digits.
364
365=cut
366 */
367
368UV
369Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
370{
371 const char *s = start;
372 STRLEN len = *len_p;
373 UV value = 0;
374 NV value_nv = 0;
375 const UV max_div_8 = UV_MAX / 8;
376 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
377 bool overflowed = FALSE;
378
379 PERL_ARGS_ASSERT_GROK_OCT;
380
381 for (; len-- && *s; s++) {
382 /* gcc 2.95 optimiser not smart enough to figure that this subtraction
383 out front allows slicker code. */
384 int digit = *s - '0';
385 if (digit >= 0 && digit <= 7) {
386 /* Write it in this wonky order with a goto to attempt to get the
387 compiler to make the common case integer-only loop pretty tight.
388 */
389 redo:
390 if (!overflowed) {
391 if (value <= max_div_8) {
392 value = (value << 3) | digit;
393 continue;
394 }
395 /* Bah. We're just overflowed. */
396 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
397 "Integer overflow in octal number");
398 overflowed = TRUE;
399 value_nv = (NV) value;
400 }
401 value_nv *= 8.0;
402 /* If an NV has not enough bits in its mantissa to
403 * represent a UV this summing of small low-order numbers
404 * is a waste of time (because the NV cannot preserve
405 * the low-order bits anyway): we could just remember when
406 * did we overflow and in the end just multiply value_nv by the
407 * right amount of 8-tuples. */
408 value_nv += (NV)digit;
409 continue;
410 }
411 if (digit == ('_' - '0') && len && allow_underscores
412 && (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
413 {
414 --len;
415 ++s;
416 goto redo;
417 }
418 /* Allow \octal to work the DWIM way (that is, stop scanning
419 * as soon as non-octal characters are seen, complain only if
420 * someone seems to want to use the digits eight and nine). */
421 if (digit == 8 || digit == 9) {
422 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
423 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
424 "Illegal octal digit '%c' ignored", *s);
425 }
426 break;
427 }
428
429 if ( ( overflowed && value_nv > 4294967295.0)
430#if UVSIZE > 4
431 || (!overflowed && value > 0xffffffff )
432#endif
433 ) {
434 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
435 "Octal number > 037777777777 non-portable");
436 }
437 *len_p = s - start;
438 if (!overflowed) {
439 *flags = 0;
440 return value;
441 }
442 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
443 if (result)
444 *result = value_nv;
445 return UV_MAX;
446}
447
448/*
449=for apidoc scan_bin
450
451For backwards compatibility. Use C<grok_bin> instead.
452
453=for apidoc scan_hex
454
455For backwards compatibility. Use C<grok_hex> instead.
456
457=for apidoc scan_oct
458
459For backwards compatibility. Use C<grok_oct> instead.
460
461=cut
462 */
463
464NV
465Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
466{
467 NV rnv;
468 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
469 const UV ruv = grok_bin (start, &len, &flags, &rnv);
470
471 PERL_ARGS_ASSERT_SCAN_BIN;
472
473 *retlen = len;
474 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
475}
476
477NV
478Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
479{
480 NV rnv;
481 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
482 const UV ruv = grok_oct (start, &len, &flags, &rnv);
483
484 PERL_ARGS_ASSERT_SCAN_OCT;
485
486 *retlen = len;
487 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
488}
489
490NV
491Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
492{
493 NV rnv;
494 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
495 const UV ruv = grok_hex (start, &len, &flags, &rnv);
496
497 PERL_ARGS_ASSERT_SCAN_HEX;
498
499 *retlen = len;
500 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
501}
502
503/*
504=for apidoc grok_numeric_radix
505
506Scan and skip for a numeric decimal separator (radix).
507
508=cut
509 */
510bool
511Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
512{
513#ifdef USE_LOCALE_NUMERIC
514 dVAR;
515
516 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
517
518 if (PL_numeric_radix_sv && IN_LOCALE) {
519 STRLEN len;
520 const char * const radix = SvPV(PL_numeric_radix_sv, len);
521 if (*sp + len <= send && memEQ(*sp, radix, len)) {
522 *sp += len;
523 return TRUE;
524 }
525 }
526 /* always try "." if numeric radix didn't match because
527 * we may have data from different locales mixed */
528#endif
529
530 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
531
532 if (*sp < send && **sp == '.') {
533 ++*sp;
534 return TRUE;
535 }
536 return FALSE;
537}
538
539/*
540=for apidoc grok_number
541
542Recognise (or not) a number. The type of the number is returned
543(0 if unrecognised), otherwise it is a bit-ORed combination of
544IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
545IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
546
547If the value of the number can fit an in UV, it is returned in the *valuep
548IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
549will never be set unless *valuep is valid, but *valuep may have been assigned
550to during processing even though IS_NUMBER_IN_UV is not set on return.
551If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
552valuep is non-NULL, but no actual assignment (or SEGV) will occur.
553
554IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
555seen (in which case *valuep gives the true value truncated to an integer), and
556IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
557absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
558number is larger than a UV.
559
560=cut
561 */
562int
563Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
564{
565 const char *s = pv;
566 const char * const send = pv + len;
567 const UV max_div_10 = UV_MAX / 10;
568 const char max_mod_10 = UV_MAX % 10;
569 int numtype = 0;
570 int sawinf = 0;
571 int sawnan = 0;
572
573 PERL_ARGS_ASSERT_GROK_NUMBER;
574
575 while (s < send && isSPACE(*s))
576 s++;
577 if (s == send) {
578 return 0;
579 } else if (*s == '-') {
580 s++;
581 numtype = IS_NUMBER_NEG;
582 }
583 else if (*s == '+')
584 s++;
585
586 if (s == send)
587 return 0;
588
589 /* next must be digit or the radix separator or beginning of infinity */
590 if (isDIGIT(*s)) {
591 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
592 overflow. */
593 UV value = *s - '0';
594 /* This construction seems to be more optimiser friendly.
595 (without it gcc does the isDIGIT test and the *s - '0' separately)
596 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
597 In theory the optimiser could deduce how far to unroll the loop
598 before checking for overflow. */
599 if (++s < send) {
600 int digit = *s - '0';
601 if (digit >= 0 && digit <= 9) {
602 value = value * 10 + digit;
603 if (++s < send) {
604 digit = *s - '0';
605 if (digit >= 0 && digit <= 9) {
606 value = value * 10 + digit;
607 if (++s < send) {
608 digit = *s - '0';
609 if (digit >= 0 && digit <= 9) {
610 value = value * 10 + digit;
611 if (++s < send) {
612 digit = *s - '0';
613 if (digit >= 0 && digit <= 9) {
614 value = value * 10 + digit;
615 if (++s < send) {
616 digit = *s - '0';
617 if (digit >= 0 && digit <= 9) {
618 value = value * 10 + digit;
619 if (++s < send) {
620 digit = *s - '0';
621 if (digit >= 0 && digit <= 9) {
622 value = value * 10 + digit;
623 if (++s < send) {
624 digit = *s - '0';
625 if (digit >= 0 && digit <= 9) {
626 value = value * 10 + digit;
627 if (++s < send) {
628 digit = *s - '0';
629 if (digit >= 0 && digit <= 9) {
630 value = value * 10 + digit;
631 if (++s < send) {
632 /* Now got 9 digits, so need to check
633 each time for overflow. */
634 digit = *s - '0';
635 while (digit >= 0 && digit <= 9
636 && (value < max_div_10
637 || (value == max_div_10
638 && digit <= max_mod_10))) {
639 value = value * 10 + digit;
640 if (++s < send)
641 digit = *s - '0';
642 else
643 break;
644 }
645 if (digit >= 0 && digit <= 9
646 && (s < send)) {
647 /* value overflowed.
648 skip the remaining digits, don't
649 worry about setting *valuep. */
650 do {
651 s++;
652 } while (s < send && isDIGIT(*s));
653 numtype |=
654 IS_NUMBER_GREATER_THAN_UV_MAX;
655 goto skip_value;
656 }
657 }
658 }
659 }
660 }
661 }
662 }
663 }
664 }
665 }
666 }
667 }
668 }
669 }
670 }
671 }
672 }
673 }
674 numtype |= IS_NUMBER_IN_UV;
675 if (valuep)
676 *valuep = value;
677
678 skip_value:
679 if (GROK_NUMERIC_RADIX(&s, send)) {
680 numtype |= IS_NUMBER_NOT_INT;
681 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
682 s++;
683 }
684 }
685 else if (GROK_NUMERIC_RADIX(&s, send)) {
686 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
687 /* no digits before the radix means we need digits after it */
688 if (s < send && isDIGIT(*s)) {
689 do {
690 s++;
691 } while (s < send && isDIGIT(*s));
692 if (valuep) {
693 /* integer approximation is valid - it's 0. */
694 *valuep = 0;
695 }
696 }
697 else
698 return 0;
699 } else if (*s == 'I' || *s == 'i') {
700 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
701 s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
702 s++; if (s < send && (*s == 'I' || *s == 'i')) {
703 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
704 s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
705 s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
706 s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
707 s++;
708 }
709 sawinf = 1;
710 } else if (*s == 'N' || *s == 'n') {
711 /* XXX TODO: There are signaling NaNs and quiet NaNs. */
712 s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
713 s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
714 s++;
715 sawnan = 1;
716 } else
717 return 0;
718
719 if (sawinf) {
720 numtype &= IS_NUMBER_NEG; /* Keep track of sign */
721 numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
722 } else if (sawnan) {
723 numtype &= IS_NUMBER_NEG; /* Keep track of sign */
724 numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
725 } else if (s < send) {
726 /* we can have an optional exponent part */
727 if (*s == 'e' || *s == 'E') {
728 /* The only flag we keep is sign. Blow away any "it's UV" */
729 numtype &= IS_NUMBER_NEG;
730 numtype |= IS_NUMBER_NOT_INT;
731 s++;
732 if (s < send && (*s == '-' || *s == '+'))
733 s++;
734 if (s < send && isDIGIT(*s)) {
735 do {
736 s++;
737 } while (s < send && isDIGIT(*s));
738 }
739 else
740 return 0;
741 }
742 }
743 while (s < send && isSPACE(*s))
744 s++;
745 if (s >= send)
746 return numtype;
747 if (len == 10 && memEQ(pv, "0 but true", 10)) {
748 if (valuep)
749 *valuep = 0;
750 return IS_NUMBER_IN_UV;
751 }
752 return 0;
753}
754
755STATIC NV
756S_mulexp10(NV value, I32 exponent)
757{
758 NV result = 1.0;
759 NV power = 10.0;
760 bool negative = 0;
761 I32 bit;
762
763 if (exponent == 0)
764 return value;
765 if (value == 0)
766 return (NV)0;
767
768 /* On OpenVMS VAX we by default use the D_FLOAT double format,
769 * and that format does not have *easy* capabilities [1] for
770 * overflowing doubles 'silently' as IEEE fp does. We also need
771 * to support G_FLOAT on both VAX and Alpha, and though the exponent
772 * range is much larger than D_FLOAT it still doesn't do silent
773 * overflow. Therefore we need to detect early whether we would
774 * overflow (this is the behaviour of the native string-to-float
775 * conversion routines, and therefore of native applications, too).
776 *
777 * [1] Trying to establish a condition handler to trap floating point
778 * exceptions is not a good idea. */
779
780 /* In UNICOS and in certain Cray models (such as T90) there is no
781 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
782 * There is something you can do if you are willing to use some
783 * inline assembler: the instruction is called DFI-- but that will
784 * disable *all* floating point interrupts, a little bit too large
785 * a hammer. Therefore we need to catch potential overflows before
786 * it's too late. */
787
788#if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
789 STMT_START {
790 const NV exp_v = log10(value);
791 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
792 return NV_MAX;
793 if (exponent < 0) {
794 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
795 return 0.0;
796 while (-exponent >= NV_MAX_10_EXP) {
797 /* combination does not overflow, but 10^(-exponent) does */
798 value /= 10;
799 ++exponent;
800 }
801 }
802 } STMT_END;
803#endif
804
805 if (exponent < 0) {
806 negative = 1;
807 exponent = -exponent;
808 }
809 for (bit = 1; exponent; bit <<= 1) {
810 if (exponent & bit) {
811 exponent ^= bit;
812 result *= power;
813 /* Floating point exceptions are supposed to be turned off,
814 * but if we're obviously done, don't risk another iteration.
815 */
816 if (exponent == 0) break;
817 }
818 power *= power;
819 }
820 return negative ? value / result : value * result;
821}
822
823NV
824Perl_my_atof(pTHX_ const char* s)
825{
826 NV x = 0.0;
827#ifdef USE_LOCALE_NUMERIC
828 dVAR;
829
830 PERL_ARGS_ASSERT_MY_ATOF;
831
832 if (PL_numeric_local && IN_LOCALE) {
833 NV y;
834
835 /* Scan the number twice; once using locale and once without;
836 * choose the larger result (in absolute value). */
837 Perl_atof2(s, x);
838 SET_NUMERIC_STANDARD();
839 Perl_atof2(s, y);
840 SET_NUMERIC_LOCAL();
841 if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
842 return y;
843 }
844 else
845 Perl_atof2(s, x);
846#else
847 Perl_atof2(s, x);
848#endif
849 return x;
850}
851
852char*
853Perl_my_atof2(pTHX_ const char* orig, NV* value)
854{
855 NV result[3] = {0.0, 0.0, 0.0};
856 const char* s = orig;
857#ifdef USE_PERL_ATOF
858 UV accumulator[2] = {0,0}; /* before/after dp */
859 bool negative = 0;
860 const char* send = s + strlen(orig) - 1;
861 bool seen_digit = 0;
862 I32 exp_adjust[2] = {0,0};
863 I32 exp_acc[2] = {-1, -1};
864 /* the current exponent adjust for the accumulators */
865 I32 exponent = 0;
866 I32 seen_dp = 0;
867 I32 digit = 0;
868 I32 old_digit = 0;
869 I32 sig_digits = 0; /* noof significant digits seen so far */
870
871 PERL_ARGS_ASSERT_MY_ATOF2;
872
873/* There is no point in processing more significant digits
874 * than the NV can hold. Note that NV_DIG is a lower-bound value,
875 * while we need an upper-bound value. We add 2 to account for this;
876 * since it will have been conservative on both the first and last digit.
877 * For example a 32-bit mantissa with an exponent of 4 would have
878 * exact values in the set
879 * 4
880 * 8
881 * ..
882 * 17179869172
883 * 17179869176
884 * 17179869180
885 *
886 * where for the purposes of calculating NV_DIG we would have to discount
887 * both the first and last digit, since neither can hold all values from
888 * 0..9; but for calculating the value we must examine those two digits.
889 */
890#ifdef MAX_SIG_DIG_PLUS
891 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
892 possible digits in a NV, especially if NVs are not IEEE compliant
893 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
894# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
895#else
896# define MAX_SIG_DIGITS (NV_DIG+2)
897#endif
898
899/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
900#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
901
902 /* leading whitespace */
903 while (isSPACE(*s))
904 ++s;
905
906 /* sign */
907 switch (*s) {
908 case '-':
909 negative = 1;
910 /* fall through */
911 case '+':
912 ++s;
913 }
914
915 /* punt to strtod for NaN/Inf; if no support for it there, tough luck */
916
917#ifdef HAS_STRTOD
918 if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') {
919 const char *p = negative ? s - 1 : s;
920 char *endp;
921 NV rslt;
922 rslt = strtod(p, &endp);
923 if (endp != p) {
924 *value = rslt;
925 return (char *)endp;
926 }
927 }
928#endif
929
930 /* we accumulate digits into an integer; when this becomes too
931 * large, we add the total to NV and start again */
932
933 while (1) {
934 if (isDIGIT(*s)) {
935 seen_digit = 1;
936 old_digit = digit;
937 digit = *s++ - '0';
938 if (seen_dp)
939 exp_adjust[1]++;
940
941 /* don't start counting until we see the first significant
942 * digit, eg the 5 in 0.00005... */
943 if (!sig_digits && digit == 0)
944 continue;
945
946 if (++sig_digits > MAX_SIG_DIGITS) {
947 /* limits of precision reached */
948 if (digit > 5) {
949 ++accumulator[seen_dp];
950 } else if (digit == 5) {
951 if (old_digit % 2) { /* round to even - Allen */
952 ++accumulator[seen_dp];
953 }
954 }
955 if (seen_dp) {
956 exp_adjust[1]--;
957 } else {
958 exp_adjust[0]++;
959 }
960 /* skip remaining digits */
961 while (isDIGIT(*s)) {
962 ++s;
963 if (! seen_dp) {
964 exp_adjust[0]++;
965 }
966 }
967 /* warn of loss of precision? */
968 }
969 else {
970 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
971 /* add accumulator to result and start again */
972 result[seen_dp] = S_mulexp10(result[seen_dp],
973 exp_acc[seen_dp])
974 + (NV)accumulator[seen_dp];
975 accumulator[seen_dp] = 0;
976 exp_acc[seen_dp] = 0;
977 }
978 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
979 ++exp_acc[seen_dp];
980 }
981 }
982 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
983 seen_dp = 1;
984 if (sig_digits > MAX_SIG_DIGITS) {
985 do {
986 ++s;
987 } while (isDIGIT(*s));
988 break;
989 }
990 }
991 else {
992 break;
993 }
994 }
995
996 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
997 if (seen_dp) {
998 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
999 }
1000
1001 if (seen_digit && (*s == 'e' || *s == 'E')) {
1002 bool expnegative = 0;
1003
1004 ++s;
1005 switch (*s) {
1006 case '-':
1007 expnegative = 1;
1008 /* fall through */
1009 case '+':
1010 ++s;
1011 }
1012 while (isDIGIT(*s))
1013 exponent = exponent * 10 + (*s++ - '0');
1014 if (expnegative)
1015 exponent = -exponent;
1016 }
1017
1018
1019
1020 /* now apply the exponent */
1021
1022 if (seen_dp) {
1023 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1024 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1025 } else {
1026 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1027 }
1028
1029 /* now apply the sign */
1030 if (negative)
1031 result[2] = -result[2];
1032#endif /* USE_PERL_ATOF */
1033 *value = result[2];
1034 return (char *)s;
1035}
1036
1037#if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1038long double
1039Perl_my_modfl(long double x, long double *ip)
1040{
1041 *ip = aintl(x);
1042 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1043}
1044#endif
1045
1046#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1047long double
1048Perl_my_frexpl(long double x, int *e) {
1049 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1050 return (scalbnl(x, -*e));
1051}
1052#endif
1053
1054/*
1055=for apidoc Perl_signbit
1056
1057Return a non-zero integer if the sign bit on an NV is set, and 0 if
1058it is not.
1059
1060If Configure detects this system has a signbit() that will work with
1061our NVs, then we just use it via the #define in perl.h. Otherwise,
1062fall back on this implementation. As a first pass, this gets everything
1063right except -0.0. Alas, catching -0.0 is the main use for this function,
1064so this is not too helpful yet. Still, at least we have the scaffolding
1065in place to support other systems, should that prove useful.
1066
1067
1068Configure notes: This function is called 'Perl_signbit' instead of a
1069plain 'signbit' because it is easy to imagine a system having a signbit()
1070function or macro that doesn't happen to work with our particular choice
1071of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
1072the standard system headers to be happy. Also, this is a no-context
1073function (no pTHX_) because Perl_signbit() is usually re-#defined in
1074perl.h as a simple macro call to the system's signbit().
1075Users should just always call Perl_signbit().
1076
1077=cut
1078*/
1079#if !defined(HAS_SIGNBIT)
1080int
1081Perl_signbit(NV x) {
1082 return (x < 0.0) ? 1 : 0;
1083}
1084#endif
1085
1086/*
1087 * Local variables:
1088 * c-indentation-style: bsd
1089 * c-basic-offset: 4
1090 * indent-tabs-mode: t
1091 * End:
1092 *
1093 * ex: set ts=8 sts=4 sw=4 noet:
1094 */